PIOIERTIE CT ABFTRACT VECTOR EPACTS

by

DCNALD HUDECN MABEY
B. S., Kaneat etate Univereity, 1962

A MAETER'S REFCIT

Eubmitted in portial fulfillment of the recuiremente for the depree

MACPEF OF SCIENCE

Depertment of Mathematice

KANSAE ETATE UNIVEREITY Manhnttan, Kaness
1.063

Approved by:

table of contente

INTRODUCTICN 1
VECTCR EPACES 2
ChANGE OF BAEIE 15
Ieomorph1em 17
INNER PFODUCT EPACES 20
Orthogonallty 23
ACRMC WLEDGEMENTS 28
REFIRENCES $? 9$

INTRODUCTICN

Frequently there are mathematical systeme which appear to be cuite different and yet if the central theory of each eyetom ie expmined, common properties may be found. The obeerver may try to brine euch diveree eypteme under a einfle headine by extracting all properties common to these eyeteme and lieting these $A \varepsilon$ poetulates for an otherwiee unrestricted syetem.

It ehould be mentioned that by a postulate is not meant a eelr-evident truth or n etptement which cannct be proven, but rather en aceumed property. The poetulates P appearine in a eet \mathbb{E} are aseumptions made about the elemente of S. The system S iteelf coneiets of elemente and operatione, eecumptione nbout both and finally coneecuences or theoreme derived from the aeeumptione. Whenever a eyetem C ie found to eatiefy the poetulatee P then the theoreme of E can be applied to C. It should be noted that different approaches to a particular eyetem con be made. In one approsch a property may be asfumed while in another apprcach this eame property mpy be a theorem derived from other eesumed properties.

Often in various parte of mathematice one is confrented With 2 eet in which it 1 E meningful and interestinf to denl With "linear combinatione" of the elemente of a pet. Examplee of euch inear combinatione are found in the calculue and the familiar three-dimensional Ruclidean space. In thie report s mathematical eyetem which ie a ueeful abetraction of the type mentioned above will be defined and reeultine propertiee examined.

The abstract nature of the materiel presented ennobles one to apply the properties of a "vector space" to any set of elements which entiefy the definition. Except for the lest section on "Inner producte", no restriction ie made ae to the field over which a vector space is defined.

VECTCF EPACT

Definition 1. A vector epece conelete of the following:

1) B field F of Ecalare;
2) 8 et V of vectors;
3) an operation celled addition, indicated by + , which ie
a binery composition in V such that
a) addition ie closed, α, β contained in V implies $\alpha+\beta$ is contained in V,
b) addition $1 e$ commutative, $\alpha+\beta=\beta+\alpha$,
c) Edition ie aerocietive, $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$,
d) there exists a unique vector 0 , exch that
$\alpha+\mathbb{Q}=\mathbb{D}+\alpha=\alpha$, for ell α in V ,
e) for each α in V there exiete a unique inverse $-\alpha$ such that $\alpha+(-\alpha)=\varnothing$;
4) an operation called eceler multiplication such that for
every α, β in V and a, b, in F
a) scalar multiplication is closed, α in V and a in F

1mpliee \& $\alpha 1 \varepsilon$ in V,
b) $a(\alpha+\beta)=a \alpha+a \beta$,
c) $(n+b) \alpha=a \alpha+b \alpha$,
d) $(n b) \quad \alpha=n(b \propto)$,
e) $1 \quad \alpha=\alpha$, where 1 ie the 1dentity element in F.

If in any particular diecuesion, no confueion can ariee, the vector epace will be dencted by V. However, if the field hee not been previcuely epecified, then it will be enid that V is over F, where F is the field over which the vector space is defined.

Theorem 1. For 0 in the field F and any α in the vector epace $\mathrm{V}, \circ \quad \alpha=\mathbb{D}$.

Procf. From the property of the additive 1Centity of the field $F,(A+0)=a$ and from (4 c) of Definition 1 , $(a+0) \quad \alpha=a \quad \alpha+0 \quad \alpha$. Hence $a \quad \alpha=a \quad \alpha+0 \quad \alpha$ and since the edditive identity of the vector epece is unicue, $0 \alpha=\mathbb{D}$.

In the definition of a vector epace the vectore -1α end $-\alpha$ are both conelfered. The dietinction between these vectore should be noted. While $-1 \propto$ is a ecelar multiple, $-\alpha$ is not. The following theorem givee the exact relation between the two.

Theorem 2. For α end $-\alpha$ in V and -1 in $\mathbb{F},-1 \alpha=-\alpha$.
Procf. $\alpha+(-1) \alpha=1 \alpha+(-1) \alpha=(1+(-1)) \alpha=0 \alpha=0$.
Hence $-1 \propto 18$ the additive inverse of α and thue $-1 \alpha=-\alpha$.
Example. Conelder the n-tuple spoce, $V_{n}(F)$, where $F 1 \varepsilon$ any fleld end let V be the eet of all n-tuplee, $\alpha=\left(\beta_{1},{ }_{2}, \ldots, a_{n}\right)$, of ecolere where $a_{1} 1 \varepsilon$ in F. If $\beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with b_{1} in F, then the eum ie defined by

$$
\alpha+\beta=\left(r_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) .
$$

The ecaler product $i s$ defined by

$$
c \alpha=\left(c A_{1}, c A_{2}, \ldots, c A_{n}\right)
$$

To ehow that a vector epace has been defined, one must ehow
that all of the properties of (3) and (4) of the definition hold.
For ($3 a$), take $\alpha+\beta=\left(a_{1}+b_{1}, a_{2}+b_{p}, \ldots, a_{n}+b_{n}\right)$. since the field ie closed under addition $a_{1}+b_{1}=c_{1}$ where c_{1} ie in F. Then $\alpha+\beta=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. Hence the pet 18 closed under addition.

To show that (Bb) ie satisfied take
$\alpha+\beta=\left(e_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)$
$=\left(b_{1}+a_{1}, b_{p}+\varepsilon_{2}, \ldots, b_{n}+a_{n}\right)=\beta+\alpha$, since the eonlare in F are commutable.

For (z_{c}) take

$$
\begin{aligned}
\alpha+(\beta+\boldsymbol{r}) & =\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}+c_{1}, b_{2}+c_{2}, \ldots, b_{n}+c_{n}\right) \\
& =\left(a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{n}+c_{2}\right), \ldots, a_{n}+\left(b_{n}+c_{n}\right)\right) \\
& =\left(\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}, \ldots,\left(a_{n}+b_{n}\right)+c_{n}\right) \\
& =(\alpha+\beta)+r,
\end{aligned}
$$

since the ecalare of F are associative.
To verify (Bd) take $\alpha+\mathbb{D}$, where $\mathbb{D}=(0,0,0, \ldots, 0)$
and 0 ie the additive 1 dentity of F. Then $\boldsymbol{\alpha}+\mathbb{D}$
$=\left(a_{1}, a_{2}, \ldots, a_{n}\right)+(0,0, \ldots, 0)=\left(a_{1}+0, a_{2}+0, \ldots, a_{n}+0\right)=\alpha$.
(Be) 1 e verified by talking $-\boldsymbol{\alpha}=\left(-a_{1},-a_{2}, \ldots,-a_{n}\right)$
where $-a_{1}$ iE the additive inverse of r_{1} in F. Then $\alpha+(-\alpha)$ $=\left(\theta_{1}-a_{1}, a_{2}-\theta_{2}, \ldots, a_{n}^{-a_{n}}\right)=0$.

It $i s$ obvious that if $i f$ taken $a \in$ the identity of multiplication in F, that $1 \boldsymbol{\alpha}=\boldsymbol{\alpha}$. This shows that property (Ae) hole.

To show that (Ha) nolde, take $\mathrm{c} \boldsymbol{\alpha}=\left(\mathrm{cn}_{1}, \mathrm{cn}_{2}, \ldots, \mathrm{cn}_{n}\right)$. since F ie closed under multiplication $\mathrm{Cn}_{1}=d_{1}$, with d_{1} in F . Hence c $\boldsymbol{\alpha}=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ and the set 18 closed under ecoler
multiplication.
In ehowing (4b) take
$a(\alpha+\beta)=\left(a\left(a_{1}+b_{1}\right), a\left(a_{2}+b_{2}\right), \ldots, a\left(a_{n}+b_{n}\right)\right)$

$$
\begin{aligned}
& =\left(a a_{1}+a b_{1}, a a_{2}+a b_{2}, \ldots, a a_{n}+a b_{n}\right) \\
& =\left(a a_{1}, a a_{2}, \ldots, a a_{n}\right)+\left(a b_{1}, a b_{2}, \ldots, a b_{n}\right) \\
& =a \alpha+a,
\end{aligned}
$$

Now toke

$$
\begin{aligned}
(a+b) \alpha & =\left((a+b) a_{1},(a+b) a_{2}, \cdots,(a+b) a_{n}\right) \\
& =\left(a a_{1}+b a_{1}, a a_{2}+b a_{2}, \ldots, a a_{n}+b p_{n}\right) \\
& =a \alpha+b \alpha .
\end{aligned}
$$

This shows that (4c) holde.
To ehow (4d) Elmply take $(a b) \alpha=\left(s b c_{1}, a b e_{2}, \ldots, a b n_{n}\right)$
$=a\left(b a_{1}, b a_{2}, \ldots, b e_{n}\right)=a(b \alpha)$.
EInce it hae been shown that the set of ell n-tuples satiefies the definition, it conetitutee a vector spece. Definition ?. Let V be a vector epace over a fielo F. A eubepnce of V is defined as a eubset W of V which ie nieo a vector epace.

With thie definition the following theorem can be etated.
Theorem 3. A nonempty subeet W of V ie a eubepace of V if, and only if, W is closed under addition and ecalar multiplication. Thet ie, if α, β are in W and c ie in F, then $c \alpha+\beta$ ie in W.

Proof: If W is a nonempty eubeet of V end cloeed under addition and ecalar multiplication then (4a) and (3a) fre sat1efied. The eubset W has at least one vector α euch that $-1 \alpha+\alpha=-\alpha+\alpha=\rrbracket 181 n W$, eince 1t ie cloeed under
scalar multiplication. Also if $\propto 1 \varepsilon$ in W and c is in F, $c \boldsymbol{\alpha}=c \boldsymbol{\alpha}+\mathbb{1}$ is in W, in particular $-\boldsymbol{\alpha}=-1 \boldsymbol{\alpha}$ is in W. Again if α, β are in W then ($4 b$), ($4 c$), (4 d), and (4 s) hold In W since they hold in V and W is over the came field F.

Conversely, if W ie a subspace of V, then by definition, W is closed under edition end scalar multiplication.

Theorem 4. If S and T are subspaces of V then thee vectors belonging to both Σ and T form a eubepace of V. That ie $\Sigma \cap T=W$ is a subspace of V, where $\Sigma \cap T=W$ represents the intersection of ε and T.

Proof: If α, β are contained in W, then $c \alpha+\beta$ is in S and alec in T by Theorem 3 , and hence in W. If $c \alpha+\beta$ Ie in W then W is a subspace by Theorem 3.

Definition 2. A vector β is a inner combination of the vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, if there exist ecalare $c_{1}, c_{2}, \ldots, c_{n}$, in F such that

$$
\begin{aligned}
\beta & =c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{n} \alpha_{n} \\
& =\sum_{1=1}^{n} c_{1} \alpha_{1} .
\end{aligned}
$$

Taking a fixed set of vectors $\propto_{1}, \boldsymbol{\alpha}_{n}, \ldots, \propto_{n}$, over a field F, it can be easily shown from Theorem 3 that the set of all anear combinations, $c_{1} \propto_{1}+c_{2} \propto_{n}+\ldots+c_{n} \boldsymbol{\alpha}_{n}$, constitutes a vector space. The set of all linear combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ w111 be denoted by
$\left[\begin{array}{llll}\alpha_{1}, & \alpha_{2}, & \ldots, & \alpha_{n}\end{array}\right]$
The vector epee $\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]$ is the smallest

Eubeet containine all of the vectore α_{1}. More generally, etertine with en arbitrary set of vectore, the eet of all linenr combinatione of all finite eubeete ie the emallest eubeprces which contains the orieinal eet. If thie technicue ie applied to find the emallest eubepece contrinine two eubrpaces s and T, 1t ie eeen that a linear combination of elemente of S and T reduces to an element $\alpha+\beta$, with α ins and β in T. Thio proves Theorem 4.

Theorem 2. If E and T are eubepacee of V then the eet of all sume, $\alpha+\beta$, with α in S and β in T, if a subepece called the Inear gum of S and q and written $S+T$.

The inneer eum clearly conteine S and T and $i E$ contained In any other subepece P containine S and T. Properties of the 11nenr eum may be stated an followe:

1) $S \leqslant S+T, T \leqslant E+T$
2) $S \leqslant P$ and $T \leqslant P$ imply $S+T \leqslant P$, where $S \leqslant P$ mone that S ie contained in the eubepace P.

Definition 4. A set of vectors $\alpha_{1}, \alpha_{n} \ldots, \alpha_{n}^{1 \varepsilon}$ sald to be lineerly dependent if there exiet scalare $c_{1}, c_{n}, \ldots . c_{n}$ in F, not all zero, such thot
(5) $\quad c_{1} \quad \alpha_{1}+c_{2} \quad \alpha_{2}+\ldots+c_{n} \alpha_{n}=\mathbb{D}$.

A eet which is not linearly dependent is called inenrly independent.

In other worde, for $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ to be innearly independent all of the $c_{1}^{\prime} \varepsilon$ muet be egunl to zero in order for (5) to hold.

Definition 5. If $s 18$ the eubepece conelstine of sil

11 near combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, then $\Sigma 18$ celled the apace evened (generated) by the vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. No stipulation is made that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, be in early independent in order to span a space. This case will be taken up shortly.

Before this, however, a relation between independence and linen combinations con be stated.

Theorem 6. The nonzero vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ in a vector space V are linearly dependent if and only if one of the vectors is a linear combination of the others.

$$
\begin{aligned}
& \text { Proof: If } \alpha_{1} \text { is a I1 near combination of } \\
& \alpha_{1}, \alpha_{2}, \ldots, \alpha_{1-1}, \alpha_{1+1}, \ldots, \alpha_{m} \text { then } \\
& \alpha_{1}=c_{1} \alpha_{1}+\ldots+c_{1-1} \alpha_{1-1}+c_{1+1} \alpha_{1+1}+\ldots+c_{m} \alpha_{m} .
\end{aligned}
$$ The

$c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{1-1} \alpha_{1-1}+c_{1+1} \alpha_{1+1}+\ldots$ $+c_{\mathrm{m}} \alpha_{\mathrm{m}}-\alpha_{1}=0$. Hence at lest one c_{1} ie nonzero, namely -1 , thus eatiefyine the definition of linen dependence.

Conversely, supper the set of $\alpha_{1}{ }^{\prime}$ s 1 s linearly dependent.
Then $c_{1} \alpha_{1}+c_{2} \alpha_{2}+\ldots+c_{1} \alpha_{1}+\ldots+c_{T n} \alpha_{\infty}=\mathbb{D}$,
where $c_{1} \neq 0$ for some 1. Thus
$-c_{1} \alpha_{1}=c_{1} \alpha_{1}+\ldots+c_{1-1} \alpha_{1-1}+c_{1+1} \alpha_{1+1}+\ldots+c_{m} \alpha_{m}$, and

$$
\begin{aligned}
& \alpha_{1}=-\frac{c_{1}}{c_{1}} \alpha_{1}-\frac{c_{2}}{c_{1}} \alpha_{2}-\ldots-\frac{c_{1}-1}{c_{1}} \alpha_{1-1} \\
& -\frac{c_{1}+1}{c_{1}} \alpha_{1+1}-\ldots-\frac{c_{m}}{c_{1}} \alpha_{m} \\
& =d_{1} \alpha_{1}+d_{0} \alpha_{2}+\ldots+d_{m} \alpha_{m} .
\end{aligned}
$$

Hence α_{1} is e innenr combination of the reet of the vectore. This provee the theorem.

Definition 6. The dimension of n vector spnce V is the maximum number of inearly independent vectore in V and will be denoted by $d[v]$

Definition 7. A besie of a vector epace V ie a set of inearly independent vectore whioh epene V.

Cne cannot conclude from the above derinition thnt a vector epace V hae one and only one betie. For exnmple, conelder $V_{3}(f)$, where $\mathbb{R} 18$ the real fleld. The vectore $(1,0,0),(0,1,0)$, and $(0,2,1)$ will eenerate $V_{3}(R)$, but this eome epace cen be genereted by the vectore $(1,0,0),(0,1,0)$, and $(0,0, \cdots)$. It con enelly be ehown that each set consiete of inerriy independent vectore and hence forme a beele for $V_{3}(R)$.

Epecial note ie made of the vectore $(1,0,0),(0,1,0)$, and $(0,0,1)$. Theee vectore nre called the unit vectore of $V_{3}(F)$. In eenersl the unit vectore of $V_{n}(F)$ are

$$
\begin{aligned}
& u_{1}=(1,0,0, \ldots, 0) \\
& u_{2}=(0,1,0, \ldots, 0) \\
& \ldots \\
& u_{n}=(0,0,0, \ldots, 1),
\end{aligned}
$$

where 118 the identity olement of F. The notetion u_{1} will be reeerved for the unit vectore. It is onelly seen that these vectore form a basie for $V_{n}(F)$.

Theorem 7. If $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ form b basis for a vector epace V, then every vector in V enn be expressed unicuely ae a lineer combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

Proof. Every vector in V ie n inner combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ since the $\alpha_{1}{ }^{\prime}$ s even V. Suppose there ere two representations of a vector β. Then
$\beta=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$
$=b_{1} \alpha_{1}+b_{2} \alpha_{2}+\ldots+b_{n} \alpha_{n}$. Now ($p_{1}-b_{1}$) α_{1}
$+\left(a_{2}-b_{2}\right) \alpha_{2}+\ldots+\left(a_{n}-b_{n}\right) \alpha_{n}=\mathbb{Q}$ nd $\left(n_{1}-b_{1}\right)=0$ for all 1 since the α_{1} 'e ere independent. Thus $a_{1}=b_{1}$ and the unicquenere is establisher.

Theorem 8. The number of vectors in a beetle of a vector ep ace V is equal to the dimension of V .

Proof. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\pi \mathbb{I}}$ evan the vector epnce V which has dimension n and let r equal the maximum number of ineerly independent vectore in $\alpha_{1}, \alpha_{0}, \ldots, \alpha_{m}$. Now, renumbering if neceseary, let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be the in early independent vector e friml the eeneretine set. Obviously then $r \leqslant n$. Also $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}, \alpha_{r}+j, j$ $=1,2, \ldots, m-r$, ie a linearly dependent sect, expressed as $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{r} \alpha_{r}+n_{r+1} \alpha_{r+1}=0$, where $a_{r+j} \neq 0$, for $n_{r+j}=0$ would $1 m p 1 y$ the dependence of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$. Thus α_{r+1} is a linear combination of $\alpha_{1}, \alpha_{n}, \ldots, \alpha_{p}$, bo that if the elements of v are represented ae linear combination e of $\alpha_{1}, \alpha_{p}, \ldots, \alpha_{m}$, a term involving $\alpha_{r+j}, \rho>0$, cen be replaced by a inner combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$. Thus

$$
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} \text { ie n generating set for } V_{0}
$$

To show that $n \leqslant r$ and hence $r=n$, it must be shown that any eat of more than r linear combination e of
$\alpha_{1}, \quad \alpha_{2}, \ldots, \alpha_{r}$ ie 11nenrly dependent. To do this let $\beta_{1}, \beta_{2}, \ldots, \beta_{e}$ be a set of vectors in which each β_{1} Le a linear combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ and $E>r$. Then

$$
\begin{equation*}
\sum_{1=1}^{r} n_{1 j} \alpha_{j, 1}=1,2, \ldots, \varepsilon_{0} \tag{6}
\end{equation*}
$$

The existence of a get of scalar $c_{1}, c_{p}, \ldots, c_{\varepsilon}$, not all zero such that $\sum_{1=1}^{\varepsilon} c_{1} \beta_{1}=\emptyset$ will show the dependence of the β_{1}. It 1ε sufficient to choose the $c_{1}{ }^{\prime}$ e to estiefy the lInens system.

$$
\begin{equation*}
\sum_{1=1}^{r} p_{1 j} c_{1}=0, j=1, \cdots, \ldots, r \tag{7}
\end{equation*}
$$

since these expreseione will be the coefficients of the $\alpha{ }_{j}$ ध when in $\sum_{1=1}^{p} c_{1} \beta_{1}$, each β_{1} is replaced by its value in (6) and the terms are collected. A nontrivial solution of (7) always exiete since the number of un'nowne, e, exceeds the number of equations, r. Hence the $c_{1}{ }^{\prime} e$ exist and the ret $\beta_{1}, \beta_{2}, \ldots, \beta_{E} 1 \varepsilon$ dependent. The $n \leqslant r$ and from above $r \leqslant n$, hence $r=n$.

Since the dimension of a Given vector space V does not chance, an immediate consequence of Theorem 7 is the following corollary.

Corollary 1. All base of a vector space V include procleely the game number of vectors.

Using the results of corollary 1 another obvious result of

Thecrem 7 1e

Coroliery 2. Every basie of V, where $d[V]=n$, containe exactly n vectore.

It hae been show that the baele of a vector epace ie not unique. The variety of bases which cen exiet ie illuetrnted by the followine theorem.

Theorem 2. Any eet of inearly independent vectore, $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, in evector epece V of dimention n ie pert of e bacie nad cen be extended to a basie of V.

Proof. Lot $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be a beele for V. Then the set $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \ldots, \beta_{n}$ eppne v end is innearly de endent. By Theorem ε, the number of vectore In the basis is eçual to the dimeneion and by definition, the dimeneion i e the maximum number of vectore which are innencly Independent. Thus adding one or mere vectore resulte in a Ilnearly dependent eet. Since these vectore are dependent, at lenet one vector, which 1ε p innear combination of the othere, can be deleted and etill leave a eet of epennine vectore. By chooeing only thoes vectore which are innenr combinetione of those precedine them, none of the $\alpha{ }_{1}$ e will be eliminated eince they are linearly independent. By this procees all of the innenrly dependent vectore will be eliminated, leavine e eet of epennine vectore which are inenrly independent and hence forme a babie which will include $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathbb{m}}$. Thie provee the theorem.

Theorem 10. If a vector epace V ie the innear eum of two
eubepacee, S and T, where $: \cap T=\mathbb{D}$, then the union of eny bacis of E with any basie of T ie e bagie of V .

Proof: Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be a basie for $£$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{8}$ be a basis for T. Then these vectore epan V eince any vector in V cen be expreseed as a innear combination of them. There vectore are neceesnrily independent for if $\sum_{j=1}^{r} a_{1} \alpha_{1}+\sum_{j=1}^{e} b_{j} \beta_{j}=$ ©
then $r=\sum_{1=1}^{r} a_{1} \alpha_{1}=-\sum_{j=1}^{e} b_{j} \beta_{j}$.
One vector γ ie now represented ae a inear combination of the $\alpha_{1}{ }^{\prime} \varepsilon$ and aleo the $\beta_{1}{ }^{\prime} \varepsilon$ and hence must lie in both S and T. Ennce $S \cap T=\mathbb{Q}, \quad \gamma=\mathbb{Q}$ and hence $a_{1}=b_{1}=0$. Therefore the epannine vectore of V are innerily independent and thue are a basie for V. Thie theorem enn be extended to the case of the linear sum of a finite number of eubepaces.

By ueing the reeult of Theorem ε, the followine corollary to Theorem 10 can be ehow.
corcllary. If the vector spece V ie the ilnear sum of two subspaces, ε and T, where $s \cap T=\mathbb{T}$, then $\mathbb{d}[\mathrm{V}]=\mathrm{d}[\mathrm{e}]+\mathbb{d}[\mathrm{T}]$.

Procf. Elnce Theorem ε etatee that the dimeneion of a vector epece ie the number of vectore in any bneie, the proof of Theorem 10 ehowe that when $d[s]=r$ and $d[T]=\varepsilon$ then $\mathrm{d}[\mathrm{V}]=r+\varepsilon$ 。

If the restriction of $\Sigma \cap T=\mathbb{D}$ ie removed from \mathcal{S} and T then a more eeneral etatement about a vector epece $\mathrm{V}=\mathrm{S}+\mathrm{T}$ can be made.

Theorem 11. Let s and T be any two eubepecee of vector space V. Then

$$
d[E]+d[T]=d[E \cap T]+d[E+T] .
$$

Proof. Let $\gamma_{1}, \gamma_{2}, \ldots . \gamma_{t}$ form a basie for s nT. Then by theorem $9, \gamma_{1}, \ldots, \gamma_{t}, \alpha_{1}, \ldots, \alpha_{r}$ and

$$
\gamma_{1}, \ldots, \gamma_{t}, \beta_{1}, \ldots, \beta_{\varepsilon} \text { form bare for } g \text { and } T
$$ respectively. The vectors

$$
\alpha_{1}, \ldots, \alpha_{r^{\prime}} \beta_{1}, \ldots, \beta_{e}, \gamma_{1}, \ldots, \gamma_{t} \text { obviously }
$$ even $\varsigma+T$. To establish independence let

$$
\sum_{1=1}^{t} c_{1} \gamma_{1}+\sum_{j=1}^{r} a_{j} \alpha_{j}+\sum_{k=1}^{8} b_{k} \beta_{k}=\oplus .
$$

Then

$$
\sum_{j=1}^{r} e_{j} \alpha_{j}=-\sum_{i=1}^{t} c_{t} \quad \Upsilon_{t}-\sum_{k=1}^{a} b_{k} \beta_{k} \text { ie in } T .
$$

As a linear combination of $\alpha_{1}, \ldots, \alpha_{r}$ this vector is alec
in ε, hence in $\varepsilon \cap T$, which mesne $\sum_{j=1}^{r} a_{j} \alpha_{j}=\sum_{j=1}^{t} a_{1} \gamma_{1}$, whence

$$
\begin{equation*}
\sum_{j=1}^{r} a_{j} \alpha_{j}-\sum_{i=1}^{t} d_{1} r_{1}=0_{j} \tag{8}
\end{equation*}
$$

for ecolare \mathbb{d}_{1}. The independence of the basis vectors of s implies all of the coefficients in (8) are zero. Thu every $z_{1}=0$. Hence $\sum_{i=1}^{t} c_{1} \gamma_{1}+\sum_{k=1}^{t} b_{k} \beta_{k}=\mathbb{0}$. Now the Independence of the basis vectors of T miles that all c_{1} and b_{k} vanish. The conclusion follows from $d[E]+d[T]$ $=(t+r)+(t+s)=(t+r+e)+t=d[t+T]+[S \cap T]$.

Change of bacis

If the set $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ forme a beele for a vector epace V , then of coure eny vector, β, in V cen be uniquely expreesed in terme of that baeie, nemely by $\beta=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}$. It hes been ehown that this vector β can be uniquely expreeced in terms of other baees of V. If the baeis is known, ery $\alpha_{1}, \ldots, \alpha_{n}$, then the vector can be completely deecribed by the ecalare $a_{1}, a_{2}, \ldots, a_{n}$. This leade to the followine definition. Definition 8. For any vector β in a vector space V deecribed by $a_{1} \alpha_{1}+a_{2} \quad 2+\ldots+a_{n} \alpha_{n}$ the ecalare $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ are called the coordinatee of β relative to the besis $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$.

It is obvious that when a vector 18 deecribed by 1 te coordinates, these coordinates must be given relative to a definite besie.

A eimple exnmple would be the 3 -tuple vector (4, 8, 3). The coordinatee relative to the unit vectore would of course be $[4,8,3]$, while relative to the baris $(1,0,0),(0,1,0)$, $\left(0,0, \frac{2}{2}\right)$ they would be $[4,8,6]$.

The problem or expreseing a vector, α, in terme of one bacie, B, if the coordinates of α are Eiven relative to another basis A, now arlees.

However before thie problem can be eolved another problem must be eliminated. Thie is the problem of orderine. If

$$
\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\sum_{1=1}^{n} a_{1} u_{1} \text {, then a defin1te }
$$

ordering of the basie vectore is determined eince it ie easily seen which is the "firet" vector in the baeis, which is the "eecond" and so on. Here

$$
u_{1}=\left(\delta_{11}, \delta_{12}, \ldots, \delta_{1 n}\right), 1=1,2, \ldots, n,
$$

where

$$
\delta_{1 \rho} \text { ie Kronecker'e delte. }
$$

However, for any other bacie, B, such an orderine may not be eo natural and therefore it is necegeary to impose such an ordering so that the $1^{\text {th }}$ coordinate of a vector may be determined. The question ie one of how to order n set ε of n elemente. More than one method can be ueed but the following will be ued here.

Definition 2. An ordering of the eet S having n elemente 1s a function from the eubset, $\mathbb{N}=\{1,2, \ldots, n\}$ of the eet of positive integere onto the eet E euch thet

1) if p and q are contained in $N, p \neq 1$, then $f(p) \neq f(q)$ ere contained in ε.
2) If a is contained in \subseteq then $f(p)=a$ has a colution p, Which ie contained in \mathbb{N} and is unique. The function is eald to be a onc-to-one correepondence.

From thie followe directly the definition of an ordered baeie.

Definition 10. An ordered basie of a vector space V is a begie together with a fixed orderine of the elements.

Thus a besie B, ie an ordered besie if it ie clenrly understood which vector of $B 18$ the $i^{\text {th }}$ one.

The actusl relation between the coordinated $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$
of a vector α relative to a basie B and the coordinates $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ relative to a basie A con be given by

$$
\left[b_{1}, b_{2}, \ldots, b_{n}\right]=p\left[a_{1}, a_{2}, \ldots, a_{n}\right]^{\prime} 1
$$

Where P ie on invertible matrix.

Ieomorphiem

$$
\text { Now let } B=\beta_{1}, \beta_{2}, \ldots, \beta_{n} \text { be an ordered basis }
$$ for a vector epee V. Then for every β in V, having coordinates $\left[b_{1}, b_{2}, \ldots, b_{n}\right]$, there 18 a unique n-tuple $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ of scalars such that $\beta=\sum_{1=1}^{n} b_{1} \beta_{1}$. Since it has been shown that every vector has a unicue expression as a linear combination of any eft of basis vectors, this n-tuple is unicue.

consider now $\alpha=\sum_{i=1}^{n} a_{1} \beta_{1}$, then

$$
\alpha+\beta=\sum_{1=1}^{n} a_{1} \beta_{1}+\sum_{1=1}^{n} b_{1} \beta_{1}=\sum_{1=1}^{n}\left(a_{1}+b_{1}\right) \beta_{1}
$$

to that the $1^{\text {th }}$ coordinate of $\alpha+\beta$ in this ordered bayle ie $a_{1}+b_{1}$. Likewise the $1^{\text {th }}$ coordinate of $c \beta$ ie $c b_{1}$.

It le easily noted that for every eft of coordinates for a vector space V, there corresponds a set of n-tuples from $V_{n}(F)$. For the vector $\sum_{1=1}^{n} a_{1} \beta_{1}$ there correeponde the n-tuple $\left(a_{1}, a_{2}, \ldots, n_{n}\right)$.

To describe this type of relation between any two vector space the following definition is given.

[^0]Definition 11. A function f on V to V^{\prime}, where both vector epacee are over the same fleld F , is called an 1eomorphiem between V and $V '$ if

1) f ie a one-to-one correspondence,
2) f ie a linear function, that ie $\mathrm{f}(\mathrm{a} \alpha+\mathrm{b} \beta)=a f(\alpha)$ $+\operatorname{br}(\beta)$ for all a, b in F and α, β in V. The two vector epaces V and V^{\prime} are said to be isomorphic if euch a correspondence existe.

Since it was shown that the n-tuplee whinh correepond to the eume and scalar multiplee of vectore in a vector epace V are preeerved under the correrpondence exhlblted above and the correepondence is one-tc-one, the following theorem is proved.

Theorem 12. A vector epace of dimension n over F ie isomorphic to $V_{n}(F)$.

Theorem 13. If V and V ' are vector spaces of dimeneion n over F, each one-to-one correspondence between a basis for V and a bseie for V^{\prime} defines an 1somorphiem between V and V^{\prime}. All ieomorphieme on V to V^{\prime} are obtainable in this way.

Proof. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ nnd $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be bases for V and V^{\prime} respectively and f be a one-to-one correepondence between them euch that $f\left(\alpha_{1}\right)=\beta_{1}, 1=1,2, \ldots, n$. Now extend f to n one-to-one correrpondence of V to V^{\prime} by definine

$$
p\left(\sum_{1=1}^{n} a_{1} \alpha_{1}\right)=\sum_{i=1}^{n} a_{1} r\left(\alpha_{1}\right)=\sum_{1=1}^{n} a_{1} \beta_{1} .
$$

By definition 11 this ie an leomorphiem.
Conversely, if f is an leomerphism on V to V^{\prime} and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ is a basis for V, eet
$f\left(\alpha_{1}\right)=\beta_{1}, 1=1,2, \ldots, n$. sInce
$a_{1} \alpha_{1}+\cdots+a_{n} \alpha_{n} \neq \mathbb{D}$ and $\mathrm{f}(\mathbb{D})=\mathbb{D}$, then
$f\left(a_{1} \alpha_{1}+\ldots+a_{n} \alpha_{n}\right)=a_{1} \beta_{1}+\ldots+a_{n} \beta_{n} \neq 0$.
Hence the $\beta_{1}^{1} \varepsilon$ are linearly independent. Now let
$\alpha=a_{1} \alpha_{1}+\ldots+a_{n} \alpha_{n}$ be any bector in V. Then
$f(\alpha)=\beta=I\left(0_{1} \alpha,+\ldots+a_{n} \alpha_{n}\right)$
$=a_{1} f\left(\alpha_{1}\right)+\ldots+a_{n} f\left(\alpha_{n}\right) 18$ a vector in V^{\prime} carespending to α in V. Ene β can be any vector in V^{\prime} and $\beta=a_{1} \beta_{1}+\ldots+a_{n} \beta_{n}$ and the $\beta_{1}{ }^{\prime} e$ are innearly independent, the set $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ forme a basie for V^{\prime}. since fie linear

$$
f\left(\sum_{1=1}^{n} a_{1} \alpha_{1}\right)=\sum_{1=1}^{n} a_{1} f\left(\alpha_{1}\right)=\sum_{1=1}^{n} B_{1} \beta_{1},
$$

thus f is on leomorphiem of the type above.
One might wonder nt this point why come ordered basis of V is not selected and each vector described by its corresponding n-tuplee of coordinates, since the operation with n-tuples ie very convenient. This would defeat the purpose of working with abstract vector spaces for two reseone. First the aricmatic definition of vector spaces indicates the attempt to len rn to reason with vectors ae abstract ifebraic eyeteme. Second, even in thee eituntione in which coordinates are read, the significant results follow from the ability to chance the coordinate system, 1 . e., to change the ordered basie.

INNER $\angle \mathrm{FCDUCT}$ SPACES

In this section only vector spaces token over subsets of the complex fielde will be considered. If this restriction ie made then the concepts of "angle", "length", and "dietence" take on meaning. Taking the field to be the complex field will result in a unitary vector space. The concept of angle will be developed in order so discuss perpendicularity of two vectors. The reader can early see the application of the theorems to the special and familiar cage of two and three dimensional Euclidean apace.

The concept and properties of an inner product will be developed first and then application e of this inner product will be made to vector spaces.

Definition 12. If F is a subfield of the field of complex numbers and $V i_{s}$ e vector space over F, then the inner product on V ie e function which eefiens to on ordered pair of vectors α and β in V , a scalar $(\alpha \mid \beta)$ in F in exch a way that

$$
\begin{aligned}
& I_{1} \cdot(\alpha+\beta \mid \gamma)=(\alpha \mid \gamma)+(\beta \mid \gamma) \\
& I_{2} \cdot(\alpha \mid \beta)=a(\alpha \mid \beta) \\
& I_{3} \cdot(\alpha \mid \beta)=(\beta \mid \alpha), \text { where }(\alpha \mid \beta) 1 e \\
& \text { the complex conjugate of }(\alpha \mid \beta) \\
& I_{4} \cdot(\alpha \mid \alpha)>0 \text { if } \alpha \neq \mathbb{0} .
\end{aligned}
$$

Condition e I_{1}, I_{2} and I_{3} imply

$$
I_{5^{*}}(\alpha \mid e \beta+\gamma)=\bar{e}(\alpha \mid \beta)+(\alpha \mid \Upsilon) .
$$

Of course if F ie the real field, the complex conjugates are superfluous. If F ie the complex field, then the
conjucatee are necesersy beceuse the obvioue contradiction to I_{4},

$$
(\alpha \mid \alpha)>0 \text { and }(1 \alpha \mid 1 \alpha)=-1(\alpha \mid \alpha)>0
$$

would exiet.
Definition 13. If $\propto 12$ any vector in the vector space V, With an inner product defined on V, then the leneth of α ie defined to be the non-negative equare root

$$
(\alpha \mid \alpha)^{\frac{1}{2}}=\|\alpha\|
$$

If the length of a vector is unity then the vector is normal. Definition 14. The dietance between two vectore α and β In a vector epace V is $\|\alpha-\beta\|$.

One importent example of the inner product is the inner product of $V_{n}(F)$, which is called the atondard inner product. It 1ε defined on $\alpha=\left(a_{1}, a_{2}, \ldots, a_{n}\right), \beta=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ by

$$
(\alpha \mid \beta)=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n} .
$$

This ie often called the dot-product.
Attention ie now turned to introducine some particuler inner product to a vector epace. Particular emphesif will be placed on perpendicularity.

Definition 15. An inner product epace is a real or complex vector epace tocether with a epecified inner product on that epace. An inner product epace deilned over the real field is an Euclidean epace while if defined over the complex fleld it 18 a unitary epace.

Theorem 14. If V1e an inner product eppce, then for ony two vectore α and β in V and ecalar c in F

$$
\begin{array}{ll}
L_{1} \cdot & \|c \alpha\|=|c|\|\alpha\| \\
L_{2} \cdot & \|\alpha\|>01 f \alpha \neq 0 \\
I_{3} \cdot & \|\alpha\| \beta) \mid \leq\|\alpha\| \quad\|\beta\| \\
L_{4} \cdot & \|\alpha+\beta\| \leq\|\alpha\|+\|\beta\| .
\end{array}
$$

Proof: Statements L_{1} end L_{2} follow directly from Definition
13. The inecurilty L_{3} ie obvicue when $\alpha=\mathbb{D}$. When $\alpha \neq \mathbb{D}$ put

$$
\gamma=\beta-\frac{(\beta \mid \alpha)}{\|\alpha\|} \alpha
$$

then

$$
\begin{aligned}
& 0 \leqslant\|\gamma\|^{2}=\left(\left.\beta-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}} \alpha \right\rvert\, \beta-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}} \alpha\right) \\
& =(\beta \mid \beta)-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}}(\alpha \mid \beta)-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}}(\beta \mid \alpha)+\frac{(\beta \mid \alpha)^{2}}{\|\alpha\|^{4}}(\alpha \mid \alpha) \\
& =(\beta \mid \beta)-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}}(\beta \mid \alpha)-\frac{(\beta \mid \alpha)(\beta \mid \alpha)}{\|\alpha\|^{2}}+\frac{(\beta \mid \alpha)^{2}}{\|\alpha\|^{4}}\|\alpha\|^{2} \\
& =(\beta \mid \beta)-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}}[(\beta \mid \alpha)-(\beta \mid \alpha)+(\beta \mid \alpha)] \\
& =(\beta \mid \beta)-\frac{(\beta \mid \alpha)}{\|\alpha\|^{2}}[\beta \mid \alpha)=\|\beta\|^{2}-\frac{\left.1(\alpha \mid \beta)\right|^{2}}{\|\alpha\|^{2}}
\end{aligned}
$$

Hence $\|(\alpha \mid \beta)\|^{2} \leq\|\alpha\|^{2} \quad\|\beta\|^{2}$ and

$$
|(\alpha \mid \beta)| \leqslant\|\alpha\| \quad\|\beta\|
$$

low urine L_{z} end denoting the rent part of a complex
number x, by $\operatorname{Re}(x)$, it ie found that

$$
\begin{aligned}
\|\alpha+\beta\|^{2} & =\|\alpha\|^{2}+(\alpha \mid \beta)+(\beta \mid \alpha)+\|\beta\|^{2} \\
& =\|\alpha\|^{2}+2 \operatorname{Fe}[(\alpha \mid \beta)]+\|\beta\|^{2}
\end{aligned}
$$

Since $R_{0}(x) \leqslant\left|R_{0}(x)\right| \leqslant|x|$ and by Lu, $|(\alpha \mid \beta)| \leqslant\|\alpha\|\|\beta\|$, then Fe $[(\alpha \mid \beta)] \leqslant\|\alpha\|\|\beta\|$. Thus

$$
\begin{aligned}
\|\alpha+\beta\|^{2} & \leq\|\alpha\|^{2}+2\|\alpha\|\|\beta\|+\|\beta\|^{2} \\
& =(\|\alpha\|+\|\beta\|)
\end{aligned}
$$

Thus $\|\alpha+\beta\| \leq\|\alpha\|+\|\beta\|$, which proves I_{4}.
Remark. The inequality L_{3} ie known os the Cauchy-Echwartz Inequality or just as Echwertz'e inequality.

Theorem 15. In a unitary space distance hes the following properties.

$$
\begin{array}{ll}
D_{1} \cdot & \|\alpha-\beta\| \quad 011 \\
D_{2} \cdot & \|\alpha-\beta\|=\|\beta-\alpha\| \\
D_{3} \cdot & \|\alpha-\beta\|+\|\beta-\gamma\| \geqslant\|\alpha-\gamma\| \\
\text { Proof. SInce }\|\alpha-\alpha\|=\|0\|=\|0 \alpha\|=0\|\alpha\|=0
\end{array}
$$

by L_{1} and $\|\alpha-\beta\|>$ if $\alpha \neq \beta$ by L_{2}, D_{1} holds. The equation

$$
\|\alpha-\beta\|=\|-1(\beta-\alpha)\|=|-1|\|\beta-\alpha\|=\|\beta-\alpha\|
$$

proves D_{0}. Lastly, D_{3} follows from L_{3} elnce

$$
\|\alpha-\beta\|+\|\beta-\gamma\| \geqslant\|\alpha-\beta+\beta-\gamma\|=\|\alpha-\gamma\|
$$

Orthogonality

It ie convenient when difcueaine the angle between two vectors in the Euclidean plane, or uelng notetion given eerier, $V_{2}(R)$, to consider their cosines. If the notation $L(\alpha \mid \beta)$ denotes the angle between nonzero vectors α and β, then applying the low of cosines elves

$$
\|\alpha-\beta\|^{2}=\|\alpha\|^{2}+\|\beta\|^{2}-2\|\alpha\| \quad\|\beta\| \cos \langle(\alpha \mid \beta)
$$

Now

$$
\begin{aligned}
& \|\alpha-\beta\|^{2}-\|\alpha\|^{2}-\|\beta\|^{2} \\
= & ((\alpha-\beta) \mid(\alpha-\beta))-(\alpha \mid \alpha)-(\beta \mid \beta) \\
= & (\alpha-\beta \mid \alpha)-(\alpha-\beta \mid \beta)-(\alpha \mid \alpha)-(\beta \mid \beta)
\end{aligned}
$$

```
\(=(\alpha \mid \alpha)-(\beta \mid \alpha)-(\alpha \mid \beta)+(\beta \mid \beta)-(\alpha \mid \alpha)-(\beta \mid \beta)\)
\(=-2(\alpha \mid \beta)\).
Then coe \(\left\langle(\alpha \mid \beta)=\frac{(\alpha \mid \beta)}{\|\alpha\|\|\beta\|}\right.\).
```

Aleo for $V_{n}(R)$ chwartz' ${ }^{\prime}$ inequelity can be written in the form

$$
-1 \leq \frac{(\alpha \| \beta)}{\|\alpha\|\|\beta\|} \leq 1 .
$$

The intereet in these two illustratione liee in the fact that

$$
\frac{(\alpha \mid \beta)}{\|\alpha\|\|\beta\|}
$$

corresponds to one and only one cosine of an ancle between 0 and T. This eugeerte a definition of perpendicularity of the two vectore α and β.

Definition 16. Two vectore α and β in a vector epace V are eaid to be orthogonal, $\alpha \perp \beta$, (perpendicular) if their inner product 1 s zero. If $\& 1 \mathrm{E}$ a et of nonzero vectore in V , S ie called an orthogonal set provided any two dietinct vectore in S are orthogenal. An orthonormal eet hae the aded reetriction that $\|\alpha\|=1$ for all α in ε.

Definition 17. Two vector epaces, V end V^{\prime}, are orthogonal if every vector contained in V ie orthoponel to every vector contained in V^{\prime}.

Orthogonality is a eymmetric relation since $(\alpha \mid \beta)=0$ implies $(\beta \mid \alpha)=0$ by I_{3}. Next, if $\alpha \perp \beta$, then a $\alpha \perp b \beta$ for all ecalare a and b. Moreover, if $\alpha \perp \beta$ and $\alpha \perp r$ then $\alpha \perp(\beta+\gamma)$. The following theorem ie on immediate consequence of these facte.

Theorem 16. If in a unitary space every member of the set $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ is orthogonal to every member of the set $\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{8}\right\}$, then the epece spanned by the $\alpha 1^{\prime} \varepsilon 12$ orthesonel to the epee spanned by the $\beta^{\prime}{ }^{\prime}$.

Theorem 17. If $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ ie en orthogonal eat of vectore then it ie linearly independent.
rocs: If $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n}=0$ then $\left(\alpha_{1} \mid a_{1} \alpha_{1}+b_{n} \alpha_{2}+\ldots+n_{n} \alpha_{n}\right)=0$ and $a_{1}\left(\alpha_{1} \mid \alpha_{1}\right)+a_{2}\left(\alpha_{1} \mid \alpha_{2}\right)+\ldots+a_{n}\left(\alpha_{1} \mid \alpha_{n}\right)=0$. since $\left(\alpha_{1} \mid \alpha_{j}\right)=0$ when $1 \neq 1$, then $\varepsilon_{1}\left(\alpha_{1} \mid \alpha_{1}\right)=0$. Now since $\left(\alpha_{1} \mid \alpha_{1}\right)>0, a_{1}=0$ and hence the $\alpha_{1}{ }^{\prime}$ e are linearly independent.

Corollary 1. If $\beta 10$ a vector which ie e lInear combsnation of an orthogonal est of vectors $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$, then $\beta 1 \varepsilon$ the linear combination.

$$
\beta=\sum_{k=1}^{m} \frac{(\beta \mid \alpha)}{11 \alpha_{k} \|^{2}} \alpha_{k}
$$

Proof. If $\beta=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{m} \alpha_{n}$
then

$$
\left(\beta \mid \alpha_{k}\right)=a_{1}\left(\alpha_{1} \mid \alpha_{k}\right)+a_{2}\left(\alpha_{2} \mid \alpha_{k}\right)+\ldots+a_{m}\left(\alpha_{m} \mid \alpha_{k}\right)
$$

since $\left\|\alpha_{k}\right\|=\left(\alpha_{k} \mid \alpha_{k}\right)^{\frac{1}{2}}$ and $\left(\alpha_{1}\left|\alpha_{j}\right\rangle=0191 \neq 1\right.$,
then $\varepsilon_{k}=\frac{\left(\beta \mid \alpha_{k}\right)}{\left\|\alpha_{k}\right\|^{2}}$.
Hence

$$
\beta=\sum_{k=1}^{m} \frac{\left(\beta \mid \alpha_{k}\right)}{\left\|\alpha_{k}\right\|^{?}} \alpha_{k}
$$

Corollary ?. If $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ ie en orthogonal
set in an inner product apace V, then $m \leq d[v]$.
This corollary ie an obvious consequence of the above theorem and the definition of the dimension of a vector apace.

Theorem 18. Every inner product space hes an orthonormal basie.

Proof. Let V be an inner product space end $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ be a brede for V. To obtain on orthogone berle a construction called the Grem-schmidt orthogonalization process ie used.

$$
\begin{aligned}
& \text { Fret let } \alpha_{1}=\beta_{1} \text {. Then set } \\
& \alpha_{0}=\beta_{2}-\frac{\left(\beta_{2} \mid \alpha_{9}\right)}{\left\|\alpha_{1}\right\|} \alpha_{1}
\end{aligned}
$$

since β_{1}, β_{2} are linearly independent, $\alpha_{2} \neq 0$ and eince

$$
\begin{aligned}
& \quad\left(\alpha_{2} \mid \alpha_{1}\right)=\left(\left.\beta_{2}-\frac{\left(\beta_{2} \mid \alpha_{1}\right)}{1 \mid \alpha_{1} \| ?} \alpha_{1} \right\rvert\, \beta_{1}\right) \\
& = \\
& =\left(\beta_{2} \mid \beta_{1}\right)-\frac{\left(\beta_{2} \mid \beta_{1}\right)\left(\beta_{1} \mid \beta_{1}\right)}{\left\|\beta_{1}\right\| ?} \\
& =0 \\
& \alpha=1 \alpha_{1}
\end{aligned}
$$

Next let

$$
\alpha_{3}=\beta_{3}-\frac{\left(\beta_{3} \mid \alpha_{1}\right)}{\left\|\alpha_{1}\right\|^{3}} \alpha_{1}-\frac{\left(\beta_{3} \mid \alpha_{2}\right)}{\left\|\alpha_{2}\right\|^{3}} \alpha_{0}
$$

Then $\alpha_{3} \neq D_{\text {, for if it were, }} \beta_{3}$ is a linens combination of β_{2} and β_{1}; furthermore $\left(\alpha_{3} \mid \alpha_{1}\right)=\left(\alpha_{3} \mid \alpha_{2}\right)=0$. Now suppose nonzero orthogonal vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ have
been constructed in such a way that α_{j} ie β_{j} minus some indent combination of $\beta_{1}, \beta_{2}, \ldots, \beta_{j-1}$ for $1 \leqslant g \leqslant k$. Lot

$$
\alpha_{k+1}=\beta_{k+1}-\sum_{j=1}^{k} \frac{\left(\beta_{k+1} \mid \alpha_{j}\right)}{\left\|\alpha_{j}\right\|^{2}} \quad \alpha_{j}
$$

Then $\left(\alpha_{k+1} \mid \alpha_{1}\right)=\left(\beta_{k+1} \mid \alpha_{1}\right)-\sum_{j=1}^{k} \frac{\left(\beta_{k+1} \mid \alpha_{j}\right)}{\left\|\alpha_{j}\right\|^{2}}\left(\alpha_{j} \mid \alpha_{1}\right)$.
since $\left(\alpha_{j} \mid \alpha_{1}\right)=0$ when $1 \neq 2$, by induction,

$$
\begin{aligned}
\left(\alpha_{k+1} \mid \alpha_{1}\right) & =\left(\beta_{k+1} \mid \alpha_{1}\right)-\left(\beta_{k+1} \mid \alpha_{1}\right) \\
& =0, \text { for } 1 \leqslant 1 \leqslant k .
\end{aligned}
$$

Thus α_{k+1} is orthogonal to each of the vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$. Suppose $\alpha_{k+1}=0$. Then β_{k+1} ie a. linear combination of $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ and hence of $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$. Thus $\alpha_{k+1}=0$. Ultimately an orthoechal set of n vectors $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$, is obtained. By Theorem 17, this eft is independent and hence a bats. To obtain an orthonormal basie, replace α_{1} by $\frac{\alpha_{1}}{\left\|\alpha_{1}\right\|}$.

ACNMC LEDGEMENT

The author wiehes to exprees h1s sincere appreciation to Dr. Fichard L. Yater for hie potient aesietance in the preparetion of this report.

REFERENCES

Benner, Charlee P., Albert Newhouec, Cortez B. Foder, and Picherd L. Yates. Tojice in Modern Algobre. New York: Harper and Brothere, 1962.

Birkhoff, Garrett, and Saundere MocLane. A Survey of Modern Aleebra. New York: MacMillien Co., 1953.

Hoffman, Kenneth, end Ray Kunze. Linenr Alcebre. Enclewood Cliffe, New Jersey: Prentice-1ioli, Inc., 1961.

Jchneon, Richard E. Firet Couree in Abetract Alecbre. liew York: Prentice-He11, Inc., 1953.

Etoll, Fobert F. Linear Alrehre nnd Matrix Theory. New York: Mecraw-H111 Book Co., Inc., 1952.

PECPERTIES OF ABETRACT VECTOR SPACES

by
DONALD HUDEON MABRY
B. S., Kansae Etate Univerelty, 1962

AN ABETRACT OF A MAETER' E REPORT
submitted in particel fulfillment of the requiremente for the defree

MASTER OF SCIENCE

Depertment of Mathematice

KANSAS ETATE UNIVEREITY Manhettan, Kaneas

1963

Often in mathematice there are syetems which appear to be quite different and yet have propertiee which ere common to 211. In order to bring such eygteme under a single heading, one muet extract all properties commen to all the syetems end liet these as postuletes for an otherwise unrestricted eystem.

In this report euch a eyetem has been defined. The poetulates appearing in the definition of the vector space are not to be coneldered ae eelf-evident truthe or etatemente which cannot be proved, but rather ae aseumed propertiee. The vector epace V, conelste of elemente and operations, eezumptions about both, and finally coneequences or theoreme derived from the aseumptions. Whenever a eyptem estisfles the poetulates given In the definition, then the theoreme sbout elemente of V can be applied to this new syetom.

Linear combinatione of elemente are found frequently in mathematics and are particularly ueeful in studying propertiee of vector spaces. Euch inear combinatione are defined in this report and from this resulte the diecuesions of linear dependence end Inear independence of vectore. This Ieeds te the concept of a baeie for a vector space and the resulting properties of beses. Cloeely connected to the concept of a basie ie the concept of dimeneion of a vector epace. These properties all have application to subepaces of a vector epace.

It is often deeirable to change from one besis of a vector epece to another. This involves describing a vector in terme of ite coordinates relative to a Elven basie. A description of how to deccribe these coordinates is elven, but since the actual
calculation involvee the use of matrices, a complete diecuesion ie not given. A direct conequence of a change of batis is the ieomorphiem between two vector epacee.

The last topic diecuseed is that of inner product epaces. In thie section, abstract concepte of leneth, distance and angle are defined and ciecursed. The concept of ancle le used only to introduce perpendicularity, or orthogonality, of two vectore. A epecial case of length ie noted. This is the case of the normal vector, thet ie one which has leneth one. Applyine both of the properties of normality and orthogonality, it is found that it is poesible to construct an orthonormal basie for any inner product epnce. The method of construction concludee the report.

[^0]: Kenneth Hoffman and Ray Kunze, Linear Alebrg, pep. 49-52

