A FIELD COMPARISON OF RADIANT AND CONVECTIVE HEATING SYSTEMS IN ARMY MAINTENANCE FACILITIES

by

WILLIAM F. NIEDRINGHAUS B.S., University of Arkansas, 1983

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

Approved by: Major Professor

.

Table of Contents

() - - () ()

	Page
INTRODUCTION	. 1
Project Background Project Goals Scope of Study	. 4
DESCRIPTION OF BUILDINGS AND HEATING SYSTEMS .	. 7
General Discussion Description of Heating Systems Building 8370 Building 8390	. 8 . 8
DESCRIPTION OF INSTRUMENTATION	. 14
General Discussion Modular Measurement System Other Temperature Measurements Measurement of Ceiling Fan, Exhaust Fan,	. 14
and Bay Door Operation Energy Use Measurement Building 8370 Building 8390 Measurement of Weather Conditions Data Acquisition and Storage Error Analysis for Energy Measurements Building 8370 Building 8390	. 21 . 21 . 23 . 24 . 25 . 29 . 29
COMPARISON OF BUILDING HEATING SYSTEM PERFORMANCE	. 34
Introduction Energy Use Comparison General Discussion Monthly Energy Consumption Daytime/Nighttime Energy Use Operation of Bay Doors, Ceiling Fans, and Exhaust Fans Outside Temperature and Energy Consumption Comparison of Thermal Environments General Discussion Analysis Method	. 34 . 34 . 36 . 43 . 56 . 67 . 71 . 71
	Project Background. Project Goals Scope of Study DESCRIPTION OF BUILDINGS AND HEATING SYSTEMS . General Discussion Description of Heating Systems Building 8370 Building 8390 DESCRIPTION OF INSTRUMENTATION General Discussion Modular Measurement System Other Temperature Measurements Measurement of Ceiling Fan, Exhaust Fan, and Bay Door Operation Energy Use Measurement Building 8370 Building 8370 Building 8390 Measurement of Weather Conditions Data Acquisition and Storage Error Analysis for Energy Measurements Building 8370 Building 8370 Energy Use Comparison General Discussion Monthly Energy Consumption Datytime/Nighttime Energy Use Operation of Bay Doors, Ceiling Fans, and Exhaust Fans Outside Temperature and Energy Consumption Comparison of Thermal Environments General Discussion

Chapter

,

IV. continued

Occupied Zone Air Temperature Difference Between Globe Temperature	73
and Occupied Zone Temperature Difference Between Globe Temperature	73
and Average Space Temperature Thermal Stratification	80 80
V. CONCLUSIONS AND RECOMMENDATIONS	95
Conclusions Recommendations	95 97
REFERENCES	99
APPENDIX A Map of Fort Riley Custer Hill Area	100
APPENDIX B Acurex AutoCalc Programming	101
APPENDIX C Daily Average Data: 8370 & 8390	115

List of Tables

Table		Page
3.1	Thermocouple elevations for Modular Measurement System	17
3.2	Three-minute scan data: Building 8370	26
3.3	Three-minute scan data: Building 8390	26
3.4	Hourly scan data: Building 8370	27
3.5	Hourly scan data: Building 8390	28
4.1	Total Heating Energy Use	43
4.2	Daytime and nightime energy use	44
4.3	Radiant heater operation: Building 8370	55
4.4	Average daily ceiling fan and exhaust fan percent time on	67
4.5	Thermal environmental conditions and statistical analysis results	91
B.1	Engineering Units Conversion	101
B.2	Sensor Channel Locations - Building 8370	101
B.3	Sensor Channel Locations - Building 8390	109
C.1	Data Heading Definitions	115

List of Figures

Figure

2.1 2.2 3.1 3.2 3.3 3.4 3.5	Plan and Elevation - Building 8370 9 Plan and Elevation - Building 8390 10 Instrumentation Layout - Building 8370 15 Instrumentation layout - Building 8390 16 Modular Measurement System 18 Bay Door Sensor Circuit Diagram 22 Relative Error in Energy Use
3.5 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17 4.18 4.19 4.20 4.21 4.22 4.23 4.24 4.25 4.26	Relative Error in Energy Use Measurement - Building 839033Daily Energy Use - February37Daily Average Outside Temperature - February38Daily Average Outside Temperature - March40Daily Average Outside Temperature - March40Daily Energy Use - April41Daily Average Outside Temperature - April42Daytime Energy Use - April41Daily Average Outside Temperature - April42Daytime Energy Usage - February45Nighttime Energy Usage - February46Daytime Energy Usage - March47Nighttime Energy Use - April49Nighttime Energy Use - April50Hourly Average Space Temperature - Week 152Hourly Average Space Temperature - Week 252Hourly Average Space Temperature - Week 353Hourly Average Space Temperature - Week 453Hourly Average Space Temperature - Week 554Hourly Average Space Temperature - Week 654Bay Doors: Percent Time Open - February57Bay Doors: Percent Time Open - April59Ceiling Fan Use - February61Ceiling Fan Use - February61Ceiling Fan Use - April63Exhaust Fan Use - February64Exhaust Fan Use - March65
4.28 4.27 4.28	Exhaust Fan Use - April 66 Relationship Between Outside Temperature
4.29	and Energy Use - Building 8370 68 Relationship Between Outside Temperature and Energy Use - Building 8390 69
4.30	Comparison of Energy-Use Responses to Outside Temperature

Figure

4 04	Convertical Zone Nice Tennessee England
4.31	Occupied Zone Air Temperature - February 74
4.32	Occupied Zone Air Temperature - March 75
4.33	Occupied Zone Air Temperature - April 76
4.34	Difference Between Globe Temperature
	and Occupied Zone Temperature - February 77
4.35	Difference Between Globe Temperature
	and Occupied Zone Temperature - March 78
4.36	Difference Between Globe Temperature
1.00	and Occupied Zone Temperature - April 79
4.37	Difference Between Globe Temperature
4.5/	
	and Average Space Temperature - February 81
4.38	Difference Between Globe Temperature
	and Average Space Temperature - March 82
4.39	Difference Between Globe Temperature
	and Average Space Temperature - April 83
4.40	Building 8370 Stratification - February 85
4.41	Building 8390 Stratification - February 86
4.42	Building 8370 Stratification - March 87
4.43	Building 8390 Stratification - March 88
4.44	Building 8370 Stratification - April 89
4.45	Building 8390 Stratification - April
	•
4.46	Effect of Ceiling Fan Use on
	Stratification - Building 8370 92
4.47	Effect of Ceiling Fan Use on
	Stratification - Building 8390

Acknowledgments

Several people have asisted and encouraged me in the course of this work. I wish to express my appreciation to my major professor, Dr. Byron W. Jones, for his guidance and encouragement. I would also like to acknowledge the other members of my advisory committee, Dr. Robert Gorton and Professor Charles Burton, for their assistance and instruction.

This project was sponsored by the U. S. Army Construction Engineering Research Laboratory, and I am grateful for for this sponsorship, as well as for my financial support. In particular, Mark Imel of CERL has been a great source of encouragement, assistance, and ideas.

I would like to express my deep appreciation for the support provided by my parents and family. As always, they have been ever ready to give an encouraging word when needed.

Finally, I would like to thank Lt. Col. Jerry L. Sinn, U. S. Army Corps of Engineers, whose contributions made the pursuit of an advanced degree possible.

vi

CHAPTER 1

INTRODUCTION

Project Background

With increased awareness of the need for energy conservation in recent years has come an increasing usage of radiant heating systems. The advantages of radiant heating - specifically, the ability of such systems to maintain a comfortable operative temperature at a lower air temperature than convection heating systems - are particularly attractive for commercial and industrial applications where large, open spaces must be heated.

Radiant heating systems gain this advantage by increasing the mean radiant temperature of the environment. The mean radiant temperature is the uniform blackbody temperature of an imaginary enclosure with which the same amount of radiant heat would be exchanged as is in the actual environment. The operative temperature - a single "sensed" temperature which combines the effects of convective and radiative heat transfer - is related to the mean radiant temperature by the equation:

$$t_{o} = (h_{r} \times t_{r} + h_{c} \times t_{a})/(h_{r} + h_{c})$$
 (eq.1.1)

where

 h_r = linear radiative heat transfer coefficient h_c = linear convective heat transfer coefficient t_a = ambient air temperature

 t_r = mean radiant temperature

It can be seen from this equation that an increase in MRT will allow a decreased ambient air temperature without a change in the operative temperature.

If t_r is greater than the temperature of the body's surface, the radiant heat flux adds heat to the body system. Conversely, if t_r is less than the body's surface temperature, heat is lost by radiant cooling. The design goal for radiant heat is to maintain an appropriate total heat flux (radiant + convective) at a minimum t_a .

Several studies have been made of the performance of radiant heating systems. Janssen (1976), in a thermal comfort study of a warehouse with vented gas heaters, found that radiant heating producing t_0 5.2F (2.9°C) greater than t_a resulted in a comfortable environment. Bryan (1981) performed a computer simulated comparison between radiant and convective heating in a rectangular space. The same t_0 was specified for both applications. In this simulation, it was determined that 100% radiant heating produced a mean radiant temperature 8°C higher than 100% convective heating, thereby allowing a lower air temperature. Bailey (1980) compared radiant and convective

heating systems in several applications. The convective systems used 13% to 16% more energy to achieve the same environmental conditions.

The U.S. Army has been pursuing the use of radiant heating in its Tactical Equipment Maintenance Facilities. Existing facilities are being retrofitted and radiant heating is being specified for new construction. Maintenance facilities are in many respects an ideal application for radiant heating. They are characterized by large open areas with high ceilings. Only the lower levels are occupied. The facilities have large garage doors which when open allow the entire space to be flushed with outside air, and high ventilation rates are necessary to remove vehicle exhaust fumes. Under these conditions, a conventional forced-air convection system is generally unable to maintain a comfortable air temperature at the occupied level, or uses excessive amounts of energy to maintain comfortable conditions.

Radiant heating, by operating directly on the surfaces in the space rather than on the air, should not have such problems. The air is not heated by radiant heaters, since the infrared energy is not absorbed by the air in any appreciable amount. The walls, floor, ceiling, and other surfaces absorb the energy, and the air is heated

by natural convection from these surfaces. The occupants also benefit from the radiant exchange, since it raises the mean radiant temperature, and therefore allows comfort at a lower air temperature. The lower air temperature also reduces heat losses through infiltration.

The U.S. Army Construction Engineering Research Laboratory (CERL) has been assigned the task of monitoring the performance of heating and cooling systems in Army facilities. Through the Facilities Technical Applications Test (FTAT) program, CERL collects data concerning the performance of generally accepted heating and cooling systems as they are used in specifically military applications. One such FTAT project, entitled "Radiant Heat Effectiveness", is being conducted at two Tactical Equipment Maintenance Facilities at Fort Riley, Kansas.

Project Goals

The two buildings selected by CERL for this study are of almost identical construction. They differ most significantly in their heating systems. One building is heated by gas-fired, tube type radiant heaters while the other is heated by unducted forced convection heaters. The project was initiated in order to evaluate the performance of radiant heaters in maintenance facilities, in comparison with that of conventional heating systems.

The buildings are to be compared on the basis of energy consumption and the thermal environment provided by the different heating systems. The data provided by this comparison can then be used to modify the design of the heating systems in future construction. In addition, this project will provide data which can be used in computer simulations. CERL does extensive work with the simulation program BLAST (Building Loads Analysis and System Thermodynamics). In order to run a simulation, BLAST requires information on a building's structure and geometry, hourly environmental information, and hourly internal loading information. The Radiant Heat Effectiveness project will provide such data.

It was initially intended that all necessary instrumentation would be in place and operational by October 1987, so as to allow data collection throughout the entire heating season. However, useful data collection did not begin until mid-January 1988. At the end of the heating season in May 1988, data collection ceased. All instrumentation was left in place to be used during the 1988-89 heating season.

Scope of Study

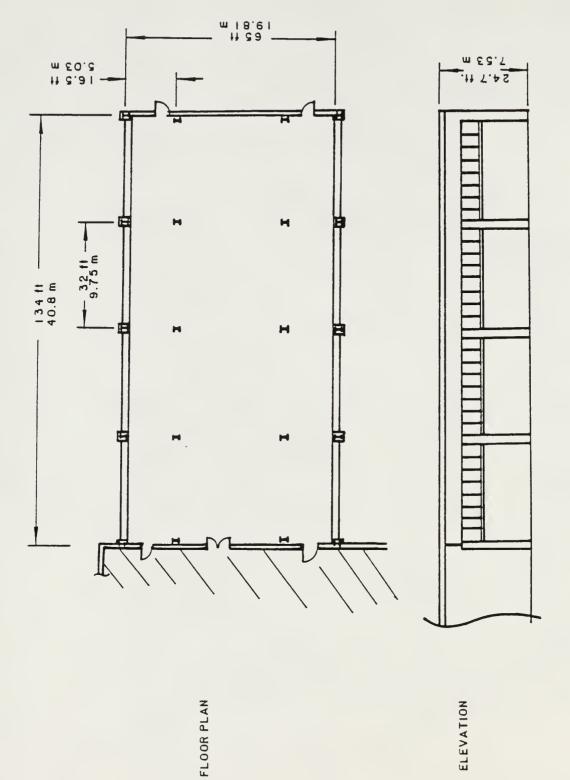
This study does not attempt to analyze all of the data collected from the two buildings during the period

February- April 1988. While many data points were sampled every three minutes, the focus here is on hourly and daily averages of measured values. This study will be primarily concerned with a comparison of the energy use and thermal characteristics of the two heating systems. The effects of door openings, as well as ceiling fan and exhaust fan use, on energy usage will be addressed. Thermal characteristics such as air stratification, ambient air temperature, and operative temperature of the two buildings will also be compared.

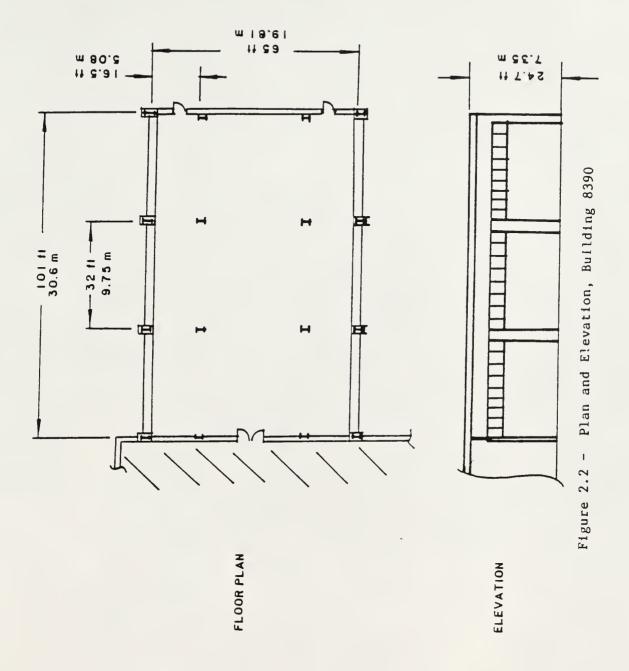
CHAPTER 2

DESCRIPTION OF BUILDINGS AND HEATING SYSTEMS

General Discussion


The two buildings studied for this project are both located in the Custer Hill area of Fort Riley (map. Appendix A). This area of the post features rolling hills and little substantial vegetation. Both buildings are situated in the middle of large concrete vehicle parking areas. and while there are several outlying buildings. these are not large enough to cause shielding of the main buildings. The buildings are identified by number- Building 8370 and Building 8390. The buildings were constructed in accordance with standardized specifications. and therefore are identical in many of their construction details. Each was built with a slab on grade foundation. The end walls are of concrete block construction, with one end wall separating the maintenance bays from conditioned office space. There are no side walls to speak of, the sides consisting mostly of large insulated metal garage doors separated by vertical steel columns. Translucent panels are set above the doors to provide lighting. The roofs are insulated double metal. The relevant specified U-values are 0.05 BTU/hr*ft²*F for the walls. 0.07 BTU/hr*ft²*F for the roofs. and 0.10 BTU/hr*ft²*F for the bay doors.

Plans and elevations for Building 8370 and Building 8390 are shown in Figure 2.1 and Figure 2.2 respectively. The major difference between the two buildings, besides the heating systems, is size. Building 8370 consists of eight maintenance bays. totaling approximately 8,500 square feet of floor space, while the portion of Building 8390 studied in this project consists of six bays totaling approximately 6,400 square feet. Building 8370 was completed in the fall of 1987, and Building 8390 was completed about one year earlier. Building 8370 is occupied by a Military Intelligence Battalion, and the bays are used for maintenance of a wide variety of wheeled vehicles and armored tracked vehicles. Building 8390 is occupied by an Armor Battalion. The north bay of Building 8390. which is studied here. is used almost exclusively for the maintenance of wheeled vehicles.


DESCRIPTION OF HEATING SYSTEMS

Building 8370

The heating system in Building 8370 is shown in Figure 3.1. The system consists of five separate Perfection-Schwank Model JP125 DSAN indirect, gas-fired, tube type radiant heaters. The heaters consist of 4 in. diameter tubing with individual burners and blowers. Exhaust gases are vented through the ceiling. Each heater

has a rated capacity of 125,000 BTU/hr, for a total capacity of 625,000 BTU/hr. Typical operating temperatures are 800F or greater at the burner end of the tube and 250F or less at the exhaust end. All heaters are mounted at a height of 20 ft above the floor. Reflectors are mounted over the tubes. The heaters are controlled by four thermostats mounted five feet above the floor on vertical structural members. Heaters 2 and 3 are operated by the same thermostat. Each of the other three heaters has its own thermostat. The thermostats operate on line voltage and turn on the blowers and open the gas valves when activated. The burners do not modulate; each heater operates at full capacity whenever it is on.

In addition to the radiant heaters, the building is equipped with a makeup air unit (MAU) which uses a gas burner to heat fresh air brought into the building. The rated capacity of the MAU is 550,000 BTU/hr at 5000 cfm. The MAU has a modulated burner and a specified supply air temperature of 55F. In practice it was found that the air temperature was usually 70-75 F. The controls for the MAU are mounted on the end wall of the bay. The MAU was not operated for much of the heating season, and was operated manually by the building occupants when used.

Building 8370 has two other features, besides the

eight garage doors, that affect its thermal characteristics. Four three-bladed ceiling fans are located at a height of 22 feet above the floor. A separate wall switch is provided for each fan. There are also two banks of vehicle exhaust fans, one bank on each side of the bay. Each bank has a separate wall switch.

Building 8390

The heating system for building 8390 is shown in Figure 3.2. All heat to the building is provided by circulating a hot 50/50 water/glycol mixture. There are two unit heaters in each bay, for a total of six heaters. These heaters, rated at 88,000 BTU/hr each, are mounted at a height of 18 feet above the floor. Each heater consists of a finned-tube heat exchanger and a propeller fan which draws air downward through the heat exchanger. When the system is on, the hot water mixture flows through the heat exchanger continuously, and the heater is turned on by activating the fan. The hot water circulation to the entire building is controlled by an outside thermostat, which activates the pump when the outside temperature falls below 65F. Operation of the fans is controlled by thermostats located inside metal electrical boxes which are in turn mounted on structural posts inside the bays. Each box contains both a day and a night thermostat. There are two

pairs of thermostats, each of which controls one side of the space, or three heaters.

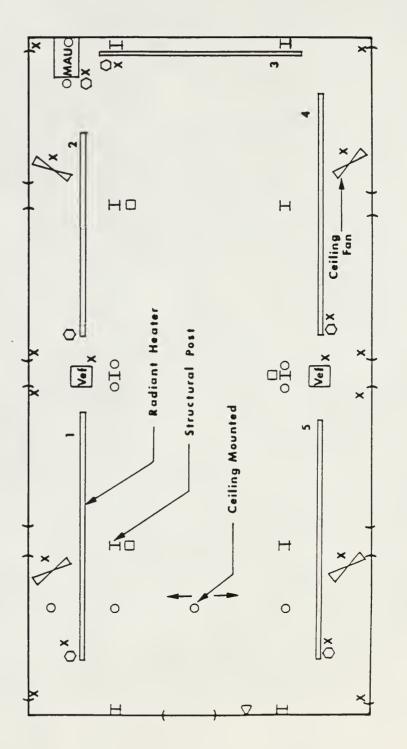
Like Building 8370, Building 8390 has a make up air unit which heats fresh air brought into the building. The MAU operates on the same hot water loop as the unit heaters. The MAU has a rated capacity of 288,000 BTU/hr, and while the operating schedule is not clear the MAU appeared to operate most of the time during the heating season.

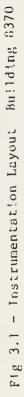
Building 8390 has vehicle exhaust fans similar to those in Building 8370. The building is also equipped with air recirculation devices to reduce thermal stratification. Each device consists of a centrifugal fan mounted near the ceiling connected to a flexible 8-inch duct that hangs down to about two feet above the floor. There are four of these devices, each controlled by a separate wall switch.

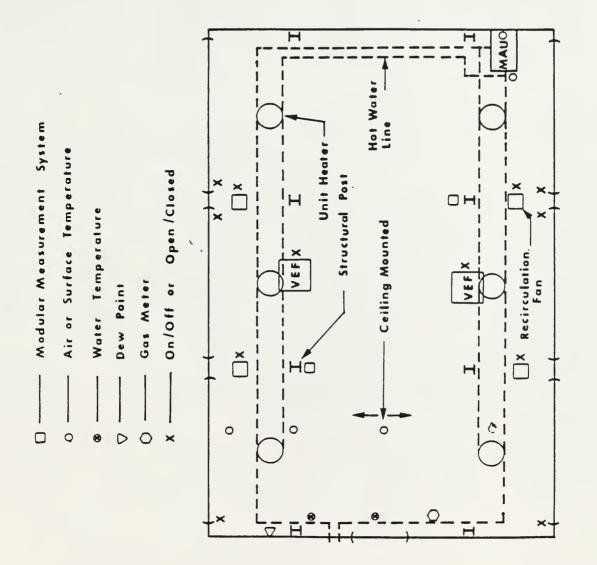
CHAPTER 3

DESCRIPTION OF INSTRUMENTATION

General Discussion


The instrumentation used in both buildings was designed with several considerations in mind. First. instrumentation was required not only to measure energy consumption, but also for measurement of all aspects of the thermal environment within the buildings. These included the air temperature at several different elevations. the operative and mean radiant temperatures, the air velocity, and the moisture content of the air. Also, the operation of ceiling fans. exhaust fans. and bay doors had to be monitored. Secondly, all instrumentation had to be unobtrusive, so as not to interfere with the occupants' work. The third consideration was that the instrumentation had to be sufficiently rugged to withstand a certain amount of abuse, since it could not be expected that every occupant would look out for sensitive equipment.


The instrumentation layout in Building 8370 is shown in Figure 3.1, and that of Building 8390 in Figure 3.2.


Modular Measurement System

It was determined that certain similar conditions would be measured at several different locations in the buildings. To do this, a "Modular Measurement System" (MMS)

- 0 Air Temperature or Surface Temperature. Sensor
 - △ --- Dew Point Temperature Sensor
- O --- Gas Meter
- X ---- On/Off or Open/Closed System

was designed. Three MMS were placed in Building 8370, while two were placed in Building 8390. Each MMS (Fig 3.3) consists of a vertical string of eight thermocouples, an omnidirectional anemometer, and a segmented black globe thermometer. The thermocouples are protected by 1/2 inch metal conduit, with the junctions exposed to the air. The anemometer and globe thermometer are mounted inside a cage made from 1/2 inch mesh hail screen.

The thermocouples used throughout this project are type "T" copper-constantan small gage thermocouples. Table 3.1 lists the elevations of the thermocouples used in the MMS.

Table 3-1: Thermocouple elevations for Modular Measurement System.

T/C Number	Elevation(in.)		
1	2 below ceiling		
2	264		
3	192		
4	120		
5	72		
6	48		
7	6		
8	-1 (in floor)		

Each globe thermometer consists of a 6 inch diameter copper sphere, painted matte black. The classic unsegmented globe thermometer with a thermocouple at the center can be used, along with air temperature and air velocity data, to determine the operative and mean radiant

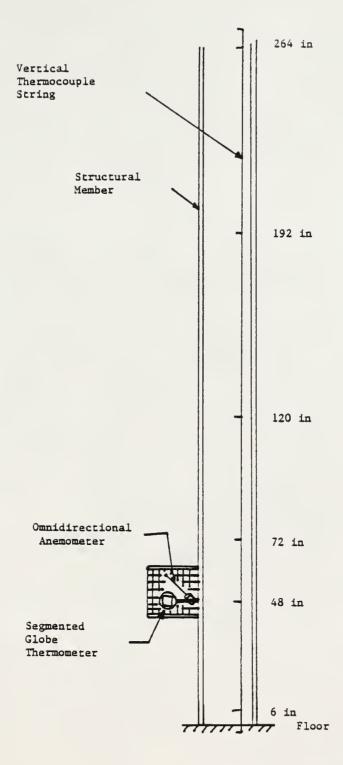


Fig 3.3 - Modular Measurement System

temperatures (ASHRAE 1987). The globes used in this project were segmented according to the six cartesian directions. A copper-constantan thermocouple was attached to the inside of each segment, and the globes were filled with fiberglass insulation to prevent internal radiant exchange between the segments.. Unpublished research by Jones and Tao has shown that the average of the six measurements from a segmented globe thermometer is essentially equal to the measurement from an unsegmented device. The segmented globe also allows for measurement of radiant asymmetry. The globe thermometers are mounted 48 inches above the floor.

The final component of the MMS is the omnidirectional anemometer. TSI Model 1620 OmniSensor anemometers were selected for this project. The tip of the sensor is positioned approximately six inches directly above the globe thermometer. The sensor produces a 0-10 volt signal which is translated to air velocity by use of calibration curves provided by the manufacturer.

Other Temperature Measurements

In addition to the thermocouples installed to measure thermal stratification, temperature sensors were placed in several other locations in each building. Since the MMS thermocouples were installed essentially underneath the heaters, there was concern that the data from these

sensors might not be indicative of the typical conditions in the space. To measure temperatures away from the heaters, strings of thermocouples were installed transversely across the ceilings. Four ceiling thermocouples were placed in Building 8370, while three such sensors were placed in Building 8390.

Both buildings had thermocouples placed in the inlet and outlet ducts of the makeup air units. Four additional thermocouples were installed in Building 8370, one at each of the four thermostats. Late in the heating season, two thermocouples were attached to the fins of two of the unit heaters in building 8390. While the data from these sensors was not used in this study, it will be used during the 1988- 89 heating season to directly indicate when the heaters are operating.

Measurement of Ceiling Fan, Exhaust Fan, and Bay Door Operation

Monitoring of the ceiling fans and exhaust fans in both buildings was accomplished by a straightforward procedure. While the equipment in the two buildings differed in line voltages and switch types used, all of the data were collected by connecting a relay to the fan circuits which would close when the fans were in use.

To monitor the use of the bay doors, Sears Model

139.53710 Infrared Reversing Sensors were used. These devices are designed to reverse the operation of automatic garage door openers when the infrared beam is broken. The square-wave signal produced by these devices cannot be used directly by the Acurex dataloggers, so a circuit was designed which would translate the changing signal from the sensor to a relay closure. The circuit is shown in Figure 3.4. The door sensors were placed so that the beam is broken whenever the door is raised more than 12 inches.

Energy Use Measurement

Building 8370

Energy usage in Building 8370 is monitored by measurement of the natural gas flow into each radiant heater and the makeup air unit. An American Meter gas meter was installed by a commercial contractor on each heater, for a total of six. Model AC-250 meters were installed on the radiant heaters, and a Model AC-425 meter was installed on the MAU. The gas meters record the amount of gas used by volume. With each cubic foot of gas, a pulse is sent to the datalogger, which records the cumulative total each hour.

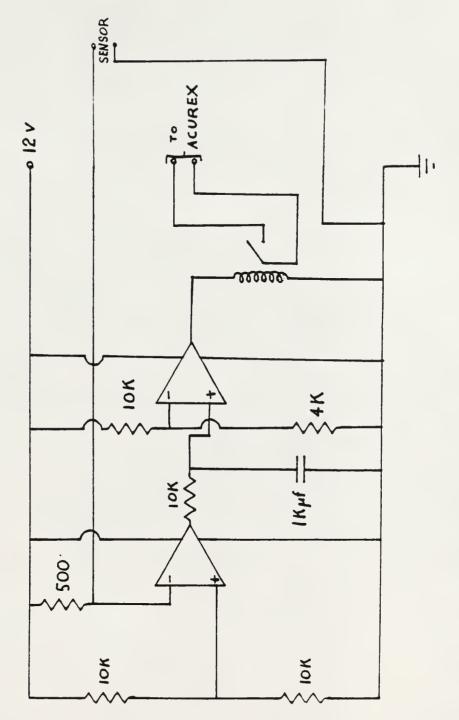


Fig 3.4 - Bay Door Sensor Circuit Diagram

The total volume used can then be converted to energy usage with the equation

 $1 \text{ ft}^3 = 980 \text{ BTU}$ (Eqn 3.1)

Each radiant heater, as well as the makeup air unit, is also monitored for on-time. Relays were installed which close when the heater is turned on, and the contact closure is recorded by the datalogger. The record of ontime became useful when it was discovered that the gas meter on the makeup air unit was not working.

Building 8390

The energy usage in Building 8390 could not be measured directly as could that of Building 8370. The building's boiler provides circulating hot water for the entire building, so it was necessary to use instrumentation that would measure only the energy use in the north maintenance bays. To do this, the water flow rate and the difference in temperature between the supply flow and the return flow are measured.

The temperatures are measured by 100-ohm platinum resistance temperature detectors (RTDs) inserted into brass thermowells in the water pipes. The signals from the RTD are converted to 4-20 mA current by HyCal CT-810-B Current transmitters. The 4-20 mA range corresponds to a temperature range of 0-200 F. The transmitters were

calibrated once per month. The datalogger initially records the signal as a percentage of the 4-20 mA range, which is then translated to temperature using

Temp $(F) = 2 \times (percent of range)$ (Eqn 3.2)

Water flow rates are measured by Data Industrial Model 220B paddlewheel flowmeters. Data Industrial Model 500 Analog Transmitters convert the signal to a 4-20 mA output signal, which corresponds to a flow rate range of 0-250 GPM.

Measurement of Weather Conditions

Weather data is provided by a Climatronics Meteorological Monitoring System. The CMMS continuously monitors wind speed and direction, dry bulb temperature, dew point temperature, barometric pressure, and solar radiation. The weather station is located on a thirty foot tall tower behind Building 8025 on Custer Hill. Building 8025 is approximately one mile from Building 8370 and two miles from Building 8390. The station was installed one year prior to the beginning of this project and was calibrated and verified at that time (Erickson, 1987).

During the month of April, a malfunction of the datalogger in Building 8025 resulted in the loss of several days' weather data. For this time period, outside temperature data was provided by a sensor at Building 7108, also on Custer Hill.

Data Acquisition and Storage

All data from each building is collected by an Acurex AutoCalc Data Acquisition System. The AutoCalcs, Assembly # 42565-040, were configured with three analog input boards and two digital input boards. The Acurexes are mounted in cabinets located in offices adjacent to the maintenance bays. The circuits for the bay door sensors are located in the cabinets. Micronta Model 22-121 Dual-Tracking Power Supplies are used to provide power to the anemometers, dew point temperature sensors, door sensors, RTDs, and flow meters. The power supplies are also located in the cabinets, as are the RTD and Flow Meter Transmitters for Building 8390.

The AutoCalcs each have 360K bytes of internal RAM storage memory, which can be divided into as many as five history files. All data points are scanned once per minute. However, since the AutoCalc's memory is limited, it was apparent that storing all of the data require almost daily trips to Fort Riley to download the data onto floppy disks, as well as resulting in an unmanageably large data base. This being the case, the AutoCalcs were programmed to store certain data at three-minute intervals while most data were stored as hourly averages. With this programming, the AutoCalcs were able to store approximately four days' data

before filling the available memory. Downloading of data was done with a Zenith portable computer, using the CROSSTALK XVI communications program.

The three-minute scans provide a "snapshot" of conditions in the space at a particular time. Tables 3.2 and 3.3 list the three-minute data for both buildings. Table 3.2: Three-Minute Scan Data- Building 8370

DATE DESCRIPTION NUMBER OF DATA POINTS

Average Globe Temperature Thermostat Temperature	3 4
Air Velocity	3
MAU Inlet Temperature	1
MAU Outlet Temperature	1
Fans On/Off	6
Heaters On/Off	5
Doors Open/Closed	8
Ambient Air Temperature	3
Dew Point Temperature	1

Table 3.3: Three-Minute Scan Data- Building 8390

DATA DESCRIPTION	NUMBER	OF DATA	POINTS
Average Globe Temperature		2	
Air Velocity		2	
MAU Inlet Temperature		1	
MAU Outlet Temperature		1	
Fans On/Off		6	
Doors Open/Closed		6	
Ambient Air Temperature		2	
Dew Point Temperature		1	

The globe thermometer temperature recorded is the mean of the six segment temperatures. Air velocity data is recorded as volts. Ambient Temperature is the mean of the 48 inch and 72 inch temperatures from the MMS vertical thermocouple string.

The ceiling fan, exhaust fan, heater, and bay door operation data is processed to minimize memory requirements. The data from each sensor is initially collected as a single data bit, 1 or 0, 1 signifying "on" or "open" and 0 signifying "off" or "closed". Each data bit is then multiplied by a specified 2*n. For example, the data bit from Ceiling Fan 1 would be multiplied by 1, that of Ceiling Fan 2 would be multiplied by 2, that of Ceiling Fan 3 would be multiplied by 4, and so on through 8, 16, etc. A summation of the products results in a single integer number. In Building 8370 the ceiling fan, exhaust fan, and heater data are stored as one decimal number and the bay door data as a second number. In Building 8390 all fan and bay door data are stored as a single number.

The hourly data scans record time-averaged values for all temperature data, and also store hourly totals of energy use and bay door open time. Tables 3.4 and 3.5 summarize the hourly data.

Table 3.4: Hourly Scan Data - Building 8370

DATA DESCRIPTION	NUMBER OF DATA POINTS
Vertical Air Temperature	24 (8 per MMS)
Globe Segment Temperature	18 (6 per Globe)
Ceiling Temperature	4
Dew Point Temperature	1
Heater Gas Usage	6
Bay Door Open Time	8

Table 3.5: Hourly Scan Data - Building 8390

DATA DESCRIPTION	NUMBER OF DATA POINTS
Vertical Air Temperature	16
Globe Segment Temperature	12
Dew Point Temperature	1
Ceiling Temperature	4
North Bay Energy Use	1
South Bay Energy Use	1
Door Open Time	6
North Water Supply Temp	1
North Water Return Temp	1
South Water Supply Temp	1
South Water Return Temp	1
North Water Flow Rate	1
South Water Flow Rate	1

Energy use data for Building 8390 is calculated each minute by

 $\dot{Q} = 0.436 \times \dot{V} \times \Delta T$ (Eqn 3.3)

where

à	= Heat flow rate KBTU/hr
v	= Flow Rate (GPM)
△ T	= Temperature difference between supply
	and return water

The factor 0.436 combines the necessary unit conversions and a specific heat = 0.85 (ASHRAE 1985). The average of the heat flow rates over one hour provides the hourly energy use in KBTUS.

It may be noted that the operation of the bay doors is recorded in two separate ways. The output signal from the door sensor circuit is read by both an analog board and

a digital board in the AutoCalc. The analog board measures the voltage, compares it to a programmed threshold value, and stores a "1" if the voltage is above the threshold. These are the data stored every three minutes. The digital board scans the circuit every second, and counts the number of seconds the door circuit relay is closed. This equals the number of seconds the door is open. These data are stored in the hourly scans, at which time the digital "counter" is reset to zero.

Error Analysis for Energy Measurements Building 8370

The relative error of the energy measurements in Building 8370 is

$$e_{Q} = \sqrt{(e_{V})^{2} + (e_{C})^{2}}$$
 (3.4)

where

 $e_{V} = relative error of volume measurement$ $e_{C} = relative error of conversion factor$ The total error of the volume measurement is $E_{V} = \sqrt{(E_{meter})^{2} + (E_{least} count)^{2}} \quad (3.5)$ The accuracy of the gas meters is ± 0.01 , which leads to $E_{meter} = \pm 0.01 \times (volume measured) \text{ ft}^{3}$ $E_{least} count = \pm 1.0 \text{ ft}^{3}$ (3.5) thus becomes

$$E_V = \sqrt{(0.01 \times \text{volume})^2 + 1.0}$$

For the highest volume measured (125 ft^3), this results in

$$E_{v} = 1.6 \, \text{ft}^3$$

The relative error then is

$$e_V = 1.6/V$$
 (3.6)

Depending on conditions, the heat from 1 ft³ of gas varies between 972 BTU and 988 BTU. A value of 980 BTU/ft^3 was used in this study. Therefore,

$$E_{C} = \pm 8 \text{ BTU/ft}^{3}$$

 $e_{C} = \pm 0.01$ (3.7)

Combining (3.6) and (3.7) with (3.4) results in $e_Q = \sqrt{(1.6/V)^2 + (0.01)^2}$

For V = 125 ft³ this becomes

Building 8390

The relative error for energy measurements in Building 8390, based on (3.3), is

$$e_{Q} = \sqrt{(e_{\rho})^{2} + (e_{c}p)^{2} + (e_{V})^{2} + (e_{\Delta T})^{2}} (3.8)$$

For the small temperature range involved in this study, the density and specific heat are assumed to be constant.

$$E_V = \sqrt{(E_{meter})^2 + (E_{Acurex})^2 + (E_{cal})^2}$$
$$E_{meter} = \pm 0.005 \times (current range)$$
$$= \pm 0.08 \text{ mA}$$

$$= \pm 1.0 \text{ gpm}$$

$$E_{Acurex} = 0.0008 \times (\text{input current})$$
For the highest input current (20 mA) this becomes

$$E_{Acurex} = \pm 0.016 \text{ mA}$$

$$= 0.2 \text{ gpm}$$

$$E_{calibration} = \pm 0.1 \text{ gpm}$$
Therefore

$$E_{V} = 1.025 \text{ gpm}$$

$$e_{V} = 1.025 \text{ VV}$$
The absolute error for each RTD is given by

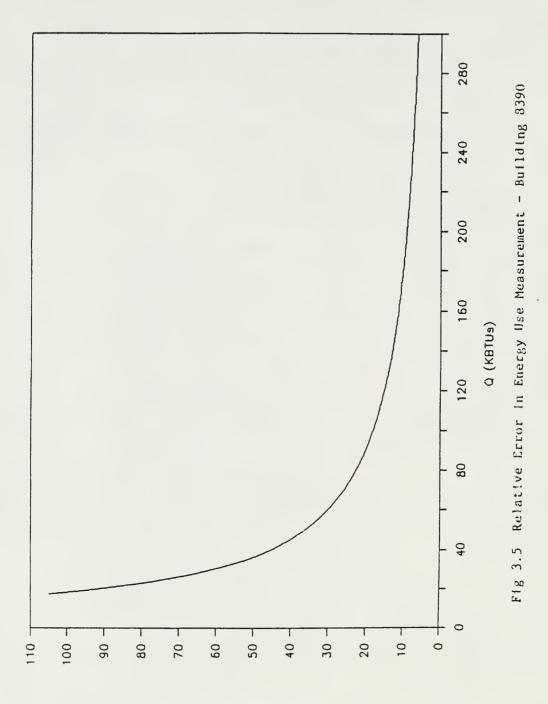
$$E_{T} = \sqrt{E_{trans}}^{2} + (E_{Acurex})^{2} + (E_{cal})^{2} + (E_{lc})^{2}$$

$$E_{transmitter} = \pm 0.2 \text{ F}$$

$$E_{Acurex} = \pm 0.0008 \times (\text{input current})$$

$$= \pm 0.2 \text{ F}$$
E_calibration = $\pm 0.1 \text{ F}$
E_least count = $\pm 0.05 \text{ F}$
Combining these terms,

$$E_{T} = 0.3 \text{ F}$$
The error of the temperature difference is


$$E \Delta T = \sqrt{2 \times (E_{T})^{2}}$$

$$= 0.42 \text{ F}$$

$$e \Delta T = 0.42 \text{ F} \text{ T}$$
Thus,

$$e_{Q} = \sqrt{(1.025/V)^{2} + (0.42/\Delta T)^{2}}$$
When the system is operating, the flow rate \dot{V} is

generally constant at 95 gpm. Therefore, the relative error can be considered a function of T, or, using equation 3.3, a function of Q. Figure 3.5 shows this functional relationship. As can be seen, the relative error becomes extremely large for low values of Q, making these values suspect.

Relative Error (Percent)

CHAPTER 4

COMPARISON OF BUILDING HEATING SYSTEM PERFORMANCE

Introduction

The scope of this study made it necessary to process the data from the AutoCalcs into daily averages which were then analyzed to compare the systems' performance. Initial processing was accomplished using FORTRAN programs developed by CERL investigators. These programs reformatted the data so that each recorded scan was now stored as a single line in a data file. This allowed the data to be read into the Lotus 1-2-3 spreadsheet program for analysis. The Lotus program was used along with some BASIC programs to convert the hourly and three minute data into daily averages.

The daily average values used for these comparisons are listed in Appendix C.

Energy Use Comparison

General Discussion

In order to make a meaningful comparison between the energy usage of the two buildings, it is important to take into consideration differences in the both the physical dimensions of the buildings and the character of the raw data collected. As was described in Chapter 2,

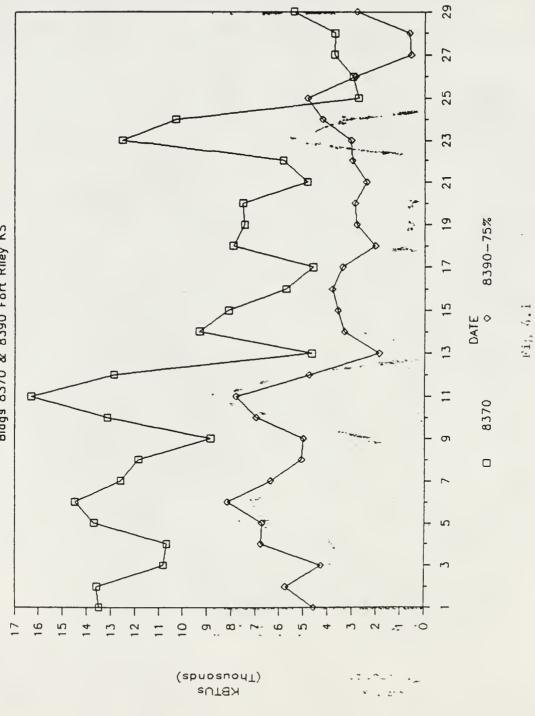
Building 8370 is 33% larger in floor area than Building 8390, and would therefore be expected to use more energy. In order to simulate a comparison between two buildings of equal size, the energy data from Building 8390 was increased by a scale factor of 1.33.

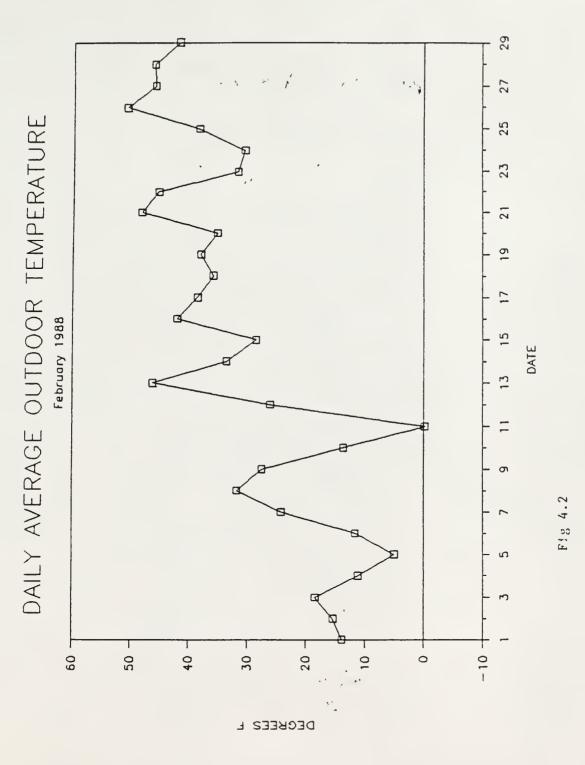
The second consideration involves the meaning of the energy data collected from each building. the fuel energy input to Building 8370 was measured, as opposed to the thermal energy input measured for Building 8390. Since the boiler in Building 8390 provides heat for the entire building, it is not possible to directly measure the fuel energy used to heat the north bay. It is necessary, then, to adjust the energy data for Building 8390 to account for the efficiency of the boiler.

Boiler efficiency is described in two ways: combustion efficiency and overall efficiency. Combustion efficiency is defined as (input-stack loss)/input. ASHRAE (1988) shows that a non-condensing boiler with an input water temperature of 160F can be expected to have a combustion efficiency of approximately 85%. Overall efficiency takes into account the loss of energy through the walls of the boiler. For this study it was assumed that heat losses through the boiler and pipes equaled 10% of the input energy. The resulting overall efficiency for Building 8390 was therefore taken to be 75%, and the energy data for

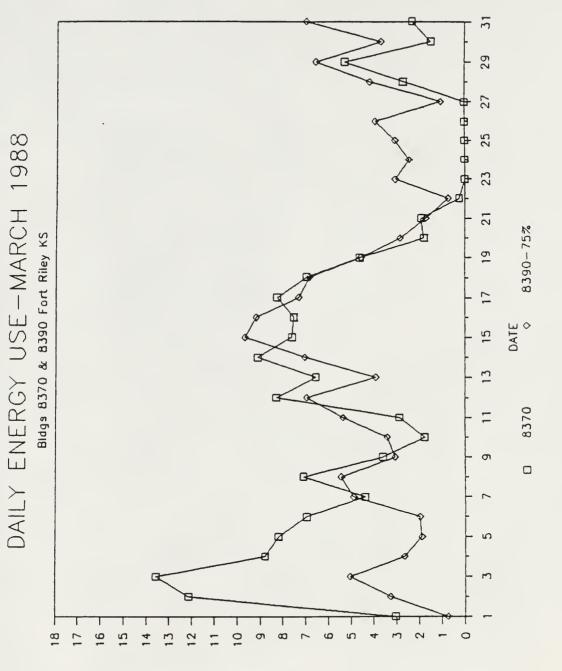
the building was adjusted for this efficiency.

Monthly Energy Consumption

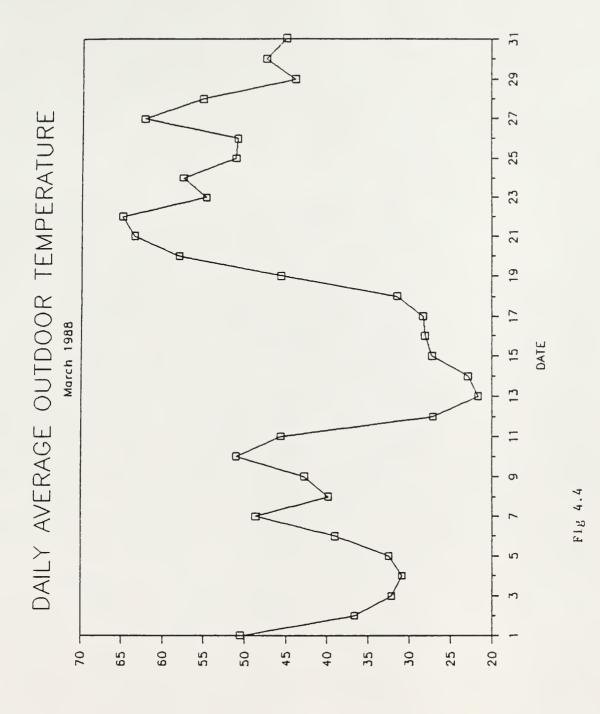

The overall energy usage of Buildings 8370 and 8390 during the month of February is shown in Figure 4.1. Average daily outside temperatures for February are shown in Figure 4.2.

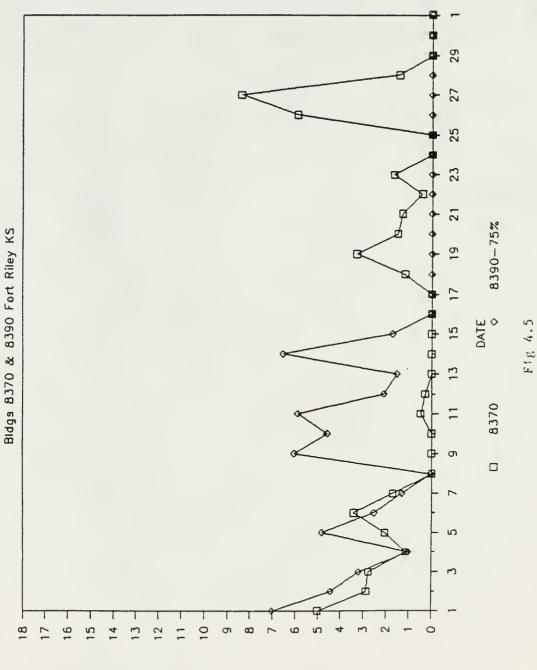

As would be expected, energy usage in both buildings generally varied inversely with outside temperature. Noticeable peaks in energy use show for February 11, which was the only day during the three month study period for which the average outside temperature was less than 0 F. It can be seen that Building 8370 used substantially more energy than Building 8390 during the period 1 - 24 February, after which the difference between the two buildings became less pronounced.

The energy usage and daily outside temperatures for March are shown in Figures 4.3 and 4.4. For the first six days of March, Building 8370 again used much more energy than did Building 8390. For the remainder of the month, there was no clear difference between the two buildings. It should be noted that the heaters in Building 8370 were turned off during the period 23 - 27 March.

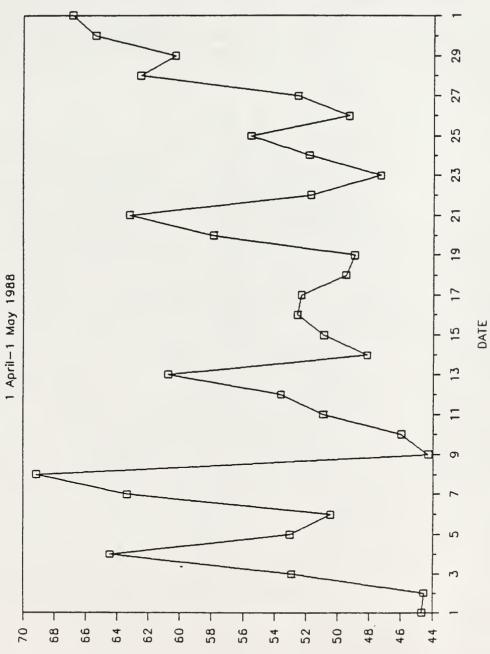

Figures 4.5 and 4.6 show the energy use and daily outside temperatures for the period 1 April - 1 May.

DAILY ENERGY USE-FEBRUARY 1988 BIdgs 8370 & 8390 Fort Riley KS




F18 4.3

(Thousands) KBTUs



DECREES F

DAILY ENERGY USE: 1 APRIL-1 MAY 1988

(Thousands) KBTUs DAILY AVERAGE OUTDOOR TEMPERATURE

DEGREES F

Fig 4.6

Outside temperatures varied widely, with the highest daily average temperature occuring on 8 April and the lowest occuring the next day. Energy usage also varied considerably. The pump in Building 8390 shut down on 10 April, while the heaters in Building 8370 continued in use throughout the month.

The monthly totals for energy usage are summarized in Table 4.1.

Table 4.1: Total Heating Energy Use (KBTUs)

	8370	8390
February	260000	123000
March	147000	137000
April	45000	54000
Total	452000	315000

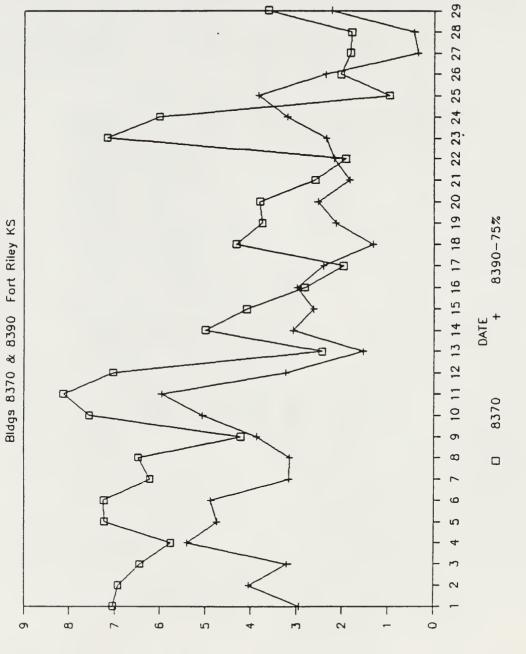
Overall, Building 8370 used 43% more energy for heating than Building 8390. This was an unexpected result since the characteristics of the buildings would appear to favor radiant heating systems. While it was not possible to monitor all of the factors affecting energy use, severa which may have caused the observed results were examined.

Daytime/Nighttime Energy Use

As was described in Chapter 2, the controls for th radiant heaters in Building 8370 consist of single easily accessible thermostats. No night-time setback was provided Building 8390 has separate day and night thermostats i

enclosed cabinets.

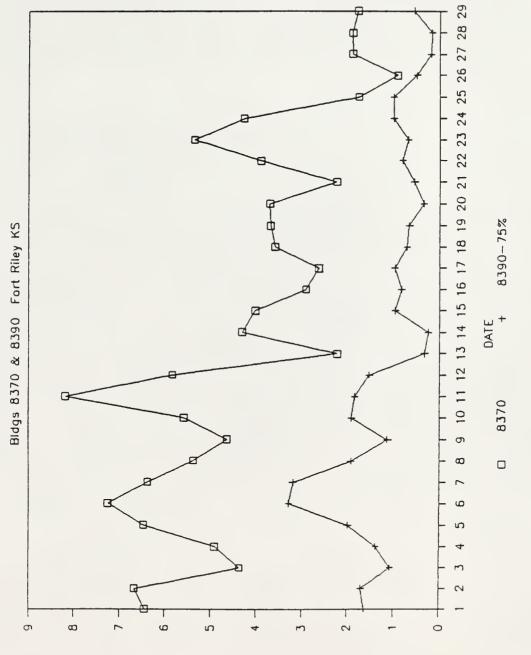
In order to examine the effects of this difference, the energy usage of each building was divided into daytime use, defined as energy use between 6 AM and 6 PM, and nighttime use, which was energy used between 6 PM and 6 AM. The results are shown in Figures 4.7 through 4.12 and are summarized in Table 4.2.


Table 4.2: Daytime and Nightime Energy Use (KBTUs)

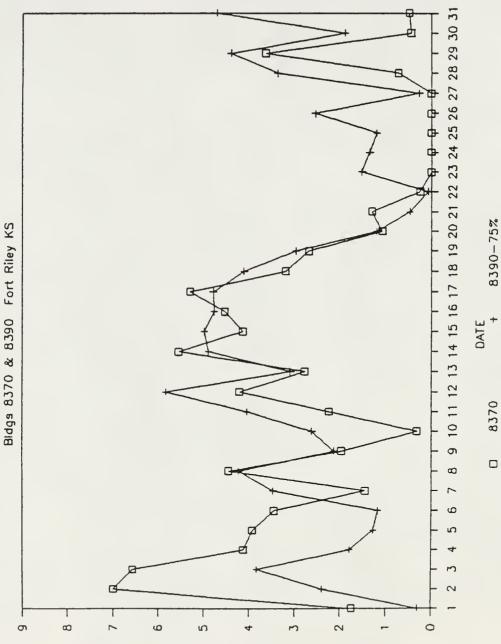
	Day		Night	
	8370	8390	8370	8390
February	123000	90000	137000	34000
March	70000	88000	77000	49000
April	15000	32000	30000	22000
Total	208000	210000	244000	105000

It can be seen that Building 8390 consistently used less energy at night than did Building 8370. This difference is particularly notable in the February and early March data. The difference in nighttime energy use between the buildings was not as drastic during March and April, but Building 8370 still used more energy. Over the entire three month period, the total nighttime energy consumption of Building 8370 exceeded that of Building 8390 by 132%.

In terms of daytime energy usage, Building 8370 fared better. During March and April, Building 8370 used less energy than Building 8390. While the relative differences between the two buildings were large during


DAYTIME ENERGY USAGE - FEBRUARY 1988 Bldgs 8370 & 8390 Fort Riley KS

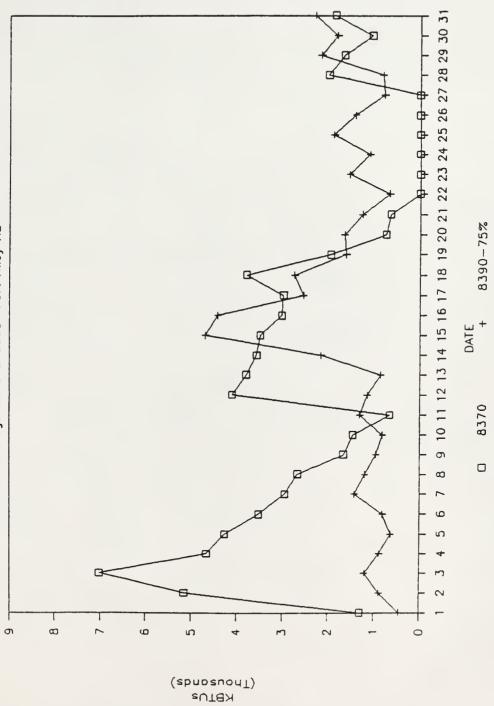
F:g 4.7


(Lµonzouqz) KBLN²

NIGHTTIME ENERGY USE- FEBRUARY 1988 Bldgs 8370 & 8390 Fort Riley KS

F18 4.8

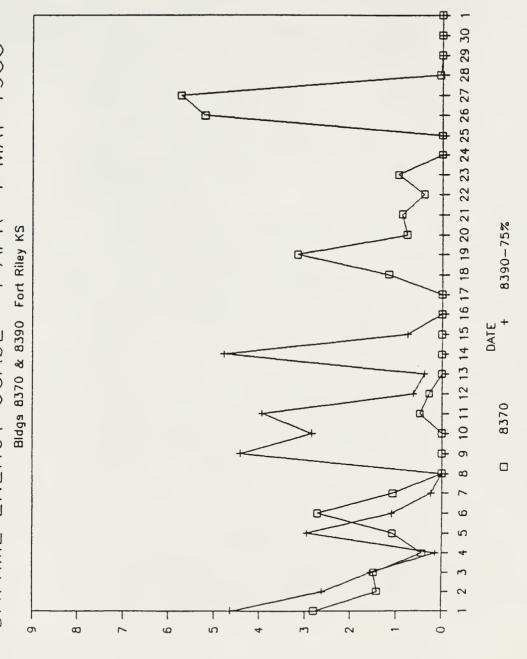
(Lµonzauqz) KBLN² DAYTIME ENERGY USAGE - MARCH 1988

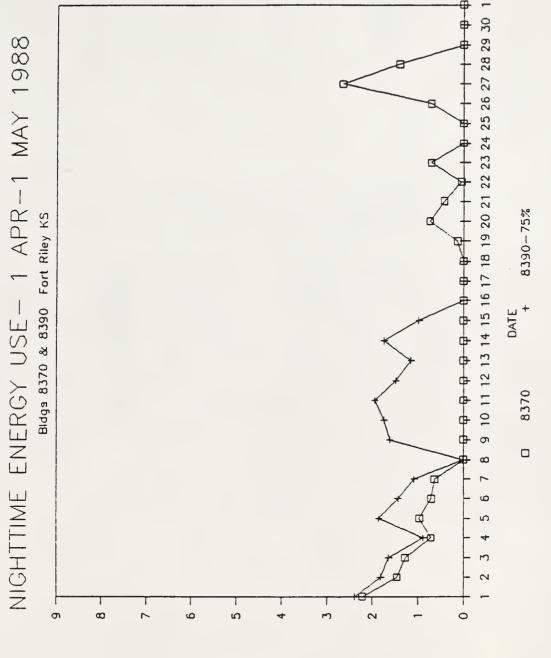


4.9

814

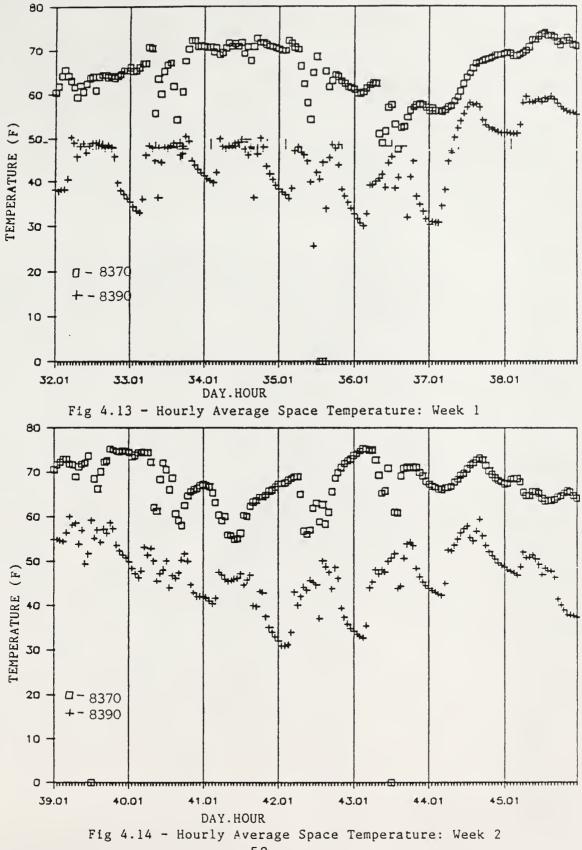
(Lµonsauqs) KBLN^s

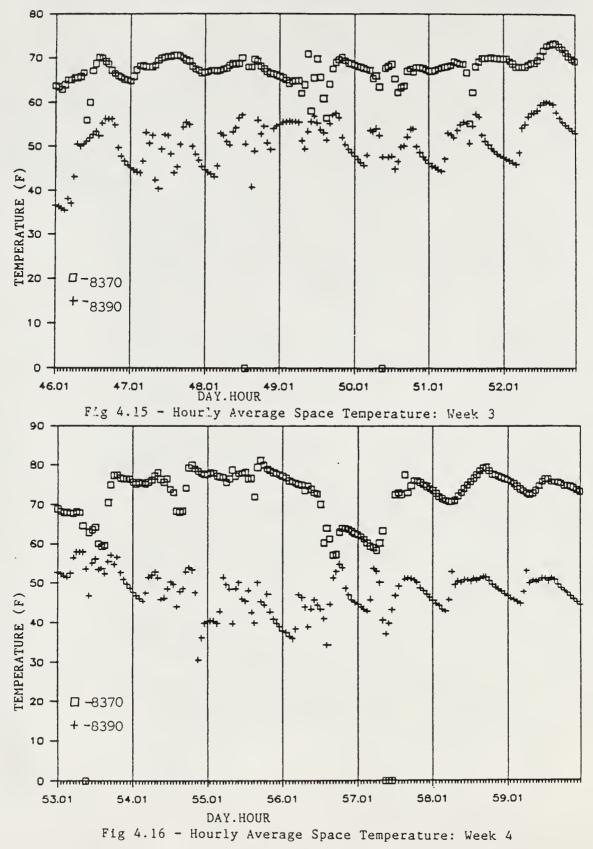



F1.8 4.10

F18 4.11

(Thousands) KBTUs





F1g 4.12

those two months, the absolute differences were only sufficient to bring the two buildings to near equality in daytime energy consumption. Daytime energy consumption in Building 8370 for the entire period was 2% less than that of Building 8390.

There are several possible causes of the disparity in energy usage. It appears that the manner in which the occupants used the controls was the primary factor. The occupants in Building 8370 seemed to use the thermostats as on/off switches, setting them at a high temperature. The thermostats apparently were not reset at night. An examination of hourly average air temperatures, shown in Figures 4.13 through 4.18. demonstrates that while the air temperature in Building 8390 dropped sharply during the unoccupied hours, the air temperature in Building 8370 often remained constant or even increased. It was not until the fourth week of February that the overheating of Building 8370 at night was reduced. The air temperatures for Building 8390 have been intentionally reduced by 20F for clarity of the graph. As a result of this high setting, the heaters did not cycle on and off as would have been expected.

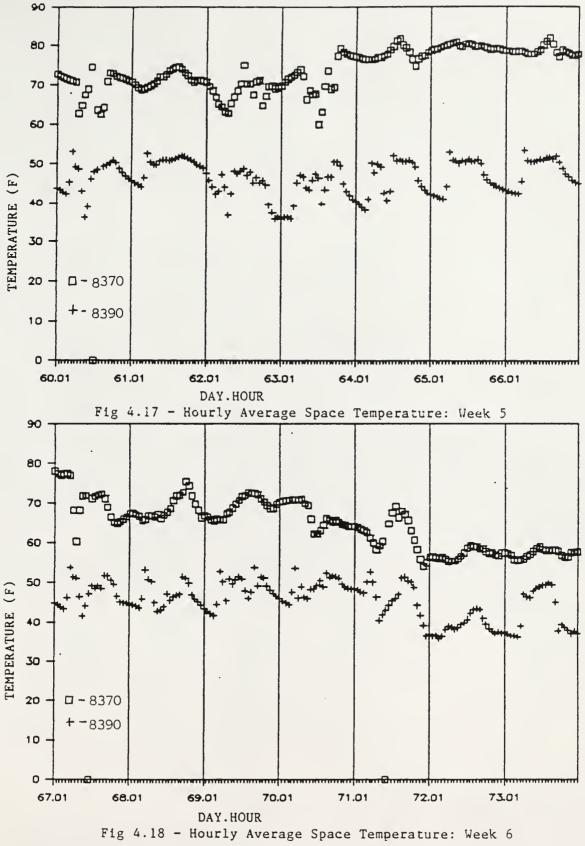
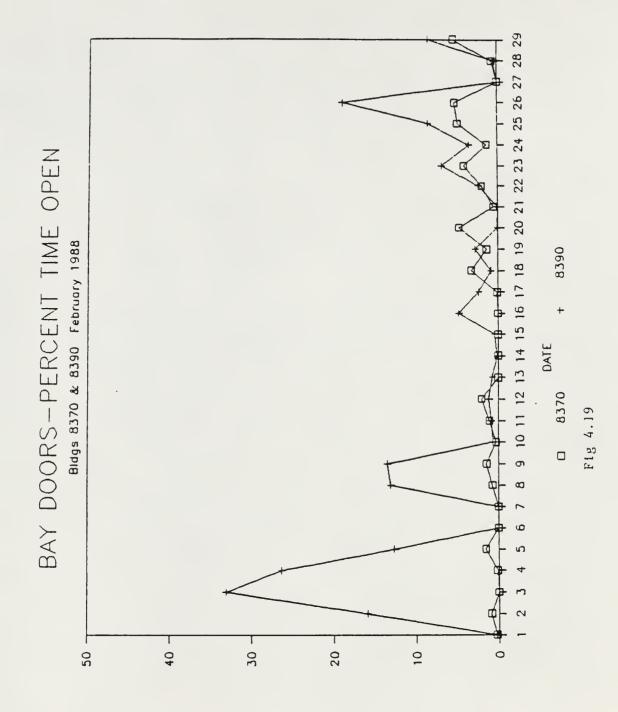
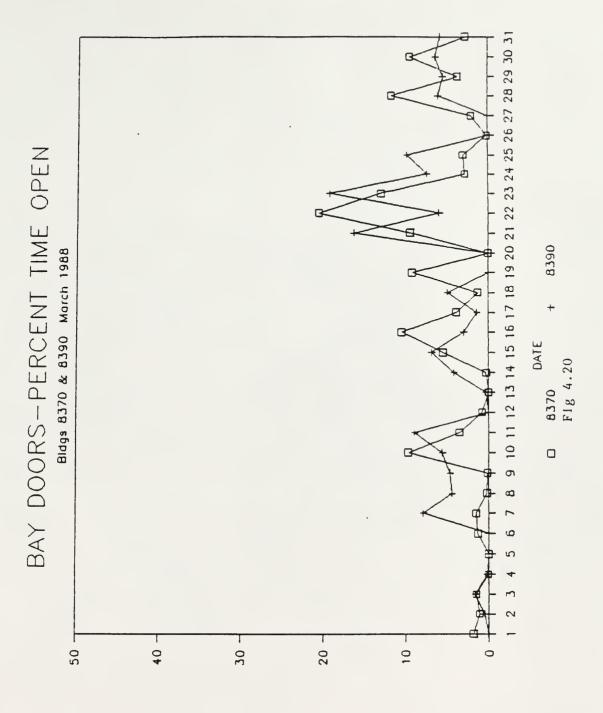


Table 4.3: Radiant Heater Operation- Building 8370

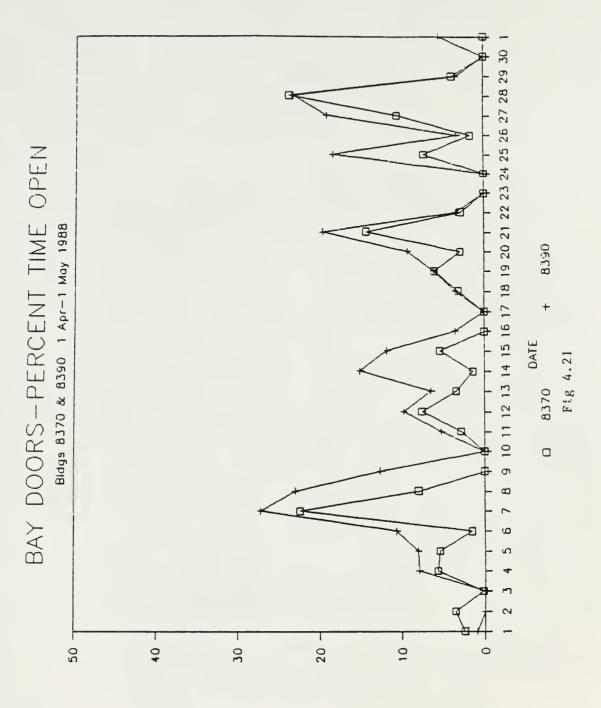
Thermostat	1	2	3	4
February Total "On" Time (hrs) Average Time per	526	527	219	482
Cycle (hrs)	35.8	29.3	7.1	26.8
March				
Total "On" Time (hrs) Average Time per	242	348	138	297
Cycle (hrs)	13.5	16.6	4.9	12.4
April				
Total "On" Time (hrs)	48	· 85	36	168
Average Time per Cycle (hrs)	4.8	5.3	3.6	12.9


Table 4.3 shows that the heaters in Building 8370 did not cycle frequently in February, although this improved in March and April. The thermostat which appears to have operated most normally is Thermostat 3, and this was probably a result of the location of the thermostat. Thermostat 3 controls two of the radiant heaters, including the heater next to the building's end wall. This thermostat is also located 45 feet directly downstream from the outlet duct of the makeup air unit. The effects of two radiant heaters, as well as proximity to the MAU, may account for the more frequent cycling of this thermostat.

In the later part of February, the supervisory personnel in Building 8370 became more familiar with the building and its heating system. They began to turn the thermostats down at night, and this learning process

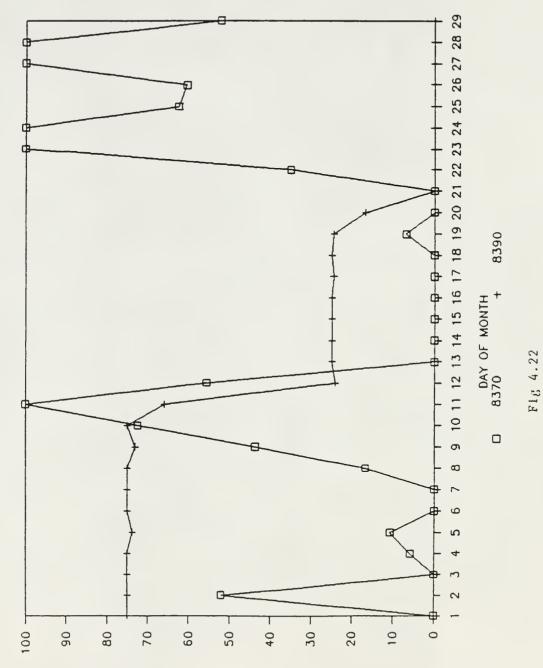

appears to have been the reason for the improved performance of Building 8370 in March and April.

Operation of Doors, Ceiling Fans, and Exhaust Fans

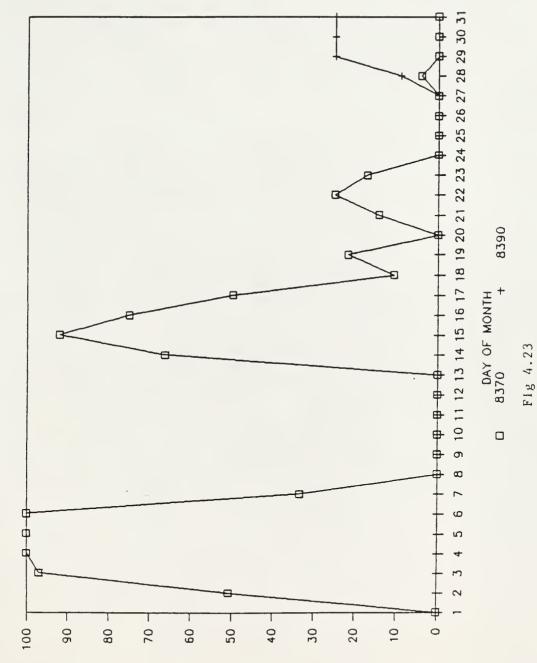

Other factors likely to have an impact on the energy consumption in both buildings include the amount of bay door openings and use of the ceiling fans and exhaust fans. Figures 4.19 through 4.21 show the amount of door open time. These values were calculated as a ratio of the total actual time open for all doors and possible time open. In Building 8370, for example, one door open for 36 minutes in an hour would result in a percent time open of (36/8 x 60) x 100 or 7.5%. The hourly percentages were combined to provide a daily average of percent time open. It should be noted that there is some uncertainty in these figures. The data used to calculate these values came from the three-minute scans. which indicate whether a door was open or closed at a particular instant. The data do not give any information concerning how long the door was open. For this study the doors were considered to have been open for three minutes if they were open when the scan occurred. This study also makes no attempt to analyze the effects of the configuration of the open doors. Two open doors located directly across the bay from each other might well have different effects than two open doors on the same side of

PERCENT TIME OPEN

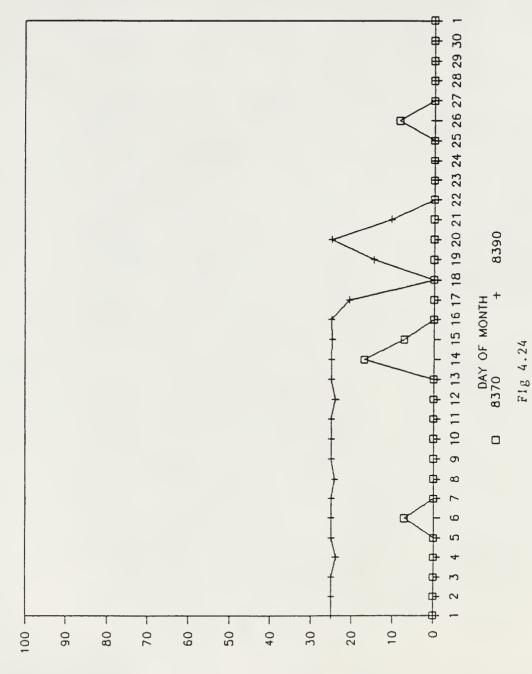
PERCENT TIME OPEN


PERCENT TIME OPEN

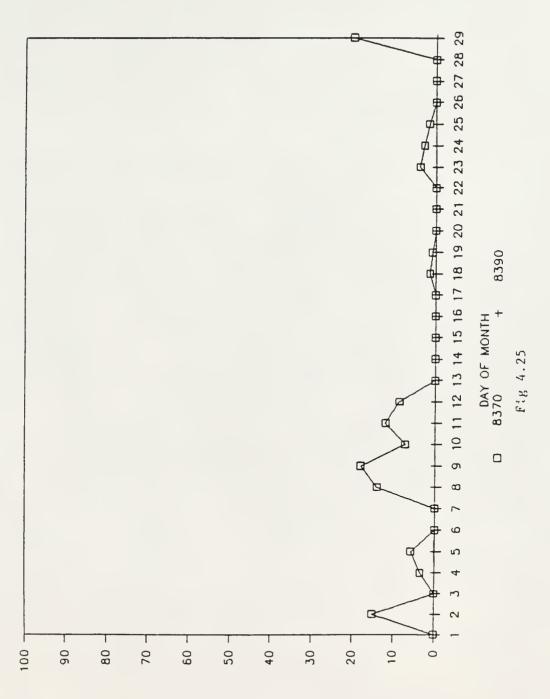
the building.

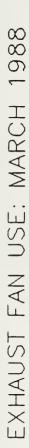

The high percentages shown for Building 8390 in early February (Fig 4.19) are the result of a faulty sensor and should be disregarded. Not surprisingly, door open time increased as the outside temperature increased. It can be seen that Building 8390 generally had more door open time than Building 8370. Researchers visiting the buildings observed that Building 8390 was the busier of the two. it appears, then, that door openings were not a primary factor in the higher energy use in Building 8370.

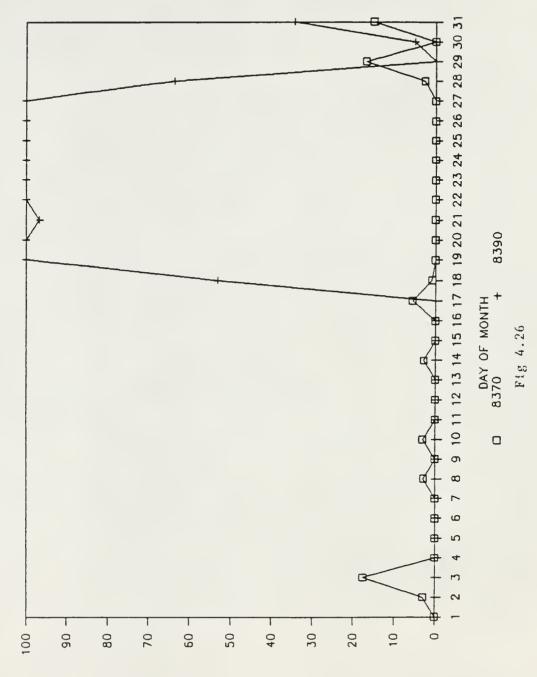
Figures 4.22 through 4.24 show the average daily ceiling fan on-time percentage for both buildings. These values were calculated in the same manner as those for the bay doors. A correlation between ceiling fan use and energy consumption is difficult to ascertain. High percentages for ceiling fan use occur at times of both high and low energy consumption. In February, Building 8390 used less energy regardless of which building had ceiling fans operating. The effects of the ceiling fans on the space thermal environment will be examined in a later section; it appears that ceiling fan operation had little if any impact on energy consumption.

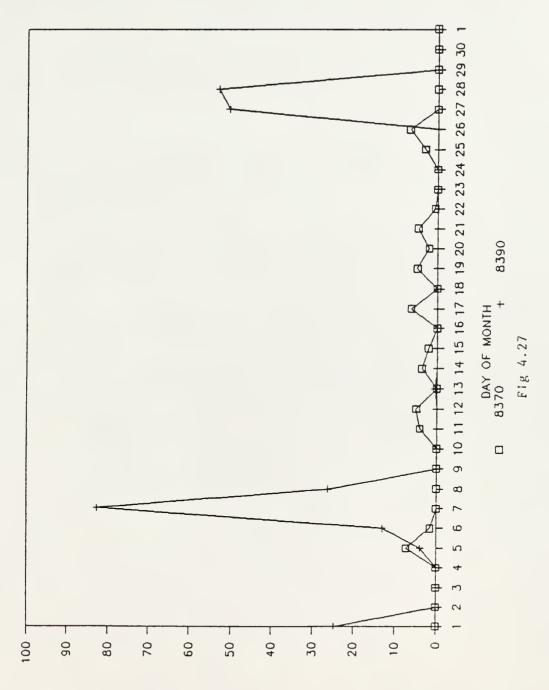


CEILING FAN USE: MARCH 1988




AVERAGE PERCENT TIME ON





EXHAUST FAN USE: APRIL 1988

AVERAGE PERCENT TIME ON

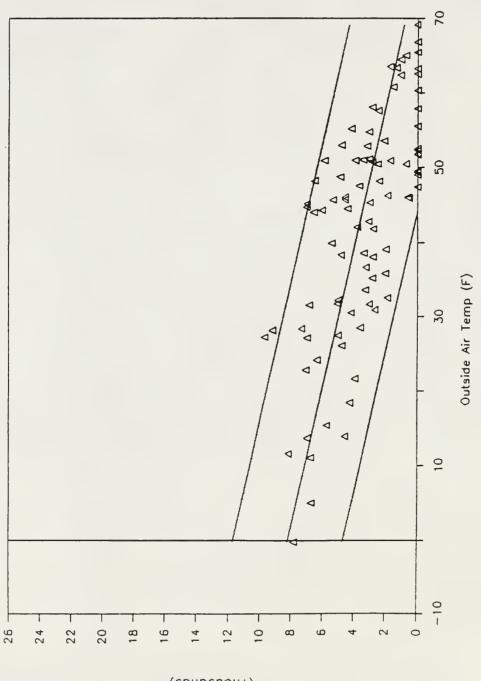
Table 4.4: Daily Average Ceiling Fan and Exhaust Fan Percent Time On


	8370		8390		
	<u>C. Fan</u>	E. Fan	C. Fan	E. Fan	
Feb	33.6	4.0	35.0		
Mar	27.6	2.3	2.7	34.0	
Apr	1.3	1.7	15.1	8.2	

The exhaust fans were used only sporadically in either bulding, with the exception of Building 8390 in March and early April. Exhaust fan use is shown in Figures 4.25 through 4.27. There is insufficient data to allow any conclusions concerning the effects of exhaust fan use on energy consumption.

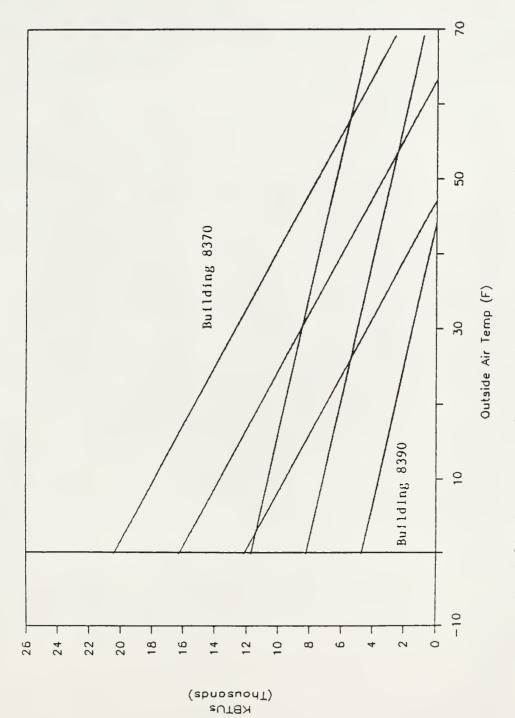
Outside Temperature and Energy Consumption

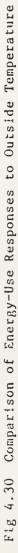
It was noted earlier that energy consumption in both buildings varied inversely with outside temperature. This is not a surprising result; however, the rate at which energy use changes with outside temperature provides another way to compare the buildings' performance.


In Figures 4.28 and 4.29 the daily energy usages are shown, along with regression lines and confidence bands for Buildings 8370 and 8390 respectively. While all daily energy data are shown, the regression lines were calculated by Lotus 1-2-3 using only non-zero data. The data from both buildings resulted in large standard errors. When the two regression bands are superimposed, as in Figure 4.30, they

(Lµonsauqs) KBL∩s

Flg 4.28 Relationship Between Outside Temperature and Energy Use - Building 3370


BUILDING 8390



Relationship Between Outside Temperature and Energy Use - Building 8390

F18 4.29

(Lµonsauqs) KBLN²

-

overlap for all but the lowest temperatures. This figure indicates that Building 8390 is more energy eficient at lower temperatures. The surprisingly high energy consumption for Building 8370 in February is the main reason for the steeper slope of the regression line.

Comparison of Thermal Environments General Discussion

Comparison of the thermal environments of the two buildings involves two primary areas of interest. The first is a comparison of the differences between operative temperatures, as measured by globe thermometers, and air temperatures. The radiant heaters in Building 8370 would be expected to provide a greater difference between these temperatures than the convection heaters in Building 8390. The comparison was made for both the occupied zone temperature and the overall average space temperature.

The second area of interest was the evaluation of thermal stratification. Building 8370 was expected to maintain a more uniform temperature throughout the space than Building 8390, since the radiant heaters are designed to transfer heat to the surfaces at the lower levels of the building. For each building, the temperatures at the 6 inch level, the 4 to 6 foot level, and upper levels were compared.

Analysis Method

The method used to compare the thermal characteristics of the buildings was the two-sided t-test. The null hypothesis tested was $\bar{x}_1 = \bar{x}_2$, i.e., the mean of the value analyzed for Building 8370 equals that of Building 8390. The critical t value t_{crit} is 2.00, which corresponds to degrees of freedom approximately equal to 60, which approximates the total number of data points from both buildings during a month. The t value for the analysis was calculated using

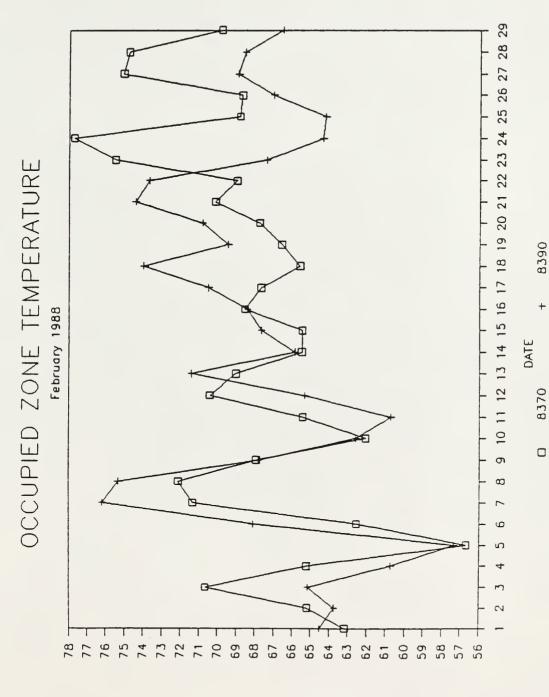
$$t = \frac{\bar{x}_1 - \bar{x}_2}{s_p \sqrt{2/n}}$$
(4.1)

where

t = comparison t value \bar{x}_1 = mean value for 8370 \bar{x}_2 = mean value for 8390 n = number of measurements (days/month)

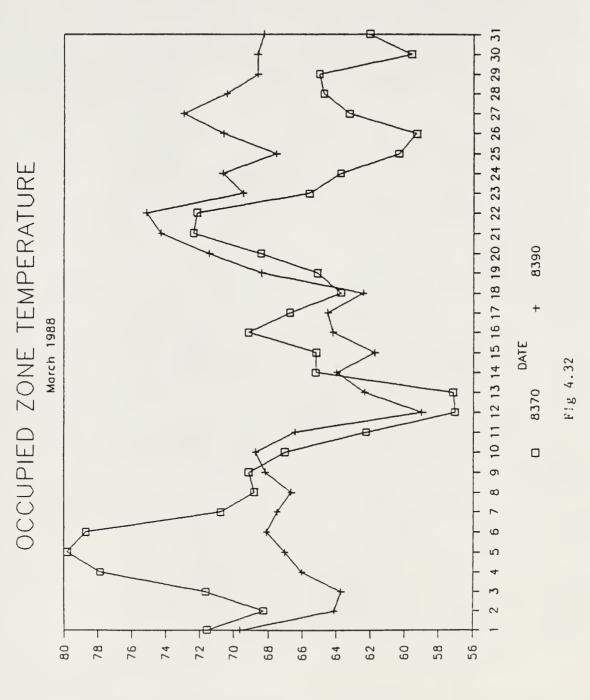
$$s_{p} = \sqrt{\frac{(s_{1})^{2} + (s_{2})^{2}}{2}}$$
(4.2)

where $S_1 = \text{standard deviation for 8370}$ $S_2 = \text{standard deviation for 8390}$

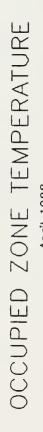

If the absolute value of the comparison t value t < t_{crit}, then the null hypothesis is accepted and it can be concluded that there is no statistically significant difference between the two buildings.

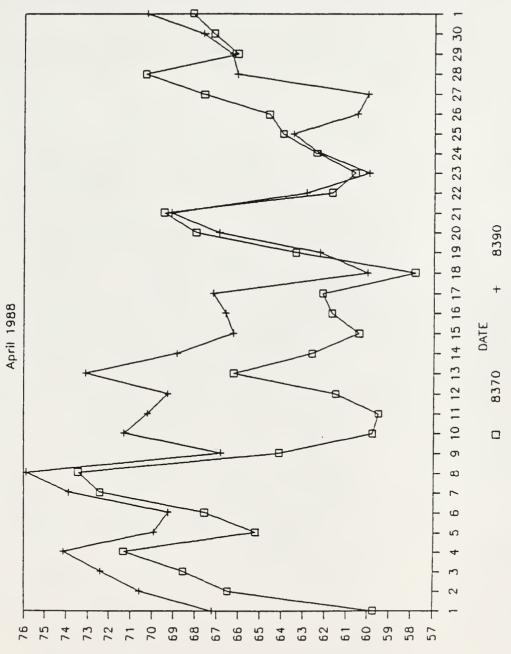
Occupied Zone Air Temperature

Figures 4.31 through 4.33 compare the average temperatures of the occupied zone, here defined as the volume between floor level and 6 feet. It can be seen that the occupied zone temperatures in both buildings generally followed the same trends. For February and March, analysis shows that there was no significant difference in occupied zone temperature between the two buildings, while in April Building 8390 had a higher average temperature. Table 4.5 summarizes this analysis, as well as that of the other thermal environment comparisons.


Difference Between Globe Temperature and Occupied Zone Temperature

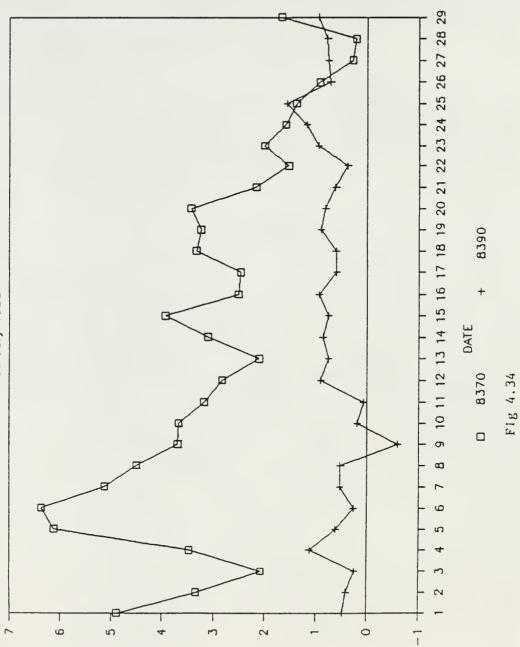
Figures 4.34 through 4.36 compare the buildings with regard to the difference between the operative temperature and the average occupied zone temperature. For all three months there was a significant difference between he two buildings. Building 8370, as expected, provided a greater difference between operative and air temperatures than did Building 8390. However, as described in the previous section, the occupied zone temperatures were essentially the same in both buildings. Hence, while the

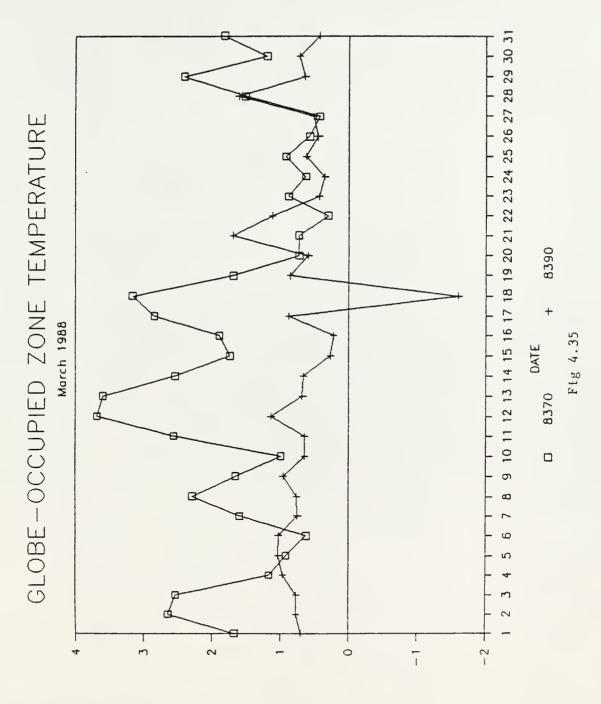



F18 4.31

TEMPERATURE (F)

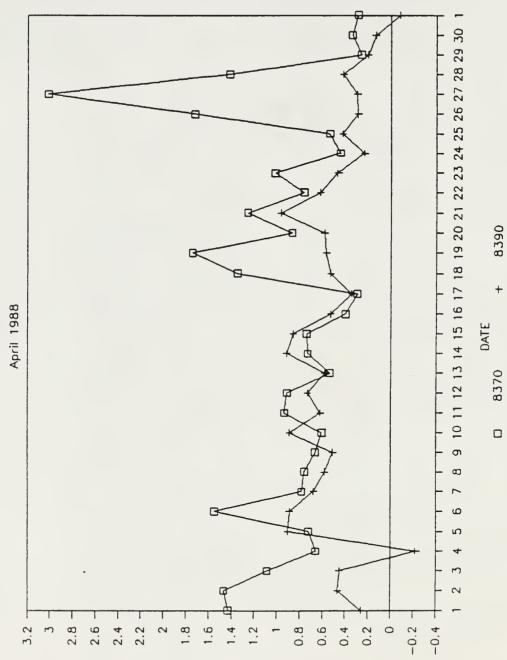
TEMPERATURE (F)





FIK 4.33

TEMPERATURE (F)

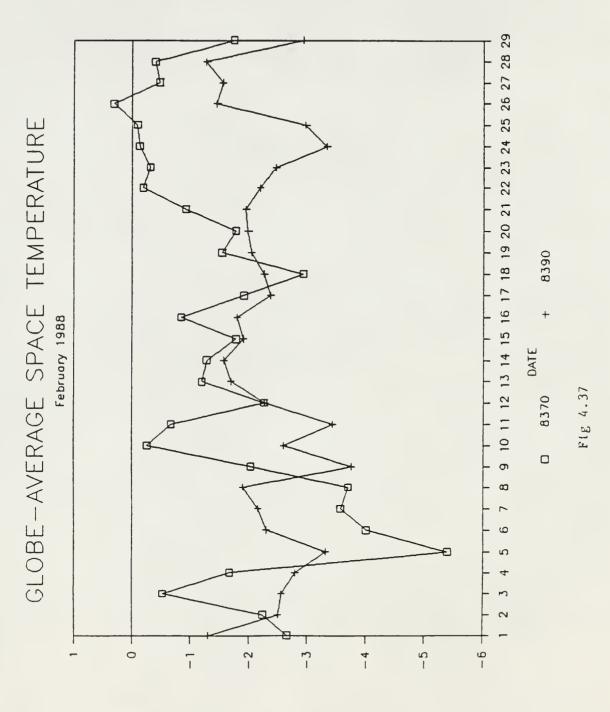


TEMPERATURE DIFFERENCE (F)

GLOBE-OCCUPIED ZONE TEMPERATURE

F18 4.36

radiant heaters in Building 8370 provided a higher mean radiant temperature than the heaters in Building 8390, the air temperature was not reduced to take advantage of this.


It is interesting to note that on four days, most noticeably 18 March, the globe temperature in Building 8390 was less than the occupied zone temperature. Examination of the hourly data from 18 March revealed a sharp drop in globe temperatures in the late afternoon. This may have been caused by cold vehicles being brought into the bays, thereby causing radiant cooling of the globe thermometers.

Difference Between Globe Temperature and Average Space Temperature

Examination of the differences between the globe temperatures and the average space temperatures, as shown in Figures 4.37 through 4.39, indicates a problem in both buildings. Throughout the study period, the globe temperature in both buildings was less than the space temperatures. During February and March, this difference was greater in Building 8390. In April both buildings were essentially the same.

Thermal Stratification

The findings described in the previous section indicate that both buildings had a problem with thermal stratification. Figures 4.40 through 4.45 show the

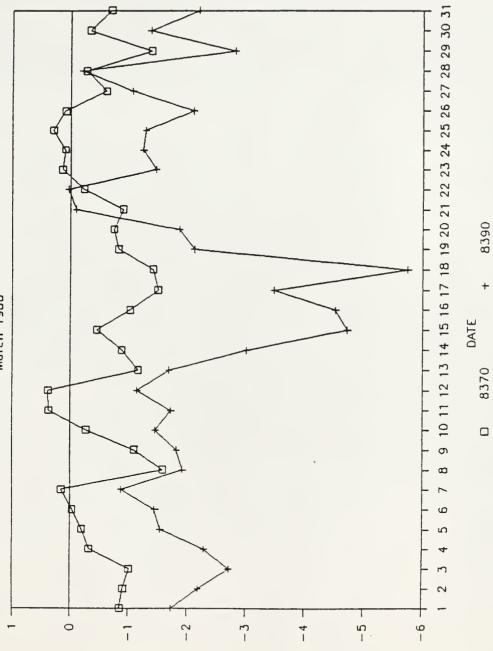


Fig 4.38

GLOBE-AVERAGE SPACE TEMPERATURE April 1988 ß

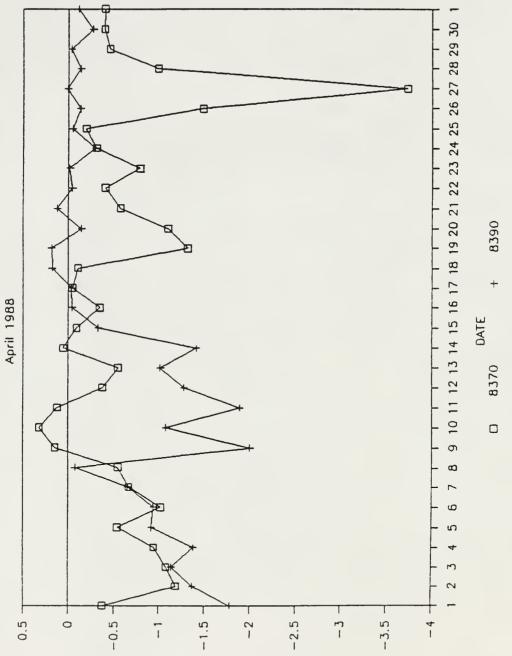
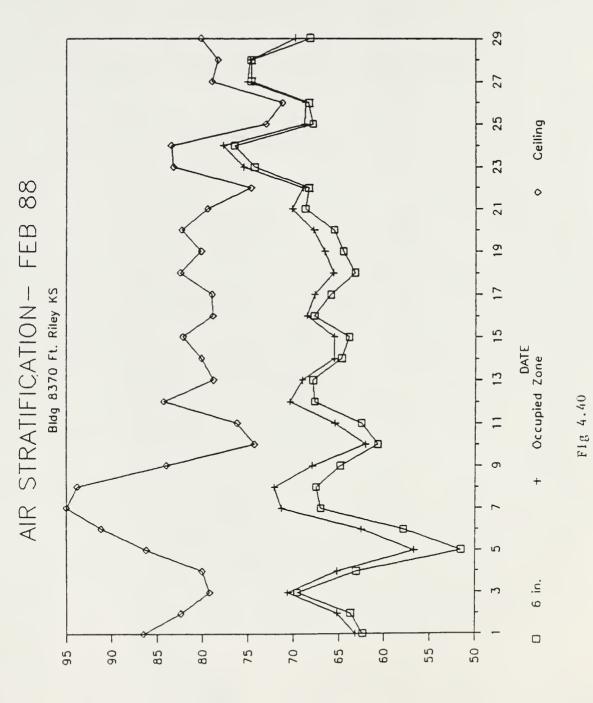



Fig 4.39

temperatures at three different levels in each building. During February and the first half of March, the temperatures in the upper levels of the space were much higher than the occupied zone temperaures. The most extreme stratification was observed in Building 8370 on 5 February, when the average upper-level temperature was 35 F higher than the temperature at the 6 inch level. The periods of greatest stratification in Building 8370 coincide with with high energy use and continuous operation of the radiant heaters.

Statistical analysis of thermal stratification was conducted using the difference between upper-level temperature and average 6 inch level temperature. During all three months, particularly February, Building 8370 showed greater stratification than Building 8390.

DECREES F.

AIR STRATIFICATION- FEB 88 9 4 B Bldg 8390 Ft. Riley KS B 80 -78 -74 -72 -70 -76 68 58 56 82 66 62 60 54 64

29

27

25

23

21

19

17

15

13

σ

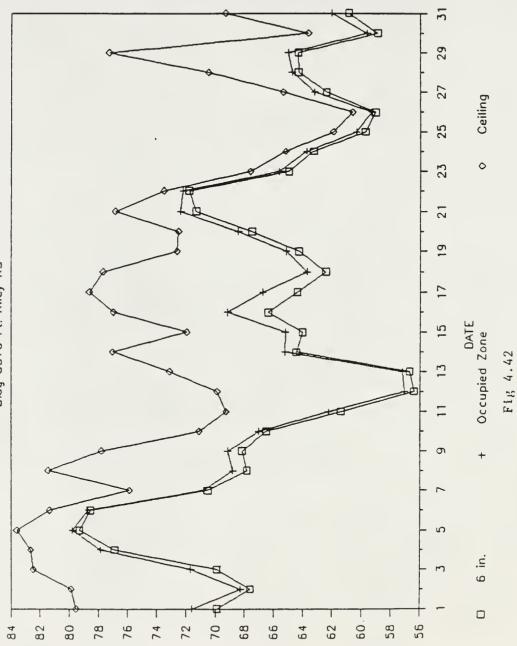
~

ഗ

3

DATE Occupied Zone

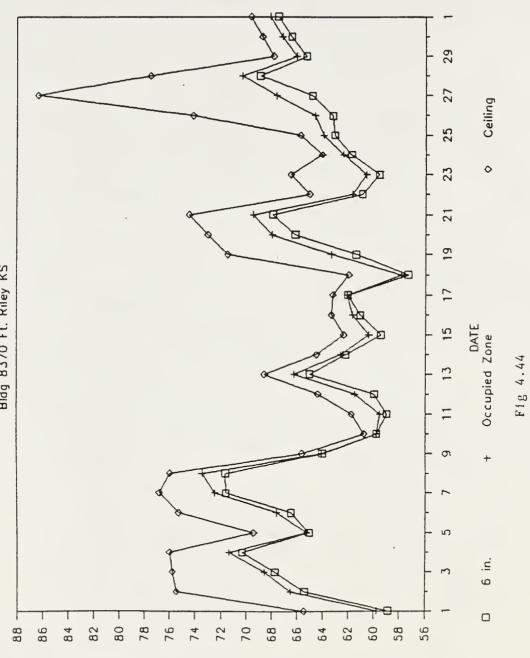
+


6 in.

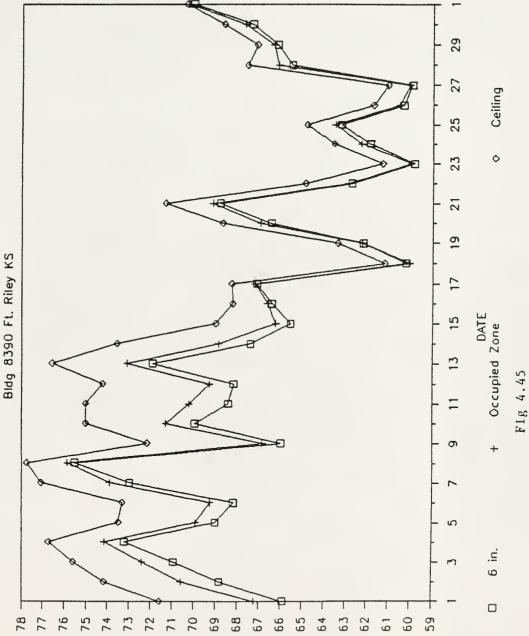
Ceiling

0

рескеез г.



рескеез н.


DEGREES F.

AIR STRATIFICATION- APR 88 BIdg 8370 FL Riley KS

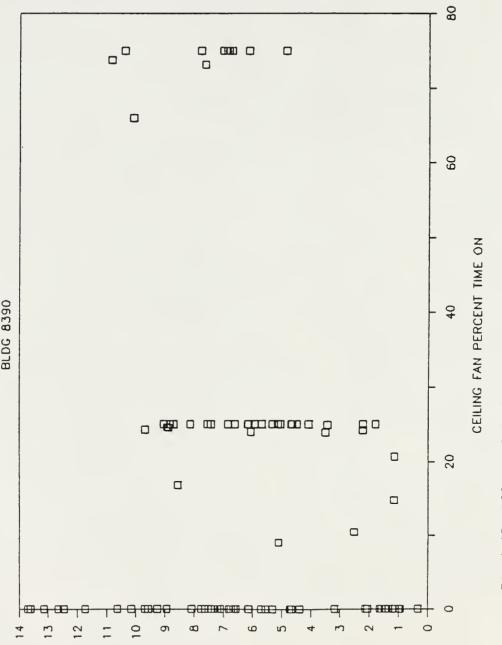
DEGREES F.

AIR STRATIFICATION- APR 88 BIGG 8390 FL. RIJEV KS

DEGREES F.

		837	0	8390	C	
Parameter	Month	Mean	S. Dev	Mean	S. Dev	t
Occ. Zone	Feb	68.2	4.45	67.6	4.56	0.52
(F)	Mar	66.8	5.78	67.5	3.71	-0.49
	Apr	65.0	4.10	67.4	4.40	2.29
Globe-Occ.	Feb	2.94	1.53	0.65	0.40	7.77
Zone	Mar	1.67	0.95	0.68	0.54	5.05
(F)	Apr	0.95	0.58	0.50	0.29	<u>3.81</u>
Globe-	Feb	-1.59	1.37	-2.30	0.65	2.51
Space	Mar	-0.56	0.58	-2.00	1.28	5.66
(F)	Apr	-0.63	0.73	-0.58	0.68	-0.24
Thermal	Feb	13.13	7.15	5.63	1.28	5.57
Strat.	Mar	6.94	4.30	5.25	1.67	2.04
(F)	Apr	4.42	3.65	2.46	1.47	2.78

Table 4.5: Thermal Environmental Conditions


Underlined t values indicate a statistically significant difference

Figures 4.46 and 4.47 show the effects of the ceiling fans in Building 8370 and the recirculating fans in Building 8390 on thermal stratification. While the data is widely scattered, it can be seen that stratification in Building 8370 was reduced by increased use of the ceiling fans. The recirculating fans in Building 8390 do not appear to have had an obvious effect. At times of high use of the fans, the stratification is actually greater than at times of intermittent use. It should be noted that the cluster of points at the right of Figure 4.47 represent the first eleven days of February, and the stratification may be a result of cold outside air infiltrating into the building.

100 **m**e Fig 4.46 Effect of Ceiling Fan Use on Stratification - Building 8370 0 80 AIR STRAT/CF PERCENTAGE CEILING FAN PERCENT TIME ON 60 BLDG 8370 40 ٥ 20 D ٥ þ 0 0 25 H به هم ا 0 88 0 30 - $^+$ 35 12 0 Ś 0

AIR STRATIFICATION (F)

AIR STRAT/CF PERCENTAGE BLDC 8390

AIR STRATIFICATION (F)

Effect of Ceiling Fan Use on Startification - Building 8390 F1g 4.47

Since the convective heaters in Building 8390 blow warm air downward to begin with, it may be that the recirculating fans are somewhat redundant and not as effective as the ceiling fans in Building 8370.

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

The purpose of this study was to compare the performance of radiant and convective heating systems in similar applications in terms of energy consumption and interior thermal characteristics. The nature of a field study such as this makes "noisy" data unavoidable. Taking data every three minutes meant that transient effects were not measured. Also, it is certain that events which could have had a great influence on thermal conditions, such as a bay door being opened for two minutes, were often missed. Finally, many aspects of the buildings' operation, such as the type of work being done in the bays at a given time, could not be monitored at all. Despite this, it is still possible to draw conclusions from long-term trends.

During the study period, Building 8370 used more energy than Building 8390. Given that maintenance buildings would seem to be an ideal location for radiant heating, this result was unexpected. The primary cause for this high energy use was the lack of an automatic nighttime setback at Building 8370. As the heating season progressed, Building 8370 became more energy efficient than Building 8390 during normal operating hours; however, Building 8390

saved energy at night because of an effective nighttime setback. The unfamiliarity of Building 8370's occupants with the heating system was also a factor, as can be seen from the continuous use of the heaters in early February.

Both buildings were plagued by a problem of thermal stratification. In February, when the highest energy consumption in Building 8370 occurred, stratification was particularly noticeable. It appears that much of the energy from the radiant heaters entered the space near the ceiling via natural convection from the heater tubes. The layer of warm air thus formed at the ceiling did not reach the occupied zone of the building except when ceiling fans were used.

In terms of the thermal environment, the radiant heaters peformed as expected. The opeative temperature in Building 8370 was substantially higher than the occupied zone air temperature, indicating a high mean radiant temperature. The difference between operative temperature and air temperature was not as great in Building 8390. The advantages thus gained in Building 8370, however, were offset by thermal stratification and a certain amount of overheating.

It can be concluded, then, that radiant heating is effective in large spaces such as the maintenance shops

studied here. However, the advantages of radiant heating can be negated by improper control. It cannot be assumed that radiant heating will always be more efficient than convective heating.

Recommendations

This project will be continued through the 1988-89 heating season. Several modifications are planned which will help eliminate some of the uncontrolled factors noted in this study. The primary change involves a modiication of the controls in Building 8370. The thermostats will be replaced with preset thermostats with a nighttime setback. This modification will allow a more accurate comparison between the two systems, since the controls will be similar.

Further study of the effects of door openings and ceiling and exhaust fan opeation would be useful. Of particular interest is the effects of different configurations of open doors. A study of transient responses of the two systems would also be informative.

There are several other variations of radiant heating available. A study is being initiated at two of the aircraft hangers at Fort Riley's Marshall Army Airfield. These hangers are heated by heating the floor slab. A comparison of this type of heating system with the overhead

heaters at Building 8370 would provide a means of concluding which variety of radiant heating is most effective in maintenance facilities.

REFERENCES

ASHRAE 1985.<u>Handbook of Fundamentals</u>, Chapter 8, "Physiological Principles for Comfort and Health", American Society of Heating, Refrigeration, and Air-Conditioning Engineers; Atlanta, GA; ASHRAE, Inc.

Janssen, J.E. 1976 "Field Evaluation of High Temperature Infrared Space Heating Systems" <u>ASHRAE</u> <u>Transactions</u> Vol 82, Part 1

Bryan, W. L. 1981 "Comparative Energy Requirementsof Radiant Space Heating", <u>ASHRAE Transactions</u>, Vol 87, part 1

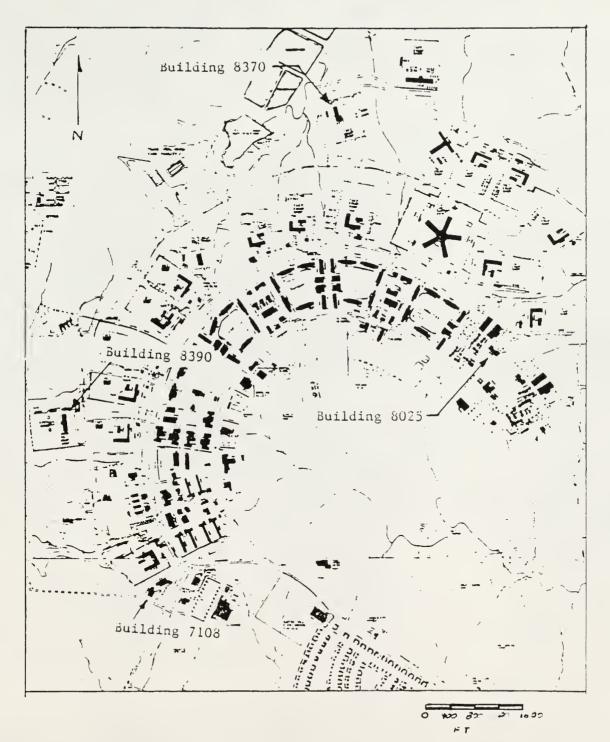
Bailey, H. R. 1980 "An Experimental Comparison of Energy Requirements for Space Heating with Radiant and Convective Systems", <u>ASHRAE Transactions</u>, Vol 86, Part 1

ASHRAE 1987.<u>HVAC Systems and Applications Handbook</u>, Chapter 16, "Infrared Radiant Heating", American Society of Heating, Rerigeration, and Air-Conditioning Engineers; Atlanta, GA; ASHRAE, Inc.

Jones, B. W. and P. Tao, 1988. Personal Communication

KPL 1988. Personal Communication with technical representative

Erickson, Jon 1987. "Description and Verification of a Building Energy Measurement System", KSU Master's Thesis, 1987


ASHRAE 1985.<u>Handbook of Fundamentals</u>, Chapter 18, "Secondary Coolants (Brines)", American Society of Heating, Refrigeration, and Air-Conditioning Engineers; Atlanta, GA; ASHRAE, Inc.

Jones, B. W. 1988. ME Lab I Notes, KSU Department of Mechanical Engineering

ASHRAE 1988.<u>Equipment Handbook</u>, Chapter 23, "Boilers", American Society of Heating, Refrigeration, and Air-Conditioning Engineers; Atlanta, GA; ASHRAE, Inc.

Appendix A.

Map of Fort Riley's Custer Hill

100

APPENDIX B

ACUREX AUTOCALC PROGRAMING

Table B.1 Engineering Units Conversion

EU	Quantity Measured
09	Type "T" Thermocouple
06	0-10 volts
21	4-20 milliamps
24	Contact Closure
25	Pseudochannel - arithmetic operations performed on collected data
47	Digital Input

Table B.2 Sensor Channel Locations - Building 8370

Sensor

Channel(s)

Globe Thermometer 1 Globe Thermometer 2 Globe Thermometer 3 Ceiling Thermocouples Dew Point Sensor Radiant Heater 1 Radiant Heater 1 Radiant Heater 2/3 Radiant Heater 4 Radiant Heater 5 Make-up Air Unit Exhaust Fans Ceiling Fans Bay Doors Thermostat Temperatures Air Velocites MAU Inlet Temperature Heater/Fan Conversion to Integer Number Bay Door Conversion to Integer Number Digital: Count Seconds of	6-7, 28-33 8-15 20-27 0-5 48-53 40-45 54-57 19 18 17 46 16 47 34-35 36-39 58-65 203-206 207-209 210 211 66-67 128-135
On-Time Heaters Bay Doors	230-235 237-244

Ch	annel pr	ogramming:				
00	0 EU=09	NETPAC:1/00/00	RES:D	SKIP:NO		
00	1 EU=09	NETPAC:1/00/01	RES:D	SKIP:NO		
00	2 EU=09	NETPAC:1/00/02	RES:D	SKIP:NO		
00	3 EU=09	NETPAC:1/00/03	RES:D	SKIP:NO		
00	4 EU=09	NETPAC: 1/00/04	RES:D	SKIP:NO		
00	5 EU=09	NETPAC:1/00/05	RES:D	SKIP:NO		
00	6 EU=09	NETPAC:1/00/06	RES:D	SKIP:NO		
00	7 EU=09	NETPAC:1/00/07	RES:D	SKIP:NO		
00	8 EU=09	NETPAC:1/00/08	RES:D	SKIP:NO		
00	9 EU=09	NETPAC:1/00/09	RES:D	SKIP:NO		
01	0 EU=09	NETPAC: 1/00/10	RES:D	SKIP:NO		
01	1 EU=09	NETPAC:1/00/11	RES:D	SKIP:NO		
01	2 EU=09	NETPAC:1/00/12	RES:D	SKIP:NO		
01	3 EU=09	NETPAC:1/00/13	RES:D	SKIP:NO		
	4 EU=09	NETPAC:1/00/14	RES:D	SKIP:NO		
01	5 EU=09	NETPAC: 1/00/15	RES:D	SKIP:NO		
01	5 EU=24	NETPAC: 2/00/08	RES:D	SKIP:NO	LIMITS	07/00/00/00
01	7 EU=24	NETPAC:2/00/09	RES:D	SKIP:NO	LIMITS	07/00/00/00
01	B EU=24	NETPAC: 2/00/10	RES:D	SKIP:NO	LIMITS	
01	9 EU=21	NETPAC:1/00/19	RES:D	SKIP:NO		
02	0 EU=09	NETPAC:1/00/20	RES:D	SKIP:NO		
02	1 EU=09	NETPAC:1/00/21	RES:D	SKIP:NO		
02	2 EU=09	NETPAC:1/00/22	RES:D	SKIP:NO		
02	3 EU=09	NETPAC: 1/00/23	RES:D	SKIP:NO		
02	4 EU=09	NETPAC: 1/00/24	RES:D	SKIP:NO		
	5 EU=09	NETPAC: 1/00/25	RES:D	SKIP:NO		
02	5 EU=09	NETPAC:1/00/26	RES:D	SKIP:NO		
02	7 EU=09	NETPAC:1/00/27	RES:D	SKIP:NO		
02	B EU=09	NETPAC:1/00/28	RES:D	SKIP:NO		
	9 EU=09	NETPAC:1/00/29	RES:D	SKIP:NO		
03	EU=09	NETPAC:1/00/30	RES:D	SKIP:NO		
03	1 EU=09	NETPAC:1/00/31	RES:D	SKIP:NO		
03	2 EU=09	NETPAC:1/00/32	RES:D	SKIP:NO		
03	3 EU=09	NETPAC:1/00/33	RES:D	SKIP:NO		
03	4 EU=24	NETPAC:2/00/13	RES:D	SKIP:NO	LIMITS	08/00/00/00
03	5 EU=24	NETPAC:2/00/14	RES:D	SKIP:NO	LIMITS	08/00/00/00
	5 EU=24	NETPAC:1/00/36	RES:D	SKIP:NO	LIMITS	08/00/00/00
03	7 EU=24	NETPAC:1/00/37	RES:D	SKIP:NO	LIMITS	08/00/00/00
03	B EU=24	NETPAC:1/00/38	RES:D	SKIP:NO	LIMITS	08/00/00/00
03	9 EU=24	NETPAC:1/00/39	RES:D	SKIP:NO	LIMITS	08/00/00/00
04	0 EU=09	NETPAC:1/00/40	RES:D	SKIP:NO		
04	1 EU=09	NETPAC:1/00/41	RES:D	SKIP:NO	•	
04	2 EU=09	NETPAC:1/00/42	RES:D	SKIP:NO		
04	3 EU=09	NETPAC:1/00/43	RES:D	SKIP:NO		
04	4 EU=09	NETPAC:1/00/44	RES:D	SKIP:NO		
04		NETPAC:1/00/45	RES:D	SKIP:NO		
04	5 EU=24	NETPAC:2/00/11	RES:D	SKIP:NO	LIMITS	07/00/00/00

048 049 050 051 052 053 054 055 056	EU=24 EU=09 EU=09 EU=09 EU=09 EU=09 EU=09 EU=09 EU=09 EU=09 EU=09	NETPAC: 2/00/12 NETPAC: 1/00/48 NETPAC: 1/00/49 NETPAC: 1/00/50 NETPAC: 1/00/51 NETPAC: 1/00/52 NETPAC: 1/00/53 NETPAC: 1/00/55 NETPAC: 1/00/56 NETPAC: 1/00/57	RES:D RES:D RES:D RES:D RES:D RES:D RES:D RES:D RES:D RES:D RES:D	SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO SKIP:NO	LIMITS	07/00/00/00
	EU=06	NETPAC:2/00/00	RES:D	SKIP:NO	LIMITS	05/00/00/00
059	EU=06	NETPAC:2/00/01	RES:D	SKIP:NO		05/00/00/00
	EU=06	NETPAC: 2/00/02	RES:D	SKIP:NO		05/00/00/00
	EU=06	NETPAC:2/00/03	RES:D	SKIP:NO		06/00/00/00
	EU=06	NETPAC: 2/00/04	RES:D	SKIP:NO		06/00/00/00
	EU=06	NETPAC:2/00/05	RES:D	SKIP:NO		06/00/00/00
	EU=06	NETPAC:2/00/06 NETPAC:2/00/07	RES:D	SKIP:NO	LIMITS	
	EU=06 EU=25	E=C16L1*1 SKIP:	RES:D	SKIP:NO	LIMITS	06/00/00/00
	EU=25	E=C17L1*2 SKIP:				
	EU=25	E=C18L1*4 SKIP:				
	EU=25	E=C46L1*8 SKIP:				
	EU=25	E=C47L1*16 SKIF				
071	EU=25	E=C36L1*32 SKIP	P:NO			
072	EU=25	E=C37L1*64 SKIP	P:NO			
			P:NO			
	EU=25		P:NO			
	EU=25		IP:NO			
	EU=25		(IP:NO			
	EU=25	E=TOD"**/30/**,*		SKIP:NO		
	EU=25		SKIP:NO			
	EU=25 EU=25		SKIP:NO			
-	EU=25		SKIP:NO			
	EU=25		SKIP:NO			
	EU=25		SKIP:NO			
	EU=25	1 1 1	KIP:NO			
087	EU=25		SKIP:NO			
088	EU=25	E=AVT(C8,C79) S	SKIP:NO			
	EU=25	E=AVT(C9,C79) S	SKIP:NO			
	EU=25	E = AVT(C10, C79)	SKIP:NO			
	EU=25	E=AVT(C11,C79)	SKIP:NO			
	EU=25	E=AVT(C12,C79)	SKIP:NO			
	EU=25	E=AVT(C13,C79)	SKIP:NO			
	EU=25	E = AVT(C14, C79)	SKIP:NO			
	EU=25 EU=25	E=AVT(C15,C79) E=AVT(C20,C79)	SKIP:NO			
0.20	20-23	E-ATI(020,0/9)	OVIL . NO			

•

097 EU=25	E=AVT(C21,C79)	SKIP:NO
098 EU=25	E=AVT(C22,C79)	SKIP:NO
099 EU=25	E=AVT(C23,C79)	SKIP:NO
_		
100 EU=25	E = AVT(C24, C79)	SKIP:NO
101 EU=25	E=AVT(C25,C79)	SKIP:NO
102 EU=25	E=AVT(C26,C79)	SKIP:NO
103 EU=25	E = AVT(C27, C79)	SKIP:NO
104 EU=25	E=AVT(C28,C79)	SKIP:NO
105 EU=25	E = AVT(C29, C79)	SKIP:NO
106 EU=25	E=AVT(C30,C79)	SKIP:NO
107 EU=25	E=AVT(C31,C79)	SKIP:NO
108 EU=25	E=AVT(C32,C79)	SKIP:NO
109 EU=25	E=AVT(C33,C79)	SKIP:NO
_		
	E=AVT(C40,C79)	SKIP:NO
111 EU=25	E=AVT(C41,C79)	SKIP:NO
112 EU=25	E=AVT(C42,C79)	SKIP:NO
113 EU=25	E=AVT(C43,C79)	SKIP:NO
114 EU=25	E=AVT(C44,C79)	SKIP:NO
115 EU=25	E=AVT(C45,C79)	SKIP:NO
116 EU=25	E=AVT(C48,C79)	SKIP:NO
117 EU=25	E = AVT(C49, C79)	SKIP:NO
118 EU=25	E=AVT(C50,C79)	SKIP:NO
119 EU=25	E = AVT(C51, C79)	SKIP:NO
120 EU=25	E=AVT(C52,C79)	SKIP:NO
121 EU=25	E=AVT(C53.C79)	SKIP:NO
122 EU=25	E=AVT(C54,C79)	SKIP:NO
123 EU=25	E=AVT(C55,C79)	SKIP:NO
124 EU=25	E = AVT(C56, C79)	SKIP:NO
125 EU=25	E = AVT(C57, C79)	SKIP:NO
126 EU=25	E=AVT(C19,C79)	SKIP:NO
128 EU=25	E=C58L1*1 SKI	P:NO
129 EU=25	E=C59L1*2 SKT	
130 EU=25	E=C59L1*2 SKI E=C60L1*4 SKI	D+NO
131 EU=25	E=C61L1*8 SKI	
132 EU=25		IP:NO
133 EU=25		IP:NO
134 EU=25		IP:NO
135 EU=25	E=C65L1*128 SI	KIP:NO
137 EU=25	E=AVG(C66,C76)	
138 EU=25	E=AVG(C128,C13	
140 EU=25	E=C80 SKIP:NO	,
	E=C81 SKIP:NO	
142 EU=25	E=C82 SKIP:NO	
143 EU=25	E=C83 SKIP:NO	
144 EU=25	E=C84 SKIP:NO	
145 EU=25	E=C85 SKIP:NO	
146 EU=25	E=C86 SKIP:NO	
147 EU=25	E=C87 SKIP:NO	
	1 00/ DETE-NO	

148 EU=25	E=C88 SKIP:NO
149 EU=25	E=C89 SKIP:NO
150 EU=25	E=C90 SKIP:NO
151 EU=25	E=C91 SKIP:NO
152 EU=25	E=C92 SKIP:NO
153 EU=25	E=C93 SKIP:NO
154 EU=25	E=C94 SKIP:NO
155 EU=25	E=C95 SKIP:NO
156 EU=25	E=C96 SKIP:NO
157 EU=25	E=C97 SKIP:NO
158 EU=25	E=C98 SKIP:NO
159 EU=25	E=C99 SKIP:NO
160 EU=25	E=C100 SKIP:NO
161 EU=25	E=C101 SKIP:NO
162 EU=25	E=C102 SKIP:NO
163 EU=25	E=C103 SKIP:NO
164 EU=25	E=C104 SKIP:NO
165 EU=25	E=C105 SKIP:NO
166 EU=25	E=C106 SKIP:NO
167 EU=25	E=C107 SKIP:NO
168 EU=25	E=C108 SKIP:NO
169 EU=25	E=C109 SKIP:NO
170 EU=25	E=C110 SKIP:NO
171 EU=25	E=C111 SKIP:NO
172 EU=25	E=C112 SKIP:NO
173 EU=25	E=C113 SKIP:NO
174 EU=25	E=C114 SKIP:NO
175 EU=25	E=C115 SKIP:NO
176 EU=25	E=C116 SKIP:NO
177 EU=25	E=C117 SKIP:NO
178 EU=25	E=C118 SKIP:NO
179 EU=25	E=C119 SKIP:NO
180 EU=25	E=C120 SKIP:NO
181 EU=25	E=C121 SKIP:NO
182 EU=25	E=C122 SKIP:NO
183 EU=25	E=C123 SKIP:NO
184 EU=25	E=C124 SKIP:NO
185 EU=25	E=C125 SKIP:NO
186 EU=25	E=C126 SKIP:NO
200 EU=25	UNITS=GT1 E=AVG(C0,C5) SKIP:NO
201 EU=25	UNITS=GT2 E=AVG(C48,C53) SKIP:NO
202 EU=25	UNITS=GT3 E=AVG(C40,C45) SKIP:NO
203 EU=09	NETPAC:1/00/34 RES:D SKIP:NO
204 EU=09	NETPAC:1/00/35 RES:D SKIP:NO
205 EU=09	NETPAC:1/00/46 RES:D SKIP:NO
206 EU=09	NETPAC:1/00/47 RES:D SKIP:NO
207 EU=06	NETPAC:1/00/16 RES:D SKIP:NO
208 EU=06	NETPAC:1/00/17 RES:D SKIP:NO

209 EU=06	NETPAC:1/00/18 RES:D SKIP:NO
210 EU=09	NETPAC:1/00/58 RES:D SKIP:NO
211 EU=09	NETPAC:1/00/59 RES:D SKIP:NO
212 EU=25	E=C137*11 SKIP:NO
213 EU=25	E=C138*8 SKIP:NO
214 EU=25	E=AVG(C32,C33) SKIP:NO
215 EU=25	E=AVG(C12,C13) SKIP:NO
216 EU=25	E=AVG(C24,C25) SKIP:NO
217 EU=25	E=C19 SKIP:NO
230 EU=47	E=DIG(0,0,5) SKIP:NO
231 EU=47	E=DIG(0,1,5) SKIP:NO
232 EU=47	E=DIG(0,2,5) SKIP:NO
233 EU=47	E=DIG(0,3,5) SKIP:NO
234 EU=47	E=DIG(0,4,5) SKIP:NO
235 EU=47	E=DIG(0,5,5) SKIP:NO
236 EU=47	E=DIG(0.6.3) SKIP:NO
237 EU=47	E=DIG(0,7,4) SKIP:NO
238 EU=47	E=DIG(0,8,4) SKIP:NO
239 EU=47	E=DIG(0,9,4) SKIP:NO
240 EU=47	E=DIG(1,0,3) SKIP:NO
241 EU=47	E=DIG(1,1,3) SKIP:NO
242 EU=47	E=DIG(1.2.3) SKIP:NO
243 EU=47	E=DIG(1,3,3) SKIP:NO
244 EU=47	E=DIG(1,4,3) SKIP:NO
250 EU=47	E=DIG(0,9,3) SKIP:NO LIMITS
251 EU=25	E=CN+C250L1 SKIP:NO LIMIIS
201 EU=20	E-CHTC23ULI SKIP:NU

LIMITS 01/00/00/00

4

.

ø

Scan Intervals: SCAN NO. CHANNELS INTERVAL ENABLE CHNL 1 000/138 00:01:00 ---
 200/217
 00:01:00
 --

 140/186
 00:02:00
 079

 230/251
 00:02:00
 079
 2 3 4 Netpac Status: NETPAC DEAD FAILED 1/00 ------2/00 _ -History Files: FILE SOURCE RATE SIZE WRAP DATE 01 0 NO YES 1 2 2 03 207008 NO YES 3 34 01 40000 NO YES 01 15008 NO YES 01 0 NO YES 4 5

Alarms Enabled

Limits table:			
01=2.50000 H	05=5.00000 L	06=5.00000 H	07=.500000 L

08=.500000 H

OUTPUT TABLES:

- DATA SOURCE:1 Devices Suppress limits:NO Alarms only:NO Alarms once:NO B.O.S. messg: Data field size:12 Print chnl no.:YES Print units:YES Fields/line:02
- DATA SOURCE:2 Devices Suppress limits:NO Alarms only:NO Alarms once:NO B.O.S. messg: Data field size:06 Print chnl no.:NO Print units:NO Fields/line:20
- DATA SOURCE:3 Devices Suppress limits:NO Alarms only:NO Alarms once:NO B.O.S. messg: Data field size:06 Print chnl no.:NO Print units:NO Fields/line:20
- DATA SOURCE:4 Devices Suppress limits:NO Alarms only:NO Alarms once:NO B.O.S. messg: Data field size:06 Print chnl no.:NO Print units:NO Fields/line:20
- DATA SOURCE:L Devices Suppress limits:NO Alarms only:NO Alarms once:NO B.O.S. messg: Data field size:12 Print chnl no.:YES Print units:YES Fields/line:02

PROGRAM DUMP/LOAD TO: INTERNAL EEPROM DAC - BCD OUTPUT PROGRAMING:

Board/Channel Source

108

Table B.3 Sensor Channel Locations - Building 8390

Sensor	<u>Channel(s)</u>
Vertical String 1	0-7
Vertical String 2	20-27
Globe Thermometer 1	8-13
Globe Thermometer 2	30-35
Ceiling Thermocouples	15-17
Dew Point Sensor	14
Air Velocities	18-19
MAU Inlet Temperature	36
MAU Outlet Temperature	37
Exhaust Fans	38-39
Ceiling Fans	46-49
Bay Doors	50-55
North Supply Water Temp	40
North Return Water Temp	41
South Supply Water Temp	43
South Return Water Temp	42
North Water Flow Rate	44
South Water Flow Rate	45
North Bay Energy Calculation	
South Bay Energy Calculation	58
Bay Door Data - Conversion	
to Integer Number	96-107
Digital Input - Bay Door	040 045
Time Open	240-245

Channel programming:						
000 EU=09 NETPAC:1/00/00	RES:H	SKIP:NO				
001 EU=09 NETPAC:1/00/01	RES:H	SKIP:NO				
002 EU=09 NETPAC:1/00/02	RES:H	SKIP:NO				
003 EU=09 NETPAC:1/00/03	RES:H	SKIP:NO				
004 EU=09 NETPAC:1/00/04	RES:H	SKIP:NO				
005 EU=09 NETPAC:1/00/05	RES:H	SKIP:NO				
006 EU=09 NETPAC:1/00/06	RES:H	SKIP:NO				
007 EU=09 NETPAC:1/00/07	RES:H	SKIP:NO				
008 EU=09 NETPAC:1/00/08	RES:H	SKIP:NO				
009 EU=09 NETPAC:1/00/09	RES:H	SKIP:NO				
010 EU=09 NETPAC:1/00/10	RES:H	SKIP:NO				
011 EU=09 NETPAC:1/00/11	RES:H	SKIP:NO				•
012 EU=09 NETPAC:1/00/12	RES:H	SKIP:NO				
013 EU=09 NETPAC:1/00/13	RES:H	SKIP:NO				
014 EU=21 NETPAC:1/00/14	RES:H	SKIP:NO				
015 EU=09 NETPAC:1/00/15	RES:H	SKIP:NO				
016 EU=09 NETPAC:1/00/16	RES:H	SKIP:NO				
017 EU=09 NETPAC:1/00/17	RES:H	SKIP:NO				
018 EU=06 NETPAC:1/00/18	RES:H	MX+B=01	SKIP:NO			
019 EU=06 NETPAC:1/00/19	RES:H	MX+B=01	SKIP:NO			
020 EU=09 NETPAC:1/00/20	RES:H	SKIP:NO				
021 EU=09 NETPAC:1/00/21	RES:H	SKIP:NO				
022 EU=09 NETPAC:1/00/22	RES:H	SKIP:NO				
023 EU=09 NETPAC:1/00/23	RES:H	SKIP:NO				
024 EU=09 NETPAC:1/00/24	RES:H	SKIP:NO				
025 EU=09 NETPAC:1/00/25	RES:H	SKIP:NO				
026 EU=09 NETPAC:1/00/26	RES:H	SKIP:NO				
027 EU=09 NETPAC:1/00/27	RES:H	SKIP:NO				
028 EU=09 NETPAC:1/00/28	RES:H	SKIP:NO				
029 EU=09 NETPAC:1/00/29	RES:H	SKIP:NO				
030 EU=09 NETPAC:1/00/30	RES:H	SKIP:NO				
031 EU=09 NETPAC:1/00/31	RES:H	SKIP:NO				
032 EU=09 NETPAC:1/00/32	RES:H	SKIP:NO				
033 EU=09 NETPAC:1/00/33	RES:H	SKIP:NO				
034 EU=09 NETPAC:1/00/34	RES:H	SKIP:NO				
035 EU=09 NETPAC:1/00/35	RES:H	SKIP:NO				
036 EU=09 NETPAC:1/00/36	RES:H	SKIP:NO				
037 EU=09 NETPAC:1/00/37	RES:H	SKIP:NO				
038 EU=24 NETPAC:1/00/38	RES:D	SKIP:NO	LIMITS	03/00	/00/00	
039 EU=24 NETPAC:1/00/39	RES:H	SKIP:NO	LIMITS			
040 EU=21 NETPAC:1/00/40	RES:H	MX+B=03	SKIP:NO			
041 EU=21 NETPAC:1/00/41	RES:H	MX+B=03	SKIP:NO			
042 EU=21 NETPAC:1/00/42	RES:H	MX+B=03	SKIP:NO			
043 EU=21 NETPAC:1/00/43	RES:H	MX+B=03	SKIP:NO			
044 EU=21 NETPAC:1/00/44	RES:H	MX+B=02	SKIP:NO			
045 EU=21 NETPAC:1/00/45	RES:H	MX+B=02	SKIP:NO			
046 EU=24 NETPAC:1/00/46	RES:D	E=128*C4	6L1 SKIP	:NO	LIMITS	03/

047	EU=24	NETPAC:1/00/47 RES:D SKIP:NO LIMITS 03/00/00/00
	EU=24	NETPAC:1/00/48 RES:D SKIP:NO LIMITS 03/00/00/00
	EU=24	NETPAC:1/00/49 RES:D SKIP:NO LIMITS 03/00/00/00
	EU=06	NETPAC:1/00/50 RES:D SKIP:NO LIMITS 05/00/00/00
	EU=06	NETPAC:1/00/51 RES:D SKIP:NO LIMITS 05/00/00/00
	EU=06	NETPAC:1/00/52 RES:D SKIP:NO LIMITS 05/00/00/00
	EU=06	NETPAC:1/00/53 RES:D SKIP:NO LIMITS 05/00/00/00
	EU=06	NETPAC:1/00/54 RES:D SKIP:NO LIMITS 05/00/00/00 NETPAC:1/00/55 RES:D SKIP:NO LIMITS 05/00/00/00
	EU=06 EU=25	NETPAC:1/00/55 RES:D SKIP:NO LIMITS 05/00/00/00 E=TOD"**/30/**" SKIP:NO
	EU=25 EU=26	E=(C40-C41)*C44*.5 SKIP:NO
	EU=25	E=(C43-C42)*C45*.5 SKIP:NO E=(C43-C42)*C45*.5 SKIP:NO
	EU=25	E=AVT(C0, C56) SKIP:NO
	EU=25	E=AVT(C1,C56) SKIP:NO
	EU=25	E=AVT(C2,C56) SKIP:NO
	EU=25	E=AVT(C3,C56) SKIP:NO
064	EU=25	E=AVT(C4,C56) SKIP:NO
065	EU=25	E=AVT(C5,C56) SKIP:NO
066	EU=25	E=AVT(C6,C56) SKIP:NO
067	EU=25	E=AVT(C7,C56) SKIP:NO
068	EU=25	E=AVT(C8,C56) SKIP:NO
069	EU=25	E=AVT(C9,C56) SKIP:NO
	EU=25	E=AVT(C10,C56) SKIP:NO
	EU=25	E=AVT(C11,C56) SKIP:NO
	EU=25	E=AVT(C12,C56) SKIP:NO
	EU=25	E=AVT(C13,C56) SKIP:NO
	EU=25	E=AVT(C14,C56) SKIP:NO
	EU=25	E=AVT(C15,C56) SKIP:NO
	EU=25	E=AVT(C16,C56) SKIP:NO
	EU=25	E=AVT(C17,C56) SKIP:NO
	EU=25	E=AVT(C20,C56) SKIP:NO
	EU=25	E=AVT(C21,C56) SKIP:NO
	EU=25 EU=25	E=AVT(C22,C56) SKIP:NO E=AVT(C23,C56) SKIP:NO
	EU=25	E=AVT(C24,C56) SKIP:NO
	EU=25	E=AVT(C25,C56) SKIP:NO
	EU=25	E=AVT(C26,C56) SKIP:NO
	EU=25	E=AVT(C27,C56) SKIP:NO
	EU=25	E=AVT(C28,C56) SKIP:NO
	EU=25	E=AVT(C29,C56) SKIP:NO
	EU=25	E=AVT(C30,C56) SKIP:NO
	EU=25	E=AVT(C31,C56) SKIP:NO
	EU=25	E=AVT(C32,C56) SKIP:NO
093	EU=25	E=AVT(C33,C56) SKIP:NO
094	EU=25	E=AVT(C34,C56) SKIP:NO
095	EU=25	E=AVT(C35,C56) SKIP:NO
096	EU=25	E=C38L1 SKIP:NO
097	EU=25	E=C39L1*2 SKIP:NO

098 EU=25 E=C46L1*4 SKIP:NO 099 EU=25 E=C47L1*8 SKIP:NO 101 EU=25 E=C48L1*16 SKIP:NO 102 EU=25 E=C50L1*64 SKIP:NO 103 EU=25 E=C51L1*128 SKIP:NO 104 EU=25 E=C51L1*128 SKIP:NO 105 EU=25 E=C51L1*124 SKIP:NO 106 EU=25 E=C51L1*1024 SKIP:NO 107 EU=25 E=C51L1*1024 SKIP:NO 108 EU=25 E=AVG(C96,C107) SKIP:NO 109 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 112 EU=25 E=AVT(C42,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=AVG(C24,C25) SKIP:NO 157 EU=25 E=AVG(C24,C25) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C10 8KIP:NO 150 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C61 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C71 SKIP:NO 211 EU=25 E=C71 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 216 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 216 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 216 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 216 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 217 EU=25 E=C73 SKIP:NO 218 EU=2			
100 EU=25 E=C48L1*16 SKIP:NO 101 EU=25 E=C49L1*32 SKIP:NO 102 EU=25 E=C50L1*64 SKIP:NO 104 EU=25 E=C51L1*128 SKIP:NO 104 EU=25 E=C52L1*256 SKIP:NO 105 EU=25 E=C54L1*1024 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=AVG(C57,C56) SKIP:NO 109 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C40,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C42,C56) SKIP:NO 115 EU=25 E=AVT(C43,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 117 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 150 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 151 EU=25 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV1 E=C36 SKIP:NO 154 EU=25 E=AVG(C4,C5) SKIP:NO 155 EU=25 UNITS=MAU1 E=C36 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C14 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C61 SKIP:NO 203 EU=25 E=C61 SKIP:NO 204 EU=25 E=C63 SKIP:NO 205 EU=25 E=C64 SKIP:NO 205 EU=25 E=C64 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C66 SKIP:NO 209 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C70 SKIP:NO 203 EU=25 E=C70 SKIP:NO 204 EU=25 E=C71 SKIP:NO 205 EU=25 E=C70 SKIP:NO 204 EU=25 E=C71 SKIP:NO 205 EU=25 E=C73 SKIP:NO 204 EU=25 E=C73 SKIP:NO 205 EU=25 E=C73 SKIP:NO 204 EU=25 E=C73 SKIP:NO 205 EU=25 E=C73 SKIP:NO 204 EU=25 E=C73 SKIP:NO 205 EU=25 E=C73 SKIP:NO 205 EU=25 E=C73 SKIP:NO 206 EU=25 E=C73 SKIP:NO 207			
101 EU=25 E=C49L1*32 SKIP:NO 102 EU=25 E=C50L1*64 SKIP:NO 103 EU=25 E=C50L1*26 SKIP:NO 104 EU=25 E=C52L1*26 SKIP:NO 105 EU=25 E=C52L1*212 SKIP:NO 106 EU=25 E=C52L1*204 SKIP:NO 107 EU=25 E=C54L1*1024 SKIP:NO 108 EU=25 E=AVT(C41,C56) SKIP:NO 110 EU=25 E=AVT(C40,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 111 EU=25 E=AVT(C42,C56) SKIP:NO 112 EU=25 E=AVT(C42,C56) SKIP:NO 115 EU=25 E=AVT(C42,C56) SKIP:NO 115 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 151 EU=25 UNITS=AV1 E=C18 SKIP:NO 152 EU=27 UNITS=MU1 E=C36 SKIP:NO 154 EU=25 UNITS=MU1 E=C37	099	EU=25	E=C47L1*8 SKIP:NO
103 EU=25 E=C51L1*128 SKIP:NO 104 EU=25 E=C52L1*256 SKIP:NO 105 EU=25 E=C53L1*1024 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=C52K1*2048 SKIP:NO 107 EU=25 E=AVT(C57,C56) SKIP:NO 109 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C44,C56) SKIP:NO 117 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C37 SKIP:NO 154 EU=25 E=C108*12 SKIP:NO 155 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C64 SKIP:NO 200 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 202 EU=25 E=C64 SKIP:NO 203 EU=25 E=C67 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 205 EU=25 E=C70 SKIP:NO 206 EU=25 E=C70 SKIP:NO 207 EU=25 E=C71 SKIP:NO 207 EU=25 E=C73 SKIP:NO 211 EU=25 E=C74 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C74 SKIP:NO 217 EU=25 E=C75 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	100		
103 EU=25 E=C51L1*128 SKIP:NO 104 EU=25 E=C52L1*256 SKIP:NO 105 EU=25 E=C53L1*1024 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=C52K1*2048 SKIP:NO 107 EU=25 E=AVT(C57,C56) SKIP:NO 109 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C44,C56) SKIP:NO 117 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV2 E=C19 SKIP:NO 153 EU=27 UNITS=MAU1 E=C36 SKIP:NO 154 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 E=AVG(C24,C5) SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C66 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C64 SKIP:NO 202 EU=25 E=C64 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 201 EU=25 E=C68 SKIP:NO 202 EU=25 E=C68 SKIP:NO 203 EU=25 E=C68 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C70 SKIP:NO 205 EU=25 E=C70 SKIP:NO 207 EU=25 E=C71 SKIP:NO 201 EU=25 E=C72 SKIP:NO 202 EU=25 E=C73 SKIP:NO 203 EU=25 E=C74 SKIP:NO 204 EU=25 E=C74 SKIP:NO 205 EU=25 E=C74 SKIP:NO 205 EU=25 E=C75 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C76 SKIP:NO 207 EU=25 E=C77 SKIP:NO 207 EU=25 E	101	EU=25	E=C49L1*32 SKIP:NO
103 EU=25 E=C51L1*128 SKIP:NO 104 EU=25 E=C52L1*256 SKIP:NO 105 EU=25 E=C53L1*1024 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=C52K1*2048 SKIP:NO 107 EU=25 E=AVT(C57,C56) SKIP:NO 109 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C44,C56) SKIP:NO 117 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C37 SKIP:NO 154 EU=25 E=C108*12 SKIP:NO 155 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C64 SKIP:NO 200 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 202 EU=25 E=C64 SKIP:NO 203 EU=25 E=C67 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C68 SKIP:NO 205 EU=25 E=C70 SKIP:NO 206 EU=25 E=C70 SKIP:NO 207 EU=25 E=C71 SKIP:NO 207 EU=25 E=C73 SKIP:NO 211 EU=25 E=C74 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C74 SKIP:NO 217 EU=25 E=C75 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	102	EU=25	E=C50L1*64 SKIP:NO
104 EU=25 E=C52L1*256 SKIP:NO 105 EU=25 E=C53L1*1024 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=AVG(C96,C107) SKIP:NO 109 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C44,C56) SKIP:NO 117 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 118 EU=25 UNITS=GT1 E=AVG(C3,C35) SKIP:NO 119 EU=27 UNITS=AV2 E=C18 SKIP:NO 151 EU=25 UNITS=MAU1 E=C36 SKIP:NO 153 EU=27 UNITS=MAU1 E=C36 SKIP:NO 154 EU=25 E=C108*12 SKIP:NO 155 EU=25 E=C108*12 SKIP:NO 156 EU=25 E=C44 SKIP:NO 157 EU=25 E=C61 SKIP:NO 200 EU=25 E=C64 SKIP:NO 201 EU=25 E=C64 SKIP:NO 202 EU=25 E=C64 SKIP:NO 203 EU=25 E=C68 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C64 SKIP:NO 205 EU=25 E=C68 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C70 SKIP:NO 201 EU=25 E=C71 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C73 SKIP:NO 203 EU=25 E=C74 SKIP:NO 204 EU=25 E=C73 SKIP:NO 205 EU=25 E=C74 SKIP:NO 205 EU=25 E=C77 SKIP:NO 207 EU=25 E=C73 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C74 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C75 SKIP:NO 207 EU=25 E=C77 SK	103		
105 EU=25 E=C53L1*512 SKIP:NO 106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=AVG(C96,C107) SKIP:NO 108 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C40,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 111 EU=25 E=AVT(C42,C56) SKIP:NO 112 EU=25 E=AVT(C43,C56) SKIP:NO 113 EU=25 E=AVT(C43,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C3,C13) SKIP:NO 151 EU=25 UNITS=AV1 E=C18 SKIP:NO 154 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 154 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 E=C14 SKIP:NO SKIP:NO 156	104		E=C52L1*256 SKIP:NO
106 EU=25 E=C54L1*1024 SKIP:NO 107 EU=25 E=C4VG(C96,C107) SKIP:NO 109 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C40,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 111 EU=25 E=AVT(C42,C56) SKIP:NO 112 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 UNITS=GT1 E=AVG(C30,C35) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 153 EU=27 UNITS=AV1 E=C18 SKIP:NO 154 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO SKIP:NO 157 EU=25 E=C61 SKIP:NO	_		
107 EU=25 E=C55L1*2048 SKIP:NO 108 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C40,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C45,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C30,C35) SKIP:NO 1515 EU=27 UNITS=AV1 E=C18 SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=MU1 E=C36 SKIP:NO 154 EU=25 UNITS=MU1 E=C36 SKIP:NO 155 EU=25 UNITS=MU1 E=C36 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C41 SKIP:NO 206 EU			
108 EU=25 E=AVG(C96,C107) SKIP:NO 109 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C40,C56) SKIP:NO 111 EU=25 E=AVT(C41,C56) SKIP:NO 112 EU=25 E=AVT(C42,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C45,C56) SKIP:NO 116 EU=25 UNITS=GT1 E=AVG(C30,C35) SKIP:NO 151 EU=25 UNITS=AV1 E=C18 SKIP:NO 152 EU=27 UNITS=AV2 E=C19 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C37 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C44 SKIP:NO 206 EU=25 E=C64 SKIP:NO 207 EU=25 </td <td>-</td> <td></td> <td></td>	-		
109 EU=25 E=AVT(C57,C56) SKIP:NO 110 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C44,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 150 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 151 EU=25 UNITS=AV1 E=C18 SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C108*12 SKIP:NO 158 EU=25 E=C108*12 SKIP:NO 159 EU=25 E=C61 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 201 EU=25 E=C68 SKIP:NO 201 EU=25 E=C68 SKIP:NO 202 EU=25 E=C68 SKIP:NO 203 EU=25 E=C68 SKIP:NO 204 EU=25 E=C68 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C67 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C73 SKIP:NO 217 EU=25 E=C74 SKIP:NO 216 EU=25 E=C75 SKIP:NO 217 EU=25 E=C77 SKIP:NO		EU=25	E=AVG(C96.C107) SKIP:NO
110 EU=25 E=AVT(C58,C56) SKIP:NO 111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 116 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C108*12 SKIP:NO 158 EU=25 E=C14 SKIP:NO 159 EU=25 E=C61 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C65 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C67 SKIP:NO 209 EU=25 E=C68 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C67 SKIP:NO 203 EU=25 E=C68 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C67 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C71 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 216 EU=25 E=C73 SKIP:NO 217 EU=25 E=C74 SKIP:NO 216 EU=25 E=C75 SKIP:NO 217 EU=25 E=C77 SKIP:NO 216 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 216 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO	109	EU=25	E=AVT(C57.C56) SKIP:NO
111 EU=25 E=AVT(C40,C56) SKIP:NO 112 EU=25 E=AVT(C41,C56) SKIP:NO 113 EU=25 E=AVT(C42,C56) SKIP:NO 114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 E=C108*12 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=C14 SKIP:NO 159 EU=25 E=C61 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 201 EU=25 E=C68 SKIP:NO 202 EU=25 E=C68 SKIP:NO 203 EU=25 E=C66 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO	110	EU=25	E=AVT(C58.C56) SKIP:NO
114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C67 SKIP:NO 209 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C67 SKIP:NO 203 EU=25 E=C67 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C67 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C67 SKIP:NO 209 EU=25 E=C70 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			E=AVT(C40.C56) SKTP:NO
114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C67 SKIP:NO 209 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C67 SKIP:NO 203 EU=25 E=C67 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C67 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C67 SKIP:NO 209 EU=25 E=C70 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			E=AVT(C41,C56) SKTP:NO
114 EU=25 E=AVT(C43,C56) SKIP:NO 115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C3,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C66 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C67 SKIP:NO 209 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C67 SKIP:NO 203 EU=25 E=C67 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C67 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C67 SKIP:NO 209 EU=25 E=C70 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			F=AVT(C42,C56) SKTP:NO
115 EU=25 E=AVT(C44,C56) SKIP:NO 116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 201 EU=25 E=C67 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C71 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C74 SKIP:NO 215 EU=25 E=C74 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			F=AVT(C43,C56) SKTP:NO
116 EU=25 E=AVT(C45,C56) SKIP:NO 150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C65 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 201 EU=25 E=C67 SKIP:NO 201 EU=25 E=C67 SKIP:NO 202 EU=25 E=C68 SKIP:NO 203 EU=25 E=C68 SKIP:NO 204 EU=25 E=C67 SKIP:NO 205 EU=25 E=C67 SKIP:NO 206 EU=25 E=C68 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C67 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
150 EU=25 UNITS=GT1 E=AVG(C8,C13) SKIP:NO 151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C60 SKIP:NO 200 EU=25 E=C61 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C71 SKIP:NO 213 EU=25 E=C71 SKIP:NO 214 EU=25 E=C73 SKIP:NO 215 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C74 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
151 EU=25 UNITS=GT2 E=AVG(C30,C35) SKIP:NO 152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C64 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C63 SKIP:NO 203 EU=25 E=C64 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
152 EU=27 UNITS=AV1 E=C18 SKIP:NO 153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
153 EU=27 UNITS=AV2 E=C19 SKIP:NO 154 EU=25 UNITS=MAU1 E=C36 SKIP:NO 155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO 217 EU=25 E=C77 SKIP:NO			$\frac{1}{1} \frac{1}{1} \frac{1}$
155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			UNITS-AVI E-CIO SKIP.NO
155 EU=25 UNITS=MAU2 E=C37 SKIP:NO 156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			UNITE-MAULE E-CLY SKIP:NO
156 EU=25 E=C108*12 SKIP:NO 157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=C14 SKIP:NO 200 EU=25 E=C14 SKIP:NO 201 EU=25 E=C60 SKIP:NO 202 EU=25 E=C61 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C63 SKIP:NO 205 EU=25 E=C64 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C68 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C70 SKIP:NO 212 EU=25 E=C71 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			UNITS-MAUL E-COS SKIP:NU
157 EU=25 E=AVG(C4,C5) SKIP:NO 158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 213 EU=25 E=C72 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 216 EU=25 E=			
158 EU=25 E=AVG(C24,C25) SKIP:NO 159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C66 SKIP:NO 206 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C75 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C77 SKIP:NO	100	EU=25	E=Cl08*12 SKIP:NO
159 EU=25 E=C14 SKIP:NO 200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C75 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C77 SKIP:NO			
200 EU=25 E=C60 SKIP:NO 201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
201 EU=25 E=C61 SKIP:NO 202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C68 SKIP:NO 208 EU=25 E=C68 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			E=C14 SKIP:NO
202 EU=25 E=C62 SKIP:NO 203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C75 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C77 SKIP:NO			
203 EU=25 E=C63 SKIP:NO 204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C74 SKIP:NO 214 EU=25 E=C75 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C77 SKIP:NO			E=C61 SKIP:NO
204 EU=25 E=C64 SKIP:NO 205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C76 SKIP:NO 216 EU=25 E=C77 SKIP:NO			E=C62 SKIP:NO
205 EU=25 E=C65 SKIP:NO 206 EU=25 E=C66 SKIP:NO 207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C73 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
206 EU=25 E=C66 SKIP:N0 207 EU=25 E=C67 SKIP:N0 208 EU=25 E=C68 SKIP:N0 209 EU=25 E=C69 SKIP:N0 210 EU=25 E=C70 SKIP:N0 211 EU=25 E=C71 SKIP:N0 212 EU=25 E=C72 SKIP:N0 213 EU=25 E=C73 SKIP:N0 214 EU=25 E=C74 SKIP:N0 215 EU=25 E=C75 SKIP:N0 216 EU=25 E=C76 SKIP:N0 217 EU=25 E=C77 SKIP:N0			
207 EU=25 E=C67 SKIP:NO 208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
208 EU=25 E=C68 SKIP:NO 209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
209 EU=25 E=C69 SKIP:NO 210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO		EU=25	
210 EU=25 E=C70 SKIP:NO 211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	208	EU=25	E=C68 SKIP:NO
211 EU=25 E=C71 SKIP:NO 212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	209	EU=25	E=C69 SKIP:NO
212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	210	EU=25	
212 EU=25 E=C72 SKIP:NO 213 EU=25 E=C73 SKIP:NO 214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	211	EU=25	E=C71 SKIP:NO
214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	212	EU=25	
214 EU=25 E=C74 SKIP:NO 215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	213	EU=25	E=C73 SKIP:NO
215 EU=25 E=C75 SKIP:NO 216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO	214	EU=25	
216 EU=25 E=C76 SKIP:NO 217 EU=25 E=C77 SKIP:NO			
217 EU=25 E=C77 SKIP:NO			
	218		E=C78 SKIP:NO

219	EU=25	E=C79 SKIP:NO
220	EU=25	E=C80 SKIP:NO
221	EU=25	E=C81 SKIP:NO
222		E=C82 SKIP:NO
223		E=C83 SKIP:NO
224	EU=25	E=C84 SKIP:NO
225		E=C85 SKIP:NO
226		E=C86 SKIP:NO
220		E=C87 SKIP:NO
228		E=C88 SKIP:NO
229	EU=25 EU=25	E=C88 SKIP:NO E=C89 SKIP:NO
		E=C90 SKIP:NO
230		
231		E=C91 SKIP:NO
	EU=25	E=C92 SKIP:NO
233		E=C93 SKIP:NO
234	EU=25	E=C94 SKIP:NO
235		E=C95 SKIP:NO
236		E=C109 SKIP:NO
237		E=C110 SKIP:NO
240		E=DIG(0,0,3) SKIP:NO
241	EU=47	E=DIG(0,1,3) SKIP:NO
242		E=DIG(0,2,3) SKIP:NO
243		E=DIG(0,3,3) SKIP:NO
244	EU=47	E=DIG(0,4,3) SKIP:NO
245	EU=47	E=DIG(0,5,3) SKIP:NO
246		E=C111 SKIP:NO
247		E=C112 SKIP:NO
248	EU=25	E=C113 SKIP:NO
249	EU=25	E=C114 SKIP:NO
250	EU=25	E=C115 SKIP:NO

2 1		00:01:00	1	BLE CHNL 056		
Netpac Stat NETPAC DE 1/00 -	EAD FAILI	ED				
History Fil FILE SOURC 1 2 2 3 3 4 5	CE RATE 01 03	0	NO NO	DATE YES YES YES YES YES		
Alarms E	nabled	r				
Limits tabl 01=60.0000		.500000	н	05=5.00000 H		
MX+B table: 01= M-1.000 03= M2.0000	00 , E	30.00000 30.00000		02= M2.50000	, BO.	. 00000

.

APPENDIX C

DAILY AVERAGE DATA TABLES

This appendix contains the daily average values of the data used iin this study. The column headings used for these tables are defined in Table C.1 below.

Table C.1 Data Headings Definitions

Heading	Definition
JULIAN	Julian Date (32=1 Feb) Total KBTUs consumed 8370
90 ENER	Total KBTUs consumed 8390 75% Boiler Eff
70 NITE	KBTUs consumed 8370
70 DAY	0001-0600, 1800-2400 KBTUs consumed 8370 0600-1800
90 NITE	KBTUs consumed 8390 0001-0600, 1800-2400
90 DAY	KBTUs consumed 8390 0600-1800
TEMP	Average Outside Air
GLOBE 1	Temperature Average Temperature
GLOBE 2	Globe 1 - 8370 Average Temperature Globe 2 - 8370
GLOBE 3	Average Temperature Globe 3 - 8370
GLOBE 4	Average Temperature Globe 1 - 8390
GLOBE 5	Average Temperature Globe 2 - 8390
70 AIR	Average Space Air Temperature - 8370
70 OCC	Average Temperature 0.5' - 6.0' 8370
70 TOP	Average Temperature 22' Elevation 8370
70 6IN	Average Temperature 0.5' Elevation 8370
70 STRAT	70 TOP - (70 6IN)

Heading

Definition

70 GLOBE	Average of GLOBE 2 and GLOBE 3
90 AIR	Average Space Air Temperature - 8390
90 OCC	Average Temperature 0.5' - 6.0' 8390
90 TOP	Average Temperature 22' Elevation 8390
90 6IN	Average Temperature 0.5' Elevation 8390
90 STRAT 90 GLOBE	(90 TOP) - (90 6IN) Average of GLOBE 4
70 DOORS Ba	and GLOBE 5 ay Door Percent
70 CF Ce	Time Open - 8370 eiling Fan Percent
70 EF	Time On - 8370 Exhaust Fan Percent Time On - 8370
90 DOORS	Bay Doors Percent Time Open - 8390
90 CF	Ceiling Fan Percent Time On - 8390
90 EF	Exhaust Fan Percent Time On - 8390

THE TANGA CHED	0 0 ENED		50 DAV		
JULIAN70 ENER			70 DAY	90 NITE	. –
32 13480.88		6439.58		1675.797	
33 13592.6	5901.052	6664.98	6927.62	1747.321	4153.731
34 10804.5	4391.886	4363.94	6440.56	1101.733	3290.153
35 10666.32	6951.588	4906.86	5759.46	1419.175	5532.413
36 13691.58	6903.955	6467.02	7224.56	2040.248	4863.707
37 14484.4	8374.022	7247.1	7237.3	3368.506	5005.516
38 12600.84	6528.178	6382.74	6218.1	3270.606	3257.572
39 11857.02	5211.555	5375.3		1976.48	
	5141.117	4635.4		1164.26	
	7159.801	5580.12	7559.72	1965	
	8012.207	8179.08		1893.785	
	4895.821	5832.96		1565.638	
44 4678.52	1927.452	2227.54		335.1284	
45 9318.82	3406.052	4314.94		247.1572	
46 8123.22		4027.8		990.1802	
47 5742.8		2912.56		855.3534	
48 4613.84		2631.3		1001.66	
	2099.206	3596.6		732.3177	
	2893.275	3696.56	3764.18	683.9103	2209.365
51 7523.46	2956.577	3713.22		350.4884	
52 4848.06	2479.794	2246.16	2601.9	576.8554	1902.939
53 5850.6	3083.336	3911.18	1939.42	837.0454	2246.291
54 12529.3	3124.141	5360.6	7168.7	698.4946	2425.647
55 10295.88		4276.72		1026.485	
56 2739.1		1762.04		1026.64	
	2942.612	915.32		501.7618	
	555.5993	1898.26		189.7509	
	628.5209	1902.18		172.6842	455.8367
60 5420.38	2877.138	1782.62		564.4432	2312.695
		1298.5		444.0452	300.8397
62 12142.2	3355.161	5148.92		901.8981	2453.263
	5172.149	7019.74		1239.82	3932.329
	2740.138	4662.84		902.3635	1837.775
65 8186.92	1952.431			645.5878	
	2039.161	3514.28		830.0637	
	5020.563	2944.9		1462.307	3558.256
68 7114.8	5577.561	2664.62		1228.804	
69 3634.82	3175.029	1668.94	1965.88	979.7847	2195.245
70 1774.78	3530.019	1460.2	314.58	836.8903	2693.129
71 2903.74	5495.95	659.54	2244.2	1344.237	4151.713
72 8317.26	7156.387	4103.26	4214	1178.533	5977.854
73 6572.86	4047.916	3797.5	2775.36	877.2299	3170.687
74 9122.82	7233.188	3571.12		2213.088	5020.1
75 7628.32	9925.696	3489.78		4815.609	5110.087
	9426.728	3015.46		4534.939	4891.789

		90ENER	70 NITE	70 DAY	90 NITE	90 DAY
77		7523.166	2978.22		2610.587	
78 79		7035.058	3785.74		2811.975 1656.247	4223.083
80		2931.907	1949.22 736.96		1697.363	3043.927 1234.544
81		1774.006	641.9		1297.845	476.1617
82	246.96	759.4693	041.9	246.96		70.74935
83	0	3154.24	0	0	1587.204	1567.036
84	0	2531.149	0	0	1133.074	
85	0	3161.687	0	0	1933.349	1228.338
86	0	4056.759	0		1450.515	2606.244
87	0	1076.29	0		806.3254	
88		4305.934	2003.12		839.9934	3465.941
89		6733.753	1658.16		2222.087	
90 91		3807.585 7182.918	1053.5 1866.9		1865.703 2352.104	1941.882 4830.814
92	5025.44	7209.605	2225.58		2450.471	
93		4566.899	1459.22		1872.995	2693.904
94		3283.326	1278.9		1686.347	1596.979
95	1142.68	1061.395	712.46	430.22	914.3112	147.0841
96		4940.35	966.2 8		1907.128	3033.222
97		2606.708	705.6		1474.409	1132.299
98		1344.391	631.12		1108.095	236.2966
99	0	10.24003	0	0	4.49941	
100	0	6197.858	0 0.98	0	1657.799	
101 102	0.98 485.1	4718.95 6047.98	0.98	0 485.1	1795.73 1998.202	2923.22 4049.778
102		2170.109	0	284.2	1527.78	642.3296
104		1573.086	ŏ	0		
105		6700.085	0	0	1788.436	4911.649
106	0	1769.818	0	0	1003.367	766.4513
107	0	0.465455	0	0	0.310304	0.155151
108	0.98	0	0	0.98	0	0
109	1182.86	0	0	1182.86	0	0
110	3304.56	0	133.28 735.98	3171.28	0 0.930912	0
111 112		1.086063 2.947889	424.34		1.861825	
		0.77576	46.06			1.088084
	1684.62			973.14		0
115	0.98	0	0	0.98	0	0
116	0	0	0	0	0	0
	5920.18	0	713.44		0	0
	8388.8	0		5729.08		0
119		1.086063			0.930912	
120		0.620608	0 0.98		0.620608	0
121 122	0.98	1.55152	0.98	0	1.55152	0
144	0	T. JJTJ2	0	0	1.00102	0

JULIAN TEMP	GLOBE1	GLOBE2	GLOBE3	GLOBE4	GLOBE5
	69.49166				63.6993
33 15.4125		67.34583			
34 18.41666			73.14166		65.6125
35 11.1125					
		68.91742			
36 5.025		62.29375		57.98712	
37 11.625		67.85416			
38 24.19583		76.40486			
39 31.76666		77.00416			
40 27.5125				67.37708	
41 13.6875		65.23888			
42 -0.18333		66.92777			
43 26.15		72.93125			
44 46.20833		72.25972			
45 33.57083		69.50416			
46 28.5375		71.03819			
47 42.02916		73.01527			
48 38.575		71.40277			70.79097
49 35.84583			67.20555	75.01041	74.14236
50 38.02916	73.71527	71.775	67.87708	70.19375	70.4868
51 35.2	75.63958	73.57708	68.82916	71.74583	71.53055
52 48.1625	75.65069	73.95625	70.65972	75.09652	74.99027
53 45.28333	72.12986	71.2993	69.70486	74.10347	74.00972
54 31.67916	79.40694	78.01388	76.99166	68.41319	68.22986
55 30.51666	82.47291	80.27222	78.31944	65.04027	66.08611
56 38.3125		70.32777			
57 50.73333				67.81805	
58 45.8875		74.83611			
59 45.9875		74.47708			
60 41.79583		72.13194			
61 50.5					
62 36.65		70.14444			
63 32.20416				64.83611	
	83.12569				
	85.06527				
	83.81319				
67 48.70416		73.14375		68.48888	
68 39.86666					
69 42.7875		71.82847		69.23819	
70 51.02916		68.14236		69.74861	
71 45.63333		64.46111			66.8743
72 27.17083				60.01736	
73 21.65		60.14097			
74 22.85416		66.80208			64.55625
75 27.2625		66.57638			
76 28.14583		72.15555		64.56944	
/0 20.14383	/5.1	12.10000	07.7/43	04.30744	04.50025

JULTAN	TEMP	GLOBE1	GLOBE2	GLOBE3	GLOBE4	GLOBE5
					65.33472	
78	31.525		67.46527		61.04513	
79	45.65	72.15347	67.55625	66.12013		
80		73.73055	69.41458	68.93125	72.21319	71.90972
			72.73819	73.5118		75.33125
82	65.00416	73.6618	72.56736	72.44652		76.15416
	54.79583	67.3743	66.47152	66.54861	69.72708	
84	57.64166	64.99166	64.52152	64.26944	70.86597	71.21388
85	51.16666	61.63194	61.61597	60.95625	68.07708	
86	50.95	60.32708	60.23819	59.57916	70.82638	71.35763
87	62.36666	64.21527	63.89652	63.42291	73.27013	73.7125
88	55.25833	66.37013	65.68055	66.86527	72.2375	71.84791
89	43.98333	66.99375	66.74166	68.12638	69.30972	69.21805
90	47.5125	63.3625	60.94722	60.72569	69.60277	69.12916
91	45.12083	65.82291	64.36666	63.39166	68.76666	68.70694
92	44.67083	63.14236	61.84583	60.50138	67.85486	67.08402
93	44.53333	67.29583	69.37083		71.21319	70.91111
94	52.90833	70.46319	70.77986		72.84791	72.85833
95	64.45416	71.38611		71.29027		74.09236
96	53.0125		66.54236			
97	50.45		69.29097		70.49722	69.7875
98	63.35		73.68819			
99	69.14		74.60763			
100	44.29		64.68541		66.43611	
101	46		60.43472			71.59027
	50.93529		60.85		71.22222	
	53.62916		62.61458		70.21527	
104	60.75833		66.62361		73.7875	
105		64.17847			70.00972	
106					67.3625	
107	52.57916		62.25486		67.21388	
108	52.32916		62.55972		67.67916	
	49.52666		59.39097		60.96736	
110	48.988				63.07222	
			69.15833		67.39444	
					69.18402	
113					63.35625 60.39652	
114					62.28402	
115					64.0243	
110	55. 55416 49. 34166				61.14305	
118	52.5875				60.02777	
119					65.97569	
120					66.53541	
121					67.53125	
122			68.55138		70.29513	

JULIAN 70 AIR 32 70.71815 33 70.77172		70 TOP 86.47916 82.375	70 6IN 62.38125 63.725	70STRAT 24.09791 18.65	70GLOBE 68.06145 68.53194
34 73.24494		79.20625	69.5875		72.71874
		80.05681			68.69431
				34.64375	
37 72.93363					68.9243
38 80.02678				27.95	76.45416
39 80.31118					76.61 076
40 73.65297					
				13.58333	
42 69.29404					
43 75.49596					
				10.9125	
45 69.8744 46 71.19821					
47 71.88809					
		78.93913			70.13471
49 71.86607					68.9368
				15.65652	
				16.85208	
52 73.22261					
53 70.69161					
54 77.81071					77.50277
55 79.42619	77.70833	83.50208	76.50625	6.995833	79.29583
56 70.28869				5.204166	70.19652
			68.34523	2.880952	
58 75.80625					75.33819
59 75.36398		78.31458			74.96909
60 73.22049					
61 74.09285		79.55416			73.24097
62 71.81815					70.91006
63 75.20386				12.57708	74.19027
64 79.33541		82.65	76.9		79.00625
65 80.8866 66 79.34196		83.60833		4.322916	
67 7 2. 2236		75.88043		5.384782	
68 72.69553	68.82152		67.83958	13.61458	71.10833
69 71.88839	69.14375	77.80416	68.1625	9.641666	70.79513
70 68.29672		71.10625	66.52083		68.02638
71 64.45869	62.26666	69.27826	61.41086	7.867391	64.82465
72 60.36636	57.06666	69.875	56.39791	13.47708	60.74652
73 61.94017	57.18125	73.12291	56.7	16.42291	60.77604
74 68.64553	65.23125	77.06666	64.44583	12.62083	67.7677
	65.21527	71.96666	64.04583	7.920833	66.94548
76 72.09434		77.00208	66.375	10.62708	71.06492

JULIAN70 AIR	70 OCC	70 TOP	70 6IN	70STRAT	70GLOBE
77 71.10297			64.39166		69.5986
78 68.30892				15.2375	
79 67.66696	65.15277	72.62916	64.27083	8.358333	66.83819
80 69.91934	68.45069	72.52291	67.49166	5.03125	69.17291
81 74.0267	72.39782	76.85217	71.3	5.552173	73.12499
82 72.73809			71.79583		72.50694
83 66.37083		67.61458		2.652083	66.51006
84 64.30535			63.29791		64.39548
85 60.9854		61.95217			
	59.3375			1.583333	59.90867
87 64.2738 88 66.55124		70.46739		2.941666 6.152173	
			64.33125		66.27291 67.43402
90 61.17202		63.65833			
91 64.57414				8.414285	
		65.45	58.87083		61.1736
				10.04791	
94 70.73065			67.71458		69.64722
	71.3243		70.28958		71.98263
96 66.48636	65.22424	69.40227	65.06136	4.340909	65.94513
97 70.14702	67.57222	75.27291	66.45625	8.816666	69.1243
98 73.89017		76.80833	71.57291		
99 74.74642				4.366666	
100 64.63511				1.60625	64.7802
101 60.09375	59.80486	60.7875			
		61.75869			
103 62.80565	61.51527	64.4		4.404166	62.42742
104 67.31934 105 63.27946	62.60833	68.58541 64.5	65.02916 62.225	3.55625 2.275	66.76944 6 3 .33819
106 61.26459		62.37826			61.17187
107 62.44464	61.69722	63.33333		2.252083	
108 62.45952		63.22916			
109 59.30186		61.99347		4.665217	
			61.41666		
111 69.95803	67.9868	73.02291	66.175	6.847916	68.85416
112 71.31428	69.48055	74.45416	67.91666	6.5375	70.74096
113 62.86149	61.69347	65.03913	60.92826	4.110869	62.45694
114 62.44226	60.6375	66.5125	59.58958	6.922916	61.65728
115 63.15863	62.40555	64.075	61.79583	2.279166	62.85069
116 64.69906	63.96594	65.76956	63.08913	2.680434	64.50346
117 67.83571	64.62569	74.16041	63.24166	10.91875	66.3493
118 74.38422	67.63333	86.31666	64.83333	21.48333	70.65173
119 72.75446 120 66.78012	70.34583 66.06086	77.50416 67.87391	68.92916 65.28043	8.575 2.593478	71.76423 66.32187
121 67.94017	67.19791	68.775	66.46666		67.54062
122 68.85595	68.15972	69.65416	67.50625	2.147916	68.45069
122 00.000000	00.10772	07100410	07.00020	2.2.7.7.10	00.10007

THE TANGO ATD	00.000		00 (TN		
JULIAN90 AIR	90 OCC	90 TOP	90 6IN	90 STRAT	
		67.87291		4.872916	
		69.26458			64.1559
		70.50208		7.035416	
		68.50625	58.10625		61.86423
36 61.27792				10.84318	
				6.835416	
				6.895833	
39 77.75952	75.33125	79.82916	73.68125	6.147916	75.85694
40 70.96398	67.80069	73.89791	66.25208	7.645833	67.2059
41 65.36875	62.57708	68.20416	61.48333	6.720833	62.77395
42 64.25565	60.74861	67.42916	57.3125	10.11666	60.82326
43 68.50505	65.32916	71.15208	61.46666	9.685416	66.23298
	71.40416				
	65.86666				66.7302
	67.65208				
	68.39444				
	70.47971				
	73.96805				
50 72.38074					
	70.81666				
	74.41666				
	73.67152				
	67.37083			9.56875	
	64.38263				
56 68.76369					
57 69.18819					
	68.90347				69.65867
	68.52777				
	66.51739				
	69.64722				70.34722
	64.11666				
	63.71041			9.25625	
64 69.28184	66.02986	72.20833	62.525	9.683333	66.98541
	67.03055				
66 70.56607	68.10138	72.85416	65.6625	7.191666	69.12187
67 69.12023	67.49166	70.89583	66.23333	4.6625	68.24339
68 69.37083	66.68263	71.97708	64.3625	7.614583	67.44305
69 70.96755	68.19166	73.66041	65.57916	8.08125	69.14513
70 70.8497	68.74861	72.91666	67.20625	5.710416	69.38993
71 68.81488	66.44722	71.27291	64.6875	6.585416	67.09201
72 61.30982	59.03472	63.825	58.11666	5.708333	60.16805
73 64.72767	62.36666	66.90208	60.16666	6.735416	63.04235
74 67.64223	63.97971	70.55869	59.92391	10.63478	64.63576
75 66.75595	61.76944	71.28125	57.68541	13.59583	62.03471
76 68.95833	64.21527	72.67708	58.98541	13.69166	64.43784
/0 00.90000	04.21327	12.01100	J0. J0.41	10.09100	01.10/04

JULIAN90 AIR 77 68.87113	90 OCC 64.51875	90 TOP 72.78541	90 6IN 60.32708	90 STRAT 12.45833	
78 66.5672	62.42348	70.51363		11.73863	60.8177
79 71.36309	68.39583	74.00833	65.06458	8.94375	69.24548
80 73.92291 81 76.0872	71.46805	76.24166 77.9875	68.95833 72.6625	7.283333 5.325	72.06145 75.99166
82 76.25089	75.1743	77.47708	74.29166		76.28749
83 71.38214	69.48125	73.54791	68.81041	4.7375	69.91631
84 72.28452	70.68888	73.83541	69.44375		71.03992
85 69.45357 86 73.19642	67.55 70.64444	71.50833 75.61458	66.18125 68.81041		68.17048 71.092
87 74.55208		76.38958	71.71041		73.49131
88 72.24902	70.43939	74.26363	69.14772		72.0427
89 72.06696		75.14375	66.10625	9.0375	69.26388
		73.04166	67.12916		69.36596
91 70.92738 92 69.24732	68.30416 67.2125	73.78958 71.6	66.36041 65.89166		68.7368 67.46944
93 72.43333	70.59722		68.82291		71.06215
94 73.99613		75.58541	70.93125		72.85312
95 75.31038	74.14772			3.50909	73.92743
96 71.7369 97 71.08244		73.4875 73.31666	68.99791 68.17291	4.489583 5.14375	70.81944
98 75.2247			72.9875	4.097916	74.57187
99 76.52678		77.75625	75.51875	2.2375	76.45208
100 69.34494	66.83263	72.175	65.98958		67.34548
101 73.2738 102 72.73928	71.30347	75.0125 75.025	69.9625 68.41041	5.05	72.19513 70.84965
103 71.29404		74.23541	68.16666	6.06875	70.01666
104 74.69672		76.58125	71.90208		73.68229
105 71.18809	68.85833	73.56041	67.40208		69.77395
106 67.43975 107 67.19226	66.25289 66.61875	68.99347 68.21041	65.54565 66.41041	3.447826 1.8	67.10868 67.14791
108 67.57589		68.25833		1.147916	
109 60.40465		61.20217		0.976086	60.5802
110 62.62083		63.35625		1.164583	62.8052
111 67.65892 112 69.98571	66.93055 69.1368		66.43541	2.241666 2.533333	67.51353 70.10555
112 69.98571	62.88333	64.85652	68.78 5 41 62.72826	2.5353535	63.50555
114 60.48363	59.99791	61.3125	59.85416	1.458333	60.46805
115 62.81785	62.28472	6 3.5395 8	61.89375	1.645833	62.52152
116 63.96279	63.48888	64.78333	63.22083	1.5625	63.91423
117 60.96011 118 60.35119	60.5368 60.06111	61.73541 61.05833	60.32083 59.95208	1.414583 1.10625	60.82916 60.35937
119 66.65952	66.10486	67.54791	65.49375	2.054166	66.52187
120 66.57559	66.34166	67.09791	66.16041	0.9375	66.54339
121 68.07142	67.66875	68.64375	67.31666	1.327083	67.80243
122 70.30982	70.27847	70.36875	70.04583	0.322916	70.19721

JULIAN	70 DOORS	70 CF	70 EF	90 DOORS	90 CF	90 EF
32	0.234375	0	0	0.228202	75	0
33	0.885416	52	15.07692	15.94714	75	0
34	0	75	0	33.13599	75	0
35	0.130208	5.777777	3.444444	26.40702	75	0
36	1.5625	10.75	5.75	12.72878		0.136363
37	0	0	0	0	75	0.100000
38	Ő	Ő	õ	-	75	Ő
39	0.729166	-	14.08333		75	0
40	1.458333		18.04166		73.125	0
40	0.286458		7.208333		75.125	
						0
42	1.09375	100		0.882137		0
43	2.03125		8.666666			0
44	0	0		0.765817	25	0
45	0	0	0	0.101851	25	0
46	0	0	0	0.458719	25	0
47	0	0	0	4.8152	25	0
48	0.078125	0	0	2.351465	24.60869	0
49	3.229166	0	1.375	0.831982	25	0
50	1.354166	6.913043	0.782608	2.76466	24.56521	0
51	4.739583	0	0	0.04591	16.875	0
52	0.494791	0	0	0	0	0
53		35.04347	0	2.335262	0	0
54	4.114583	100		6.847993	Ő	0
55	1.328125		2.833333		Ő	0
56			1.583333		0	0
57		60.42857	1.5855555		0	0
58		100		19.01195	0	
	0		0	-		0
59	0.651041	100		0.41493	0	0
60		52.17391			0	0
61	1.822916	0		0.065393	0	0
62		50.66666			0	0
63		96.95652	17.60869		0	0
64	0.026041	100	0	0.23341	0	0
65	0	100	0	0	0	0
66	1.302083	100	0	0	0	0
67	1.510416	33.43478	0	7.922067	0	0
68	0.15625	0	2.833333	4.426697	0	0
69	0.104166	0	0	4.690972	0	0
70	9.739583	0		5.648919	0	0
71	3.515625	0	0	8.969714	0	0
72	0.755208	0	0	0	0	0
73	0.755200	Ő	0	0.318865	0	0
		66.29166	-	4.198303	0	0
	5.520833		2.033333	6.938078	0	Ő
75					0	0
76	10.52083	75	0	3.0306/1	0	0

JULIAN

	3.90625 1.276041 9.270833 0 9.505208 20.59895 13.02083	49.79166 10.625 21.79166 0 14.30434 25	0 0 0	1.404706	0 0 0	90 EF 0 53.125 100 100 96.66666 100 100 100 100
87 88 89	2.03125 11.79687 3.697916 9.557291 2.786458 2.447916 3.567708	0 4.043478 0 0	0 2.652173 17 0 15.19047 0 0	0 6.060571 5.517361 6.412422 5.864776 0.966821	0 9.045454 25 25 25	100
95 96 97 98 99 100 101	5.729166 5.46875 1.5625 22.5	0 0 7.166666 0 0 0 0	0 7.318181 1.5 0 0 0	7.970486 8.113426 10.7444 27.30092 23.09355 12.71952 0	23.90909 25 25 25	0 3.875 13.04166 82.625 26.25 0 0
103 104 105 106 107 108	7.682291 3.489583 1.40625 5.46875 0 0 3.177083	0 0 17.04166 7.304347 0 0 0	5 0 3.666666 2.086956 0 6.375	9.90027 6.578318 15.2253 11.90625 3.561342 0.040895 3.555941	24 25 25 24.91304 25 20.66666 0	0 0.458333 0 0 0 0 0 0 0
111 112 113 114 115	2.916666 14.40104 2.864583 0 0 7.369791 1.640625	0 0 0 0 0 8.5 0	2 4.625 0.565217 0 0 3.043478	9.386574 19.70254 3.488425 0 0	25	0 0 0 0 0 0 0 50.625
	23.93229	0 0 0 0	0	23.37326 3.394675 0	0 0 0 0	53.16666 0 0

A FIELD COMPARISON OF RADIANT AND CONVECTIVE HEATING SYSTEMS IN ARMY MAINTENANCE FACILITIES

by

WILLIAM F. NIEDRINGHAUS B.S., University of Arkansas, 1983 AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1988

ABSTRACT

The U.S. Army Construction Engineering Research Laboratory initiated a program entitled "Radiant Heat Effectiveness" at Fort Riley, Kansas. The purpose of this project was to compare the performance of the heating systems in two Tactical Equipment Maintenance Facilities. The two buildings selected are of similar construction, and differ most significantly in their heating systems. One building is heated by gas-fired, tube type infrared radiant heaters while the other is heated by a forced-air convection system consisting of finned-tube unit heaters operating on a hot-water system. Both buildings are located on the same area of the post amid similar surroundings.

The buildings were monitored continuously for a period of three months (February - April 88). The energy consumption of each building was monitored, as were several aspects of the buildings' thermal environments. These included air temperatures at different levels and locations in the buildings, air velocity, dew point temperature, and operative temperature. The operative temperatures were measured using segmented globe thermometers. In addition to thermal conditions and heater operation, the operation of equipment likely to have an effect on the heating systems' performance was monitored. This equipment included the garage doors, ceiling fans, and vehicle exhaust fans. Outside weather conditions were measured at a nearby weather station.

Comparison of the energy consumption data revealed that the radiant heating system used more energy during the study period. This appears to have been the result of an inadequate control system. The radiant system had no nighttime setback, while the convective system did. As a result, the radiant system consumed far more energy at night than did the convective system. In terms of thermal conditions, the radiant system maintained a greater difference between the opeative temperature and the air temperature at the occupied levels than did the convective system.

Both buildings demonstrated a problem with thermal stratification, with temperature differences of 20F or greater between floor level and ceiling level. The ceiling fans in the radiant building were somewhat effective in dealing with this, while those in the convective building had little effect.

> 14362 - 16351 444 - 145