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1. INTRODUCTION

It frequently happens that an experimenter is Interested in studying a
system for which it is assumed that a mathematical equation relates the expected

value of a response or yield. p = E(y) to the controllable experimental vari-

ables &y, £yy » = o 5 Epo Thus, let

¢ = ‘P(El; 52’ "' L | Ek; el’ 623 “ & . BP) = 1{)(&"8): (1)

where 6 = (Bl, Bgs + « < s ap) is a vector of parameters of the system, and
E' = (El, EZ’ . omom g Ek) is a vector of observed values of the experimental
variables.

Before the details of an analysis can be carried out, experiments must be

performed at predetermined levels of the controllable factors; that is, an

. experimental design must be selected prior to experimentation. Box and Hunter

[4] suggested designs of rotatability where the standard error is the same for
all points that are at the same distance from the center of the region in which
the relation between ¢ and gi's (i=1,2, ..., k) is under investi-
gation.

It is the purpbse of this paper to concentrate on socme general application
of the.seconduorder rotatable design. Suppose the functional relationship
exists, and can be closely approximated by a quadratic (second degree) poly-

nomial of the form.

k k K
=0, + X 2 + 2
wu e0 , izleiglu o izleiigiu iéjeijgiugju @)

In order to elucldate certain aspects of this relationship, measurements of ¢

are to be made for each of N combinations of levels of the variables

Ea = (Buyr Boys v v 0 B ) » (u=1,2, ... ,N) (3
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2. BASIS FOR THE SELECTION OF SECOND-ORDER ROTATABLE DESIGN

The general prohiem of selecting a response surface design is to choose

a design such that:

(i) the polynomial f£(£') = f(&l, 52, P OE R g gk) in the k-variables
7 E' = (El, 52, v 3 ® ¥ Ek) fitted by the method of least squares
most closely represents the true function w(al, 52, © w4 Ek)
over some region of interest R in the £ space, no restric-
tions being introduced that the experimental points shoﬁld
necessarily lie inside R; .and ‘
(ii) subject to satisfaction of (i) there is a high chance that
inadequacy of f(£) to represent Y(£) will be detected.
When the observations are subject to error, discrepancies between the
fitted polynomial and the true funetion occur
(1) due to sampling error (called here variance error), and
(ii) due to the inadequacy of the polynomial £(£') exactly to

represent Y(£) (called here bias error).

2.1 Choice of Region of Interest

Call the region in the £ space, in which experiments can actually be
performed, the operability region 0. This region is.usually bounded'although
its liﬁits are often known only vaguely. Usually a particular group of experi-
ments is used to explore a rather limited reglon of interest R, entirely con-

tained within the operability region 0.
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N 2.2 Choice of Measure of Closeness
W '
H Let y(£) denote the respoﬁée estimated by the graduating function at the
. e
;%' point §, then it is desirable to choose a design, so that the difference
g} A :
- y(£) - y(&) will be small over the region of interest R. The measure of
s ; ) 7 : -
i closeness which is used at a particular point & will be E[y(£) - y(E) 12,
» . 5
: 2 Over the region R, the average is
Yy
i | n_] E[y(8) - (8))% dg , )
| . . R '

where <! = J di. Let W(E) be a weighfed function such that

R
[ w(e) dg = 1.

o
Then the measure of closeness is

[ WE) E[y(E) - v(£)12 dt ,
¢}
£ in R

where W(t) =
{0 elsewhere .

; It is desirable to be able to compare deslgns which do not contain the
i same number of points and in which the criterion of closeness is independeﬁt
of the variance o2 of the observations which are assumed to be constant.

The measure of closeness will be

> o J = { w(£) E[;(E) - ¥(8)1% ag , (5)
_ . _

‘where w(&) = NW(£)/o? .

, O Let 3(8) - w(E) = {3€&) - Ely(®)1} + [Ely(®) - v@®)) .
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J w(g) E{[y(s) - E y(&)] + [Ey(E) - ¥(&)]]}? d¢

]

Then J

Q
[ﬂ@d@)—@mn2ﬁ+Jw@n®@)-waFds
8]

o

=V + B,

LY

where V 1s the average weighted variance

v=wa)Gw>—§mn2u , (6)

o

and B 1is the average squared bias

B = J w(g) [E;(E) - y(&)1% dg . (7)

(¢
A reasonable criterion would be to choose a désign such that
J=B+V (8)

is minimum.,

2.3 Detection of Inadequacy of Mcdel

Let y_ be the estimated response and y  be the actual observation,
u . N U

u=1, 2, . .., , N. The quantity SR = z
. 5

of squares and is compared either with a prior value o? of the experimental

(yu - yu)2 is the residual sum

error variance, supposed to be known exactly, or with some independent
estimate s2,

In elther case, a parameter which determines the power of the test for
N -
goodness of fit will be the quantity )} {g(yu) - wu]Z ” E(SR) -w o2,
u=l

where w is the number of degrees of freedom on which the residual sum of
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squares is based., While the ultimate objective should be to make the power of

the test as large as possible, in any particular instance in which w 1is
assumed fixed this will be equivalent to making the expectation of SR large.

Therefore the design should be chosed so as to make E(SR) large,

3, SECOND-ORDER ROTATABLE DESIGN IN A PLANE

It is likely, especlally in complex situations, that the exact form of
the response function ¢.Ain equation (1) will be unknown. But a flexible
graduating function £ (for example; a polynomial) will often be satisfactory
to express the relationship between the response andlthe k dimportant
variables El, 52; . .‘. . Ek .

Suppose the graduating function is a polynomial of degree dl’ in £
= ' 6
£8) = £ 8, - | (9

Where the vector '51 contains elements, all of which are powers and

P

products of El, 52, v oe s ,'&P of order d, or less but greater than dl .

2
As in Box and Hunter [4], for a rotatable design of order d all
moments of order 2d+l1 are zero. Therefore if one considers designs which

are second~order rotatable, then the fifth moments will be zero,

3.1 Design Obtained From Consideration of Closeness

Assume Y(£) is a cubic polynomial and f(£) is a quadratic polynomial
in El’ 52, « s ey Ek » Also assume the points™ (51, 52, . e ,'Ek) have
been linearly transformed to points (xl, Xosy o o 4 s xk) in such a way that
the centre of the design is at the origin (0, 0, . . . , 0) and that the
region R 1s the kwdimensional sphere, Then d

=2, d,=3 and the graduating

1 2
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function f(x), where x = (xl. Xos o v 6 s Xk). is

. 2 2 .
y.boq-blxl +b2x2+ “« . e *bkxk"'bilxl + o s ¢bkkxk +‘o12x1x2+

*ou et b KR | | )

or in matrix notation y = _Jgj'_}gl ’

where

| - - . [}
hl (bog bl' &« 9 B 9 bk' bii' & o o 3 bkk! blzl e & 9 9 bk"l.k)' (12)

_}F_i = (1; Xig . o . 3 ng xlz’ * e e 3 xk2= x1x2' T I xk-lxk). (13)

The true relationship which applies over the whole region 0 is assumed to be

the cubiec polynomial

RS L ()
where. x{ is as above, By is defined like _131,
o
By = (Buygs Brope o o oo Buged Bapoe Bagge o v o0 Boglf o0 o0 By
Biogs Bioys o o 0 Bp pg ) ' (15)

3 g 2 o 2, 2,
] 2 1 . L] » F) zxk ] [ ] L} » ] xk—lxk 1]

21:*:233, xlxlezj‘, e ® & 9 xk-2xk-lxk)' : (16)

. 3 2 2
N

Exactly as in [2], ons has J =V + B,

where VeN2 J-’E:'L (gigl)"l % dx : (17)
| R |
- t ;
Buﬂczﬂjﬁ_’z [Agl-xz][;&iA—zZ]ggdx. (18)
R
And _X_{ = I'ch'li’ " e 8 3 'J'r:-‘iu' e ¢ 8 3 EiN] (19)
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15 & (1/2)(+1)(k+2) by N matrix with

®H, = (13 x5, SO X ’ﬁuz' o o ovy xkuzz

Xpuout ¢t kal,u#ku)' (20)
Ry=lxpms o v v 0 Zppe o 000 Xl (21)

is 2 k(k+#1)(k+2)/6 by N matrix with

-2u (xlu ™ 2u' v EEAd JlrZl.v.xk'c.l xZu' ERR xI’.uxku
Hu2®3ur 0 2,0k, uxku) (22)

& = (gizi)-l'gigz is an  (1/2)(k+l)(k+2) by (k+2)(k+1)k/6 matrix of bias

coefficients which has been called the alias matrix, This last matrix has,

for its elements, quantities which measure the extent to which the estimates

El are bizsed by higher order coefficients in accordance with the equation:
E("El} = _,B_i % Aﬁz .
Nl/ 2/6 be substituted into (18). Then

5
gl B al 1 I 2] dx)Aa, - 2aé( J xx) dx)As, + Gé( J X X5 dx) 9, - (23)
R R : R

Since the design is second order rotatable with fifth-order moments zero,

0 0 0 0
311 see 1
NEL v 3
A=,y | o |,
311 see 1
0 0 0 0




' N N N
b 2 2 2
where 3N = uzl'xiu =3 ] X xju and AN = u£1 Xy (24)

are the paramsters of the design, The coluns of A Ieorrespond to the elemsnts
of gé (16) and the rows of A ocorrespond to the elements of 3& (13).

Denote this fact by saying.that A is (Elngé). Only k2 elements of
A are non-zero, and these are shown, They occupy the second, third, e+« ,
(k+1)th rows, In the second row they are in the first % columns, ----,
-in the (k+1)th row they are in the columns numbered (k2 - k1) to k2.

The divisions in both rows and colurms of A correspond to the semicolons in

the x~vectors., Furthermore,
3 _
. d 1

; 1 0 j 0
_,, dy
i ' 0 I 0 0
| SJ zizi dx = ’
= R de | O | v+ A 3) | O
o | o 0 Vi,
e { )
x where  (k+2) = v(k+2)(kalt) = 1 ,
B lk denotes the k by k unit matrix and Jk is a column vector of ones,
Lo
: This matrix is of shape (zi){gé), the divisions again corresponding to the
. semicolons, and since (1/2)(k+1)(k+2). is the number of elements in X
’ p = (1/2)(krl)(ks2) = (2k-1) = (1/2)(ke1)k, Similarly ‘
»
-
ke
>
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&’

&

' where

|l T R )

H s o

QI 3235 dx m v 0

R

I N W

0 0 0
\ J

where v(k+2)(kel4) = 1, This matrix has the same dimensions and is simlliar

element-wise to the transpose A' of A. Again similarly

r

1]

Qch_z_:Eédxww T .
R

4
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'Y

15 3 3
3 3 3
3 1 3
&y = )
.3 1 1

and w(k+2)(k+4)(k+6) =1,

The matrix divisions correspond to the semicolons in the vector X, (16).

Hence, since each gi

q =[k(ks2) (ks2) /6] = K2 = K(k-1)(k-2)/6.

Substituting in equation (23), one finds that the bias contribution B

is given by B = a, g'az , Where

Kl

is a k by k matrie,

; 811l i,

10
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111 %322 %433 1Kk
( ]
A E E ses E %441
E C D XX D %99
9-1 = F 13 | ? ses : 0433
» - . C D .
E D LR D C J aikk

and

g2 = lq/(k+2)(k+{)(k+6) = w_lq .

The .aijj

quadratic form will arise, The elements of 92 will be multiplied by

indicate the positions of the elements of 191 and show how the

terms like a wvhere 1, § and. 1 are different.

131

If one defines

6 =34,/ U= [0-3/(kt6) 1279 (k42), W = 1/(k+2) (k)2 (ck6) ;

2’
then A = 9U46(k+1)W, E = 3U=6W, C = U+2(k+3)W, D = U-2W ,

Evaluation of the quadratic form now gives B = PU + [(k+4)Q-2P]VW .

Where U and W are as defined above and where

2 ' 2
4] P/N=(36111+B]—22+..'+Blkk) + 4 0 o t

~ 2
Gl * Bean * Braa t v o o F By k1)
2 2 2 | 2
a” Q/N 2(38111 + Blggt o e ot Blkk) + o0 ¥
2 2 2 2 2
2036y F By ¥ oo o F B e k)) T Braat e o o B Lk

).
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It was shown in [3] Appendix 2 that P and Q are both invariant under
rotation.

The matrix (&i 51)-1 is found from the formulae given in Box and
Hunter [4] for the inverse of certain matrices which frequently arise in
response surface work, where the matrix ;i §1 contains the sums of squares
and products of the independent variabies. Notice that N-l E& 31 m&y be
viewed as a matrix of moments of the design., From [4] the odd moments-of
a second-order rotatable design of k-variables are zero, and the remaining

moments are shown as equation (24). Thus for a second-order rotatable

design the moment matrix is of the form

0 12+« Kk 11 22 + s« kk 1213+ » » k-1,k

[ - . )
0o |1 0 1 1 s 1 0
1 1
2 1
S lo " 0 0
k 1
11 |1 M, A, vl s X,
3 22 | 1 Ay Bhy Ay e Ay
L N °
Kk |1 Ay Ay v v 3,
12 A
4
13 A,
. " ]o 0 0 "
k‘lsk Alf
\ /

where kz =],




A';'ﬂ “@ P

]
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The inverse matrix is obtained by inversion of the partitioned matrix [7].

N(gigi)'l is equal to

J = v(xz,a) + B(®, P, Q) .

o 12000k 1 22 vee Kk 12 sesk-l,k

T,

0 214(1{'{'2)& 0 "'2)\43. "'2)0.48. 'R -Zkaa 0

1 1

2 1

: 0 . 0 0

k 1

11 -gkéa [(k+l)A4-(k—1)]a (lula)a see (1-k4)a
22 ~2A43 (lvké)a [(E+1)A4-(k—l)]a LR (1-A4)a

) . 0 ) . Z 0

| kk -2l4a (1—14)3 (1—14)a [(k+1)AA-(k—1)]a
-1,
1? A4 )
. 0 0 0 .
-1
k-1,k Ay
| J
' =]
vhere a = [2A, ((k+2)3,~Kk]17" .
 Then from equation (17) one can find that
v‘=-l . 3 (k1) . (k+2)(k+4)6k2 + 3 ~ 2(k+4)6
2 2(k+4)0a, (kt4)2, [(k+2)6 - 33, ] *

If 0 is fixed, and P, Q, which are functions of the Bijk’ are
constants, then, it 1s possible to choose AZ as a function of 8. So one
“has

(26)
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Since 6 1is fixed and P and Q are constants, then B is fixed., As
indicated in section 2 one must choose Az = 12(6) so0 that V (and hence

J) 1is minimized for this 6. Thus set

%51— ,» 8) = 0

which leads to

12(0) =

{6[2(k+4)a+3(k+1)]1(k+2) (k+4)6 nﬁk(k+4)e+9k]}%-3k[2(k+4)e+3(k+1)] en
3[2e (k+2) (k+4) =6k (k+4) 0~ 9k(k-1)]

Now differentiate J with respect to 6, and obtain

%%Z'ggg + gg + :g =0, or ae LA EE = Q " and since gzg 0,
w3 { 1, k(k-2) (eb)hy = Zk(kHON, + (42)]
96 (k+4)2, 202 [(k+2)6 - 3k12]2 I

and g'g' _li +7) [ k+4] '

Thus 3 + gg 0 implies that

kel k(kt2) (RH6)AZ = 2Kk (kDA + (kt2)

% w 27 (k+2) { & 72 2 } ’ (28)

22, [(k+a)o - 3] 1,2 [(k+2)6 - 3kh2]2

where 12 = Az(e) as in equation (27).

If a value for k is selected, tﬁen a value for 0, equations (27)
and (28) can be used to tabulate sets of values of (6, AZ’ P)., On the
other hand, for a given P, one éan find the appropriate value for 6 from

equation (28) and the appropriate design is chosen so that it has moments
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related by the equation Az = 12(6). Therefore, for a given P one can find
the moment values 11/2, A= 3A4IA§ and V/B, when there is a contribution
from V.

In most.situations the appropriate experimental designs to use to
minimize J have moments slightly larger than the moments of the appropriate
all—biés design where P = «, As a pratical matter in situations where no

information about the possible size of P exists, about 10% greater is

suggested as a rough rule,

3.2 Designs Obtained From Consideration of

Detection of the Inadequacy of Model

" If one uses this criterion to select a design, a design is chosen such
that the quantity
¥ 2

21 [E(;u) - ¢u12 = E(SR) - w ¢° = NF, say,
u=

is large. As explained in Box and Draper (1959) [3], this quantity can be

written

X

XX ARy + BXoX By -

Mnﬁg§A3+§g'
The matrix N-l(gégiA) is square and of dimension k(k-1)(k-2)/6 . It

consists of a number of submatrices down the main diagonal. The first k

of these are of dimension k by k and have the form
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(9 3 see 3]
3 1 ene 1
2,
_ }i 3 1 see 1
A2 . . e B
3 1 1]

All other elements are zero. Thus

N szx 1AB) = Aﬁ 12"1' [9(8?11 o)+ 6(Byyy Bygg + o+ o )+
+ (Bizz 40 ) 2(3122 Bygg t o o o )]
= Ai Az“l [(38y); + Bigg + + ooe * Blkk)2 ...
GBypre + Brga * e By, k-1, k-l)2]
= Ai A2-1 P 02/N :
The matrix N (X 2) is also square of dimension k(k-1)(k-2)/6. It

 consists of (k+l) submatrices down the main diagonal., The first of these

is of the form

-1 [v 6 ]
N Z xlu I x1u 2u tt I xlu ku
4 2 ' 2 2 2
I xlux.‘Zu z xlux?.u " I xlu 2u ku

2 2 2 2 2 v 2 4
L x) ) T T o R ) *1u™ku
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and the second, third +++ down to the kth are similar but with the

obvious variation in suffixes., The (kt+l) the matrix is diagonal with terms

; -1 2 2 2 '
such as N % F 203y The other elements of x,x, are zero.

As discussed in [3], one has the average value F of F over all

orthogonal rotations,

-, 2 B & 2. -1
NF/o® = (B + Q) [ x /N(F2)(kth)k = A2, P,
ol
where r2 = x2 + xz + + xz‘ Since A and A can be ébtained
u 1u 20 * ¢ ku * -T2 4

from equation (28) and (24) for a given P, it follows that the design

e N ]
should be such that F is made large implies that Z rf’l should be large,
o u=l

4, SECOND-~ORDER ROTATABLE DESIGNS

IN THREE DIMENSIONS

If there are three factors to be considered in an experimental design,
ene may use second order rotatable designs in three dimensions,

Assume that the measurements of the factors have been coded and Cartesian

axes in three dimensional space are used to describe an experimental design.

In [4], Box and Hunter have shown that the necessary and sufficient condi-

tion for forming a rotatable design of second order is

A4/A§'> K/ (k+2) . (29)

This condition may always be satisfied merely by the addition of points at the

center of design.

When presenting a rotatable design, it is.customary to choose 12 =1 as

the séale of the coded controllable variables., Hence it fixes a particular
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design and enables better comparison between two designs with different values

2
of k‘l-/lz »

Let W(x,y,z) =(y,z,%), Wz(x,y,z) = (z,X,y), W3(x,y,z) = (X,¥,2). Thus

W, Wz and W3 = 1 form a cyclincal group of order 3. Further let

Rl(x’Ysz) = (“x|Y:z)’ chxsy’z) = (xl"Y9z)’ R3(x’Y9z) = (XSYS—Z) .

The four transformations W, R 5 R} and R3 generate a group G of trans-

formations of order 24 with elements
W, Wry, Wr,, wr , Wk

3* 230
wr

J 3 —
1Rys WRR,, WRIRR, . G =1, 2, 3

While R and R, commute, Eﬂ and R, do not, (j = 1, 21 =1, 2, 3).

1 Ry 3 i

Given a general point (x%,y,z) in three dimensions, one may apply to it

all the transformation of the grouﬁ G. In this way one obtains
& x, +y, #z2), (ty, z, ), (z, +x, +y) . (30)

Denote it by G(x,y,z) and it satisfies all the moment conditions (24},

except
N N '
"R, 2 2 .
ugl Xiw = 3 El X1y Xy (1, =1, 2, 3) . (31)

1#3
Now define a function K of the point (x, y, 2) as
K(x,y,2) = %—(x4 + ylI + 2 - 3y232 - 32%%% - 3x2y2) 2 (32)

This function is constant for all of the 24 points of G(x,y,z). Furthermore,
if it is zero them G(x,y,z) 1s a rotatable design, because the condition

(31) becomes satisfied.
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Let
xz = sz?, y2 = tzz, z#0. | (33)
If K(x,y,z) = 0, then
2 . 2 |
t° - 3t(s+l) + (s"=3s+l) = 0,

Solving for t in terms of s, one obtains

t = (1/2)[3(x+1) + ‘/5(82+——“65+1)-- - . L .

If 52 - 35+l > 0, then
s3> (3+/5 )/2 or 0<s< (3-7/5 )/2.

Otherwise there is only one positive solution for each value of s = 0,

If No center poiﬁts are added at the center to form the design, then

N =24 + N0 and AZN = 8(x2 + yz + zz) = 8(s + t + 1);2. Then if one applies
the scaling condition 12 =1,
22 e N/8(s+t+1), z=[N8(s+t+ 1)), (35)

Thus there is an infinite class of second order designs which depends on the
parameters, For if s > 0 is specified, oﬁe can have all design points fixed
from equation (33), (34) and (35).

Suppose K(x, y, z) # 0 for the points of the set G(x, y, z). Define

Z K(x, y, z) over a point set S to be the excess of the set and write it

‘Ex(S). Thus

4 4 2

Ex[G(x,y,2)] = S(x4 +y +2z =~ 3y 2> - 3z2x2 - 3x2y2) i (36)

This can take both positive and negative values according to the choice of x,
y and z, If a number of sets Sl' 82, e ey Sm satisfy, either separate

or together, the moment conditions (24) except the condition (31), then
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Ex(S) + Sy 4 . .+ 5) = Ex(S)) + Ex(S)) + . . + Ex(S) = 0 (37

is a necessary and sufficient condition for the points of the whole set
S1 + S2 + .0 ot Sm to form a rotatable arrangement of second order,
5. SECOND ORDER ROTATABLE DESIGNS

IN FOUR OR MORE DIMENSIONS

In the previous section the method for obtaining infinite classes of
second order rotatable designs_iﬁ three dimensioné has been shown. Now one
may use the meth&dAéréviously employed to obtain infinite classes of second
order rotatable designs in dimensions higher than three by a suitable'genef—
ation and combination of basic sets,

Let (xl,rgz, Koy o @ & oy xk) be a point in k dimensions and let P

3’
be the symmetric group of order k; that is, the group of all permutations

of k elements, Thus one can obtain k points by operating upon

(xl, Xgp o s o s xk) with the elements of P Let Rik be the transform-

k.
ation on k-space which takes the point (xi, Xoy v o o 3 Xy s ey xk)
into the point (Kl’XZ’ se ey Ky e, xk) .

From a single point (xl, Xg9  ®E 5 xk), by an application of the k

elements of Pk and/or the k transformations Rik(i =1, 2, « « « k), omne

can obatin a set H(xl, X

20 v s xk) of 2k k! distinet points. It

consists of the points

(Rt g A% 5w w5 5 B (38)
4 g _ik .

where il, 12, - + s+ 5 1, run through every possible permutation of

k

1, 2, . . « 4 k. It satisfies the following conditions
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N
v k , 2 2 2
Ioxg, = (=)l 27 (3] x5+ 0L+ X)),
u=]1
If‘x“ = (k~1)! zk'(l'+ * + "‘)
iu S o T Rt
u=l ,
(39)
N k '
2 .2 k 2 2
Toxp o xT o= (k=2)! 27 7 x{xi,
=y 1w 7ju S i i3
1#)
(i’j=1’2,'o'|’k)
and all odd sums cf squares and products up to and including order four are
Zero. Therefore}
K k4 %22
EX[H(x,y Xop o o o 5 0] = (k=2)1 2°[(k-1) ] x, = 3 ] x7 x7] (40)
i k =1 i 14 i7j

where Ex[H(xl, Xy

defined in section 4, However, the number of points in this set is too large

..y xk)] is the excess of the point set H and was

for use in a design and it will be necessary to reduce the size of the set by

making several of the x, equal to one another and/or putting some of the Xy

i

P

equal to zero,

e k! points; that is, the

If one wishes to use half of the set of 2
group of all the even permutations, one can achieve the reduction only under

the circumstance such that its moments are symmetrical in the way one desired.

_ However, when k > 3, a cyelic permutation of coordinates does not achieve

symmetry,

When there are k factors, the number of constants to be estimated for
a second order model is 1 + k + k + (k(k-1)/2) or (& + 3k + 2)/2 . For

4 <k <7, one has the table
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Tk .| &5 . &6 17

oe3e2)/2 | 15 21 28 36

Té obtain a design, consisting of a number of points equal to twice the number

of constants to be estimated, will be regarded here as a desirable achievement,

Unfortunately, because of the large number of moments to be balanced when

'seleeting design points, such an achievement is rarely possible with the

method of this section, Thus, some of the designs to be presented are useful
only when a fairly large number of design points is allowable,

In order to'festrict the number of points in a generated set, one considers
only cases where no more than three of %19 X9y o o o, X, are distinct,
Consi&er‘the fraction of H(p, p, . s P 4y Qs o » ¢ 5 G5 ¥y ¥5 o = = 5 T)
vhich contains all possible points once and once only,

Let p occur t times, ¢ occur‘ m times and r occur n times, so
that t+m+n =%k, Let v be the number of zeros if any of p, q and «r
are zero., For example if p # 0, q# 0, r = 0; then v = n. Hence the desire
fraction H(pt, qm, ") or the whole set contains | |

kil

. gk-v (61)
t! m! nl ’

points, This set has sums of powers and products as follows:

2 _ (k1)1 kev

2 2 2
iu [tp”™ + mq” + nr”] ,

1x

u t! m! n!
b (k=) kev 4 b4
E X{u ot ot 2 [tp. + mgq' + nr 1., 42)-
I XiﬂXﬁu, *ik:zll* v o[t(e- l)p + m(m-l) q + n{n-1) r
u t! m! n!

-+ 2 tmpzqz + 2 manrZ + 2 ntrzpz] s
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and all other sums of powers and products up to and inclﬁding order four are

zero, Hence by equations (39) and (40), the excess of this generated set

ki
timla!

k-v

of 2 points is obtained as

Ex[ (it 2Y) ) wpt, ¢°, )

tii?iz! AV e -3e+2)p® + mlke3m42)0* + n-3ne2) e
-6 tmpzq2 -6 mnq2r2 -6 ntr P ] % ' ‘ (43)

By giving specific values to p, q, r, t, m, and n the more useful sets
of this type will be achieved. 1In pérticular, any set that contains more than
48 in four dimensions will be rejected. Thus if there are three distinct
values for p, q, r, one must put r = 0 and allow »p anﬂ q to occur once
only in order to maintain a reasonable number of points, This leads to.con—
sider the generated set S(p, q, Ok'z) = i&(k—Z)!]-l H(p, q, 0, O, « + . , 0)

obtained by setting r = 0, t = m = 1, Then the éet has

k!
tim!n!

k~v

27V = 4 k(k-1)

points and its excess is

k-2 22

Ex[(k-2)! 2%177 Hep, q, 052) = 4Qe-1) (pi+q") - 24 p2g? .
A short table of the number of points in this set‘fqllows:

k 1 4 5 6 7

4k (k~1) I 48 80 120 168

1f 4(k—1}(p +q ) - 24 p2 2 = 0, then

(p 14%)? - (6l(k-1))(p /q ) +1=0,

P /q = [3 +9 = (k-z) ]/(k—l) .
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“Since k = 4, p2/q2 = ], 1is possible only when k=4, But if p2/q2 =1 the

k-2

set can be reduced by half so that S{p, q, 0 ") = [8(k~2)!]—1 B(p,p,0, <« ,Q)

consisting of

k!

e ke (k-2)
2! (k=2)! 0!

2

= 2k(k-1)

poiﬁts, form a rotatable arrangement., It becomes clear that the only point

sets which are a fraction of H(pt, qm, ) and which obey all the required
moment conditioﬁs, except that their excess 1s not zero and which, in addition,
contain a reasonable number of points are obtained by setting n =0, q = 0

(i.g:; letting the coordinate take two distinct values, one of which is zero)

or setting n =m = 0 (i.e., allowing only'one:possible value for the coordinate),
The generated sets may be combined in the same way as was done previously in

the three dimensional case,

6. CONCLUSION

The Second-order rotatable design is a design based on the closeness of
fitting a résponse surface by a polynomial and on the high power of the test
for géodness of fit. One can choose N points by minimizing the difference
between the true response surface and the polynomial usgd to fit it, or by
maximiziné the powér of the test for the goodness of fit,

Sometimes one may obtain a fairly large number of points, therefore

making it impossible to perform the design. This usually happens when there

_are more -than three factors to be considered. In this case the k factors

must be reduced into three, or less, distinct factors so that a reasonable

.number of points can be obtained.
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i

The technique of fitting a response surface 1s one widely used (especially
in the éhemical industry) to aid_in thg statistical analysié of experimental
work in which the xig;g of a product depends on one or more controllable vari-
ables. Before the details of such an analysis can be carried out, experiments
must be performed at predetermined levels of the controllable factors; that is,
an experimental design must be selected prior to experimentation. G. E. P. Box
and J. S. Hunter suggested designs of rotatability as being suitable for such
experimentation.

For a second-order design with two factors one can obtain N points for
a particular group of experiments in which he is interested by the following
method: ‘

(i) minimizing the difference between the true response
surface and the polynomial used to fit it, or
(1i) maximizing the power of the test for the goodness of
fit.

From the designs used for two factors, one can obtain the designs for
three.or more facﬁors. Sometimes a fairly large number of points may be
obtained, hence-making it impossible to perform the design. Usually this
happens when there are more than three factors to be considered. If a large
number of points are obtained, the k factors must be reduced into three or

less than three distinct factors so that a reasonable number of points can be

obtained,



