AN EVALUATION OF ML/I {AP3) MACROS
FCR STRCECTOCRED FORTRAN EXTENSIONS

by
Soo Kyung Park

B.,A., Ewha ¥Womans University, 1968

regquirements for the dezree

MASTER OF SCIENCE

Department ¢f Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1977

Approved by:

Major Yrofefsor

LD
266%
LY
1977
$57
Crz-
Doc ity b {

TA3LE OF CONTENT3

I. Introduction
A. Purpose of FaPer sseesacasscessoscsasssncnssncee 1
B, Organization seecsscecsesrscssrssscassossnsesees 2
II. Macro Preprocessor for FORTRAMN Extensions
A+« Desgign Considerations sssewmssnsnsasavisnenvivass ¥
B: Control S3tructures ..ccsssncssavssvivossssnsavisns
C. Use of the ML/I Macro PreprocesSsSOr sesesssssess 10
ITI. Implementation
A. ZIntroductory Features of ML/I sesmevonwcnnyumens 13
B. Deflnition of Macros seecinenscvsssssonscsanice 21
C. Kow to Execute the Freprocessor ..scecsccsscscaa 22
Dy User Conistralnts iansssssusvisinssninsvwansnnins 37
IV. Evaluation
A. Problems of liacro Definition ssecsevevscrersecs 44
B. Time and Size of liacros ..,...;................ 56

Cs Lonclusions .« ewew vo o e b 508 5005 6 806 516 636 575 00 8 6 %06 s 900

APPERDIX
A. Sample Structured FORTRAN program(TEST SFORT) . A~ 1
B. Macro Listings(SOO0MACRO EP3) seseeerarensassces A= 3
C. Listing of S00 EXEC procedure .essssssssssssace A--5
D. Listing of a Sample EPSIN EPS svsesssceccasenes A= 7
E. Listings of Sample Strucitured FORTRAN output

fromEPS II ..|..|....i.ll’ll.lll...‘..l'..l‘... A—io

~

w4

ILLEGIBLE
DOCUMENT

THE FOLLOWING
DOCUMENT(S) IS OF
POOR LEGIBILITY IN

THE ORIGINAL

THIS IS THE BEST
COPY AVAILABLE

Figure
Figure
Figure
Figure
Figure

fizure

FIGURES

For Use of ML/I lacro Preprocessor

The Description of the File

Files Processed by 300 EJEC

NEXT/DUIT Bxamples wosscoen emswss

EP3IN EPS3

Using EPS

IE'!..FI Exarnples ® " 6 0 0 Q& 8T TR SRR

Zxamples for CASE.

. ENDSASE

¥ 9 8 % 08 2 8 0=

II LI B

s & &% 8 a9 B

11
34
35
b6
52
5h

I. INTRODUCTION

A. PURPOSE OF PAPER

The objective of this project is to investigate the use
of a general purpose macro processor to implement structured
programming extensions to FORTRAN,

The use of macro processors has developed since the 1950's,
Using macro processors to modify or extend a compller languazge
has since occured to many programmers. Text replacement has
been the most distinguishing property of macro processors,

ML/I (Bro67) is a poweriul macro processor for conveniently
extending source languages. It has been used as a preproceasor
to several compilers and assemblzsrs, 1Its operation is to
interprete macro definitions and translate input itext to output
text., Input to the macro processor is in the form of macro
definitions and source text. The output text is derived from
thé source text by replacing all the macro calls that occur
in it.

A version of ML/I, EPS II, is now available at KSU.

This system is a load module written in IBN §ystem/360 assembler
lenguage. EPS II can be run interactively under CM3.

The idea of introducing structured programming extensions
of FORTRAN is not new. There has been a growing awareness of
the need to improve unstructured FORTRAN since the 'structured

programming' became an important issue in the computer world.
= g]

Many well-formed FORTRAN extensions have been defined by
eliminating the GO TO and using only sequential statements
and control structures in the form of block structures. By
using ML/I, structured programming can be implemented to
FORTRAN without changing over to a completely new compiler.

For this study, a set of macro extensions to FORTRAN
will be defined and tested through EPS II. The main study area
for structured prozgramming will be focussed on IF THEN ELSE,
CASE, WHILE, etec. Also, the efficiencies in terms of time

using the macro processor will be investigated and evaluated.

B. ORGAKIZATION

The purpose of this paper has been briefly introduced
at the beginning. The remainder of this paper is organized
as follows. The second section presents the desizn impact of
structured extensioﬁ to FORTRAN. The extended control structures
are described with the use of the macro preprocessor. The
third section discusses the implementation procedures which
could be viewed as the documentation for the user. Included
is explanation of selected features of ML/I. All the macro
definitions will be displayed and the process of execution
will be shown. In the fourth section, use of ML/I will be
evaluated. The problems in defining macros, timing and size,
ete, will be topics of discussion. The possibility of further

development for FORTRAN extensions using ML/I and future trends

will also be mentioned. The last part of this paper is an
appendix which includes a list of macros defined and a test

program listing.

II. MACRCO PREPROCESSOR FOR FORTRAN EXTENSIONS

A. DESIGN CONSIDEZRATIONS

Since the term 'structured rrogramming' was first used
by Dijkstra (Dij72), the trend has been away from the study
of low level lanzuages towards the study of higher levels of
programmings language structures. A great deal has been
published recently about the theory of structured prozramming.

A broadly cérawn list of ideas that have been considered
to be aspects of structured prozgramming was given by Abrahams
(Anr75). Among those ideas, the notion that GO TO statements

must be eliminated became one of the vital points in structured

£
AL

]
e

prozramming. In other words, a high dencity o TC's in
a program generally indicates poor programminz. 30, there
has been considerable interest in the possibility of replacing
GO T0 statements in a program with structured control statements
such és IF THEN ELSE, CASE, DU WHILE, to make progzrams easlier
to compose, understand and modify.

Without exception, the elimination of GO T0 movement has
had a strong effect on FORTRAN. Many efforts have been made
to define a well-formed FORTRAN through modification or extension.
S50, instead of attempting the extensive modification of a
existing FORTRAN compiler, many language designers invented
a FORTRAKR-like structured language. By producing a preprocessor
or a translator, programs written in this structured language

are converted into statements that any existing FORTRAN compiler

will ‘accept.

5

A number of preprocessors and other extensions of FORTRAN
have been implemented, such as MORTRAN (Coo76), a structured
FORTRAN translator (Hig?5), and SFOR which is a precompiler
for the implementation of a FORTKAN-based structured language
(0'n7hk). Many attempts have been made to implement the FORTRAN
extensions usinz a macro processor.

ML/I is a macro preprocessor designed for portability.
It is written in the descriptive language, LO#L, which is
similar to a high-level language. It can be translated into
the assembly languaze of any computer or into a high level
language. MNL/I was designed for transportability between
different computers with differing architectures. Using the
bootstrapping technigue #L/I has been implemented on a large
number of machines. One of these implementations is EPS II
on IBM system/360.

ML/I, a general purpose macro processor, is intended to
allow the user to extend any language. The fact that KL/I is
independent of any base language provides the possibility that
it could be used as a preprocessor to the FORTRAII compiler.

The main consideration in this paper is to develop the
well-formed structured FORTRAN extensions and to determine
the suitability of INML/I for FORTRAN extensions. MNL/I is the
appropriate preprocessor to use for this study because of

its base language independence.

B. CONTROL STRUCTURES

The major constructs of structured FORTRAN extensions
which will be implemented by ML/I fall into two categories.
One is looping control structures such as LOOP...ENDLOOP,
QUIT...LUP and NEXT...LUP. The second category is selection
control structures such as IF...FI, S3IF...FI and CA3g,..ENDCASH.
The desizn of these structures is effected by macro definitions.
The listing of a sample gtructured FORTRAN program is included

in the Appendix A. The following terms are used:

1i --- statement label, i=1,2,...,Nn
Lexpi --- 1logical expression, i=1,2,...,n
81 --— Dblock of statements, i=1,2,...,n

Loopings control structures:

The repetition statements are tested within looping
structure. If the value of the logiczl expression is changed
within the block, the loop immediately terminates. An abnormal
exit is also provided. The statement has the following form
with the right side target FORTRAN code being generated by
the left side statements.

1. LOOP...ENDLOOF:

Source Pattern Target FORTRAN
LOOP L1 WHILE Lexpl DO Li IF (.NOT.(Lexpl)) GO TO L2
S1 S1
ENDLOOP & GO TO 11
- L2 CONTINUE

The keyword delimiter pattern, 'LOOP...YHILE...DO',
defines the beginning of a repetition loop. The logical express-
ion, Lexpl, will be evaluated before entering the loop which
will be executed as long as the logical expression is true.
The ENDLOOP forms a boundary between the preceding and following
grounz of statements. Any other seaquential statement, selection
structure or loop structure may be nested within this loop.

2, QUIT...LUP:

Source Patisrn Target FORTRAR

QUIT L1 LUP GO TO L2

#here L1 and L2 are the same labels in LOOF...zkILOOP.
The above statement should be nested within the loop structure,
LOO?...ENDLOOF. LUP is used instead of LOOP tecause LGOr is
the macro name in LOOFP...ENDLOCF and the macro name can rnot
be defined as the delimiter within another structure. This
contrel statement should be nested within selection structure.
This statement could be defined for the abnormal termination
of the loop in which it is nested. The flow of control always
points to ENDLOOF. So, the LOOFr...ZENDLOOP could have two
different exit points. This, QUIT...LUP, statement is very
useful to immediately jump to the outside of the loop.

3. NEXT...LUP:

Source Pattern Tarzet FORTRAI

NEXT L1 LUP GO TO L1

The label L1 should be the same as the one at the loop
entry point, LOOP...ENDLOOP. The statement above is used to
pass the flow of control to the entry point of the loop
structure, LOOP...ENDLCOP. The rest of the statements follow-
ing the NEXT...LUP, within the LOOF...ENDLOOZ, will be ignored
whenever this statement executes.

Selection control structures:

These structures allow the programmer to test some
logical conditions and perform a block of code dependinz on
the truth value of the condition.

h, IF...FI:

Source i'attern Target FORIRAN
IF Lexpl! THER S1 IF (Lexpl) GC T0 i1
ELSE 532 S2
FI GO TO L2
L1 S1
L2 COLTINUE

A structured I¥ statement contains a group of executable
statements and one of two blocks of code to be performed.
The keyword, IF, followed by a logical expression cauces a
transfer of control to the next statement which is followed
by THEN, if the expression is true. Otherwise, it causes a
transfer of control to the statement following ELSE. The

structure ends with a FI statement.

5. SIF...Fl:

Source Pattern

Target FORTRAHN

SIF Lexpl THEN 51
FI

IF (.NOT.(Lexpl)) GO TO L1
S1

L1 CONTINUE

If the expression 1s true, SIF causes a transfer of

control to the statement following THEN.

Otherwise, the false

path consists of transferring control directly from the IIF

to the statement following FI.

SIF stands for small IF,

Source rattern

CASE L1

GUARD Lexpl DT
Sl

GUARD LexpZ DN
52

GUARD Lexpn‘DO

Sn ENDCASE

Il

IF (.MOT.(Lexpl)) GO TO L2
S1
GO TO L1
L2 IF (.NOT.(Lexp2)) GO TO Ln
S2
GO TO I1
In IF (.NOT.(Lexpn)) GO TO L1

Sn

L1 CORTINUE

A case structure begins with a CASE gtatement containing

a latel.

Each block of statements must be preceeded by a

GUARD statement which is followed the logical expression to

10
be evaluated. If the comparison is not true, the control
transfers to the next GUARD. If no match has occured after
all the logical expressions are examined, control passes te
the ENDCASE point. Any other control structures and selection

structures may be nested within a CASE structure.

£, USE OF THE ML/I MACRO PREPROCESSOR

The use of macro processors has developed since the early
days of programming starting with very simple text repiacement
facilities and usually in conjunction with assembler language
programs. Hacros are a rather new features in high-level
lanzuazes. A number of macro processcrs have been devesloped
for use with particular high-level languages. In these systems,
the macro processor is used as a prepass to the compiler.

The general purpose macro processor hes been used as a tool
to implement high~level language extensions.

Among several different macro processing systems, the macro
processor used in work is EP3 II, a version of ML/I which is
a general purpose macro bprocessor. The ML/I macro processor
is essentially desizned to be independent of any particular
compiler, and thus is useful as a preprocessor for many different
languages., NI/I has been used in a variety of different appli-
cations, the meot common are the extension of existing program-
ming languszes and for systematic editing. ML/I is a string
handlingz processor and it is designed to be bootstrapped on to

different computer systems.

7 11

ML/I could be implemented as a preprocessor to the FORTRAN
compiler for the target language, FORTRAN. Figure II.1 shows
a general description for use of the ML/I macro preprocessor.
The input *to the macro preprocessor is a source program written
in extension FORTRAN with macro definitions and calls. The
output from the macro preprocessor is the FORTRAN program with
the macro definitions deleted and the macro calls expanded.
This FORTRAN source program is input to the FORTRAN compiler

for execution.

r’;’c-n:lrce program

written in macro

FORTRAN with definitions

extensions
ML/I macro - FORTRAN | FORTRAN
preprocessor source compiler
(EPS II) program 360
S WP

Figure I1I.1. For use of ML/I macro preprocessor

ML/I interprets its input as a stream of atoms and produces
as its output another stream of atoms if no macros are invoked.
An exception occurs when macro calls are in the input stream,
as they are evaluated and the translated tokens are put into

the output stream.

There are many.useful features in ML/I. This system is
intended to 2llow the user to define his own rnotation for
writing macro calls in order to extend a languace (3Broé7).
Macro calls must commence with the macro name. ML/I organizes
a macro by the occurrence of its name and a macro call is taken
as the text from the macro name up to its closing delimiter.
The user could specify any sequence of characters for each
delimiter. The user could define = complex delimiter structure
specifies for each delimiter a successor or set of alternative
successors. It is possible to have nested macro calls within
the arguments of other macro calls., The primary use of ML/I
is to allow any existing language to be extended to suit a
particular users' requirements. The detailed description of

ML/I with its instructions will be presented in the next section.

ITI. IMPLEMENTATION

A. INTRODUCTORY TEATURES OF ML/1

This section will describe the main features of ML/I
with some examples and explain some of the ML/I instructions
which will be used for the macro definitions in this paper.
For details refer to the EPS II Users Manual (EPSUX).

ML/I terminolozyv:

The user inputs to HL/I some text and definition macros,
Mi/1 performs textual changes; the text generated as a result
of the changes is called the value text. The text being
evaluated is called the scanned text.

Character set:

ML/I contains the character set_for letters, numbers,
and some punctuation characters. Space (blank) is treated
as a punctuaticn character. HML/I acts on atoms rather than
individual characters. An atom is defined as a single
punctuation character or a sequence of letters and/or numbers
surrounded by punctuztion characters.

Macros and deliwiter structure:

Systen defined macros are called operation macros.
The user defines other macros. ZEach macro must be defined
before it is called. When defining a macro the user specifies
starting and stopping delimiters and definitions for arguments.
Any seguence of atoms could be used for each delimiter. The

macro name, that is, the name delimiter, is called the zeroth

-

13

14

delimiter, and the remaininc delimiters are called secondary
delimiters and closing delimiter. A macro call consiste of
a macro namz and a list of arguments and delimiters. This
can te shown as a structure representation:

IF argl THEN arg2 ELSE arg3 FI
The delimiter structure of this macro consists of IF as the
name delimiter, and THEN, EL3E and FI as the secondary
delimiters, and FI is also the closing delimiter. Macro calls

could be expanded to saveral lines of text.

Thiz construction is used to insert a particular argument

at the appropriate point. An insert definition consists of an

}.‘I

insert name znd a closing cdelimiter, as:
Ph2.

In this example the atom '#' is an insert name with the atom

.' as itz closing delimiter. The value text must consist
of a flag, wnich is 'A' in the above example, followed by =
macro zxpreszicn '2'. The varicus flags used for the macro

definition are as follows:

A -~-- This flaz is used within the replacement text
of & macro to evaluate and insert the Nth argument
of a ¢all of the macro.

D --- The Nth delimiter is inserted.

L --- This is used to place a macro label which is
local to the piece of text in which it occurs.
This is the subject of macro-time GO TO statement

and its value is null.

15

Skips:

Skips are used to inhibit macro replacement within the
required context and to take certain strings as literals.
A skip definition consists of a skip name and a closing
deliniter. Th=zre is only one argument, which is treated as
a single literal string. Three kinds of option couid be
defined within skips:

M --- Liatched option. This 1is applied where it is

desirable for nested skips to be rescoznized,
D --- Delimiter option. The delimiters of the skip

are copied over to the value text.

=]
|
1
1

Text option. The arguments of the skip are
copied over to the value text.
Depending on how the options are set up, the value text may
appear in the output text. As an example the macro ')
is defined with oriion LiT. If the scanned text is given
as follows:

CHELLOY
The skip name is '¢' and the closing delimiter is ')'.
The argument 'HELLO' is copied over to the value text.
This special skip name and closing delimiter are called
as literal brackets.

Macro variables:

These variables are macro-time integer variables.
The user may perform arithmetic on these variables and

insert their values into the output text. The two kinds of

16
macro variables are described below:
Permanent variables --- called P1, P2, ...
These have global scope and can be referred
to anywhere. They are reserved at the start of
each process and remain in existance throughout.
Temporary variables --- called T1, T2, ... -
These have a local scope. Each time a user-
defined macro is called, a number of temporary
variables is allocated. These are local to the
current call, The initial values of three ilemporary
variables are defined by ML/I as for each call:
Tl --- The number of arguments in this call.
T2 =-- The total number of all macro calls
to this point. (including operation macros)
T3 =--~- The current depth of nesting of macro calls.
(excluding operation macros)

Operaticon macros:

A number of built-in macros form an integral part of
ML/I. The names of all operation macros begin with the letters
'MC* to minimize the confusion with the user-defined macros.
A call of an operation macro causes a definition of new
constructions or a performance of macro-time arithmetic, etc.

The primary operation macros are the followings:

17

1. MCDEF --- Definition of a local macro, as:

MCDEF argl AS arg?2
Where argl must be in the form of a structure representation
which specifies delimiter structure, and arg2 specifies the
replacement text of the macro being defined.
Example:

MCDEF HOUSE AS HONME
By this definition all the occurrences of 'HOUSZ'® in the
source text will be replaced as 'HOHE'.
2. HECINS ~-- Definition of a local insert, as:

MCINS argl
Where argl must be.a structure representation.
Example:

MCINS /*
'/ defires the insert delimiter and '*' is the closing
delimiter. Calling this insert macro adds a new local insert
definition to the current environment.
3. MCSKIP --- Definition of a local skip, as:

MCSKIP [arzl,] arg2
Where arzl is represented as M, D, or T and it is optional,
and arzz must be a structure representation.
Example:

MCSKI? OLD

This call of macro deletes all occurrences of 'OLD'.

18
4. MCSET --- Macro-time assignment statement, as:
MCSET argl = arg?2
Where argl must ﬁe the name of a macro variable in the current
text. Arg2 is a macro expression.
Example:
MCSAT T1 = /A*
The value of T1 is set to the value of inserted argument Al.
5. HCGO0 ~-- Hacro-time GO T0 statement, as:
MCGO argl
iCGO argl IF arg2 = arg3
Where argl must consist of the 'L' followed by a macro expression.
MCGO can be used to form macro-time loops. A true value resultis
_if arg?2 and arg3 are identical stringzs of characters.
Example:
MCGO L1
This statement 1s the same as‘GO TO0 L1 in macro-time.
. .-MCGO L4 IF /Di#* = NEY
If the value of inserted delimiter 1 is identical to 'NEW',
then the control goes to L&,
€. MCLISTS --- This operation macro enables the programmer
to get a complete listing of the source program.
7 MCLISTT --~ The programmer can get a complete listing of
the target program.
8. MCSTOP --- Terminate ML/I processing. The MCSTOP macro
causes the control to return to the calling

program,

19

Keywords:

Within 2 structure representation the certain keywords
are used to stand for layout characters, for example spaces,
newlines, tabgs. The layout keyword could he specified as
a delimiter within structure representations. These are
SPACE, TARB, SPACES, and NL., There are other keywords such
as WITH, WITHS, 0PT, OR, ALL and any atom commencing with
the letter 'N' followed by a digit, none of which can be
used as delimiters in structure representations.

Complex structure revresentation:

In order to define a complicated delimiter structure,
there is a mechanism for specifying successors, namely option
lists and nodes. Option lists are used to specify that a
delimiter has several optional alternatives as successor.

The essential form is:

OPT ﬁranchl OR branch2 OR ... OR branchN ALL
The branch is one of the alternative successors following
the delimiter which is defined right before this option list.
Nodes are used for defining the successor of a delimiter to be
a delimiter or option list elsewhere in the structure represen-
tation. The following example illustrates this:

Example:

IF N1 OPT THEN N1 OR ELSE N1 OR FI ALL

In this structure representation, the first K1 before the

option list is the nodeplace. A node is placed by writing its

20
name before any delimiter name or option list. The second
and the third N1 are the nodego. The nodego is placed
after the end of a branch of an option list or after an
option list.
The components of structure representation will be

described as follows:

Nodeplace --- The placing of a node.
Nodego --- The action of going to a node.
Delspec --- The specification of z delimiter or an

option list.
The notations which are used in the EPF3 II User ianual indicate

parts of syntactic forms:

~—- Constituents may be repeated.
? --- Constituents may be omitted.
¥? --- Constituents may be repeated or omitted.

Structure representation of Delspec:

delimiter name]
I:nodeplace ?J _
[oPT branch [(OR [nodeplace 7] branch #2] ALL]
branch:
delimiter name [delspec *7] (nodego %1
This structure representation will be used for the macro

definitions following this part.

B. DEFINITION OF MACROS

The following macro definitions are made to facilitate
structured FORTRAN programming. Each of the macro definitions
will apply an operation macro at the bezginning. The replace-
nent text alse includes a number of operation macros. Ten
macrc definitions will be explained thoroushly with some
examples., The listing of macros is included in the Appendix B.
1. MCINS %,

Thig macro is used to add a new local insert definition
to the current environment. '#' defines the insert delimiter
and '.' is the closing delimiter. The insert macro must be
in replacement text. ihenever thic macro appears within
replacement text, a new value is generated and inserted.
Example:

AAZ.

The second argument (A2) within the structure represen-
tation will be inserted to the value text.

%D1.

The second delimiter (D1) which is the first secondary
delimiter in the structure representation will be inserted.

2., MC3KIP MT, < >

The MCSKIFP macro is used to ignore some of the macro names
or to skip the scanning of some character strings. The matched
and text options are set. The skip name '{' with closing

delimiter ')>' is defined as a pair of literal brackets.

22

If this matched option is on, the nested brackets can be
scanned. The text option will literally copy a piece of
text over to the value text and the delimiters, * ' and ' ',
will be deleted.

Example:

MCDEF {NEXT LUP) AS {MCSET T1 = 100

£{GO0 TO) %T1.)

" The structure representation of the macro definition
following MCDEF will be enclosed within the brackets from
now on. This saves confusion with the macro name whenever
it needs to be redefined or modified. This is discussed later
in section IV.

In the example, the second '{' matches with the lazt '}
and the nested '{' matches with ')' following GO TO. The
character string GO TO will be copied over to the value text
as a literal without '< »'. The value text will be 'GO TO 100'.
The replacement text can involve one or more newlines by
using these literal brackets. To obtain some literal siring
in the output text, it is advisable to use the literal brackets
around the string in the definition.

3. MCSET P1 = macro expression

The value of the permanent variazble will be set to
value of expression. The value of Pl remains as a global
throughout all of the scanned text.

Example:
MCD=F {IF THEN FI) A5 {JICSET T1 = P1
MCSET P1 = P1 + 1)

23

The value of the temporary variable T1 will be set to
the value of P1 which is already defined. The value of P1
will be incremented by 1 by the second macro-time assignment
statement.
b, MCDEF (;) A3{

BEYBE)

Yhere ¥ denotes a blank. This macro is defined in order
to write moere than one statement per line of source text.
The macre name, semicolon, is replaced by a newline with
fiVe blanks. “/hensver the semicolon appears with a statement
in the source text, the next statement following the semicolon

will be printed on the next line of the output text.

Example:
col. 7
Vv
A = B;¥3 = C;¥C = D;¥¥D = E (source)
A =23 (output)
B=C
C =D
¥D = E

The first statement in the source text starts from
column 7 and the rest of the statements follow with a semicolon
and a blank except the last one which has two blanks after the
semicolon. The output text starts from column 7 by this macro
definition, except that the last statement starts in column 8.

Note: HNeed a blanx after the semicolon.

5. QUIT...LUP'
Structure:

QUIT -~ LUP
Macro definition:

MCDEF {QUIT LUE)

AS {iCSET T1 = ZA1. + 1

{E0 TOY ZT1.D

The delimiter structure of this macro starts from the
macro name QUIT with the closing delimiter LUP. Within the
replacement text the value of the temporary variable Tl is
assigned by the macro-time assisgnment statement KCSZET. This
value of Tl is used for the statement label which points to
the end of the enclosed loop.
Example:

(source) (output)

QUIT 500 LUP GO TO 501

6.l NEXT...LUP
Structure:

NEXT -- LU?P
Macro definition:

MCDEF {J'EXT LUF)

AS {Kco TOy #AL.D

The macro name NEAT with the closing delimiter LUP will
be replaced by a2 GO TO statement. The inserted value of the
arzument one (Al) points to the entry of the loop in which

this NEXT macro is nested.

25
Example:
(source) (output)
NEXT 500 LUP GO TO 500
7. LOOP,...ENDLOOP

Structure:

SPACE WITHS LOOP -- WHILZ -- DO WITHS NL --
- ENDLOOP --=====-==-
——[* NL WITHS ENDLOOP —]
Macro definition:
MCDEF {SPACE WITHS LOOP WHILE DO JITHS NL
OrT ENDLOOFP OR NL WITHS EMNDLOOP ALL)
AS (MCSET T1 = %A1, + 1
%at. (IF) (.NOT.(7ZA2.)) GO TO) #T1.
%A3 .
{GO TO) #Al.
%T1. CONTINUE)
The keywords SPACE WITHS within the macro name 3PACE
WITHS LOOF specifies an arbitrary number of spaces in front
of the atom LOOP. This macro call makes the space adjustment
possible at the beginning of the replacement text. It means
that the inserted argument %Al. in the second statement of
the replacement text can appear in the same column of the
source text. The third delimiter DO WITHS NL is always
followed by a newline of the source text. The closing delimiter

is defined within the option list. ENDLOOP follows the last

26
statement of argument 3 on the same line. NL WITHS ENDLOOP
begins from the newline which is followed by the last line
of arcument 3. Argument 1 is specified for the statement
label and argument 2 is specified for the logical expression.
Examples:

(source) (output)

a, LOOP 500 WHILE A.EQ.3B DO 500 IF (.ROT.(A.ZQ.B)) GO TO 501

B=¢C B=¢C
'D=23R D=3
ENDLOOP GO 70 500

501 CONPINUZ

b. I.00F 500 WHILE A.EQ.35 DO 500 IF (.rO07.(A.ZQ.3)) GO T0 501

B = B=C
D = B ENDLOOP b=238
GO TO 500

501 CORTINUE
8' IF'.'FI

Structure:
SR 351 | ——— - 1
- H -
- NL WITHS THEN - - NL WITHS EL3ZE -
I]
- NL WITHS FI -
Macro definition:
MCDEF (IF OPT THEN OR NL WITHS THEN ALL

OFT ELSE CR NL WITHS ELSE ALL
OPT FI OR NL WITHS FI ALL)

27
AS {MCSET P1 = P1 + 1
MCSET T1 = P1

MCSET F1 FiI + 1
MCSET T2 = P1

Z4D0. (Za1.) {GO T0) #T1.

......

%Tl L} :;;A-?— 1
%T2. CONTINUE)

A1l the secondary delimiters in this IF macro have an
alternative successor which is defined within the option list.
This IF macro can be written in one line of the source text
or written over several lines each beginning with a secondary
delimiter. Within the replacement text, the permanent
variable Pl is updated to keep track of the value of the
statement labels which will be unique throughout the source
teit. The vaiuss of T1 and T2 are temporarily assigned the
value of P1 and used for the statement label within the current
scanned text. '®W' in %¥D0. stands for 'Written'. DO is the
delimiter zero which is the macro name. If W is prefixed
to D, the inserted text which is the macro name in this case
is not evaluated but is inserted literally. (This insert is
identical to that of the character string IF, which could

have been inserted directly with using the #WDO..)

28
Examples:
(source) (output)

a., IF A.EQ.B THEN C = B ELSE C = A FI IF (A.EQ.B) GO TO 101

C =A
GO TO 102
101 C =B

102 CONTINUE

b. IF A.EQ.B IF (A.EQ.B) GO TO 103
| THEN C = B C =A

ELISE C = A GO TO 104

FI 103 C =B

104 CONTINUZ

G. SIF...FI
Structure:
- THEN ——==vweee- - Fl e
Sl N © [——
- KL WITHS THEHW - - NL WITH3 FI -
Macro definition:
MCDEF {SIF OPT THEN OR NL WITH3 THEN ALL
OPT FI OR NL WITHS FI ALL)
AS (MCSET F1 = P1 + 1
MCSET T1 = P1
{IF) (.NOT.(%A1.)) GO TO) %T1.
TAZ.
%T1. CONTINUE)

29
The macro name SIF stands for Small IF. The reason this
SIF is defined seperately from the IF macro will be explained
with examples in the next section. The SIF macro definition
is similar to the IF macro except the SIF macro doesn't

have the alternative statement ELSE.

Example:
(source) (output)
a, SIF A.EQ.B THZN C = B FI IF (.NOT.(A.EQ.B)) GO TO 105
C =238
105 CONTINUE
b, SIF A.Z2.2 IF (.NOT.(A.EQ.B)) GO TO 1054
THEN C = B C =2EB o
D=A D=A
F1 106 CONTINUE

10. CASE...ENDCASE

Structure:

o Bl s
/”“\ - NL WJITH:Z GUARD ——[
CASE -- N1 —%{ - DO WITHS NL -]

— ENDCASE ~—==mmmmmmmmmmmmmm e

Macro definition:
MCDEF (CASE N1 OPT NL WITHS GUARD

OPT DO Ok DO WITHS KL ALL N1 OR ENDCASE ALL>

30
MCSET T3 = #Al.
{IF) (. NOT.(%AT2.)) GO TC) #T3+1.
BAT2+1 ,
{GO TO)> #Al.
%L1.MCSET T1 = T1 + 2
MCSET T2

2 + 2
MCSET T3 = T3 + 1
MCGO L2 IF #%DT1+2, = {ENDCASE)
#T3. {IF) (.NOT,(%4T2.)) <GO TOy ZAT3+1.
ZAT2+1.
{GO TOy %A1,

MCGO I
#L2. #T3. <IF) (.NOT.(7AT2.)) GO TO) 7Al.
%ZAT2+1 .,

#ZA1. CONTINUE)

The node N1 before OFT is the nodeplace. All the
deliﬁiters within the inner option list return a pointer to
this nodeplace to search the next delimiter, NL WITHS GUARD,
or the closing delimiter, ENDCASE. The node N1 after ALL is
the nodego. It points to the nodeplace N1 to find the successor
off the delimiter defined in the nested option list. In the
replacement text, the initial values of the temporary variables
are given at the beginning. T1 is used to check for the
delimiter, NL WITH3 GUARD, T2 checks for the argument between

NL. WITHS GUARD and the nested option list, DO, and T3 looks

31
for the statement label, After testing the first NL WITHS
GUARD delimiter, EFZ scans iteratively the proper delimiter
by the macro-time GO TO statement MCGO L1. This loop points
to MCGO L2 if the search of the delimiter ends with ENDCASE.

In the aboeve macro definition, if the value of T2 is initially
set to 2, the inserted value of %AT2+1. is same as %A3. and
the value of argument 3 is inserted in the value text.

The closing delimiter ENDCASE is always written in the next
line of the last source statement. Following examples

demonstrate the above explanation.

Examples:
(source) (output)
2. CASE 500 IF (.NOT.(A.EQ.B)) GC TO 501
GUARD A.EQ.B DO C = A C=A
GUARD A.LT.B DO C = B GO TO 500
GUARD A.LT.C D0 B = A ENDCASE 5C1 IF (.NOT.(A.LT.B)) GO TO 502
C =238
GO TO 500

502 IF (.NOT.(A.LT.C)) GO TO 500
B =A

500 CONTINUE

b. CASE 500 IF (.NOT.(A.EQ.B)) GO TO 501
GUARD A.EQ.B DO C=A

C=A | GO TO 500

32

GUARD A.LT.B DO 501 IF (.NOT.(A.LT.B)) GO TO 502

C=8 : C =B

GUARD A.LT.C DO GO TO 500

B = A ENDCASE 502 IF (.NOT.(A.LT.C)) GO TO 500
B =A

500 CONTINUZ

C. HOW TO EXECUTE TES PREPRCCESS0R

The following part of this section will describe five
steps to be used for running a structured FORTRAN program.
Underlined cormmands are typed by the user.

Step 1. After logging on, the user should create or
edit the =sztructured FORTRAN. The sample structured FORTRAN
prozram listing, TEST 3FORT, is included in the Appendix A.

_ Step 2. All the files needed for the executing the
preprocessor are stored in the file manager space for user
VM2G8 (Dr. Hankley). The user needs to bring these files
from the VM2G3 file space to the user's A-disk by following

commands.

2

=

t=
Y
9]
:.-_—7!\
O
)
[,

=
[
-~
{ ke

N
(9]
@

—_—— =T T e Tt ==

The user now has 4 different files on A-disk including

the file for the structured FORTRAN program. The file SOOMACRO

33

EPS containsz all the macro definitions which were previously
described. The listing of this file is included in the
Appendix B, The program written by the user will be run through
EPS MODULE for preprocessing. SO00 EXEC is the EXEC procedure
to combine all the commands used to preprocess the structured
FORTRAN program. The listing of 3500 EXEC is includéd in the
Appendix C.

Step 3. The next command the user has to type is

300 fn ft1 ft2

For example: 'S00 TEST SFORT WATFIV!

By this command, the EXEC procedure, 300 EXEC, will be executed.
fn specifies the filename of the user's structured FORTRAHN
program, ft1 is the filetype of that input program, and ft2 is
the filetype of the output file from E¥S., f£fn, ftl and ft2
correspond to &1, &2 and &3 respectively within the 500 EXEC
procedure. The following is a brief explanation of the 50C
EXEC procedure.

The new file, EPSIN EPS, is created by the COPYFILE command
that puts the SOOMACRO EP3 at the tope of the user's structured
FORTRAN program, The Figure III.1 illustrates the file EPSIN EPS.
The CiiS editor adds an operation macro, MCSTOP, at the end of
the EPSIN EP3. This macro will be needed to terminate EP3 II
processing after EFSIN EPS goes through the EPS I1 preprocessor

and the control returns to the calling program, S00 EXEC.

The listing of EP3SIN EP3 is in the Appendix D.

macro ' input text

definition to EPS II
SCOMACRO
EFS x\\~\\\\\$ macros macros
e - — = = = - _
7
strugtured structured

TEST / FORTRAK FORTRAN
SFORT

MC3TOF
structured Er=1IN
FORTRAN EPs LESTH
from A-disk BFS

Figure III.1 The description of the file ZFSIN EFs

EP3 II provides six logical I/0 files as illustrated in
Pigure I11.2. 0One of the data definition names, M000O, is as
yet undefinad. 001 is used for the input text EPSIN EPS,

MO10 signifies the error messages which will be displayed at

the user's terminal whenever the errors are encountered.

MO11l is the input listing with line numbers which will be placed
on the user's A-disk as file '&l SFORTL3T'., MO0l12 is the output
listing with line numbers which is defined as '&l1 FORTLIST®.
F027 desicnates the output to be used as the input to the
FORTRAN or WATFIV compiler. The last three output files will

be placed on the user's A-disk after the execution of S00 EXEC,

35

H J0
D NVHLHOA

II 44 Futsn 9u¥T 008 £q pessedoad soTTd 2°III 2In3TJ

XS TP-V
03 4ndang

e N

DEXH 00€

ATALVM

€n 1@
4204

N4

ISTTLHOM
T%
210N

Jossasdoadaad

ISTLYO0AS
%
110!

s\/ll’

qSTP-V
woaF

133 Uz

Sdd

Jsw Joaay
wrxal OTOoW

NISIE

TOOI

” pauT Jopun

) Q00N

| I e —

sd&
O¥DVINOOS

36

ATter these files are defined, EPS executes the input macro
program. Timing lines which indicate virtual CPU, real CPU and
clock time will be displayed at the user's terminal both before
EPS execution and after execution. Also, the error message
listing will he displayed. The user may then calculate the CPU
time spent for preprocessinz his FOXTRAN program.

The EXEC procedure will erase the input file EPSIN EPS
and close those three output files which were left open after
the EPS processing was terminated by HC3TOP. The CH3 editor
will delete the top part of the input listing containing the
macro definitions and it will delete the operation macro, HCSTOP,
from the bottom of the input listing. Also, the editor changes
C to C3J03 at the first line of the output file &1 &3 and C to
C3ENTRY at the bottom line. The reason this editing has to be
done in 300 EXEC will be explained in the user constraints part.
As the result of the execution of 300 EXEC, the user gets the
thres output files on the A-disk. Fils &l 43 will be ready to
compile using the FORTRAN compiler or using WATFIV.

Step 4. The user will be able to run the output program
from Ers thrcugh the compiler chosen. The following example
used the WATFIV compiler:

WATFIV_TE3T
Where TEST was the name of the sample structured FORTRAN program.
The FORTRAN G or H compilers could be accessed using the 05J0B

command.

37
Step 5. The user will be able to get the compilation
listing after the program is successfully compiled by the
WATFIV compiler.
TY TEST LISTING

Ylhere TEST was the filename specified by the user at the

beginning of the run.

D. USER CONSTRAINTS

Presented here are several points the user needs to be
concerned with while writing structured FORTRAN. The constraints

are mainly causel by EFS II.

the top line of his program and C3ENTRY on the bottom line.
The user may then run his program through WATFIV, FORTRAN G

or FDRTRAN compilers. The WATFIV compiler interpretes these
two statements as the job control cards, 3J0B and JENTRY,
FORTRAN G or H compilers will take the statements as comment
statements iznoring the $J0B and 3ENTRY. The reason for this

constraints is zs follows.

In EPS, the punctuation character '$' represents a new
line. Whenever this '3' is encountered, the rest of the

statement on that line including '#' is deleted and not copied
to the output file. This system defined '$' can not be redefined
to some other character by MCALTER which is one of the operation

macros. This macro is used for the alteration of the secondary

delimiters of operation macros or of the keywords used for
structure representation. At the time EPS encounters '$' in
C3J0B and C3ENTRY, EPS sets $JOB and BENTRY to null and scans
naxt line of the input text and C is left as the output text
from ZP5. After EPS preprocessing is done, the CHMS editor is
invoked to change C to C3JOB and CEENTRY. This procedure
will enable the output file from EP3 to run through one of
the FORTRAN compilers.

2. One of the constraints is about the statement labels.
The user may not use the statement label close to 100,
In the macro definition, the global variable Pl is set to 100,
P1 is only incremented by the macro calls, IF and 31IF, and
the user could see the result after the preprocessing by ZPS,
In order to prevent the program from the confusion, it is
better tc start the statement label from 200 or over. The
statemenit label used in the sample structured FORTRAN in the
Appendix A starts from 500. So, the user needs to keep this
restriction in mind when he does the labelling of other loop
structures or case statements within the structured FORTRAN
program. Otherwise, compile error will be appeared.

3. As pzrt of the restriction on statement labels, the
user must use only three digit labels starting from column 3.
In the followinz macro definition, the inserted text, #%T2.,
starts from column 3 and the value of T2 is three digit label.

MCDEF {IF THEN FI)

A3 {HC3ET T2 = 333

YYiT2. BCONTINUE H

38

39
The output text Irom EP3 always starts from column 3 ty
this definition. =
If the label is two digit number, the last line of replace-
ment text must be written in as the following ways.
YYE T2, B 0nein

The statsmen

1

or PHET2.PKT0NTINUE or BiT2.BYYCONTIRGE

]

[}
o
".l.j

ct

CONTINUZ enable to start from eolumn 7 by these
definitions. Jt is preferred to use threeydigit labels because
the number is rahged from 100 through 999, ‘The following
examples Illustrates this. |
Exampleas:

ﬁ%i?Z.ﬁCOKTINUE) (replacement text)
If the value of the inserted text T2 is 333, the output text
will he

RIS aoT s
and CONTINUZ starts from column 7 which is legal.
If the value of the inserted text is 33, the output text will be

KE334CCHTINUE
and CCHTL#UZ starts from column % which is incorrect for FORTRAN
convention. If the value of the inserted text T2 is 3333, the
oputput text will be

B¥33336COHTIRUE
and the last dizit of the statement label is typed on the sixth
column which is illezal.

4., Indenting was not implemented. It is recommended that
the user start all statements at column 7, except the statement
labels anéd the continuation mark and comments. The examples

are in the following pages.

Lo
The sequential statement within the macro call is not
indented as it is specified in the macro definition if another
macro call is nested. Another reason for the constraint is this.
When the first statement in the replacement text is copied into
the output text, it starts from the same column the source text

is indented. For example, 3SIF macro is illustrated:

KCDEF {3IF)»

AL

col. 1
Fy (LroT. (7A1.)) {50 TO) ZT1.

"D

If the source *ext is

ir A.2Z2.83 THEN B = A FI
The output text will be
col. 7
¥
IF (.NOT.(A.EQ.3)) GO TO 102

If the source text is
col. 10
SIF A.EQ.B THEN B = A FI
The output text will be
col. 10
%F (.NOT.(A.2Q.B)) GO TO 102

Li

However, the above example is not always correct as it is.
If this SIF macro is nested within another macro, the indented
column is charged by the outer macro definition.
If the following indented structured FORTRAN program which
contains the continuation card is given by the user,
col., 7
¥
LOOP 515 WHILE I.LE.50 DO
SIF DROF.EQ.O.
THEN QUIT 515 LUFP FI
R =R + R ¥ SCOEF

THEN NEXT 515 Lir FI

ENDLOO?P

The output text from EZPS will be
col. 7

v
iF (.KGT.(I.LE.50)) GO TO 516

515
IF (.NOT.(DROP,E3.0.)) GO TO 103
GO TO 516
103 CONTINU®
R =R + R * SCOEF
* f2s
IF (.NOT.(C.GT.11.)) GO TO 104

GO TO 515 -

L2
104 CONTINUE
C=¢C-C ¥ CCOZF
I=1+1
GO TO 515
516 CONTINUZE

The second IF starts from column 7 because %ZA3. in LOCP macro
starts from column 7. 3But the third IF, which is also 7A3.,
starts from the same column the second SIF is indented.
The sequential statements followed by another macro calls
within LOOP macrc¢ start from the indented column as specified
in the source text. 3o, the nested macros and the sequential
statements did not follow the definition of LOOP maecro.
Another example demonstrates the indented structured
FORTRAN.
col. 7
DO 520 1I=1,30
SUM=3U+C
CASE 525
GUARD I.LT.5 DO
SAVE(1)=SUn*1,
GUARD I.LE.15 DO
SAVE(2)=3UmM*2,
GUARD I.LE.25 DO
SAVE(3)=3UK/2.
525 ENDCASE
520 CONTINUE

The output text from EPS will be
col, 7
v
DO 520 I=1,50
SUM=SUHK+C
IF (.NOT.(I.LT.5)) GO TO 526
SAVE(1)=3UL*1,
GO TO 525
526 IF (.NOT.{(I.LZ.13)) GO TO 527
SAVE(2)=3UN*2,
GO TO 525
527 IF (.NOT.(I.1E.25)) GO TO 525
SAVE(3)=5Ul/2.
525 CONTINUE

520 CONTINUE

The beginning column of cése statements starts from the same
column which is typed by the user even the rest of the statement
starts from columnn 7. So, the group 6f statements are not
indented as the user specified. This looks uglier than a
program when all the statements starts from column 7 following
the usual FORTRAN conveﬁtion. Thig indenting problem can not

be corrected.

IV. EVALUATION

A, PRO3LENMS OF MACRO DEFINITION

There were many difficulties in defining macros for
this paper because the ML/I macro processor has some restric-
tions on the space and line adjustment and on specifying the
delimiter structures. The design of structured FORTRAN
extensions and the delimiter structure of the macro definition
have been effected by these difficulties. The structure of
defin=ad macros could have been better if there had not been
such restrictions. In this section, some desirable but
illegal delimiter structures for the macro definitions will
be described and explained with some examples. Also, the
reasons these delimiter structures can not be used will be
presented.

1., QUIT...NL and NEXT...NL
Desired structure:

QUIT -- NL
Macro definition:

MCDEF {QUIT NL)

AS {NCSET T1 = #Al. + 1

{co T0) sT1.

7
Desired structure:

NEXT -- NL

44

ks
Macro definition:
iCDEF CKHEXT NL)
AS <£GO TO) AL,

>

These two macro definitions are rather straight forward
in writingz the source text compared with QUIT...LUF and
NEXT...LUP. The layout keyword NL in both macro definitions
is replaced by the carriagze return within the replacement

text, Tre closzing delimiter '»f of the skip macro is placed

147}

on the new line of the replacement text. In the source text,
the carriage retrun is pressed to specify NL instead cf
writing NL after the argzument 1. The statements in the
replécement text, except the NL, are the same as the ones in
QUIT...LUP? or NZXT...LUP structures. The above macro defini-

tions work properly by themselves in the following exmaples:

(source) (output)
QUIT 500 GO TO 501
NEXT 50C GO TO 500

Hovever, if these macro calls are nested within a loop
such as LOOP,..ENDLOOP in the csource text, the layout keyword
'NL' of this nested macro call is substituted as a new line
on the output text (Figure IV. 1.). If this macro call is
followed by a regular statement which is not a macro call,
there is no immediate space after the macro call statement.
Even though these two macros cou}d be defined as shown in this
section (ie. they are not illezal), the irregular spacing of

the output text can not be accepted for FORTRAN programs.

L6

(source) (output)
. LOOP 500 UHILE A.50.3 DO 500 IF (.NOT.(A.EQ.B)) GO TO 501
3 =C | 3=¢C
QUIT 500 GO TO 501
NEXT 500 GO TO 500
ZNDLOOP)
GO TO 500

501 CONTINUZE

. LOOP 50C 4HILz A.EQ.3 DO 500 IF (.NOT.(A.EQ.3)) GO TO 501
3 =20 3 =20C
QUIT 500 GO TO 501
NEXT 500 GO TO 500
D=23B D=3
ENDLLOP GO TO 500

501 CONTINUE

LOOF 500 WHILE A.EQ.B DO 500 IF (.NOT.(A.3Q.3)) GO TO 501
B =C B=2C
QUIT 500 GO TO 501
D =B D=3
NEXT 500 GO TO 500
ENDLOOP)
GO TO 500

501 CONTINUE

Figure IV.1. NEXT/QUIT examples

b -- correct output a, ¢ -- output is incorrect.

w7

2, LOOP...ENDLOOP
Desired structure:

LOOP -- 9WHILE -- DC WITHS NL -- NL -- ZNDLOOP
Macro definition:

MCDZF <LOOP NYHILE DO WITHS NL NL EEDLOQP>

AS {MC3ET T1 = 7A1. + 1

#A1. {IF) (.NOT.(7%a2.)) {GO TOy #T1i.

%A3 .
GO TO» 7%Al.
#T1. CONTINTE)

The delimiter structure of this macro definition is
similar to the one already defined in the last section with
ihe exception of the macro name and the secondary delimiter, NL.

This structure is simpler than the previously defined
one. However, the difficulty lies on the column adjustment
in the output text. The followinz example demonstrates this

spacing problem:

(source) (output)

LOOF 500 WHILE A.EQ.B DO 500 IF (.NOT.(A.EQ.B)) GO TO 501

B =D B =D
C =238 C =238
500 ENDLOQOP GO TO 500

501 CONTINUZ

The first statement label in the output text did not appear
at thz second column because the macro did not start at the
second column., The first statement label always starts from
the same column the source text star<s. The spzacing has to be
done properly to match the FORTRAM convention for the statement
label.

Another problem is with the NI delimiter. The followiﬁg
examﬁle illustrates the difficulty using the delimiter, NL.

SPACE «#ITHS LOOF is used as the macro name.

(source) (output)

LOOP 515 WHILE I.LE.50 DO 515 IF (.NOT.(I.LZ.50)) GO TC 516

SIF DRCF. =2.0. IF (.NOT.(DROP.EQ.0.)) 0 TO 103
THEI QUIT 515 LUP FI GO TO 516

R = R + R¥ Z{U0=F 103 CONTINUE

SIF C:GT. 10, GO TO 515

THEN KEXT 515 LUP FI 516 CONTINUZ

C =C - C * CCOEF

I=1I+1

515 ENDLOOP

Those statements which follow any macro call within this loop
structure are deleted. The reason for this is not clear.
3. IF...FI and 5IF...FI

Instead of designing two seperate delimiter structures,
it is better to combine these two structures into one macro
name IF (although this seems to be impossible). Two cases of

preferred delimiter structures will be described.

49

Desired structure:

[- BLSE s—s—mmsin]
.| —— - NL WITHS ELSE - _

S I—
- NL WITHS THEN -

LI]
- NL dITHS FI -

MCDEFi(IF OPT THEN OR NL WITHS THEN ALL

Macro definition:

OPT OPT ELSE OR HL WITHS ELSE ALL i1
OR N1 OFT FI OR NL WITHS FI ALL ALL >
43 {MCSET P1 = P1 + 1

MCSET T1 = P1

MCSET P1 Fl + 1

iCSET T2

1

P1

MCGO L1 IF #D2. = {ELSE)

MCGO L1 IF #D2. = {¥L WITH3 EL3E

Zwpo. (.NOT.(%a1.)) <GO TO) 7T2.
TA2,

MCGO L2

#L1.7%4D0. (7a1.) {Go TO) #T1i.
ZA3.
GO TOy %T2.

%71, #A2,

%L2. %T2. CONTINUE)

This structure has four option lists. Among them two
cption lists are nested within a big option list and are
chained tozether by the node N1, Basically, this structure
can be written in four different ways such as IF...THEN...
ELSE,..FI, IP...HL HITHS THEN,..NL YWITH5 BLSE...NL WITHS FIL,
anc¢ I¥...NL WITHS THEN...NL #ITHS FI. Also it is possible
to write a §imialr type of delimiter in an option list, ie.
subs{ituting HL WITHS THEN to THEN, The node W1 pointed by
the arrow is the nodego. The other 1M1 followed by an option
list, FI or NL WITHS FI, is the nodeplace. The replacement
text of this macro definition is the combination of two
seperate replacement texts which were defined in the previous
section. The only differences are that the macro-time G0 70
statement, MCGO, and the macro-time labels are used <o maich
and find the proper character string for the delimiter 2.

Even though this delimiter structure has a better form,
the macro definition by this structure is illegal. The.keyword
OPT may not be followed by another OPT. The nodeplace N1 after
OR has to be followed by a delimiter name not by the keyword
OPT. Another trouble point is that the layout keywords (NL)
and the keywords (WITHS) can bot be used within the replacement
text. So, there is no way to test the alternative delimiter
in the option 1list if one of them is constructed with keywords.

Another desirable delimiter structure is as follows:

50

51

s PHEH s s - ELSE "“"“""‘> """""
IF ""‘l_ J"_ s ~ITIS. T -
- NL WITHS THEN -4 [~ UL JITHS ELSE —- e Tt

Macro definition:

MCDEF <;F OPT THEN OR NL WITHS THEN ALL

(/2

OPT ELSE N1 OR NL WITHS ELSE N1 OR N1 FI ALL)
AS L

The replacement text is same as the one previously

defTined in this section. >

This structure can be written in the several ways
described in the first example above except that the closins
delimiter has no alternative but FI. This macro has tro
option lists ore of which includes the nodezo and the nodeplace.
The delimiter foliowinz the nodeplace N1 has to be a closing
delimiter within that option l1ist. The delimiter struciure of
this macro definition is correct but the replacement text,
which is identical to the one previously mentioned, contains
an illegal conditional statement. 3Because the test of
NI, AITHS ELSE) fails 211 the time (illezal HL in the replacement
text), the control of the replacement text will never go to
the inserted value of %L1. as long as the delimiter is specified
as (ML WITHS EISE). As a result, the output statements will
be the ones following the statement of failed test. The following

example will demonstrate the above explanation.

52

(source) (output)

a. IF A.EQ.3 THEN C = A EL3E C = 3 FI
IF (A.EQ.3) GO TO 101

C =238
GO TO 102
101 C = A

102 CONTINU=

b, I¥ A.ZQ.3 IF (.NOT.(A.22.3)) 30 70 104
THEN C = A C=a
ELSE C =3 FI 104 COHTINUZ
c. TF A,Z2.3 THEN C = A FI IF (. HOT. (A.EQ.8)) GO T0 108
C=4A

106 CONTINUZ

d. IF A.EQ.3 IF (.NOT.(A.EQ.3)) GO TO 108
THEN C = A FI C=A

108 CONTINU=

Figure IV.2. IF...FI examples
a --- correct output b --- output is incorrect.

¢ --- correct output d --- correct output

i}, CASE...ENDCASE

Desired structure:

~-- ENDCASE

¥izero definition:

MCDEF {CA3Z N1 OFT

- NL WITHS

- NL

GUARD ——[

NL WITHS GUARD

%Al.

ZAT2+1.

{60 TO) ZAl.

ZL1.MCSET T1 = T1
MCSET T2 = T2 + 2

MCGO L2 IF #DT1+3.
(

ZAT2+1 .
{GO TO) #A1l.
MCGO L1
BL2.
FAT2+1,

7ZA1. CONTIKTE >

DO

NL ALL N1 OR NL ALL ENDCA3E)

= {ENDSASE)

NOT. (#AT2.)) {GO TC) iT3+1.

.{7AT2.)) {GO TOy AT3+1.

<13, {IF) (.NOT.(7AT2.)) (GO TC) 7Al.

a3

o —— e — T ——————— — — — — —— S ————

is the same problem as with the LOOP macro.

This CASE macro has NL as the second delimiter.

There

The MNI. causes

difficulties if other macros are nested within this CA3E structure.

The following examples are for the CASE macro.

500

.

500

(source)

CA3E 500

GUARD A.EQ.2 DO
A =28

GUARD A.LT.3 DO
QUIYT 500 LUP

ZNDTASE

CASE 500

GUARD A.EQ.3 DO

£ =13

IF P,L2.C THEN C = 3
ELGE C = AFI

GUARD A.LT.B DO
C=A

GUARD A.GT.3 DO
B=2C

ENDCASE

501

500

(output)

IF (.NOT.(A.EQ.3)) GO TO 501
A =3

G0 TO 500

IF (.XOT.(A.1L7T.3)) GO TO 500
GO TO 501

CONTINUZE

ERROR(S)

D6 IS ILLEGAL KACRO ELEMENT

= ®» & ® =

(error messages deleted)

Figure IV.3. Examples for CASE...ENDCASE

55

The example (a) in Figure IV.3 displays the identical
error which was illustrated in the example for LOOP...ENDLOOP
macro. Those statements which follow a nested macro call within
this CASE macro are deleted. In the second example in Figure IV.3,
the error messages are given. It 1s a very long message and is
difficult to fisgure it out.

5. BrackZets around macro definitions:

If a delimiter structure which was defined without the
literal brackets is redefined (for example, to change the
replacement text), then the orizinal definition is not eracsed
from the run time environment. That causes some errors.

The following examples illustrate this:

a. MCDEF RExD LUP A3 (G0 TO> 7Al.>
(source) | (output)
NEXT 500 LUP GO TO 500
b. - MCDEF NEXT LUP AS {(JUNP TO) 7Al.)
(source) (output)
NEXT 500 LUP GO TO 500
c. MCDZF NEXT LUP AS (GO TO) 7Al.

Error(s)

¢!

Al IS ILLEGAL MACRO ELEMENT

(Error messages deleted)

In the second example (b), the first macro definition (a)
is not erased and the output is the same one by the origianl

macro definition. The third example shows error message.,

-

B. TIME AND SIZE OF MACROS

The size of macros defined in this paper which is the

56

file, SOOMACRO EPS, is 57 records. EPFS TELT contains 570 records

which has the logical record length 80. The size of EZP3 MODULZE
is 4 records with the record length 55535.

About the timing, the results cominz from EPS execution
indicates that it takes about 5 to & times of execution time
compared to the timing throush the compiler. For exambple,
the timing information of the sample structured FORTRAN
throuzh EPS preprocessing iz as follows:

T=0.23/0.55 10:40:53 (before ZPS preprocessingz)

T=1.44/1.87 10:41:10 (after EP3 preprocessinz)
About 1.32 seconds are used for the real CPU time.

The compile timez Ly JATFIV took about 0.22 second. It appears
that ML/I iz not a suitable preprocessor for the hizh level

lanzvages like PL/I or FORTRAN as far as the timing concerns,

C. CONCLU3IIQNS

This project provides a possibility that a well-structured

FORTRAKN couid be produced by programmers using the preprocessor,

It is obvious that the impact of structured programming upon
FORTRAN implementing general block structure does not confliet
with the features of the existing FORTRAN. Using ML/I as a

preprocesser for the study of the structured FORTRAN extensions

57
was a success except for some limited features previously
illugtrated.

There are several good aspects of ML/I. It has a flexible
format and its use of keywords makes it easy to read. The
methods of specifying repetitions of delimiters and the
branching technique to groups of alternatives is a powerful
facility.

However, there has been some difficulties. Defining
macroz according to the FORTRAN convention was the part of
the difficulties. Some of the features which was not clear
and undefined by ¥L/I have some conflict on writing macros
and runninzg “ML/I. If these bad elements could be discovered
in the future, ML/T will be a nice preprocessor for the
structured FORTRAN extensions.

As far zs considering the concept behind this project,
this project was a quite successful one. To overcome the
undééirable features described previously, it needs to be

more siudy on KI/I and on the area of structured FORTRAN program.

Abr7s

Brob67

Breb9

3ro74
Col7%
Coo75
Dij72
- EPSTH
Fri7é

Hig73

rel7?3

Mei7h

Mei?5

58

REFERENCES

Ahrahams, Paul. "Structured Programming" Considered
Harmful, SIGFLAN Notices, Vol. 10, No. 4, April 1975,
pp. 13-24.

Brown, r.J. The ML/I liacro Processor, Comm. ACH,
Vol. 10, No. 10, October 1947, pp. 618-5273.

3rown, ©.J. Using a Macro Processor to Aid Software
Implementation, Comput.J, Vol. 12, No. 4, lovember
1969, pp. 327-331.

r.J. Hacro Frocessors and Technigues rfor
Poriaile Zoftware. John Jiley & sons, 1974,

Zole, A.J. lacro Procesgsors. Cambridge University

Press, 1975.

Cook, A.James. Zxperience With Zxtensible, Portahle
FORTRAYN Extensions, SISFLAN Notices, Vol. 11, ilo. 9,
September 1975, pp. 10-17.

. Structured
i PP L=E82,

Dzhl, 0.J., E.¥W. Dijketra, and CT.A.R. o
Progsramming. Academic Press, London, 197

EPS II - Users ¥Fanual., Internal Document, Us Army

Computer System Command, Ft. 2elvoir, Va., 1975.

Friedman, Danie and Struart <. Shapiro. A Case

1 P.'
Tor shile-Until, ZIGFLAN MNotices, Vol. 9, lo. 7,
July 1974, pp. 7-14,

Higzins, Donald 8. A Structured FORTRAN Translator,
5IGrLAN Notices, Vol. 10, No. 2., February 1975,

PE. 42-438.

Kelly, i¥.Campbell. An Introduction to liacros. Macdonald-
London zand American Elsevier 1Inc. NewYork, 1973.

iecissner, Loren P. A compatible "3Structured" EZExtension
to FPORTRAN, SIGPLAN Notiess, Vol. 9, No., 10, October
197“’. PP- 29"36-

lMeissner, Loren P. On extending FORTRAMN Control
Structures to Facilitate Structured Frogramming,
SIGPLIAN kMotices, Vol. 10, No. 9, September 1975, pp. 19-29.

59

0'n74 0'neill, Demnis K. SFOR - A Precompiler for the Implemen-

Yau74

tation of A FORTRAN-Based Structured Language, SIGFPLAN

Notices, Vol. 9, No. 12, December 1974, pp. 22-29,.

Vaughn, W.C.M. Another Look at the CASE Statement,
SIGPLAN Notices, Vol. 9, No. 11, November 1974, pp. 32-36.

APPENDIX &

SAMPLE STRUCTURED FORTRAN PROGRAN (TEST SFORT)

A-2

AYIN3$D

ON3

4018

Id *0=d04¥Q N3HL ®08°19°*(8)3AVS ZIS

INNTLINDD 02S

JSVIONI *H/WNS=(5)3IAVS

0a €311 Qyvna
*E/WNS=1H)IAYS

00 CE*03I*] 0¥vNI
*Z/WNS=(E)IAVS

00 s<°37°1 QuvnN9
*ZaWNS=(Z)3AVS

0Q s1°371°1 g¥vno
*T2wWNS=(1)2AVS

0Q S*171°1 Quvn9

; 626 ISV
(1)ID4WNS=WNS

0s*1=1 025 CQ

*0=AMnS

dud10N3

141=1

' (43020%{1)31=L11D=(11}D
I4 dNT ST1& LX3IN N3IHL
*11°49°(1)D 41Is
"2/ %

(43028x{I)u)+(1)u=(1)¥

14 dNY S8 LIND N3HL
*0°"03°d040 418

00 0S°371°1 3NIHM STS 4001
1=1

d00710N3

T+0=

14 *01=(r})2 35713

*G=(r}7 NIHL @=L7°r 41

00 06*37°*{ 37IHM 018 d0D
l=r

OILYyx{T1=-T)d=(1)Y S0%

1642=1 506 0Q

dOUTIN3

1-1=1 f0llvya/{l)¥=(1-1)¥

00 1*219°1 37ikM 00§ 4207
9=] {°9=(Q)Y :$°*9/Z0°G9=0]11vy
10°0=43020 £10°C=43002% ¢*"T1=d0a0
(S)I3AVSHI0S)D (TSI NOISNIWIA

aorsd

v Ld048 1§31 =3l

APPENDIY B

MACRO LISTINGS (SOOMACRO EPS)

A-3

<3INNILINDD "1V

“l1+2LVE
*1vy <31 09> ({*2ZLV3)"LON®) <dJI> *t13 *27%
17 09N

*1vr <ol 09>

*1+21V3

*T4ELL <OL 09> (("ZLAVR)°LON®) 41> *€12
<ASVIONTD> = *Z+110% 41 €7 09w
1T 4+ €1 = €1 135w
2 ¢+ 21 = ¢1 13SOK
2+ 11 = 11 13SA°112
*1vd <Cl 09>
*lellve
“1+E1% <0OL 09> (("21vi)*1nN*) <JI>
*lve = E1 13SINW
2 = ZL 13SIW
1 = 1L 12524> Sv
<17V 3SVIAN3 ¥0 IN My IN SHIIM 00 ¥0 03 Ld0
JUVND SHLIIM IN LdD IN 45SY2> 430w
<INNTLINDD *Tid
*ZvE
*142 <CL 09> (("IVvE)*1ON*) <31
1d = 11 1380w
1 + 1d = 1d L3S2a> SV
<NV T4 SHITM N MO T4 140
TIV N3IHL SHLIM N ¥0 N3IHL 140 415> 4300w
<3INNTLNDD *21d
*Iv: '11%
*21% <01 09>
“Evi
118 <01 092> (*1ve) *00M3
1d = 21 L38IW
1 # 1d = 1d 13SW
Td = 14 L13SIK
T+ 1d = 1d L3524> SV
<YTIV I3 SHLIIM Ih B0 14 LdO
7 3873 SHAIM W w0 3513 1d0
TV N3AL SHLIM IN 80 N3IM} 1dD 41> 4300W
<SONIINDD *113
*1v3 <0L O
‘el
"113 <01 09> (("2Y3)°LON") <d1> *1vi
T ¢ *1vd = 1L 1359A> SV
<17¥ <dUDIGNI SHLIM 1IN ¥ d221C0N3 LdO
IN SHLIM D0 37IHA 4037 SHIIM 3IvdsS> 33500W
<*lvE <01 09> Sv
' <dN1 LX3IN> 4J00W
<*11% <01 09>
T+ *Tvk = 1L 1352d4> SV
<aNY LIN0> J300W
001 = 1d 13SOw
<
_ 2 Sy <> 430904
< > *LlW dINSOW
*L SNIDW
L1S 10w
SLS 17k

v S$d3 OUIVWOLS 33713

APPEMDIX C

LISTING OF 300 EXEC PROCEDURE

aA-5

€3 13 1103

cH3l

o0l

1 CaQ

SOMrs$2/23/ 39NVHD

WiL1CH

AYIN3$D/2/ 3INVHI

314

0417 ®Iv1s93492

1S7L¥24S 13 L1403

ON33

dul

¢ Ca

66 313140

nJ1108

313713C

3713

D417 ¥Iv1S9383

C1H MIVLST

€3 13 SINId

LSIT71¥dd4 13 SINIS
1S713048 13 SINTA

Sd3 NlSae3 3573

JdAl 3I~lL2

IWIL? vy 3ILITT = 3nlLl3
Sd3

JdAl IWILY

IWILT Avd3aLI13 = Iwl1LD
€3 17 wSIQ 1224 4353004
L1S17Ld04 13 €SIA 210w 4303114
18708045 12 WSIO [T0W 470730714
Woll 010w 43003713

Sd3 NISd3 ¥SIO0 100w 3203714
W3l 000w 23037013

1Y AHIVIS3

Sd3 NISd43 L1103

1233

W1110y

dILSTd LNdNI

ERIE]

0417 AIVISS3w3

AH %JvLls?

IV S$d3 NISd3 1v 23 1% 1¢ Sd3 0HIVWOIS 30113dAd0D
9SWON d30 T104iND2IJ2

1v 53X3 00s 3714

APPENDIX D

LISTING OF A SAMFLE TPSIN EPS

A-8

<3NNTLINOD "1V

T1+E1VE
*TvZ <01 09> ((*2iv3)°L1ON*) <J4I> "€1k *273
17 093w

*1vs <0L 09>

"l+l1V

*1+€1% <0L 09> ((*ZLVE)*LION") <d1> °El%
<3ISVIUNID> = *Z41104 41 21 COJW
T+ €L = €1 L3S0
2+ 21 = 21 135Dk
2+ 11 = 11 13%2W°*17%
*1vi <CL D9
M ETSR T
*T+€1% <0L 09> ((°ZLVE)°LON") <JI>
"1v4 = €L L350W
¢ = 21 1382w
T = 11 12804> SY
<11V 3SVION3 ¥0 IN 11v IN SHLI® 00 ¥0 20 Ld0
QEYN9 SHLIIM N 140 TN 3SVD> 4300W
<IONTLINDD *T13
AT
*1L% <0L 09> ((*TIvR)"I0N") <412
ld = 11 13SIW
T+ 1d = 1d 13524> Sv¥
€1T¥ 14 SHLIIM N =0 14 160
ATV N3HL SHLIM N B0 N3HL 1d0 415> 2300m
<INNILINDD *21%
“Zvi *l1f
*21% <01 09>
“EVE
*T.Z <00 09> (°Tvi) *00M3
Td = &1 L35DW
1 +#1d = 1d L3SINW
1d = 11 1352w
T+ 1d = 1d 135om> SY
<1V 12 SHll% N w0 [4 1dU
Tv 3§73 SHL1M N 8D 3513 Ld0
AV N3AL SHIIM K ¥0 N3KL LoD 1> 330IW
<EINTINDD =Tk
*Ive <0l 09>
A
SILY <JL 09> (U*ZVR)ICLION®) <41> *1v:
T ¢ "1ve = 11 13SDd> SY
€1Iv JO0TANS SKLIIM TN %) a22°0N3 Ld0
AN SHLIM 3Q 37MHM 40T SHLI® 3DVas» 430w
<*lex <CL 29>> Sy
<IN LXZ3h> 5309W
Tl <l 09>
T+ "IvE = 11 13§2a> SV
<dnN LINE> 30w
€01 = 1d L350W
<
> SV €D 4I0UM
< > ‘LW GINSLW
"% SNIOM
L45110W
SLSIMIN

v Sea3 NISd3 33714

R

14

dJ1SINW
ABLN3$D
oN3
dl1s
*0=d0d0 NIHL *08°19°(S)3IAVS dIS
INNTINDD 026
ISYIINT *H/WUNS=(G)IAVS
D0 05*31*1 QuvyN)
"E/RNS=(%H)IANS
0U CE*C3®1 24vNY
*Z/WNS=1lEYIAYS
CO s¢*37°*I CQuyvynao
*CanlS=(2)IAVS
00 S1°371°1 arvN9
“T2WNS={T1)3AVS
0a s*L1*1 auwvno
G624 35v)
(1)D+nNS=WNS
05¢T1=1 025 0Q
*0=aNS
d0OI0NT
1+1=1
(43022=(1)2)-{1)2=(11}D
Id 4N 616 IXIN N3HL
*T1°19°(1)2 41IS
e/ =
(33008015)+01)y=(1)y
I3 dNT §16 1IN0 NIHL
*0°03*d049a 3JIS
0Q 06°*37°1 3TIHM &§1¢ dDDY
1=1
d0J70N3
140 =r
14 *01=(r)d 35713
*S=(f)2 N3IHL 9°L7°r I
Dd 0s°*373°*M 31IHM 014 4001
l=pr
ILvds{TI-1)u=(1)d S04
1s¢L=1 605 00
ddJ7CN3
I-I=1 0Ilvu/t1)¥={1-1)4d
00 T*19*1 IFTIKM Q0S5 4301
9=] L1*9=(9)Y (*9/20°9=011lvY
T0°0=43023 :f10°0=d43035 $£°T1=d040Q
(G)IAVS*{06)I4(TS)Y NOISNIWIQ
q0rs?

v Sd3 M1Sd3 371

A-10

APPENDIX =

LISTINGS OF SAMPLE STRUCTURED FORTRAN OUITFUT

FROM EP5S II

A-11

AYLIN3ISD
[IEE]
A BN
13 “0=d0¥0 NIHL "06°LO°(G)3AVS JI18
SNN1INDD 029

ASVIONI *H»/wNS=1(5}32AVS
CO 0S*31°1 0yvo
TE/WNS={%) AAVS
Ca 0e*D3*1 Quvnd
SZ/WNSE(E)3AVS
QU 62°371°) Cavng
*ZunNS={2)2AVS
0d s1°371°1 Gavng
*TnS=(113AVS
J0 6111 Uevn9
6246 3asy)
1) 24rNS=RNS
“1=1 024 DG
*0=wNS
, <¢J0DTUNT
141=1]
. (3302001020 =-(1)2=1(1}D
Id 4N SIS LIX3IN N1-)
“11°49°01)D 418

*Z/w
(33025t y)+ (1 by=(])Y
14 N 516 1IND N3IHYL
*0%J3*d0oMa 3IS
U2 06°27°1 3INIHM ST1§ dDI
1=1
d0370N3
T+40=r
14 *01=(r)) 3511
*6&={l)D NIHL 9°17°T 4l
CO 06*37°F 31IWHM C15 e¢DU
1=
CllvdelT=1)u=(1)4d
1644=1 S¢c nQ
0N
T-I=1 $00LvH/ LT DE=(=110
00 1*19°1 37IHM 005 402
9=l 1%9=(9)Y L°9/20°9=0]Lvy
10°0=2302) :10°0=43038 $°1=a0%0
(S)3AVS*{05)D04115)Y NDISNIKIO

A

(
0s

ONILSIT wYuddud 323008

ONILISTT S39vSS3W uOWYI

151740804 1531 AL

05

uorsd

iy

Zored0000
1ciecocece
gcioccoco
66220000
£6200C200
L60T20200
952220200
Se002C2C00
Yer0oroon
tecop(o0e
Lod000I00
162900200
oud00CnCD
SeC0A0JC0
842000300
182020000
QE2000320
SECON0200

*u00C0200

£4300020¢
ceeooenee
1&000CI00
063030200
622000200
840700200
Lrocecoeco
9.00033C0
£132002C0
Slooecoee
LL0NICINQ
242393C02%0
140220000
Ci203Cco00
e6q0cocooC
§9070C000
Le000cl00
98LeICICo
sor00 0200
23020300
gococeaee
292000000
1900000C0
0900C 0000
$6302C000
gscocenoo

157148248 1S31 AL

ty

01:1%201 LB°T1/9%°Is]

€S: 09307 G5=0/ET"0s 1
AldlvM LH03S 1S3L 0O%

1]

A-12

626 0L 09 ({CS*3°1)"ICN®) 21 626
626 Cl1 €9
*e/WNS=(v) IAVYS
626 G4 09 ((0E°D3°1)°L1ON") 41 B82S
626 01 V9
*2/WNS=(E)IAVS
@26 €1 09 ((c2=31*1)°L10N") 41 L2
626 Ul 29
*ZadNS =12) 3AVS
1258 01 09 ((ST1"371°1)"1CN*) 41 926
£26 01 GO
*T=nNS=(1)35A7S
925 01 092 (ts*11*11*17N°"} 4d1
(1)D4WNS=wNS
0641=1 026 20
*0=ANS
INNLINDD 916
S16 0L 09
141=1
(4502001)2)=(1}2=¢(]}))
INNTLNDD %01
$16 01 09
%01 D1 D9 (C°TTI°49°(10D)°LON®) 41
"/
(J302S=(1)ud+(1)Y=(1)0
JONTINDD €01
916 L1 29
€01 2L 09 (("0°D3°d0¥I)"LCN*) 41
916 0L 09 {((0S°31°1)°i0N") 4] S16
1=1
INNTINDD 116
016 0l 09
1+r=r
AINNTINID 201
*6=(r1y3 101
¢c1 Gl 09
"0r=(r)D
10T OL 09 (9°*11°r) 41
116 0L 09 ((0s*3*r)=LuM*) 41 01§
1=
OIivos(l-1)y=(1)d GO6
164L=1 606 LU
INANTINDGD 106
0Cs 0L 09
1-1=1
: OlivH/(INy=st1=-1)Y
108 01 09 ((1°19°1)°*1CN") J1 00§
9=1
MR AR |
*9/20°9=011LyY
10°0=43022
10°0=42028
*1=<0u0
(S)3AVS4(05)D241TIS)Y NOISNIwIQ

ONTLSTT WVHOD¥d 1399vL

LR 2 2R 2 L 2R 2R B 2 O

+
Lecopooce
9eCco0OCCe
$RI00C000
280000000
€80300000C

+

LR B B A I B 2R

*
$L000C000
€L0000000

210000000
+

* ¢+ & >

+
890020000
193220000
990020000
$92n00000
%<0000000

+

+

+
290000000
190000000

*
192020300
o9acoo0co

+
093020000
562000000
850000000

A-13

*ZenNS={Z)IAVS

425 OL 09 ((STI°37"1)"I0N") 41
$Z6 0L €O

"TanNS={T}3IAVS

925 04 09 ((S*17°1)"LCK") 41
{11244NS=hNS

06¢1=1 025 (O

“Cenls

928

SNNTLINGD 918

S15 01 09

T+1=1

(330=(1)M=-(113=(11)
AINNILINDD

616 Ul 09

0T 0L 09 C(*T1*L9° (11D 1DN") 41
“il*

(4300S+0I)4)+(Tu=11)Y
dNNILINDD

916 0L 09

€01 DL 29 ((°0°03*d0YQ)I*1IN") 4l
915 0L 09 ((0S"37°1)°ICN®) 4l
1=]

INNILINDD

016 01 09.

1+0=r

3NNTLINYD

“5={r))

20t 0L 09

*01=(r)J

10T 01l 09 (s*171°r) dI

I1S 0L 09 (t0S*271°r)*1ON") 41
Clsr

Oliviell=-1)d=01)4d

1s*1=] 06 0Q

nugINgd

ceos 0L 9

1-1:1

Ollvd/(1)u=(T1-1)d

106 0L 09 ((1*49°1)"L0u*) 41
9=]

“9=(9)y

*Q/20*9=0]1vY

: 10°0=35020

10°0=33025

*1=¢Dx0

(G)IAVS “40S)D* (160 NOISNEWIU

AldLvM LS

J Zcie

0N3 1cin

d0iLs oclo

SONTINDD SO1 6600

*0=a0Ya +

SOT C1 29 ((°06°L9°(S13IAVSI*LON®)Y dI 66390
aNNT INDD 02¢ §600

ANNTANLD 626 16C0

*H/4NSe (5)3AVS +

vol

€01

Sis
11s

201
101

01s
s 0§
106

00§

90rsd

L AL
iy

0Co00
00oCo
20000
pocooo

20200
pooon
00000

AL

T+1=1

(43000 1I N ={11I=(]112

3ONTINDD
s1s Gl1 02
%01 D1 09 €(*1T1°LD°(1)I)°L0OKN") 1

g/

(23005at1))l =01

INNIINDD

91s a1 09

€01 QL 02 ((°0"D3%4uNUITION®) 21
916 01 €O ((0S°37°1)°LN®) 41
1=1

ANNTINDD

c1s 21 02

1+40=r

INNTINDD

*u=(r)D

€01 0L oY

*01=(r)d

10T 01 09 (9°L1°F) 31

116 01 09 ((05*3V*r)*LON®) 4]
I=r

. AL TIRCIRRENR R
16°L=1 505 CQ

i INNTINDD
c0s a1 09

1-1=1

orivy/ztyde=t1-1)4d

106 01 09 (t1°L19=1)1"ICK") JI

9=1

‘95091

*97e0"9=011vy

10°C=4303D

16°0=42029

" T=q0%0

(S)IIAVSHLOS)ID* (1S NOISNAKIQ

*01 EE

€0t 62

s1s 9z
118 we

201 1z
101 0z

01s 1

s06 LA

106 21

00s

HANMTNOM~DO e

gorsd

ONIASIT 1S3L AL
.

-

1531 AldLy»

iy

AYLNIS)
ON3
d01s
ANNTINDD S01
*0=d0¥2

60T OL 0D (1°05*19°(S)IIAYSI*1ON"Y]

ANNIINGD €26
INNTINID 6%

*H/WNS=(G)IAVS
626 0L 09 (L0S*37°11°40N*) 31 B2%

€es UL 09

“E/WNS={%)3AVS
625 01 09 ((OE*03°1)*12N°) 41 B2S

$26 01 0B

*2/WnS=1E)3IAVS
825 0L 09 (1S82°37% 1) 1Ny 41 L2

$¢s 01 LY

)

d01S 3507 3IT0SNOI T02dS
]
Y

STITA 9161 NVI = AT JLVM Ll ¥R 22 Avasany $0"€Es°01 423§ Z0*0 =3AWT1L NIILNIIXI*D3IS g2°0 =3WILl 37IdW02
0 =SNOISNILXT 40 ¥IBWNN *0 sSONINGVA IO H2EANN 40 =5d0¥d3 40 Y3BWNN SII1SON9vYIO
$3LA3 96022 =379VIIVAY V3uVY TVIOL*S3LAG %2% =Y3AY AVHIVISILAS (991 =300D 123raQ) 39vsSN 3309
AYLNISD)

ON3 i9

dCLs 09

INMTINDD SO1 56

"0=d0ua 86

S0T 0L D9 ((°0S°"L9°(S)3AVS)"LON") 41 LS

ANNTAINDID DZS 95

A0NTLINDD §8E§ 59

"HIRNS=LG) SARS L1

€26 D1 09 (H10G*3T°1)1°LON") 4 626§ £

625 01 09 25

E/ANS=(Y) JAVS 15

625 01 09 ((OE*LI*II*LON®) 3] 826 0s

&7 01 D09 &Y

*Z/HNS=L1E) JAVS By

825 0L 09 ({8T°3V1"1)"10N*) d1 12§ 1%

6245 01 09 9%

"CuHNY A (E) 2ATS SYy

L2% 0L 09 ((S1°31°]1)-10N*) 41 92¢ (1]

%26 01 D9 1]

*TaklS={1)2AVES Y

926 0L 09 ((S°L1°1)*10N") al %

(1)24aNS=aNS [2

0s*1=I 025 ua 6E

*0=ans 8€

INML INDD 918 LE

§16 01 @9 9t

AN EVALUATION OF ML/I (EP3) MACRO3
FOR STRUCTURED FORTRAN EXTENSIONS

by
Soo Kyung Park

3.A., Ewha YWomans University, 1948

AN AB3TRACT OF A MAZTER'3S REPORT

Submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIEKC

Lty

Department of Computer Science

KANSAS STATE UNIVZERIITY
Manhattan, Kansas

1977

ABSTRACT

The objective of this project is to investigate use of
a generazl purpose macro processor to implement extensions
to FORTRAN.

The macro processor is a software translator which
interprets macro definitions and translates input text to
output text. Input to the macro processor is in the form of
macro definitions and source text. The output text is derived
from the source text by replacing all the macro calls that
occur in it. Available at KSU is EP5 II, a version of MNL/I
(Bro67) which is a general purpose macro processor system
and which can be easily applied to all existing programming
languages. EP5 II can be run interactively under CN5 as a
preprocecssor for FORTRAN extensions.

For this study, a set of some macro extensions to FORTRAN
were defined to facilitate structured'programming in FORTRAN.

Structures examined were IF THEN =1LSE, WHILS, and CAS3E.

