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ABSTRACT

Rank based inference using independent random samples to compare 2K 

continuous distributions, called the K-sample problem, based on precedence

probabilities is developed and explored. There are many parametric and

nonparametric approaches, most dealing with hypothesis testing, to this

important, classical problem. Most existing tests are designed to detect

differences among the location parameters of different distributions. Best

known and most widely used of these is the F - test, which assumes normality.

A comparable nonparametric test was developed by Kruskal and Wallis (1952).

When dealing with location-scale families of distributions, both of these tests

can perform poorly if the differences among the distributions are among their

scale parameters and not in their location parameters. Overall, existing tests

are not effective in detecting changes in both location and scale. In this

dissertation, I propose a new class of rank-based, asymptotically distribution-

free tests that are effective in detecting changes in both location and scale

based on precedence probabilities. Let iX be a random variable with

distribution function iF ; 1, 2,..., .i K Also, let  be the set of all permutations of

the numbers (1, 2,..., )K . Then
1 2

( ... )
Ki i iP X X X   is a precedence probability if

1 2( , ,..., )Ki i i  . Properties of these of tests are developed using the theory of U-

statistics (Hoeffding, 1948).



Some of these new tests are related to volumes under ROC (Receiver Operating

Characteristic) surfaces, which are of particular interest in clinical trials whose

goal is to use a score to separate subjects into diagnostic groups. Motivated by

this goal, I propose three new index measures of the separation or similarity

among two or more distributions. These indices may be used as “effect sizes”.

In a related problem, Properties of precedence probabilities are obtained and a

bootstrap algorithm is used to estimate an interval for them.
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Chapter 1: A Motivating Example

Several types of stochastic relationships have been used to test for a priori

specified ordered alternatives. The example of ordered alternatives that

motivates this research comes from the field of medical science.

In particular, consider checking the effectiveness of a diagnosis of a particular

disease based on measurements on one or more scales. Often, it is assumed

there are only two groups of people: healthy and diseased. However, in some

situations, there is also a transition period. If detected in this period, a disease

can, in some cases, be cured totally or at least monitored for a longer period of

time. One such example is Alzheimer’s disease (AD), which leads to the death of

irreplaceable brain cells. At the beginning stage of this disease, almost no

clinical symptoms can be detected, even using the most advanced tests

available. But, when someone is close to the threshold of dementia, the

person’s behavior can suggest that a diagnosis of AD lies ahead. It is important

that AD be detected at this early stage. Although there is now no effective

treatment for AD, it is hoped that early detection would give a person her/his

best chance of avoiding the terrible consequences of this disease when new

drugs become available.

Therefore, researchers are looking for a group of tests which can detect AD in

its early form. To accomplish this goal, requires three diagnostic groups: the

healthy people who do not have any symptom of AD, the transition group with
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subtle hints of AD and the group with the disease. Of course, a good diagnostic

test should have a discriminating ability among all the groups. A test that has

a good discriminating power for only two of the groups may not be very useful.

Generally, most diagnostic tests are based on an observed variable which lies

on a continuous or a graded scale. Specifically, consider a score T and ordered

cut points 0{ , 0,1,..., ; , }i Kt i K t t    , where a subject is assigned to diagnostic

category k if 1k kt T t   , k = 1, 2,…, K. Usually K is taken to be 2, denoting

‘healthy’ and ‘diseased’, and diagnostic accuracy of score T, which depends on

the cut points used, has historically been based on the probability of an

incorrect decision in the healthy population and the probability of a correct

decision in the diseased population. It should be noted that the probability of a

correct decision in the healthy population is known as specificity and the

probability of a correct decision in the diseased population is known as

sensitivity. In this setting, for K =2, a perfect test score T, if it exists, should

have a threshold or cut-off which perfectly discriminates among the diseased

and the healthy populations. Typically, T is calibrated so that the first category

consists of healthy individuals and increasing values correspond to worsening

diagnostic categories. In what follows, the phrase diagnostic test refers to a

score T and a specific set of cut points.

To study the effectiveness of a diagnostic test based on score T, one of the most

widely used tools when K = 2 is known as the Receiver Operating Characteristic

(ROC) curve. This curve plots the probability of correctly classifying a diseased
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individual in its Y axis and the probability of wrongly classifying a healthy

patient in its X axis for each possible choice of the cut point 1t . If an exact

diagnostic test based on T exists, the ROC curve for that test should then go

through (0, 1). In reality, that almost never happens. So, a very good test

should be as close as possible to (0, 1) in the plot. A very popular index used to

measure the discriminating ability of tests is the area or the partial area under

a ROC curve. Detailed discussions of ROC curves can be found in Kang (2002)

and Hsieh and Turnbull (1996).

In the case of three diagnostic categories, K =3, Mossman (1999) proposed

constructing a polyhedral ROC surface and using the volume under the surface

(VUS) an index to measure the discriminating ability of a diagnostic test. Xiong

et al. (2006) proposed a similar ROC surface and used the entire volume under

the ROC surface as a summary measure to describe the accuracy of a

diagnostic test.

The ROC surface proposed by Xiong (2006) assumes normality and represents

the probability of correctly recognizing the healthy population, category 1, on

the X axis, the probability of correctly recognizing the diseased population,

category 2, on the Y axis and the probability of correctly recognizing the

intermediate population, category 3, on the Z axis.

Let 1X , 2X and 3X denote independent values of a continuous score T obtained

by subjects from healthy, intermediate and diseased groups, respectively. We

will also assume these random variables are independent observations from
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3K  absolutely continuous distribution functions 1,F 2F and 3F . Thus, if a

subject belongs to category j , , 1, 2,3jT X j  and, as described above for fixed

cut points, if score T is: (i) below 1t , assign the subject in the healthy group; (ii)

more than 2t , assign the subject in the diseased group and (iii) otherwise

assign the subject to the intermediate group. Then, let x be the probability

that a randomly selected subject from the healthy group has a test score below

1t , y be the probability that a randomly selected subject from the diseased

group has a test score above 2t and z be the probability that a randomly

selected subject from the intermediate group has a test score between 1t and 2t .

Then, we have the following results.

1 1( )x F t ,

3 21 ( )y F t  ,

1 1
2 2 2 1 2 3 2 1( ) ( ) ( (1 )) ( ( ))z F t F t F F y F F x      . (1.1)

We should also note that in this version of an ROC surface, an ideal diagnostic

test’s ROC surface should pass through (1, 1, 1), which would imply perfect

discrimination ability. We should therefore be looking for tests which produce

an ROC surface very close to this ideal point.

As shown by Xiong, et al. (2006), the VUS for this ROC surface can be

expressed as
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1 1
2 3 2 1( ( (1 )) ( ( )))

D

V F F y F F x dxdy    

1 2 3( )P X X X   . (1.2)

Integration in (1.2) is over the domain 1
3 1{( , ) | 0 1,0 1 ( ( ))}D x y x y F F x      ,

since 1 2t t .

To further assess the effectiveness of any diagnostic test, we proceed by

constructing appropriate hypotheses about the distributions of 1 2 3, ,X X X . If a

diagnostic test does not have any discrimination power, 1 2 3, ,X X X are

identically distributed, all 6 orderings of 1 2 3, ,X X X are then equally likely and

1/ 6V  . This observation motivates us to explore the world of precedence

orderings which deals with the distributions of order statistics when marginal

distributions are not identical. Probabilities of these orderings are called

precedence probabilities. The observation that the VUS can be represented as a

probability also suggests additional problems such as testing hypotheses for

ordered alternatives and constructing confidence intervals for V . We will later

use data consisting of fourteen test scores on each of three known categories of

AD subjects to illustrate the methods developed in this study.

Consider a generalization of this problem. Suppose that, we are interested in a

medical test having outcome T that classifies patients into one of the K

groups. Let the values of T be such that group K tends to score higher than
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group ( 1)K  and so on with group 1 scoring the lowest. In that case, we can

think about a ROC manifold with a point on this manifold representing the

probability of getting selected correctly into a group. Instead of looking at VUS,

we will then be looking at a Hypervolume Under Manifold (HUM), which equals

1 2( ... )KP X X X   .

In sum, motivated by this example, part of my research concerns constructing

nonparametric tests of the hypothesis of randomness

0 1 2: ... KH F F F   , (1.3)

versus ordered alternatives motivated by (1.2) and discussed in full in Chapters

3, 8 and 11. The tests I develop are based on U-Statistics, a class of statistics

described in the next chapter. The performance of this new test is described in

Chapter 11.

Moving beyond this motivating example, in Chapters 8 and 9 I provide new

rank-based tests for the classical K -sample problem, where we test the

equality of K distributions based on independent random samples. These new

tests are shown to provide significant improvements to classical tests. In

particular, these new tests have the ability to detect changes in location, in

scale or both, whereas most existing tests are powerful in detecting changes in

only one of these features. Since the K -sample problem is one of the oldest and

most important problems in the statistical universe, the proposed tests are a

valuable addition to the existing literature.
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As a practical matter, no two distributions are identical. So, instead of testing

for equality, researchers are often more interested in assessing just how

different distributions are. Therefore, constructing measures of distance among

K distributions is an important problem, especially for 3K  . Here, I propose

new measures which can be used to assess what is commonly called effect size.

In sum, in this thesis, I explore and develop properties of precedence

probabilities and use these results to create inference procedures for the K -

sample problem that perform well in detecting important alternatives that are

not often considered and will provide researchers with important new tools.
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Chapter 2: U-Statistics

Hoeffding (1948) developed the basic theory of U-statistics. Detailed

discussions about this topic are found in Lee (1990), Serfling (2001) and

Randles and Wolfe (1979).

Let P = { P } be a family of probability measures on an arbitrary measurable

space and let  be a real-valued function defined on P . The parameter  ( P ) =

 is said to be estimable of degree r for P if r is the smallest sample size for

which there exists a real-valued measurable function 1 2( , ,..., )rh x x x such that

1 2( ( , ,..., ))P rE h X X X  for all P  P , (2.1)

where { }iX are independent, identically distributed according to P .

The function (.)h defined in (2.1) is known as the kernel of the associated

parameter  .

The kernel, without loss of generality, may be assumed to be a symmetric

function of its arguments. This is because if *h is an unbiased estimator of  ,

then so is the symmetric function

1 2

*
1 2

1
( , ,..., ) ( , ,..., )

! r

r

rh x x x h x x x
r

  


  (2.2)
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where the summation is over the group r of all permutations of the first r

integers. So, henceforth the symmetry assumption on h will be in effect.

For a symmetric kernel (.)h and a sample 1 2, ,..., nX X X of independent,

identically distributed random variables each of whose distributions is

determined by P , with n r , a U-statistic is defined as

1 2

1
( , ,..., )

rn n
Br

U h X X X
C

  


  , (2.3)

where B { |  is one of the n
rC unordered subsets of r positive integers chosen

without replacement from the set {1, 2,..., }n .

The sample mean is a U-statistic of degree 1 with ( )h x x for estimating the

population mean. In particular, the sample mean is the U-statistic estimator of

the population mean. Likewise, the sample variance is the U-statistic estimator

of the population variance. The statistic used in the sign test is also a U-

statistic. The Wilcoxon signed-rank test statistic can also be written as a

combination of two different U-statistics.

A very desirable property of a U-statistic is that of being a minimum-variance

unbiased estimator. Specifically, if P includes all continuous distributions, a

U-statistic can be shown to be the unique minimum-variance unbiased

estimator (UMVUE) of the associated parameter .

As presented in Randles and Wolfe (1979), the variance of the U-statistic in

(2.3) is given by
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1

1
[ ]

r
r n r

n l r l ln
lr

Var U C C
C






  , (2.4)

where

1 2 1 2
{ ( , ,..., ), ( , ,..., )}

r rl Cov h X X X h X X X       , (2.5)

and 1 2{ , ,..., }r    and 1 2{ , ,..., }r    are subsets of the first n positive

integers having exactly l integers in common.

If r   and 1 0  , ( )nn U  has a limiting normal distribution with mean 0

and variance 2
1r  , as stated and shown in Randles and Wolfe (1979).

We can extend this concept to the more general case of K distributions. Let

; 1, 2,..., ; 1, 2,...,ij iX j n i K  be independent observations with all the observations

in { ; 1, 2,..., }i ij iX X j n  being generated from distribution function (d.f.) iF .

A parameter  is said here to be estimable of degree 1 2( , ,..., )Kr r r for distributions

1 2( , ,..., )KF F F in some family of probability measures P , if 1 2( , ,..., )Kr r r are the

smallest possible sample sizes for which an unbiased estimator for  exists for

every 1 2( , ,..., )KF F F P . A K  sample symmetric kernel for  can be obtained by

generalizing the 1-sample approach mentioned in (2.3). Specifically, let

1 211 12, 1 21 22, 2 1 2,( , ..., ; , ..., ;...; , ..., )
Kr r K K Krh x x x x x x x x x be a function that is symmetric in the

arguments 1 2,( , ..., )
ii i irx x x for each 1, 2,...,i K . Then, (.)h is a K sample

symmetric kernel for  if for all 1 2( , ,..., )KF F F P ,
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1 2 1 2( , ,..., ) 11 12, 1 21 22, 2 1 2, 1 2( ( , ..., ; , ..., ;...; , ..., )) ( , ,..., )
K KF F F r r K K Kr KE h X X X X X X X X X F F F . (2.6)

For an estimable parameter  of degree 1 2( , ,..., )Kr r r and a symmetric kernel (.)h

with ; 1, 2,...,i in r i K  ; a U-statistic is defined as

1 2 11 12 1 21 22 2 1 21 2 1 2

1 1 2 21 2

... 1 1 , 1 2 2 , 2 ,

1
... ( , ..., ; , ..., ;...; , ..., )

...K r r K K KrK K

K KK

n n n K K Kn n n
B B Br r r

U h X X X X X X X X X
C C C

        
    

   

(2.7)

where 1 2( , ,..., )
ii i i ir    and iB is the collection of all subsets of ir positive

integers chosen without replacement from (1,2,..., )in for 1, 2,...,i K .

Asymptotic normality can be obtained for the U-statistic defined in (2.7). Define

for 1, 2,...,i K ,

11 12 1 21 22 2 1 21 2
1 1 , 1 2 2 , 2 ,( , ..., ; , ..., ;...; , ..., ),

r r K K KrK
i K K KH h X X X X X X X X X         

11 12 1 21 22 2 1 21 2
1 1 , 1 2 2 , 2 ,( , ..., ; , ..., ;...; , ..., )

r r K K KrK
i K K KH h X X X X X X X X X          ,

(2.8)

where the two sets 1 2( , ,..., )
jj j jr   and 1 2( , ,..., )

jj j jr   have no common integers

when j i and exactly one common integer when j i .

Let us also define ( , )i i iCov H H   for 1, 2,...,i K .

Then, Randles and Wolfe (1979) provide us with the following result.
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Lemma 2.1: Let
1 2 ... Kn n nU be a K sample U-statistic for parameter  of degree

1 2( , ,..., )Kr r r . If
1

K

i
i

N n


 and lim ( / ) ,0 1;N i i in N      for 1, 2,...,i K and if

1 2

2
11 12, 1 21 22, 2 1 2,( ( , ..., ; , ..., ;...; , ..., ))

Kr r K K KrE h X X X X X X X X X   , then
1 2 ...( )

Kn n nN U  has a

limiting normal distribution with mean 0 and variance

2
2

1

K
i

i
i i

r
 



 , (2.9)

provided 2 0  .

Since my research deals with a K sample case, this result provides a guideline

for later derivations. In the next chapter, I will describe different types of

ordering among distributions.
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Chapter 3: Ordered Alternatives

Some of my research concerns alternative hypotheses that involve some a priori

ordering among 2K  distributions. The work of Xiong, et al. (2006) provides a

practical motivation, as discussed in chapter 1. I will start by defining four

well- known orderings of random variables. These are: likelihood ratio ordering,

uniform stochastic (hazard rate) ordering, stochastic ordering and precedence

ordering. Ross (1996) provides a detailed discussion of all these orderings

except the last one.

Let iF denote the absolutely continuous distribution function of random

variable iX and let if denote its density, 1, 2,...,i K . We say KX is larger than

1KX  is larger than 2KX  ……is larger than 1X in the sense of likelihood ratio

ordering, and write

1 2 1...K K
LR LR LR LR

X X X X    , if
1 1

( ) ( )

( ) ( )

j j

j j

f x f y

f x f y 

 (3.1)

for 1, 2,..., 1j K  and for all x y with strict inequality being true for at least

one pair of ( , )x y for each pair of the random variables 1( , )i iX X  where the ratios

in (3.1) are defined.

The hazard rate j of a continuous random variable jX is defined as
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( )
( )

1 ( )

j

j

j

f t
t

F t
 


(3.2)

We say KX is larger than 1KX  is larger than 2KX  ……is larger than 1X in the

sense of hazard rate ordering, and write

1 2 1...K K
HR HR HR HR

X X X X    , if 1 2( ) ( ) ... ( )Kt t t     (3.3)

for all t where the hazard rate is defined , with strict inequality for at least one

it t for each pair of random variables 1( , )i iX X  .

We say KX is larger than 1KX  is larger than 2KX  ……is larger than 1X in the

sense of stochastic ordering, and write

1 2 1...K K
ST ST ST ST

X X X X    , if 1 2( ) ( ) ... ( )KF x F x F x   (3.4)

for all x , with strict inequality for at least one ix x for each pair of random

variables 1( , )i iX X  .

Note that for a shift alternative model 1( ) ( )j jF x F x   , 2,3,...,j K with

2 3 ... K     , the stochastic ordering given in (3.4) prevails. Behnen and

Neuhaus (1989) developed an adaptive rank-type test for stochastic ordering

designed to detect stochastic ordering based on independent random samples.
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If { iX } are jointly independent, we say KX is larger than 1KX  is larger than 2KX 

……is larger than 1X in the sense of precedence ordering and write

1 2 ... KF F F   if 1 2

1
Pr( ... )

!
KX X X

K
    . (3.5)

It can be shown that stochastic ordering is the weakest relationship among the

first three relationships described. In fact, likelihood ratio ordering implies

hazard rate ordering and in turn, hazard rate ordering implies stochastic

ordering.

As argued by Arcones, et al. (2002), even stochastic ordering is too strong an

assumption for practical use since it assumes uniform domination of one

distribution function over another. I provide the following example to describe

this.

Example 3.1: Consider two independent random variables 1X and 2X where 1X

is observed from a uniform (0,1) distribution while 2X has a distribution

function 2F defined as the following:

2
2 ( ) 3F x x ,

1
0

3
x 

23 1.5 0.5x x   ,
1

1
3

x  . (3.6)
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It is easy to show that, 2 1

2
Pr( )

3
X X  .

But, since 2 1( ) ( )F x F x for
1

1
3

x  , 2X is not stochastically larger than 1X .

Arcones, et al. (2002) also provides some examples of the use of stochastic

precedence in the literature of statistics. Among other notable uses of

stochastic precedence is to develop an approximate solution to the classical

Behrens-Fisher problem.

I will focus on constructing new nonparametric tests for the K-sample problem

based on stochastic precedence. First, I show that precedence ordering is

weaker than stochastic ordering. The following theorem relates stochastic and

precedence ordering.

Theorem 3.1: Let 1 2 1...K K
ST ST ST ST

X X X X    be stochastically ordered, independent

random variables with iX having continuous distribution function iF and p.d.f.

if , 1, 2,...,i K .

Then,

1 2

1
Pr( ... )

!
KX X X

K
    . (3.7)
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Proof: The assumption of stochastic ordering implies that for at least one 0j

{1, 2,..., 1}K  ,  some 0 ( , )x    such that 1 0 0( ) ( )j jF x F x  .

Without loss of generality, let us assume 0( ) 0jf x  . Continuity of the

distribution functions then yields that

1 0( )jF x =
0

Lim


1 0( )jF x   <
0

Lim


0( )jF x  = 0( )jF x . (3.8)

Let 0 1 0( ) ( ) 2 0j jF x F x    .

Then, for all sufficiently small  > 0, for all 0 0( , )x x x    ,

1( ) ( ) 0j jF x F x    . (3.9)

Recall that for a continuous distribution function ( )F x and density function

( )f x ,

1 1( ) ( )
( ) ( ) ( ) ( )

( 1)

b b r r
r r

a a

F b F a
F x f x dx F x dF x

r

 
 

  for 0,1, 2,....r  . (3.10)

First consider the case K = 2. If (3.4) holds,

1 2Pr( )X X =
1 2

1 1 2 2 1 2( ) ( )
x x

f x f x dx dx



1

2 2 2 1 1 1( ) ( )
x

f x dx f x dx
 



 
  

 
 
 
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2 1

1

2 2 1 1 1

( )

( ) ( )
F x

dF x f x dx




 
  

 
 
 

 2 1 1 1 11 ( ) ( )F x f x dx




  (Using (3.10))

2 1 1 1 11 ( ) ( )F x f x dx




   (3.11)

Also, 2 1 1 1 1( ) ( )F x f x dx





0 0

0 0

2 1 1 1 1 2 1 1 1 1 2 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
x x

x x

F x f x dx F x f x dx F x f x dx
 

 

  

  

    

0 0

0 0

1 1 1 1 1 2 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
x x

x x

F x f x dx F x f x dx F x f x dx
 

 

  

  

     (Using (3.4))

0 0

0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )
x x

x x

F x f x dx F x f x dx F x f x dx
 

 

  

  

     (Using (3.9))

1 1 1 1( ) ( )F x dF x




 

1

2
 (Using (3.10)) (3.12)

Applying (3.12) in (3.11), 1 2

1
Pr( )

2
X X  .

The verification of (3.7) for K > 2 follows similarly.
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Let us note that when 1 2 ... KF F F   , .

Using this theorem as a motivation, I will consider (among other tests of

interest) the following hypothesis

0 1 2: ... KH F F F  

Vs.

1 2

1
: Pr( ... )

!
A KH X X X

K
    .

(3.13)

When 2K  , for most well-known one-parameter location families of

distributions, we believe that stochastic precedence implies stochastic ordering.

Unfortunately, for higher values of K this relationship between stochastic

ordering and stochastic precedence is not yet understood.

In the next chapter, I review the relevant literature.

1 2

1
Pr( ... )

!
KX X X

K
   
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Chapter 4: Literature Review

As mentioned earlier, one of the most widely used and discussed problems in

statistics is the comparison of distributions { : 1,2,..., }iF i K based on

independent random samples { ; = 1,2,..., , 1, 2,..., }ij iX i K j n . Nonparametric

hypothesis testing in this setting most often tests 0 1 2: KH F F F    vs. the

non-directional alternative :aH at least two of the distributions differ. Most of

the literature available in this area concerns the two-sample case.

To begin our discussion, consider a set of K , independent random variables

1 2( , ,..., )KX X X with continuous probability density functions (p.d.f.) 1 2( , ,..., )Kf f f

and distribution functions 1 2( , ,..., )KF F F . Also consider the rank vectors R =

{ ; 1,2,..., }iR i K , where the elements of iR are the ranks of { , 1,2,..., }ij iX j n in

the pooled N dimensional data vector X = { ijX }.

An important class of test statistics designed to test equality of all elements in

{ ; 1,2,..., }iF i K is the class of linear rank test statistics. The general idea for all

these tests came from two-sample problems which were later extended to K-

sample problems. A statistic of the form
1

( )
N

i ij j
j

S c a R


 is known as a simple

linear rank statistic for the sample taken from i-th population, where jR is the
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rank of the j -th observation, ( )ja R is a score based on that rank, ijc is an

indicator variable denoting whether the j -th observation belongs to the i-th

population, and N is the total sample size. The idea is to calculate the score iS

for each group with sample size in and then to create a one-way analysis of

variance (ANOVA)-like test statistic of the form

2

1

2

1

( ( )) /

( ( ) ) /( 1)

o

K

i H i i
i

N

j
j

S E S n

C

a R a N





 
 

 
 

  
 




, (4.1)

where
0
( ) ( )H i iE S E S when 0H is true and a is the average of all ( )ja R s.

Choosing different scores ( )ja R leads to different test statistics. ( )ja R is

generally chosen to be real-valued and non-decreasing in its argument. Most

well known among these linear rank tests is the Kruskal-Wallis (KW) test. The

test is due to Kruskal and Wallis (1952). A simple score choice of ( )j ja R R in

(3.1) leads to this test. The test statistic can be written as

2

1

2

1

( )) /

( ) /( 1)

K

i i
i

N

j
j

R R n

Kw

R R N





 
 

 
 

  
 




. (4.2)

In the above equation, iR is the average rank of the sample generated from the

i-th population and R is the average rank of the pooled sample.
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Another popular test is the median test proposed by Brown and Mood (1951).

They used the median of the pooled observations to create a test statistic based

on a chi-square test applied to a 2K  contingency table to test the equality of

distributions against the two-sided alternative that at least two distributions

differ. If ( ) 1ja R  for
1

2
j

N
R


 and 0 otherwise, we end up with a test

equivalent to the median test which is powerful for distinguishing symmetric

distributions with heavy tails.

Choosing 1( )
1

j

j

R
a R

n
  

   
 

, where  is the cumulative distribution function of

a standard normal distribution leads to the Van der Waerden test, which is

powerful for testing for the equality of normal distributions.

Choosing
1

1
( ) 1

1

jR

j
i

a R
n i

 
 

 leads to the Savage test (log rank test) which is

powerful to detect location shifts in extreme value distributions. However,

Behnen and Neuhaus (1989) claim that the last three procedures can have low

power when used with data generated from distributions other than the ones

they were designed for.

A recent nonparametric contribution to the K-sample problem can be found in

Rizzo and Szekely (2010), who use distances between observations to create a

new test for the equality of distributions. Their test is designed to detect the

non-directional alternative :a i jH F F for at least one pair ( , )i j . The distances

are calculated based on a Gini mean-distance statistic and a Euclidean norm.
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Their method depends on partitioning the total dispersion of the samples, quite

like the way the traditional F-test partitions the total variance in ANOVA and is

known as the DISCO test.

There are some nonparametric tests designed to detect specific types of

alternatives. For example, let ( )iv be the number of K-tuples that can be formed

by choosing one observation from each sample such that the observation from

the i-th population is the least. Specifically,

( )

1

#{ , 1, 2,..., }
in

i
rs ij r

j r i

v x x s n
 

   .

Bhapkar (1961) used the total number of such K-tuples that can be formed as

the basis of a test designed to detect a shift alternative.

In life data analysis, rank tests can be used for comparing distributions when

the data is right-censored. Prentice (1978) suggested an outline to define these

rank tests. Let us consider L distinct observed log lifetimes (1) (2) ( )... Lz z z   for

the pooled sample. In addition, suppose there are ilu censoring times from the i

-th population falling into the interval ( ) ( 1)[ , )l lz z  , for 0,1, 2,...,l L , where for

convenience we define (0) 0z  and ( 1)Lz    .

Prentice (1978) proposed the use of a score statistic that has components of the

form

1

( )
L

i il l il l
l

S c a u b


  (4.3)
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for the sample from i-th population, where ilc is an indicator variable denoting

whether the l -th observation (ordered) belongs to the i-th population, la is the

score of the sample whose lifetime ended at ( )lz and lb is the score of

individuals whose lifetimes are censored in ( ) ( 1)[ , )l lz z  . Further, define ild to be

number of deaths at ( )lz from the i-th population, ilm to be the number of

individuals from the i-th population at risk just prior to ( )lz . Also, define

1

K

il l
i

m m


 and
1

K

il l
i

d d


 . Then, the following choice of scores in (3.3) leads to

the log rank test suggested by Peto and Peto (1972) and Prentice (1978).

1

1
1

l

l
j j

a
m

 
   

 


1

1l

l
j j

b
m

 for 1, 2,..., .l L

Gehan (1965 a, b) and Breslow (1970) suggested the following scores for a

generalized Wilcoxon test with censored data.

1
l

l

l m
a

N





,

1
l

l
b

N



, for 1, 2,..., .l L

For the K -sample problem, however, testing against a directional alternative

has not been discussed as much as the non-directional alternative. Whitney
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(1951) proposed an extension of his two-sample test to the three-sample

problem. He considered an ordered alternative ( 1X is stochastically larger than

2X , which in turn is stochastically larger than 3X ) and also an umbrella

alternative ( 1X is stochastically larger than both 2X and 3X ). The test statistic

is based on the joint distribution of the pair of Mann-Whitney-Wilcoxon U-

Statistic for 1X and 2X and the U-statistic for 1X and 3X .

The Jonckheere-Terpstra (JT) test (1954) is the most well-known test which

tests for a stochastically ordered alternative for the K-sample problem and is

based on another well-known nonparametric test statistic, namely the Mann-

Whitney-Wilcoxon U-Statistic designed for the 2-sample problem. It tests the

alternative hypothesis 1 2: ( ) ( ) ... ( )a KH F x F x F x   for all x . Let, ijw be the number

of observations in the previous ( 1)i  samples that are smaller than ijX . The JT

test statistic is defined as,

1

1 1 1 1

2
inK K K

ij i j
i j i j i

J w n n


    

   . (4.4)

More detailed discussions of nonparametric tests for the K-sample problem can

be found in Hollander and Wolfe (1999), Hajek, Sidak and Sen (1999) and

Lawless (2003).
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Chapter 5: How Precedence Probability Behaves

The alternative hypothesis mentioned in (3.13) deals with a particular

precedence probability, which could be termed as the probability of observing

one observation from each underlying distribution in a particular order (not in

terms of occurrence, rather in terms of the observation itself).

In this chapter, I study the behavior of precedence probabilities in a variety of

settings, starting with normal distributions and then moving on to consider

heavy-tailed and non-symmetric distributions. Let 1 2( , ,..., ); 1,2,..., !i i i iK i K    

denote the permutations of the first K integers and
1 2

( ) ( )
i i iK

ip P X X X
      

the corresponding precedence probabilities. Take, without loss of generality the

precedence probability 1 1 2( ) ( )Kp P X X X      to be the main parameter of

interest throughout this chapter. This particular precedence probability is also

referred to as the preferred precedence. Another parameter of interest is

max { ( ); 1,2,..., !}ip Max p i K  , which might be interpreted as the probability of

the most likely ordering selected by nature. Recall that for K continuous

random variables, there are !K different precedence probabilities and we

always assume { ; 1,2,..., }iX i K to be jointly independent and continuous.

The behavior of precedence probabilities is not a very new issue and has been

studied under different names for 2K  . However, when the number of
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underlying distributions is more than 2 , the behavior of precedence

probabilities has not been studied in detail. Their behavior when the under-

lying distributions are identical is, of course, simple to describe. Otherwise,

the behavior of precedence probabilities has to be investigated on a case by

case basis. Here, I chose to study the way precedence probabilities behave

when all the distributions are: normal, a symmetric case; logistic, a symmetric

distribution with heavy tails; exponential, an asymmetric distribution with a

varying left support point; extreme value, an asymmetric distribution. I begin

with new results related to the behavior of precedence probabilities.

Theorem 5.1: For any two continuous, independent random variables 1X and

2X , 2 1 1 2( ) ( ) 0.5P X X P X X    if and only if the median of 1 2( )X X is 0 .

Proof: Suppose, the median of 1 2( )X X is 0 .

Then, 1 2 1 2( 0) ( 0)P X X P X X     = 1- 1 2( 0)P X X  = ½.

Conversely, suppose that 2 1 1 2( ) ( ) 0.5P X X P X X    .

Then, 2 1 1 2( 0) ( 0)P X X P X X     , which completes the proof.

Theorem 5.2: If for any set of independent, continuous random variables

{ ; 1, 2,3}iX i  ; 1 2( ) 0.5P X X  and 2 3( ) 0.5P X X  ;
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then 1 2 3 3 2 1( ) ( )P X X X P X X X     .

Proof: Since the hypotheses imply that 2 1( ) 0.5P X X  and 3 2( ) 0.5P X X  , it

follows that 1 2 2 1( ) ( )P X X P X X  

and hence that

1 2 3 1 3 2 3 1 2( ) ( ) ( )P X X X P X X X P X X X        

2 1 3 2 3 1 3 2 1( ) ( ) ( )P X X X P X X X P X X X        . (5.1)

In a similar manner,

1 2 3 2 1 3 2 3 1( ) ( ) ( )P X X X P X X X P X X X        

3 1 2 1 3 2 3 2 1( ) ( ) ( )P X X X P X X X P X X X        . (5.2)

Adding equations (5.1) and (5.2), we obtain the desired result, which completes

the proof.

5.1 The Normal Distribution

I begin by studying the behavior of 1 1 2( ) ( ... )Kp P X X X     when 2~ ( , )i i iX N  

for 1,2,...,i K . In this case, it is particularly helpful to transform a precedence

ordering to a statement that the successive differences 1i i iW X X   ,

1,2,..., 1i K  ; are negative. Specifically, we have that
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1 1 2 1( ) ( 0, 0,..., 0)Kp P W W W     (5.3)

and 1 2 1 1W ( , ,..., ) ~ ( , )K KW W W N 
 φ . The i -th element of φ is 1( )i i   ;

1,2,..., ( 1)i K  and  is the ( 1) ( 1)K K   matrix with i -th diagonal element

equal to 2 2
1( )i i   and ( , )i j -th off diagonal element equal to 2

i if 1j i  and

2
1i  if 1j i  . The other elements of  are zeros.

Note that for 2K  , 1( ) 0.5p   = 1/ !K even if the variances differ but the means

are equal (from Theorem 5.1). Now, I focus on the case K =3. Studying the

effects of differences among normal distributions on 1( )p  is pretty intuitive if

the three distributions differ only in their means or only in their variances.

However, when both the means and variances differ, the behavior of 1( )p  can

be very unintuitive and complicated.

For this study, I used the software package R to calculate exact precedence

probabilities under normality. I will consider the cases when the differences are

only among the location parameters, only among the scale parameters and

when the differences are both in location and scale parameters.

Case 1

We assume 2~ ( ( 1) , ); 1,2,3iX N i d i    and 0d  . In this case, it is evident that

1( )p  and maxp are equal and that 1( )p  increases monotonically as d increases.
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It is also noteworthy that in this scenario, maxp asymptotes at its maximum

possible value of 1. A detailed analysis is presented in Table 5.1.1 and Plot

5.1.1, where, without loss of generality, 2 is taken to be 1.

Case 2

Let 2
1 2, ~ ( , )X X N   and 2

3 ~ ( , )X N d  .

Again, 1( )p  and maxp are equivalent and overall, behave very similar to Case 1.

However, maxp has an upper bound here of 0.5, instead of 1. This can be

explained by the fact that 2 1 3( )P X X X  is the same as 1( )p  since the event

that 2X is less than 1X is as likely as 1X being less than 2X . It should also be

noted that both 2 1 3( )P X X X  and 1( )p  equal maxp . This case is presented in

detail in Table 5.1.2 and Plot 5.1.2, with both 1X and 2X being standard

normal.

Case 3

We assume, 2~ ( , ); 1,2,3i iX N i   with 2 2
1 ; 1,2; 0i i s i s      . In this scenario,

1( )p  can easily be calculated using a result on orthant probabilities of
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trivariate normal distributions given by Patil and Boswell (1970). Their result

leads to the equation

1

1 arcsin( )
( )

4 2
p





  , (5.4)

where
  

2
2

2 2 2 2
1 2 2 3




   




 
. Although it may not at first be intuitively clear ,

in this example 3 1 2( )P X X X  and 2 1 3( )P X X X  both are equal and acts as

maxp . This can be explained by the fact that a normal distribution with a larger

variance will result in more large and small observations than a normal

distribution with the same mean and a smaller variance. With increasing s ,

1( )p  decreases. This case is presented in detail in Table 5.1.3, Plot 5.1.3(a) and

Plot 5.1.3(b). The two plots are for 1( )p  and maxp , respectively. Again, here we

assume 1X is distributed as a standard normal. The next result is related to

this one.

Theorem 5.3: Consider, 1 ~ (0,1)X N , 2 ~ (0, )X N s and 3 ~ (0, )X N ls , 2l 

independent random variables.. Then, 1( )p  is maximum at 2s l  .

Proof: Using (5.4), if 1 ~ (0,1)X N , 2 ~ (0, )X N s and 3 ~ (0, )X N ls ,
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(1 )

(2 )(2 ( 1) )

s

s l s


 


  
. (5.5)

Note that, 0  .

So, evidently, maximizing 1( )p  is equivalent to minimizing (5.3).

To that end, differentiating  with respect to s , we have,

(2 )(2 ( 1) ) ((1 )(( 2) ( 1) )) (2 )(2 ( 1) ))

(2 )(2 ( 1) )

s l s s l l s s l s

s s l s

            


   

( 2)

(2 )(2 ( 1) ) (2 )(2 ( 1) )

l s

s l s s l s

 


     
(5.6)

Equating (5.6) to 0 and noting that
s




goes from positive to negative as s

increases past ( 2)l  , 1( )p  is maximum at 2s l  .

Case 4

Assume that for d > 0, 1 ~ ( ,1)X N  , 2 ~ ( ,1 )X N d s   and 3 ~ ( 2 ,1 2 )X N d s   are

independent random variables. The behavior of maxp which equals 1( )p  , is

plotted in detail in Plot 5.1.4. As evident from the earlier examples, the

parameter of interest in this case is most influenced by changes of location.
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For larger values of K , with the help of the statistical software R, the

precedence probabilities are found to behave in a somewhat similar fashion as

when 3K  if the changes happen either only in location or only in scale

parameters. Namely, under scenarios for Case 1 and Case 3, 1( )p  and maxp

behave in a similar fashion. However, it gets more complicated if both means

and variances are different among the distributions.

A few of the chosen examples are listed in Table 5.1.4 where both 1( )p  and

maxp are listed for different combinations of underlying normal distributions. As

usual, we assume 1X is distributed as a standard normal.
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Table 5.1.1: Maximum Precedence for 1 ~ (0,1)X N , 2 ~ ( ,1)X N d and 3 ~ (2 ,1)X N d

1F 2F 3F d
1 max( )p p 

N(0,1) N(0,1) N(0,1) 0 0.1666667

N(0.05,1) N(0.1,1) 0.05 0.1811128

N(0.1,1) N(0.2,1) 0.10 0.1962275

N(0.15,1) N(0.3,1) 0.15 0.2119855

N(0.2,1) N(0.4,1) 0.20 0.2283567

N(0.25,1) N(0.5,1) 0.25 0.2453063

N(0.3,1) N(0.6,1) 0.30 0.2627954

N(0.35,1) N(0.7,1) 0.35 0.2807809

N(0.4,1) N(0.8,1) 0.40 0.2992165

N(0.5,1) N(1,1) 0.50 0.3372375

N(0.6,1) N(1.2,1) 0.60 0.3764365

N(0.7,1) N(1.4,1) 0.70 0.4163691

N(0.8,1) N(1.6,1) 0.80 0.4565863

N(0.9,1) N(1.8,1) 0.90 0.4966508

N(1,1) N(2,1) 1.00 0.5361516

N(1.2,1) N(2.4,1) 1.20 0.6120176

N(1.4,1) N(2.8,1) 1.40 0.6817908

N(1.6,1) N(3.2,1) 1.60 0.7439262

N(1.8,1) N(3.6,1) 1.80 0.7976885

N(2,1) N(4,1) 2.00 0.8430121

N(2.5,1) N(5,1) 2.50 0.9229231

N(3,1) N(6,1) 3.00 0.9661062

N(3.5,1) N(7,1) 3.50 0.9866717

N(4,1) N(8,1) 4.00 0.9953223

N(4.5,1) N(9,1) 4.50 0.9985373

N(5,1) N(10,1) 5.00 0.9995930
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Table 5.1.2: Maximum Precedence for 1 ~ (0,1)X N , 2 ~ (0,1)X N and 3 ~ ( ,1)X N d

1F 2F 3F d
1 max( )p p 

N(0,1) N(0,1) N(0,1) 0 0.1666667

N(0.05,1) 0.05 0.1737750

N(0.1,1) 0.10 0.1809891

N(0.15,1) 0.15 0.1882994

N(0.2,1) 0.20 0.1956962

N(0.25,1) 0.25 0.2031691

N(0.3,1) 0.30 0.2107075

N(0.35,1) 0.35 0.2183006

N(0.4,1) 0.40 0.2259374

N(0.5,1) 0.50 0.2412964

N(0.6,1) 0.60 0.2566933

N(0.7,1) 0.70 0.2720363

N(0.8,1) 0.80 0.2872347

N(0.9,1) 0.90 0.3022007

N(1,1) 1.00 0.3168510

N(1.2,1) 1.20 0.3449002

N(1.4,1) 1.40 0.3708489

N(1.6,1) 1.60 0.3943010

N(1.8,1) 1.80 0.4150111

N(2,1) 2.00 0.4328836

N(2.5,1) 2.50 0.4656826

N(3,1) 3.00 0.4843977

N(3.5,1) 3.50 0.4937048

N(4,1) 4.00 0.4977483

N(4.5,1) 4.50 0.4992863

N(5,1) 5.00 0.4997996
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Plot 5.1.1: Maximum Precedence when 1 ~ (0,1)X N , 2 ~ ( ,1)X N d and 3 ~ (2 ,1)X N d

Plot 5.1.2: Maximum Precedence when 1 ~ (0,1)X N , 2 ~ (0,1)X N and 3 ~ ( ,1)X N d



37

Table 5.1.3: Maximum and Preferred Precedence for 1 ~ (0,1)X N , 2 ~ (0,1 )X N s ,

3 ~ (0,1 2 )X N s

1F 2F 3F s
1( )p  maxp

N(0,1) N(0,1) N(0,1) 0 0.1666667 0.1666667

N(0,1.1) N(0,1.2) 0.1 0.1665716 0.1729836

N(0,1.2) N(0,1.4) 0.2 0.1663458 0.1783399

N(0,1.3) N(0,1.6) 0.3 0.1660481 0.1829509

N(0,1.4) N(0,1.8) 0.4 0.1657128 0.1869699

N(0,1.5) N(0,2) 0.5 0.1653601 0.1905091

N(0,1.6) N(0,2.2) 0.6 0.1650025 0.1936532

N(0,1.7) N(0,2.4) 0.7 0.1646476 0.1964673

N(0,1.8) N(0,2.6) 0.8 0.1642999 0.1990027

N(0,2) N(0,3) 1 0.1636363 0.2033926

N(0,2.2) N(0,3.4) 1.2 0.1630216 0.2070662

N(0,2.4) N(0,3.8) 1.4 0.1624571 0.2101894

N(0,2.6) N(0,4.2) 1.6 0.1619403 0.2128797

N(0,2.8) N(0,4.6) 1.8 0.1614673 0.2152227

N(0,3) N(0,5) 2 0.1610340 0.2172827

N(0,3.4) N(0,5.8) 2.4 0.1602706 0.2207390

N(0,3.8) N(0,6.6) 2.8 0.1596218 0.2235274

N(0,4.2) N(0,7.4) 3.2 0.1590650 0.2258259

N(0,4.6) N(0,8.2) 3.6 0.1585828 0.2277542

N(0,5) N(0,9) 4 0.1581614 0.2293957

N(0,6) N(0,11) 5 0.1573102 0.2326001

N(0,7) N(0,13) 6 0.1566653 0.2349388

N(0,8) N(0,15) 7 0.1561604 0.2367217

N(0,9) N(0,17) 8 0.1557545 0.2381263

N(0,10) N(0,19) 9 0.1554212 0.2392616

N(0,11) N(0,21) 10 0.1551427 0.2401985
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Plot 5.1.3(a): Preferred Precedence for 1 ~ (0,1)X N , 2 ~ (0,1 )X N s , 3 ~ (0,1 2 )X N s

Plot 5.1.3(b): Maximum Precedence for 1 ~ (0,1)X N , 2 ~ (0,1 )X N s , 3 ~ (0,1 2 )X N s
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Plot 5.1.4: Preferred Precedence for 1 ~ (0,1)X N , 2 ~ ( ,1 )X N d s , 3 ~ (2 ,1 2 )X N d s
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Table 5.1.4: Maximum and Preferred Precedence for 1 ~ (0,1)X N ,

2 1 1~ ( , (1 ))X N d s and 3 2 2~ ( , (1 ))X N d s

1F 2F 3F 1( )p  maxp

N(0,1) N(0,1) N(0,1) 0.166667 0.166667

N(1,1) N(0,1) 0.126548 0.316851

N(2,1) N(0,1) 0.055583 0.432884

N(2,1) N(1,1) 0.1926 0.536152

N(0,1) N(1,2) 0.290151 0.290151

N(0,1) N(1,0.5) 0.339402 0.339402

N(0,0.5) N(1,0.5) 0.442493 0.442493

N(1,0.5) N(1,0.5) 0.373389 0.373389

N(0,2) N(1,1) 0.208362 0.3406

N(0,2) N(1,0.5) 0.205037 0.364364

N(1,2) N(1,0.5) 0.194307 0.395651

N(1,2) N(2,3) 0.341339 0.341339

N(1,2) N(2,2) 0.345068 0.345068

N(1,2) N(2,1) 0.354583 0.354583

N(1,2) N(2,0.5) 0.361739 0.361739

N(1,1) N(2,0.5) 0.579117 0.579117

N(1,0.75) N(2,0.5) 0.659266 0.659266

N(2,1.5) N(4,2) 0.659266 0.659266

N(0,1) N(3,1.25) 0.473685 0.473685

N(1,1) N(3,1.25) 0.660180 0.660180

N(1,1.25) N(3,1.25) 0.609918 0.609918

N(1,1) N(3,1) 0.684116 0.684116

N(1,1) N(4,1) 0.743529 0.743529

N(0,1) N(0.1,0.5) 0.15936 0.216916

N(2,1) N(6,1) 0.919012 0.919012

N(3,1) N(9,1) 0.983042 0.983042

N(4,1) N(16,1) 0.997661 0.997661

N(0,1) N(10,1) 0.5 0.5

N(0,10) N(0,100) 0.234216 0.249842

N(0,0.01) N(0,0.001) 0.248416 0.249984

N(8,1) N(16,1) 1 1
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5.2 The Exponential Distribution

The Exponential distribution is an interesting situation since the same

parameter can be thought of as both a location and a scale parameter.

Specifically, let independently distributed ( )i iX Exp  , 1,2,3i  , so that

1
( )i

i

E X


 .

It then follows from a straightforward computation that

1 2
1 2 3

2 3 1 2 3

1
( )

( ) ( )
P X X X

 

    
  

  
. (5.7)

Without loss of generality, take 1 1  and set 2 1 s   and 3 1 2s   , with 0s  .

Then , 1 1 2 3( ) ( )p P X X X   
1

3(2 3 )s



is a decreasing function of s . Table 5.2.1

provides a detailed summary. Plot 5.2.1 plots 1( )p  against s , while Plot 5.2.2

plots the maximum precedence maxp against s . In this case, 3 2 1( )P X X X  is the

maximum precedence probability, maxp . Table 5.2.2 gives details for both 1( )p 

and maxp in a more general scenario, while keeping ( )i iX Exp  , 1,2,3i  .
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Plot 5.2.1: Preferred Precedence for 1 ~ (1)X Exp , 2 ~ (1 )X Exp s , 3 ~ (1 2 )X Exp s

Plot 5.2.2: Maximum Precedence for 1 ~ (1)X Exp , 2 ~ (1 )X Exp s , 3 ~ (1 2 )X Exp s
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Table 5.2.1: Maximum and Preferred Precedence for 1 ~ (1)X Exp , 2 ~ (1 )X Exp s ,

3 ~ (1 2 )X Exp s

1F 2F 3F s
1( )p  maxp

Exp(1) Exp(1) Exp(1) 0 0.16666667 0.1666667

Exp(1.1) Exp(1.2) 0.1 0.14492754 0.1904762

Exp(1.2) Exp(1.4) 0.2 0.12820513 0.2121212

Exp(1.3) Exp(1.6) 0.3 0.11494253 0.2318841

Exp(1.4) Exp(1.8) 0.4 0.10416667 0.2500000

Exp(1.5) Exp(2) 0.5 0.09523810 0.2666667

Exp(1.6) Exp(2.2) 0.6 0.08771930 0.2820513

Exp(1.7) Exp(2.4) 0.7 0.08130081 0.2962963

Exp(1.8) Exp(2.6) 0.8 0.07575758 0.3095238

Exp(2) Exp(3) 1 0.06666667 0.3333333

Exp(2.2) Exp(3.4) 1.2 0.05952381 0.3541667

Exp(2.4) Exp(3.8) 1.4 0.05376344 0.3725490

Exp(2.6) Exp(4.2) 1.6 0.04901961 0.3888889

Exp(2.8) Exp(4.6) 1.8 0.04504505 0.4035088

Exp(3) Exp(5) 2 0.04166667 0.4166667

Exp(3.4) Exp(5.8) 2.4 0.03623188 0.4393939

Exp(3.8) Exp(6.6) 2.8 0.03205128 0.4583333

Exp(4.2) Exp(7.4) 3.2 0.02873563 0.4743590

Exp(4.6) Exp(8.2) 3.6 0.02604167 0.4880952

Exp(5) Exp(9) 4 0.02380952 0.5000000

Exp(6) Exp(11) 5 0.01960784 0.5238095

Exp(7) Exp(13) 6 0.01666667 0.5416667

Exp(8) Exp(15) 7 0.01449275 0.5555556

Exp(9) Exp(17) 8 0.01282051 0.5666667

Exp(10) Exp(19) 9 0.01149425 0.5757576

Exp(11) Exp(21) 10 0.01041667 0.5833333
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Table 5.2.2: Maximum and Preferred Precedence for 1 1~ ( )X Exp  , 2 2~ ( )X Exp  ,

3 3~ ( )X Exp 

1F 2F 3F 1( )p  maxp

Exp(1) Exp(1) Exp(1) 0.166667 0.166667

Exp(1) Exp(2) 0.083333 0.25

Exp(1) Exp(0.5) 0.266667 0.266667

Exp(0.25) Exp(0.5) 0.095238 0.380952

Exp(1) Exp(4) 0.033333 0.333333

Exp(3) Exp(4) 0.075 0.375

Exp(3) Exp(6) 0.0428571 0.45

Exp(3) Exp(9) 0.0230769 0.519231

Exp(0.33) Exp(0.66) 0.099897 0.335008

Exp(1) Exp(0.66) 0.224271 0.224271

Exp(1) Exp(0.33) 0.322695 0.322695

Exp(1) Exp(0.25) 0.355556 0.355556

Exp(1) Exp(0.1) 0.4329 0.4329

Exp(1) Exp(0.01) 0.492587 0.492587

Exp(2) Exp(0.01) 0.657873 0.657873

Exp(4) Exp(0.01) 0.790498 0.790498

Exp(10) Exp(0.01) 0.899272 0.899272

Exp(4) Exp(0.25) 0.609524 0.609524

Exp(4) Exp(16) 0.011204 0.609524

Exp(4) Exp(8) 0.034188 0.492308

Exp(6) Exp(11) 0.044444 0.457143

Exp(0.95) Exp(1.05) 0.154472 0.179487

Exp(0.75) Exp(1.25) 0.111111 0.238095

Exp(0.05) Exp(25) 0.000007 0.913992

Exp(1.5) Exp(0.5) 0.333333 0.333333
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5.3 The Logistic Distribution

A study of the logistic distribution helps us understand the behavior of

precedence probabilities for symmetric distributions having heavier tails than

the normal distribution. If X is a random variable that follows a logistic

distribution with location parameter  and scale parameter  , its distribution

function F is given by

1
( ) 1

exp(( ) / )
F x

x  
 


. (5.8)

Unfortunately, calculating exact precedence probabilities, particularly for large

K is not simple. The aim here is to check the behavior of precedence

probabilities. So, although an exact solution would have been more effective; I

opted for using simulations to obtain approximate precedence probabilities. For

this purpose, I used the software R. Thirty (30 ) observations are generated at

random from each of the distributions. Then, the precedence probabilities are

estimated by counting the total number of occurrences of a particular

precedence and dividing that by the total number of possible occurrences of

that precedence. For example, let, 3K  . Then, obtain a sample of size 1 from

each of the 30 sets of observations corresponding to different distributions.

Clearly, there are 30 30 30 27000   such triplets possible out of the given

observations. To estimate 1( )p  , we count the no. of triplets in which the

observation from 3F is the largest while the observation from 1F is the smallest;
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and then divide that number by 27000 . Like the preferred precedence, all other

precedence probabilities are estimated in this way. This procedure is then

repeated 1000 times and the average of the estimated precedence probabilities

are used as the final estimate of these precedence probabilities and the

maximum precedence is estimated as the maximum of the final estimates of

precedence probabilities.

The estimated precedence probabilities are summarized in detail in Table 5.3.1,

given below, for a few selected scenarios where I took 1 ~ (0,1)X Logis ,

2 1 1~ ( , )X Logis d s and 3 2 2~ ( , )X Logis d s and used the notation L to denote a

logistic distribution. It appears from these data that the maximum precedence

in the logistic case is smaller than the maximum precedence in the normal

case for the same location and scale parameters. That is, however, expected,

since the logistic distribution boasts of a heavier tail.

5.4 The Generalized Extreme Value Distribution

Our intention here is to check the behavior of precedence probabilities for an

asymmetric distribution. The generalized extreme value distribution seemed to

be a good candidate, as it deals with the asymmetry via the introduction of a
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third parameter, called a shape parameter into the probability density function

model.

If X is a random variable that follows a generalized extreme value c distribution

with location parameter  , scale parameter  and shape parameter  the

distribution function F of the said variable for 0  is given

1/

( ) exp 1
x

F x







    
         

, if 1 0
x 




 
  

 
(5.9)

It is to be noted that the support for this distribution depends on the shape

parameter. For 0  , the support is the whole real line. The mean of the

distribution is  if 1  . Since obtaining exact precedence probabilities is

difficult, I used a similar simulation approach to the one used in 5.3. Again

using the software package R, thirty (30 ) observations were generated at

random from each of the distributions. Then, the precedence probabilities were

estimated by counting the total number of occurrences of a specified

precedence and then dividing that by the total number of possible occurrences

of that precedence. This process is then repeated 1000 times and the average of

the estimated precedence probabilities are used as the final estimates of these

precedence probabilities and the maximum precedence is estimated as the

maximum of the final estimates of precedence probabilities. So, instead of

actual precedence probabilities, we used these estimates to check their

behavior. My results are summarized in detail in Table 5.3.1 for few selected
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cases. Specifically, I took 1 ~ (0, 1, )X GEV scale shape   , 2 1 1 1~ ( , , )X GEV d s  and

3 2 2 2~ ( , , )X GEV d s  , where GEV denotes a generalized extreme value

distribution.

Here, as the shape parameter gets larger, we observe that the maximum

precedence probability gets smaller for distributions with the same set of

location and scale parameters. And as usual, the maximum precedence gets

larger if distributions with the larger location have the smaller scale

parameters.
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Table 5.3.1: Maximum and Preferred Precedence for 1 ~ (0,1)X Logis ,

2 1 1~ ( , )X Logis d s and 3 2 2~ ( , )X Logis d s

1F 2F 3F 1
ˆ ( )p  maxp̂

L(0,1) L(0,1) L(0,1) 0.1681 0.1681

L(1,1) L(2,1) 0.3768 0.3768

L(0,2) L(0,3) 0.1701 0.2268

L(1,2) L(2,3) 0.2684 0.2684

L(2,2) L(4,3) 0.3832 0.3832

L(2,3) L(4,3) 0.3028 0.3028

L(2,1) L(4,3) 0.4994 0.4994

L(2,0.5) L(4,3) 0.5618 0.5618

L(0,1) L(2,1) 0.3454 0.3454

L(0,1) L(2,2) 0.3121 0.3121

L(0,1) L(2,0.5) 0.3737 0.3737

L(3,2) L(6,3) 0.4995 0.4995

L(3,2) L(6,4) 0.4786 0.4786

L(1,2) L(2,1) 0.2448 0.2812

L(1,2) L(2,0.5) 0.2393 0.3240

L(1,1) L(2,0.5) 0.3927 0.3927

L(1,0.75) L(2,0.5) 0.4587 0.4587

L(2,1.5) L(4,2) 0.4583 0.4583

L(0,1) L(3,1.25) 0.3974 0.3974

L(1,1) L(3,1.25) 0.4677 0.4677

L(1,1.25) L(3,1.25) 0.4248 0.4248

L(1,1) L(3,1) 0.4843 0.4843

L(1,1) L(4,1) 0.5635 0.5635

L(2,1) L(6,1) 0.7443 0.7443

L(3,1) L(9,1) 0.8801 0.8801

L(4,1) L(16,1) 0.9470 0.9470

L(0,1) L(10,1) 0.5071 0.5071

L(0,10) L(0,100) 0.2389 0.2514

L(0,0.01) L(0,0.001) 0.2475 0.2577

L(8,1) L(16,1) 0.9956 0.9956

L(15,1) L(30,1) 1 1
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Table 5.4.1: Maximum and Preferred Precedence 1 ~ (0,1, )X GEV  ,

2 1 1 1~ ( , , )X GEV d s  and 3 2 2 2~ ( , , )X GEV d s 

1F 2F 3F 1
ˆ ( )p  maxp̂

G(0,1,0) G(1,1,0) G(2,1,0) 0.4909 0.4909

G(0,2,0) G(0,3,0) 0.2089 0.2317

G(1,2,0) G(2,3,0) 0.3778 0.3778

G(2,2,0) G(4,3,0) 0.5665 0.5665

G(2,1,0) G(4,3,0) 0.6881 0.6881

G(2,0.5,0) G(4,3,0) 0.7348 0.7348

G(2,0.5,0) G(4,0.5,0) 0.8766 0.8766

G(0,1,0) G(2,1,0) 0.3990 0.3990

G(0,1,0.5) G(1,1,0.5) G(2,1,0.5) 0.4460 0.4460

G(1,1.5,0) G(2,2,-.5) 0.3580 0.3580

G(1,2,0) G(2,1.5,-.5) 0.2878 0.2878

G(1,2,-.5) G(2,1.5,0) 0.3502 0.3502

G(1,1.5,-.5) G(2,2,0) 0.4074 0.4074

G(0,1,0) G(1,1.5,-.5) G(2,2,.5) 0.4584 0.4584

G(1,2,-.5) G(2,1.5,.5) 0.4053 0.4053

G(1,2,.5) G(2,1.5,-.5) 0.2917 0.3535

G(1,1.5,.5) G(2,2,-.5) 0.3582 0.3582

G(0,1,-.5) G(1,1,-.5) G(2,1,-.5) 0.5784 0.5784

G(2,1,-.5) G(4,1,-.5) 0.8748 0.8748

G(1,1.5,0) G(2,2,0.5) 0.4774 0.4774

G(1,1.5,.5) G(2,2,0) 0.4179 0.4179

G(1,2,0) G(2,1.5,.5) 0.4084 0.4084

G(1,2,.5) G(2,1.5,0) 0.3500 0.3734

G(0,1,0) G(0,1,.5) 0.2148 0.2148

G(0,1,0) G(0,1,-1) G(0,1,1) 0.2129 0.2534

G(0,1,0) G(0,1,-.2) G(0,1,.2) 0.1864 0.1869

G(0,1,.2) G(1,1,.2) G(2,1,.2) 0.4692 0.4692

G(0,1,-.2) G(1,1,-.2) G(2,1,-.2) 0.5204 0.5204

G(0,1,-1) G(1,1,-1) G(2,1,-1) 0.6419 0.6419

G(0,1,1) G(1,1,1) G(2,1,1) 0.4197 0.4197

G(0,1,0) G(0,10,0) G(0,20,0) 1 1
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From this study, we note the following common behavior of precedence

probabilities irrespective of the type of parametric distribution considered

above. Of course, these are just a very small set of possibilities and are not

intended as an exhaustive study. In the cases of two-parameter families, maxp

gets larger if the distributions with higher location parameters tend to have

smaller scale parameters. max 1( )p p  if the location parameter of distribution 1

is smaller than the location parameter of distribution 2 which in turn is

smaller than the location parameter of distribution 3. Unless the differences

between these parameters are small and the distribution with the largest

location parameter has the smallest scale parameter, maxp tends to get larger as

the difference between distributions increases.

Based on these observations, we introduce the concept of distance-index

measures among distributions in the next chapter.
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Chapter 6: New Index Measures for Separation and

Similarity among Distributions

Rejection of the null hypothesis that the K distributions { ; 1,2,..., }iF i K are

identical naturally leads to the important issue of measuring and describing

just how different the distributions are. Most existing work in this area is fully

parametric, based on functionals such as means, variances and on densities

and applies only to the case K = 2. My use of precedence probabilities to

address this issue is a new approach that leads to non-parametric measures

that are invariant with respect to monotone increasing transformations, have

observable consequences and apply to the general case 2K  .

Defining a useful, intuitively appealing dissimilarity or distance measure among

three or more distributions is a difficult problem to which there is clearly no

unique, best solution. Bioequivalence or biosimilarity is an application where

such a distance measure is very important. Biosimilar is a term used to

describe an officially-approved, later version of an already existing

biopharmaceutical product made by a different producer following patent

expiration of the original product. The United States Food and Drug

Administration (FDA) in 2003 has defined bioequivalence as, “The absence of a

significant difference in the rate and extent to which the active ingredient or

active moiety in pharmaceutical equivalents or pharmaceutical alternatives
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becomes available at the site of drug action when administered at the same

molar dose under similar conditions in an appropriately designed study.” If two

pharmaceutical products are bioequivalent, essentially they are the same for all

intents and purposes. For example, a new drug which is bioequivalent to an

existing drug can generate a market share for itself with a smaller market

price. To prove bioequivalence, some measures of distances are needed.

Popular measures of pair-wise dissimilarity require exact or approximate

specification of the distribution functions or their densities and increasing

values of measures correspond to increasing differences among the

distributions. Best known among these is the Kullback-Liebler divergence. For

any two continuous random variables with continuous density functions 1f

and 2f and distribution functions 1F and 2F , the Kullback-Liebler divergence is

defined by

1
1 2 1

2

( )
D ( || ) ( ) log

( )
KL

f x
F F f x dx

f x





 
  

 
 (6.1)

The Hellinger distance between two distributions, first introduced by Cramer

(1946) in terms of the Hellinger Integral is defined as

 
2

1 2 1 2D ( , ) ( ) ( )H F F f x f x dx




  . (6.2)

The Hellinger distance can also expressed in terms of what is referred to as

affinity, developed by Bhattacharya (1943) and defined by
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 1 2 2 1D ( , ) ln ( ) ( )B F F f x f x dx




 
   

 
 (6.3)

The Cramer-Von Mises criterion (Anderson, 1962) and Kolmogorov-Smirnov

two sample test statistics can also be used to define distances between two

distributions. Specifically, the population analogues of the two-sample

Kolmogorov-Smirnov test statistic and of the Cramer-Von Mises criterion are

given, respectively, by

1 2 1 2D ( , ) | ( ) ( ) |KS xF F Sup F x F x  (6.4)

 
2

1 2 1 2 1 2D ( , ) ( ) ( ) ( )CVM F F F x F x dF x  , (6.5)

where 1 2F  is a distribution function obtained as

 1 2 1 2

1
( ) ( ) ( )

2
F x F x F x   . (6.6)

A promising new measure of the difference between two distributions was

developed by Szekely in 1989. This measure is known as the Energy distance

measure and is defined by

* *
1 2 1 2 1 1 2 2( , ) 2 || || || || || ||D F F E X X E X X E X X      (6.7)

where 1X and *
1X are independently and identically distributed (i.i.d) as 1F , 2X

and *
2X are i.i.d 2F ; || . || is a vector norm and E denotes the expected value.

This distance was recently used by Rizzo and Szekely (2010) to develop a new
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type of nonparametric analysis of variance, which has been discussed in some

detail in the chapters 4 and 10.

Another measure of distance which is gaining popularity is the so-called Earth-

Mover’s Distance based on an idea by Monge (1781) and first applied by Peleg,

Werman and Rom (1989).

The effect-size parameter

2

1
( ) /

K

ij
   


  , (6.8)

given in Cohen (1988) has been widely used in the social sciences to describe

difference among K distributions with means { }i and common variance 2 ,

where / ; 1, 2,..,i K i K   .

Based on the precedence probability described earlier, we propose three new

measures of similarity or separation between K distributions. Recall that there

are !K precedence probabilities { ( ); 1, 2,..., !}ip i K  among K distributions. In

my opinion, differences among these distributions are well captured by these

precedence probabilities. Recall that in the extreme cases, when all the

distributions are equal, all the precedence probabilities equal 1/ !K and when

all the distributions are singular, { ( ); 1, 2,..., !}ip i K  all equal 1, their maximum

value. In between these extremes, increasing variation and increasing

magnitudes among the precedence probabilities correspond to increasing
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differences among the distributions. Accordingly, I now introduce three

summary measures of the precedence probabilities, defined as follows:

1 max { ( ); 1,2,..., !}i ip i k   . (6.9)

!
2

2
1

( )
K

i
i

p 


 (6.10)

3 . .{ ( ); 1,2,..., !}is d p i k   . (6.11)

In (6.11), . .s d stands for standard deviation. Next, I present some properties of

these summary measures in the form of a theorem.

Theorem 6.1: Let { ( ); 1, 2,..., !}ip i K  be the precedence probabilities arising

from K continuous distributions and 1 , 2 and 3 be as defined in (6.9), (6.10)

and (6.11). Then, among all such possible distributions,

(i) 1max.{ } 1 

(ii) 1min.{ } 1/ !K 

(iii) 2max.{ } 1 

(iv) 2min.{ } 1/ !K 

(v) 3

1
max.{ }

!K


 
  

 

(vi) 3min.{ } 0 
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Moreover, the maximum values for 1 , 2 and 3 occur when one of the

precedence probabilities is 1. Their minimum values occur when all of the

precedence probabilities are equal.

Proof: Since, { ( ); 1,2,..., !}ip i k  is a set of precedence probabilities,

1max { ( ); 1,2,..., !} max.{ } 1i ip i k    , (6.12)

which occurs when the distributions are mutually singular.

Since the precedence probabilities sum to 1,

1
( ( ); 1,2,..., !)

!
imean p i K

K
   . (6.13)

Maximizing . .( ( ); 1,2,..., !)is d p i K  is equivalent to maximizing
!

2

1

( )
K

i
i

p 

 . Since

0 ( ) 1, 1, 2,..., !ip i K   , 2( ) ( )i ip p  . Hence,

! !
2

1 1

( ) ( ) 1
K K

i i
i i

p p 
 

   . (6.14)

If one of the precedence probabilities is 1, the inequality in (6.12) is an equality

and

2max{ } 1  . (6.15)

Furthermore, when one of the precedence probabilities is 1,
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. .( ( ); 1,2,..., !)is d p i K  
 2

2

! 11 1 1
1

! ! 1 ! 1 !

K

K K K K

 
  

  

1

!K

 
  

 
.

That leads to,

3

1
max.{ }

!K


 
  

 
. (6.16)

It is to be noted that the mean of any set of observations cannot be greater

than their maximum and that the mean and maximum are equal if and only if

all the observations are identical. Specifically,

max { ( ); 1, 2,..., !} { ( ); 1,2,..., !}i i ip i k mean p i K    .

Equality in the expression above occurs if and only if ( ) 1/ ! 1,2,..., !ip K i K    .

So, clearly,

1min.{ } 1/ !K  . (6.17)

Also, since 3 is a standard deviation,

3min.{ . .( ( ); 1,2,..., !)} min .{ } 0is d p i K    (6.18)

which occurs if and only if ( ) 1/ ! 1, 2,..., !ip K i K    .

Clearly,

2min .{ } 0  , (6.19)

and this occurs if and only if the underlying distributions are identical.
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This completes the proof.

To gain some insight into the results presented in Theorem 6.1, consider the

case when one of the precedence probabilities is 1. Without loss of generality,

let 1 1 2( ) ( ... ) 1Kp P X X X      , which occurs when all observations from

distribution function KF would be larger than all observations from distribution

function 1KF  and so on, with observations from distribution function 1F being

smallest among all. So, in this case there is a clear sense of ordering among

distributions. This scenario leads to the maximum in each of the three

proposed index measures. On the other hand, when all the distributions are

identical , all the of precedence probabilities are equal, which in turn leads to

all three proposed index measures equaling their minimum possible values.

Keeping the results obtained from Theorem 6.1 in mind, we introduce below

standardized versions of (6.9) - (6.11). All three standardized measures range

from 0 to 1, with a larger measure denoting very different distributions and a

smaller measure denoting very slight differences among the distributions. A

measure of 1 occurs only when the distributions are mutually singular and a

measure of 0 occurs only when all the distributions are identical.

Here are the three proposed “standardized” measures m , ss and sd :
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1

1

!
1

1
!

m
K

K









, (6.20)

2

1

!
1

1
!

ss
K

K









, (6.21)

3

1

!

sd

K


 

 
 
 

. (6.22)

We have the following relationships between these indices.

Theorem 6.2: When, 2K  ; m sd  .

Proof: Let, without any loss of generality, 1 1( )p  . Then

12( ( ) 0.5)m p   . (6.23)

On the other hand,

2
3 1 12( ( ) 0.5) 2( ( ) 0.5)sd mp p          . (6.24)

This completes the proof.
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Theorem 6.3: 2
ss sd  .

Proof: Note that,

 

2!

12

1
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!
!

! 1
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i
i

sd

p
K

K
K



 
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K
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









!
2

1

1
( )

!

1
1

!

K

i
i

ss

p
K

K







 
 
 

 


. (6.25)

Since, ss and sd are related in such a unique way, it is sufficient to study the

behavior of any one of them. Depending on the ease of estimation, we will be

able to propose a better index among these two measures.

In the next chapter we will explore the behavior of these distance indices under

a variety of conditions.
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Chapter 7: Behavior of Distance Index Measures

In this chapter, we are going to discuss the behavior of the distance measures

among K distributions proposed in the previous chapter in (6.20)-(6.22). I am

not going to compare them with any existing methods mostly because there are

so many ways in which a “distance” can be defined. However, as specified in

the earlier chapter, all of these measures attain their maximum values when all

the distributions are mutually singular and all these measures attain their

minimum values when all the distributions are identical.

I will start with the behavior of these measures when the underlying

distributions are normal. I used the software R to calculate these indexes

precisely with the help of the “mnormt” routine available. I used equation (5.3)

to calculate which equates the precedence probability to the distribution

function of a multivariate normal distribution with a specified correlation

structure.

Case 1: 2K  and both underlying distributions are normal

This is the simplest scenario for measuring the distance among distributions.

For example, when the difference is only in the means of the distributions, a

simple distance measure applied to the means suffices.. However, the problem
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gets trickier if the variances of the distributions are not equal, which is

probably an under-studied but important practical case. When, 2K  and both

underlying distributions are normal, we recall that the precedence probabilities

are be equal if the means of the distributions are exactly equal, even if the

scales differ. Also, as mentioned in Theorems 6.2 and 6.3, all the index

measures given there are related to each other. Among the results seen in

Table 7.1, note that based on my index measures, the distance between two

normal distributions appears to be larger if the distribution with larger mean

has the smaller variance.

Case 2: 3K  and all the underlying distributions are normal.

This is, naturally the next step in checking the behavior of these index

measures. When, 3K  and all the underlying distributions are normal, we

recall that the precedence probabilities are not necessarily equal, even if the

means of the distributions are exactly same. In fact, if the variances differ for

all the distributions, there are 3 separate pairs of precedence probabilities

which are different from each other. Also, as mentioned in Theorem 6.3, index

measures ss and sd are related to each other.

The results are listed in detail in Table 7.2. The findings here are, otherwise,

similar to the previous case study in Table 7.1. If the distributions are different

in variances only, clearly they do not seem to be that much different from



64

distributions which differ in location. This observation is reflected in the fact

that, the maximum precedence seems to be converging to 0.25 and that, in

turn, is reflected in the index measures, which do not approach the maximum

possible value of 1. Again, that might be seen as strength of these measures.

Case 3: 3K  and all the underlying distributions are exponential

This is an interesting case, as in the exponential distribution a single

parameter acts as both a location and scale parameter. This case was studied

in detail in Table 7.3. The precedence probability and hence, in turn, the index

measures seem to depend on the ratio of the parameters of the exponential

distributions. The index measures seem to be higher if the ratio of the smallest

parameter to the middlemost parameter is the same as the ratio of the

middlemost parameter to the largest parameter; rather than any other

arrangement of the 3 parameters.

Case 4: 3K  and all the underlying distributions are logistic.

For logistic distributions, the tails are heavier than normal distributions. So,

logistic distributions might be expected to be less “different” than normal

distributions having the same location and scale parameters. Here also, the

precedence probabilities are necessarily equal if the location parameters of the

distributions are the same. As seen in case 2, if the variances differ for all the
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distributions, there are 3 separate pairs of precedence probabilities which are

different from each other. A few selected results are given in Table 7.4. The

findings here are very similar to those in case 2.

Case 5: 3K  and all the underlying distributions are generalized extreme

value distributions.

A generalized extreme value distribution has three separate parameters, one of

which is a shape parameter responsible for the asymmetry of the distribution.

This case study seems to be very similar to case 2 and case 4 in terms of

location and scale parameters. However, the new dimension of shape

parameter and its interaction with other parameters in determining precedence

probabilities is presented in Table 7.5. These distributions do not seem at all

different if they differ only in the shape parameters. Typically, higher maximum

precedence is observed if the distribution with smallest location parameter is

also associated with smallest shape parameter. If the scale parameter is

involved, typically higher maximum precedence is observed if the distribution

with smallest location and shape parameter is also associated with the smallest

scale parameter.
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Table 7.1: Behavior of Distance Index Measures when 2K  and distributions

are normal

1F 2F m ss sd

N(0,1) N(0,1) 0 0 0

N(0,1) N(1,1) 0.5205 0.2709 0.5205

N(0,1) N(2,1) 0.8427 0.7101 0.8427

N(0,1) N(3,1) 0.9661 0.9334 0.9661

N(0,1) N(4,1) 0.9923 0.9907 0.9923

N(0,1) N(5,1) 0.9996 0.9992 0.9996

N(0,1) N(6,1) 1.0000 1.0000 1.0000

N(0,1) N(1,2) 0.3453 0.1192 0.3453

N(0,1) N(1,0.5) 0.6289 0.3955 0.6289

N(0,1) N(1,4) 0.1916 0.0367 0.1916

N(0,1) N(1,0.25) 0.6797 0.4620 0.6797

N(0,1) N(2,2) 0.6289 0.3955 0.6289

N(0,1) N(2,0.5) 0.9264 0.8581 0.9264

N(0,1) N(2,4) 0.3724 0.1387 0.3724

N(0,1) N(2,0.25) 0.9531 0.9085 0.9531

N(0,1) N(3,2) 0.8203 0.6729 0.8203

N(0,1) N(3,0.5) 0.9927 0.9854 0.9927

N(0,1) N(3,4) 0.5331 0.2842 0.5331

N(0,1) N(3,0.25) 0.9971 0.9943 0.9971
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Table 7.2: Behavior of Distance Index Measures when 1 ~ (0,1)X N ,

2 1 1~ ( , (1 ))X N d s and 3 2 2~ ( , (1 ))X N d s

1F 2F 3F maxp m ss sd

N(0,1) N(0,1) N(0,1) 0.166667 0 0 0

N(1,1) N(0,1) 0.316851 0.1802 0.0871 0.2951

N(2,1) N(0,1) 0.432884 0.3195 0.2575 0.5074

N(2,1) N(1,1) 0.536152 0.4434 0.2366 0.4865

N(0,1) N(1,2) 0.290151 0.1482 0.0556 0.2359

N(0,1) N(1,0.5) 0.339402 0.2072 0.1221 0.3495

N(0,0.5) N(1,0.5) 0.442493 0.3310 0.1927 0.4390

N(1,0.5) N(1,0.5) 0.373389 0.2481 0.1539 0.3923

N(0,2) N(1,1) 0.3406 0.2087 0.0725 0.2693

N(0,2) N(1,0.5) 0.364364 0.2372 0.1016 0.3188

N(1,2) N(1,0.5) 0.395651 0.2748 0.1103 0.3321

N(1,2) N(2,3) 0.341339 0.2096 0.0725 0.2693

N(1,2) N(2,2) 0.345068 0.2141 0.0926 0.3043

N(1,2) N(2,1) 0.354583 0.2255 0.1466 0.3829

N(1,2) N(2,0.5) 0.361739 0.2341 0.1748 0.4181

N(1,1) N(2,0.5) 0.579117 0.4949 0.2926 0.5409

N(1,0.75) N(2,0.5) 0.659266 0.5911 0.3798 0.6163

N(2,1.5) N(4,2) 0.659266 0.5911 0.3798 0.6163

N(0,1) N(3,1.25) 0.473685 0.3684 0.3397 0.5829

N(1,1) N(3,1.25) 0.660180 0.5922 0.3913 0.6255

N(1,1.25) N(3,1.25) 0.609918 0.5319 0.3354 0.5792

N(1,1) N(3,1) 0.684116 0.6209 0.43 0.6557

N(1,1) N(4,1) 0.743529 0.6922 0.5316 0.7291

N(0,1) N(0.1,0.5) 0.216916 0.0603 0.0106 0.1030

N(2,1) N(6,1) 0.919012 0.9028 0.8209 0.9060

N(3,1) N(9,1) 0.983042 0.9796 0.96 0.9798

N(4,1) N(16,1) 0.997661 0.9972 0.9944 0.9972

N(0,1) N(10,1) 0.5 0.4 0.4 0.6324

N(0,10) N(0,100) 0.249842 0.0998 0.0821 0.2865

N(0,0.01) N(0,0.001) 0.249984 0.1 0.0981 0.3132

N(8,1) N(16,1) 1 1 1 1
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Table 7.3: Behavior of Distance Index Measures for 1 1~ ( )X Exp  , 2 2~ ( )X Exp  ,

3 3~ ( )X Exp 

1F 2F 3F maxp m ss sd

Exp(1) Exp(1) Exp(1) 0.166667 0 0 0

Exp(1) Exp(2) 0.25 0.1 0.033 0.1826

Exp(1) Exp(0.5) 0.266667 0.12 0.0373 0.1932

Exp(0.25) Exp(0.5) 0.380952 0.2571 0.0979 0.3129

Exp(1) Exp(4) 0.333333 0.2 0.112 0.3347

Exp(3) Exp(4) 0.375 0.25 0.1118 0.3344

Exp(3) Exp(6) 0.45 0.34 0.1582 0.3978

Exp(3) Exp(9) 0.519231 0.4231 0.2163 0.4651

Exp(0.33) Exp(0.66) 0.335008 0.202 0.0683 0.2613

Exp(1) Exp(0.66) 0.224271 0.0691 0.0127 0.1126

Exp(1) Exp(0.33) 0.322695 0.1872 0.0892 0.2986

Exp(1) Exp(0.25) 0.355556 0.2267 0.1298 0.3602

Exp(1) Exp(0.1) 0.4329 0.3195 0.2556 0.5056

Exp(1) Exp(0.01) 0.492587 0.3911 0.3824 0.6184

Exp(2) Exp(0.01) 0.657873 0.5894 0.4506 0.6712

Exp(4) Exp(0.01) 0.790498 0.7486 0.5975 0.7730

Exp(10) Exp(0.01) 0.899272 0.8791 0.7804 0.8834

Exp(4) Exp(0.25) 0.609524 0.5314 0.3142 0.5606

Exp(4) Exp(16) 0.609524 0.5314 0.3142 0.5606

Exp(4) Exp(8) 0.492308 0.3908 0.2041 0.4518

Exp(6) Exp(11) 0.457143 0.3486 0.2145 0.4632

Exp(0.95) Exp(1.05) 0.179487 0.0154 0.0006 0.0242

Exp(0.75) Exp(1.25) 0.238095 0.0857 0.0151 0.1228

Exp(0.05) Exp(25) 0.913992 0.8968 0.8067 0.8982

Exp(1.5) Exp(0.5) 0.333333 0.2 0.0673 0.2595
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Table 7.4: Behavior of Distance Index Measures for 1 ~ (0,1)X Logis ,

2 1 1~ ( , )X Logis d s and 3 2 2~ ( , )X Logis d s

1F 2F 3F maxp̂ ˆ
m ˆ

ss ˆ
sd

L(0,1) L(0,1) L(0,1) 0.166667 0.0038 0.0001 0.0094

L(1,1) L(2,1) 0.3768 0.2521 0.0946 0.3076

L(0,2) L(0,3) 0.2268 0.0722 0.0162 0.1273

L(1,2) L(2,3) 0.2684 0.1220 0.0379 0.1946

L(2,2) L(4,3) 0.3832 0.2598 0.0985 0.3138

L(2,3) L(4,3) 0.3028 0.1634 0.0729 0.2699

L(2,1) L(4,3) 0.4994 0.3992 0.1787 0.4227

L(2,0.5) L(4,3) 0.5618 0.4742 0.2442 0.4942

L(0,1) L(2,1) 0.3454 0.2145 0.1168 0.3417

L(0,1) L(2,2) 0.3121 0.1745 0.0730 0.2701

L(0,1) L(2,0.5) 0.3737 0.2485 0.1608 0.4010

L(3,2) L(6,3) 0.4995 0.3994 0.1930 0.4393

L(3,2) L(6,4) 0.4786 0.3743 0.1664 0.4080

L(1,2) L(2,1) 0.2812 0.1375 0.0753 0.2744

L(1,2) L(2,0.5) 0.3240 0.1888 0.1089 0.3300

L(1,1) L(2,0.5) 0.3927 0.2712 0.1251 0.3538

L(1,0.75) L(2,0.5) 0.4587 0.3505 0.1585 0.3982

L(2,1.5) L(4,2) 0.4583 0.35 0.1575 0.3969

L(0,1) L(3,1.25) 0.3974 0.2769 0.1872 0.4326

L(1,1) L(3,1.25) 0.4677 0.3613 0.1705 0.4129

L(1,1.25) L(3,1.25) 0.4248 0.3098 0.1457 0.3816

L(1,1) L(3,1) 0.4843 0.3812 0.1932 0.4395

L(1,1) L(4,1) 0.5635 0.4762 0.2945 0.5427

L(2,1) L(6,1) 0.7443 0.6932 0.5121 0.7156

L(3,1) L(9,1) 0.8801 0.8562 0.7433 0.8622

L(4,1) L(16,1) 0.9470 0.9364 0.8796 0.9378

L(0,1) L(10,1) 0.5071 0.4086 0.3992 0.6319

L(0,10) L(0,100) 0.2514 0.1017 0.0806 0.2838

L(0,0.01) L(0,0.001) 0.2577 0.1092 0.0980 0.3130

L(8,1) L(16,1) 0.9956 0.9947 0.9895 0.9947

L(15,1) L(30,1) 1 1 1 1
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Table 7.5: Behavior of Distance Index Measures for 1 ~ (0,1, )X GEV  ,

2 1 1 1~ ( , , )X GEV d s  and 3 2 2 2~ ( , , )X GEV d s 

1F 2F 3F maxp̂ ˆ
m ˆ

ss ˆ
sd

G(0,1,0) G(1,1,0) G(2,1,0) 0.4909 0.3891 0.1904 0.4364

G(0,2,0) G(0,3,0) 0.2317 0.0781 0.0203 0.1484

G(1,2,0) G(2,3,0) 0.3778 0.2533 0.0965 0.3107

G(2,2,0) G(4,3,0) 0.5665 0.4798 0.2746 0.5240

G(2,1,0) G(4,3,0) 0.6881 0.6258 0.4102 0.6404

G(2,0.5,0) G(4,3,0) 0.7348 0.6817 0.4752 0.6894

G(2,0.5,0) G(4,0.5,0) 0.8766 0.8519 0.7328 0.8560

G(0,1,0) G(2,1,0) 0.3990 0.2789 0.1961 0.4428

G(0,1,0.5) G(1,1,0.5) G(2,1,0.5) 0.4460 0.3352 0.1459 0.3820

G(1,1.5,0) G(2,2,-.5) 0.3580 0.2296 0.0696 0.2638

G(1,2,0) G(2,1.5,-.5) 0.2878 0.1453 0.0618 0.2487

G(1,2,-.5) G(2,1.5,0) 0.3502 0.2202 0.0841 0.2899

G(1,1.5,-.5) G(2,2,0) 0.4074 0.2889 0.1025 0.3202

G(0,1,0) G(1,1.5,-.5) G(2,2,.5) 0.4584 0.3500 0.1606 0.4008

G(1,2,-.5) G(2,1.5,.5) 0.4053 0.2864 0.1425 0.3775

G(1,2,.5) G(2,1.5,-.5) 0.3535 0.2242 0.1085 0.3294

G(1,1.5,.5) G(2,2,-.5) 0.3582 0.2298 0.1029 0.3207

G(0,1,-.5) G(1,1,-.5) G(2,1,-.5) 0.5784 0.4941 0.2813 0.5303

G(2,1,-.5) G(4,1,-.5) 0.8748 0.8497 0.7274 0.8529

G(1,1.5,0) G(2,2,0.5) 0.4774 0.3729 0.1940 0.4405

G(1,1.5,.5) G(2,2,0) 0.4179 0.3015 0.1600 0.4000

G(1,2,0) G(2,1.5,.5) 0.4084 0.2900 0.1803 0.4246

G(1,2,.5) G(2,1.5,0) 0.3734 0.2480 0.1652 0.4064

G(0,1,0) G(0,1,.5) 0.2148 0.0577 0.0089 0.0942

G(0,1,0) G(0,1,-1) G(0,1,1) 0.2534 0.1040 0.0213 0.1460

G(0,1,0) G(0,1,-.2) G(0,1,.2) 0.1869 0.0243 0.0016 0.0393

G(0,1,.2) G(1,1,.2) G(2,1,.2) 0.4692 0.3630 0.1683 0.4102

G(0,1,-.2) G(1,1,-.2) G(2,1,-.2) 0.5204 0.4245 0.2213 0.4704

G(0,1,-1) G(1,1,-1) G(2,1,-1) 0.6419 0.5703 0.3495 0.5912

G(0,1,1) G(1,1,1) G(2,1,1) 0.4197 0.3037 0.1229 0.3506

G(0,1,0) G(0,10,0) G(0,20,0) 1 1 1 1
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Looking at the behavior of these index measures, a few summary observations

are worth noting. For all the examples that we looked into, sd m ss    . Also,

since,
2

ss sd  , for most of these examples, ss seems to be much lower than the

other two index measures. This indicates that possibly sd is a safer choice

among these two related index measures. The maximum possible value of 1 for

all these index measures is approached when there are large differences in the

location parameters. However, the difference in location parameters at which

these measures are very close to 1, depends on the parametric distributions

involved.

In the future, I plan to investigate statistical inference for these index

measures.
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Chapter 8: A Family of Hypothesis Tests

Recall that in Chapter 3, motivated by the well known and important issue of

testing for Hypervolume under Manifold (HUM) of a ROC Manifold, I proposed

testing the following hypotheses

0 1 2: ... KH F F F  

Vs.

1 2

1
: Pr( ... )

!
A KH X X X

K
   

(8.1)

where { , 1,2,..., }iX i K are independently distributed with absolutely continuous

distribution functions { ; 1,2,..., }iF i K .

Much can be learned about the joint behavior of K distributions from their

precedence probabilities, an approach that has not yet been looked at very

much and (8.1) can be viewed as a particular representative of a family of tests

described in this chapter. Simply put, I propose a new way to compare K

distributions based on independent random samples using a new paradigm. A

very old problem in the literature of statistics is what is known as the K-sample

problem of testing for inequality among the distributions in the above setting.
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Clearly all of the distributions are equal and continuous, each precedence

probability { ( ); 1, 2,..., !}ip i K  equals 1 / !K . It is not known if the converse is

true for 3K  . However, we have not yet found an example where any

departure from equality of distributions does not change at least one of the !K

precedence probabilities if 3K  and all the distributions are continuous.

On the other hand, for 2K  , and symmetric location-scale families of

distributions, if the locations are the same, both precedence probabilities equal

½ even if the distributions differ in scale. If there is prior reason to believe that

one or a relatively small group of orderings is dominant, rather than testing

against the usual alternative that at least two of the distributions are not

identical, it would make more sense to test for a more targeted alternative

hypothesis. The HUM under the ROC manifold is an example of this type of

directed test. Also, consider an experiment where iX is a score corresponding

to a treatment ; 1,2,3iT i  and it is only suspected that 2X and 3X tend to be

larger than 1X ; whereas the ordering of 2X and 3X is unknown. In such a case

it might be a good idea to just test whether at least one of the precedence

probabilities 1 2 3( )P X X X  and 1 3 2( )P X X X  is greater than 1 / !K .

Generalizing this approach, I propose using alternative hypotheses for the K -

sample problem based on precedence probabilities. Since,
!

1

( ) 1
K

i
i

p 


 , it is

sufficient to test for at most ( ! 1)K  precedence probabilities. I will henceforth

refer to this formulation as testing for precedence.
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Keeping the above examples in mind, I begin with a “precedence probability”-

based test for the K-sample problem whose hypotheses are

0 1 2: ... KH F F F  

Vs.

:{AH at least one of ( ) 1 !; 1, 2,..., }ip K i m  

(8.2)

where { ( ); 1, 2,..., }ip i m  is an apriori selected set of m precedence probabilities

with 1 ( ! 1)m K   .

Note that, when 1m  , (8.2) is a two-sided version of the alternative hypotheses

in (8.1).

Also note that, when ! 1m K  ,

:{AH at least one of ( ) 1 !; 1, 2,..., ! 1}ip K i K   

: ,A i jH F F  for at least one pair ( , )i j

This test, henceforth called Precedence Omnibus Test (POT), is treated in

Chapter 9 along with other POT-type tests for ! 1m K  . Please note that,

inequality in two precedence probabilities implies inequality of at least a pair of
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distributions. One-sided tests with ordered alternatives are developed in

Chapter 11.
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Chapter 9: Rank Tests for Precedence Probabilities

In this chapter, I will propose a new test based on U-statistics, which were

discussed in some detail in Chapter 2, for the hypotheses given in (8.2).

Asymptotic normality of the new test statistic will follow from known results on

the limiting distribution of U-statistics and the test will be based on a UMVUE

(Uniformly Minimum Variance Unbiased Estimator) for a family of distributions

containing all continuous distributions.

The U-statistic approach provides a very intuitive way of estimating precedence

probabilities that leads to tests of hypotheses. Again, consider a set of K

independent random variables 1 2( , ,..., )KX X X with continuous probability

density functions (p.d.f.) denoted by 1 2( , ,..., )Kf f f and distribution functions

1 2( , ,..., )KF F F . Let, { ; 1,2,..., }ij iX j n be in independent observations from the

underlying distribution function ; 1,2,...,iF i K . Then, let us consider the pooled

N dimensional data vector { ; 1,2,..., ; 1, 2,..., }ij iX j n i K  X , where
1

K

i
i

N n


 .

Recall that 1 2{ ( , ,..., ); 1,2,..., !}i i i iK i K     denote the set of permutations of the

first K integers (1,2,..., )K . To simplify the notation, without any loss of

generality, first consider estimating 1 1 2( ) ( ... )Kp P X X X     . The first step is
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to provide a good estimator for this parameter. The following U-statistic of

degree (1,1,…,1) is an unbiased estimator of 1( )p  ,

1 2

1 2

1 2

1 1 2
1 1 11 2

1
... ( ... )

...

K

K

K

n n n

i i Ki
i i iK

U I X X X
n n n   

     . (9.1)

Unbiased estimators  ; 1, 2,..., !iU i K of the other precedence probabilities are

defined in a similar manner. As described earlier, interest may lie in inference

for { ( ); 1,2,..., }ip i m  , an “a priori” selected set of m precedence probabilities

with 1 ( ! 1)m K   . Let 1 2( , ,..., )m mU U U U


be the corresponding vector of U-

statistic estimators, with

1 2

1 1 2 2

1 21 1 11 2

1
... ( ... )

...

j j jK

j j jK K

K

n n n

i j j j
j j jK

U I X X X
n n n

  

  
  

     . (9.2)

Let mV be the variance-covariance matrix of mU


so that ( , )mv i j , the ( , )i j -th

element of mV is ( , )i jCov U U , the covariance between iU and jU ; 1m be a column

vector of dimension m and with all its elements being 1. Note that the

dependence of mV on the sample sizes { , 1,2,..., }in i m is suppressed for the sake

of simplicity.

Using the properties of U –statistics described in Chapter 2,

0

1
( ) 1

!
H m mE U

K

 
  
 

. (9.3)
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and asymptotically,  
1

1 0 ,
!

m m m mU N V
K

  
   
  




, where 0m is a vector of length m

with all its elements being 0 , provided
1

;0 1; 1
K

i
i i i

i

n

N
  



    as N  .

Motivated by the asymptotic normality of 1 2( , ,..., )m mU U U U


under 0H , I propose

the following statistic for testing (8.2):

2 1
( )

1 1
1 1

! !
m K m m m m mU V U

K K
 

      
        

       
, (9.4)

The asymptotic normality described above implies that the asymptotic

distribution of our proposed test statistic under 0H in (8.2) is a chi-square

distribution with m degrees of freedom. An asymptotic size- test is therefore

obtained by the following rejection rule. Reject 0H given in (8.2) if and only if

2 2
( ) ,m K m    where 2

,m  is such that 2
,( )mP X     , and where the random

variable X has a chi-square distribution with m degrees of freedom. Properties

of this class of tests will be discussed below.

Stepping back a bit, since the hypotheses 0H and AH in (8.2) are invariant with

respect to strictly increasing, continuous transformations, we are led to

consider tests based on the rank vectors R ={ ; 1,2,..., }iR i K , where iR are the

ranks of { , 1,2,..., }ij iX j n in the pooled N dimensional data vector Y = { ijX }. The

proposed U-statistic estimator iU is unbiased for ( ); 1, 2,..., !ip i K  and ( )iU Y =

( )iU R . Clearly, the test statistic introduced in (9.3) is rank-based, but not a
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linear rank statistic. Consequently, having observed data ( )ijx X x , a

naturally appealing class of permutation test { c } of (8.2) is given by

( )c y  1 if 2
( ) ( )m K y c  ,

= 0 otherwise, (9.5)

where 1/ !c K is a constant. Let { }V  denote the N ! permutations of the

components of x . The size of such a test is given by

0( ( ) | )cE H X 2
( )#{ ; ( ( )) }m K c   x / N !.

Following an argument given in Bhapkar (1961), I plan to show in the future

that this test is consistent (the power goes to 1 if null hypothesis is false)

against all alternatives in aH .

Choosing the constant c so that ( )c x is close to some desired value can be

numerically difficult. Instead, a permutation p-value is given by

p-value = 2 2
( ) ( )#{ ; ( ( )) ( )}m K m Ky y    / N !.

Then, an approximate size- test may be carried out by rejecting the null

hypothesis only if p-value  . To further reduce the amount of computation,

instead of computing 2
( ) ( ( ))m K y  for all permutations { }V  , following Efron

and Tibshirani (1993) and Davison and Hinkley (1997) a permutation p-value

may be approximated by sampling from { }V  as follows.
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(i) For a large, positive integer L, independently and randomly select L

permutations * *{ , 1,2,..., }L    .

(i) Compute *( ( ))KU  x , for each permutation *
 in *

(ii) Estimate a p-value by then calculating the empirical p-value as

2 * 2
( ) ( )1 #{ ( ( )) ( )}

ˆ
1

m K m Ky y
p

L

   



. (9.6)

Rejecting 0H if p̂ at is at most  yields an approximate size- test.

The first step in being able to use (9.3) is to derive expressions for calculating

the elements of mV . To that end, let
1 2

( ) ( ... )
Kip P X X X       and

1 2
( ) ( ... )

Kjp P X X X       where il l  , ; 1, 2,...,jl l l K    and both

,i j     ;  being the collection of all permutations of {1, 2,..., }K . Note again

that iU and jU are unbiased U-statistic estimates for ( )ip  and ( )jp  ,

respectively. When the null hypothesis in (8.2) is true, using (9.4),

 
2

( , ) ( ) 1 / !i j i jCov U U E U U K  . (9.7)

So, to obtain the covariance, we need to calculate ( )i jE U U when the null

hypothesis is true, denoted by
0
( )H i jE U U .

By definition,
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1 1

0 1 11 1

1 1

2
1 1 1 10

1
( ) ... ... ( ... ) ( ... )

K K

i K i j K jK K

K K

n n n n

H i j n n n n
i i j j

E U U E I X X I X X
n

   

   
   

 
      

 
   ; (9.8)

with 0
1

K

i
i

n n


 .

Now, let

1 1 1 1( ), ( ) ( ... ) ( ... )
K K K Kl r l l r rc I X X I X X          (9.9)

and
* 1 1 1 1( ), ( ), , , ( ... ) ( ... )

K K K Kl r s b b l l r rc I X X I X X          with
*b b  and

*b bl r for

exactly s positions at 1( ,..., )sb d d and * 1( ,..., )sb g g . The indicator function

*( ), ( ), , ,l r s b bc  has the value 1 if and only if
1 1( ) ( ... )

K Kl l lc I X X     and

1 1( ) ( ... )
K Kr r rc I X X     have s common observations occurring from distributions

1
{ ; ,..., }

sj d dF j   . Note that, in this scenario, ; 1,...,
i id g i s   . However, id is not

necessarily the same as ig .

Also, let us define
1 1 1 1( ), ( ),0 ( ... ) ( ... )

K K K Kl r l l r rc I X X I X X          such that

; 1, 2,...,i il r i K  . Specifically, there is no common observation in

1 1( ) ( ... )
K Kl l lc I X X     and

1 1( ) ( ... )
K Kr r rc I X X     coming out of any of the

underlying distributions. To proceed, we define the concordance between

vectors as follows.

Definition: Vectors 1( ,..., )sg g g and 1( ,..., )sh h h are concordant if and only if

1 1( ... ) ( ... )s sh h g g     .
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Then, we have the following results presented in a theorem.

Theorem 9.1: Consider,
1 1 1 1( ), ( ) ( ... ) ( ... )

K K K Kl r l l r rc I X X I X X          with
*b b 

and
*b bl r for exactly s positions at 1( ,..., )sb d d and * 1( ,..., )sb g g . Then, if the

null hypothesis mentioned in (8.2) is correct,

(i) provided b and *b are concordant and 1( ... )sg g  , for 1,2,...,s K ;

1 11 1

0 * 1 1

1
2 22

( ), ( ), , , 1 1
1

( ) (2 )!i i i i s s

i i s

s
g d d g K g dg d

H l r s b b d d d K d
i

E c C C C K s 
 




      

   


 
  

 
 ; (9.10)

(ii) If b and *b are not concordant, for 1,2,...,s K ;

0 *( ), ( ), , ,( ) 0H l r s b bE c   ; (9.11)

(iii) For 0s  ;

0

2

( ), ( ),0

1
( )

!
H l rE c

K
 

 
  
 

. (9.12)

Proof: (i) Clearly, there are (2 )K s unique observations involved in ( ), ( )l rc  .,

which can be arranged in (2 )!K s ways and, under the null hypothesis, all of

these arrangements are equally likely. Now, note that
1 1 1 1d d g gl rX X  .
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Then,
1 1 1 1 1 1 1 11 1 1 1

{( ,..., );( ,..., )}
d d g gl l r rX X X X      

can be arranged in 1 1

1

2
1

g d
dC  
 ways so that

1 1 1 11 1
( ... )

d dl lX X   
  and

1 1 1 11 1
( ... )

g gr rX X   
  and under the null hypothesis in (8.2),

all of these are equally likely.

In a similar manner,
1 1 1 1 1 1 11 1 2 2 1 1 2 21

{( ,..., ); ( ,..., )}
d d d g g g gd

l l r rX X X X         

can be arranged in

2 1 2 1

2 1

1 1
1

g g d d
d dC     
  ways with

1 1 11 1 2 21

( ... )
d d dd

l lX X   
  and

1 1 1 11 1 2 2

( ... )
g g g gr rX X    

  . If the null

hypothesis is true, these arrangements are equally likely.

It follows in a similar fashion that

1 11 1

0 * 1 1

1
2 22

( ), ( ), , , 1 1
1

( ) (2 )!i i i i s s

i i s

s
g d d g K g dg d

H l r s b b d d d K d
i

E c C C C K s 
 




      

   


 
  

 
 .

Provided b and *b are concordant and 1( ... )sg g  .

(ii) Without any loss of generality, consider 1 2d g and 2 1d g .

Then,
1 1 2 2d d g gl rX X  and

2 2 1 1d d g gl rX X  . Since, 1 2d d and 1 2g g , it is impossible

to obtain observations in any way so that all the conditions are satisfied (i.e.;

1 1d dl
X cannot be both greater and smaller than

2 2d dl
X ) which leads to the result

given in equation (9.11).
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(iii) Since, ( ), ( )l rc  has no common observation present in both parts

1 1
( ... )

K Kl lI X X   and
1 1

( ... )
K Kr rI X X   ; with the assumption that all

observations are independent; we have the following result.

0 0 1 1 0 1 1( ), ( )( ) ( ( ... )) ( ( ... ))
K K K KH l r H l l H r rE c E I X X E I X X         

(1 / !)(1 / !)K K [Using (9.4)]

2(1/ !)K

This completes the result mentioned in (9.12) and leads to the next result.

Theorem 9.2: If the null hypothesis in (8.2) is true;

1 11 1

1 1

0

*

1
2 22

2 1 1
11

1 ,0 0

( 1)( 1)
1

( )
! (2 )!

i i i i s s

i i i s

i

S

sK
g d d g K g dg d

d d d K di K
b ii

H i j
s b b B

n C C Cn

E U U
n K n K s




 




      

   
 

 

                                

 
 

(9.13)

where sB is the collection of all concordant vectors of length s and 0
1

K

i
i

n n


 .

Proof: Consider,



85

0 0 0 * 0 *

* *

2
( ), ( ),0 ( ), ( ), , , ( ), ( ), , , 0

1 , , 1 , ,

( ) ( ) ( ) ( )
S S

K K

H i j H l r H l r s b b H l r s b b
l r s b b B l r s b b B l r

E U U E c E c E c n     
    

 
   
 
      

(9.14)

Using (9.11),

0 *

*

( ), ( ), , ,
1 , ,

( ) 0
S

K

H l r s b b
s b b B l r

E c 
 

   . (9.15)

Consider the case where there are no common observations in

1 1( ) ( ... )
K Kl l lc I X X     and

1 1( ) ( ... )
K Kr r rc I X X     . There are ( 1)i in n  ways to

select two different observations from distribution ; 1,...,iF i K . So, there are

1

( 1)
K

i i
i

n n


 ways of selecting two observations from each of K distributions

without obtaining any common observation.

Hence,
0 0( ), ( ),0 ( ), ( ),0

1

( ) ( 1) ( )
K

H l r i i H l r
l r i

E c n n E c   
 

 
  
 

 

2

1

1
( 1)

!

K

i i
i

n n
K

  
    

  
 [Using (9.12)] (9.16)

Now, let us consider the case of
1 1( ) ( ... )

K Kl l lc I X X     and

1 1( ) ( ... )
K Kr r rc I X X     having s common observations at positions 1( ,..., )sb d d

and * 1( ,..., )sb g g , respectively, from distributions
1

{ ; ,..., }
sj d dF j   .
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The number of ways to obtain 2 observations from each of K distributions

such that the observations are same from distributions
1

{ ; ,..., }
sj d dF j   but

not same for any other distributions is
1

( 1)
i

i

K

i
i b

n n
 

 
  

 
  .

So,
0 * 0 *

* *

( ), ( ), , , 0 ( ), ( ), , ,
1 , , 1 ,

( ) ( 1) ( )
i

S S i

K K

H l r s b b H l r s b b
s b b B l r s b b B b

E c n n E c    
    

 
   

 
     

1 11 1

1 1

*

1
2 22

1 1
1

0
1 ,

( 1)
(2 )!

i i i i s s

i i s

i

S i

s
g d d g K g dg d

d d d K dK
i

s b b B b

C C C

n n
K s




 




      

   


  

  
           

 
 


  

[Using (9.10)] (9.17)

Combining (9.14), (9.15), (9.16) and (9.17), we obtain the result in (9.13).

Now, we use the above results to illustrate how to obtain expressions for the

elements of the variance-covariance matrix V.

Example 9.1: For 2K  , consider, 2 1 1 2( ) ( )p P X X   and 2 2 2 1( ) ( )p P X X   . Let,

(2)iU be the U-statistic estimator for 2 ( ); 1, 2ip i  and consider the singular

variance-covariance matrix of (2) 1(2) 2(2)( , )U U U  , denoted by 2V ;

with 2 (1,1)V 1(2)( )Var U ; 2 (2,2)V 2(2)( )Var U and 2 2 1(2) 2(2)(1,2) (2,1) ( , )V V Cov U U  .
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As mentioned earlier, for 2K  we only need to compute one of the two

precedence probabilities since the precedence probabilities must add up to 1.

Accordingly, consider 2 1 1 2( ) ( )p P X X   . We then obtain

   1 2 1 2
2

1 2 1 2 1 2

2 11 1 1 1
(1,1)

4 12 12

n n n n
V

n n n n n n

   
   , (9.18)

a well known result.

Example 9.2: For 3K  define the following precedence probabilities,

3 1 1 2 3( ) ( )p P X X X    ; 3 2 1 3 2( ) ( )p P X X X    ; 3 3 2 1 3( ) ( )p P X X X    ;

3 4 2 3 1( ) ( )p P X X X    ; 3 5 3 1 2( ) ( )p P X X X    and 3 6 3 2 1( ) ( )p P X X X    .

In this setting we might be interested to either test for certain a priori specified

precedence probabilities or to carry out a POT-type test for testing the equality

of distributions.

Let, (3)iU be the U-statistic estimator for 3( ); 1,2,...,6ip i  . To carry out a POT-

type test in this scenario, it suffices to consider a test statistic based on

(3) 1(3) 2(3) 3(3) 4(3) 5(3)( , , , , )U U U U U U  . Then, consider, the variance-covariance matrix

3V with its ( , )i j -th element being 3 (3) (3)( , ) ( , ); 1, 2,...,5; 1, 2,...,5i jV i j Cov U U i j   .

We have the following results;
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*
1 2 3 2 1 3 1 3 1

3

0

3 ( 1)( 2) ( 1)( 1)1 1
(1,1)

6 12 20 30 36

n n n n n n n n n
V

n
              

          
      

;

*
2 3 2 3 1 2 3 1

3 3

0

2 ( 1)( 1) ( 1)( 2)1
(1, 2) (2,1)

24 20 40 36

n n n n n n n n
V V

n
             

          
      

;

*
3 2 12 1 2 1 1

3 3

0

( 1)( 2)2 ( 1)( 1)1
(1,3) (3,1)

24 20 40 36

n n nn n n n n
V V

n
            

         
      

;

*
3 1 2 3 11 1

3 3

0

( 1)( 1) ( 1)( 2)11
(1, 4) (4,1)

24 40 120 36

n n n n nn n
V V

n
           

         
      

;

*
3 3 1 2 2 1 1

3 3

0

1 ( 1)( 2) ( 1)( 1)1
(1,5) (5,1)

24 40 120 36

n n n n n n n
V V

n
           

         
     

;

*
1 2 3 3 1 2 1 2 1

3

0

3 ( 1)( 2) ( 1)( 1)1 1
(2,2)

6 12 20 30 36

n n n n n n n n n
V

n
             

         
     

;

*
2 1 3 3 12 1

3 3

0

( 1)( 2) ( 1)( 1)11
(2,3) (3,2)

24 40 120 36

n n n n nn n
V V

n
           

         
      

;

*
3 1 22 1 1

3 3

0

( 1)( 2)( 1)( 1)1
(2, 4) (4,2)

30 120 36

n n nn n n
V V

n
        
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              
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              

          
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(9.19)

Note,  *
1 0 1 2 3 0( 1)( 1)( 1)n n n n n n      and 0 1 2 3n n n n .

This leads us to the POT described below. However, if we want to test for

certain precedence probabilities or a linear combination of precedence

probabilities, we can use these basic results described above as follows.

For example, if we want a test for a parameter, 3 1 3 2( ) ( )p p  , the test statistic

could be based on 1 2(3) 1(3) 2(3)U U U   . The variance of this test statistic is given

by

1 2 3 1 2 3
1 2(3)

1 2 3

7 3 3 12 ( 1)( 2)1 1

3 36 30

n n n n n n
V

n n n


          
      

    

(9.20)

where 1 2 3N n n n   ; which can be used to calculate the test statistic.
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Computing the covariance matrix for K > 3 is carried out in a similar manner.

Example 9.3: For 4K  , define the following precedence probabilities,

4 1 1 2 3 4( ) ( )p P X X X X     and 4 2 1 2 4 3( ) ( )p P X X X X    

and let (4)iU denote the U-statistic estimator for 4 ( ); 1, 2ip i  . Then, using the

results above, we obtain

2

*3 51 2 4
1(4) 1(4)

1 2 3 4

1 1 1
( )

24 60 120 180 252 420 24

vs vsvs vs vs
Var U n

n n n n


           
                

           ,

with

1 1 2 3 4 4vs n n n n     ,

2 3 4 3 2 2 1( 1)( 1) ( 1)( 1) ( 1)( 1)vs n n n n n n         ,

3 2 4 1 4 3 1( 1)( 1) ( 1)( 1) ( 1)( 1)vs n n n n n n         ,

4 2 3 1 4( 1)( 1)( 2)vs n n n n     ,

5 1 4 2 3( 1)( 1)( 2)vs n n n n     ,

     *
1(4) 1 2 3 4 1 2 3 4 1 2 3 41 1 1 1n n n n n n n n n n n n n      

(9.21)

and
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2

*3 5 61 2 4
1(4) 2(4) 1(4)

1 2 3 4

1 1
( , )

120 240 360 252 420 420 24

cs cs cscs cs cs
Cov U U n

n n n n


             
                  

             ,

with

1 3 4 3 4( 2) ( 1)( 1)cs n n n n      ,

2 2 4 3 2( 1)( 1) ( 1)( 1)cs n n n n      ,

3 1 4 3 1( 1)( 1) ( 1)( 1)cs n n n n      ,

4 2 4 3( 1)( 1)( 1)cs n n n    ,

5 1 4 3( 1)( 1)( 1)cs n n n    ,

6 1 2 3 1 2 4( 1)( 1)( 1) ( 1)( 1)( 1)cs n n n n n n        . (9.22)

These expressions can be used to construct tests for specified precedence

probabilities. All the results in the above examples are calculated on the basis

of theorem 9.2.

My next aim is to look at the asymptotic properties of the test in (9.3) carried

out using its asymptotic chi square distribution. In particular, I am most

interested in consistency. For convenient reference, I again give the test

statistic in (9.4).

2 1
( )

1 1
1 1

! !
m K m m m m mU V U

K K
 

      
        

       
. (9.23)



92

Hoeffding (1948) shows that under any particular departure from equality of

the K- distributions, U-statistic have a joint, asymptotic normal distribution

provided that
1

;0 1; 1
K

i
i i i

i

n

N
  



    as N  . Specifically, for any particular

distributions { }iF
 with 


={ ( ); 1, 2,..., }ip i m  , the vector of U-statistics that we

base our tests on, referred to here as
0nU


, asymptotically follows a joint normal

distribution such that approximately, for large samples,

 
0

({ })~ , in

nU N  
 

, (9.24)

However, the asymptotic behavior of U-statistics under contiguous alternatives

in the setting of this chapter has not been fully worked out. It is possible,

however, to speculate that they behave ‘reasonably’ in the following sense.

Specifically, assume that under { }iF
 , in probability, for any 


,

({ })inN    
 

, (9.25)




being a positive definite matrix, which leads to the following result on

consistency of the test in (9.4) .

Theorem 9.3: Assuming (9.24) and (9.25) hold and that the vector of

precedence probabilities { ( ); 1, 2,..., } 1 / !ip i m K   


, the power of the test in

(9.4) goes to 1 if
1

;0 1; 1
K

i
i i i

i

n

N
  



    .
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Proof: Letting 0 1 / !K 


, || . || denote Euclidean distance and max denote the

maximum eigen value of
0

 , from (9.24) and the law of large numbers, we have

in { }iF
 probability that,

   
0

({ })2 1
0 0( )in

m m mU U     
   

    0

1
0 0 o(1)m mN U U     

   

    0

1
0 0 o(1)m mN U U             

       

    0 0

1 1
0 0( ) ( ) o(1)m mN U U                

        

    1
0 0 o(1)N        

   

2
0

max

|| ||
o(1)N

 



 
  

 
   , (9.26)

which implies the desired result.

Hence the proposed test is consistent.

Based on this result, I conjecture that for a sequence of contiguous alternatives

0( )
0

1
1 /

!
n

m h n
K

  
 

,

 2 2 1
*,d

m mm h V h     
 

, (9.27)
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a non-central chi square distribution with m degrees of freedom and

noncentrality parameter  . I will investigate this issue in the future.
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Chapter 10: Performance of the Rank Tests for

Precedence Probabilities

In chapter 9, I introduced a test statistic in (9.3) for testing the hypothesis in

(8.2) and discussed a few properties of the test. In this chapter, I report on a

simulation study carried out to assess the performances of the proposed POT-

type tests. To be a viable alternative to already existing standard tests, it is

desirable that a new asymptotic test: (a) have type I error rates close to their

nominal values for finite sample sizes; (b) be consistent; (c) be powerful for

important classes of alternatives.

In Chapter 9, conditions were given under which tests for precedence are

consistent. To illustrate the ability of the POT tests to have type I error rates

close to their nominal values, I carried out the following simulations with K = 3

and m = 6.

(a) Three independent samples each of size 30 was generated from a

standard normal distribution. The proposed test statistic was calculated

and a p-value obtained using its asymptotic chi square distribution.

This procedure was repeated 1000 times and a q-q plot of the resulting p-

values versus (vs.) a Uniform (0,1) distribution were plotted in Plot 10.1. The



96

plot is fairly linear and equiangular, is consistent with the test having

approximately its nominal type I error rates in this case.

Plot 10.1: q-q plot of p-values vs. U(0,1) under 0H ,

1 2 3 30n n n   , 3K 

For example, 5.3% of the 1000 values used Plot 10.1 are at most 0.05, such

that a test run at the nominal type I error rate 0.05 would be judged to be

performing satisfactorily. I carried out other simulations of this type (for which

the results are not shown), for non-normal distributions, with sample sizes of

20, 50 and obtained similar favorable results. Additional support for the ability
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of the POT to keep type I error close to a nominal 0.05 value is given in some

of the simulated power tables presented below in the rows where all three

distributions are equal.

Next, I report on simulations which illustrate the rates at which the tests’

power functions approach 1 when the tests are carried at the nominal 0.05

rate.

(a) Independent random samples of equal size were generated from each of

the underlying distributions and the test was performed and a p -value

based on the test statistic’s asymptotic distribution under the null

hypothesis of homogeneity was calculated.

(b) This procedure was repeated 1000 times and the percentage of times for

which p-value was at most 0.05 was tallied.

The rejection rate calculated in (b) above is used as an estimate for the power

of the test. Table 10.1, which presents a few selected results, illustrates how

the power goes to 1 for a variety of changes in location, scale and both location

and scale for a variety of triples of normal distributions.
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Table 10.1: Estimated Power of the POT for Different sample Sizes and

Conditions

1F 2F 3F m sd 1 2 3n n n  Estimated
Power

N(0,1) N(0,1) N(1,1.75) 0.154 0.292 10 0.401

12 0.489
15 0.641
20 0.762
25 0.869
30 0.94
35 0.972
40 0.992
50 0.995
65 1.000

N(0,1) N(1,1) N(2,1) 0.443 0.486 10 0.887
12 0.954
15 0.99
18 0.995
20 1.000

N(0,1) N(0,2) N(0,3) 0.083 0.308 10 0.278
12 0.367
15 0.505
20 0.697
25 0.854
30 0.947
35 0.982
40 0.995
50 0.999
55 1

N(0,1) N(0.25,1.25) N(0.75,1.5) 0.131 0.238 10 0.176
12 0.221
15 0.282
20 0.357
25 0.455
30 0.571
35 0.645
40 0.726
45 0.778
50 0.838
60 0.917
70 0.952
100 1
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Additional simulations were carried out to assess how well the power of the

new test compares to several well known competitors. In Chapter 4, the ANOVA

F-test, Kruskal-Wallis (KW) Test and DISCO test by Rizzo and Szekely (2010)

were described I compared the performance of the proposed test against these

standard tests. As we will see, the power of the new test is not limited to

changes just in locations. I begin by reviewing some standard tests for the K-

sample problem.

First, the ANOVA F-test statistic is provided by,

2
0 00

1

2
0

1 1

( 1)( ) ( 1)

( ) ( )
i

K

i i
i

nK

ij i
i j

n X X K

F

X X N K



 

  



 




, (10.1)

where 0
1

in

i ij i
j

X X n


 and 00
1 1

inK

ij
i j

X X N
 

 .

The Kruskal-Wallis test statistic is given in (4.2).

Among many tests for scale parameters, I compare the proposed test with

Levene’s test, Bartlett’s test, the Fligner-Killeen test and the Brown-Forsythe

test.

Bartlett’s (B) test is due to an idea proposed by Bartlett (1937) and first used by

Snedecor and Cochran (1983). The test statistic is given by,
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2 2

2 1

1

( ) ln( ) ( 1) ln( )

1 1 1
1

3( 1) 1
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p i i
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i i

N K S n S
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



  
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, (10.2)

where

2

2 1

( 1)
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.

I use a modified version of the Fligner-Killeen (FK) test, which was proposed in

1981 by Conover, Johnson and Johnson. Consider *
ijR to be the rank of

1 2| ( , ,..., ) |
iij i i inX median X X X in the pooled sample and consider increasing scores

1
,

1
1

2
N l

l

Na 

 
    

 
 

. The test statistic is given by,
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, (10.3)

where ,
1

1 N

N j
j

a a
N 

  and *,
1

1 i

ij

n

i N R
ji

A a
n 

 

Levene’s (1960) test (L) is probably the most-used of these tests. The test

statistic is given by,
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L nK

ij i
i j

N K n Z Z

F

K Z Z



 

 



 




, (10.4)
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where 0| |ij ij iZ X X  , 0
1

in

i ij i
j

Z Z n


 and 00
1 1

inK

ij
i j

Z Z N
 

 .

The Brown-Forsythe (BF) test is a modification of Levene’s test proposed by

Brown and Forsythe (1974). The test statistic is

2
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2
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1 1

( ) ( )

( 1) ( )
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, (10.5)

where 1 2| ( , ,..., ) |
iij ij i i inW X median X X X  , 0

1

in

i ij i
j

W W n


 and 00
1 1

inK

ij
i j

W Z N
 

 .

To express the test statistic by Rizzo and Szekely, let us first define d -distance

between samples from two random variables iX and jX as,  being a pre-

determined constant between 0 and 2;

( , ) 2 ( , ) ( , ) ( , )
i j

i j i j i i j j

i j

n n
d X X g X X g X X g X X

n n
       

, (10.6)

where

1 1

1
( , ) || ||

ji
nn

i j il jm
l mi j

g X X X X
n n




 

  . (10.7)

Note that, in the expression above, || . || denotes the Euclidean norm.

Then, let the between-sample dispersion be defined as,
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1 2
1

( , ,..., ) ( , )
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i j

K i j
i j K

n n
S S X X X d X X

N
  
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   . (10.8)

Also, let the within-sample dispersion be defined as,

1 2
1

( , ,..., ) ( , )
2

i
K i i

i K

n
W W X X X g X X  

 

   . (10.9)

The test statistic for testing the K -sample problem is provided by,

( 1)

( )

S K
F

W N K











. (10.10)

Note that the statistic depends on the choice of  .

The POT was carried out with ! 1 5.m K   To compare its power performance

to those of the standard tests, I conducted the following simulation study.

(a) Independent random samples of equal size were generated from each of

the underlying distributions and all the competing tests were carried out

at a nominal type I error rate of 0.05 by deciding to reject the hypothesis

of homogeneity if their p-values were at most 0.05.

(b) This procedure was repeated 1000 times and the percentage of times for

which the null hypothesis was rejected was tallied for all the tests.

The rejection rates calculated in (b) above are estimated powers. Table 10.2(a)

and 10.2(b) present a few of the selected results for normal and equal sample

sizes of 10 and 20. Table 10.3(a) and 10.3(b) shows selected results under the
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same conditions when the data are generated from a logistic distribution. In a

similar manner, Table 10.4(a) and Table 10.4(b) list rejection rates, estimated

powers, based on data generated from a Generalized Extreme Value

distribution.

Table 10.2(a): Estimated Power of Different Tests for Normal Distributions with

Sample size 10 from Each Distribution

1F 2F 3F ANOVA KW DISCO FK B L BS POT

N(0,1) N(0,1) N(0,1) 0.056 0.05 0.05 0.031 0.046 0.047 0.031 0.058

N(0,1) N(0,1) N(.5,1.2) 0.137 0.139 0.149 0.046 0.101 0.095 0.055 0.15

N(0,1) N(0,1) N(.7,1.2) 0.253 0.262 0.261 0.046 0.101 0.095 0.055 0.233

N(0,1) N(0,1) N(.7,1.5) 0.193 0.215 0.244 0.116 0.214 0.208 0.124 0.254

N(0,1) N(.2,1.2) N(.7,1.5) 0.167 0.16 0.173 0.079 0.157 0.146 0.084 0.176

N(0,1) N(.5,1.2) N(.7,1.5) 0.205 0.18 0.166 0.079 0.157 0.146 0.084 0.167

N(0,1) N(.2,1) N(.5,1.5) 0.105 0.097 0.101 0.116 0.214 0.208 0.124 0.161

N(0,1) N(0,1.2) N(.5,1) 0.151 0.133 0.108 0.048 0.085 0.08 0.048 0.117

N(0,1) N(1,1) N(2,1) 0.957 0.954 0.926 0.041 0.047 0.069 0.04 0.897

N(0,1) N(0,2) N(0,3) 0.055 0.062 0.157 0.485 0.826 0.672 0.522 0.278

N(0,1) N(0,1) N(1,1.7) 0.258 0.292 0.354 0.207 0.404 0.365 0.242 0.401

N(0,1) N(0,1) N(2,2) 0.666 0.704 0.812 0.308 0.575 0.504 0.374 0.815

N(0,1) N(0,1) N(3,2.5) 0.817 0.865 0.949 0.512 0.826 0.717 0.609 0.95
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Table 10.2(b): Estimated Power of Different Tests for Normal Distributions with

Sample size 20 from Each Distribution

1F 2F 3F ANOVA KW DISCO FK B L BS POT

N(0,1) N(0,1) N(0,1) 0.056 0.059 0.06 0.059 0.046 0.047 0.031 0.051

N(0,1) N(0,1) N(.5,1.5) 0.178 0.197 0.35 0.272 0.431 0.374 0.312 0.376

N(0,1) N(0,1) N(.7,1.2) 0.512 0.506 0.581 0.085 0.135 0.111 0.1 0.486

N(0,1) N(0,1) N(.7,1.5) 0.4 0.417 0.569 0.272 0.431 0.374 0.312 0.555

N(0,1) N(.2,1.2) N(.7,1.5) 0.329 0.317 0.405 0.182 0.306 0.26 0.21 0.357

N(0,1) N(.5,1.2) N(.7,1.5) 0.385 0.345 0.437 0.182 0.306 0.26 0.21 0.337

N(0,1) N(.2,1) N(.5,1.5) 0.167 0.165 0.313 0.272 0.431 0.374 0.312 0.341

N(0,1) N(0,1.2) N(.5,1) 0.296 0.269 0.301 0.109 0.158 0.163 0.129 0.259

N(0,1) N(1,1) N(2,1) 1 1 0.998 0.059 0.046 0.047 0.031 1

N(0,1) N(0,2) N(0,3) 0.05 0.053 0.542 0.92 0.993 0.967 0.949 0.697

N(0,1) N(0,1) N(1,1.7) 0.529 0.543 0.744 0.502 0.689 0.626 0.565 0.762

N(0,1) N(0,1) N(2,2) 0.953 0.956 1 0.686 0.868 0.809 0.755 0.992

N(0,1) N(0,1) N(3,2.5) 0.998 0.995 1 0.912 0.985 0.973 0.954 1
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Table 10.3(a): Estimated Power of Different Tests for Logistic Distributions with

Sample size 10 from Each Distribution

1F 2F 3F ANOVA KW DISCO FK B L BS POT

L(0,1) L(0,1) L(0,1) 0.053 0.047 0.05 0.034 0.109 0.064 0.400 0.05

L(0,1) L(1,1) L(2,1) 0.533 0.546 0.524 0.034 0.109 0.064 0.400 0.488

L(0,1) L(0,2) L(0,3) 0.057 0.061 0.179 0.417 0.776 0.587 0.433 0.267

L(0,1) L(1,2) L(2,3) 0.168 0.173 0.328 0.417 0.776 0.587 0.433 0.296

L(0,1) L(2,2) L(4,3) 0.547 0.523 0.628 0.417 0.776 0.587 0.433 0.547

L(0,1) L(2,1) L(4,3) 0.697 0.664 0.862 0.596 0.891 0.795 0.691 0.886

L(0,2) L(2,1) L(4,3) 0.397 0.446 0.647 0.426 0.804 0.596 0.426 0.697

L(0,1) L(0,1) L(2,1) 0.648 0.667 0.66 0.034 0.109 0.064 0.400 0.586

L(0,1) L(0,1) L(2,2) 0.267 0.323 0.464 0.267 0.56 0.435 0.302 0.469

L(0,1) L(0,2) L(2,1) 0.568 0.515 0.596 0.244 0.532 0.412 0.295 0.574

L(0,1) L(3,2) L(6,3) 0.873 0.862 0.919 0.417 0.776 0.587 0.433 0.824

L(0,1) L(3,2) L(6,4) 0.773 0.725 0.898 0.624 0.926 0.788 0.671 0.819
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Table 10.3(b): Estimated Power of Different Tests for Logistic Distributions with

Sample size 20 from Each Distribution

1F 2F 3F ANOVA KW DISCO FK B L BS POT

L(0,1) L(0,1) L(0,1) 0.048 0.053 0.058 0.048 0.138 0.060 0.049 0.058

L(0,1) L(1,1) L(2,1) 0.871 0.893 0.871 0.048 0.138 0.060 0.049 0.800

L(0,1) L(0,2) L(0,3) 0.047 0.058 0.467 0.892 0.982 0.937 0.901 0.64

L(0,1) L(1,2) L(2,3) 0.311 0.316 0.726 0.892 0.982 0.937 0.901 0.746

L(0,1) L(2,2) L(4,3) 0.890 0.878 0.937 0.892 0.982 0.937 0.901 0.939

L(0,1) L(2,1) L(4,3) 0.964 0.949 0.999 0.952 0.994 0.978 0.970 0.999

L(0,2) L(2,1) L(4,3) 0.717 0.784 0.973 0.876 0.975 0.931 0.890 0.977

L(0,1) L(0,1) L(2,1) 0.946 0.960 0.933 0.048 0.138 0.060 0.049 0.908

L(0,1) L(0,1) L(2,2) 0.519 0.613 0.820 0.646 0.86 0.766 0.725 0.883
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Table 10.4(a): Estimated Power of Different Tests for Generalized Extreme

Value Distributions with Sample size 10 from Each Distribution

1F 2F 3F  F KW DISCO FK B L BS POT

G(0,1) G(0,1) G(0,1) 0 0.052 0.047 0.056 0.044 0.153 0.111 0.043 0.05

G(0,1) G(1,1) G(2,1) 0 0.809 0.856 0.85 0.044 0.153 0.111 0.043 0.798

G(0,1) G(0,2) G(0,3) 0 0.088 0.084 0.214 0.407 0.77 0.604 0.404 0.243

G(0,1) G(1,1) G(2,1) .5 0.407 0.671 0.603 0.102 0.653 0.294 0.044 0.766

G(0,1) G(1,1) G(2,1) .2 0.648 0.777 0.769 0.067 0.363 0.165 0.046 0.772

G(0,1) G(1,1) G(2,1) 1 0.163 0.54 0.336 0.169 0.868 0.506 0.03 0.747

G(0,1) G(1,1) G(2,1) -.5 0.978 0.98 0.981 0.036 0.055 0.08 0.04 0.935

G(0,1) G(1,1) G(2,1) -.2 0.932 0.926 0.912 0.032 0.05 0.065 0.036 0.885

G(0,1) G(0,2) G(0,3) -.2 .096 0.095 0.233 0.465 0.794 0.666 0.512 0.276

G(0,1) G(0,2) G(0,3) -.5 0.100 0.105 0.263 0.468 0.792 0.667 0.485 0.331

G(0,1) G(0,2) G(0,3) 1 0.036 0.064 0.103 0.324 0.879 0.56 0.055 0.169

G(0,1) G(0,2) G(0,3) .2 0.077 0.077 0.181 0.365 0.763 0.553 0.285 0.212

G(0,1) G(0,2) G(0,3) .5 0.06 0.065 0.15 0.32 0.774 0.499 0.141 0.190

G(0,1) G(1,2) G(2,3) .5 0.286 0.437 0.385 0.32 0.774 0.499 0.141 0.355

G(0,1) G(1,2) G(2,3) 0 0.613 0.536 0.639 0.407 0.77 0.604 0.404 0.514

G(0,1) G(1,2) G(2,3) 1 0.118 0.405 0.223 0.324 0.879 0.56 0.055 0.371
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Table 10.4(b): Estimated Power of Different Tests for Generalized Extreme

Value Distributions with Sample size 20 from Each Distribution

1F 2F 3F  F KW DISCO FK B L BS POT

G(0,1) G(0,1) G(0,1) 0 0.046 0.053 0.052 0.054 0.203 0.111 0.049 0.058

G(0,1) G(1,1) G(2,1) 0 0.994 0.997 0.999 0.054 0.203 0.111 0.049 0.992

G(0,1) G(0,2) G(0,3) 0 0.172 0.102 0.515 0.89 0.972 0.925 0.861 0.636

G(0,1) G(1,1) G(2,1) .5 0.505 0.949 0.921 0.109 0.775 0.299 0.042 0.985

G(0,1) G(1,1) G(2,1) .2 0.895 0.991 0.977 0.074 0.489 0.176 0.051 0.986

G(0,1) G(1,1) G(2,1) 1 0.16 0.86 0.568 0.178 0.928 0.487 0.026 0.981

G(0,1) G(1,1) G(2,1) -.5 1 1 1 0.036 0.065 0.074 0.042 1

G(0,1) G(0,2) G(0,3) -.5 0.123 0.162 0.749 0.936 0.994 0.974 0.95 0.749

G(0,1) G(0,2) G(0,3) 1 0.064 0.064 0.134 0.506 0.947 0.585 0.078 0.429

G(0,1) G(0,2) G(0,3) .5 0.131 0.076 0.266 0.629 0.904 0.657 0.25 0.493

G(0,1) G(1,2) G(2,3) .5 0.57 0.795 0.731 0.629 0.904 0.657 0.25 0.664

G(0,1) G(1,2) G(2,3) 0 0.959 0.893 0.952 0.89 0.972 0.925 0.861 0.873

G(0,1) G(1,2) G(2,3) 1 0.196 0.737 0.425 0.506 0.947 0.585 0.078 0.683

It is to be noted that, in the previous tables, the new test proposed here is

denoted as POT, the ANOVA F test is denoted either as ANOVA or as F, the

Kruskal-Wallis test is denoted as KW, Bartlett’s test is denoted as B, the

Fligner-Killeen test is denoted as FK, Levene’s test is denoted as L, the Brown-
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Forsythe test is denoted as BF and the Rizzo-Szekely test is denoted as DISCO

while  denotes the shape parameter for the Generalized Extreme Value

distribution.

As mentioned earlier, the calculation of the DISCO test statistic depends on  .

For the comparison purpose, I used the default 1  . I used the software R for

calculation. To calculate p-values for the DISCO test, bootstrapping is needed. I

used a bootstrap sample size of 250, as suggested by Rizzo and Szekely.

A few general observations:

i) The tests for detecting differences in scale parameters are mostly good

in detecting differences in scales and are impervious to any change in

location parameters. (noted exception is in the Generalized Extreme

Value distributions)

ii) Bartlett’s test cannot be trusted in non-normal cases, as the size of

the test is much higher than what it aims for.

iii) Levene’s test generally performs better than the Brown-Forsythe test.

iv) None of the tests considered here can detect the differences in the

shape parameters for Generalized Extreme Value distributions.

v) The traditional ANOVA test cannot at all detect differences in the

location parameters, if the shape parameter of the Generalized

Extreme Value distribution is close to 1.
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vi) Increasing the sample size seemed to increase the power of all the

tests, when an increase in the power is expected.

Looking at the performance of the proposed test, we can conclude that:

(i) Its powers under the different considered alternatives approach 1.

(ii) It performs really well under a variety of conditions, changes in

location, changes in scale and changes in both. The DISCO test

proposed by Rizzo and Szekely (2010) is also good in this regard. But

p-values for DISCO require a bootstrap that needs lots of CPU time.

(iii) The proposed test seems to be the best performer if the distribution

with largest location parameter is also the one with the largest scale

parameter.

In the next chapter, I check the performance of the proposed test for a single

precedence probability.
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Chapter 11: HUM and Related Problems

Let us again consider the motivating example discussed in Chapter 1. There

are fourteen separate scales on which three groups of people are measured

with a pre-decided scoring system. It is a well-established practice to judge the

performance of medical classification procedures, such as these fourteen

scales, using the Hypervolume Under Manifolds (HUM’s) of their associated

ROC manifolds. In Chapter 9, I described and explored a rank-based approach

to provide a viable test for hypotheses in (8.2), which could be used to assess

the performance of each scale based on asymptotically nonparametric tests

about precedence probabilities. In this chapter, I focus on testing and interval

estimation for a particular precedence probability being investigated for its

ability to separate subjects into disease categories.

As described in Chapter 1, again consider a medical test designed to classify

patients into one of 2K  groups and let us suppose that the test employs a

scoring system such that the score KX from group K , is expected to be greater

than a score from group ( 1)K  , 1KX  and so on. To test if data consisting of

independent random samples support these expectations, I propose a

particular test from the family of tests described in (8.2):
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0 1 2: ... KH F F F   ,

Vs.

1 2: ( ... ) 1/ !a KH P X X X K    .

(11.1)

Here, we assume that iX , a test score of a patient from group i , is an

independent observation generated from an underlying, unspecified,

continuous distribution function ; 1,2,...,iF i K . Note that unlike (9.3), the

alternative hypothesis here is explicitly one-sided. Since 1/ 4! 0.04167 and

1/ 5! 0.0083 , the small values of the lower bounds in aH in (11.1) are not very

informative if 0H is rejected and 4.K  A better way to assess how well the

actual ordering conforms to the expected ordering would be to construct a

confidence interval for 1 1 2( ) ( ... )Kp P X X X     1U , the HUM of the ROC

manifold associated with this medical test.

11.1 A Test Statistic for HUM
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In terms of Chapter 11, focusing on a case where the number of precedence

probabilities being investigated, denoted by m, equals 1. Recall from Chapter 9

that for K = 3, the variance of 1U under homogeneity is given by

1 2 3 2 1 3 1 3
1

1 2 3

3 ( 1)( 2) ( 1)( 1)1 1 1
var( )

6 12 20 30 36

n n n n n n n n
U

n n n

              
          

      
. (11.2)

Using asymptotic normality, I propose a new test statistic

1

1

(1/ 6)

var( )
U

U
Z

U


 (11.3)

for testing the hypotheses in (11.1). The null hypothesis is rejected at nominal

type I error rate  , if and only if UZ Z , where Z satisfies ( )P Z Z   and Z

is a standard normal random variable. Apart from the tests proposed by Xiong

et al. (2006), which were mentioned in Chapter 1, there are few other tests

proposed for solving this problem. The test proposed by Nakas and

Yiannoutsos (2004) merits special attention since they were the first to use the

U-statistic approach in this type of problems. They proposed the following test

statistic,

1
*

1

(1/ !)
ˆ( )

U

U K
Z

sd U


 , (11.4)

where 1
ˆ( )sd U is a data based estimate of the standard deviation of the statistic

1U . Nakas and Yiannoutsos proposed estimating the standard deviation using

the bootstrap or using a component-wise U-statistic estimate for the standard
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deviation. It could be argued that the test proposed in (11.3) is an improvement

over the test in (11.4) since the variance does not have to be estimated.

I compare below the performance of my new test with the performance of

Xiong’s test (2006) and the standard ANOVA F test. Xiong, et al. (2006) used

the maximum likelihood approach to obtain a test statistic, 00V , the area under

the ROC curve when 2K  . But, to create a test of significance, Xiong, et al.

(2006) assumed all test scores to be either normally distributed or ones that

could be monotonically transformed to a normal distribution, so that normal

theory and likelihood based methods could be used.

The data Xiong used have 14 different clinical tests and each test was given to

three a priori identified groups of people: diseased, healthy and transitional

(those who are diagnosed with early stage AD). I obtained a copy of the data

from Washington University Medical Center ADRC. While some of the test

scores appeared to be normally distributed, some of them did not. Plot 11.1

presents, for example, a normal q-q plot for the test Visual Retention obtained

from the diseased group of subjects, which suggests that at least some of the

test scores are not normally distributed, a basic assumption for the test

proposed by Xiong et al. (2006). The tests presented here have the advantage of

not requiring that the scales be normally distributed.

Now, taking a closer look at the data, there seems to be a pretty clear division

among the three groups for all the scales. For example, side by side box plots of



115

the sores on “global factor” plotted in Plot 11.2, show a clear separation among

the groups, a pattern typical for all fourteen scales.

Plot 11.1: Normal q-q plot for scores for people with AD in visual retention(copy)

Plot 11.2: Box plot for 3 groups of peoples’ test scores in Global factor
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In fact, all of the scales indicate pretty conclusive separations among the three

groups of subjects. Table 11.1 compares the results of my test applied to these

data to the test proposed by Xiong, et al. (2006) and the traditional ANOVA F-

test. Note that the traditional ANOVA test is a non-directional test while the

other two tests are directional tests. To deal with the problem of tied

observations, I used the following modified version of the proposed test

statistic.

3 31 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3

3 1 2 3 1 2 3
1 1 1 1 1 11 2 3

1 1
( ( ) ( )

2

n nn n n n

i i i i i i
i i i i i i

U I X X X I X X X
n n n      

      

3 31 2 1 2

1 2 3 1 2 3

1 2 3 1 2 3

1 2 3 1 2 3
1 1 1 1 1 1

1 1
( ) ( ))

2 4

n nn n n n

i i i i i i
i i i i i i

I X X X I X X X
     

       (11.5)

There are other ways of dealing with ties. For example, it could be argued that

a medical test needs to clearly distinguish between any two groups so any tied

data should not be counted in calculating the test statistic. In many data sets,

medical data in particular, ties in the data can lead to incorrect conclusions.

Unfortunately, dealing with tied observations is not a simple matter. The

following tie-breaking methods could also be tried for obtaining a suitable test.

First, define the following values:

1 2 1 20 1 2 1 2{( , ,..., ) : ( ... )
K Ki i Ki i i KiS X X X X X X    with no ties}

1 2 1 21 1 2 1 2{( , ,..., ) : ( ... )
K Ki i Ki i i KiS X X X X X X    with

( 1)( 1)l lli l iX X
 for 1 pair ( , 1)l l  }
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2S
1 2 1 21 2 1 2{( , ,..., ) : ( ... )

K Ki i Ki i i KiX X X X X X    with
( 1)( 1)l lli l iX X
 for 2 pairs ( , 1)l l  }

.

.

1 2 1 21 1 2 1 2{( , ,..., ) : ( ... )
K KK i i Ki i i KiS X X X X X X     ,

( 1)( 1)l lli l iX X
 for ( 1)K  pairs ( , 1)l l  }.

Now, consider these following modified versions of the proposed test statistic:

1 2

1
( )

1 2
01 2

1 1
( ) ( ... )

... 2 K

j

K
h

K i i Kij
j SK

U Y I X X X
n n n





  
    

  
  , (11.6)

1 2

1
( )

1 2/( 1)
01 2

1 1
( ) ( ... )

... ( !) K

j

K
g

K i i Kij K
j SK

U Y I X X X
n n n K






  
    

  
  , (11.7)

1 2

1 2 1 2

0 1 2

( )
1 2 1 2

1 1 11 2

1
( ) ( ... ) ... ( ... )

2 ...

K

K K

K

n n n
w

K i i Ki i i Ki
S i i iK

U Y I X X X I X X X
n n n   

  
        

  
   (11.8)

Table 11.1 implies that the test statistic provided by both Xiong, et al. (2006)

and the test statistic calculated by me are highly comparable, while the

variance of my UZ test statistic is a little smaller than the other test statistic,

which is to be expected. In a few cases the standard deviation of the proposed

test statistic is almost half of the estimated standard deviation of Xiong’s

proposed test statistic.

Looking at the Table 11.1, it is also evident that for all medical tests, the null

hypothesis is rejected; i.e., the conclusion is that the HUM is significantly
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higher than the average precedence probability under homogeneity. However,

being larger than the average precedence probability does not necessarily mean

that the HUM related to that medical test is the maximum among all

precedence probabilities. Consider the following example.

Example 11.1: Let 1 ~ (0,1)X N , 2 ~ (1.05,1)X N , 3 ~ (1,1)X N .

Using the software R package “mnormt”, the HUM is given by

1 1 2 3( ) ( ) 0.3127302 1/ 6p P X X X      .

So, any decent test would hopefully reject the null hypothesis in (11.1) in this

scenario. However, clearly, 1 3 2 1( ) 0.3280731 ( )P X X X p     . Although the null

hypothesis in (11.1) should be rejected in this case, that does not automatically

imply that the most common ordering (in this example, 1 3 2X X X  ) is the one

anticipated, in this example, 1 2 3X X X  .

So, instead of only doing hypothesis testing, we recommend constructing a

confidence interval for HUM. We explore this idea in the next section of this

chapter.
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Table 11.1: P-value for testing hypothesis (11.1) for different factors in AD

Factor

(Medical

Test)

1U Asymptotic

s.d.

P

value

ANOVA F P

value
00V Estimated

s.d.

P

value

Global

Factor

0.7747016 0.04169711 0.000 25.3999 0.000 0.728 0.05255102 0.000

Temporal

Factor

0.7710744 0.04104448 0.000 56.9518 0.000 0.752 0.05102041 0.000

Parietal

Factor

0.5983389 0.04169711 0.000 40.8876 0.000 0.555 0.0622449 0.000

Frontal

Factor

0.6565276 0.04169711 0.000 75.9394 0.000 0.657 0.05408163 0.000

Logical

Memory

0.7374632 0.0399638 0.000 16.8734 0.000 0.724 0.04744898 0.000

Digit

Span

Forward

0.5165987 0.03902601 0.000 11.7316 3.746

e-05

0.522 0.05561224 0.000

Digit

Span

backward

0.6072836 0.04001238 0.000 11.0928 5.92e-

05

0.599 0.05612245 0.000

Informat-

ion

0.6924388 0.03902601 0.000 13.4796 9.637

e-06

0.680 0.05102041 0.000

Visual

Retention

(10s)

0.5888028 0.04169711 0.000 16.4109 1.177

e-06

0.587 0.05357143 0.000

Visual

Retention

(copy)

0.3707645 0.04104448 3.3e-

07

2.7323 0.079 0.347 0.05102041 2e-04

Boston

Naming

0.6323384 0.03947893 0.000 12.5157 2.061

e-05

0.573 0.05561224 0.000

Mental

Control

0.5069929 0.04001238 0.000 13.9053 7.105

e-06

0.532 0.05357143 0.000

Word

Fluency

0.5801309 0.04104448 0.000 5.8184 0.004

446

0.568 0.05306122 0.000

Associate

Learning

0.6720863 0.04118809 0.000 10.0851 0.000

1303

0.630 0.05408163 0.000
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11.2 Bootstrap Confidence Interval for Precedence Probability

As mentioned in the previous section, constructing a confidence interval for a

precedence probability, particularly for HUM, might be more informative than

just reporting a p-value for the test in (11.1). Xiong, et al. (2006) used the

assumption of normality to obtain a confidence interval for HUM. However, a

confidence interval based on an assumption of normality can perform poorly if

that assumption is not correct, as is evident from Plot 11.1. Instead of a

normal-based procedure, I propose the following simple, bootstrap percentile

confidence interval to obtain an approximate 100(1 )% confidence interval for

any specified precedence probability. Efron (1979) coined the term bootstrap

and introduced this particular version of resampling to the science of statistics.

Note that (11.3) cannot be used to construct a confidence interval for HUM

since it is constructed under the assumption of homogeneity.

Without loss of generality, we construct a confidence interval for the particular

HUM= 1( )p  . Let 1( )U X be the U-Statistic estimate of 1( )p  based on

independent pooled N dimensional data vector X = { ijX }.

(A) Let ˆ
i

F be an estimate (empirical CDF) of iF obtained from { ; 1, 2,..., }ij iX j n

and set F̂ = { ˆ
i

F , 1, 2,...,i K }, F ={ }iF .
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(B) Let *y = * * *

1 2
{ , ,..., }

M
y y y be M independent bootstrap samples, *

jy ={ *
jiy = { *

jily ,

1, 2,..., }il n drawn from ˆ
iF ; 1, 2,..., }i K }, 1, 2,...,j M .

(C) Obtain *
1( )jU y ; 1, 2,...,j M . Let, * * *

1 (1) 1 (2) 1 ( )( ) ( ) ... ( )MU U U  y y y .

(D) Then, a percentile 100(1 )% confidence interval for 1( )p  is given by

 * *
1 ( ) 1 ( )( ), ( )LL ULU Uy y ; (11.9)

where  max 1,int( / 2)LL M   ,  min ,{int( ((1 ) / 2) 1}UL M M     and int( )a

denotes the largest integer smaller than a real, positive number a .

One of the advantages of using this interval instead of the usual bootstrap

confidence interval is that, even if 1( )p  is close to either 0 or 1, this percentile

interval will always be within [0,1] . Note that the usual bootstrap intervals

would have been expressed by

 * *
1 1 ( ) 1 1 ( )2 ( ) ( ),2 ( ) ( )UL LLU U U U y y y y . (11.10)

I used simulation to investigate the average width and coverage rate of these

percentile confidence intervals under different situations with 1  = 0.95. A

few of my results are presented in Table 11.2. From this study it seems that

the width of the confidence intervals, as expected from rank-based inference,

does not depend on the underlying distributions. For this study, first I

generated a random sample of size n ; 20,30,50n  from each of the underlying
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distributions. A bootstrap sample of size 1000 was considered and the

bootstrap percentile confidence intervals were calculated. This procedure was

repeated 200 times to obtain the estimated coverage rate and average width of

these confidence intervals. The average width, as expected, appears to depend

inversely on n , larger sample sizes leading to shorter intervals. The estimated

coverage rates tend to be slightly higher than their nominal value of 0.95.
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Table 11.2: Average Width and Coverage Rate of .95 Percentile Bootstrap

Confidence Intervals

1F 2F 3F 1( )p  n M Average

Width

Coverage

Rate

N(0,1) N(0,1) N(0,1) 0.1667 50 1000 0.1281 0.97

30 1000 0.1527 0.965

N(0,1) N(1,1) N(2,1) 0.5362 50 1000 0.1836 0.985

N(0,1) N(2,1) N(4,1) 0.8430 50 1000 0.1295 0.96

N(0,1) N(3,1) N(6,1) 0.9661 50 1000 0.0521 0.965

Exp(1) Exp(1) Exp(1) 0.1667 30 1000 0.1584 0.985

20 1000 0.1953 1.000

Exp(3) Exp(2) Exp(1) 0.3333 20 1000 0.2774 0.995

30 1000 0.2226 0.955

50 1000 0.1800 0.98

Exp(9) Exp(5) Exp(1) 0.5 50 1000 0.1959 0.995

30 1000 0.2556 0.96

20 1000 0.2852 0.995
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I then decided to compare the performance of this bootstrap confidence interval

to the normal theory confidence interval given by Xiong, et al. (2006). I used a

bootstrap sample size 250 for this study and looked at 95% confidence

intervals. The results are summarized in Table 11.3.

Table 11.3: Confidence Intervals for HUM in AD

Factor

(Medical Test)
1U Bootstrap

Confidence

Interval

00V Estimated

s.d.

Xiong’s Confidence

Interval

Global Factor 0.7747016 (0.657,0.884) 0.728 0.05255102 (0.625,0.831)

Temporal

Factor

0.7710744 (0.661,0.870) 0.752 0.05102041 (0.652,0.852)

Parietal Factor 0.5983389 (0.466,0.724) 0.555 0.0622449 (0.433, 0.676)

Frontal Factor 0.6565276 (0.543,0.767) 0.657 0.05408163 (0.551,0.763)

Logical

Memory

0.7374632 (0.637,0.837) 0.724 0.04744898 (0.631,0.818)

Digit Span

Forward

0.5165987 (0.408,0.632) 0.522 0.05561224 (0.413,0.631)

Digit Span

backward

0.6072836 (0.494,0.722) 0.599 0.05612245 (0.489,0.708)

Information 0.6924388 (0.590,0.793) 0.680 0.05102041 (0.580,0.779)

Visual

Retention(10s)

0.5888028 (0.464,0.708) 0.587 0.05357143 (0.482,0.691)

Visual

Retention(copy)

0.3707645 (0.285,0.470) 0.347 0.05102041 (0.247,0.447)

Boston Naming 0.6323384 (0.516,0.743) 0.573 0.05561224 (0.464,0.682)

Mental Control 0.5069929 (0.400,0.628) 0.532 0.05357143 (0.427,0.637)

Word Fluency 0.5801309 (0.456,0.695) 0.568 0.05306122 (0.464,0.672)

Associate

Learning

0.6720863 (0.556,0.790) 0.630 0.05408163 (0.524,0.736)
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From the table, the confidence intervals seem to be of comparable width. Next,

to assess the performance of Xiong’s normal-theory confidence intervals when

normality does not hold, I conducted a small-scale simulation study using data

from a Cauchy distribution, a distribution having much heavier tails than the

normal distribution. If X is a random variable that follows a Cauchy

distribution with location parameter  and scale parameter  , its distribution

function is given by

1 1
( ) arctan

2

x
F x





 
  
  

. (11.11)

A simulation study by me indicates that when the underlying distribution is

Cauchy, and all 3 distributions are identical, Xiong’s method overestimates

HUM, which leads to low coverage rates for his confidence intervals. However,

the bootstrap percentile confidence interval works well here, as was true for the

non-normal distributions in Table 11.2, with coverage rates close to nominal.

In Table 11.3, a very interesting confidence interval is the one for the HUM for

the “Visual retention (copy)” factor. The lower confidence limits for this

particular HUM, using both these methods, are well below 0.30. This leads one

to consider a possible situation such as Example 11.1; where a precedence

probability, although significantly greater than the average precedence

probability was shown not to be the maximum of precedence probabilities. I

investigate this matter in the next section of this chapter.
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11.3 Comparing Precedence Probabilities

In Example 11.1, I noted that just testing hypothesis (11.1) might not always

be a good approach to checking the performance of a medical test used to

separate groups. A good medical test that separates groups according to an

expected ordering such as 1 2 KX X X     should result in the largest

precedence probability being assigned to this ordering. Accordingly, in such

cases, I propose testing

0 1 2: .... KH F F F  

Vs.

1: ( ) ( ); 2,3,..., !A iH p p i K   (11.12)

However, constructing a test for such a hypothesis is very difficult. Instead,

suppose that the researcher has a prior belief that another precedence

probability, say 2( )p  , might be the closest in value to 1( )p  . In that case, the

following hypotheses could then be of interest:

0 1 2: .... KH F F F  

Vs.

1 2: ( ) ( )AH p p  . (11.13)

I propose the following method for implementing this test.

i) Calculate a bootstrap confidence interval for 1( )p  , as described in

Section 11.2.
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ii) If a lower limit of the confidence interval in i) is more than 0.5, reject the

null hypothesis in (11.13).

iii) If the lower limit of the confidence interval in (i) is less than 0.5, calculate

a bootstrap confidence interval for 1 2( ) ( )p p  in the following manner:

Let ( )iU Y be the U-Statistic estimate of ( ); 1,2ip i  based on independent

pooled N dimensional data vector Y = { ijX }.

(A) Let ˆ
i

F be an estimate (empirical CDF) of iF obtained from { ; 1, 2,..., }ij iX j n

and set F̂ = { ˆ
i

F , 1, 2,...,i K }, F ={ }iF .

(B) Let *y = * * *

1 2
{ , ,..., }

M
y y y be M independent bootstrap samples, *

jy ={ *
jiy = { *

jily ,

1, 2,..., }il n drawn from ˆ
iF ; 1,2,..., }i K }, 1, 2,...,j M .

(C) Obtain * * *
12 1 2( ) ( ) ( )j j jU U U y y y ; 1,2,...,j M .

(D)Let, * * *
12 (1) 12 (2) 12 ( )( ) ( ) ... ( )MU U U  y y y .

(E) Then a 100(1 )% confidence interval for 1( )p  - 2( )p  is given by

 * *
12 ( ) 12 ( )( ), ( )LL ULU Uy y ; (11.14)

where  max 1,int( / 2)LL M   ,  min ,{int( ((1 ) / 2) 1}UL M M     and int( )a

is the largest integer smaller than a real number a .
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iv) If the lower limit of the confidence interval in (11.14) is greater than 0 ,

reject the null hypothesis in (11.13).

Consider our motivating example. In the case of Alzheimer’s disease, it is often

more difficult to detect the onset of the disease. So, a not-so-good medical test,

might have a problem in separating healthy people from early-stage Alzheimer’s

patients. Let 1X , 2X and 3X denote independent values of a continuous score T

obtained by subjects from healthy, intermediate and diseased groups,

respectively. Then, for a not-so-good medical test, the probability of the

expected precedence ordering of 1 2 3{ }X X X  might not be larger than

2 1 3{ }P X X X  . From this perspective, looking at Table 11.3, we note that for 7

out of the 14 medical tests considered, the bootstrap percentile confidence

interval’s lower limit was less than 0.5. Please note that, if 1( ) 0.5p   , that

means 1( ) ( ); 2,3,..., !ip p i K   .

However, looking at the bootstrap confidence intervals for 1 2( ) ( )p p  , only one

of those 14 tests had a confidence interval with lower limit smaller than 0. The

“visual retention (copy)” factor was found to have a bootstrap confidence

interval [ 0.007,0.139] based on a bootstrap sample of size 1000. This possibly

indicates that “visual retention (copy)” is not a very good test for separating all

three groups of people. It might be effective in discriminating between healthy

people and diseased people. But, that was not the intention of this medical

test.
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Although, Xiong, et al. (2006) concluded that all the 14 medical tests are

effective in detecting all three groups of people, based on my analysis, using

this new approach, I would not recommend “visual retention (copy)” as an

effective test for properly separating all three groups of patients.
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Chapter 12: Future Research and Summary

Recall that throughout my proposal { ~ ; 1,2,...,i iX F i K } are jointly independent

random variables and the distribution functions { }iF are assumed to be

continuous. Also consider the rank vectors R ={ ; 1,2,..., }iR i K , where the

components of iR are the ranks of { , 1,2,..., }ij iX j n in the pooled N dimensional

data vector X = { ijX }.

[1] In Chapters 6 and 7, I constructed and described three indices for

measuring the distances among two or more distributions. This seems to be a

very promising idea and I have already started new work on this subject. Recall

that the three index measures, all based on precedence probabilities, are

defined as;

 
1

max ( ), 1,2,..., !
!

1
1

!

i i

m

p i K
K

K




 




, (12.1)

!
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1

1
( )

!
1

1
!

K

i
i

ss

p
K

K



 








, (12.2)
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. .{ ( ); 1, 2,..., !}

1

!

i
sd

s d p i K

K







 
 
 

. (12.3)

In this dissertation I used U-statistic estimates for precedence probabilities for

testing a family of hypotheses. This naturally leads to basing inference for

these three index measures on a U-statistic approach . Specifically, if iU is the

U-statistic estimator of precedence probability ( ) 1,2,..., !ip i K   , I propose the

following estimates of distance index measures.

 
1

max , 1,2,..., !
!ˆ

1
1

!

i i

m

U i K
K

K


 





, (12.4)

!
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1

!
ˆ
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1

!

K
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U
K

K

 








, (12.5)

. .{ ; 1, 2,..., !}
ˆ

1

!

i
sd

s d U i K

K





 
 
 

. (12.6)

I intend to check the characteristics and performances of these estimates in the

near future. It would also be interesting to obtain confidence intervals for these

index measures. Since estimating the standard errors of these statistics would

require knowledge of the parametric forms of the distributions and could be

difficult or impossible to calculate, I propose using bootstrapping to achieve

this goal.
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[2] In many data sets and medical data in particular, ties among the

observations violate a key assumption and can result in incorrect inferences.

Dealing with tied observations in the setting of precedence probabilities is an

important and difficult issue. I plan to explore different tie-breaking methods

for the U statistics I employed. To help the reader recall the methods I proposed

in Chapter 9 for tie breaking, again define

1 2 1 20 1 2 1 2{( , ,..., ) : ( ... )
K Ki i Ki i i KiS X X X X X X    with no ties},

1 2 1 21 1 2 1 2{( , ,..., ) : ( ... )
K Ki i Ki i i KiS X X X X X X    with

( 1)( 1)l lli l iX X
 for 1 pair ( , 1)l l  },

2S
1 2 1 21 2 1 2{( , ,..., ) : ( ... )

K Ki i Ki i i KiX X X X X X    with
( 1)( 1)l lli l iX X
 for 2 pairs ( , 1)l l  },

.

.

1 2 1 21 1 2 1 2{( , ,..., ) : ( ... )
K KK i i Ki i i KiS X X X X X X     ,

( 1)( 1)l lli l iX X
 for ( 1)K  pairs ( , 1)l l  }.

Then, consider the following modified versions of the proposed test statistic.

1 2

1
( )

1 2
01 2

1 1
( ) ( ... )

... 2 K

j

K
h

K i i Kij
j SK

U Y I X X X
n n n





  
    

  
  (12.7)

1 2

1
( )

1 2/( 1)
01 2

1 1
( ) ( ... )

... ( !) K

j

K
g

K i i Kij K
j SK

U Y I X X X
n n n K






  
    

  
  (12.8)

1 2

1 2 1 2

0 1 2

( )
1 2 1 2

1 1 11 2

1
( ) ( ... ) ... ( ... )

2 ...

K

K K

K

n n n
w

K i i Ki i i Ki
S i i iK

U Y I X X X I X X X
n n n   

  
        

  
   (12.9)
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Depending on circumstances, any one of these tie-breaking methods might be

more suitable than the others. It is not intuitively clear how to select any one of

these methods over the others for all purposes without properly exploring their

behavior. I intend to investigate all three modified versions of the proposed test

statistic to check their performance and their asymptotic behavior.

[3] Although the bootstrap percentile confidence interval seems to work well for

any precedence probability, I intend to study pre-pivoted bootstrap confidence

intervals to see if it yields shorter confidence intervals with satisfactory

coverage rates. Specifically, constructing a confidence interval estimate of

1( )p  of the form [L, U] or [L, 1) or (0, ]U would be of great practical interest,

especially if L were close to 1 or U close to 0. The following bootstrap procedure

can be used to accomplish this. Simulation would then be used to assess the

performance of this procedure in terms of coverage rate and width. The

algorithm is inspired by Beran (1987).

Let 1( )U Y be the U-Statistic estimate of 1( )p  based on independent pooled N

dimensional data vector Y = { ijX }. Let ˆ
i

F be an estimate (parametric or empirical

CDF) of iF obtained from { ; 1, 2,..., }ij iX j n , and set F̂ = { ˆ
i

F , 1, 2,...,i K }, F ={ }iF .

Then, we have 1( ) ( )p p  F and let 1
ˆ( ) ( )U Y p F . Pre-pivoting is based on

estimating the distribution of the root ˆ( ) ( )R p p F F .
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I describe below a suggested algorithm for a bootstrap confidence interval for

1( )p  .

(A) Let *y = * * *

1 2
{ , ,..., }

M
y y y be M independent bootstrap samples, *

jy ={ *
jiy = { *

jily ,

1, 2,..., }il n drawn from ˆ
iF ; 1,2,..., }i K }, 1, 2,...,j M . Let { * *ˆ ˆF { ; 1,2,..., }j jiF i K 

be estimates of { ˆiF }, obtained from
*

ji
y , 1, 2,...,i K , Mj ,...,2,1 . Compute

*ˆˆ ({ })jp F and the corresponding roots jR  *ˆ( )jp F ˆ( )p F , Mj ,...,2,1 . For large

M, let j
ˆ ˆ( , ) #{j; R }/H r r M F be the left continuous, empirical CDF obtained

from{ :1 }jR j M  .

(B) Let
** ** **

,1 ,2 ,
{ , ,..., }

j j j B
y y y be B, independent bootstrap random samples from *ˆ

jF

and compute **ˆ
jkF and **

,
ˆˆ ( )j kp F from

**

,j k
y and ,j kR  **

,
ˆ( )j kp F *ˆ( )jp F , for

Mj ,...,2,1 , Bk ,...,2,1 .

(C) Compute ,#{ ; }j k j

j

k R R
Z

B


 , for Mj ,...,2,1 . Let *

1
ˆ ˆ( , ) #{ ; } /jH z j Z z M F be

the left continuous empirical CDF obtained from { jZ :1 }j M  .

(D) Then, an approximate, lower, 1  confidence interval p is given by [ L ,1),

where

1 1
1

ˆ ˆ( (1 ))L H H    (12.10)
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I believe this algorithm could lead to an improvement over the much simpler

percentile bootstrap confidence interval I used in Chapter 11 and intend to

explore it in the future.

[4] Recall from Chapter 11 the interesting problem of checking whether a

particular precedence has the maximum probability among all or a class of

orderings. Specifically, consider our motivating example of Alzheimer’s patients

from Chapter 1. Usually, to check the performance a clinical test, the following

hypothesis is tested.

0 1 2: .... KH F F F  

Vs.

1

1
: ( )

!
AH p

K
  (12.11)

As argued in Chapter 11, a better hypothesis to test in the above situation

would be

0 1 2: .... KH F F F  

Vs.

1: ( ) ( ); 2,3,..., !A iH p p i K   (12.12)

Of course, it is not easy to obtain a test statistic and conduct the test

mentioned in (12.12). One way to perform the hypothesis test would be to use a

simultaneous confidence interval approach based on a bootstrap.

Simultaneous bootstrap confidence intervals for 1{ ( ) ( ); 2,3,..., !}ip p i K   can
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be obtained using a method proposed by Mandel and Betensky (2008). I plan to

use the U-statistic estimate as employed in Chapter 11 to investigate this

approach. I propose rejecting the null hypothesis in (12.12) if the lower limits of

all the confidence intervals are greater than zero. The scope and performance of

this approach would be of interest to many researchers, particularly in the

medical field.

[5] For 3K  , given the random sample { ; 1,2,3; 1, 2,.., }ij iX i j n  , consider

1 2 3123 1 2 3#{ }i i iU X X X   to be the precedence ordering U-Statistic and

let the pair-wise Mann-Whitney statistics be given by
1 212 1 2#{ }i iU X X  ,

1 313 1 3#{ }i iU X X  and
2 323 2 3#{ }i iU X X  .

Then, define

*
123 123 12 13 23( , , , )U h U U U U , (12.13)

where h is increasing in each of its arguments. Whitney (1951) used a

special case of this approach. For appropriate h , *
123U could be used as

the basis of either a non-directional or directional alternative. I plan to explore

this type of statistic in more detail in the future.
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[6] Recall that in addition to using the asymptotic chi-square distribution to

obtain p-values for an observed value of 2
( )m K given in (9.3), I proposed an

algorithm for computing a permutation p-value in Chapter 9. Although

computationally a little bit more time-consuming, this approach provides

another option for carrying out a truly nonparametric test for the hypothesis in

(8.2). I plan to study this approach in the future and compare it to the

asymptotic nonparametric test discussed in detail in this dissertation.

In summary, my research involves the study of stochastic precedence and

precedence probabilities, which are currently being used in many fields,

especially the medical sciences, mostly for only two distributions. In this thesis,

for 2,K  I proposed asymptotically non-parametric, rank-based test statistic

which is also based on U-statistic estimators of precedence probabilities for a

family of hypothesis tests which includes the very well known K -sample

problem as well as the problem of testing for HUM of a ROC manifold. This test

statistic performs well under various conditions, including sensitivity to

differences in locations, scales or both, is easy to compute, and provides a

viable alternative to the existing standard tests. In this thesis, I also proposed

new distance index measures among distributions based on precedence

probabilities. These measures have the potential to be important, new “effect

sizes”, especially for research based on clinical trials. Hopefully, my research

will expand and significantly contribute to nonparametric and asymptotically



138

nonparametric inference for comparing more than two distributions, which has

been and will remain an important area for research.
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