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INTRODUCTION

The problem of testing a statistical hypothesis was formulated by

Neyman and Pearson (1933) as is given below,

A random variable X is known to be distributed over a space S ac-

cording to some member of a family r = {F(x|6), 6 e fi} of probability dis-

tributions. A statistical hypothesis, H , specifies a subset w of the

parameter space, fi, and states that the distribution of X is F(x| 6)

where 9 e u . Any subset, s, of S may be considered a test of H

with the convention that H is rejected if x, the observed value of X,
(1)

is in s. Otherwise H is accepted. The test is selected in the following

manner:

A number a (0 < a < 1) , called the level of significance of the test,

is selected and s must be such that

P(X e s
I

8 = e ) < a for all 6 £ 0). (1)
' o — o

Subject to this restriction, it is desired to maximize

P(X e 8
I

6 - 6 ) for all 6^ e u(fi). (2)

The interpretation of these conditions is straightforward. Since

P(X e s
I

6) is the probability of rejecting H under the assumption

that F(X
I

e) is the distribution of X, condition (1) states that the

probability of rejecting H when in fact H is true is to be at most a.

Likewise condition (2) is that H is to be rejected with high probability,
u

called the power of the test, when in fact H is false.
UJ

In practice, however, the test s is generally transformed to a test

s' - {t: t > c} • (3)



where t " t(x, , . . , , x ) is a function of the variates, and possibly of
i. n

known parameters, and c is the critical value of the statistic t, i.e.

P(t >. c) <. o (4)

For many tests, say for outliers, the statistics involved are extreme

statistics and the exact value of c for a given a or of a for a given

c is difficult to obtain. Useful bounds, in either case, may be found by

application of Bonferroni's Inequalities.



BONFERRONI'S INEQUALITIES

N
If A , A A^ are N events then A - ^A denotes the

^ ^ ,

^
o"l

event that at least one of the events A (a - 1, . . . , N) occur. Let

p - denote the joint probability of j (j <. N) events A ,A ,.,.,A ;

oi^D**»Y ex tj y

N
and S. the sum of the (.) p's with j subscripts. Then P(A) and the

probability, P, ,, that exactly m (i <_ m <_ N) of the N events A (a"l,,,.,N)

occur simultaneously are (Feller, 1957)

N
J-1P(A) -

I (-iy~-^ S. (5)

j-1 ^

and

N

' j»m *

respectively.

Theorem I ; For any integer m (1 j^ m <_ N) the probability, P , that

at least m of the events A (a - 1 N) occur simultaneously is

given by

N

m ," m—± i
j-m -^

Proof: Consider the relationship

m+l m [mj

Now, if m - 1, (7) becomes



3-1 /J-1^

j=l

I (-1)^ ^ S.

J-1 ^

which is (5). Thus (7) holds for m - 1.

If m - 2, by (8)

^2 " ^1 - ^1]

N . , N

I
(-1)^-^ S. -

I
(-1)^-^ d) S

j=l ^ j=l -'

N .

I
(-1)^"-^ (1-j) S

J-1
^

I (-1)^ (j-1) s

j-2 J

! (-1)^-' (^:h s,

3-2

which is (7) with m - 2,

Now, assume (7) holds for m » m - 1.

Then

^m 1 " I
(-1)^'"^^ Ch S.,

m—1 . m—z i
j=in-l •'

Applying (8) to obtain P gives
m

P - P , - P,
m m-1 [m-l]

from which, with m « m - 1 in (6) and (7),



N . ., . , N

j =111—1 J =m—

i

N

I
m-1

I
(-i)J-"

CI) s

j"m-l

which is (7) for m " m.

It has been shown that if (7) holds for m = m - 1 it holds for

m " m and since it holds for m = 1, 2 it holds for m = 3, 4, . . . , N.

It should be noted that evaluation of P requires knowledge of the
tn

N - m + 1 sums S , . . . , S , which in turn require knowledge of the

probabilities of all possible occurrences of m, m + 1, . , , , N of the

events A (a = 1, . , . , N), This knowledge is not always readily

available to the statisticiein. In view of this fact, the following theorem

is very useful.

Theorem II ; For an approximation

of P involving only the r(l_<r_<N-m + l) sums

S„, S S .^ -, the error (P - P ^^') ism m-rl ' m+r-1 m m



which has the sign of the first term omitted and is less in absolute value.

Thus the sign of e is (-1) and

|c,l < CTl'^ S^^ (11)

Proof:

e -p -;('^>
r m m

j-m "^ j«m "'

- ? (-"'^
(d:i> =j

j-m+r ''

which proves (10),

To prove that e has the properties given in Theorem II, the fol-

lowing lemma is needed.

Lemma ; The S. can be expressed in terms of the P as
j

*- m

N
,in-l.

Proof: By (7)

P - C S

where



p - [?^, p^. . . . . Pjj]'

S, [Sj^t ^2* • • • » ^N^

and

is an NxN upper triangular matrix with I's on the diagonal. Since

|c| T^ 0, C is nonsingular and thus has an inverse, C . Thus

s - c""'-p

where

'
[<i:i>l

c

is also an upper triangular matrix with I's as diagonal elements. Now,

equating the j elements of S^ and C P^ gives

which is (12).

Proof of Theorem II (continuecO; By direct substitution for the S

in terms of the P, , (10) becomes

j

j=m+r

For any k (m + r <_ k <_ N) , the coefficient of P, is



N

j-m+r
•* j-m+r

But,

j-m+r •' j-m "^ j"m

^j-m'

i-0

where i = j - m.

Applying the combinatorial result

I (-1)^ (f) - (-1)" (^~h
i=0

to the right hand side of (15)

Note that ( . ) > since r < k - m, and thus
^ r-1 — '

8

j-m+r

""U'D^^^
(k-mj

(15)

I
(-l)J-"

(^I^) - (-l)'^ (^;^-^) . (16)

j-m+r -^

I
(-1)^-™-' d"i)(fh > (17)

since ( ,) > in (14). Therefore (-1)' e > by (13) and it follows
m—

1

r "~



that the sign of e is (-1)', proving the first properly of e^ in

Theorem II. .

Now, multiplying both sides of (10) by (-1) gives

I
(-1)^-°^'^ (J"h s. >

for all r (1 <. r <. N - m).

Thus for r - r + 1,

j-m+r+1
"""^ J

so that

N

^
J^^C-x,^- Ci> s, .

Hence

f
(.„J-r <J:l)

s < (--S S„^^ . (18)

j«m+r •'

But the left hand side of (18) is

(-1)' e - lei

and thus

' ' — ^ m-1 ' m+r
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which is (11), proving the second property of c^ in Theorem II,

By theorem II a set of inequalities which give bounds on P^ may be

obtained, namely

j«-m j*in

(19)

m+r-1 . . , nH-r . . ,

j=m j^m

for r-1, 2,...,N-ra+l.

The inequalities given by (19) are known as Bonferroni's Inequalities,

The special case for m 1 is particularly useful in testing hypotheses

(or in confidence region procedures) as many important statistics can be

expressed as maxima (or minima)

.

APPLICATIONS OF BONFERRONI'S INEQUALITIES

Application to the Extreme Deviate from the Sample Mean

Let X, (i « 1, . . . , n) be n independent variates drawn from

normal populations with means y + X. and common unit variance. Suppose

it is desired to test the following hypotheses:

H : X^ = for all i
o i

H. : X. > for one (possibly a few), but

X. for the others.
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A test given in terms of the extreme deviate from the sample mean, d, as

s " {d : d _> c}

where

d max d. = X - X

l<i<n
i "'^

.

and c is the upper 100a - percentage point of the distribution of d has

a level of significance a .

The problem encountered here is the determination of c given o or,

equivalently, of a given c . One possible solution is to choose c such

that

P(d^ > c
I
H ) - - for i = 1, . . . , n . (20)

i — ' o n

This simplifies the problem considerably since, under H , the d. are

normally distributed with

i) E(d^) =

ii) o2(d^) - (n-l)/n

iii) Cov(d^, d.) = - 1/n, i / j .

Thus c may be found as a solution to

« = -=r 1 e 2 "
dt (21)

'^Vi''

which is extensively tabled, McKay (1935) suggested (20) as a first ap-

proximation to the critical value of this test. That this approximation
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of the actual critical value is useful however, it must be shovm that the

error level of the test using c as a critical value is close to a. This

may be accomplished by obtaining bounds on P(d >. c
|
H^) with Bonferroni's

inequalities. Now, P(d >. c) - P(at least one d^ >, c)

so that, applying Bonferroni's inequality with m - 1 and r - 1 where

A is the event d . >. c (i - 1, . . . , n)

,

1 2

where

n

S, - S, <. P(d i c) <. S (22)

S, - I P(d. i c) (23)
•*• i-1

and

So -
I P(d. i. c, d > c) . (24)

i<j •'

Under the assumption that the null hypothesis is true, (23) becomes

S^ - nP(d^ >. c)

a

and (24) becomes

^2 " ^2^ ^<^^i^''> *^j ic) (25)

since the d are identically distributed and c was chosen to satisfy (20).
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Thus bounds on the error level are found to be

where

with

a - (^) P(d^ >. c, d^ i c
I

H^) <. P(d i. c
I
H^) <. a

P(di i c. dj > c
I

H^) -

J
r n(0. S=i V) dd^dd^

(26)

c c

V -

n-1

n-1

is tabled for various values of c and p (K, Pearson, 1931).

However, due to the negative correlation, between d. and d
.

,

P(d. 1 c. d > c
I

H^) < [P(d^ > c
I
H^)^

2 a2
(27)

so that

a -
J (n - 1) a^/n i. P(d >. c |

H^) <. a .

Also, due to the nature of the coefficient of 0^/2 in the left hand

inequality of (28) , namely that

(28)

ij /n—

I

x , J n-1 ^ n
lim (—) - 1 and— <^ ,

o--*a2^P(dic|H)£ a (29)

for all n.
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From (29) it is evident that while the test is conservative the error level

is quite close to the level of significance. The following table has been

prepared to illustrate the closeness of the bounds.

Table 1. Bounds on P(d >_ c |
H^) with lower

bounds as entries.

Upper Bound (a) .01 .05 .10

n « 10 .009955 .048875 .095500

15 .009954 .048835 .095334

20 .009952 .048812 .095250

« .009950 .048750 .095000

Entries for n - 10, 15, 20 were computed from (28).

Entries for last line was computed from (29).

From Table 1 it is seen that with level of significance .01 C05,.10)

the bounds on the error level of the test described in this section are

<_ P(d >. c
I

H ) <,

.01

.05

.10

for all n. That improvement of these bounds by using (28) rather than (29)

is slight is evident from Table 1 - although the bounds do become better

as n decreases as was explained in deriving (29) from (28). It is also

evident that dtie to the nature of the correlation between d^ and d

(namely, - •^)

P(di > c. dj i c
I

H^) - P(d^ > c
I
H^) (30)
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for all practical purposes if n >_ 10, say. Thus, unless the sample is

quite small, the improvement in bounds obtained from (26) over those ob-

tained from (28) is of no consequence.

Bonferroni's inequalities could also be used to obtain quite good

bounds on the upper percentage points of the distribution of d under the

assumption of a true null hypothesis. To see this, recall that under H

nP(d^ >. c) - (p P(d^ i: c, d. >, c) ^ P(d >. c) <. nP(d^ >. c) . (31)

An upper bound, c^ , and a lower bound, c-, on the upper 100a - percentage

point, c, may be obtained in the following manner:

Given a and n, solve for c. in

nP(d. i c. ) - a (32)

and for c„ in

nP('(di > C2> - ^2^ P<^i i ^2. dj > C2) - a . (33)

Solving (33) for c,, however, is not very convenient, but

(") P(d, >. Cjt d^ >, S^ ""^y ^® replaced by •2(n-l)a2/n to obtain a lower

bound as the solution of

nP(d^ >. C2) - a + 7 (n-1) a^/n . (34)

Actually, the distribution of d, under the assumption of H , has

been tabled by Thigpen and David (1961) for a - .10, ,05, .025, .01 and

,005 and n - 2 (1) 10, Nair (1948) computed the probability integral to
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six decimal places in increments of 0.01 for n - 3 (1) 9 and Grubbs (1950)

computed the cd.f. to five decimal places in increments of 0,05 for

n - 2 (1) 25.

Application to the Maximum Absolute Deviate

Let X. (i 1, . . . , n) be n independent normally distributed

variates with means w + X. and common variance of unity. Suppose it is

desired to test the hypotheses

H s X^ - for all i
o i

H : X ft for one (possibly a few) i but X «Ax J

for all j 1* i.

The statistic commonly used for this test is the maximum absolute deviate

^ "llgn l^il

where d. x. - x, and the test is given by s {d ^1, c}

where c is determined by

P(d >, c) - a .

An approximation, c, , for c may be obtained by solving for c. in

P(di > Ci I
H^) - 2^ . (35)

Bounds on the error level of test determined by the critical value c. may

then be obtained from Bonferroni's inequality with m » 1 and r 1 where

A, is the event that
I d^ I i c^ .
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Now,

P(d i c,) = P(at least one |d^l ^ c^^) .

Thus applying Bonferroni's inequality under the assumption of a true null

hypothesis,

^1 " ^2 -^^^- V ~^1

where

and

S, - I P(|d.| > c )

^ i-1

2n P(d^ L^i> ' °^

Sj - I P(idJ > c . |d
I

> c )

'' i<j
-*

q) h(c^. c^. - ^)

(36)

(37)

The quantity h(c^ , c., ~) may be computed from Pearson's tables (1931)

as

00 00

h(a.b. - ^) - 2 j
j

n (0, ^ V) dt^ dt^

a b

ea 09

a b

where

+ 2 j j
n (0, ^ V^) dt^ dt^



n-1 n-1

and V,

18

n-1 n-1

and a b " c.

However, for n >. 10, say, p «ii and (37) becomes

,nv ,a.2
^2 <2> ^n>

- j(n - 1) o2/n .

Thus the error level of the test s » {d : d>,c}

is bounded by -rCn - 1) a^/n and a where

2n

Jin

e dt

/ n .1/2

(38)

for n sufficiently large, as indicated above.

The upper 10.0, 5.0, 2.5, 1.0 and 0.5 percentage points of the maximum

absolute standard normal deviate for n - 2 (1) 10 were tabled by Thigpen

and David (1961).

For n > 10, bounds on the percentage points could be obtained by ap-

plication of Bonferroni's Inequalities as indicated in the previous section.

Application to the Studentized Extreme Deviate

If X (i - 1, . . . , n) are n independent normal variates with

common mean y and unknown variance o^, Dunnett and Sobel (1954) have shown

that the variates defined by .
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X, - X'

d, - —
1 s

where s is an estimate of o^ (obtained independent of the x.) have

a joint distribution which is an n-variate generalization of the Student

2
t-distribution with the degrees of freedom of s , say v, and correlation

matrix [p . . ] of the associated n-variate normal.

Thus given a set of variates, say x. (i » 1, . . . , n) which are

independently obtained from normal populations with means p + X. and

common, but unknown, variance a^, a test for the hypotheses

H : Xj - for all i
o i

H.8 X. > for one (possibly a few) j but
A J

X » for all i j« j

Is given by . s* {d > c}

where

X - X
, , max
d max d.

KKn ^ ^

and c is such that

a » n f(t) dt

has an error level bounded by a - —(n - 1) a^/n and a . Here f (t) is the

ordinary Student-t density with v degrees of freedom.

Applying Bonferroni's inequality with m • 1, r 1 and A as the event

that d . ^ c gives as bounds on the error level
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where

J^ - S^lPCdlc I

H^) < S,

S, - I P(di > c
I

H )

^ i-1

n P(d^ > c
I
H^)

and

S, -
I P(d. > c. d > c

I
H^)

^ i<j
'

The symbol d (a,b,p) is defined by

m to

i,b,p) - I

J
f(tj^. t^, P) dt^d^(a.b.p) -

I I

f(t^. t^. P) dt^ dt2

with

__! r
,

t,'-2pt,wi
-(^+1)

f(t, , t ,p)
i z 2

being the bivariate generalization of the Student t-distribution for which

the probability intergal was evaluated by Dunnett and Sobel (1954). Here,

a , b - c (-^)^^^ and p ^ . Thus bounds on P(d >. c
|
H ) are,

letting c' - c(^^) ,



- q) d^ (c', C. - ^) < P(d > c
I
H^) < a

21

(39)

However, since p - ~^ >

d (c*. c'. --ir) < (~)^ for all a
V n-1 n

giving bounds on the error level as

a - y(n-l)a2/n £ P(d >. c |
H^) <. a . (40)

And, since Y(n-l)a2/n < -j for all n, (40) becomes

a - — < P(d >. c
I

H^) <. a . (41)

It should be noted that (40) and (41) are the bounds given in table 1.

The distinction is in the value of c. For the extreme deviate from the

sample mean (actually standardized) the c(^) was taken as the upper

100a - percentage point of the standard normal distribution; for the

studentized extreme deviate c(-^) was taken as the upper 100a - percentage
n—

i

point of the Student t-distribution with v degrees of freedom.

Application to the Studentized Maximxim Absolute Deviate

Halperin et al. (1955) computed upper and lower limits for percentage

.
points of

\\ - x|

d = max Id. = max
i' s

by use of Bonferroni's Inequalities, where the x.(i = 1, . . . , n) are

n independent normal variates with common mean u and common, but unknown,

variance a^ and s is an estimate of o^ made Independently of the
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X (i " 1 n) having v degrees of freedom.

By Bonferroni's inequality with m - 1, r - 1, and A^ being the event

that |d
I

>. c, bounds or P(d >, c) are obtained as

nP (IdJ > c) - ip \ (c'. c', -^) < P(d > c) <nP(|dJ > c) (42)

where

nP(|d^| >. c) - 2n

]
f(t) dt

, n .1/2

and

t / n .1/2

with f (t) being the Student t-distribution with v degrees of freedom and

-2d,(c'.c».-^)+2d^(c».c',^)

with the notation d (c* , c'

,

^) being previously defined.

By solving

J
f(t) dt « a

'^^^"'

and

OS

]
f(t) dt - (2) h^ (c'. c'. -^) - «

f
n .1/2
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for c, with a » .05 and ,01, lower and upper limits were obtained for the

5% and 1% points of the distribution of d. The tables were prepared for

n - 3 (1) 10, 15, 20, 30, 40, 60 and v - 3 (1) 10, 15, 20, 30, 40, 60, 120

and » in both cases.

implication to the Computation of Percentage Points

for the Studentized Extreme and Maximum Absolute Deviates

Quesenberry and David (1961) tabled the 1% and 5% points of the dis-

tribution of

X - X
t t max
b max b , " „

KKn

and

b " max |b
|

KKn

where

S2- I (X. - x)^ + I (y - y)%
i=l i=l

by application of Bonferroni's inequalities. Here it is assumed that the

X. (i"l, . . . ,n) are n independent normal variates with common

mean ]i and common variance o^ and the y. (i = l, . , . ,v + l) are

V + 1 variates, independent of the x., which may be used to obtain an

2
estimate s of the variance a^. The values of the lower and upper bounds

tabled are for a = .01, .05, n - 3 (1) 10, 12, 15, 20 and v - (1) 10, 12,

15, 20, 25, 30, 40, 50 for both b and b .

*
Quesenberry and David suggest using b and b as statistics in testing

for outliers in a normal sample and in the treatment of the slippage problem
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for normal samples.

The density of b. is

r[i(nfv-l)] -,i(n4v.4)r(n + V -
1)J— =- 1 - n b2 / (n-l)J

r[|(n + V -
2)J

L -^

for - (2^)^/2 ^ i,^ , (S^)^^^ (43)

and f(b.) - otherwise.
X

2b ..b, __^ o -1 yCn+v-S)

The joint density of b,, b (i ?* j) is

p/K K^ ,
n ,1/2 n-K>-3 T, n-1 .2 ^'^i'^i n-1 2 1

f (bi. b^) - te^ "TT^
L

^ - IIII ^ n-2 n-2 ^j J

over the ellipse

Szi b^ - ^^ + nzi b2 ^ 1 . (44)
n-2 i n-2 n-2 j

—

By Bonferroni's inequality with m - 1, r = 1 and A^ being the event b >_ c

nP(b^ i c) - (2) P(b^ i c, b^ >. c) <. P(b >. c)

<_ nP(b >, c) .

The upper bound was obtained by solving for c. in

nP(b^ >. c^) - a (46)

The lower bound was obtained by solving for c. in

nP(b^ >. C2) - (2) P(bi i C2. b > C2) - o . (47)

(45)
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by the following iterative technique.

A first approximation to c^^ say c^ q» is given by

nP(b^ 2. ^2^0)
- a + (2) P(bj^ > c^. b^ > c^) . (^8)

On replacing c^ by C2 q in (48) a second approximation c^^^ is obtained.

This process was continued until C2 ^^^ ^^
*^2,t

*8'^®** *° *^^"^ decimal

places. It was found however that C2 q was sufficiently accurate in all

but a few cases. The lower and upper bounds on b (for a - 0.05, 0.01)

agreed so well that only one value was tabled.

Essentially the same procedure was used to obtain the percentage points

of b . The Bonferroni inequality gives

nP(|bJ > c) - (") P(ib^| > c. |bj| > c) < P(b* > c)

i.nP(|b^| >. c) . (49)

But, from the symmetry of f(b ),

P(|b.| 1 c) = 2P(b, >. c)

thus an upper bound c^ can be obtained by solving (46) with a replaced

by 1/2 a . An upper bound can be obtained by use of the same iterative

technique as was applied to (48) on

nP(b. > C2^o) - J « + (2) POb^l L ^1. Ibjl L c^) (50)

The bounds on the percentage points of b (for a - 0.05, 0.01) did not

agree as well as did those for the percentage points of b, but were very close.
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Applications to Various Maxima Statistics

David (1956) has applied what is essentially Bonferroni's inequality

in the evaluation of the probability of rejecting the largest of n ob-

servations by the use of x - x at the 5% level of significance when all
•' max

observations are normal with unit variance, n - 1 having mean y and one

having mean y + X .

The lower bounds on this probability (a poorer function) are tabled

for A - 1, 2, 3, 4 and n - 3 (1) 10, 12, 15, 20, 25 .

Wallace (1958) uses Bonferroni's inequalities to establish bounds on

the error level of intersection confidence region procedures, based on the

use of maxima statistics.

It should be understood that the various procedures reported in this

paper have applications in situations dealing with minima (eg, x - x) as

well as maxima.
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SUMMARY

Bonferroni's Inequalities on the probability that at least m of n

events occur simultaneously may be used to give either bounds on the per-

centage points of the distribution of statistics involving extreme (maxima,

minima or absolute) values or bounds on the error level of tests based on

these statistics. In some situations it also permits the evaluation of a

power function. In the case of tests for outliers in normal samples the

error level is shown to be bounded by a - -rCn - Da^/n and a, where a

is the nominal error level. These bounds may be improved only slightly due

to the nature of the correlation involved in evaluating the probabilities

1 2
of joint occurrences. In fact bounds independent of n (namely a- t- a^ and a)

can be obtained since the correlation is negative.

Halperin et al* (1955) computed upper and lower limits for the 5% and

|X^ - ^1
1% points of the distribution of d = max -^— '— for n » 3 (1) 10, 15,

l<_i<n V

20, 30, 40, 60 and V - 3 (1) 10, 15, 20, 30, 40, 60, 120, » under the as-

sumption of a normal parent population and the availability of an estimate,

s , of 0^ (independent of the sample and having v degrees of freedom) by

an application of Bonferroni's inequalities,

Quesenberry and David (1961), by use of Bonferroni's inequalities,

tabled bounds on the 5% and 1% points of the distributions of

X - X
, , max
b " max b, -

and

l<i<n ^ ^

b max |b, I ,

l<i<n
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where

s2- I (X - x)2 + vsj . .

i-1

They assumed a normal parent population and the availability of an estimate,

8 , of o^ (independent of the sample and having v degrees of freedom).

Values are given for b and b with n » 3 (1) 10, 12, 15, 20 and

V - (1) 10, 12, 15, 20, 25, 30, 40, 50.

David (1956) has used the lower limit of a Bonferroni inequality to

compute the lower bounds on a power function for the extreme standardized

statistic for the particular alternative of a single outlier; while

Wallace (1958) has demonstrated the applicability of Bonferroni 's inequalities

to intersection region confidence procedures.

Reference is also given to the tabulation of the percentage points of

a bivariate generalization of the Student f-distribution by Diomett and

Sobel (1954).
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The inequalities of Bonferroni have useful applications in the testing

of statistical hypotheses—particularily in the detection of outlying obser-

vations. These inequalities may be used either to obtain quite good bounds

on the error level of these tests or to obtain percentage points of the

distributions of the statistics involved.

In the case of the tests for outlying observations considered in this

1 2 /

paper the approximate bounds on the error level are shovm to be a - •j(n-l)a /n

and a for remarkably small n, where a is the nominal error level of the

test. This result is due entirely to the form of the correlation between

the deviations of any two observations from the sample mean.

Formulae for obtaining bounds on the error levels of tests based on

maximum deviations, absolute maximum deviations and Studentized maximum

and absolute maximum deviations are given—as are references to tables for

computing these bounds—if one does not wish to use the approximate bounds

a - —(n-Da^/n and a . These formulae may also be used to tabulate upper

and lower bounds on the percentage points of the statistics involved in the

above mentioned tests.

In particular, the computational procedure for obtaining bounds on the

percentage points of the distributions of

b " max b, = (x - x)/S
i max

2.

and

b = max|b.

|

i

is discussed. Here

S^- I (x^ - x)
" -.2- 2+ vs

i-l
-



is computed from the independent normal variates x. (i = 1, . . . , n) with

2
common mean and common variance and from s - an estimate of the common

variance with v degrees of freedom, independent of the x.. Reference

is given to the tabulation of these bounds.


