THIS BOOK
CONTAINS
NUMEROUS
PAGES WITH
THE ORIGINAL
PRINTING ON
THE PAGE BEING
CROOKED.

THIS IS THE
BEST IMAGE
AVAILABLE.

MULTITASKING IN A USER FARTITION
WITH A CONTOUR MODEL OF FROCESSES

by
LEE ALLEN

Bs S., Georgia Institute of Technology, 1972

A MASTER'S REPORT
submitted in partial fulfillment of the

requirements for the degree
MASTER OF SCIENCE

Department of Computer Science
KANSAS STATE UNIVERSITY
Manhattan, Kansas
1973

Approved by:

)€ A uthadis

V.E. Wallentine

~ 7>

fi T

A

I
I1I.

Ivl

V.

FOOT

D

LA

TABLE OF CONTENTS

P
LiST OF FIGURA?-S.ll.l'......'.I...'lICI....Il..l..l'.l....l..l..llz

INTRODUCTICN
Furpose..-..........-..........-..-..-....-..--.......--....3
Configuration.......-.........-...-.--.-....................3
Report SErUCtUre,svesssestesassnsosarsarnancansasnsnnsnnansold
PROCESS
Process Definition.---..-.--..--.--.--.......-......-..-.---5
Processor-.........----..-.-........o--............-......-.5
Process Suspension....-.-...-..--.......-.--..............--7
Deadlock Detection.-.--...-...-.-...-------..-.........-.o-lo
Priority.-uouuo--onl--o-oo---..onoo-claiuustooorun--nnl-l-oll

CONTOUR MODELING
COntOUrscssessanvansssssnnssensasnssstssassansascasnasansseld
Retention..l.'...II.'l...I.'........‘....I'...........l...-lz
Contour vs. St&Ckouuo-oo--on---oo.-.-nlnoaa-n---..ono.-laool5

Register Saving and Restoration...-........-...............l?
Register Restrictions...........-......--......-.-o......-.l?
Contour Name and Length...--..-......--....-..........-....18
IMPLEMENTATION
The Languaga.........-...............-...........-....-...-20
Overheadasssesveeanesarosnssnsancencasisstssncossssasnenes sl
Block StructuUressssesesssssessanvsasassscssnessoscssssssesnesll
Process Creationeesescscssescsonescncsssennoscscnsesnansseesld?
FParameter Passage...-..-...............-..............-..--23
Variable Declaration.-.......-..-....--c-..........-...--..23
Pointers.....-.-....--------...-.--..-..--.--.........-..--24
Input and OUtputoc-.onuonuon|o¢--ono¢-looo-|--o|----010|on|25
System Variables........-..-...............................26
Priority Sﬁtting.-o.-o--cnl--oogooouooooo-ao---.-nno..---otz?
An Example.'.l!llllIl.lliil.ll.ll..'..!I!i.l..ll.l.l.u!llll27

CONCLUSIONS
Evaluation...-...-..-....................-............--...33
Use as a TEaChing Aidl--ooo-uot-oo-loo-n--uncn-o-lucucaut--BS
Use as a Real Operating Systemeccecssresscasssscssossoasessdb
Time—Sharing...-.-..-..................-................-..36
Systems Implementation Language.....-..-.-.................36
Contour Model E&Chinﬂ:--tlb--ocoooc-oco-o-o--ucc-cnooanoon-3?

mm.I'..'.'l.ll..ll........'..'Il.l.'.'..I..I..'.....l....BB

BIBLIOGRAPHY.I!.OI.DI.Ill‘.l’.lll!-.ll..'.olll.loll.iIDCIOIIIOI!39
APPENDIX A

APPE

Monitor Listing.......-.-..............-------o.-..-...----4l

NDIX B
A Sample Progrﬂm 4 T S S

AFPENDIX C

English Flowchart Of the Honitoroo'-c-l:o‘locto-ncno-c..lc-

LIST OF FIGURES

Fig. l=<Processor Block.-...............g..................-..6
Fig. 2==ContoUrecscssssssssssesesescesasntsnsessessnscsscncssl’d
Fig. 3--A Sample ALGOL Program............-....;....;........28
Fige. 4==A Typical Compilation of the ALGOL PrograMeccsssseeses29

Figs 5--A Snapshot during Execution of the PrograMissssecesss 30

2.

I. INTRODUCTION

se.

With the introduction in recent years of new concepts such as
task coﬁmunieafion. virtual access to all resources, and the neces-
sity for system support of more advanced features in higher-level
languages such as retention of valid storage upon block exit and
indirect reference, & need for more sophisticated machine architec-
ture and operating system design has become increasingly more
apparent, The compiler writer as well as the operating system
designer must bear the burden of implementing desired features using
the limited facilities of the computer systems which are available.

One particular difficulty has been the implementation of reten-
tion in block=-structured environments. Recently, the contour model
of block structured processes has been given some attention as a
solution to this problem. The purpose of this reseafch has been
to demonstrate the feasibility of a contour model in support of an
operating system by implementing & multi-tasking monitor which
resides in the user partition. The secondary purpose has been to
indicate the possible design of a contour model machine by implementing
some hardware functions as supervisor calls to the monitor.
Configuration.

The configuration chosen for implementation was the IBM 360
0S/¥FT because of its availability and wide-spread acceptance.

The monitor interfaces directly with the 0S system; however, since

this interface only includes using system-supplied routines such as

3.

GETMAIN (to allocate storage), and STIMFR (to set time intervals),
the interface is completely transparent to the user,

Report Structure.

The rest of this paper is divided into four ma jor sections.

The first section describes the concept of a process and how this
concept is relafed to tasks running under the monitor. Some of

the features which apply to processes as a whole are described

such as the system queues, processor blocks, and deadlock detection.

The second section is devoted to describing contours and
how they were used in the implementation of multi-tasking., The
philosophy of reentrant and recursive code is explained with
reference to how contour modeling faclilitates implementation of
this philosophy. Retention in block-structured processes is
explained with an example illustrating the advantage of contour
modeling over stack modeling for retention.

The third section describes the language used to take advantage
of the features of the monitor. BEach of the macros which were added
to regular IBM assembler language is described along with the
particular function or purpose which the macro performs. An example
is given written in ALGOL and the extended assembler language to
illustrate some of the features of the monitor,

The last section presents some of the conclusions which the
author derived from the research. Some practical as well as

theoretical applications of the monitor are given such as its use

as a real operating system and the possible construction of a machine,

4,

II. PROCESS

Process Definition.

Johnston defines & process as a "time-invariant algorithm
and a time-varying record of execution of that algorithm.”z This
philosophy was followed in the implementation of the monitor. Each
user in the system is considered as & process. However, each user
can also create other processes or tasks with which he can interact.
Each process is independent in that it competes with all other
processes for computer time; however, each process is dependent on
its parent for global variables, Each process communicates directly
with the monitor and may communicate with other processes in the
system through the use of system variables.

When a process is created, the current enviromment in which
it is created is marked so that even though the parent process
may terminate the environment is not destroyed and the descendant
process can continue to execute.

Processor.

Each process is assigned a processor block consisting of 108
bytes of storage, see figure 1, It is this block with which the
monitor keeps track of the process as to its current status and
environment.

The first part of the processor block is the display or
current environment of the process. For each level that the
process has entered a block, there 18 an entry in the display
to indicate the bounds of storage that the process can reference,

In addition, the process can reference any of the environment in

Displacement

Ol Display Jength |

Display

lower & upper bounds
. for contours

o T
88 Time

92 Current, Contour Address |
96 Next Instruction Addres

100 Highest
i
104 | Times Passed Over

Figure l--Frocessor Block

which it was created by using a link which resides in its addressable
area., Therefore, complete memory protﬁction is available which
would normally be a hardware function on a hypothetical contour
model machine.

Since the processor is frequently placed on queues such as the
ready queue or wait queues while it is waiting for resources, space
is left in the processor for a link to the next processor on a
queue, In this way the only space which need be allocated for a
queue is the head of the queue which points to the first processor
block on the queue.

Process Suspension.

There are two conditions under which execution of a process
may be suspended. First of all, a proceess is allowed a certain
amount of time to perform any execution using the CPU, If during
this time, the process does not request any resources, execution
will be suspsnmded, and the processor block will be put on the
ready queue according to its priority. If there are no other
processes currently ready for execution the process will be
restored to execution.

The ready queue can be considered as a queue for a resource
too. In this case the resource is the CPU, In a multiprocessing
machine, whenever a processor 1s free it would be assigned a
processor block if any are ready to executes.

Further movement of a processor block among queues 1s upon
processor request for a resource. This resource may be an I/0 channel

in which case the prosess is suspended (moved from ready queue to

7

1/0 queue) while the 1/0 operation takes place. In order to maintain
concurrency of processing, a process could create a subtask (process)
the purpose of which is to do the I/0. This would allow the parent
process to continue while the descendant process is suspended waiting
on completion of the I/0 request. At some point in execution, the
parent task will need the information and will need to check and
see if the I/0 operation is complete. This can be done by setting
a shared variable to a certain value or by communicating through
the system variables.

Communication using the system variables represents the second
type of resource request. When a process wishes to check for s
certain condition, it may check the system variables, If the
variable has been set by another process (or possibly the same
process) execution continues., If the variable has not been set,
the process is placed on a wait queue. At any point in execution
when a process sets that particular variable the waiting process
is removed from the wait queue and placed on the ready queue
according to its priority. In the case where more than one
process requests a resource represented by a system variable,
the processes are placed on the wait queue in the order of their
respective priorities as explained in the "Priority" section of
this paper.

There are four fields in the processor block which facilitate
placing the process on a queue. The link field has already been

mentioned and is used to indicate the next processor block on

the qususe.

When a process is suspended because it is waiting on an I/0
request, all time left in its particular time slice is deleted. when
is resumes exscution, it is given a full time slice. When a process
is suspended for any other reason, the amount of time left in its
time slice is stored in the processor block, and when the process
resumes execution it is started with however much time is remaining.
This scheme was used for a variety of reasons, When a process is
suspended because it requested a resource which another process
already controls, the reasoning -was that if the process was able
to gain exclusive control of the resource, it should not be given
another full time slice to execute in, For technical reasons, if
the procoss is unable to gain control of the resource it is like-
wise only allowed the time which it had left in the last execution
to use the CFU, When a process ereates another process it is
suspended in order to give the created process a chance to transfer
the parameters. In this way the original process may create
additional processes and use the same area for parameter passing.
Because the original process is only suspended so that the
parameters can be passed, it is only allowed the remaining time
to use the CPU when it resumes execution.

For most of the calls to the monitor for such features as
block entry and exit, pointer change, and resource release, it
was falt that the CFU time should not be subtracted from the

requesting process for time used by the monitor to respond to

9.

the requests. Also, some portions of the monitor's routines need

to be noninterruptable, In these cases also, the process's remaining

time is stored in the processor block and the remaining portion of

the time slice is restored at the end of the monitor routine.
Whenever a process is suspended for any reason and whenever

a process makes a supervisor call, the address of the next

instruction to be executed along with a pointer to the current

environment are stored in the processor block.

Deadlock Detection.

Since the system variables are controlled by the monitor
rather than the processes, deadlock 1s user preventable by having
the processes use only one of the varlables to indicate that it .
desires exclusive control of some resource. However, it is still
possible that one process may control a resource that another
process needs to continue while that process already has control
of a resource that the first process needs to continue by using two
different system variables. Since execution takes place under
control of the monitor, the monitor can never be blocked. When
there are processes waiting on resources other than I/0 requests
and there are no processes on the ready queue, the monitor cancels
the job after printing out an appropriate message and giving a
core dump of all storage currently in use. This could easily be
changed so that an arbitrary choice is made and one process is
allowed to execute with all of the resources of the system in the

hope that it would free up the resources when it was done.

10,

Priority.
Each process is assigned a certain priority level which deter-

mines where it is placed on certain queues such as the ready gqueue
and resource queues, Each process can change its own priority
level but can never alter its priority level to be higher than
a maximum fixed at creation of the process. The first process
in the system is assigned a priority level equal to the second
highest priority level in the system and has a maximum of the
highest level since it is the father of all other processes.

Process creation is a tree structure. The first process
can create other processes and each of these processes can create
other processes. When a process create§ another process it assigns
a priority level equal to or lower than the parent process's
priority level. This priority level then becomes the maximum
priority level that the descendant can attain. Space is allocated
in the processor block to store the current priority level and
maximum priority level.

When a process is suspended for any reason it is placed on
a queuve, The priority level is used to determine where the
process is placed on the queue. The processor block is located
under any processor blocks of higher priorities and before any
blocks of lower priority. Hnwever, if the block is placed before
any lower priority blocks a counter is incremented in the lower
blocks. A processor block can not be placed before any block
whose counter has reached a value of 5 an arbitrary number. This

counter is set to 0 whenever a block is removed from a queue.

11.

ITI. CONTOUR MODELING

Contour,

Tnherent to the contour model is the contour itself, It has
already been shown that a system can run efflciently under the
restriction that all instructions of an algorithm be reenterable
thus requiring that all data be stored separately from the actual
algorithm.3 This is in complete agreement with the definition of
process as presented in the section on processes in this paper.
The contour provides the record of execution for the process.

The contour as implemented consists of 80 bytes of control
information (see figure 2) and a variable amount of local
storage. A contour is local to the process in whose processor
block display the address of the contour appears. A contour may
be referenced by the current process and any descendant processes
which are created while the contour exists,

The contour model is especially applicable to block structured
languages; however, other languages are easily implemented as
one large block such as FORTRAN. At block entry, a contour is
allocated for all of the space which the block will require in
the way of variable storage. If the block is reentered before
the contour is deallocated, a fresh contour is created. This
scheme alsc provides an easy mechanism for recursion, since a
new allocation of variable storage is made each time the procedure
(block) is called (entered).

Retention.

Contours are allocated and deallocated as a whole. To keep

12,

Displacement

0‘.

4

8
12
16
20
24
28
32
36
40
Ly
L8
52
56
60
64

68 |

72
76
80

‘Heference Counter

Previous Contour

Next Contour

Register 14

Register 15 |
Register O

Register 1

Register 2

Rezister 3

Register 4

Register 5

Register 6

Register 7
Register 8

Register 9

t—— Register 10 |

ister 11

Register 12
Contour Name

Contour Length

S|

Variable Storage

Figure 2--Contour

13.

track of any variables in other contours which might reference
storage in the current contour, a reference counter is placed in

the contour. Each time a variable in another contour is changed

to point to the current contour, the reference counter is incremented
in the current contour and the reference counter in the contour
which the variable previously pointed at is decremented. Pointer
variables are discussed more fully in the "Pointers" section

in this paper.

At block entry, when the contour is created, the reference
count 1s set to 1, Whenever a block is exited, the reference
count is decremented by one. There is one other case where the
reference counter 1s incremented. When a process is created,
so that its environment will not disappear while it is executing,
the reference counters of all contours which are in the current
environment are incremented, When the created process terminates
all these reference counts are decremented.

If a contours reference count is decremented and reaches a
zero value, the contour is immediately deallocated. The monitor
does all the necessary keeping track of reference counters and
the reference count should be of no concern to the user.

In order to facilitate reference between contours two links
are provided in each contour to point to the previous contour
and to the next contour. The link to the previous contour can

be considered as the dynamic link of the contour to its calling

environment.,

14,

Contour vs. Stack.

An alternate model which can be used for block=structured
processes is the stack model where all variable storage is kept
on a stack rather than in separate contours. Generally, array
storage is kept separate from the stack with some kind of descriptor
in the stack. This type of model can provide almost all of the
features found in the monitor with the exception of retention as
illustrated in the following example.

BEGIN

RECORD STUDENT SF(MAME,ADDRESS,NEXT);

STRING FIELD MAME (0) [0:263,
ADDRESS (3) [2:377;

STUDENT FIELD NEXT (8) (0:18];
STUDENT SF;

NEXT 1= STUDENT
END
END;

END;
STUDENT is a record class identifier which is implemented in some
versions of ALGOL. The record referenced by STUDENT consists of
a field for the student's name, a2 field for his address, and a

field which points to the next allocation of STUDENT. SP points

15.

to the first allocation of STUDENT. The statement in the innermost
block has the effect of allocating a new student record and placing
its address in the field of the first student record named NEXT.

In the stack model, the new allocation of STUDENT would be
placed on the top of the stack. This allocation needs to be
kept as long as NEXT points to it. However, the innermost block
and second block are exited right after the allocation. Since
the allocation is on the top of the stack the variable storage
for the second and third blocks must also be kept. This makes
the stack full of worthless information which could normally be
deleted.

In the contour model as implemented in the monitor, only
the storage for STUDENT is kept since a new block must be entered to
allocate storage. This means that the storage reserved for
blocks two and three could be deallocated.,

Another advantage of the contour rodel over the stack model
is the variable length of storage for contours. With the stack
model, a fixed amount of contiguous storage must be set aside
for use of the stack. Wwith the contour model, only the exact
arount of storage needed is allocated.

The stack model is slightly more efficient than the contour
model however, because to increase the size of variable storage
only a stack pointer needs to be incremented, while in the contour
model a portion of main memory must be allocated. This could be

improved with fast hardware memory allocation.

16,

Register Saving and Restoration.

Whenever a process is suspended for any reason, the registers
must be saved so that they can be restored when execution resumes.
Space is provided in the contour to save these registers. The
decision was made to put the register storage in the contour rather
than the processor block since the monitor was designed to handle
recursion and reentrant blocks as part of its normal load.
Whenever a process enters a block a new contour is created and the
current values of the registers are saved in the previous contour.
When a block is exited, the registers are not automatically
restored, but the user has the option of loading the previous
values of the registers, Therefore recursive procedurss (blocks)
not only have new data areas for the variables, but also have
new registers effectively. Of course, when a block is entered
the registers contain the values they had when the entry was
initiated.

Register Restrictions,.

Since the monitor was implemented on an IBM computer, 1EM
conventions as to registers were used. The user is free to use
registers 0, 1, 14, and 15; however, since all monitor calls
destroy some or all of these registers, the user is warned that
they may not contain the values that he expects. This is in
keeping with IBM's philosophy of SVC's in which the same thing
happens.

Another IBM convention is the "Save Area™ which is used to

17,

save and restore registers. Normally register 13 contains the ad-
dress of the "Save Area." Since the monitor performs the functions
of saving the registers it reserves register 13 for this purpose.
The programmer is not allowed to change register 13 although he
may reference it at any time. Register 13 contains the address

of the current contour so that any variable storage in the current
contour may be directly referenced using register 13 as a base
register, Also the user can restore registers when he exits a
block by issuing "LM 14,12,12(13)."

There is one other restriction on the use of the IEM general
registers. Because the monitor was designed to operate within the
user partition, it must be relocatable. Since it is relocatable,
the resident address of the monitor can only be determined at
execution time., For this reason, the user must not change register
12 as it contains the base address of the monitor.

Contour Name and Length,

Each contour is given a name corresponding to the particular
block for which it was created. Contour names are not unique in
that a block may be reentered in which case two different processes
contain contours with the same name. Also, if a process recurses
it will contain more than one contour with the same name. Block
names are unique, however. Space is reserved in the contour for
its name,

The length of the contour is also stored in the contour so

that the space allocated to a contour can be freed when the

18,

reference counter reaches zero. The base is already known by chaining
through the links, but the length must alsoc be known to deallocate

the storage.

19-

IV. IMPLEMENTATION

The lLanguage.
In order to take advantage of the features implemented in the

monitor a language had to be developed (but is not presently implemented
fully) which would use all of the capabilities present in the monitor.
Because it was felt that the most efficient level of programming,
as to code generated, is at the assembly language level, the monitor
was written in IBM assembly language, and the language used to
interface with the monitor is an extension of this assembly language.
Yacros are used to generate instructions which require the monitor
intervention.
Overhead.,

There is a greater advantage in using IEN assembly language
extensions to interface with the monitor in that the user only
adds the amount of overhead that he needs. The monitor is sef up
so that it will accept and run a regular assembly language program
in which case there would be no overhead added besides the regular
0S overhead except for the necessary time-slicing involved in
the multi-tasking, Of course, this would be the extreme case., If
the user desires block structure only, the only overhead zdded would
be that to handle block entry and exit. If the user wishes to
include pointers in his program then he adds the overhead necessary
for garbage collection.

Block Structure.

There are two macros implemented to allow block structure in

20,

the assembly language extension. These are the ENTER and EXIT macros.
The necessary housekeeping that takes place when a block is entered
is that a contour is created for the block, the name and length

are placed in the current contour, the registers are stored in the
previous contour, and the bounds of the contour are placed in the
processor block for the process.

When a block is exited, the contour is deallocated if the
reference counter is zero and a check is made to see if this block
is the outermost block for the process. If this block is the
last block, the processor block is deallocated and the process is
terminated.

Regular block structure conventions are followed which pertain
to local and global variables. If a variable is declared within
a block it is local to that block and global to all other blocks
nested within the current block. The particular variable is
not referenceable in blocks which are outer blocks to the current
block. The same principles apply to procedure names and labels.

As has already been mentioned, register 13 contains the base
address of the current contour. For this reason all variables local
to the current block are directly referenceable with register 13
as the base register. All global variables must be searched for
since the base is not readily available. For this reason, a great
deal of time may be saved if a certain global variable is referenced
many times in a block by allocating local storage for the variable

and moving the global value into the local storage before working

21,

Hithrit, referencing the local variable when needed and then storing
the final value back in the global storage before block exit. This
will result in a savings any time a global variable is referenced
more than two times within a block.

Process Creation.

Process creation is accomplished through the use of procedures,
A special designation is used in the languapge extension for procedure
declaration, PROC., This has the same effect as an ENTER macro
except that a list of parameters may follow immediately after the
FROC, Parameters are designated by the special pseudo-op DP. As
many parameters as necessary may be declared immediately following
the PROC declaration, Parameter definition is terminated by
any other symbol appearing in the source statements. Procedure
definition is terminated by the EXIT macro,

Process creation is done by calling a procedure with the
special operand "TASK" in the call statement. The CALL statement
as implemented has a variable number of operands, The first
operand is the name of the procedure., The second and third
operands are optional and indicate the priority of the procedure
if the third operand is coded as "TASK." The fourth operand
indicates the area which is reserved for holding the addresses
of any parameters which are passed. The rest of the operands
are any parameters which the calling process wishes to pass to

the called process. If the TASK operand is left out, the as-

sumption is that the procedure 1s to be called as part of the

22,

current process, In this case, the procedure rmust have a RETURN

macro to indicate that return is to be made to the calling block.
The procedure name operand may also be a block name, In

this case no parameters may be passed. This allows a process

to start a subtask (process) at any block within the program.

Parameter Passage.

Parameters are passed by giving the called procedure the
addresses of the actual parameters. These addresses are stored
in the locations reserved for the formal parameters, The actual
mechanism for referencing parameters can be envisioned by
replacing every occurrence of the formal parameter name in the
procedure by the actual parameter name. Because of the linkage
involved, all references to a parameter require two instructions.
Therefore, if a parameter is used more than twice it is more efficient for
the user to store the value that the parameter points to in a
local variable and restore the value before the procedure is
exited,

Variable Declaration.

Because variable storage is allocated in a contour separate
from the actual instructions a few pseudo-ops needed to be added
to the assembly language for declaration of variables. These
additions include DCL and DCLEND pseudo-ops. Every block may
have one and only one DCL...DCLEND pair. All variables declared
between the DCL and DCLEND become local to the block and global to

any contained blocks. All of the pseudo-~ops available in IEBK

23,

assembly language for declaring storage assignments are also
available for use between the DCL and DCLEND with the addition
of another pseudo-op for declaring pointers,

Pointers.

A special pseudo-op is included for declaring pointers. LP
means to reserve a full word of storage for this variable as it
is to be used as a pointer. Pointer arrays are also allowed by
using a number in the operand portion of the declaration.

"P DP 10" for example, means to reserve 10 full words of storage
to be used as pointers. If no number appears in the operand
portion, one word of storage is reserved,

Pointers may be used in any instruction where a full word is
allowed. Whenever a pointer changes in value the appropriate
contour’s reference count is increased if the pointer now points
to it or decreased if the pointer previously pointed to it.

Pointers are especially useful for indirect reference. Any
level of indirect reference may be indicated by appending an
appropriate number of "#"'s toa pointer variable name when it
appears in the operand portion of a statement. There is no
check made as to type of variabls referenced or as to storage
boundaries. These are left to the programmer and an appropriate
message will be printed out and the offending process aborted if
something goes wrong.

The user is warned that no check is made in the present

implementation for circular reference in pointers. If a pointer

24,

points at a contour which has a pointer which points to the
original contour, neither of the two contours will aver be deallocated.
In order to avoid such references, the user should clear all pointer

variables to zero before he exits the block in which they are local,

Input and Output.

The user is allowed to do any type of input and output normally
allowed in IBM assembly language. The DCB for the data set referenced
must be present in the user program., The user has the option of
doing his own I/0 or letting the monitor do it for him,

The user may code any READ or WRITE macros in the middle of his
program, in which case there is no transfer to the monitor. The
user may also use the IO macro which is one of the extensions to
the assembly language. The I0 macro is made up of the exact number
of operands required for the normal operation plus one more operand
to indicate whether the normal operation is a PUT (P), GET (G),

READ (R), or WRITE (W). The particular code letter is the first
operand of the macro and the rest of the operands are the same
as would normally be required for that operation.

The monitor handles input and output operations by creating
a subtask under control of the OS operating system for the exclusive
purpose of doing the I/O operation., When the I/0 operation
completes the monitor is interrupted and the process which issued
the I/0 request is removed from the wait queue and put on the ready
queus., As mentioned beforé. if the user wishes to maintain processing

while his I/0O request is waiting on completion, he should create

a separate process which he calls when an I/0 operation is needed.
System Variables,

Dijkstra has described elementary operations which facilitate
process cooperation and synchronization.u These are the primitive
P and V operations which affect integer-valued variables called
semaphores. The system variables of the monitor are implemented
as semaphores. When the first process is initiated, the system
variables are set to 1. The user can increment or decrement the
system variables to any value he chooses using the two macros implemented
to use the system variables, as long as they stay non-negative.

A GRAB macro may be used to indicate that a process has entered
a portion of his program which uses some resource which he wishes
to have exclusive control over. The effect on the system variable
is to decrement the variable. If the variable reaches a negative
value, the implication is that the resource is already in use
and the process which makes the request is put on a wait queue,
There are ten system variables, an arbitrary maximum number, which
may be used. The user could also define his own system variables
in which case all reference to these global variables would be sur-
rounded by GRAB and LETGO macros. The operand portion of the GRAB
macro indicates which variable, by number, the process wishes to
reference.,

When a process wishes to release control of a resource or

leaves that portion of the program which needs exclusive control

of some resource, it may issue a LETGO macro. This has the effect

26,

of incrementing the system variable and removing one process from
the wait queue, if there are any on the wait queue. The process
which issues the LETGO macro is allowed to continue processing and
the process which was on the wait queue is placed on the ready
queue in its appropriate priority position.

Priority Setting.

There is one other macro implemented to allow a process to set
its own priority. As mentioned before, a priority level can not
be set higher than a set maximum; however, a process may set its
priority level anywhere underneath that maximum. The SETFR macro
is used to branch to the monitor to set the priority. If the
priority level desired, coded in the operand portion as a number,
is higher than the maximum, the priority level is set to the maximum,
An Example.

To i1llustrate some of the ideas discussed, an example is presented
at this point. In figure 3 a sample ALGOL program is given. This
program is a relatively simple program for finding the factorial
of two numbers, 5 and 7. Two features have been added to the
language. In lines 13, 15, 18 and 19, Dijkstra's P and V operations
are presented as system procedures which act on semaphore 1. Also,
the special keyword "TASK" is included in lines 16 and 17 to indiéate
that the procedures are called as tasks to run concurrently as
oppesed to line 9 where the factorial procedure is called as a
regular procedure.

In figure 4 a possible compilation of the ALGOL program is

27,

WO Fwmhpe

BEGIN
INTEGER F1, F2; -

PROCEDURE FACT(N,R,FLAG);
INTEGER N, R, FLAG;

BEGIN

LABEL AROUND, AROUNDZ2;
INTEGER X3

IF N = O THEN GO TO AROUND;
FACT(N-1,X,0);

R:=NxX;

GO TO AROUNDZ;

AROUND: R := 1:

AROUND2: IF FLAG = 1 THEN V(1)
END;

P(1);

FACT(5, F1, 1),TASK;
FACT(7,F1,1),TASK;

P(1);

P(1)

END;

Figure 3--A Sample ALGOL Program

28.

1 ENTER
2 FACT PROC

3N DP 1

4 R P 1

5 FLAG P 1

6 L 3,N

7 L 4,=F'0'
8 SR 4,3

9 BE AROUND
10 S 3,=F"1°*
11 ST 3,TEMP
12 CALL FACT,,,PARLIST,TEMP,X,=F'0’
13 L 5,X
14 1A 4,0

15) 4,X
16 ST 5K
17 B AROUND2
18 AROUND L 3,=F'1"
19 ST 3,R

20 AROUND2 L 3,FLAG
21 L L,=F'1’
22 CR 3.4

23 BNE AROUND3
24 LETGO 1

25 DCL

26 TEMP DS F

27 X DS L

28 PARLIST DS IF

29 DCLEND

30 AROUND3 RETURN

31 GRAR 1

32 L 3,=F's5"
33 5T 3,TEMP
3 CALL FACT,1,TASK,PARLIST,TEMP,F1,=F'1"
35 L 3,=F'7*
36 ST 3, TEMP+4
37 CALL FACT,1,TASK,PARLIST,TEMP+4,F2,=F'l’
38 GRAB 1 :
39 GRAB 1

40 DCL

41 F1 DS F

42 F2 DS F

43 TENP DS 2F

4l PARLIST DS 3F

L5 DCLEND

Figure 4--A Typical Compilation of the ALGOL Program

29.

:Q"_i
5 Ctr— P37
=B = Fee =
EMPTY EGISTERY 3T
NUL L 1 B
T WNE ._Lélrl__
i €3
——L%——S - Fa -— -I-EDS.E_
| Temp[= | Cy |
JDlJ:_D 7 13
PﬂﬁUST .=L[$_
L)
=F's’| = A3
=F \”. 1 4
=F‘'7/ 7 | TGS
EMPTY
ca cC3 B
——| | = —7— [eme
X o | Naam| Y
C3 InNuL) | NULL, 7
REGISTAR hse.zs&esL kiéﬁﬁaf’s g
e | - - b,
124 124 |22 |
N
=
, ‘ p—— FLAG
e | = 2 TEMP
_.. . : X
PARR: =T
L 0 5 = F ‘o
! 3 =g i
13 13 Re7urN

Figure 5--A4 Snapshot during Execution of the Program

30.

given as 1tAwou1d be in the extended assembly language. Lines

15, 18, and 19 in the ALGOL program aré used to wait for com-
pletion of the factorial procedure, These two lines are compiled
into GRAB macfos in figure 4. Also, line 13 in the ALGOL program
is used to indicate cﬁmpletion of the procedure, This is compiled
into a LETGO operation in line 24 of figure 4,

In figure 5, a snapshot is given of the system at a particular
instant in time during execution of the algorithm. The main
block has reached line 18 in the ALGOL program and thus has created
two new processes. The original process (Fl) is on a wait queue
concerned with system variable #1. (Pointers which refer to
contours or processor blocks are designated with C_ or P_ such
as C2 or P3 to indicate which contour or processor block they
point to.) Pl has only one contour active, but this contour's
reference count is 3 since two other processes have been created.
The next instruction location of the processor block for Pl has
instruction 39 since it has just executed instruction 38 causing
it to be placed on the wait queue.

The two created processes are currently on the ready queus,
P2 is the process created to find the factorial of 5. P3 is the
process created to find the factorial of 7. P3 has not had time
to do much processing. When execution resumes, F3 will continue
at instruction 7. P3 has not yet recursed.

Process P2 has already recursed 1 level and is about to

recurse for the second time. At the point that the diagram

31.

illustrates, P2 has just executed instruction 12 which is the call
to itself, but has not recuresed so that a new contour has not been
created. P2 has two contours currently valid. C2 represents the
first time that the factorial procedure was called, and C3
represents the first recursion caused by P2 calling FACT again.

It should be pointed out that the call of the factorial
procedure in statement 9 of the ALGOL program and in instruction
12 of the compilation do not contain the TASK option. Because
of this the procedure called must contain a RRTVRN statement.

The return address is stored in the current contour. When a
process reaches its outermost block, the process is terminated
whether a RETURN statement is executed or not. Therefore, FACT
may terminate with RETURN even though it is called as a TASK
also. The actual listing of the example as it was run under the

monitor with the answers printed out can be found in appendix B.

32,

V. CONCLUSIONS
Evaluation.

As was mentioned in the introduction, the main purpose of this
research was to demonstrate the feasibility of a contour model
operating system. Because the monitor actually runs and executes
processes in a multi-tasking environment using the contour model,
the author feels that this feasibility has been demonstrated. A
secord issue which might be brought up however, is whether this
contour model is practical and efficient. There was neither the
time nor the facilities available to make the kind of studies to
give that question a valid answer. The author will be the first
to admit that t'e monitor as implemented is not in its most
efticient torm because of the time which would be required to
optimize the code.

Tne system, in its present form, constitutes merely an
exposure to the problems of multitasking as a typical user. It
is skeletal in nature and not intended for production use. It
does, however, provide a basis upon which a time sharing supervisor
can be built, and its developrment effort was significantly less
than systems which provide the same service. The time spent on
the system was approximately 3 man-months as compared with over
two years of many men working full-time for most multi-tasking
operating systems.

A valid evaluation can be made on the basis of features

included in the monitor which do not appear in other operating

33.

systems., Almost all of the features of the monitor appear also
in the MCP operating system on the Burroughs machines with two
exceptions. The stack mechanism which Burroughs uses does not
immediatelyrlond itself to retention unless, as was pointed out,
it is desired to save worthless blocks of information on the
stacks The Burroughs philosophy also is to destroy all subtasks
when the parent task terminates since a process is needed in
the system for each stack which is resident. One feature which
the Burroughs MCF offers on the B-7700 which the monitor does not
provide is virtual machine capabilities. This is because of
the restriction of running under HASF on the 360,

Since the monitor operates under 05/360, all of the facilities
of the OS5 supervisor are also available when running with the
monitor. The monitor's biggest feature is retention. A second
feature which is not already available on the 360 is block
structure. With block structure already present in the operating
system, a great burden is lifted from the compiler writer for
such languages as PL/I and ALGOL.

It was felt that virtual memory should be a hardware function.
If such hardware were available only a small routine would need be
provided in the operating system to handle any interrupts caused
by a page fault. This procedure could very easily be added if
the monitor was to run on a machine with hardware virtual memory.

The overhead involved to incorporate virtual memory without any

hardware would be extremely prohibitive.

One feature which is available in the RC-4000 operating system
that is not available directly in the monitor is the capability of
sending an entire message to another process in the system. With
the monitor it is only possible to communicate with another process
through the system variables, If the process is a descendant or
parent however, a message can be sent through global variables.

The lines of communication must be agreed upon previous to
the sending of the first message.

The Univac Exec VIII operating system which runs on the 1100
series has one feature, besides virtual memory, which is not
incorporated in the operating system implemented by the monitor.
The Exec VIII system has a complex protectlion and security
arrangement with a variety of passwords and numbers needed to enter
the system and get at any resources. The monitor uses the IBM
protection scheme for file reference.

Use as a Teaching Aid.

The monitor and associated extended assembly language would
be particularly useful in a first compiler design course. The
features which are already implemented in the monitor such as
block structure and reentrant code would release the instructor
from some of the mechanics of implementing a compiler and allow
him to concentrate on the more fundamental concepts of syntax
parsing, lexical analysis, and symbol table construction. Of
course, in a higher course the mechanics of implementation must

be covered because of the limited design of present operating systems.

15.

Use as a Real Operating System.

If the monitor were supplied with all of the routines which
are referenced by the SVC's in IBM assembly language it could
probably limp along as the actual operating system, This was
not the intention in writing the monitor however. The monitor
was written primarily to illustrate how a contour model
operating system might be implemented and especially to demonstrate
the feasibility and desirability of such an operating system,
Secondly, -the monitor was designed to run in the user
partition providing him with all of the capabilities not available
normally running under the OS5 operating system. On this matter,

the monitor is a complete success.

Time-Sharing.
The monitor would be especially useful in a time-sharing

environment where a certain partition is dedicated exclusively
to the time-sharing users. The monitor never loses control

while it is in execution. Under the priority schedule currently
used at the Kansas State University Computing Center, the monitor
would receive 300 milliseconds of CPU time at least every three
seconds, Therefore the response time which a user at a terminal
would experience would be usually about 3 seconds.

Systems Implementation Language.

A particularly good use of the monitor would be to provide
the nucleus for an operating system designed for the 360 using

the extended assembly language provided to take advantage of the

36.

capabilities of the monitor. The writing of an actual operating sys-
tem takes many people years working full-time., Thls manpower

and time were not available for the project; however, a good

start was made toward a contour model operating system. The principles
have been demonstrated and could very easily be put to use in

the design of an actual operating system.

Contour Model Machine.

The secondary purpose of the research was to demonstrate the
poesible design of a contour model machine., The author feels that
he has successfully demonstrated the facilities which would be
needed on such a machine. It is hoped that sometime in the near
future such a machine will be built with the idea of satisfying
language requirements rather than tailoring the compiler to fit

the machine,

One of the most important hardware features for a contour model
machine would be automatic memory allocation and deallocation., This
would require the hardware to poll the reference counters at some
intervals to decide if they have reached a value of zero or not,
Another important feature would be hardware virtual memory but
that would be no new concept. One other important hardware concerpt
which is necessary would be one machine instruction for the GRAR
and LETGO operations. Some other hardware features would include
automatic pointer reference checking everytime a pointer variable
is changed., This could be done with corntrol bits on each word to

indicate its type as Burroughs currently does in its machines.

37.

1.

2.

3.

4,

FOOTNOTES

» Burroughs Corporation,
Detroit, Michigan, January 1973.

Johnston, John B.,"The Contour Model of Block Structured
Processes," Froc. Symposium on Data Structures in Prograrmi
Languages, J. T. Tou and P. Wegner (Eds,), SIGPLAN Notices,
&, 2 (Feb., 1971), pp. 55-82.

Organick, Elliot I., Computer System Organization: R5700, B6700

Series, Academic Press, New York, 1973.

Di jkstra, E. W., Cooperating Sequential Processes, Report EWD
123, Mathematical Departrent, Technological "niversity, Eind-
hoven, The Netherlands, September 1965. (Reprinted 4n Program-
ming Languages (F., Genuys Ed.) Academic Press, London, 1928.5

38.

BIBELIOGRAFHY

Struble, George, Assembler Language Programming: The IEM System/360,
Addison-Wesley Publishing Co., Reading, Mass,., 1971,

Horning, J. J. and Randell, B., "Frocess Structuring," ACM Computing
Surveys, 5, 1 (March, 1973), pp. 5-30.

Bell, C, G. and Newell, A., Computer Structures: Readings and Examples,
MeGraw=Hill, New York, 1971,

Di jkstra, E. W., Cooperating Sequential Processes, Report EWD

123, Mathematical Department, Technologlical University, Eindhoven,
The Netherlands, September 1965. (Reprinted in Programming Languages
(F. Genuys Ed.) *cademic Press, London, 1968,)

Organick, Elliot I., Cormputer System Organization: B5700, B6700 Series,
Academic Press, New Y~rk, 1973.

3-7700 System Characteristics Manual, Burroughs Corporation, Detroit,
Michigan, January 1973.

Burroughs B-5500 Information Processing Systems Extended ALGOL Refersnce
Manual, Burroughs Corporation, Detroit, Michigan, April, 1969,
GTL Programmers Reference Manual for the Burroughs B-5500, Rich Elec=

tronic Computer Center, Georgia Institute of Technology, Atlanta,
Decembar, 1971.

Programmers Reference Manual for the Univac 1108 Exec 8 Executive
Syster, Rich Electronic Computer Center, Georgia Institute of Tech-
nology, Atlanta, (revised) 1972,

Johnston, John B., "The Contour Model of Block Structured Processes,"
Froc., Symposium on Data Structures in Prograrming la es, Jd. T,
Tou and F, Wegner (Eds.), SIGPLAN KNotices, 6, 2 Eweb., 1971), pp.
55=82,

IBM System/360 Operating Svster System Control Blocks, Form GC28-
6628-7, IEM Corporation, Data Processing Division, White Plains,

N. Y., 1971.

IB¥ Syste —ta t
Form GC28-6670-4, IBM Corporation, Data Processing Division, wWhite

Plains, N. Y., 1971.

39.

IBY System/360 Operating System Supervisor Services, Form GC28-6646-5,
IEM Corporation, Data Processing Division, wWhite Plains, N, Y., 1971,

IBY System/360 Operating System Data Management Services, Form GC26-
3746-0, IBM Corporation, Data Processing Division, White Plains,
NI I.. 19?1.

IBM Szgtem[}ég Oggratigg Sﬁgtem Supervisor and Data Managerent Macro
Instructions, Form GC2B8-6647-5, 1FV Corporation, Dats Processing
Division, White Flains, N. Y., 1971.

AFPENDIX A

Monitor Listing

41,

ILLEGIBLE

THE FOLLOWING
DOCUMENT (S) IS
ILLEGIBLE DUE
TO THE
PRINTING ON
THE ORIGINAL
BEING CUT OFF

ILLEGIBLE

ADDR2 STMY

WO~ NN

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

29
30
31
32
33

35
26
37
38
39

41
42
43
44
45

SOURCE STATEMENT

SADDR
EADDR

MACRO
EXIY
L

)

ST
BAL
MEND

MACRO
ENTER
STM™
LA
BALR

BAL

e
5T
ST
LR
LA
57
LA
ST
LA
ST
BAL
MEND

MACRO
GPAB
LA
BAL
MEND

MACRO
LETGO
LA
BAL
MEND

MACRDO
SETPR
LA
BAL
MEND

0,0(13)
0, 0NE
0,0(13)
14,5vC20

ELENGTH, 6NAME
14,12,12113)

0,ELENGTH
1,0
l.41(1)

10
13,4(1)
1,8113)
13,1

1,1
1,01(13)
1, ENAME
L,72{13)
1+ ELENGTH
1,76(13)
14,5VC4

ENUMBER
1, ENUMBER
14,5vC28

ENUMBER
1, ENUMBER
14,5VC24

&NUMBER
0, ENUMBER
14,5vC32

FOIMAY7

LOAD REFERENCE COUNT
SUBTRACT ONE

STORE BACK REFERENCE COUNT
BRANCH TO MONITOR

LOAD LENGTH OF VARIABLF STORAGE

INDICATE GETMAIN

ISSUE GETMAIN SVC

STORE PREVIDUS SAVE AREA ADDRESS

STORE CURRENT SAVE AREA ADDRESS IN PREV,
REG. 13 GETS NEW SAVE AREA ADDRESS

STORE 1 IN REFERENCE COUNT

LOAD BLOCK NUMBER

STORE IN SAVE AREA

LOAD LENGTH OF VARIABLE STORAGE
STORE LENGTH IN CONTOUR

BRANCH TO MONITOR

LOAD LOCK NUMBER
BRANCH TO MONITOR

LOAD LOCK NUMBER
BRANCH TO MONITOR

RO GETS PRIDORITY DESIRED
BRANCH TO MONITOR

bz,

ADDR2 STMT

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

SOURCE STATEMENT

«READL
« DONE

MACRO
10
LA
BALR
BAL
SvC
AlF
MVI
AGO
MVI
BALR
LA
ST
LA
ST
MVI
LH
STH
L
8AL
MEND

ERORW, EDCBA, EAREA

0,32 LOAD LENGTH OF DECB

1,0

ly4(1) INDICATE GETMAIN

10 I1SSUE GETMAIN SVC

(*ERORW' EQ 'R').READL TF READ GO TO LREADL
5(1),X%20° INDICATE TYPE OF *'WRITE"

+« DONE
5{1),X*'80"
15.0
14,&8DCBA.{15)
14,811)

O+ EAREA
0,1211)
411),X'00"
0,82(14)
De611)
15,48(14)
14,SVC36

GO T0O .DONE

INDICATE TYPE OF *'READ?

GET CURRENT ADDRESS

LOAD DCB ADDRESS

STORE IN DECH

LOAD 1/D0 BUFFER ADDRESS

STORE IN DECBH

INDICATE TYPE

LOAD LENGTH OF BUFFER

STORE LENGTH IN DECB

LCAD READ/WRITE ROUTINE ADDRESS
BRANCH TQO MONITOR TO HANDLE 1/0

43,

ADDR2 STMY SOURCE STATEMENT FOLIMAYT

69 MACRN
70 CALLP E&PORM, EADDR, EPRIOR, 6TASK,E&DEST,EP1,EP2,6P3
T1 BALR 1,0 GET CURRENT ADDRESS
- 72 LA 0y &ADDR LOAD DISPLACEMENT
73 : AIF {*&PORM' EQ "-1),SUBTR
T4 : AR 0.1 ADD DISPLACEMENT TD BASE
75 AGO .SKIP
76 .SUBTR SR 1,0 SUBTRACT DISPLACEMENT
77 LR 0,1 PUT ADDRESS IN RO
78 LSKIP AIF (*EPRIDR? EQ "9),.SKIP2
79 LA 14,5PRIDOR LOAD PRIORITY
80 SLL 14,24 SHIFT PRIORITY INTO FIRST BYTE
81 DR 0,14 PUT PRIORITY INTO ADDRESS REGISTER
82 .SKIP2 AIF {*&P1'" EQ '') . DONE
83 LA 1440 GET A ZERO IN Rl&
84 LA 1,671 LOAD PARAMETER ADDRESS
85 ST 1,EDEST.(14,13) STORE PARAMETER ADDRESS IN PARAMETER L
86 AIF (*£P2' EQ '"').DONE
a7 A 14,FOUR INCREMENT TO NEXT LIST ELEMNNT
88 LA 1+6P2 LOAD ADDRESS OF SECOND PARAMETER
89 : ST 1+EDEST.{14,13) STORE IN PARAMETER ADDRESS LIST
90 AIF {'&P3* EQ *').DONE
91 A 14,FOUR
92 LA 1,6P3 LOAD ADDRESS OFTHIRD PARAMETER
93 ST 1,6DEST.{14,13) STORE [N PARAMETER ADODRESS LIST
94 .DONE AIF {*ETASK®' EQ "*).,SPROC
95 LA 1,EDEST.{13)
96 BAL 14,5vC8 BRANCH TO MONITOR
97 ~ AGO «DONE2
98 .SPROC RALR 1,0 GET CURRENT ADDRESS
99 LA 14,2401} LOAD RETURN ADDRESS
100 L 15, 761{13) LOAD LENGTH OF CONTOUR
101 S 15, FOUR SUBTRACT TO GET LAST WORD
102 ST 14,0{15,13) STORE RETURN ADDRESS IN CDNTOUR
103 LA 14,5DEST.(13) LOAD PARAMETER ADDRESS LIST ADDRESS
104 LR 15,0 LOAD PROCEDURE ADDRESS
105 B8R 15 BRANCH TO PROCEDURE
106 «DONE2 ANOP
107 MEND
109 MACRD
110 RETURNP
111 EXIT REGULAR EXIT FROM PROCEDURE
112 L 1,76(13) LOAD LENGTH OF CONTNUR
113 S 1,FOUR DECREMENT TO LAST WORD
114 L 15,0(1,413) LOAD RETURN ADDRESS
115 BR 15 RETURN TO CALLING PLACE
116 MEND

ADDR2 STMT

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

SOURCE STATEMENT FOIMAY

«IN
«RFEST

MACRD
MOPEN
LA
BALR
BAL
SveC
AIF
LA
AGO
LA
StL
BALR
LA

ORrR

ST
BAL
MEND

EDCBA,&IDRO :

0,4 LOAD LENGTH OF DATA 8LOCK

1.0 GET CURRENT ADDRESS

1,4(1) INDICATE GETMAIN

10 ISSUE GETMAIN SVC

(*ETORO* EQ '"INPUT').IN

15143 LOAD CODE BYTE

«REST

15,128 LOAD CODE WORD

15,24 SHIFT INYO FIRST BYTE

14,0 GET CURRENT ADDRESS
14,5DCBA.(14) LOAD ADDRESS OF DC8

15+14 STORE CODE WORD AND DCB ADDRESS
15,01(1) STORE COMPLETE OATA IN DATA WORD
14,SVC40 BRANCH TO MONITOR

Ls,

ADDR2

0000C
00144

STMT

136
137
138
139
140
141

143

145
146
147
148
149
150
151
152
153

SOURCE STATEMENT FO1MAY

START O
PRINT NOGEN

GOMONT BALR 12,0
USING *,12 12 IS BASE REGISTER
STM 14,12,12(13)
B ARDUND BRANCH AROUND CONSTANTS

* THE FOLLOWING IS A CONSTANT AREA FOR THE ATTACH MACRO

ATCHLIST DC
DC
ATCHECB DS
DC
DC
DC
DC
ATCHNAME DS
nC

A (DUMMY) ADDRESS OF TASK ENTRY POINT NAME
F'Ol

F ADDRESS OF EVENT CONTROL BLOCK

2F1 Q"

ALL(2)

AL3(10COMPL) ADDRESS OF TASK COMPLETION ROUTINE
Fip?

cL8

4F1Q"

ADDR?2

001R6

00104

STMT

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
180

SOURCE

READY
DUMMY
IOCMASK
TOMASK
EVCOUNTY
EVENTS
TIMESETY
FOUR
ONE
EIGHT
N16
LOCKS
QUEUES
TINSAVE
BINST
ERREX
INTEREX

HOLD

STATEMENT

DS
DC
DC
DC
DC
DC
DC
DC
DC
nC
2]
DC
DC
DS
BAL
DS
STM
ABEND
DS

F

CLBYLINK®
X'80000000"
X*'40000000"
FrQe

10F*'0"*
F'ST70"?
Fr4t

Frl?

F.B.

Frls?
1LOF*1?*

10F* 0"

CLS

14, TIMEXR
E
14,13,HOLD
18, DUMP

16F

FOLIMAY?

READY LIST

DUMMY ROUTINE TO INITIATE SUBTASKS
MASK TO CHECK FOR LAST EVENT POINTER
MASK TO CHECK FOR EVENT COMPLETION
NUMBER OF EVENTS AWAITING COMPLETION
POINTERS TO THE ECB OF EACH EVENT

EREERRARRRERKREK

*CONSTANTS USED=

®*IN ARITHMETIC =*

AREk kR RKRRRhEREK

L1IST OF COMMON VARIABLES

WAITING LISTS

STODRAGE T0D SAVE INSTRUCTION AFTER TIMER
BRANCH TO TIMER EXIT RESTORE (AFTER INT.
DUMMY ERROR ROUTINE FOR LINE PRINTER
STORE REGISTERS TO LOOK AT IN DUMP

THIS WILL BE INTERRUPT EXIT ROUTINE
STNRAGE FOR REGISTERS

W7

ADDR2

00040
00000
00000
00000
00084
oc088

0085E
001C4

STMT

182
186
187
188
189
190
191
192
201
202

SODURCE STATEMENT FOIMAYT.

AROUND

GETMAIN R,LV=108 GET AREA FOR FIRST PROCESSOR

ST
LA
ST
MVC
MVC
MVC
SPIE
LA

B

1+READY STORE ADDRESS OF AREA IN READY LIST

0,0

0,011)

1{107,1),011) CLEAR PROCESSOR AREA TO ZERQ
0{4,1),FOUR STORE COUNT IN AREA

100(4,1),0NE SET PRIORITY TQ ONE

INTEREX,11{1,15)) SET INTERRUPT EXIT ADDRESS

14, PREGIN LDAD FIRST PROGRAM ADDRESS

PSTARY BRANCH TO ADDRESS IN TIMER EXIT TO BEGIN

ADDR2

oooac
00019
00000
00000
00000
0001cC
goolo
00000
00000
O00ES8
pogoc

0000C
00084
000€E4
00040
00000
00080
00054
00nscC
00790
00040
0005C

00010

STMT

204
205
206
207
208
209
210
211
212
213
214
215

217
218
219
220
221
222
223
224
225
226
227
228
232
233

SOURCE STATEMENT

TIMEX

TIMEXR

PSTART

STM™
S
MVvC
LA
L
MvC
MVC
ST™
BAL
L
LM

14412,121(13)
2+ 16

2:,01{2)
2,0(2)
2,012)
2+28(2)
3:4416(2)
4,014)
TINSAVE,O014)
0l4+4),BINST
14,12,12{(13)
l4

l14,12,12113)
14,FOUR

FOIMAYT

INTERVAL TIMER INTERRUPT ROUTINE

ADDRESS OF COMMUNICATIONS VECTORI(CVT)
ADDRESS OF TCB WORDS

ADDRESS 0OF TC8

ADDRESS OF 1RS8

ADDRESS OF PREVIOUS RB

LOAD OLD PSW

CLEAR FLAG BYTE OF PSw

SAVE NEXT INSTRUCTION TO BE EXECUTED
STDRE BRANCH TGO MONITOR IN NEXT INSTRUCT

RETURN TO SUPERVISOR

TIMER EXIT RESTORE ROUTINE
GO BACK TO ORIGINAL INTERRUPT POINT

0{4,14),TINSAVE RESTORE ORIGINAL INSTRUCTION

5sREADY
T.0(51)

LOAD ADDRESS OF CURRENT PRNC. AREA

LOAD CURRENT PROCESSOR ADDRESS

88(4,T)TIMESET STORE NEW TIME INTERVAL IN AREA

0{4+5),84(T7)
13,14,921(7)
14+SEARCH
54+READY
13,14,92(5)

STORE NEXT PROCESSOR AT HEAD OF LIST
SAVE NEXT INSTRUCTION AND CURRENT CONTOU
BRANCH TO PLACE ON QUEUE

GET ADDRESS OF NEXT

RESTORE NEXT INSTRUCTICON AND CONTOUR

STIMER TASK,TIMEX,TUINTVL=88(5) SET NEW INTERVAL FOR NEXT TA

LM
BR

15+12,16{13}
14

RESTORE REGISTERS
BRANCH TO NEW TASK

L9,

ADDR2

00040
00000
00000

00004
00008
00040
00000
00000

STMT

2135
236
237
238
239
240
241
242
243
244

SOURCE STATEMENT

SVC4

L
A
ST
AR
ST
LA
L
A
ST
BR

15,READY
15,0(15)
13,0(15)
1,13
1y4(15)
1,8
15,READY
1,0(15}
1,0(15)
14

FOIMAYT;

STORE AREA BOUNDS ROUTINE

GET ADDRESS OF NEXT DISPLAY POSITION
STORE LOWER AREA BOUND IN DISPLAY
ADD LENGTH

STORE UPPER BROUND

ADD PREVIOUS LENGTH OF DISPLAY
STORE NEW LENGTH
RETURN TO PROGRAM {

50.

ADNR2
N00ocC

00040
00000

00001
00000
00000
00004
00004
00230
00008
00058
0005C

00004
00000

00004
00004
00054
00040
00014
Q0018
00064

0028E

00064
00046

ooooc
00000

STMT

246
247
250
251
252
253
254
255
256
257
258
259
260
261
262
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
285
286
287
288

SOURCE STATEMENT FOIMAY?

svca

ccLoorl

CCOK

STM 14,12,12(13) CORDUTINE CALLING ROUTINE

TTIMER CANCEL NO TIMER INTERRUPT ALLOWED

L 2 4READY LOAD CURRENT PROCESSOR AREA ADDRESS
LA 540 GET A ZERO IN RS

LR 7,13 LOAD CURRENT CONTOUR ADDRESS

LA 6,1 GET A 1 IN RS

A 6,01(7) INCREMENT REFERENCECOUNTER

ST 6,0(7) STORE REFERENCE COUNTER BACK

L T+4(7) LOAD PREVIOUS CONTOUR ADDRESS

c 5¢417) CHECK TO SEE IF ANY MDRE IN CURRENT ENVI
BNE CCLOOP1 MORE, SO GO TQO LOOP

L 7,8(7) LOAD LAST CONTOUR

ST 0,88(2) STORE REMAINING TIME

STM 13,14,92(2) SAVE NEXT INSTRUCTION AND CURRENT CONTOU
GETMAIN R,LV=108 CREATE NEW PROCESSOR AREA

LA 0,4
ST 0,0(1) STORE BEGINNING LENGTH IN AREA
SR 0:0

ST 0,4(1)
MvC 5S{103,1),4(1) CLEAR AREA

ST 2,841(1) LINK PREVIOUS TO NEXT
ST 1,READY PUT NEXT ON READY LIST AT TOP

L 14,20(13) LOAD R1 WHICH CONTIANS PRIORITY

SRL 14,24 SHIFT TO GET PRIORITY IN RIGHT BYTE

LH 7,100(2) LOAD MAX PRIDRITY FOR CALLING PROCESS
CR 14,7 CHECK TO SEE IF NEW IS GREATER THAN MAS
BNL CCOK 0Ky SO GO TO SET PRIORITY

LR 14,7 CHANGE NEW TD BE MAX

STH 14,1001(1) STORE MAX PRIORITY

STH 14,102(1) STORE CURRENT PRIORITY

STIMER TASK,TIMEX, TUINTVL=TIMESET

LM 14+12,12(13) RESTORE REGISTERS

LA 14401(1)

LR 15,0 LOAD ADDRESS OF NEW TASK

BR 15 BRANCH TO NEW TASK

51.

ADDR2

00048

00004
002C6
00004
00280

STMT

290
291
292
293
294
295
296
297

SOURCE STATEMENT

svclz2

BALDOP

LR
SR
c
BCR
C
BE
L

8

15,13
0,0
1,721(15)
Bel4
0,4(15)
BANOSUCH
15,4115)
BALOOP

298 BANOSUCH ABEND 19,DUMP

FOIMAYI]

LOAD CURRENT SAVE AREA ADDRESS

GET A ZERO IN RO

COMPARE BLOCK # WANTED TO SAVE AREA #
IF EQUAL THEN RETURN TD PROGRAM
COMPARE TD SEE IF OQUT OF CONTODURS
YES, SO GO TO ERROR

LOAD SAVE AREA ADDRESS OF OUTER BLOCK
BRANCH TO COMPARE AGAIN

52.

ADDR2

0000C
00040
00000

00322
00004
00000
0034C
00004
0034C
00000
00000
00088
00000

0031C
00004
0033E

00368
00004
00000
0035A
00004
0035A
00000
00000
00088
00000
0000C

0008cC

00322
002€EE
0008C

00346
00326
00004
00000

00000
00004
0008C

003A6
0008C
0008C
00000
0008C
00000
003A6

STMT

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
353
354
355
356
as7
358
359
360
361
362
363

SOURCE STATEMENT

SvC1lé6

PTRLOOP

PTRAROUN

PTRNORIG
PTRLOOP2

PTRSAME

PTREND

PTRLSS

PTRNXT

PTRDEALO

PTRLOOP3

FOLIMAYT:

POINTER CHANGE ROUTINE
LOAD CURRENT PROCESSOR AREA
LOAD LENGTH OF DISPLAY

CHECK PREVIOUS POINTER REFERENCE WITH ZEF

IF ZERO, NO DRIGINAL VALUE

CHECK TO SEE IF GREATER THAN LOWER BOUND

CHECK TO SEE IF LESS THAN UPPER BOUND
FOUND AT THIS POINT

LOAD REFERENCE COUNT

SUBTRACT 1 FROM REFERENCE COUNT

STORE REFERENCE COUNT

IF LOWER THAN UPPER THEN SAME CONYOUR

BRANCH TO DEALLOCATE AREA

IF LOWER THAN LOWER THEN NOT FOUND

[F HIGHER THAN UPPER THEN NOT FOUND
LOAD BASE ADDRESS

LOAD REFERENCE COUNT

ADD 1 TO REFERENCE COUNT

STORE BACK REF, COUNT

RESTORE REGISTERS

RETURN TD PROGRAM

INCREMENT INDEX TO NEXT AREA BOUNDS
CHECK TO SEE IF PAST DISPLAY BOUNDS
IF EQUAL THEN NOT FOUND

INCREMENT INDEX TO NEXT BOUND
CHECK TO SEE IF PAST DISPLAY BOUNDS
RETURN TO PROGRAM IF EQUAL

LOAD UPPER BOUND
LOAD BASE ADDRESS
SUBTRACT TO FIND LENGTH

FREEMAIN R,LV=(0}),A=(1) FREE THE NON-REFERENCED STORAGE

STM 14y12,12(13)
L S«READY
L 3,0(5)
SR 8,8

CRrR 0.8

BE PTRNORIG
LA 4,4

C 0,0{4,5)
RL PTRLSS

C 044(4,5)
BH PTRLSS

L 11,0(4,5)
L 10,01(11)
S 10, ONE
ST 10,0111)
CR 1,11

BL PTRAROUN
C 1+4(4,5)
BL PTRSAME
CR 10,8

BE PTRDEALD
LA 4,4

C 1,0(4,5)
BL PTRNXT

C leéd(44+5)
BH PTRNXT

L 11,0{4,5)
L 10,0(11)
A 10, 0NE
ST 10,0(11)
LM 14,12,12(13)
BR l4

A 44, FIGHT
CR 443

BE PTRNDORIG
B PTRLOOP
A 4 yEIGHT
CR 443

8F PTREND

B PTRLOOP?2
L Ne4{4,5)
L 1+40{4,5)
SR 0.1

ST B,0(4,5)
ST 8+4(4,5)
A 44,EIGHT
CR 443

BNE PTRNEW

S 4+EIGHT
S 3,EIGHT
ST 3,0(%)

S 4+EIGHT
C 8,0(4,5)
BNE PTRNFW

53

CLEAR DISPLAY WHERE BOUNDS WERE

CHECK TO SEE IF THAT WAS LAST DISPLAY
CONTINUE WITH CHECKING IF NOT LAST
RESTDRE 4 TO ORIGINAL POSITION
DECREMENT DISPLAY LENGTH

STORE DISPLAY LENGTH

DECREMENT TO CHECK PREVINUS DISPLAY
CHECK TO SEE IF PREVIOUS WAS ZERN
RETURN TO PROGRAM

ADDR2

0038F
00018
00322

STMT SOURCE STATEMENT

364
365 PTRNEW
366

B
L
B

PTRLOOP3
1,24113)
PTRNORIG

FOIMAYT

GO BACK AND DECREMENT AGAIN
RESTORE ADDRES CURRENTLY IN POINTER
CHECK CURRENT POINTER ADDRESS

ADDR2

0000C
00040
00000
00004
003F4

00004
00004
00468
00000
00088
00000

003C4
00000
0004C

003C4

00452
00004
00000
0040F
0008C
NO3FE
00004
00000

00000
00004
0008C
00000
0045C
0008C
00000
0044A
00084
00432
00468
0008C
00000
0000C
00004

0008C
00084
00452

STMY

368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
387
388
389
390
391
392
393
394
395
396
397
398
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419

SOURCE STATEMENT

sSvCc20

LONPBABK

BKEXARDON

BKEXLOOP

BKEXFOUN

BKEXLP2

BKEXNOD?2

BKEXRTRN

BKE XNOD3

FOLMAYT:

BLOCK EXIT ROUTINE

LOAD CURRENT CONTOUR

LOAD RB WITH ZERO

CHECK TO SEE IF LAST BLOCK
NO, SO CONTINUE

LOAD CURRENT CONTOUR ADDRESS
LCAD PREVIOUS CONTOUR ADDRESS
CHECK TO SEE IF ANY PREVIOUS CONTDURS
GO TO END OF PROCESS ROUTINE
LOAD REFERENCE COUNT

SUBTRACT ONE

STORE REFERENCE COUNT BACK
CHECK TD SEE IF ZERQ OR LESS
BRANCH TO CHECK NEXT PREVIOUS
LOAD ADDRES OF CONTOUR

LOAD LENGTH 0OF CONTQUR

FREEMAIN RyLV={0),A=(1) DEALLOCATE THE CONTOUR

RETURN TO CHECK NEXT PREVIOUS
CHECK REFERFNCE CNUNT FOR ZEROD
NO DEALLOCATION

CHECK BASE AGATNST DISPLAY
BASE FOUND IN DISPLAY
INCREMENT TO CHECK NEXT DISPLAY f

LOAD UPPER BOUND
LOAD LOWER BOUND
SUBTRACT TO FIND LENGTH

FREEMAIN R4LV=(0)yA=(1) FREE THE STORAGE

STM 14912512013}
L 5 ,READY
LA 3,0

C 13,41(5)
BNE BKEXARDON
LR 9,13

L 94419)

C 8:4(9)
BE PROCEND
L T7,01(9)

S T+ 0NFE

ST T,019)
CR Be7

BL LOOPBBK
LA 1,0{9)

L 0,76({9)
B LDOPABK
CR 0.8

8H BKEXRTRN
LA 94

C 13,0(4,5)
BE BKEXFOUN
A 44 EIGHT
B BKEXLOOP
L Oe4{4,45)
L 1:004,4,5)
SR 0,1

ST 8,0[4,45)
ST 8v4(4,5)
A 44 EIGHY
C 4,01(5)
BNE BKEXNOD3
S 4, EIGHT
C 8,0{4,5)
BNE BKEXNODZ2
C 4, FOUR
BNF BKEXLP2
] PROCEND
A 43 EIGHT
ST 4,01(5)
iM 14412,12(13)
L 13,41(13)
B8R 14

S 4 4EIGHT
C 4, FOUR
BNE BKEXRTRN

CLEAR DISPLAY TO ZERO WHERE BOUNDS WERE -

CHECK TO SEE
NO DECREMENT

IF DISPLAY IS LARGER

CHECK TO SEE IF PREVIOUS DISPLAY IS ZERO
NO DECREMENT
CHECK TD SEE IF LAST BLOCK

BRANCH TO PROCESSOR END

SET LENGTH AT ONE POSITION HIGHER
STORE DISPLAY LENGTH

RESTORE REGISTERS

GET CALLING BLOCK SAVE AREA

GET CURRENT DISPLAY INDEX

CHECK TO SEE IF LAST DISPLAY
IF NOT THEN RETURN TO PROGRAM

55

ADDR2

00000
00084
004A8
0008C
00084
004A8
00000
00474
00000
00000
00474
00004
00000

00474
00008
004CO
00008
0C0N4

00054
00000

00040
00818
00040
0005C

0CcOo1l0

STMT

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
438
439
440
441
442
443
444
447
450
451
452
456
457
458
459
460
464
465

SOURCE STATEMENT FOIMAYT

PROCEND

PELOOP

PEENDDE

PEALL

WOVER

L 440(5) LOAD DISPLAY LENGTH

c 44 FOUR CHECK TO SEE IF NONE

BE PEENDDE NO MORE DEALLOCATION

S 49 EIGHT GET PREVIOUS NDISPLAY

c 4, FOUR CHECK TO SEE IF LAST

BE PEFENODE

C By0(4,5) CHECK TO SEE I[F ALREADY DEALLOCATED

BE PELOOP '

L 10,0(4,5) LOAD REFERENCE COUNT

c 8,0(10) CHECK TO SEE IF REFERENCE IS ABOVE ZFRO
BL PELOOP YES, SO CONTINUE

L 0s4(4,5) LOAD UPPER BOUND

L 1,0{4,5) LOAD LOWER BOUND

SR 0.1 SUBTRACT TO GET LENGTH

FREEMAIN R,LV=(0),A=(1) FREE STORAGE

B PELOOP

c 8,81({5) CHECK LAST AREA

BE PEALL NO MORE DEALLOCATION

L 0,8(5) GET UPPER BOUND

L 1,4(5) GET LOWER BOUND

SR 0.1 SUBTRACT TD GET LENGTH

FREEMAIN R,LV=(0),A=(1) FREE STORAGE

TTIMER CANCEL CANCEL REMAINING TIME

‘Mve READY,84(5) MOVE NEXT PROCESSOR ADDRESS TO READY LIS
LA 1,0(5) LOAD REG. 1 WITH BASE ADDRESS FROM AREA
FREEMAIN R.LV=100,A=(1) FREE PROCESSOR AREA

c 8, READY CHECK TD SEE IF ANY ON READY LIST

BE WATIT NO, SO GO TO CHECK FDR 1/0 WAIT

L S+READY LOAD NEXT PROCESSOR

LM 13,14,92(5) LOAD NEXT INSTRUCTION AND SAVE AREA ADDR,
STIMER TASK,TIMEX,TUINTVL=88(5) SET INTERVAL TIMER

LM 15,12,16(13) RESTORE REGISTERS

BR . 14 RETURN TO NEXT PROGRAM

56+

ADDR2

0000C

00040
00058

00084
00094
00088
00094
0008BC

0053E
00054
0008C
00054
00790
00040

0000C

STMT

467
468
469
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
491
492

SOURCE STATEMENT FOLMAY7

SVC24

VNONE

STM 14,12,12(13) V OPERATIONS ROUTINE

LR 9,1 SAVE COMMON VARTIABLE NUMBER

TTIMER CANCEL NO TIMER INTERRUPTS ALLOWED

L 5yREADY GEY PROCESSOR AREA ADDRESS

ST 0.,88(5) STORE REMAINING TIME

SR 8,8

M 84 FOUR MULTIPLY LOCK NUMBER BY FDUR TO GET INDE
L 15,LO0CKS(9) LOAD CORRECT COMMON VARIABLE

A 15, 0NE ADD ONE

ST 15,LOCKS (9]} STORE NEW VALUE BACK

L T,QUEUESI(9) GET CORRESPONDING QUEUE ADDRESS

CR T.8 CHECK TO SEE IF NONE ON WAITING LIST
BE VNONE

L 64841(T) LOAD NEXT PROCESSOR ON QUEUE

ST 64 QUEUES(9) PUT NEXT TO BE FIRST ON QUEUE

LA 5+841(5) GET ADDRESS OF DESIRED TOP OF QUEUE
BAL 14,SEARCH BRANCH TO ROUTINE TO PLACE ON QUEUE
L 5sREADY RESTORE ORIGINAL PROCESSOR

STIMER TASK,TIMEX, TUINTVL=881(5) RESTORE TIME
LM 14,12,12(13) RESTDRE REGISTERS
BR 14 RETURN TO PROGRAM

57

ADDR2

00gocC

00040
00058

00084
00094
00088
00094

00584
o000ocC

0005C
00054

000BC
50790
00040
00818
00040
0005C

00010

STMT

494
495
496
499
500
501
502
503
504
505
506
507
508
512
513
514
515
516
517
518
519
520
521
522
523
527
528

SOURCE

SvC2s

PALREADY

PAROUND

STATEMENT

STM 14,12,12113)
LR 9,1

TTIMER CANCEL

L S.READY

ST 0,8815)

SR 8,8

M 8.+ FOUR

L 15,L0CKS(9)
S 15, 0NE

ST 15,L0CKS(9)
CRrR 15,8

8L PALREADY

P OPERATIONS ROUTINE

SAVE LOCK NUMBER

NO TIMER INTERRUPTS ALLOWED
GET CURRENT PROCESSOR AREA
STORE AWAY REMAINING TIME

MULTIPLY LOCK NUMBER TO GET INDEX
LOAD PARTICULAR COMMON VARTABLE
SUBTRACT ONE

STORE COMMON VARIABLE BACK

CHECK TO SEE IF ALREADY IN USE

STIMER TASK,TIMEX, TUINTVL=88{5) RESTORE TIME

LM 14,12,12113)
BR 14

STM 13,14,92(5)
MvC READY,841(5)

RESTORE REGISTERS

RETURN TO PROGRAM

SAVE RETURN AND SAVE AREA

SET NEXT ON TOP OF READY QUEUF
LOAD NEXT PROCESSOR ADDRESS
LOAD TOP OF QUEUE ADDRESS
BRANCH TQ PUT ON QUEUE

LOAD NEXT INSTRUCTION AND SAVE AR

STIMER TASK,TIMEX, TUINTVL=88({5) SET TIME INTERVAL

LR T:5

LA 5, QUEUES(9)

BAL 14ySEARCH

c ByREADY

BE WAIT

L SyREADY

LM 13,14,92(5)

LM 15,12+16(13)
BR 14

RESTORE REGISTERS
RETURN TO PRDGRAM

58.

FOIMAY7

EA ADDR

ADDR?2
00040
00064
005CE

00066

STMT

530
531
532
533
534
535
536
537

SOQURCE STATEMENT

* PRIORITY SET ROUTINE

SvC32

PSOK

L
LH
CR
BNL
LR
STH
BR

15,READY
1,100{15)
0.1

PSOK

0,1
0,102(15)
14

FO1MAY]

GET CURRENT PROCESSOR ADDRESS

LOAD MAXTMUM PRIORITY

CHECK TQO SEE IFf DESIRED GREATER THAN MA)
NO, SO GO 7O SET

CHANGE DESIRED TO MAX.

STORE NEW PRIORITY IN PROCESSOR BLOCK
RETURN TO USER PROGRAM

59.

ADDR2

0000C
00620

0000C
00008

00000
00674
00004

00040
00054
00054
0059E

00040
0005C
00080

00004
00054
00058
00000
00000

0066A
00084

00084
00054

STMT

539
540
541
542
546
547
548
549
553
554
555
556
557
558
559
560
561

563
566
567
568
569
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587

SOURCE STATEMENT

SVC36

EVENTSET

IODFIRST

STM 14,12,12(13)
RAL 11, EVENTSET
LR 11,1
GETMAIN R,LV=52
LR 10,1

MVC

ST 11,8(10)
GETMAIN R,LV=8

ST 13,0(1)

LA S,10TASK

ST S5y41(1)

LR 15,10

sSvC 42

L 5:READY

MyC REANY,84(5)
ST B,84(5)

B PARQUND

FO1MAY?

I/0 ROUTINE

GO TO SETY UP ECB FOR SUBTASK
SAVE ECB ADDRESS

GET STORAGE FOR CONSTANT LIST
SAVE CONSTANT LIST ADDRESS

0{52,10),ATCHLIST MOVE ALREADY BUILTY CONSTANTS TO LIST

TTIMER CANCEL

L
STM
MVC

S5+ READY

13,14,4921(5)

STORE ECB ADDRESS I[N CONSTANT LIST
GET STORAGE FOR PARAMETERS

PASS SAVE AREA ADDRESS AS A PARAMETER
LOAD ADDRESS OF DESIRED TASK

STNRE ADDRESS IN PARAMETER LIST

PASS CONSTANT LIST TO SVC IN R1S
ISSUE ATTACH SVC

LOAD CURRENT PROCESSOR BLOCK ADDRESS
SET NEXT TASK ON TOP OF READY LIST
SET LINK TO ZERQ

GO TO LOAD NEXT PROCESSOR

NO INTERRUPTS ALLOWED
LOAD CURRENT PROCESSOR ADDRESS
SAVE ADDRESSES

88{445),TIMESET SET TIME INTERVAL FOR NEXT EXECUTION

GETMAIN R,LV=8

MVI
ST
L
LA
AR
ST
o1
LA
CR
BE
S
NI
A
ST
BR

o(l),X*00Q"
5¢411)
6,EVCOUNT
T+EVENTS
746

1.0(7)
0{7),X*80°"
8,0

8,6
IOFIRST
T,FOUR
OUT7) 4 X*TF?
&y FOUR

64 EVCOUNT
11

GET ECB FOR NEW TASK

SET TASK ECB TO NOT COMPLETED
STORE PRNCESSOR ADDRESS IN €ECB
LOAD NUMBER NF TASKS

LOAD ADDRESS OF EVENTS POINTERS
ADD TO FIND NEXT EVENT POINTER
STORE ECB ADDRESS IN POINTER
INDICATE LAST EVENT

GET A ZERD IN RS

SEE IF ONLY EVENT

YESy, SO SKIP CLEARING FLAG

GET TD PREVINOUS EVENT

CLEAR FLAG INDICATING LAST EVENT
INCREMENT EVENT COUNTER

STORE BACK COUNT

RETURN TO CALLING ROUTINE

60,

ADDRZ2

0Qooc
0c00Q0

00004
00008

o010

00004

d000C

STMT

589
590
591
595
596
597
598
599
600
601
609
610
611
615
616

SOURCE STATEMENT

I0OTASK

FOIMAYT3

SAVE RETURN ADDRESS TD SUPERVISOR
RESTORE OLD SAVE AREA ADDRESS

GET A SAVE AREA

SAVE PREVIOUS SAVE AREA ADDRESS
STORE CURRENT IN PREVIOUS

LOAD NEW SAVE AREA ADDRESS
RESTORE REGISTER VALUES

SAVE DECB ADDRESS

BRANCH TO READ/WRITE ROUTINE

0(7),DSORG=ALL WAIT FOR COMPLETION OF 1/0

GET SAVE AREA ADDRESS
RESTORE ORIGINAL SAVE AREA

FREEMAIN R,LV=T2,A={1) FREE TEMPORARY SAVE AREA

ST 14,12(13)
L T,0L1)
GETMAIN R,LV=T2
ST 13,41(1)
ST 1,8(13)
LR 13,1

LM 15,1416(7)
LR Tsl

BALR 14,15
CHECK

LR 1,13

L 13,4(13)
L 14,12(13)
BR 14

RESTNRE RETURN ADDRESS
RETURN TO SUPERVISOR INDICATING TERM.

61.

ADDR2

0ooocC

00058
0ooon
00050
00000
00000

006F6
00084
006ED
00000
00040
00040
0070E
00040
00054
00004
00790

00018
0078C

00058

0004C
00000
00750
00004
00084
00736
00000
00000

00054
00772

00084

00786
00020

0000C

STMY

618
619
622
623
624
625
626
627
628
629
630
631
632
633
634
635
6356
637
638
639
640
641
645
646
647
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
675
676
677

SDURCE

10COMPL

10CLOOP

10CFOUND

I OCNREDY

10CLO0oP2

I0CDONE

10CSKIP

IDCSKST

TCBHOLD

STATEMENT

STM 14,1,12(13)
TTIMER CANCEL

FOLIMAYT

COMPLETION EXIT ROUTINE FOR I/0 SUBTASK
NO TIMER INTERRUPTS ALLOWED

SAVE TIME LEFT IF ANY

LOAD ADDRESS OF EVENT POINTERS

GEYT A ZERO IN R4

LOAD MASK TO CHECK FOR COMPLETION
LDAD ECB ADODRESS

LOAD ECB VALUE

CHECK FOR COMPLETION

NOT ZERO SO FOUND

LERQO, SO 2NCREMENT TO NEXT ONE

GO T0O CHECK NEXT ONE

GET A ZERO IN RS

GET ADDRESS OF READY QUEUE IN RS
CHECK TO SEE IF NONE READY

YES SO GO TD HANDLE THIS

LOAD PROCESSOR WHICH 1S READY
PRETEND THAT LINK IS HEAD 0OF QUEUE
LOAD PROCESSOR ADDRESS

LOAD ADDRESS OF ECB

FREEMAIN RyLV=8B,A=(1) FREE ECB STORAGE

LR 9,0

LA T+EVENTS
LA 44,0

L 11, TOMASK
L 3,0(4,7)
L 10,0(3)
NR 10,11

BNZ IOCFOUND
A 4, FOUR

B - [OCLOOP
LA 8,0

LA 5 4+READY
Cc B,READY
BE TOCNREDY
L 5:READY
LA 5:841(5)

L Te&al3)
BAL 14,SEARCH
LR 1,3

L 1,241{13)
ST 1. YTCBHOLD

DETACH TCBHOLD
LA T +EVENTS

AR 497
L 10, IOCMASK
N 10,0(4)

BNZ IOCDONE
MvVC 0l4e4),414)

A 4, FOUR

B I10CL00P2
LA 8,0

ST 8,0(4)

SR 4.7

ST 4 ,EVCOUNT
CR Be4

BE TOCSKIP

AR 4e7

S 4 FOUR

ol 0(4),X*80"
o1 o(4),Xx*80"
LPR 8,9

RZ TOCSKST

ST 8,32(13)

LOAD TCR ADDRESS

STORE TCB ADDRESS

DETACH SUBTASK FROM SYSTEM

LOAD ADDRESS OF EVENT POINTERS

GET POINTER TO CURRENT EVENT

LOAD MASK TO CHECK FOR LAST POINTER
CHECK TO SEE IF LAST EVENT

YES, SO GO TO COMPLETION

NO, SO MOVE NEXT INTO CURRENT
INCREMENT TO NEXT BLOCK

GO TO CHECK NEXT EVENT POINTER

GET A ZERO IN RS

CLEAR LAST EVENT POINTER

GET INDEX ONLY IN R4

RESET EVENT COUNT

CHECK FOR A ZERD INDEX

SKIP IF NO EVENT PDINTERS

RESTORE POINTER TO LAST EVENT POINTER
DECREMENT TO PREVIOUS

PLACEF A ONE IN HIGH ORDER BIT

CHECK FDR A ZERO TIME

YES, SO SKIP SETTING TIMER

PLACE TIME REMAINING IN ACCESIBLE PLACE

STIMER TASK,TIMEX,TUINTVL=32(13) SET TIME INTERVAL

LM 1441,12013)
BR 14
ns F

RESTORE REGISTERS
RETURN TO OPERATING SYSTEM
STORAGE TOQ HOLD TCB ADDRESS FOR DETACH

62,

ADDR2

00054
00000

00000
00054

007Cé
000686
00066
007D2
00054
D07CC

00054
COTAC
00054

00054

00005
000568
00802
00054
00054
00001
00068

00068
00054

00054
OO7EA
00054
007CC

00054
00066
00TAC

STMT

679
680
681
682
683
684
685
686
687
688
689
690
691
692
692
694
695
696
697
698
699
T00
701
702
703
704
705
706
707
708
709
710
711
712
T13
714
715
716

SOURCE

SEARCH

SRCHLOQP

SRCHNONE
SRCHDONE

SRCHPASS
sCz2L00pP

SRCHLOPZ

SC2MANY

STATEMENT

LA 11,84

L 6,0(5)

SR 5.11

LA 11,0

ST 11,841(7)
CR 11,6

BE SRCHNONE
LH 10,1021)
CH 10,1021 6)
BL SRCHPASS
C 11,84(6}
BE SRCHDONE
LR 546

L 6,841(6)

B SRCHLOOP
ST T+841(5)
BR 14

ST T+841(6)
BR 14

LA 10,5

C 10,104(6)
BH SC2MANY

ST 7+841(5)
ST 6¢84(7)

LA T:1

L 10,104(6)
AR 10,7

ST 10,1041(6)
C 11,84(6)
BCR Bel4s

L &6:841(6)

B SRCHLOP2
C 11,84(6)
BE SRCHDONE
LR 5¢6

L 6sB4(6)
LH 10,1021 7)
B SRCHLOOP

FOLMAY72

GET AN 84 IN R11

LDAD PROCESSOR ADDRESS

SUBTRACT 84 FR0OM QUEUE ADDRESS

GEY A ZERO IN R11

CLEAR LINK OF NEW PROCESSOR

CHECK TO SEE IF NO PROCESSOR ON QUEUE
NO, SO GO TO PLACE ON TOP OF QUEUE
LOAD PRIORITY OF NEW PROCESSOR

CHECK TO SEE IF GREATER THAN CURRENT
ND, SO GO TO PLACE ON QUEUE

CHECK TO SEE IF NO MORE PRNCESSORS
YES, SO0 GO 7O PLACE ON QUEUE

SAVE PREVIDUS POINTER

LOAD POINTER TO NEXT PROCESSOR

GO TO CHECK NEXT PROCESSOR

STORE NEW PROCESSOR AT HEAD OF QUEUE
RETURN TO CALLING ROUTINE

STORE NEW PROCESSOR AT END OF QUEUE
RETURN TO CALLING ROUTINE

LOAD HIGHEST NUMBFR OF TIMES PASSED OVER
CHECK YO SEE IF PASSED UP TDO MANY TIMES
GO TO INCREMENT TO NEXT PROCESS

STORE NEW PROCESSOR IN PROPER POSITION
RESET LINKS

GET A 1 IN R7

GFT TIMES PASSED OVER COUNT

INCREMENT TIMES PASSED OVER

STORE TIMES PASSED OVER BACK

CHECK TO SEE IF ANY MORE PROCESSORS
NO, SO RETURN TO CALLING ROUTINE

LOAD POINTER TO NEXT PROCESSOR

GO TD INCREMENT NEXT PROCESSOR COUNT
CHECK TO SEE IF NO MORE PROCESSORS

NO MORE, SO GO 7O STORE AT END OF QUEUE
SAVE POINTER

GET NEXT PROCESSOR ADDRESS

RELOAD PRIORITY

GO TO CHECK PLACEMENT AGAIN

63.

ADDR2

00054
0082t

004E2

STMY SOURCE STATEMENT

T18 WAIT
719

720

728 WARQOUND
T33

C

BL
ABEND
HWAIT
8

8,EVCAOUNT
WAROUND
16 DUMP

1+ECBLIST=EVENTS WAIT FOR COMPLETION OF I/0

WOVER

FOLIMAYT

CHECK TO SEE IF ANY EVENTS WAITING

GO

TO LOAD PRDCESSOR

ADDR2 STMT SOURCE STATEMENT FOLMAYT2

00018 735 SVC40 ST 1,241(13) SAVE DATA BLOCK FOR OPEN ROUTINE
736 TTIMER CANCEL NO INTERRUPTS ALLOWED

00014 739 ST 0,201(13) SAVE TIME REMAINING

00018 T40 L 1424(13) RESTORE DATA BLOCK ADDRESS
741 SvC 19 ISSUE OPEN SVC
T42 STIMER TASK,TIMEX,TUINTVL=20{13) RESTORE TIME INTERVAL
746 BR 14 RETURN TO PROGRAM

65,

AODR2 STMT SOURCE STATEMENT FOIMAY?

1 STARTY
2 * THIS IS THE TASK WHICH IS ATTACHED TO INITIATE 1/0. 1IT DOES NOTHIN

3 * BUT BRANCH TO THE DESIRED PDINT IN THE MONITOR--[0OTASK,

00004 4 LINK L 15,4(1)
5 BR 15
6 END LINK

66,

APFENDIX B

A Sample FProgram Run

67.

ADDR2

00005
000FO
00001
000F4
00007
000F8

00136

00004
poooC
00000
00050
00004
00054
00008
00058
00000
00070
00001
00074
00050
00000
00070

00076
00074
0005C
00054

00050
00000
00000
00060
00054
00000

00010
00074
00054
00000
00058
00000
00074

0000C

000FO0
00058

STMT

748
764
765
766
767
768
769
T70
771
172
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
B4b
847
848
851
860
863
864
865

SOURCE STATEMENT

PBEGIN

FOLIMAYTZ

ENTER 252,1 ENTER

LA 1¢5 GEY A 5 IN R1

ST 1,240(13) STORE IN CONSTANT LOCATION

LA 1,1 GET A 1 IN R1

ST 1,244113) STORE 1IN CONSTANT LOCATION

LA . 1,7 , GET A 7 IN R1

ST 1,248(13) STORE TN CONSTANT LOCATIDN

BALR 1,0 GET CURRENT ADDRESS

B 3101{1) BRANCH AROUND PROCEDURE

ENTER 124,2 ENTER *'FACT' PROCEDURE

L 1,4(13) LOAD PREVIDUS SAVE AREA

L 14412(1) REGISTER REGISTER 14

L 1,0{(14) LOAD ADDRESS DOF ACTUAL PARAMETER #1
ST 1,80(13) STORE IN FORMAL PARAMETER LOCATION
L 1,4114) LOAD ADDRESS OF SECOND ACTUAL PARAMETER
ST 1,84(13) STORE IN FORMAL PARAMETER LOAATION
L 1.8(14) LOAD THIRD ACTUAL PARAMETER ADDRESS
ST 1,88(13) STORE IN FORMAL PARAMETER LOCATION
LA 1,0 GET A ZERO IN R1

ST 1,112(13) STORE IN CONSTANT

LA 1,1 GET A 1 IN Rl

ST 1,116{(13) STORE IN CONSTANT

L 1,801(13) LOAD ACTUAL PARAMETER ADDRESS

L 3,011) L 3+N

L 44112113} L 4,=F'0"

SR 4,3 SR 4,43

BALR 1,0 GET CURRENT ADDRESS

BE 118{(1) RE AROQUND

S 3,116(13) S 3,=F'1¢

ST 3,92(13) ST 3, TEMP

L 1,841(13) LOAD ACTUAL PARAMETER ADDRESS
CALLP =,1364+9100,92(13),96(13),112{13)

L 1,801{13) LOAD ACTUAL PARAMETER ADDRESS

L S,0(1) L 5¢N

LA 4,0 LA 440

M 4,96(13) M Lo X

L 1,84(13) LOAD ACTUAL PARAMETER ADORESS

ST 5,0(1) ST 54R

BALR 1,0 GET CURRENT ADDRESS

B 16(1) 8 AROUND2

L 3,116{(13) L 34=F1]?

L 1,84(13) LOAD CURRENT ADDRESS

ST 3,0(1) ST 3,R

L 1,88(13) LOAD ACTUAL PARAMETER ADDRESS

L 3,01(1) L 3,FLAG

L 4,1161(13) L 4e=FU]"

CR 3,4 CR 3,4

BALR 1,0 GET CURRENT ADDRESS

BNE 12(1) BNE ARDUND3

LETGO 1 LETGO 1

RETURNP RETURN

GRAB 1 GRAB 1

L 3,240(13) L 3,=F*5¢

ST 3,88113) 6B. ST 3,TEMP

CALLP -4324,1,TASK,96,88(13),80{13),244(13)

ADDR2

000F8
000sC

Q0059
Quo7a
00070
Q0oecC
00350
00054
20070
00070
0006C

000 5%4

STMT

884
885
886
905
208

912

914
915
927
928
929
930
931
932
933
934
950
951
952
953
954
955
956
957
913

975
980

1031

SOURCE STATEMENT ' FOLIMAY 72

L 3,248(13) L 3,=F*'T7"

ST 3,92(13) ST 3,TEMP+4

CALLP —,396,1,TASK,96,92{13),84(13),244(13)
GRAB 1 GRAB 1

GRAB 1 GRAB 1

* THIS ROUTINE HAS BEEN ADDED TO PRINT OUT THE ANSWERS

I T e T R T T T e e I PR TP TR e T Y

MOPEN 206,0UTPUT

L 3,80113)

cvD 3,112(13)

UNPK 80(4,13)+112(8,413)
MVI 108(13)4X*40°"

MVC 1094131,13),108(13)
oI B3(13)+X'FO!

MVC 15844,131,80{13})

10 Wy140,108113)

L 3,84(13)

cvD 3,1121(13)

UNPK 8414,13),112(8,13)
MVI 108{13).,X'40"

MVC 1094131,13),108(13)
Gl 87{13),X'FO°*

MVC 158(4,13),84(13)

In Wy524108(13)

T R e L T S T T T it I I I I T IsY

EXIT EXIT

ocB DDNAME=PRT 4DSGRG=PS+MACRF=W,BFTEK=R,RECFM=F,
LRECL=132,BLKSIZE=132,S5YNAN=ERREX

END GOMONI

69.

0120
5040

AFFENDIX C

English Flowchart of the Monitor

71.

GOMONI~-Initial Housekeeping

1. Store the registers in the operating system save area and get
enough storage for the first processor block.

2. Store the address of the processor block on the ready queue and
initialize the contents of the processor block.

3+ Issue a SPIE macro so that all user interrupts will be given
to the monitor,

4, Load address of processor block and set initial time interval
in processor btlock,

5. Flace processor block address back on ready queue, set interval
timer for first process, and branch to the start of the program,

INTEREX~--Internal Interrupt Handler

1. Store registers so that they may be viewed in the dump of storage.
2. Set user completion code to 18, dump out mein memory, and quit.
TIMEX-~Interval Timer Interrupt Handler

1. Chain through the system control blocks until the address of
the program's request block is found.

2. Load the old PSW from the request block to get the address
where the program will resume.

3. Save the next instruction which would have been executed and
replace it by a branch to the monitor.

4. Return to the OS supervisor.
5+ When the program resumes it will branch to TIMEXR,
6. Save the registers and restore the saved instruction.

7. Get processor block address and store new time interval in the
block.

8., Branch to the routine which places the suspended processor
block on the queue according to priority.

9. Get block which is on the top of the ready queue, restore
its environment and set a new time interwval.

10, Start the process at the point of suspension.

72

SVCh--Keep Track of Display(After Block Entry)
1. Get current processor block address,

2, Store the upper and lower bounds for the new conmtour in the
appropriate positions in the display. Set display count to
point to next position in display. '

3. Return te program.
SVCB-=Process Creation Routine

1., Save the registers and cancel the timer interval saving the
remaining time by placing it in the current processor,

2., Chain back through all of the contours in the current environ-
ment incrementing the reference counters of each.

3. BSave the next instruction to be executed and the current contour
address in the processor block.

4. Allocate new storage for the new processor block,

S Store control values in the processor block.

6. Check the requested priority apainst the current process's
priority. If lower than current priority then store requested

priority in new processor block, else store current priority in
new block,

7+ Set new time interval after placing new process at top of the
ready queue and branch to the new process.

SVCl2--Find Bass for Global Variable

1. Chain back through the current environment looking for the desired
block name,

2. If block name is found, return to program with base address in
register 15.

3. If block name is not found, set user completion code to 19 and
quit .

SVCl6--Change Reference Count after Pointer Value is Changed.
1. Save registers and load processor block address,.

2. Check to see if previous value of pointer was zero. If yes, go
to step 5.

73

3. Check previous pointer value against the bounds in the display.
If value is not between any of the bourds in the current
enviromment, go to step 5.

4, Decrement the reference counter and if it reaches zero,
deallocate the contour.

5. Compare the new value of the pointer against all of the bounds
in the current display. If the value is found to be between any of
the bounds, increment the reference counter.

6. Return to the program, after restoring the registers.
SVC20-=Block Exit Routine

1. Save registers and get processor blcock address,

2, Check to see if this is the last block of the process. If this
is not the last block go to step 5.

3+ Chain back through all of the contours in the current environment
decrementing the reference counter of each. If any of the reference
counters reach zero, deallocate the contour,

4, Go to step 1 of PROCEND.

5« Check the reference counter of the current contour, If it is
not zero go to step 8,

6. Free the storage for the current contour, and clear the display
where the bounds were,

7. Check the previous position of the display to see if it is
zero, I1f so decrement the display count and go to step 7.

8. Return to program after restoring the registers.
PROCEND--Routine for Process Termination

1l. Check to see if any contours remain in the display which have
not been deallocated., If there are none, go to step 3.

2, 1If any contours remain in the display whose reference counters
are zero or less, deallocate them,

3. Cancel the remaining time in the interval.

4, Place next processor block on top of ready queue and deallocate
the terminating process's processor block.

7l

5, Check to see if any process is ready to execute. If not go to
the WAIT routine, step 1.

6. Load the new process's current environment and next instruction,
set the new time interval and branch to the new process after
restoring its registers,

SVC24-~1ETGO Operations Routine

1., Save the registers and cancel the time interval saving the
remaining time in the processor block.

2. Increment the particular system variable requested.

3. Check to see if any processes are waiting on this system
variable, If none, go to step 6.

4, Take the top process from the queue.
5. Branch to routine which places new process in its appropriate
place on the ready queue according to priority, but not on the top

of the ready queue,

6. Restore the registers and time interval for the process which
issued the LETGO macro.

7. Return to execution of the suspended process.
SVC28-=GRAB Operations Routine

1, Save the registers and cancel the time interval saving the
remaining time in the processor block.

2. Decrement the requested system variable. If its value goes
below zero go to step 4.

3. Restore the remaining time in the time interval and return
to the suspended process after restoring the registers.

4, Save the current environment and next instruction in the processor
block.,

5. Branch to the routine which places the current process on the
particular system variable queue according to priority.

6. Check to see if there is another process ready to execute. If
there 1s none, go to the WAIT routine, step 1.

7. Restore the environment and next instruction for the new process,
set the time interval, and branch to the new process,

75.

SVC32--Priority Set Routine

1. Load address of current processor block and load maximum priority.

2., If desired priority is greater than the maximum, set the desired
priority equeal to the maximum.

3. Store the desired priority in the processor block and return to
the requesting program.

SVC36--I/C Routine
l. Save the registers.

2. Branch to EVENTSET, step 1, which allocates an event control
block for the I/0 subtask.

3+ Save the address of the ECB and get storage for the constant
area needed to attach a subtask to the system.

L., Place the address of the allocated constant area in register
15 and move a preset constant ares intc the allocated area.

5« Store the ECB address in the constant area and allocate
storage to hold the parameters which are passed to the task.

6. Store the save area address and the address of IOTASK, the
routine which actually handles the I/0, in the parameter area.

7. Issue the supervisor call which attaches LINK, a subtask, to
the system.

8, Set the next processor block on the ready list to be at the
top and branch to step 6 of SVC28.

EVENTSET--Set up ECB and place Process in Wait State

1, Cancel the time interval, load the processor block address,
and save the current environment and next instruction in the
processor block.

2, Get an area to be used as an event control block,
3. Set the first byte of the WCB to indicate not completed yet
and store the processor block address in the second word of the

ECE area.

4, Store address of the ECB on the EVENTS list.

76,

5, Indicate that this is the last address in the 1list by placing
a 1 in the high-order bit of the address and clearing all other
high-order bits in the list of address.

6. Set the event count to point to the next available address
space and return to the calling routine. '

IOTASK-=Do I/0 Concurrently with Processing

1. Save the return address and restore the save area sddress of the
requesting process.

2. Allocate an area for a new save area since the I/0 routine supplied
by I1BlM destroys the current save area.

3. Save the data event control block address and branch to the 1Bk
supplied READ/WRITE routine.

4, Wait for completion of the I/0.

5. Free the temporary save area and return to the OS5 supervisor
thus indicating completion of the routine and posting the ECB so
that the monitor will get interrupted.

I0COMPL~--I/0 Completion Interrupt Handler

1. Save the registers and cancel the time interval saving the
remaining time in register 9,

2, Check all of the ECB's pointed to by the EVENTS list until
one event is found which has completed.

3. Get the processor block address from the completed ECE,
4. If a process is currently executingz set register 5 to
point at the next processor bleck on the ready queue so that
the executing process is not blocked, otherwise register 5
points to the top of the ready queue,

5+ DBranch to the STARCH routine which places the new processor
block on the ready queue according to its priority.

6., Deallocate the storage which was used for the ECB.
7. Detach the subtask from the system.

8. Restructure the EVENTS list to reflect the fact that one of
the ECB addresses has been deleted.

9. If no interval was in effect go to step 1ll.

77

10, Restore the time interval.
11, Restore the registers and return to the 05 operating system.
SEARCH--Place a Processor Block on a Queue According to its Priority

l. Load the processor block address and register 5 already contains
the address of the top of the queue.

2, Subtract 84 from register 5 to indicate that the new process address
will go in the link of the process immediately above it.

3. Look at each processor block on the queue until one is found
which has a lower priority, in which case go to step 5.

4, If the end of the queue is reached, store the new processor
block at the end of the gueue and return to the calling routine.

5+ Check to see if this processor block has already been passed
over 5 times. If so, continue where the search was left off in

step 3.

6. If the processor block with the lower priority has not been
passed over 5 times yet, store the new processor block at the
front of the process with the lower priority.

7+ Increment the times passed over field of each of the processor
blocks which are lower on the queue,

8. Return to the calling routine.
WAIT=-=No Processes are Ready to Execute

l. Check to see if any processes are waiting on I/0, If any are
waiting, go to step 3.

2, Set the user completion code to 16 indicating either deadlock
or termination of all processes, dump out the main storage, and
quit .

3. Wait for one of the processes to complete the I/0 operation.
4, Go to step 6 of PROCEND.

SVC40--Open Files

1. Save the data block address needed for the open and cancel the
time interval.

78.

2. Save the time remaining and place the data block address in
register 1.

3. Issue the open supervisor call.

4, Restore tﬁe time interval and return to the process.
LINK==Branch to Desired Subtask

1. Load the desired entry peint address.

2. Branch to the desired entry point.

79,

MULTITASKING IN A USER PARTITION
WITH A CONTOUR MODEL OF PROCESSES

by

LEE ALLEN

B. 5., Georgia Institute of Technology, 1972

AN ABSTRACT OF A MASTER'S REPORT

subritted in partial fulfillment of the

]

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE URIVERSITY

Fanhattan, Kansas

1973

This paper attempts to demonstrate the feasibility of using
the contour model of block structured processes to design an
operating system. The lack of technology to handle innovations
in Computer Science and higher level languages is pointed out
as a partial justification for implementing such an operating
system. The model chosen to demonstrate the feasibility was a
rulti-tasking monitor which resides in the user partition
running under OS/MFT on the IB¥ system 360.

A process is defined as a "time-invariant algorithm and
a tirme-varying record of execution of that algorithm," The
monitor handles each task in the system as a process. Fach
process 1s assigned a processor block consisting of certain
control inforration needed to coordinate the system.

Process execution may be suspended for various reasons.
In this case the processor block is put on a queue until the
conditions that caused suspension are satisfied. When a
process is ready for execution its processor block is placed
on the ready queue waiting on CPU time. Deadlock is detected
when all of the processes are on queues waiting on rescurces
which can never be satisfied., Each process is assigned a
certain priority level which designates where the processor
block is placed on queues waiting for resources. The ronitor
guarantees that a process can not be continually passed up
by placing higher priority processes ahead of it.

Variable storage is kept separate from the instructions

1,

in a portion of storage called a contour. Contours are retained
in the system as long as any other variable in another contour
points at them. The contour consists of some control information
along with the variable storage.

The language used to take advantage of all of the capabilities
of the monitor is described. Generally, the language is an extsen-
sion of IEN 360 assembly language. There are certain register
restrictions when using the language and these are described.
There is only the amount of overhead added to regular assembly
language processing as is needed by the user. A block structure
is used in the language in order to make the transition from
higher-level languages more natural, Processes are created
by calling a2 procedure as a task. Since variables are reserved
storage apart from the instruction, special pseudo-ops are used
in the language to declare variabtles, Pointers are implemented
to facilitate indirect reference. Input and output are handled
by the monitor so that processing can continue while the I/0
operations are taking place. There are system variables imple-
mented to facilitate process comrunication and cooperation.

An ALGOL language example is given to illustrate some of the
features of the monitor. The ALGOL version and compilation are
given along with a diagram of a roment in time during execution
of the program.

Finally, a corparison is made between the monitor and other

current operating systems. Some practical applications of the

2

monitor are discussed such as time-sharing in a single partition
and the use of the ronitor as a nucleus upon which could be

built an operating system. A contour model machine is discussed

as a future possibility.

3.

