AN INTRODUCTION TO A NEW CONCEPT:
THE DYNAMIC STABILITY
OF
DISKS FREELY DESCENDING IN A FLUID MEDIA

by

BILLI LEE HIMES, SR.

B. S., Kansas State University of

 Agriculture and Applied Science, 1958
A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY
OF AGRICULTURE AND APPLIED SGIENCE
INTRODUCTION 1
A Definition of Dynamic Stability 1
Objectives of Study 3
Review of Literature 4
Illustration of Definition of Dynamic Stability 6
PROGEDURE OF MEASUREMENTS 9
Outline of Procedure 9
Detailed Procedure 9
Diagrams of Equipment 13
MATHEMATICAL DEFINITION OF DYNAMIC STABILITY 36
Initial Calculations on Data from Representative Freme of a Descent 36
Definition of Dynamic Stability, $\psi_{\mathrm{s}^{2}}$ and $\psi \sqrt{\mathrm{s}^{2}}$. ${ }^{2}$. 39
Definition of Dynamic Stability, ψ 40
Diagrams of Dynamic Stability 42
GENERAL VISUAL OBSERVATIONS ON THE DESCENT OF DISKS THROUGH TRIETHYLENE GLYCOL AND WATER 47
Discussion of Observations and Postulations 47
Diagrams of Postulated Types of Motion 56
EVALJATION OF DATA AND PRESENTATION OF RESULTS 65
DISCUSSION OF RESULTS 82
CONCLDSIONS 85
RECOMMENDATIONS 87
ACKNOWLEDCMENTS 88
REFERENCES 90
APPENDIX 91
Tables 92
Triethylene Glycol as the Fluid Media 107
Table of Nomenclature 108
Table of Definitions 110
IBM 650 Prograns for Computation of Dynamic Stability 112

A Definition of Dynamic Stability

In the beginning of time on this earth unstability in motion was observable when the first leaf fell from the first plant. As the leaf descended toward the earth it either fluttered, oscillated, revolved, spiraled, or combined all or part of these motions in its erratic descent. This erratic behavior was indicative of the non-unfform velocity of the leaf along a vertical to the earth. Therefore it was exhibiting unstable motion, or dynamic unstability.

If the first man had been able to measure the height of the leaf at equal increments of time, dynamic stability might have been acknowledged millions of years ago. Initially the first man \boldsymbol{m} ght have noticed that the measured heights of the leaf did not decrease the same amount over each equal increment of time. This indicated non-uniform velocity in the vertical direction. The first man might then have compared these measured heights with the comparable heights of a leaf imagined as descending toward the earth with uniform velocity in the vertical direction. From comparing each actual height with each imagined height for the same time of descent he would have found a difference. By then calculating the mean of the summation of these absolute differences he might have called the resultant value dynamic unstability. However, he didn't. Dynamic unstability had always existed, but it was necessary for man to measure it to verify its existence.

Simply, dynamic unstability was the mean deviation of the actual path of the leaf from some fmaginary path, described in this study by a least squares line through the actual path. For this imaginary path
no assumptions were made as to the uniformity of the leaf'e velocity vectors horizontal to the earth's surface. It was possible for the leaf to follow a curvelinear path in its actual descent and exhibit no dynamic unstability as long as it deecended equal increments of vertical distance in equal increments of universal time.

The difference, or deviation, of the actual path from an imaginary path had units of length. Therefore, dynamic unstability had units of length. As the phraseology might indicate, dynamic etability wae defined as the reciprocal, or opposite, of dynamic unstability. Therefore, its units were reciprocal length. In order to adequately describe the meaning of dynamic stability it was necessary to define it in mathematical terms; this was presented in the Mathematical Definition of Dynamic Stability.

Many investigators, including Wađell (8), Pettyjohn (6), Squires (7), Wetherall (9), and Becker (1), had observed this behavior in most describable sizes and shapes of particles, but carried the investigation little further than recording these observations and, in eome casee, comparing them with conventional concepts of particle behavior in fluids. No attempt had been made to numerically evaluate or to define the unetability of movement of particles in fluide.

Disks which exhibit infinite stability are illustrated in PLATE I. They were defined as a stationary disk, floating on the surface of a fluid, with no velocity vector and a moving diek, descending or ascending in the fluid, with velocity but no acceleration. Conversely, infinite unstability was postulated as the motion of a disk which exhibited constant acceleration through infinite time. A disk accelerating and decelerating through finite time had a finite value of dynamic stability
and unstability. It was these latter descents of free-falling disks with which this study was concerned.

Even as the best measurement is no better than an approximation of the true value, so no motion is absolutely dynamically stable. Due to Iimitations on man's ability to measure minute differences, it is possible to measure and subsequently calculate a descent as dynamically stable, although theoretically a dynamically stable descent is unobtainable. As man's abilities to measure improve that which was previously classified as dynamically stable may no longer be so classified.

Objectives of Study

The original objectives of this study were:

1) To continue work initiated by Professor R. C. Hall* and to refine the mathematical definition of the concept of freefalling particle behavior in an infinite expanse of fluid.
2) To calculate numerical values of stability from actual descents of disks of varying properties.

Later objectives were:
3) To observe and define the types of motion of free-falling disks in a fluid media.
4) To correlate these values of dynamic stability with the types of motion observed.

Objectives 3) and 4) were planned after an initial study of the types of motions of disks had shown that some of the disks consistently fell in the same manner.

[^0]
Review of Literature

A literature search revealed that dynamic stability had aroused the curiosity of many investigators, but that this effort was apparently the first actually measuring it. The literature search included the following material:

1. Chemical Abstracts dating back to 1930.
2. Physics Abstracts back to 1950 .
3. All theses and abstracts of theses located in the Kansas State University Library.
4. Numerous more recent publications not yet abstracted.

No experimentation resembling dynamic stability studies was un-
covered. However, several articles discussing the appearance of motion
in particles descending through a fluid media were available.
From an article by Wadell (8), the following was quoted:
Franz Schulze stated that the translation velocity of a flat stone in air or water depends upon its position in respect to the direction of translation. Jordan noted that mineral particles readily took a position with their broad side at right angles to the direction of fall. Schmiedel found that thin disks at very low le showed no tendency to take any particular settling position while at higher Re the disks tended toward a horizontal position regardless of the position at the start. At still higher Re^{\prime} s periodic oscillations set in and the settling took place in a zig-zag path.

On the study of spheres, octahedrons, cubes, and tetrahedrons
Pettyjohn and Christiansen (6), stated:
Wheras in the streamline flow range ($\mathrm{Re}<0.05$) the particles did not favor any particular orientation with respect to the direction of motion, at Rew 10 , the tetrahedrons and cubes assumed an orientation with a face in the horizontal plane or perpendicular to the direction of motion and the other particles showed a tendency to do likewise by Re~20. This orientation was maintained up to $\mathrm{Re}=70$ to 300 where the particles beginning with the tetrahedrons, 'teetered' or
wobbled and sventually spun or rollsd on a horizontal axis and followed a spiral path rather than a straight vsrtical path in thsir descent.

From an articls on ths ssdimsntation of thin disks by Squires and Squires (7), it was stated tbat at very low Reynolds numbsrs, in ths viscous region a body, sucb as a disk, posssssing three perpendicular planes has no tsndency to assums any particular orientation during fall. It was further statsd:

A disc placed with its flat facs parallsl to the dirsction of motion of ths fluid will maintain this orientation. At higbsr Reynolds numbers, in the turbulent region, the eddiss sst up by the motion of the dise througb tbe fluid act to maintain the particle at right angles to the direction of motion. Tberefore, a disc will always ssttle in a horizontal position in the turbulent rsgion, and its position when in ths viscous region will dspend upon its initial inclination.

Miyagi (5), discussed ths motion of an air bubble rising in watsr. Ths course of ths bubble was three-dimensional; it was obssrvsd to bs a belix around a vertical. Tbs major axis of ths bubble was always psrpendicular to its course. PLATE XVIII, Fig. 1, bassd on Fig. 12 of Miyagi's articls illustrated tbs riss of an air bubbls in only two of the thres dimensions.

Wsthsrall (9), was able to photograph the track of a flat solid (a small crystal of $\mathrm{A}_{\mathrm{g}} \mathrm{NO}_{3}$) as it descended in acidulatsd water. PLATE XVIII, Fig. 2, was based on this photograpb.

Bscker (1), providsd tbs following information in a table on the insrtial drag characteristics of freely oriented bluff bodiss. At Rs's of $0.1-5.5$ it was statsd tbat all orientations wers stable wben there were thrse or more perpsndicular axss of symmetry in tbe dsscsnding disk. At Re's of 5.5-200 the motion was stable in the position of maximum drag. For Rs's of $200-500$ tbe motion was unpredictable.

Disks tended to wobble, while fuller bluff bodies tended to rotate.
Considering the results of this literature search it was apparent that this study initiated by Professor R. C. Hall of Kansas State University in 1955 was the first recognition of dynamic stability as a property of particles in an infinite expanse of fluid.

Illustration of Definition of Dynamic Stability

The following diagram, PLATE I, illustrates the two possible manners in which a disk could theoretically exhibit complete dynamic stability.

EXPLANATION OF PLATE I

Illustration of infinitely stable motion of disks, where $\psi^{\prime}=$ dynamic unstability $=0$,
$\psi=$ dynamic stability $=\infty$, and
$\mathrm{U}=\mathrm{velocity}$.

PLATE I

PROCEDURE OF MEASUREMENTS

Outline of Procedure

For the study a series of 46 dieke, approximately one inch in diameter and a quarter inch thick, were conetructed. Diek 1 wae lucite. Disks 2 through 26 had cores of stainlees steel and rims of lucite. Disk 27 was all etainlees eteel. Disks 28 through 46 had lucite coree and stainlees steel rims. By varying the eize of the coree the diske were each given different weights and momente of inertia. Only part of the disks were used, due to the deterioration of the rest.

The pracedure was to drop each disk in turn through a liquid, take motion picturee of the descent, and measure on a projection of each frame of the movie the diek's relative height above a bottom reference line (PLATE XII).

Detailed Procedure

The procedure utilized in taking the movies of the disk's deecent in a liquid media required the eervices of aesistante A and B and photographer P (PLATES II, III, and IV). For the descent of each disk the prooedure was as follows
1.) As assistant B changed the cards designating the disk number, the drop number, and the liquid temperature, assistant A placed the dusignated disk on the particle vacuum release mechanism performing operations 1,2, and 3 (PLATE V).
2.) B then turned on the foreground lights illuminating the
information cards. Thie signaled P to photograph thie information.
3). Having built up, during a twenty second count, sufficient vacuum to hold the diek the line from the vacurm pump was closed and 'bled' by A in performing operatione 4 and 5 (PLATE V). The release mechaniem holding the disk wae then lowered into the liquid.
4.) At the end of fifty-five seconds of a eecond count, A notified B to signal P by means of a buzzer to commence photographing. At sixty eeconde the remaining vacuum wae released by performance of operation 6 (PLATE ∇), thus allowing the disk to start ite deecent through the liquid.
5.) Ae the particle reached the bottom of the column, B eignaled the photographer to ceaee operation.
6.) This procedure wae repeated for euccessive diske.

An approximately identical method of releaee for the dieke wae ob tained by meane of the particle vacuum release mechanism. By allowing a time lapse, the twenty and eixty second counte, and by floating Agile plaetic stars (See Table of Definitions, Appendix) on the fluid eurface, the internal fluid agitation was minimized to a satiefactory degree.

Following the development of the film, measuremente on the descent of the diek were etarted. For this operation aseietants A and B were again utilized. The aesietante were selected on the baeis of the similarity between their meaeurements over several triale. Thie likenees in obeervation of the meaeured quantity allowed the aesietante to be rotated between jobe within any eet of measuremente. To further
minimize fatigue and monotony a third assistant C was used when available.

The film was threaded through a special adaptor (PIATE XI) on the projector. The use of this adaptor largely prevented the film from shifting or buokling, as well as adapting the 16 mom. film to a 35 mm . projector. Prior to etarting the measurements the projector was allowed to run twenty to thirty minutes, thus allowing dietortion caused by heat from the projection lamp to reach near equilibrium in the film, The focus on the projector wae earlier set at an optimum poeition; this was determined by repeated adjustments of the focue until both aseistants were visually satisfied.

The aotual measuring operation was in general performed as

follows:

1.) After the projector was allowed to heat for twenty to thirty minutes before the day ${ }^{\circ} \mathrm{run}_{g}$ the disk number, 1iquid temperature, and drop number were identified by assistant B from an identification frame (PLATE XII, Fig. 1) and called to assistant A to be recorded.
2.) The film was then pulled through the projeotor by assistant A until the frame was found showing the disk to be located just below the top reference Ine. Thie frame wae the first to be meaeured for each diek descent.
3.) At this point necessary minor adjustmente were made in the frame location on the screen. By means of the turnbuckles and the focus on the projeotor (PLATE VI and VII) the projected picture of the frame was re-
stricted between vertical boundary lines drawn on the screen (PLATE VIV). By pulling the film up or down the image of the top reference line was placed in approximate line with a reference mark drawn on the screen (PLATE VIV). These adjustments minimized any possible error in measurements. These errors occurred from minute differences between each frame ${ }^{1}$ s position in the projector due to the slight bending of the film and the minor deviations of the film from the vertical in passing each frame through the adapter (PLATE XI).
4.) After these preliminaries were finished the readings on a frame were started. By means of a target (PLATES VI, IX, and \bar{X}), B located the bottom reference line, the particle, and the top reference line positions, respectively. These locations were in turn transmitted by a system of pulleys to a stationary measuring device (PLATE VI and VIII) where the values $I_{\text {Mf }} I_{P}$, and I_{L} were read and recorded by A_{0} For reasons of uniformity in the tension on the pulley wire the target was always adjusted downard onto the image being measured. For statistical reasons the readings were repeated six times for each frame. For each reading, by means of a signal light, B notified A when the target was set and by means of a buzzer, A notified B when he had completed the reading (PLATE VIII).
5.) After completing this first frame a second frame was placed in position. For each frame, after the initial frame of a day's measurements, a ten to fifteen second time lapse was
allowed so that the frame had sufficient time to reach equilibrium with the distortions caused by the heat of the projection lamp striking the film.
6.) The same procedure was employed for each frame. The measurements for any one disk were terminated at the frame showing the particle in its final position above the bottom reference line.

By utilization of a true length correction factor for each frame, . 100 , changes in the film due to moderate temperature and humidity $\overline{I_{P}-L_{L}}$ changes were prevented from causing measuring errors. More rapid distortion due to extreme temperature changes in the film as caused by the heat from the projection lamp were minimized by short time lapses between each frame read in which equilibrium was reached in the film. Fatigue in the measuring personnel was minimized by changes in duties every half hour to one hour, depending on the weather and by taking frequent rest breaks.

Errors in measurement caused by shifts in the picture projection due to extraneous disturbances were avoided by the replacement of such data after the disturbance had ceased. Minor disturbancee and vibrations were alleviated by the location of rubber padding under the projector platform and by the use of several restraining wires around the projector (PLATE VI and VIII).

Diagrams of Equipment

The following pages present diagrams of the experimental equipment and illustrate procedures.

EXPLANATION OF PLATE II

Front Fiew of particle drop column showing
lighting arrangement and personnel placement for photography of disk descent in liquid column.

EXPLANATION OF PLATE III

Top view of particle drop column showing personnel, lighting and camera positions for photography of disk descent in fluid media.

explanation of plate iv

Schematic of arrangement for photography of disk descent in fluid media in glass column. / //// heavily starched white sheet as background of drop tank.

PLATE IV

EXPLANATION OF PLATE V

release of disk in fluid media.
PLATE V

EXPLANATION OF PLATE VI
Side Niew of personnel and equipment for measuring I_{L},
I_{P}, and I_{H} on film taken in PLATES II, $I I I_{2} I V$, and V.
Shows placement of projector, reading device, dark
room, and screen.
PLATE VI

EXPLANATION OF PLATE VII

Front view of projector showing location of turnbuckles for right and left adjustments of film projection and focus for refinement and right and left cant of projection.

PLATE VII

EXPIANATION OF PLATE VIII

Front view of measuring device showing
assistant A, projectionist and reader-
recorder of $\mathrm{L}_{\mathrm{L}}, \mathrm{I}_{\mathrm{p}}$, and $\mathrm{I}_{\nless \prime}$ values.

PLATE VIII

EXPLANATION OF PLATE IX
Front view of screen showing location of
picture, target, and assistant B - target
adjuster.
PLATE IX

EXPLANATION OF PLATE X

Front view of target, showing actual application of target to three measured elements of each frame.

PLATE X

PLATE II

adapter plate

EXPLANATION OF PLATE XII

Frames from movie of the descent of a disk.
Fig. 1. Identification frame.
//// temperature of fluid media
\llllaisk number
三 drop number
Fig. 2. Measuring frame.
$I_{H}=$ top reference line
$\mathrm{L}_{\mathrm{p}}=$ disk
$\mathrm{L}_{\mathrm{L}}=$ bottom reference line

Fig. 1

Fig. 2

Initial Calculation e on Data from Repreeentative Frame of a Descent

$\theta=$ frame number.
$L_{H}=$ measured height of top reference line, relative to base line.
$L_{P}=$ measured height of diek, relative to bate line.
$L_{L}=$ measured height of bottom reference line, relative to bree line.
T.L. $=\frac{100}{L_{H}-L_{L}}=$ factor for adjueting relative value to true values.

$$
h_{i}=\left(L_{P}-L_{L}\right)\left(\frac{100}{L_{E}-L_{L}}\right)=\text { true height of disk above bottom }
$$

(See PLATE XIII, Fig. 1 for physical descriptions of L_{H}, L_{P}, and L_{L}).
For first reading on first frame:

For readings 2, 3, 4, 5, 6 on frame one - above procedure repeated.

Then:

$$
\begin{aligned}
& h_{i_{1}}=99.11 \\
& h_{i_{2}}=99.17 \\
& h_{i_{3}}=99.13 \\
& h_{i_{4}}=99.15 \quad h_{i_{\text {avg }}}=99.14=h_{i}^{-} \\
& h_{i_{5}}=99.12 \\
& h_{i_{6}}=99.13
\end{aligned}
$$

Calculation of 90% confidence interval on h_{i} of frame one:

n	$\left(h_{i_{n}} \cdots h_{i}^{-}\right)$
1	-0.03
2	+0.03
3	-0.01
4	+0.01
5	-0.02
6	+0.01

$\left(h_{i n} \omega h_{i}^{-}\right)^{2}$

$$
\begin{array}{r}
0.0009 \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\left.h_{i_{n}}-h_{i}^{-}\right)^{2}= \\
\\
0.00001 \\
0.0004 \\
0.0001
\end{array}
$$

$$
\begin{aligned}
& \mathrm{S}_{i}^{2}\left(h_{i}\right)=\frac{\sum\left(h_{i_{n}}-h_{i}^{-}\right)^{2}}{n-1}=\frac{0.0025}{5}=0.0005 \\
& S^{2}=\frac{\sum\left(h_{i_{n}}-h_{i}^{-}\right)^{2}}{n(n-1)}=\frac{0.0005}{6}=0.000083 \\
& S=\sqrt{s^{2}}=\sqrt{0.000083}=0.0091 \\
& { }^{t_{0.05}}=\text { Student's } t \text { for } 95 \% \text { oonfidencs intsrval }=2.571 \\
& \left({ }_{0.05)}(\mathrm{s})=2.571(0.0091)=0.0234\right. \\
& { }^{h_{i}}{ }_{t_{0.0}}=99.14 \pm 0.02 \\
& 99.12 \leqq \bar{K}_{i} \leqq 99.16
\end{aligned}
$$

Ths confidencs intervals on ths measuremsents provided a msans of detecting errors that occurred at any time during ths procsssing of ths data.

Lsast squarss lins (sample regression line):
Obssrvation Numbsr

1	1
2	2
\vdots	\vdots
\vdots	\vdots
\vdots	$\sum \theta$

$(\Sigma \theta) \mathbf{k}+\left(\Sigma \theta^{2}\right) \mathbf{j}=\Sigma \theta h_{i_{\theta}}$
Solvs simultaneous equations for k and j.

Equation of least squares line:

$$
\begin{aligned}
y= & k+j x \\
k= & y \text { intsrcspt at } \theta=0 \\
j= & \text { slops of least squares line, or } \\
& \text { sample regression cosfficisnt }
\end{aligned}
$$

Definition of Dynamic Stability, $\psi_{s^{2}}{ }_{y . x}$ and $\psi \sqrt{s^{2}}$
At any frame, θ, the absolute deviation from regression of the height of a disk from the height of the least squares ins through its path $=h_{i_{\theta}}-(k+\theta j)$, whers
$h_{i_{\theta}}=$ the height of the disk at θ,
and $k+\theta_{j}=$ the height of the lsat squares line at θ. Assumption: Each frame over the descent of a disk was equal to the same increment of universal time, where the conversion factor of frames to seconds was F. For any randomly selected descent of a disk consisting of 0 frames, the summation of the square of absoluts deviation from regression $=$

Units:

$$
\begin{aligned}
& \left|h_{i_{1}}-(k+j)\right|^{2} \text { times (number of frames having this } \\
& \text { absolute deviation, which was always one) times } \\
& (F)+\left|h_{1_{2}}-(k+2 j)\right|^{2} \\
& \ldots(1)(F)+\ldots \ldots \ldots \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \left|h_{i_{1}}-(k+\theta j)\right|^{2}=\mathrm{cm}^{2} . \\
& \text { numbs of frames having above absoluts deviation = frame. } \\
& F=\frac{\text { seconds }}{\text { frames }}
\end{aligned}
$$

$0 m^{2}$. frame $\frac{\text { seconds }}{\text { frames }}=0 \mathrm{~m}_{0}^{2}$ seconds Thersfors:

Summation of absolute deviations from regression $=$

$$
\left.\left|h_{i_{\theta}}-(k+\theta j)\right|^{2} \quad(1)(F)=F \sum \mid \alpha_{y \cdot x}\right]^{2} .
$$

Finally:

$$
\begin{aligned}
\Psi_{s_{y \cdot x}^{\prime}}^{\prime 2}= & F \sum\left|d_{y \cdot x}\right|^{2} /(\theta-2)(F) \\
= & \text { man square deviation from regression, or } \\
& \text { dynamic unstability }=\frac{\mathrm{cm}_{0}^{2} \text { seconds }}{\text { frames } \frac{\text { seconds }}{\text { frames }}} \\
= & \mathrm{cm} .
\end{aligned}
$$

$\theta-2=$ total number of frames minus two, since two degrees of freedom were lost in the calculation.
Dynamic stability $=\Psi_{s^{2}}{ }_{y, x}=$

$$
\text { Definition of Dynamic Stability, } \psi_{\text {AREA }}
$$

(Sse PLATE XIV, Fig. 1, whirs the shaded area on this plot represents

$$
\left.\Psi^{\prime} \operatorname{Area}_{\theta^{\circ}}\right)
$$

Trapezoidal Puls:
(Sse Plate XIV, Fig. 2 and 3)

$$
\begin{array}{ll}
a b=\left|h_{i_{\theta}}-(k+\theta j)\right| & \text { On Fig. } 3: \\
\text { od }=\left|h_{i}-[k+(\theta+1) j]\right| & \frac{a b+c d}{2}=w y=x z \\
\text { ef }=\mid h_{i}-[[k+(\theta+2) j] \mid & \text { Area wy ix }=\text { area abd } \\
g h=\left|h_{\theta+2}-[k+(\theta+3) j]\right| & \begin{array}{l}
\text { oz }=w x=(1) F= \\
\text { frames } \frac{\text { seconds }}{\text { frames }}=\text { absconds }
\end{array}
\end{array}
$$

Area abdfhgeca $=\Psi^{\prime}$ Area $=\frac{a b+c d}{2}(1)(F)+\frac{c d+e f}{2}(1)(F)$
$+\frac{e f+g h}{2}(1)(F)=\left(\frac{a b}{2}+c d+e f+\frac{g h}{2}\right) F$.
Where the experimental curve croesee the least equaree curve between coneecutive poeitione of the dick a value C meet be calculated. (See PLat XIV, Fig. 4)

Area a'bicidal

$$
\begin{aligned}
& \left\{\left|n_{i_{\theta}}-\left(k+\theta_{j}\right)\right|^{2}+\left|n_{i_{\theta}}-[k+(\theta+1) j]\right|^{2}\right\} \\
& \left\{\left.\right|_{n_{i_{\theta}}}-(k+\theta j)\left|+\left|h_{i_{\theta}}-1[k+(\theta+1) j]\right|\right\}\right.
\end{aligned}
$$

Situation 1. (See PLATE XIII, Fig. 2)

$$
\begin{aligned}
\text { Area } & =\text { Area al2345678b } \\
& =\left\{\frac{\left|h_{i_{1}}-(k+j)\right|}{2}+\left|h_{i_{2}}-(k+2 j)\right|+\left|h_{i_{3}}-(k+3 j)\right|\right. \\
& +\left|h_{i_{5}}-(k+5 j)\right|+\frac{\left|h_{i_{6}}-(k+6 j)\right|+c_{67}}{h_{5}-{ }^{2}(k+8 j) \mid} \\
& \left.+\frac{\left|h_{i_{7}}-(k+7 j)\right|}{2}\right\}(F)
\end{aligned}
$$

Situation 2. (See PLate XIII, Fig. 3)

$$
\begin{aligned}
\text { Area } & =\text { Area al2345678b } \\
& =\left\{\frac{\left|h_{i_{1}}-(k+j)\right|}{2}+\left|h_{i_{2}}-(k+2 j)\right|+\mid{h_{i_{3}}-(k+3 j) \mid}_{2}^{h_{i_{4}}-(k+4 j) \mid}\right. \\
& +c_{34}+\frac{\left|h_{i_{5}}-(k+5 j)\right|}{2}+\frac{{ }^{2}}{2} \\
& \left.+C_{56}+c_{67}+\frac{\left|h_{i_{7}}-(k+7 j)\right|}{2}+\frac{\left|h_{i_{8}}-(k+8 j)\right|}{2}\right\} F
\end{aligned}
$$

Situation 3. (See PLATE XIII, Fig. 4)

$$
\begin{aligned}
\text { Area } & =\text { Area al23456789b } \\
& =\left\{\frac{\left|h_{i_{1}}-(k+j)\right|}{2}+\left|h_{i_{2}}-(k+2 j)\right|+\left|h_{i_{3}}-(k+3 j)\right|\right. \\
& +\left|h_{i_{4}}-(k+4 j)\right|+\left|h_{i_{5}}-(k+5 j)\right|+\left|h_{i_{6}}-(k+6 j)\right| \\
& \left.+\left|h_{i_{7}}-(k+7 j)\right|+\left|h_{i_{\theta}}-(k+8 j)\right|+\frac{\left|h_{i_{9}}-(k+9 j)\right|}{2}\right\}(F), \\
& \text { Where terms } 4 \text { and } 7 \text { are zero. }
\end{aligned}
$$

In summary:
Area

$$
\frac{\text { AREA }_{\theta}}{(\theta-2)^{F}}=\frac{\text { frame }}{\text { (frames) } \frac{\text { seconds }}{\text { frame }}}=\mathrm{cm} \text {., }
$$

where F cancels the F in $\psi_{\text {AREA }_{\theta}}^{\prime}$
$\psi_{\text {AREA }}=$ Dynamic stability $=\frac{1}{\psi^{\prime} A R E A}=\frac{1}{\mathrm{~cm}}$
Diagrams of Dynamic Stability
On the following pages diagrams are presented illustrating the methods of calculating dynamic stability.

EXPLANATION OF PLATE XIII

Definition of Dynamic Unstability.
Fig. 1. Physical significance of $\mathrm{I}_{\mathrm{H}}, \mathrm{I}_{\mathrm{P}}$, and L_{L}, on single frame of movie of disk descent.
$\left.\begin{array}{l}\text { Fig. 2. } \\ \text { Fig. 3. } \\ \text { Fig. 4. }\end{array}\right\} \begin{aligned} & \text { Three possible situations in calculation } \\ & \text { of dynamic unstability, } \Psi\end{aligned}$

PLATE XIII

Fig 1

Fig. 2

Fig. 4

EXPLANATION OF PLATE XIV

Definition of Dynamic Unstability, Ψ^{\prime} AREA $_{\theta}$

Fig. 1. Illustration of ψ^{\prime} AREA $_{\theta}$, where shaded area adjacent to least squares line represents ψ^{\prime} AREA $_{\theta}{ }^{*}$
Fig. 2. Illustration of application of trapezoid rule to
Fig. 3. \int calculating area, ψ^{\prime} AREA $_{\theta}{ }^{\circ}$
Fig. 4. IIlustration of calculation of area, Ψ^{\prime} AREA $_{\theta}$, in special case where trapezoid rule is not applicable.

PLATE XIV

GENERAL VISUAL OBSERVATIONS ON THE DESCENT OF DISES THROUGH TRIETHYLENE GLYCOL AND WATER
\section*{Diecussion of Observations and Postulatione}

Repeated observatione were made of the general behavior of the diske as each descended through two separate fluid media; triethylene glycol and water. For water eeventeen dieks were investigated, while for triethylene glycol sixteen were investigated due to the buoyancy of disk one in the glycol. Preliminary to these investigations both faces of each disk were marked with a heavy black line corresponding to the diameter of the diek. In dropping these dieks through either triethylene glycol or water the lines were vieible to an observer looking down through the liquid column from a position above the drop tank. From this position any movement of the diameter of the disk in a plane parallel to the surface of the earth could be observed.

The disks were dropped in the fluid media at temperatures of $80^{\circ} \pm 3^{\circ} \mathrm{F}$ for water and $90^{\circ} \pm 3^{\circ}$ F for triethylene glycol. At $80^{\circ} \mathrm{F}$ the deneity of water was 0.9963 and at $90^{\circ} \mathrm{F}$ that of one hundred per cent triethylene glycol was 1.115. However, at $90^{\circ} \mathrm{F}$ the viscoeity of triethylene glycol was 22 centipoises while at $80^{\circ} \mathrm{F}$ that of water was approximately 0.037 times this or 0.82 centipoises.

Observations of the descents of each disk in triethylene glycol ehowed that the marked diameter normally did not rotate throughout the descent. With five observations of each disk thie was observed in 96 per cent of all the obeervations. Of the disks in triethylene glycol which exhibited rotation of the marked diameter, this rotation appeared in only one out of
five observations made on each of these disks. In all cases this rotation was observed to be less than 15°. In triethylene glycol the disk occasionally exhibited rotational motion of the diametrical axis of maximum slope, but even in the majority of these cases the marked diameter remained aligned with the direction which it assumed when released (See Fig. 2, PLATE XVII). These observations were tabulated in Table 10, Appendir.

In water, the less viscous media, the marked diameter showed decided deviations from the direction it assumed when initially released for 65 per cent of the one hundred observations. In water at $80^{\circ} \pm 30 \mathrm{~F}$ two of the heavier disks, 30 and 32 , exhibited no diameter rotation over five observations of their descents. The remaining fifteen disks exhibited rotation of the marked diameter in from one to all of the observed drops. In the case of disks 19, 23, 40, 43, and 45, rotations first in one direction and then back in the other were noted in part of the observations. Also it was observed, by the utilization of a second observer watching perpendicular to the descent of the disk, thet many of the rotations occurred after the disk had descended three-fourths of the depth of the column. These observations were tabulated in Table 11, Appendix.

Other observations were made on the path of motion which the center of the disk followed as it descended. When viewed from above the liquid column these observations showed that in ninety-seven per cent of five descents each of sixteen different disks the path of a given disk remained within one vertical plane. A sighting mechanism, built of welding bars, was constructed in the shape of a circle, the same size as the top of the drop column, and with a single bar as a diameter of the circle. The apparatus was fitted on the top of the drop column euch that as a
disk descended it was possible to rotate the mechanism so that the diametrical bar was contained in the vertical plane through the path of motion of the descending disk. A pointer was added to the mechanism such that it pointed to values of angle inscribed along the rim of the drop column. The angle or angles between the vertical plane containing the disk path of motion and a vertical reference plane passing through 0° on the rim of the column were determined for four separate drops in triethylene glycol. These observations in Table 12, Appendix, showed that oniy 2 descents out of 64 exhibited a shift in the vertical plane passing through the path of motion of the disk through its 100 cm . descent.

No such conclusive observations were made for the seventeen disks descending in water. In water 57 per cent of the descents showed no single planar restriction of the path of motion as observed from the top of the column. Of the 43 per cent of the descents showing single planar motion 73 per cent of these observations were made on disks $20,23,27$, $30,32,35,37$, and 40 . In 32 per cent of the single planar motions the disk hit the side of the tank before the full 100 cm . between reference lines had been traveled. In no case did any disk show single planar wave, flutter, or oscillatory motion for all five observations in water at $80^{\circ} \pm 3^{\circ}$. These observations were tabulated in Table 14 , Appendix.

The observations in this study were restricted to disks descending in triethylene glycol and in water at Reynolds numbers above 78. After a multitude of observations, including those presented in Tables 13 and 14 of the Appendix, it was postulated that the disks descended in one or more of four main types of motion. These motions were named stable, flutter, wave, and spiral.

In stable motion the center of the disk fell along a vertical line. The vertical line was always perpendicular to the face of the disk. In triethylene glycol particles 6 and 46 descended in a stable manner in five out of five descents of each disk. In water no disk exhibited stable descent in any of the five drops tabulated in Table 14, Appendix. At least ten other drops not tabulated substantiated these observations over the same range of disks.

In flutter the disk exhibited what appeared to be a wobble or "teeter-totter" motion about a given fulcrum. This fulcrum consisted of one particular diameter of the disk; this diameter did not change on the disk throughout the descent. Flutter occurred while the center of the disk was descending through either a vertical line or a three dimensional curvelinear path. In triethylene glycol this diametrical fulcrum remained constant in direction throughout the descent.

In triethylene glycol disks 9, 13, 20, and 45 exhibited what was observed as flutter in one, two, or three descents out of five. Disks 19, 20 , and 30 exhibited flutter as a component of wave motion. In water disks $13,16,19$ and 20 appeared to descend with a flutter in at least one observation out of seven. In Table 14, Appendix, only five of these observations were tabulated. It was found in the case of flutter that a second or third observer sometimes viewed the motion as a small wave, instead of flutter. Thie led to later decisione concerning flutter as a postulated type of motion.

Wave motion was described as an oscillation of the center of the disk with the face of the disk always remaining perpendicular to the direction of motion (See Fig. 3, PLATE XV). In oscillation the path
of motion of the center of the particle, when projected onto a vertical plane, appeared similar to a sine or cosine curve. As already described for descents in triethylene glycol a single vertical plane contained the entire path of oscillatory motion. For water this restriction to a single vertical plane did not apply, as oscillation and other motions in water were unmistakably three dimensional. In triethylene glycol 75 per cent of the 80 observations in Table 13, Appendix, revealed wave motion alone or in combination with flutter or disk rotation without diameter rotation. In water wave motion alone, or in combination with spiral or disk rotation with diameter rotation, appeared in 67 per cent of the 85 observations of 3 drops in Table 14, Appendix. Spiral was defined as a "cork screw" path of motion of the center of the disk (See Fig. 1, PLATE XVII). In Table 13, Appendix, spiral motion did not appear in 5 drops through triethylene glycol. Other observations made in this study, but not tabulated, substantiated this. In water disk one exhibited exclusively spiral motion over three drops as shown in Table 14 , Appendix. In 29 per oent of the total observations of seventeen disks in Table 14, Appendix, spiral motion appeared either alone or as an extension of wave motion and flutter. The two dimensional appearances of these motions were illustrated in PLATES XV and XVII.

Other postulated types of motion were also recognized but these motions only seldom or never appeared in triethylene glycol. The nomenclature given two of these motions were disk rotation without diameter rotation and disk rotation with diameter rotation. In both cases disk rotation was basically defined as rotation of the diametrical axis of maximum slope of a disk. In the former case the disk did not actually
rotats, but, without a diamster refarence mark, appearad to do so (See Fig, 2, PIATE XVII). In the latter case the disk rotatsd as apparent from the rotation of a marksd diamstsr on the facs of the disk (Sss Fig. 3, PLATE XVII). It was found that some discernment was necessary in distinguishing betwsen borderlins cases of spiral, disk rotation, and wave.

If the motion, appearing as a wave over a small increment of the total descent, exhibited at the same time ons complets loop of a spiral ovsr the total dsscent it was thsn classifisd as spiral instead of wave. If the motion appearing as a disk rotation sxhibited any recognizabls ssgmsnt of a spiral loop over the total descent, it was classified as a spiral. In the case of disk rotation and wave motion togsther, ths combination was treated as wave motion with rotation. Infrequently, in only 5 per csnt of the obssrvations in Tabls 13, Appendix, disk rotation without diametsr rotation appeared in triethylene glycol, whils disk rotation with diamstsr rotation did not appear in any of the 80 ob servations. In water, disk rotation with diameter rotation appeared in less than 5 psr cent of the observations in Table 14 , Appendix, while disk rotation without diameter rotation was not apparent in any of ths 85 observations. Diamster rotation in watsr was most closely associatsd with spiral motion as was seen from a comparison of Tables 11 and 14 ? Appendix, Thess wers illustrated in PLATE XVII.

At this point it was discovered that fairly accurate reproductions of ths disk path of descent could be obtainsd. This was accomplishsd by tracing with a pencil the projected image of the disk from each movis frame, as each frame in turn, was projectsd onto a screen of whits paper. Prior to tracing, each frame was adjusted to the position on the scresn which corresponded to that previously occupisd by the
preceding frame traced. This positioning was accomplished by adjusting the upper reference line pictured on each frame of the movie to a constant reference point on the white paper background; by this technique a fairly accurate reproduction of the overall path of descent was obtained. Only parts of the six descents filmed were analyzed in this manner due to the excess time and personnel requirements.

From these sketches more exacting pictures of the postulated types of motions of disks in triethylene glycol were established. The results of analysis of these sketches were tabulated in Table 15, Appendix. It was found that flutter was merely wave motion with barely perceptible horizontal displacement when viewed at the true velocity of descent. This observation was further substantiated by analyzing the remainder of the movies. For this analysis a vertical reference line was established by holding a white string vertically downard from the initial projected position of a disk as viewed on the movie screen. The projection of the disk was carefully observed as it descended along the string on the screen. Horizontal displacements to the right and left of this line immediately showed up on all the disks which had been formerly depicted as descending with a fluttering motion. These same operations, also, showed that the disks depicted as settling in stable motion did indeed settle in that manner. Typical results of these latter analyses were also tabulated in Table 15, Appendix.

From these newer approaches to observing motion it was postulated that wave motion actually consisted of three types. That previously classified as wave motion was reclassified as two types of motion wave I and wave III. Wave I was subtyped as wave I-A and wave I-B.

Wave, ae previously defined, became wave I-A. It was noted that wave I-A consisted of planar oscillatory motion and it was postulated that the disk alwaye maintained orientation such as to offer the face of greateet resistance perpendicular to the path of motion of the center of the diek. Wave I-B motion was observed ae similar in definition to wave I-A motion, but without the restriction that the face of greatest resistance always be perpendicular to the path of the center of the diek. Analysis of sketches of disk descents showed that as a disk became heavier its increased moment of inertia prevented it from behaving as a wave I-A disk. It was impossible to discern between theee two types of motion on the eketches of the disk deecent. However, as the moment of inerita of the disks increased, wave I-A and wave I_B motions formed a logical sequence between stable and wave III motions. Wave I_B motion was definitely observed in disks 19, 20, 23, and 27. However, for disks 9, 13, and 16 there was little to discern between the types of motion, since the sketches were not refined enough to allow precision study. The heavier a diek became the larger the absolute difference of $\theta-90^{\circ}$ became. θ represented, at any instant, the smallest angle between the plane of the leading face of the disk and the directional vector of the center of the disk. Disks exhibiting wave I-A and I-B motion, at least once, were $16,19,20,23,27$, and 30 . These motions are illuetrated in PLATES XV, XVI, and XVII.

When the plane containing the face of a disk rotated away from the horizontal through the vertical and back to the horizontal wave III motion was observed. It wae poetulated that the angle between the plane containing the face of the disk and a horizontal plane became increasingly
larger as the disk descended until the disk turned over or flipped. Flip was defined as the motion of a disk where the lower face of the disk interchanged with the upper face through a 180° rotation. Disks exhibiting wave III motion were disks with large moments of inertia with respect to their weights. In all cases they were of steel rim and plastic core construction. Therefore this flipping action was a result of the large moments of inertia of these disks. This was a reasonable conclusion when it was considered that a baton is constructed of a shaft with heavy weights at each end auch that it has a large moment of inertia.

The motions described here and illustrated in PLATE XVI can be observed by the use of a sheet of typing paper. A rectangle 4 by $1 \frac{1}{2}$ inches cut from the sheet and dropped face down from shoulder high exhibits wave III motion. A square consisting of three $2 \frac{1}{2}$ by $2 \frac{1}{2}$ pieces glued together exhibits either wave I-A or wave I-B motions.

Further observations concerned the frequencies of planar oscillation of disks descending in wave patterns. From the sketches prepared for Table 15, Appendix, the following Prequencies in cycles per 100 cm . descent were observed for parts of two different drops.

Table 1: Frequencies in Cycles per 100 cm . Descents of Disks.

Disk Number	Drop One	Drop Two
9	-	6
13	-	6
16	6	6
19	5	$5 \frac{1}{2}$
20	$43 / 4$	-
23	4	-
27	4	-
30	$32 / 3$	-
32	-	-

Diagrams of Postulated Types of Motion

On the following pages diagrams are presented illustrating the postulated types of motion of disks descending in triethylene glycol and water.
EXPLANATION OF PLATE XV

Fig．3．Wave I－A，one of two possible subtypes of Wave I．

Fig．1．Stable descent．

PLATE KV

Fig. 2

STABLE DESCENT

Fig. 1

EXPLANATION OF PLATE XVI

Postulated types of motion of disks descending in a fluid media. Fig. 1. Wave I-B, the other subtypes of Wave I motion. Fig. 2. Wave III.

PLATE XVI

WAVE 1-B
WAVE III

EXPLANATION OF PLATE XVII
Postulated types of motion of disks descending in fluid media. Fig. 1. Spiral.
Fig. 2. Disk rotation without diameter rotation.
Fig. 3. Disk rotation with diameter rotation.

(

号

Fig. I
EXPLANATION OF PLATE KVIII
Illustrations of ascent of air bubble and descent of flat solid.

PLATE XVIII

EVALJATION OF DATA and PRESENTATION OF RESULTS

Dynamic stabilities were calculated by three methods; each method was previously described. The dynamic stabilities evaluated were $\Psi \mathrm{s}_{\mathrm{y} . \mathrm{x}}^{2}$, reciprocal of mean square deviation from regression, $\Psi \sqrt{\mathrm{s}^{2}} \mathrm{y.x}$, reciprocal of sample standard deviation from regression, and Ψ AREA, reciprocal of mean area between least squares line and path of disk descent. These values for three drops were tabulated in Tables 7, 8, and 9 of the Appendix. Obvious differences existed between the dynamic stabilities calculated by any one method for each disk over its three descents. The more outstanding reasons for these differences were the randomness of free-fall descents of disks in fluids, the paralactic errors, the measuring errors, and the extraneous disturbances, as described in the procedure, in the fluid media during descents of the disks.

It was impossible to distinguish between true randomness of motion and erraticness of motion which was induced by extraneous disturbances. Extraneously induced disturbances in the fluid were assumed to be sufficiently dampened by the precautions earlier described in the procedure, although these steps certainly guaranteed no possibility for complete removal of this source of error. Measuring errors, a result of obtaining values of disk height from motion pictures of disk descents, provided measureable but unpredictable sources of disagreement, dictated by equipment, personal, and environmental deficiencies at any time. Parallax - as treated by Himes (3) - also afforded measureable sources of error, where the magnitude of paralactic error was determined, for the

EXPLANATION OF PLATE XIX

Illustration of 90% confidence intervals
on $\Psi \sqrt{s^{2}}$ yox , dynamic stability, for range of disks investigated.

- 4 upper and lower
limits of 90% confidence intervals.

X Drop 1.

- Drop 2.

D Drop 3.

EXPLANATION OF PLATE XX

Plots of $\Psi \sqrt{s^{2}} y \cdot x$, dynamic stability, for three drops over entire range of disks showing intensities of $\psi \sqrt{s^{2}} y_{0} x$ in relation to postulated types of motion.
\times Drop 1.

- Drop 2.
- Drop 3.

EXPLANATION OF PLATE XXI

Plots of ψ AREA, dynamic stability, for three drops over entire range of disks.
X Drop 1 .

- Drop 2.
\square Drop 3.
upper and lower
boundaries on ranges of UAREA.

EXPLANATION OF PLATE XXII

Plots of $\Psi_{s^{2}}^{2} y_{0}$, dynamic stabilities for three drops over entire range of disks.
\times Drop 1.

- Drop 2.
- Drop 3.
upper and lower
boundaries on range
of $\psi \mathrm{s}_{\mathrm{y} \cdot \mathrm{x}^{2}}$

EXPLANATION OF PLATE XXIII

Bar graph illustrating relationship of 90\% confidence intervals of $4 / 8^{2} y . x$, dynamic stabilities, of disks classified according to postulated types of motion.

PLATE XXIII

EXPLANATION OF PLATE XXIV
Graph of properties of disks for three drops
in relation to postulated types of motion
assigned each disk.
O weight of disk.

- density of disk.
x core diameter of disk.
Δ moment of inertia of disk.

AXX GIVTI 30 NOLIVNVIdXE

major part, by the position of the particle relative to the location of the reference wires and to the location of the camera. By moving the camera to a position further from the drop column the parallax was lessened by a calculable amount. However, the allowable distance between the camera and the tank was limited by the characteristics of the available telescopic lenses.

In summary extraneously induced disturbances of the descent of a disk and randomness of behavior in the descent of a disk provided incalculable and uncontrollable sources of disagreement between measured paths of descents. Measuring error was calculable but uncontrollable, while parallax was both calculable and controllable within equipment and camera limitations. Therefore, it remained to minimize paralactic error to the degree where it was of the same or of a lesser magnitude than measuring error. Without altering the original locations of the reference wires this was accomplished by increasing the distance between the camsra and the drop column to the maximum allowed by the available telescopic lenses. Confidence intervals on maximum measuring error when compared with maximum possible paralactic error were found to be of the same range of magnitude. This comparison was presented in PARALLAX (3) in conjunction with a rigorous investigation of parallax.

Other sources of error were due to the non-unfformity of release of the disks and sizs limitations of the drop column. The former was minimized by disregarding an initial length of each descent while the latter was unavoidable for monstary reasons. Another source of error resulted from variations in the rate at which the camera filmed the descent. The spesd of the camera was found to vary from 16.5 to 19.6
frames per second. This meant that the relative magnitude of each frame varied within a given descent. The assumption that all frames were equal to the same increment of time was not true. This variation was a characteristic of the spring and governor regulating the camera speed. It, also, depended upon how often and to what degree the photographer wound the camera. For this reason it was impossible to calculate the magnitude of this source of error. The solution to this problem lay in the statement, "An ounce of prevention is worth a pound of cure". However, "the ounce of prevention," consisted of a synchronizing motor attachment for the camera. Monetary limitations prevented this. However, after some consideration it was felt that this lack of uniformity in the camera speed was not nearly as critical as measuring and paralactic errors, since the variation of camera speed within any one descent was extremely small. This was borne out by the excellent agreement between the calculated dymamic stabilities of various descents of most disks.

The values of dynamic stability by each method $-\Psi / \sqrt{s^{2}}$ y.x. $\Psi_{\text {AREA }}, \Psi_{s^{2}}{ }^{2} x$, were plotted in PLATES $X X, X X I$, and $X X I I$, respectively. The method based upon $\psi \sqrt{s^{2}}$.x was randomly chosen from these three for further consideration. In PLATE XIX, $\Psi \sqrt{s^{2} y . x}$ was plotted as the upper and lower limits of 90 per cent confidence intervals on the dynamic stabilities of each disk. This graph illustrated the statement that the true value of dynamic stability for each disk had a 90 per cent chance of lying between the individual limits described. This did not state that the true curve of dynamic stability had a 90 per cent chance of Iying entirely between these limits formed by
connecting the individual limits. However, the limits so acquired by connecting these individual limite lead to the statement that each point of the true curve of dynamic stabilities had a 90 per cent chance of lying within theee limits.

During the period of calculation of dynamic stabilities a completely isolated etudy was being conducted on the types of motion apparent in the disk deecents. As was described earlier in thie thesis under General Visval Observations on the Descent of Disks through Triethylene Glycol and Water each disk was assigned to one of three main types of motion. In PLATE XX the rangee of assigned motions were compared with the magnitudee of dynamic stabilities. In PLATE XXIV, a similar comparison was made between physical characteristics of the disks and assigned motions. In PLATE XXV, a like comparison was made between Reynolde numbers and aseigned motions.

DISCUSSION OF RESULTS

With reference to Tables 7, 8, and 9 of the Appendix, it is seen that decided agreements between dynamic stabilities of the three descents of each disk were clearly observed for most of the disks. Disks not exhibiting this agreement were numbers $9,30,32$, and 45 . In these cases the dieagreements, relative to the magnitudes of the dynamic stabilities, were large. Erratic behavior in the cource of a measurable quantity was aeeociated by this inveetigator with the inability to reproduce measure= mente of that quantity. Therefore, becauee of the visually observed erraticalness of disks $30,32,35,37$, and 40 during their descente disw agreement was expected, although only disks 30 and 32 actwally exhibited
any marked diversion. This indicated some degree of uniformity of behavior within the erraticalness. Erraticalnese in the descent of a disk wae also associated with low dynamic stabilities. This was true; diske $32,35,27$, and 40 had the lowest valuee of dynamic stability.

Dynamic stabilities, $\psi \sqrt{s^{2}}{ }_{y \cdot x}, \psi_{A R E A}$, and $\psi_{s^{2}}^{y . x}$, were plotted on PLATES XX, XXI, and XXII, respectively. From the plots of all three methods four levele of magnitudes of dynamic stability were apparent. Selecting $\Psi \sqrt{s^{2}}$.x for further study, it was found that disk 6 , the most stable, formed the highest level. Disks 13,16 , and 43 formed the second level. Diske 19, 20, 23, and 27 formed the third. Disks 32, 25, 27, and 40 formed the lowest and final level. Disks 9, 30, and 45 had values of dynamic stability in more than one level. With only two values of dynamic stability it was improper to classify diek 46 in any of the levels.

The four levels were then compared with the postulated types of motion exhibited by the descending disks, Table 15, Appendix. This study, dealing with the types of motion, was conducted prior to and separate from the evaluation of dynamic stabilities. Therefore, the excellent agreement of the two wae surprieing. These postulated types of motion were compared with dynamic stabilities on the plot of $\psi \sqrt[1]{s^{2}}$.x.x $a g a i n e t$ diek number, PLATE XX. The diecrepancies caused by dieks 9, 30, and 45 were resolved by considering these disks as transitional between two types of motion. Table 15, Appendix, substantiated this for disk 30 , since this disk was found to exhibit more than one type of motion. Disk 43 was observed to exhibit wave I. Its values of dynamic etability did not, however, indicate to which eubtype it belonged. Since one value
of dynamic stability on disk 43 fell into the wave I-A level and the other two into the wave I-B level, disk 43 was finally classified as transitional between wave I-A and wave I-B. Disk 9 presented the only outstanding discrepancy in that the observed motion, postulated as wave I, did not agree with the levels in which its dynamic stabilities fell - wave I-B and wave III. Therefore, disk 9 was claesified as being in an undeterminable transition region.

Ninety per cent confidence intervals were calculated on the three values of dynamic stability for each disk, as preeented in Table 3, Appendix. The cloee agreement between the confidence intervals on dynamic etability among various disks within a given type of fall indicated that the dynamic stabilities for these disks came from the same populations. The disks having comparable confidence intervals were found to form four separate groups. These four groups corresponded exactly to the four levele of dynamic etability earlier found to correspond to the postulated types of motion. Therefore, the values of dynamic stability for each disk, with the exceptions of 9, 30, and 45, fell into one of the postulated types of motion. Ninety per cent confidence intervals were then calculated on each group as presented in Table 4, Appendix. The limits on these groups, or levels, were then presented ae a bar graph in PLATE XXIII. This illustrated the etatement that the true value of dynamio stability for each of these groupe had a 90 per cent chance of lying within the limits, indicating that each such level was distinct and separate from the others.

The next step was to make an attempt to correlate the properties of the disks and fluid to the aseigned typee of motion. The properties of
the disks were tabulated in Table 5, A ppendix, and plotted in conjuction with the types of motion assigned each disk in PLATE XXIV. From Tables 7,8 , and 9 of the Appendix Re's were plotted in the same manner in PLATE XXV. From PLATE XXIV the only conclusive statement poesible was that disks exhibited greater unetability as their momente of inertia became large relative to their weighte. Stable motion occurred at low weights, low moments of inertia, and low densities relative to the comparable properties for dieke which exhibited other postulated types of motion. Diek 6 exhibited stable motion. Finally, from PLATE XXV, the Reynolds numbers, based on D_{s}, for the three descents of disk 6 were less than 100. Disks exhibiting waves I-A, I-B, and III motion had Re's of 275 to 325,225 to 650 , and 300 to 625, respectively.

CONCLUSIONS

The moet significant conciusion, based upon more than 41,000 meaeurements, wae that dynamic etability of disks is measureable and therefore exists.

It was concluded that a diek, in a free-fall deecent, exhibited one of three postulated types of motion; 1. e. stable, wave I, or wave III. It was further poetulated that wave I motion consisted of subtypee; wave IA and wave I-B. The dietinction between these eubtypes appeared in the measured dynamic stabilitiee; correeponding to the exact boundary predicted by the observations (See Table 15, Appendix). In water disks exhibited three main types of motion; 1. e. wave, spiral, or disk rotation with diameter rotation, or combinations of these. For triethylene glycol
a definite relationship was found between these motions and dynamic stability, $\psi \longdiv { s _ { y . x } ^ { 2 } }$.

Table 2: Relationship Between Types of Motion and $\psi \sqrt{s_{y . x}^{2}}$.

Disk number	$:$	Postulated trpe of motion
6	Stable	Range of dynamic stabilities, I/cm.
13,16, and 43	Wave I_A	11.49 to 14.92
$19,20,23$, and 27	Wave I_B	6.02 to 8.55
$32,35,37$ and 40	Wave III	4.15 to 5.46
		0.44 to 2.01

Each range of dynamic stabilities corresponding to a particular type or subtype of motion was distinct and separate from any of the others. By applying confidence intervals to these ranges it was shown that the true value of dynamic stability for each type of motion had a 90 per cent chance of lying within limits which did not overlap the limits of other types of motion.

Actually, three methods, $\psi_{1} \sqrt{s_{y . x}}, \psi_{s^{2}}^{2}, x$ and $\psi_{A R E A}$ were used in calculating dynamic stability. The method based upon $\psi \sqrt{s_{y \cdot x}^{2}}$ was randomiy chosen from these three for further consideration.

From a comparison of physical properties of the disks against the types of motion into which each disk fell it was found that a low dynamic stability was associated with a high moment of inertia relative to the weight of the disk. This is summarized in PLATE XXIV.

From a comparison of Reynolds numbers for each disk with the types of motion of each disk it was concluded that a Re, based on D_{s}, of one hundred or less was associated with stable motion. Disk 6, the only disk which clearly exhibited stable motion, was the lightest one and it also had the least density and moment of inertia of all those investigated.

These conclusions were all restricted to disks which descended in triethylene glycol at 88 to $90^{\circ} \mathrm{F}$ at Re , based on D_{s}, ranging from 78 to 640.

RECOMMENDATIONS

The following are recomended for immediate investigations

1. Paralactic error may be noticeably reduced by moving the reference wires to a position in contact with the drop column. This suggests an investigation of the positioning of the top reference wire immediately above the release mechanism and the bottom reference wire inside the column near the bottom.
2. Parallax may be further reduced by removing the camera further from the drop column, thus suggesting that an investigation be made of telescopic lenses allowing this increased distance.
3. Recent films of disk descents revealed that a suspension of rust pigments in the triethylene glycol produced more distinct pictures of the disks. Other pigments may prove even more satisfactory.
4. Error, although not significant when compared to paralactic and measuring errors, was introduced into the final values of dymamic stability due to the non-uniformity of the camera speed. It is possible to rectify this by the use of a synchronizing motor. As paralactic and measuring errors are decreased this consideration will become important.
5. Measuring errors and measuring time could be noticeably decreased by moving the dark room and projector to a location supported by concrete flooring.
6. The size of the drop column should be appreciably increased. An increased diameter would lessen wall effects, while both an increased diameter and length would allow a more thorough study of disks exhibiting wave III motion.

The following are recomended for long-range investigation:

1. An analysis should be made of the possibility of using a radioactive source to expose film strips attached to the drop column to obtain a continuous picture of the disk descent.
2. A survey should be made of the possibility of employing either electric eyes or magnetic coils along the length of the column, such that with the addition of an appropriate recorder, readings of particle height may be directly obtained.
3. A study should be made of drop tanks other than cylindrical in shape.

Statements could be made concerning what next should be investigated, but dynamic stability has revealed such a fertile field as to make any recomendations for future work little more than twigs in an ocean, therefore, such concern will be left to the interests of future investigators.

ACKNOWLEDGMENTS

Some of the early experimental work which contributed to this thesis was conducted by Karl Mohn and Roger D. Allen, former students at Kansas State University, under the supervision of Assistant Professor Raymond C. Hall. The computer programs included in this thesis were
prepared by Dr. Thomas S. Parker and Thomas L. Hamilton of the IBM 650, Kansas State University. Both Dr. Parker and Mr. Hamilton, afforded this author much of their valuable time in supervising the evaluation of dynamic stability in the IBM 650. The disks used in this etudy were percision conetructed by Mr. Andy Andereon of Building and Repair, Kaneas State University.

The most important contribution was certainly that of Profeseor Hall, whoee patience, pedagogical judgement, and interest removed untold pitfalls to the successful completion of this work.

Another extremely fmportant contribution was that of the author's wife, Francee B. Himes, who provided a never ending source of inepiration, patience and understanding.

A most deserving acknowledgment is, also, given to Dr. Henry T. Ward, Professor and Head of the Chemical Engineering Department.

The funde making this work possible were provided by the Agricultural Experiment Station of Kansae State University.

REFERENCES

(1) Becker, H. A.

The effects of shape and Reynolds number on drag in the motion of a freely oriented body in an infinite fluid. The Canadian Journal of Chem. Engg., 85. April, 1959.
(2) Dow Glycols, The Dow Chemical Company. Midland, Michigan. 1947.
(3) Himes, B. L., SI.

Parallax and moments of inertia of disks employed in study. Unpublished report, Dept. of Chemical Engineering, Kansas State University, 1959.
(4) Mickley, H. S., T. K. Sherwood, and C. E. Reed. Applied Mathematics in Chemical Engineering. New York: McGraw Hill Book Company, Inc., 1957.
(5) Miyagi, Otogoro

Motion of an air bubble rising in water. Philosophical Magazine and Journal of Science. London. L: 125. 1925.
(6) Pettyjohn, E. S. and E. B. Christiansen Effect of particle shape on free-setting rates of isometric particles. Chem. Engg. Progress. 44: 169. 1948.
(7) Squires, Lombard and Walter Squires Jr. The sedimentation of thin diskg. Transitions of the American Inst. of Chem. Engg. 33: 3. 1937.
(8) Wadell, H. The coefficient of resistance as a function of ie. for solids of various shapes. Journal of the Franklin Institute. 217: 459. 1930.
(9) Wetherall, E. Wo The track of a flat solid through water. Nature. 60: 845. 1922.
Table 3. Calculation of C. I.go on Dynamic Stabilities

Table 4: Calculation of C. I. 90 on Dynamic Stabilities for each Type of Motion.

Physical Characteristics of Disks.

$\begin{gathered} \text { H1sk } \\ \text { Humber } \end{gathered}$	Weight grams	$\begin{aligned} & \text { Moment of } \\ & \text { Inertia } \\ & \text { (gI. mass } \left.-\mathrm{cm}^{2}\right)_{10} \end{aligned}$	Thickness cm.	$\begin{gathered} \text { Disk } \\ \text { Diameter } \\ \text { cm. } \end{gathered}$	$\begin{gathered} \text { Core } \\ \text { Diameter } \\ \text { cmo. } \end{gathered}$	$\begin{aligned} & \text { Disk } \\ & 8 \text { Bensity } \\ & 8 \text { gmo/cme } \end{aligned}$
6	4.022	158	0.654	2.543	0.399	1.217
9	5.429	164	0.628	2.544	0.791	1.700
13	10.397	260	0.650	2.544	1.616	3.150
16	12.335	336	0.616 0.618	2.543 2.540 250	1.952	5.060
19	15.854	459	${ }_{0}^{0.623}$	${ }_{2.543}$	2.034	5.395
${ }_{23}^{20}$	${ }_{20.531}^{17}$	754	0.648	2.544	2.223	6.237
27	25.810	1154	0.650	2.540	2.540	7.843
30	22.113	1113	0.647	2.540	1.020	6.742 5
32	19.167	1034	0.636	2.541	${ }_{1}^{1.341}$	5.9.90
35 37	15.835	822	0.627 0.645	2.540 2.540	1.822	4.341
40	10.1703	677	0.635	2.538	2.067	3.333
43	7.210	452	0.639	2.539	2.306	2.230
45	5.425	319	0.639	2.542	2.421 2.503	${ }_{1}^{1.674}$
46	4.016	206	0.634	2.542	2.503	1.250

Table 6z Average Times Required for Disks to Descend 100 cm . in Triethylene Glycol at

Table 7: Dynamic Stabilities and Other Pertinent Final Results For Drop Two in Triethylene

Glycol at $89{ }^{\circ} \mathrm{F}$.

$\begin{array}{r} \text { Disk } \\ \text { Number } \end{array}$!	$\begin{gathered} \theta \\ \text { Frames } \\ \text { Read } \end{gathered}$:	te sec.	$\begin{aligned} & : \psi_{s^{2}}{ }_{y \cdot x} \\ & : 1 / \mathrm{cm}^{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \vdots \psi \sqrt{s_{y \cdot x}^{2}} \\ & \vdots \\ & \end{aligned}$: $\psi_{\text {Area }}$: $1 / \mathrm{cm}$:	$\begin{aligned} & \mathrm{Re}_{\mathrm{e}} \equiv \\ & \frac{\mathrm{D}_{\text {vp }}}{\mathrm{n}} \end{aligned}$	$\begin{array}{ll} \vdots & \mathrm{Re}_{s} \\ \vdots & D_{\mathrm{s}} \mathrm{vp} \\ \hline & \end{array}$
6		75		8.39	224.22	14.92	17.32		108	78
9		71		4.06	5.46	2.34	2.70		262	191
13		38		2.12	36.37	6.02	8.30		482	352
16		34		1.93	56.55	7.52	10.31		547	400
19		25		1.42	22.80	4.78	6.24		634	463
20		29		1.57	30.00	5.46	8.18		669	488
23		26		1.42	25.32	5.02	8.42		753	550
27		22		1.26	17.90	4.24	6.39		860	628
30		25		1.44	1.19	1.09	1.42		803	586
32		27		1.55	0.46	0.68	0.83		753	550
35		22		1.27	2.42	1.56	2.02		634	463
37		25		1.35	3.89	1.97	2.64		634	463
40		27		1.49	3.05	1.74	2.37		524	382
43		53		2. 80	60.88	7.81	10.15		376	275
45		73		4.13	55.21	7.41	9.30		256	187
46		67		7.28	78.22	8.85	10.73		135	99

$$
\begin{aligned}
t_{\theta}= & \text { time required for particle to descend } d_{\theta} \\
& \text { ft., or through } \theta \text { frames. }
\end{aligned}
$$

Table 9: Dynamic Stabilities and Other Pertinent Final Results for Drop Three in Triethylene

Table 10: Observations of diameter rotation on disks descending 100 cm . in triethylene glycol

Disak mamer	1	2	3	4	
${ }^{6}$	1	,	,	,	1
7	,	,	,	-	
${ }_{9}^{8}$,	,	,	T	
${ }^{10}$,	,	,	-	
${ }_{13}^{11}$!	,	,	T	
16	,	,	,	,	
19	,	r	,	,	
${ }^{20}$	T	${ }_{5}^{5}$,	,	,
${ }_{27}^{23}$,		,	,)
${ }^{30}$		1	,	,	
32 35		T	,	,)
37 40	${ }_{2}$,	,	')
${ }_{43}^{40}$,	,	,	,
${ }_{46}^{45}$	'	,	!	!)

Table 11 Observations of diameter rotation on disks descending 100 cm . in water at 80° ㄹ $3^{\circ} \mathrm{F}$ 。

Table 12:

Disk Number	:	Drop 1	:	Drop i	:	Drop 3	:	Drop 4
6		-		-		-		00
9		-60°		-40°		15°		60°
13		85°		-60°		-550		-60°
16		55°		-50		-35 ${ }^{\circ}$		50°
19		600		-45		-530		55°
20		-40°		-45		47°		50°
23		50°		65°		-700		-60 ${ }^{\circ}$
27		350		75°		-700		0
30		80°		-700		50°		90°
32		-50° to -80°		-85		70°		-85 ${ }^{\circ}$
35		50°		-65° to -800		80°		50°
37		40°		65°		60 75		90°
40		-800		-850		75°		-60
43		-60°		-450		-90		-550
45		-		70°		-85		-80
46		--		---		---		-

Table 13:

	:	Motion'- Side View				
Number	:	Drop 1	:	Drop 2	:	Drop 3
6		Stable		Stable		Stable
9		Flutter		Wave		Flutter
13		Flutter		Wave		Wave
16		Small Wave		Wave		Wave
19		Wave		Wave		Wave with Flutter
20		Plutter		Wave		Wave with Plutter-
23		- Wave		Wave		Wave
27		Wave		Wave		Wave
30		Wave		Wave - Hit Wall		Wave with Flutter
32		Wave - Hit Wall		Wave - Hit Wall		Wave - Hit Wall
35		Wave - Hit Wall		Wave - Hit Wall		Have - Hit Wall
37		Wave - Hit Wall		Wave - Hit Wall		Wave - Hit Wall
40		Wave - Hit Wall		Wave - Hit Wail		Wave - Hit Wall
43		Small Wave		Fintter		Wave
45		Small Wave		Small Wave		Flutter
46		Stable		Stable		Stable

Table 13 (Concl.):

Disk	:	Motion - Top View	
Number	:	Drop 4	Drop 5
6		Stable	Stable
9		Oscillation	Large Flutter
13		wove Diameter Rotation	Woye
16		Wave	
19		Wave	Wave
20		Wave	Wave
23		Wave	Wave
27		Wave	Wave
30		Wave	Wave
32		Wave - Hit Wall	Wave - Hit Wall
35		Wave - Hit Wall	Wave - Hit Wall
37		Wave - Hit Wall	Wave - Hit Wall
40		Wave - Hit Wall	Wave - Hit Wall
43		Small Wave	Large Flutter
45			Flutter and 0 scillation w/o Diameter Rotation
46		Stable	Stable

Table 14: Observed motions of disk descending approximately 100 cm . in water at $80 \pm 3^{\circ} \mathrm{F}$.

Table 14 (Goncl.) :

Disk Number	:	Top View of Particle Motion		
	:	Drop 2	:	Drop 3
1		Started Planar Oscillation To Spiral		Spiral
6		Oscillation with Diameter Rotation in Planar Wave		Planar Flutter to NonPlanar to Spiral
9		Non - Planar Wave		Planar Flutter to Spiral
13		Planar Flutter		Planar Flutter to Spiral
16		Flutter or Small Planar Wave		Planar Flutter
19		Planar Flutter		Planar Wave
20		Planar Flutter		Planar Wave
23		Planar Wave with Rotation of Plane Near Bottom		Planar Wave
27		Small Planar Wave		Planar Wave
30		Hit Side Rolling Motion		Planar Wave
32		Hit Side		Hit Side
32		Small Planar Wave		Rolling Motion
35		Hit Side		Hit Side
		Small Planar Wave		Non - Planar Wave
37		Small Planar Wave		Hit Side Non - Planar Wave
40		Planar Wave		Planar Wave
43		Planar Wave to Spiral		Planar Wave
45		Planar Wave to Spiral		Planar Flutter to Spiral
46		Planar Wave to Spiral		Planar Flutter to Spiral

Table 15: Observations Obtained from Sketches of Movies and Movies of Disk Descents in

Disk Number	Motion	Motion				
	:		:		:	
	:	Drop 1	:	Drop 2		Drop 3
6		Stable		Stable		Stable
9		Wave I		Wave I		Wave I
13		Wave I		Wave I		Wave I
16		Wave I		Wave I		Wave I
19		Wave I (I-B)		Wave I (I-B)		Wave I -
20		Wave I (I-B)		Wave I (I-B)		Wave I -
23		Wave I (I-B)		Wave I (I-B)		Wave I -
27		Wave I (I-B)		Wave I (I-B)		Wave I -
30		Wave I (I-B)		Wave III		Wave III
32		Wave III.		Wave III		Wave III
35		Wave III		Wave III		Wave III
37		Wave III		Wave III		Wave III
40		Wave III		Wave III		Wave III
43		Wave I		Wave I		Wave I
45		Wave I		Wave I		Wave I
46		Stable		Stuable		Stable

Triethylene Glycol as the Fluid Media

Triethylene Glycol was a relatively new compound commercially at the initiation of this reeearch. Its high boiling point, low volatility, low toxicity, low corrosion rate, and high stability made it ideal as a high boiling eolvent. These same properties plus its high viscosity at room temperatures and its transparency made it similarly ideal for the etudy of particle motione. Theee propertiee are presented in tables and graphs published in Dow Glycols (2).

Because of the hygnoscopio property of glycols, it was imperative to determine whether changes in the water content of the fluid media had occurred between the times of utilization of the fluid media. As an example, an evaluation of the viscosity of the fluid media required the determination of a deneity value by actual measurement. This, in turn, provided a step toward the determination of the percentage of pure triethylene glycol in the fluid media. The density of the fluid media was obtained by the utilization of a volumetric flask, scales, and a properly seleoted eample. From thie density and the density of pure water at the eame temperature, $25^{\circ} \mathrm{C}$, the specific gravity of the fluid media at $25^{\circ} \mathrm{C}$ was calculated, With this information the percentage of Triethylene Glycol was found from a plot of specific gravity, $25^{\circ} \mathrm{C} / 25^{\circ} \mathrm{C}$, versus per cent glycol by weight (2). In turn the viscosity at any desired temperature wae found from a plot of absolute viscositiee of aqeous Triethylene Glycol solutions versue Temperature (2). It was found that over a twelve month period with the proper protection of the fluid from the atmosphere no appreoiable change occurred in the water content of the approximately 200 lbs. of fluid. It remained approximately 100% pure Triethylene Glycol.

TABLE OF NOMENCLATURE

1. $s_{y \cdot x}^{2}=$ mean $s q u a r e$ deviation from regression.
2. $\boldsymbol{s}_{y_{0} x}^{y \cdot x}=$ sample standard deviation from regrsssion $=\sqrt{s^{2}} y_{0} x^{.}$
3. $s_{y \cdot x \theta}^{2}=s_{y \cdot x}^{2}\left(F_{\theta}\right)$ 。
4. $\theta=$ number of motion picture frames through which disk is measured.
5. $\psi_{s^{2}}^{2}=$ dynamic stability bassd on $s^{2} y_{0 x}=\frac{1}{s_{y_{0} x}^{2}}$.

6. Yarea $=$ dynamic stability based on area between least squares curvs and path of disk dsscents per unit time。
7. $\psi^{\prime}=$ dynamic unstability, $\frac{1}{\psi_{\mathrm{s}}{ }^{2}}, \frac{1}{\psi \mathrm{~s}^{2} \mathrm{y} \cdot \mathrm{x}}$, or $\frac{1}{\psi_{\mathrm{AREA}}}$.
8. $d_{y_{0} x}=$ absolute deviations from regression $=s y \cdot x(\theta-2)$.
9. $t_{100}=$ time required for disk to descend 100 cm .
10. $t_{\theta}=$ time requirsd for disk to descend θ framss.
11. $\mathrm{L}_{H}=\begin{aligned} & \text { measured height of top reference line, relativs to bass } \\ & \text { lins. }\end{aligned}$
12. $\mathrm{I}_{\mathrm{P}}=$ msasursd height of disk, relative to base line.
13. $\mathrm{L}_{\mathrm{L}}=$ measured hsight of bottom reference line, relative to base line.
14. T.L. $=\frac{100}{\mathrm{~L}_{H}=\mathrm{L}_{\mathrm{L}}}=\begin{aligned} & \text { factor for adjusting relative values to } \\ & \text { trus values. }\end{aligned}$
15. $h_{i}=\left(L_{P}-L_{L}\right)\left(\frac{100}{L_{H}-L_{L}}\right)=\begin{array}{rrr}\text { true height of particls abovs }\end{array}$
16. $n=$ number of sample undsr statistical considsration.
17. $k=y$ interospt of lsast squares line.
18. $J=$ slope of lsast squares line.
19. $I=$ moment of inertia of disk.

TABLE OF NOMENCLATURE (conc.)

21. $R e=$ Reynolds number bass on $D=\frac{\text { DVD }}{H}$.
22. $D=$ diameter of disk in feet.
23. $V=$ average velocity of disk in feet per second.
24. $P=$ density of disk in pounds/feet cube.
25. $\mu=$ viscosity in British viscosity units.
26. $R e_{s}=$ Reynolds number based on $D_{s}=\frac{D_{s} \nabla \rho}{M}$.
27. $D_{s}=$ diameter of sphere having same volume as disk.
28. $t_{0.05}=$ student's t for 95 per cent confidence interval $=2.571$.
29. $F=$ conversion factor of frames to seconds.
30. $x=$ time axis
31. $y=$ height axis
on plot of disk path (PLATE XIV).

TABLE OF DEFINITIONS

1. Drop referred to a sum of single descents for all disks investigated.
2. Descent referred to a movement downard of a single disk.
3. Dynamic stability referred to the stability of a disk during free fall in a container of infinite proportions.
4. Parallax was defined as a distortion of the measured values of the differences between consecutive positions of a descending disk.
5. Consecutive positions referred to consecutive frames on the film of the descent of a disk where these positions, or frames, were separated by a constant time increment.
6. Confidence intervals were defined as the limits between which a true value had a certain probability of existing.
7. Dark room was the room containing the equipment for measuring disk heights on the films of the descent.
8. Least squares line was the best possible straight line through a plot of the path of the particle descent which minimizes the squares of the deviations.
9. Measuring error referred to the error resulting from the measurements of disk height made on the films of the disk descent.
10. Extraneous disturbances referred to disturbances caused by movements outside of the measuring area.
11. Stable Motion (See PLATE XVII).
12. Wave I (See PLATE XVII).
13. Wave II (See PLATE XVIII) ${ }^{*}$
14. Wave III (See PLATE XVIII).

TABLE OF DEFINITIONS (concl.)

15. Oscillation (See PLATE XVIV).
16. Spiral (See PLATE XVIV).
17. Agile plastic stars were star shaped pieces of plastic approximately
 evaporation from a liquid surface.
18. Moment of Inertia referred to integral from center of the core to outside of the core of the differential mass times the arm squared plus integral from outside of core to outside of rim of the differential mass times arm squared, where the arm is the distance from the center of the disk to each differential mass.

IBM 650 PROGRAMS

for

COMPUTATION OF DYNAMIC STABILITY

> SOAP
> Output
> Of A
> FORTRANSIT
> Program
> For
> $\Psi_{s}^{2}{ }_{\text {yox }}^{2}$ And Least Squares Line

Programmed
by

Mr. Thomas L. Hamilton

IBM 650

Kansas State University

Program is preceded by a SOAP package deck from FORTRANSIT II.

LAVAK
LAVAK
LA
A

$\begin{array}{llll}E & 8 & 0 & 2 \\ L & A & W & A \\ L & A & W\end{array}$ LA wA B

$L A W A$

ESO2
L日AA

ESO25
LBBAA

ESO2 6
LBCA
LSOR
ESOR
LBOA

S 028 LGEAA

ES029
LGGAA

EBO30
L日HAA

EBO31
LBI蚛

L日」AA

LAYAL
EOOAL

OOAE

EODAA
LAWAA
$\begin{array}{llll}L A & H & A \\ L A & A & C \\ L A & H & C\end{array}$
OOAF
OOAH
EOOAA
LAXAA

$A \times A A$
$A X A$

AXAD

EOOAA
$00 A A$
$A Z A A$

OOAA
BAAA

OOAF
BHAA
BMAA
$00 A A$
$B C A A$
8 CA

OOA A
$B O A A$
$B O A A$
OOAA BEAA
自EAA

8089

OOAA
BHAA
008 T BIAA
©00 T

00 OT
BJAA

M
O
O
$10+0$
1000
0070
0000
$\begin{array}{llll}0391 \\ 0 & 404\end{array}$
0404
0000
1970
130
027
192
0178
1970
0000
0015
1970
1932
$\begin{array}{lll}1970 & 0 & 1 \\ 19 & 7 \\ 10 & 0 & 0 \\ 0 & 0 & 8 \\ 0 & 0 & 1\end{array}$
0038
1967
0370
0370
$\begin{array}{ll}0370 & 1700 \\ 0040 & 0643\end{array}$
$\begin{array}{lll}0000 & 0200 \\ 0026 & 0531\end{array}$
0046
0454
049
000
$\begin{array}{llll}0454 & 1752 \\ 000 & 0150 \\ 0353 & 0204\end{array}$
0353
0056
00270
$0041 \quad 0244$
$\begin{array}{llll}0000 & 0201 \\ 0026 & 0581\end{array}$
$\begin{array}{llll}0026 & 0581 \\ 0037 & 0441 \\ 0 & 504 & 175\end{array}$
$\begin{array}{lll}0504 & 1752 \\ 0000 & 020\end{array}$
$\begin{array}{ll}0000 & 0200 \\ 0403 & 1700 \\ 0042 & 0245\end{array}$
$\begin{array}{ll}0042 & 0245 \\ 0000 & 0202\end{array}$
$\begin{array}{lll}0000 & 0202 \\ 0041 & 0295\end{array}$
$\begin{array}{ll}0027 & 0527 \\ 0042 & 0069\end{array}$
$\begin{array}{lll}0172 & 1700 \\ 0043 & 0146\end{array}$
0043
0000
0041
003
0041
0087 8003083
$\begin{array}{lll}0042 & 0119 \\ 0228 & 1700\end{array}$
$0044 \quad 1700$
$\begin{array}{lll}0000 & 0204 \\ 8005 & 0205\end{array}$
$\begin{array}{lll}0208 & 1752 \\ 0245 & 024\end{array}$
$\begin{array}{lll}0045 & 0246 \\ 0000 & 0205 \\ 0045 & 005\end{array}$
$\begin{array}{ll}0045 & 0099 \\ 0028 & 0255\end{array}$
$\begin{array}{lll}002 & 0255 \\ 0256 & 1700\end{array}$
$\begin{array}{lll}0026 & 0631 \\ 0000 & 0206\end{array}$
0000
0045
00149
$\begin{array}{lll}0045 & 0149 \\ 0045 & 0395\end{array}$
$\begin{array}{lll}0029 & 0305 \\ 0308 & 1700\end{array}$
$\begin{array}{ll}002 & 0182 \\ 0000 & 0207\end{array}$
0000
00207
00297
0030
0260
0270
$\begin{array}{ll}0260 & 1700 \\ 0030 & 023\end{array}$
$\begin{array}{lll}0030 & 0283 \\ 0000 & 0208 \\ 0042 & 0347\end{array}$
$\begin{array}{lll}0042 & 0347 \\ 0042 & 0242\end{array}$
$\begin{array}{lll}0031 & 025 \\ 0310 & 170\end{array}$
$\begin{array}{lll}0031 & 019 \\ 0000 & 020\end{array}$
$\begin{array}{lll}0000 & 020 \\ 0042 & 044\end{array}$
$0045 \quad 0445$
$\begin{array}{lll}0032 & 0159 \\ 0862 & 1700 \\ 0032 & 0334\end{array}$
$\begin{array}{lll}0032 & 033 \\ 0000 & 030\end{array}$
$\begin{array}{lll}0043 & 049 \\ 0503 & 019\end{array}$
$0046 \quad 0249$
00000301
$\begin{array}{ll}0044 & 0299 \\ 0355 & 0104\end{array}$
$\begin{array}{llll}0047 & 0350 \\ 0048 & 1503\end{array}$
$\begin{array}{lll}1521 & 010 \\ 042 & 152\end{array}$
$\begin{array}{lll}102 & 1529 \\ 0102 & 0 & 07\end{array}$
$\begin{array}{llll}1968 & 1513 \\ 1675 & 1511\end{array}$
$\begin{array}{lll}1969 & 0371 \\ 0234 & 0379\end{array}$
19700272
0325
0429

ESOOO
LBKAA

EsO3
LBLAA
LBLAII
LBLAE
LBLAF

ESO34
LBMAA
$L B M A U$
$L B M A E$
L BMAE
L BMAF

ESO35
BNAA

E B 036
LBOAA
ESOAR
LHSAA

S TL	w 0005	
RAL	E2017	
STL	* 0006	
RaL	E2004	
8 TL	M0007	
R ${ }_{\text {a }}$	E2005	
STL	W0008	
RAL	E2018	
100	LRKAA	EOOAH
00	0000	LBKAA
- $\times 1$	Y0000	
R SL	A005	
ST0	Y0032	
ALO	Y0024	
$\begin{array}{r} B M 1 \\ 00 \end{array}$	LBLAA OOOCO	$\text { ETO3 } 3$
RAL	Y0084	
STL	W0001	
RAL	EZ014	LB1AE
RAU	Y0029	LBLAF
STL	ACC	LBLAO
100		EOOAL
8 TU	${ }^{\wedge} \mathrm{CC}$	
RAL	W0001	
L. 00		EOOAE
STU	W0001	
RAU	ACC	
FOV	W0001	
R Bu	8003	
FAO	YOO30	
LOO		EOOAA
B TU	Y0030	LgMAA
00	0000	L8MAA
R AL,	Y00\%4	
8 TL	W0001	
RAL	E 2014	LBMAE
RAU	Y0027	L 8 MAF
STL	${ }_{4} \mathrm{C} C$	L $8 \rightarrow 0$
LDO		EOOAL
8 TU	${ }^{4} \mathrm{CC}$	
RAL	W0001	
LOO		EOOAE
8 TU	W0001	
RAU	$\triangle \mathrm{CC}$	
FOV	W0001	
R9U	8003	
FAO	Y00\%	
LOO		EOOAA
BTU	Y00\%8	LBNAA
00	+0000	LBNAL
RAL	Y 0024	
8 TL	W0001	
RAU	Y 000 \&	
FMP	Y0049	
8 TU	4 CC	
RAL	W0001	
100		EOOAE
STU	W0002	
RAU	$A \mathrm{Cc}$	
FOV	W0001	
RSU	B 003	
F 10	Y0031	
LOO		EOOAA
B TU	ro031	LBOAA
00	0000	L80.A
RAU	Y0031	
FBV	YOOA 8	
LOO		EOOA
3 TU	Y0047	LBPAA
00	0000	LBPAA
RAL	Y00\%4	LBPAC
RAU	Y0027	LBPAO
LOO	L A PAB	EOOAF
Fov	$A \mathrm{CC}$	
LOD		EOOAA
5 TU	Y0048	L日気A
00	0000	LboA ${ }^{\text {c }}$
RAL	Yo024	L ¢ A A
R 4 U	Yo0is 9	LBOAO
LOO	LR@A8	EOOAF
cov	A C C	
LOD		EOOAA
8 TU	Y0049	LERAA
00	0000	LBRA*
RAU	$Y 0048$	
FMP	YOO4?	
RSU	8003	
FAD	Y0049	
LOD		EOOAA
B TU	Y0050	LBsat
00	0000	LBSAA
RSU	E2013	L. 8 ¢ 40

$O O A$
B SAA
BSAA
BSAA

0
\cdots
$N 0$ 0373
0681
0274
$\begin{array}{ll}0731 \\ 0 & 375\end{array}$
$\begin{array}{lll}0 & 3 & 75 \\ 0 & 781\end{array}$
$\begin{array}{lll}0781 \\ 0 & 376\end{array}$
0333
0000
0236
0292
0349
0349
0336 0529 0000 0232 0579
0420
0554
0831
0831
02
0
0236
$\begin{array}{lll}0 & 5 & 5 \\ 0 & 421\end{array}$
0324
0470
0405
0405
0417
0425
$\begin{array}{ll}0357 \\ 0 & 3\end{array}$
0360
000
0384
0384
0629
0629
0520
0520
0604
0 B
$03 B 3$
$03 B 6$
036
060
$\begin{array}{lll}0 & 71 \\ 0 & 7 \\ 5 & 5 & 1\end{array}$
0570
0455
0467
0475
0475
0505
0505
035
0
0000
0679
0620
0433
$\begin{array}{ll}043 \\ 023 \\ 0 & 2\end{array}$
0653
052
0424
0670
$0 n$
0 in
00
0517
0525
0209
$\begin{array}{lll}0312 \\ 0 & 0 & 0\end{array}$
$\begin{array}{r}0 \\ 0 \\ 83 \\ \hline 1\end{array}$
0483
0332
0385
0000
in un
न 0
0
065
072
053
0533
100
100
100
000
020
0
070
077
043
045
045
075
0000
0803
0853
0298
0605
0627
0280
0000
075 d

LBSAR	$\begin{aligned} & \text { RAL } \\ & \text { LOO } \end{aligned}$	$\begin{aligned} & \text { YOOAA } \\ & \text { LRSAE } \end{aligned}$	EOOAE	$\begin{aligned} & 0804 \\ & 0829 \end{aligned}$	$\begin{aligned} & 65 \\ & 69 \end{aligned}$	$\begin{aligned} & 0025 \\ & 0363 \end{aligned}$	$\begin{aligned} & 0829 \\ & 1926 \end{aligned}$
LBSAn	\＄TU	A C C	L8SAB	0491	21	0000	0804
LR\＄AE	FAO	${ }^{+} \mathrm{C} C$		0382	32	0000	0677
	STU	W0001		0677	31	1967	0720
	RAU	Y 0031		0720	60	0032	0437
	¢ HP	Y0047		0437	39	004 a	0348
	RSU	B003		0348	61	8003	0655
	FAO	Y0030		0655	32	0031	0407
	50 V	W0001		0407	34	1967	056 ？
	LOD		EOOAA	0567	69	0770	1700
	STu	Y0051	coona	0770	21	0052	1502
	RAU	$03 \mathrm{H7}$		1502	60	03 R 7	1512
	FOV	Y0051		1512	34	0052	1520
	STU	YOO52	L8TAA	1520	21	0053	0705
Es042	00	0000	L8TAA	0000	00	0000	0402
L8TAA	RAU	Y0050		0705	60	0051	0755
	100		E008	0755	69	0161	0104
	STU	Y0050	L8UAA	0161	21	0051	0854
E 8043	00	0000	L8UAA	0000	00	0000	0403
L Buak	RAU	Y0047		0854	60	0048	0903
Lauar	LOO		E0O日 T	0903	69	0259	0104
	8 TU	Y0047	L日VA	0259	31	0048	0201
E 8044	00	0000	L8 $\mathrm{y}^{\text {A }}$ A	0000	00	0000	0404
L8VAA	RAU	Y00．51		0201	60	0052	0457
－	LOO		E008 ${ }^{\text {T }}$	0457	69	0263	0104
	STU	v0051	LB＊A	0263	21	0052	ORO5
E S 045	00	0000	LBMAA	0000	00	0000	0405
LBAAA	RAD	Y0052		0805	60	0053	0507
LBar	LOO	\％	E0081	0507	69	0313	0104
	STU	Y0052	L8×A	0313	21	0053	0156
ESO46	00	0000	L8×AA	000	00	0000	0406
L8xa	RAL	E2019	Laxa	0156	65	0309	0363
	8 TL	W0002		0363	20	1968	0571
	RAL	E20\％		0571	65	0474	0879
	8 TL	W0003	＊	0879	20	1969	0322
	RAL	EzOz1	＊	0322	65	0575	0929
	STL	W0004		0929	20	1970	0423
	AAL	E2022		0423	65	0426	0931
	STL	W0005		0931	20	1971	0524
	RAL	E2003		0524	65	0175	0979
	STL	W0006		0979	20	1972	0625
	RAL	E2004		0635	65	0176	0981
	8 TL	W0007		0981	20	1973	0476
	RAL	E2OO5		0476	65	0277	1031
	STL	W0008		1031	20	1974	0727
	RAL	EzO23		0727	65	0330	0485
	LOO	L⿴囗十A	EOOAR	0485	69	0288	1907
ESOOO	00	0000	L． 8 YAA	0000	00	0000	0000
LBYAA	RAL	E20\％4	L ${ }^{\text {a }}$	0288	65	0541	0495
	BTL	10002		0495	20	1968	0621
	RAL	E2O25		0621	65	0574	1029
	8 TL	W0003		1029		1969	0372
	RAL	E2026		0372	65	0675	1079
	STL	W0004		1079	20	1970	0473
	RAL	E204？		0473	65	0526	1081
	STL	W0005		1081	20	1971	0524
	RAL	E2028		0624	65	0777	1131
	8 TL	W0006		1131	20	1972	0725
	RAL	EZO89		0725	65	0228	0583
	STL	W0007		0583	20	1973	0576
		E2030		0576		1129	0633
	STL	W0006		0633	20	1974	0827
	RAL	E2031		0827	65	0380	0535
	100	L $\mathrm{zzaA}^{\text {a }}$	EOOAR	0535	69	0338	1907
E8048	00	0000	L82AA	0000	00	0000	0408
L日zaA	NOM	8000	8000	0338	00	8000	8000
E2031	00	0007	0000	0380	00	0007	0000
E 2030	00	0000	0027	1129	00	0000	0027
E 2029	00	0000	0044	0228	00	0000	0044
E 2028	00	0000	002%	0777	00	1000 0000	0028 0029
E2027	00	0000	0029	0526	00	0000	0029
E 2026	00	0000	0041	0675	00	0000	0041
E 2025	00	0000	0030	0574	00	0000	0030
E 2024	00	0000	0031	0541	00	0000	0031
E2023	00	0007	0045	0330	00	0007	0046
E2022	00	0000	0050	0426	00	0000	0050
E 2021	00	0000	0047	0575	00	0000	0047
E 2020	00	0000	0051	0474	00	0000	0051
E 2019	00	0000	0052	0309	00	0000	0052
E2018	00	0007	0032	0479	00	0007	0032
E 2017	00	0000	0032	0326	00	0000	0032
E 2016	00	0000	0045	0325	00	0000	0045
E 2015	00	0000	$004 n$	0324	00	11000	0046
E 2014	00	0000	0003	0276	00	1000	0002
E2013	10	0000	0051	0387	10	0000	0051
E2 213	10	0000	00.53	0186	10	0000	0053
E 20111	00	0000	000.1	0180	00	9000	0006
E 2010	00	0000	0003	0191	00	0000	0003
E 2009	00	0001	0009	0174	00	0001	0009
E2008	00	0003	0019	0090	00	0003	0019
E 2007	00	0000	0000	0289	00	0000	0000
E 2006	00	0005	0001	0128	00	9005	$0 \% 01$
E 2005	00	0000	002 C	0277	00	3000	0022
E 2004	00	0000	0023	0176	00	0000	0023
E 2003	00	0000	0024	0175	00	0000	0024
E 2002	00	0000	0025	0074	00	0000	0035
E 2001	808	0000	$002 n$	0102 1991	00	0000 0000	0026 1995

SOAP
 Program
 for
 $\Psi_{\text {area }}$

Programmed
by
Dr. Thomas S. Parker

IBM 650
Kansas State University

EXPLANATION OF PLATE XXVI

Photograph of drop column, corresponding to drawing of drop column presented in Plate II.

PLATE XXVI

AN INTRODUCTION TO A NEW CONCEPT:
THE DYNAMIC STABILITY OF
DISKS FREELY DESCENDING IN A FLUID MEDIA

by

BILLY LEE HMMES, SR.
B. S., Kansas State Univeraity of Agriculture and Applied Science, 1958

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Chemical Engineering

KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE

ABSTRACT

This study pertained to the characteristics of the motions of particles falling freely in a fluid.

There were four objectives to this investigation. The first was to refine the mathematical definition of a property of motion of each particle as it freely descended in an infinite expanse of fluid. This property was to be named dynamic stability. The second objective was to actually measure the behavior of the motion of each particle and subsequently calculate values of dynamic stability. The third was to observe and define the type of motion exhibited by each particle falling freely in a fluid. The fourth was to correlate the results of two and three.

The dynamic stabilities were found by dropping a series of particles, one at a time, through a glass column containing triethylene glycol. The descending particles were filmed on moving pictures and, from the individual frames of this film, measurements were made of the helghts of the particles at equal increments of time. From these measurements a least squares line was calculated for the path of each particle. The mean deviation of the actual path of the particle from the least squares line gave dynamic unstability; the reciprocal of this quantity was taken as dynamic stability.

These investigations were conducted with disks - approximately one inch in diameter, a quarter inch thick, and of various weights and moments of inertia - descending in triethylene glycol at 88 to $90^{\circ} \mathrm{F}$ at Reynolds number, based on D_{s}, ranging from 78 to 640 .

It was found that a disk, in a free-fall descent through triethylene glycol, exhibited one of three postulated types of motion; 1. e. stable,
wave I, and wave III. It was further postulated that wave I motion consisted of subtypes; wave I-A and wave I-B. The distinction between these subtypes was shown by a fluctuation in the values of dynamic stability.

A relationship was found between all the postulated types of motion in triethylene glycol and the dynamic stabilities, $\mu / \sqrt{s^{2}}$. x^{*} Disk 6, exhibiting stable motion, had dynamic stabilities between 11.49 to 14.92 reciprocal cm. Disks postulated as exhibiting wave I-A, I-B, and III motions had ranges of dynamic stabilities of 6.02 to 8.55 reciprocal $\mathrm{cm} ., 4.15$ to 5.46 reciprocal cm. , and 0.44 to 2.01 reciprocal cm., respectively. Each range of dynamic stabilities, corresponding to a particular type of subtype of motion, was distinct and separate.

From a comparison of the physical properties of the disks with the types of motion assigned each disk it was found that a low dynamic stability was associated with a high moment of inertia relative to weight of the disk. From a comparison of Reynolds numbers for each disk with the types of motion it was found that a Reynolds number, based on D_{s}, of less than one hundred was associated with stable motion.

This study shows that dynamic stability of disks is measurable and therefore must exist. The measurable dynamic stabilities also may be utilized to predict the types of motion of disks descending in a fluid media.

[^0]: *Private commications

