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Chapter I

INTRODUCTION

1.1 Synopses

Scattering of electromagnetic radiation is an important tool in the
study of the structure and dynamics of matter. To name just a few examples,
Raman scattering enables us to obtain information about the energy spectra
of molecules, x-ray diffraction provides information about the structure
of solids, and Brillouin scattering can provide information on sound waves
in solids.

Until recently, traditional dispersive or interferometric spectro-
scopes have been limited to resolving powers of a few MHz. With the
advent of the laser and a new kind of spectroscopy, 1ight beating or

1 it is now possible to measure linewidths

photon correlation spectroscopy,
and frequency shifts of the order of a few Hz. Light-beating spectro-
scopy has made it possible for chemists, biologists and physicists to
study the size, shape and motions of molecules in such diverse systems
as solids, glasses, simple molecular fluids, solutions of biological
macro-molecules, solutions of viruses, protoplasm in algae, colloidal
dispersions and mixtures undergoing critical point fluctuations.

The first application of light-beating spectroscopy came in 1964 when
Cummins, et al. studied the spectrum of light scattered from polystyrene

latex spheres diffusing in a dilute solution.2 Other applications were

quick to follow. For example, concentration fluctuations which cause



3 In that

critical opalescence were studied by Alpert, et al. in 1965.
same year Ford and Benedek studied the scattered light from a fluid

near the fluid-vapor critical po1‘nt.4 For the interested reader, refer-
ences five through eight represent some of the early applications of
Tight-beating spectroscopy.

It is the purpose of this thesis is to report the application of
light-beating spectroscopy to the study of the spectrum of light scattered
from commercial poly(methyl methacrylate) (PMMA). The specific technique
used is a digital form of photon correlation spectroscopy.

The remainder of this chapter is devoted to the discussion of the

principles of a typical light-beating experiment.

1.2 The Light-Beating Spectrometer

Figure 1.2.1 shows the geometry of a typical light-scattering experi-
ment. Laser light with polarization ﬁi and wave vector Ei is focused
onto a cell containing the sample. The scattered light with polarization
ﬁs and wave vector ﬁs is intercepted by the detector at a distance ﬁ from
the scattering volume. The intersection of the incident beam and the beam
collected by the detector defines the scattering volume. The angle between
the incident beam and the scattered beam is the scattering angle 6. We

—->
define the scattering wave vector q as the difference between the scattered

and incident wave vectors,

-

+ >
q = k'l = kS . (12.1)

The magnitude of the scattering vector is given by

q=sin[g] (1.2.2)

1



Figure 1.2.1

Geometry of a typical light-scattering experiment.
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where n is the index of refraction of the scattering medium and A is the
wavelength in vacuo of the incident radiation.

Light scattering does not occur in a perfectly uniform, homogeneous
material. If scattering is to occur, the Tocal dielectric constant of
the medium muSt be nonuniform. This may be provided by non-propagating
thermodynamic fluctuations of the local dielectric constaﬁt as a result
of the motions of the molecules that constitute the material. Scattering
by this process is known as Rayleigh scattering.

The amplitude of the total scattered electric field changes with
time since the phase of the field scattered by each molecule relative
to the others is also changing with time as the molecules move. The
frequency spectrum linewidth of the scattered 1ight depends on the time
scales which characterize the motions of the molecules. For time scales
normally encountered in glassy polymers, the linewidths are relatively

narrow (10%Hz - 1072

4

Hz) and are centered about the incident light fre-
quency (~101 Hz). Measurement of these linewidths would require an
optical spectrometer with resolving power beyond present capabilities.

An alternate method is photon correlation spectroscopy. Figure 1.2.2
shows pictorially the signal output and the associated power spectrum for
the various components of a correlation spectrometer. The incident
laser light can be thought of as a monochromatic carrier wave with a

14Hz and essentially a delta function profile

frequency of approximately 10
in frequency space. The scattering process modulates the carrier wave
producing a spread of frequencies. The result is a Lorentzian with half-

width at half-height . The photomultiplier's response time (~10'9sec)



Figure 1.2.2

Signal output and the associated power spectrum for the various components
of a correlation spectrometer. a) Laser carrier wave with frequency W,
b) moduiation of the carrier wave due to the scattering process, c¢) the
output of the photomultiplier is a series of pulses proportional to the
modulation frequency, d) photopulse autocorrelation function, e) delta
function power spectrum centered at wys f) spread of frequencies produced
by the scattering process and centered at Wy g) self-beat power spectrum

of width 2r centered at OHz.
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is too slow for it to follow the carrier wave frequency. Only the beat
frequencies produced by all possible pairs of frequencies that make up
the scattered spectrum are detected. As a result, the original spectrum
is transformed, after detection, to a new spectrum which is twice as
broad and is centered at OHz. This process, where the scattered light
beats with itself, is called homodyne detection.

Homodyne detection is actually a special case of heterodyne detec-
tion. Heterodyne detection occurs when the scattered 1light beats with a
local oscillator source derived from the same laser as used for the
scattering. The resultant spectrum can be very complicated since the
homodyne term is still present. However, if the local oscillator intensity
is approximately thirty times that of the scattered light, the homodyne
spectrum becomes negligible and the heterodyne spectrum dominates.9

The homodyne and heterodyne spectra are encoded in the train of
photopulses output by the photomultiplier. Linewidth information can be
obtained from these pulses by computing either the photocurrent auto-
correlation function (analog method) or the photopulse autocorrelation
function (digital method). The exact details by which linewidths can
be extracted from the autocorrelation functions are the topics of the

following chapters.



Chapter II

THE CORRELATION FUNCTIONS

2.1 Definitions and Properties

Mathematically, the autocorrelation functionl! is defined for A(t)

as the time average

T

6(x) = ;MY 5%—l A(t)A(t+r)dt (2.1.1)

where A(t) is an arbitrary function of time and ¢ is the delay time.
The autocorrelation function compares the value of the signal A(t),
with the value of that same signal at some later time 1, for all values
of t.

We can simplify the above equation slightly if we restrict A(t)

13

to ergodic functions. Ergodicity allows us to equate time averages

with ensemble averages, hence
Limit 1 (7
6(x) = <AE)A(tr)> = [0 [ ADAEOdE  (2.1.2)
=T
where the brackets denote the ensemble average. If we make the further
restriction that A(t) is a stationary random function of time, then the

value of the correlation function is a function of T only, so that

<A(0)A(r)> = <A(t)A(t+r)> . (2.1.3)



In order to obtain a feeling for the behavior of the autocorrelation
function, consider Fig. 2.1.1 where a typical random and nonperiodic
signal is represented as a function of time. The average value of A(t)
is set to zero to simplify the following discussion.

When v = 0 the product A(0)A(0) will always be non negative and

the resultant value of the autocorrelation function will be large

Limit _a(0)A(c)s = <A®S . (2.1.4)

>0

For values of t larger than zero but smaller than the time it takes
for the signal to change its value appreciably, the product will almost
always be positive but in some instances negative. As a result concel-
lations will occur in the sum implied by the ensemble average and we
would expect the value of the autocorrelation function to be Tess than
when t = 0. Finally, as t becomes large, the product A(0)A(t) will be
positive just as much as it is negative and the autocorrelation function

will approach zerao.

Limit <A(0)A(<)> = <A>2 =0 . (2.1.5)

T+ ®

In general, as t increases from zero, the value of the autocorrela-
tion function will do one of two things for a random nonperiodic process.
The autocorrelation function will remain constant at its maximum value
of <A2> for all values of 1, in which case A is a constant of the motion.
Or the autocorrelation function will decrease from its maximum value of
<A2> to the square of the average value of A, <A>2.

In many applications the autocorrelation function decays exponen-

tia11y12 so that

10



Figure 2.1.1

A typical random and nonperiodic signal as a function of time.

The average value of <A> is set to zero for convenience.

11
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5 -t/

é te © (2.1.6)

G(c) = <As® + {<A%s - <>

where T is a characteristic time of the random prbcess, the so-called

correlation time.

2.2 The Power Spectrum

The frequency power spectrum and the autocorrelation function are

related by the Wiener-Khinchine theorem14
_ 1 iwT
S{w) = 7 G(t)e dt . (2.2.1)

-0

Thus, the frequency power spectrum and the autocorrelation function are
Fourier transform pairs. For example, if the signal A(t) has a Lorentzian
power spectrum of half-width at half-height r, then G(t) is a decaying

exponential with correlation time By = (F)—l.

2.3 First-and Second-Order Electric Field
Autocorrelation Functions

We now wish to apply the results discussed in the previous sections
to the light-scattering process.

The first-order field autocorrelation function is defined as15

6{M (x) = <EL(0)E(x)> (2.3.1)

B and * represents the complex

where Es is the scattered electric fie]dl
conjugate. It is not possible however, to directly measure Gél) (¢) due
to the square-law nature of the detection process. For example, the

output of a photomultiplier is proportional to the intensity which is

13



equal to the square of the scattered electric field. In fact, the
lowest-order field autocorrelation function that can be directly measured

is the intensity autocorrelation function.
6{2) () = <1 (0)1 (<) (2.3.2)

Equations (2.3.1) and {2.3.2) can be written in normalized form

gél) (1) <E:(O)ES(T)>/<IS> (2.3.3)

ggz) (r) = <IS(O)IS(T)>/<IS>2 (2.3.4)

where <Is> is the average intensity over the duration of the experiment.
In certain circumstances, géz) (t) can be simply expressed in terms
of gél) (t). The criteria is that the scattered amplitude, Es’ be dis-
tributed according to a Gaussian distribution. We can understand what
this means by considering ES as a superposition of fields scattered from

many different regions of the scattering volume,
E(1‘) (2.3.5)
5

th region. Each region is

where Egi) is the field scattered from the i
taken to be small compared to the wavelength of 1ight yet large enough
to enable the molecules in each region to move independently of one
another. Under these conditions ES is the sum of independent random
variables. The central Timit theorem then implies that ES must also be

a random variable and is distributed according to a Gaussian distribution.

That is, the probability that Es will have a particular value is given by

14



2

|Egl
P(E,) =...ﬂ§_FZ_ e <|Es[2> . (2.3.6)
me|Eg] > :

For sucH a Gaussian field, ggz) (t) and ggl) (t) are related in a rather

simple manner by the Siegart re?ation17

géz) (v) =1+ Iggl) (r)l2 . (2.3.7)

Thus the Siegart relation enables one to obtain first-order spectral
properties from the intensity or second-order autocorrelation function.
We must bear in mind however, that Eq. (2.3.7) applies only to
Gaussian fields. If one is unable to invoke Gaussian statistics, first-
order spectral properties can still be obtained from the second-order
autocorrelation function. This can be achieved by mixing coherently
on the sensitive part of the detector the scattered light and a local
oscillator source derived from the same laser as used for the scatterfng.

18

It can then be shown™~ that the measured normalized autocorrelation

function takes the form

<l 5\2 <l ><I. >
6{?) () =1 +( 5) (g52> (x) - ) + 2 =10 I (o)

<I> <I>

(2.3.8)

where Is is the intensity due to the scattering process, I10 is the
intensity of the local oscillator source and I(=IS+I]0) is the observed
total intensity. This type of detection is heterodyne detection as

mentioned in Section 1.2.

15



2.4 The Photopulse Autocorrelation Function

In the digital method the scattered 1ight is detected by a photo-
multiplier that outputs a train of photoelectron pulses where the
pulse rate is proportional to‘the intensity. These pulses are then
amplified and converted to standard (TTL) square pulses. The pulses
are then fed into a digital correlator that computes the photopulse

autocorrelation function given by

~

62 (rt) = <en(0)n(ri)s . (2.4.1)

where n(rf) is the number of photopulses arriving during the interval

19 20 As

rt to r(t + f), t is the sample time ™~ and r is the channel number.
long as the correlation function does not change appreciably during the
sample time t, the discrete function G(Z)(ri) is a good approximation
to the true second-order autocorrelation function G(Z)(T).

The normalized homodyne and heterodyne autocorrelation functions

as computed by the correlator are then .

gﬁﬁ% (rt) = 1 + lg (rt)| (2.4.2)
gpﬁi% (rf) =1+ 2 == s T° [gsl) (rt)] , fgg ® 300, (2.4.3)

n-

where ﬁs and 510 are the average scattered and Tocal oscillator count-
rates respectively, and n is the observed average count-rate. (Note that

the middle term of Eq. (2.3.8) is negligible when 510 z 30 ﬁs.)

16



Chapter III

THE RELAXATION FUNCTION

3.1 Introduction

The purpose of this chapter is to investigate several functional
forms that have commonly been used for [gél)(rE}IZI.

Before proceeding, it will be helpful to simplify the notation.
One finds that in the literature on glasses the heterodyne and homodyne

autocorrelation function are written as follows

Coon(t) = 1+ »2(t) (3.1.1)
_ s-lo - -
Chet(t) =1+ 2 52 o(t) s Mg © 30 ng (3.1.2)

where ¢(t) = ]ggl)(rf)[ is commonty referred to as the relaxation func-
tion. In addition C(t) = g(z)(ri). This will be the notation used
throughout the remainder of this report.

12 that for diffusion processes that the relaxation

It has been shown
function has the form

-t/rc

o(t) = e (31 43)

where the correlation time To is referred to as the "relaxation time" of
the diffusion process.

Relaxation data for glasses has been obtained chiefly from three

17



different techniques, mechanical relaxation experiments, dielectric
relaxation and photon correlation spectroscopy. Workers using these

techniques have discovered that in many different materials including

23 24 25

organic liquids™ and solutions,

mers,26 relaxation behavior cannot be expressed as a single exponential

glass forming materials™™ and poly-

parameterized by a single relaxation time. As a result, the data has

been fit to two empirical relaxation functjoﬁs, the w1111ams-Watts,27’28

and the Cole-Davidson funct‘ions.zg’30

The bulk of the data having been
analyzed with the former of these functions.

There are two ways in which physicists have attempted to explain
the nonexponential relaxation behavior in materials. One approach inter-
prets the nonéxponentia] behavior as resulting from cooperative molecular

31,32

motions. The other theory sees the nonexponential behavior as due

to the superposition of many different exponentially relaxing processes.33’29
It is not known which one, if either, is the correct theory. However, the

current trend is toward the latter approach.

3.2 The Williams-Watts Function

The empirical Williams-Watts relaxation function was first introduced
in 1969 and is given by

_(t/TWW)wa

¢Ww(t) = e (3.2.1)

where G<swwf1. Taking the superposition of exponentials approach, B
represents the width of the distribution of relaxation times, the width
of the distribution increasing with decreasing B We can define the

distribution function, pww(T), for the Williams-Watts function with the

18



following equations

(6= [ &%, (xee (3:2.2)

and the normalization condition

o0

J PyplTldT =1 ; (3.2.3)
0

The average relaxation time is defined by

o0

<T” = J 'rpww('r)d'r . (3.2.4)

0

pww(r) has only recently been derived from Eq. (3.2.2)22 however, the

knowledge of pww(r) is not needed to determine the average relaxation
time. It has béen shown that
T
<7 > = —— 7T (l/wa) . (3.2.5)

WwW wa

where T'(x) is the gamma function. The average frequency is not /<t 0>

but is given by

< > = <] >
@ /'rww

1]
e
A |
§'D
———
—~
S
(=W
~

(3.2.6)

i
—
]
—
~—
]

3.3 The Cole-Davidson Function

The Cole-Davidson distribution function (assuming a distribution of

relaxing processes) was first introduced in 1950 and is given by

19



. B
sin m 8 CD
TIER S | (3.3.1)
TCD =

pepl™) = =

where 0 < Bep 1 and pCD(T) is zero for T & Tep- This distribution was
originally used to empirically fit dielectric relaxation data. The

relaxation function can be obtained from Egs. (3.2.2) and (3.2.3)

0o

¢Cn(t) = J ?_tlr pCD(T)dT
0
= Tgeps t/igp)/T(Bep)->" (3.3.2)

The average relaxation time can be obtained from Eq. (3.2.4)

-0

[ <ogpelee
0

n

<TCD>

= Tep Bep (3.3:3)

3.4 Comparison

Lindsey and Patterson have recently published a detaiied comparison

of the Williams-Watts and the Cole-Davidson functions.22

Two figures
taken from that publication are given in Figs. 3.4.1 and 3.4.2. The
first shows the two distribution functions graphed in a manner typical

of that seen in dielectric relaxation publications. The values of the
parameters of the two functions are given and correspond to actual experi-

mental data from the literature. At long times the Cole-Davidson distri-

20



Figure 3.4.1

Comparison of the Cole-Davidson (CD) and Williams-Watts (WW)
distribution functions. The g paramerers are Bep = 0.37 and

B = 0.50. The t parameters are Tep = 1.0 and T .25.

21
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Figure 3.4.2

Comparison of the Cole-Davidson relaxation function (dashed 1ine)

and the Williams-Watts relaxation function (solid Tine).

23
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bution blows up at t = Tep and is zero for T 2 Tep® However, the Williams-
Watts function is continuous at all times and decays approximately expo-
nential at very long times.

The relaxation functions are plotted in Fig. 3.4.2. It is seen that
the two functions are very similar and would requife high precision data
to determine which function describes the data the best. The important
thing to note, however, is that the value of the parameters needed to

22 have recently

give similar fits are not the same. Lindsey and Patterson
devised a numerical method in which one can cbmpare the parameters <t> and
g obtained from data analyzed using the older Cole-Davidson function with
the newer Williams-Watts functions.

It has already been pointed out that almost all photon correlation
data has been fit to the Williams-Watts function. In fact, Williams and
Watts discovered that for some materials, the experimental data fit their
function better. In view of these facts together with the simple form of
the Williams-Watts relaxation function and its physically more appealing

distribution function, we have chosen to analyze our data using the newer

Williams-Watts function.

25



Chapter IV

THE STRUCTURE AND PROPERTIES OF PMMA
AS RELATED TO LIGHT SCATTERING

4.1 What is a Polymer?

Most polymers are synthetic organic compounds consisting of as many
as a thousand or more covalently bonded repeat um‘ts.35 The atoms that
make up the backbone (main-chain) of the macromolecule are predominantly
carbon. Frequently attached to the main-chain are molecular side-groups,
the character of which determines the type of polymer. Table 4.1.1
shows a few vinyl related (CH2 = CHX) monomers (repeat units) all having
backbones entirely of carbon atoms.

The physical properties of polymers (e.g. toughness, the ability to
crystallize, etc.) as well as relaxation behavior depend on the way in
which the monomers are bonded together (Fig. 4.4.1b). The monomers of
most polymers are asymmetric, hence, there are several different ways in
which the main-chain can be formed. For example, if all the repeat
units are bonded together in a head-to-tail fashion, the polymer is
termed isotactic. If successive repeat units alternate in configuration
the polymer is labeled syndiotatic. Atactic refers to a completely random
arrangement. |

Commercial PMMA is polymerized at high temperatures and is about 60%
syndiotactic and noncrysta11izab1e.37 Crystallizable PMMA can be produced

by polymerization at lTower temperatures which produces a higher degree of
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Table 4.1.1

A few vinyl related monomers.
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syndiotacticity. Partially crystalline isotactic PMMA can also be pre-

pared.

4.2 The Glass Transition

One of the most interesting features of glass forming materials is
the glass transition, where the viscoelastic fluid continuously trans-
forms into a rigid glassy solid material. The transition is characterized
by fe]axation times that become on the order of days or more and visco-

13

sities above ~10"" poise.

The glass transition takes place over a narrow range of temperatures
which enables us to define a somewhat arbitrary temperature called the
glass temperature. The most common way to measure the glass temperature,
Tg, is to observe the contraction of the volume as a function temperature
in a dilatometer. Figure 4.2.1 illustrates the method. Well above Tg,
the volume decreases linearly with decreasing temperature. At a constant

cooling rate the liquid falls out of equilibrium just above T Below

g’
Tg, the volume again decreases linearly with decreasing temperature, but

this time with less slope. The intersection of the two extrapolated lines

defines Tg. One finds that Tg'is mildly dependent on the cooling rate,

e.g.

T 1

9

105°C at 1 deg min~

1

Tg

38

100°C at 1 deg day

in polystyrene.

Another interesting feature of the glass transition is the phenomenon
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Figure 4.2.1

A typical graph of the specific volume versus temperature for glass

forming materials. The glass temperature T_ is defined as the temper-

g
ature at which the two extrapolated lines intersect. The vertical line
represents the affect of annealing at a temperature T' below Tg. Upon

reheating the material the curve regions the original line above Tg.
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known as volume hysteresis.39’40 When the glass is annealed at a constant
temperature T'; the volume decreases and hay reach the relaxed equili-
brium glass state if the temperature is not too far below Tg (This is
commonly referred to as aging). Upon reheating the material, the curve
remains below the extrapolated equilibrium 1ine only to rejoin it at a
temperature higher than Tg.
There is no experimental evidence that the glass transition is a
thermodynamic one. Yet thermodynamic transitions have been predicted
for temperatures well below the glass transition by two competing theories

=33 proposed a theory based on

of glass formation. Gibbs and DiMarzio
a potential barrier model where rotations of parts of the polymer mole-
cules about C-C bonds are hindered by inter-‘énd intra-molecular forces.
This theory, which is strictly applicable to polymers, predicts a second-
order phase transition at a temperature T2 < Tg, where the.configurational
entropy, equal to the difference in entropy between glass and crystal,

44 a theory applicable

vanishes. On the other hand, the free-volume model,
to all glass forming materials, and based on the concept of free volume,
predicts either a first-order transition or no transition at all.

Unfortunately, we can not verify the above predictions since the
liquid at these temperatures is not in equilibrium and the time scales
would be prohibitively long.

In a Tater section the glass transition will be discussed in more

detail in the context of structural transitions.

4.3 The Arrhenius Equation

As we shall see, there are many different motions that give rise to
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1ight scattering in PMMA. These motions can be described and relaxation
times defined in terms of potential-energy barrier modeis of molecular
motions in polymers. The basic temperature dependence can be determined
with these models. One such model is discussed in brief below.

Figure 4.3.1 shows a potential energy diagram for a thermally
activated process. The simplified model consists of two states A and B
separated by a potential barrier of height VO. For example, the two
states A and B may be taken as two possible orientations of the ester
side-group about the C-C bond 1inking it to the main-chain in PMMA.
Thus, the reaction coordinate would be the angle of rotation about the
C-C bond.

The reaction is described by a rate equation of the form 48

o

I - KACA 5 (4.3.1)
where EA is the number of molecules in state A and KA is called the rate
constant. For a molecule to move from state A to state B it would first
have to acquire sufficient thermal energy to overcome the barrier. The

probability that a given molecule will possess enough energy in excess

of V, is proportiviial to

lof*eT (4.3.2)

where I<B is the Boltzmann constant and T is the absolute temperature.
The rate constant can then be defined in terms of this probability as

-VO/KBT

Ky = Ce (4.3.3)
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Figure 4.3.1

Potential energy diagram for a thermally activated process.
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where C is a constant.

The "relaxation time" e is given by49

-
[

= I/KA

v /KT
0B (4.3.4)

1. = c'e
This is the Arrhenius equation where Vo is the so-called activation
energy. This equation has been successful in describing the temperature
dependence of many relaxing processes. However, Eq. (4.3.4) breaks down
near and above the glass transition. For example, a plot of Ln[tC]
against i/T is curved, indicating that the activatjon energy is increasing
as the temperature decreases (Fig. 4.4.la). One explanation for this
behavior is that the motions of the mo]ecﬂ]es, responsible for the glass
transition, do not move independently of one another.50

An empirical equation that has been successful in describing di-

electric relaxation data, near and above the glass transition in polymers,

is the Williams-Landel-Ferry equation51
T, A(T - T.) : \
an = - " 4,3.5

where rC(Tg) is the relaxation time at the glass temperature, A and B
are constants with values A = 17, B ® 51 and are independent of the

structure of the polymer.

4.4 Structural Transitions

In this section some of the intrinsic motions of the molecules that
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Figure 4.4.1

Temperature dependence of the (a) a-relaxation in polyethyl acrylate

and (b) B-relaxation in PMMA. (Dielectric relaxation data.)
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give rise to light scattering in PMMA are identified. The freezing in
or liberation of these various motions results in structufa1 transitions
from one state to another in the polymer. These structural transitions
are defined and discussed as they relate to Jight scattering in PMMA.52
' Structural transitions of noncrystallizable polymers can be put
into two categories. First, there are transitions that result in jarge
scale rearrangement of the structure of the polymer accompanied by the
freezing in of large scale motions of large parts of the molecules.
During these transitions the amorphous polymer transfers from one aggre-
gate form into another. These large scale structural transitions are
accompanied by changes in the enthalpy, heat capacity and the specific
volume of the polymer (Fig. 4.4.2) and are very sensitive to thermal
pretreatments. The relaxation times do not obey the Arrhenius equation
(Fig. 4.4.1a).

Secondly, there are transitions involving the freezing in of local
mations of the molecules such as rotations of side-groups and Tlocal
motions of the main-chain. These local transitions do not involve large
scale rearraﬁgement of the polymer structure and no appreciable chénges
in the enthalpy and specific volume are observed. These transitions are
not very sensitive to thermal pretreatment and the relaxation times obey
the Arrhenius equation (Fig. 4.4.1b).

There are two large scale structural transitions in PMMA. The first
occurring at about 200°C and is commonly referred to as the «' transition.
As the polymer is cooled past 200°C the viscous fluid becomes a visco-
elastic or rubbery substance where large-scale motions of large parts of

the polymer chain become frozen in. The second large scale transition

39



Figure 4.4.2

Typical behavior of the (a) heat capacity and (b) enthalpy as a

function of temperature near the glass temperature.
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occurs at the "glass temperature" (Tg * 110°C) and is called the o
transition (glass-rubber transition). Here, microbrownian motion of small
molecules with 50-100 C-C bonds, together with maiﬁ«chain segmental
motion become frozen in at Tg. Relaxation times characterizing these
motions near and above the glass temperature are commonly referred to in
all polymers as the a-relaxation mode.

The first Tocal motion transition occurs at about 30°C and is called
the g transition. As the polymer is cooled past this temperature the
rotation of the ester side-group about the C-C bond that links it to
the main-chain and local motion of the main-chain, for example, crank-
shaft-type rotation, becomes strongly hindered and eventually frozen-in.
Relaxation times characterizing these motions are referred to as the
g-relaxation mode. The second local motion transition is attributed to
the rotation of the methyl group about the C-C bond that links it to the
main-chain. This motion becomes frozen in at about -160°C and is termed
the y transition. The final Tocal motion transition is called the &
transition and is assigned to the rotation of the methyl gﬁoup attached
to the ester side group. This motion is §t111 active at temperatures as
Tow as 49K,

[t is evident that at temperatures of interest for this experiment
(300C - 140°C), there are many different kinds of motions that would
produce fluctuations in the local dielectric constant and hence give rise
to light scattering. We would expect the spectrum at a given femperature
to be very complex characterized by many relaxation times. Experience

indicates that it is unlikely that Tight scattering using photon corre-
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lation spectroscopy will be able to separate relaxation processes due

to the different types of motions (e.g., rotation of the ester side-
group). However, it is conceivable that overall motions associated with
the different structural transitions (a and g processes) could be identi-
fied and separated. The inference being that the relaxation functions
that describe the two processes will have sufficiently different average
relaxation times and width parameters to enable their separation.

4.5 Information Obtained from Photon
Correlation Spectroscopy

It is worthwhile at this point to discuss what is observed by the
photon correlation techm‘que.53

When the incident light is vertically polarized, the scattered 1ight
will contain isotropic and anisotropic components. The isotropic scatter-
ing in fluids and solids are due to density fluctuations. We can char-
acterize these fluctuations in three ways. First, Brillouin scattering,
the scattering of light from thermal sound waves. Second, Rayleigh
scattering due to thermal-expansion fluctuations and thirdly, Rayleigh
scattering due to the relaxation of the longitudinal compliance.
Anisotropic scattering is due to the reorientations of groups of mole-
cules that make up the polymer macromolecule as a whole. Anisotropic
scattering can also arise from collisions between molecules.

A11 of the above processes will contribute to the relaxation function
»(t). However, not all of them can be detected directly using photon
correlation spectroscopy. For example, dead time effects of the photo-
multiplier, after pulsing etc. generally limit the correlation spectro-

scopist to correlation times of 10°° sec or longer.
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Let's examine each of the above mentioned processes and determine
which ones can be measured using the correlation technique.
The Tinewidths, Ig, of the shifted Brillouin peaks (20°-140°C) are
of the order of 100 to 400 MHz (for 90° scattering), corresponding to
1

correlation times (TC = frJ of "10'8 sec. These peaks are shifted by as
B

much as 1010Hz. As a result, Brillouin scattering can not be detected

by the digital correlator. The half-width at half-height of the central

Rayleigh peak due to thermal expansion is given by

2
Tiherma1 = Ka7/eCp (4.5.1)

where K is the thermal conductivity, q is the magnitude of the scattering
wave vector, p is the density, and CP is the specific heat at constant

pressure. For a scattering angle of 90°, 1/r has values in the

thermal
range of 10'7 sec., and is therefore undetectable by photon correlation

spectroscopy. The central Rayleigh peak due to the relaxation of the

longitudinal compliance should yield relaxation times that are within

54 Anisotropic scattering induced

13

the range of the digital correlator.

by collisions would result in correlation times of 10 "~ sec which are

again too short to be observed. However, scattering due to reorientations

of the molecules (a and B processes), have been observed by a number of

56-59

workers and we expect to observe these processes in our experiment.

We can write the relaxation function in the following form

(t/e.) ]
e T.i

$(t) = ga- (4.5.2)

i
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where ¢ a; = 1. Each term in the series represents one of the processes
i
mentioned above. Substituting ¢(t) into Egs. (3.1.1) and (3.1.2) yields

(for an ideal experiment®?)
812
"’(t/'l'.i)
1
. BT
"(t/'r.l)
Chet(t)-l = (0.03);aie , (4.5.4)
1
Flsﬁlo - -
where e 0.03 for Ny = 30 ng- As we have seen, many of the processes
n

that scatter light in polymers are too fast to be observed with the
correlation technique. As a result, the measured correlation function

intercepts will be less than their ideal values, that is C__(0) - 1 < 1

hom
and Chet(o) -1 < .03. This deviation from the ideal values would enable
us to determine the percent of the scattered 1light that represents
processes too fast to be measured by the correlation technique.

It is evident that heterodyne detection is the most desirable
technique in terms of separating and identifying the various processes
from the data. This is because the terms due to the individual processes
are mjxed together by the squaring terms in Eq. (4.5.3). Thus, homodyne

detection does not allow for easy separation of the individual terms

as does heterodyne detection.
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Chapter V

THE NEED FOR FURTHER LIGHT SCATTERING STUDIES IN PMMA

5.1 Survey of Previous Light-Scattering
Experiments in Polymers

Light scattering in polymers above and below the glass transition
employing photon correlation spectroscopy is relatively new. The first
attempt reported in the literature was by Jackson et al. in 1973.56
The polymer used was commercial PMMA with a glass temperature of 110°C.
The experiment was conducted in the heterodyne -mode at a scattering angle
of 90°. The Tocal oscillator source was provided by light scattering
from static imperfections within the scattering volume of the sample.
They reported the observation of two distinct exponential relaxation
modes, a fast and slow decay, at temperatures ranging from 20°C to 120°C.
The fast decay was attributed to side-chain motion (g-process) and the
slow decay to main-chain motion (a-process). Correlations were found
only in the polarized spectrum.

1.57 confirmed Jackson's observations in commer-

In 1977 Cohen et a
cial PMMA. In addition they examined the angular dependence of both the
fast and slow decays. Their results showed that the fast decay was
independent of the scattering angle 6, and hence a nondiffusive process.
This is consistent with the notion that the fast decay is the result of
side-chain motions (rotations about the C-C bond). For the slow dacay,

no angular dependence was found for annealed samples but for unannealed
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samples, irregular results were obtained. This behavior was believed
to be the result of large inhomogeneities of the structure of the polymer.

In 1979 Patterson et a1.58’60

reported the results of depolarized
Rayleigh scattering in polystyrene. The sample was polymerized in their
lab under extremely clean conditions. The result was a sample essentially
free of elastié scattering. This enabled them to conduct the experiment
in the homodyne mode.

They observed only one scattering process which they attributed to
orientational fluctuations of chain units. The data fit very well to
the Williams-Watts relaxation function with a width parameter (g) of
approximately 0.4. The temperature studied ranged from 99°C to 130°C

(T, = 100°C) and the observed average relaxation times decreased with

g
increasing temperature from 34 sec to 1073 sec.

25 reported the results of the

Later in that same year Lee et al.
superposition of the polarized and depolarized scattering components
scattered from atactic polystyrene. They confirmed Patterson et al.'s
results but in addition reported the observation of a second process two
orders of magnitude faster than the first. They attributed this process
to the relaxational componerts of the compressional and shear moduli.
The data for this fast process fit well to a single exponential.

In 1980 Patterson et a1.61

reported the results of photon correla-
tion spectroscopy of Poly(ethyl methacrylate)(PEMA) near the glass transi-
tion. The temperatures studied were from 150-70°C (Tg = 65°C). Their
sample was prepared by thermal polymerization from pure monomer and was

free of elastic scattering. Thus, the analysis of their measurements was
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carried out in the homodyne mode.

The data at all temperatures fit well to the Wiliiams-Watts relaxa-
tion function. The width parameters from 150°C - 120°C were near 0.40.
From 110°C - 70°C the width parameters gradually decreased to a value of
approximately 0.16 at 70°C. This behavior was attributed to the gradual
separation of the o and B8 relaxation modes near Tg. However, the separa-
tion was not Targe enough to show two distinct parts of the relaxation

function as implied in the other measurements discussed above.

5.2 Discussion and Objectives

The results of photon correlation spectroscopy in PMMA reported by
Jackson et al. and Cohen et al. are unique in that single exponentials
were used to describe the data. On the other hand, relaxation behavior
in a number of systems including other polymers have been shown to be
very nonexponential. We can think of no physical reason why PMMA should
exhibit such unique behavior.

In the summer of 1979, we analyzed the scattered light from the
same kind of commercial PMMA rods that Cohen et al. used in their experi-
ments. We were unable to satisfactorily resolve the data into two decay-
ing exponentials. Further studies in other PMMA samples produced the
same results. In fact the data fit very well to the Williams-Watts re-
Taxation function instead of one or even two exponentials.

In view of the above preliminary results it was felt that further
light-scattering studies in PMMA using photon correlation'spectroscopy

were needed.
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As noted in Sec. 5.1 Lee et al. reported the separation of the o and
B modes of relaxation in prystyrene. Their method of analysis is inter-
esting and unique. We have chosen to analyze out data using this method.
The method will be discussed in some detail and serious questions will
be raised pertaining to the interpretation of their results.

We have three primary objectives; 1) to demonstrate that 1ike poly-
styrene and PEMA, a wide distribution of relaxation times exist in PMMA,
and that the data is well described by the Williams-Watts relaxation
function, 2) to demonstrate that care must be taken when interpretating
data that has been analyzed using Lee's method, and 3) to observe and

separate the o and B processes.
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Chapter VI

EXPERIMENTAL METHOD

6.1 The Experimental Setup

| The incident radiation was obtained from a Coherent Radiation Model
52 argon-ion CW laser. The 488.0nm line was used with the beam verti-
cally polarized with respect to the scattering plane.

Figure 6.1.1 shows the main components used in this experiment. The
lens Ll focused the beam into the PMMA sample. L2 collected the light
scattered at 90° and focused the image of the scattered beam one-to-one
onto a 0.010 inch pinhole. The pinhole was mounted on one end of a long
brass tube. The other end of the tube was connected to a combination
diaphragm and telescope system. The diaphragm allowed for easy adjust-
ment of the intensity of scattered Tight falling on the cathode of the
detector. The telescope combined with a reflex mirror made it possible
to see the scattering volume through the center of the tube.

The scattered 1ight was detected with a ITT FW 130 photomultiplier.
The PMT output was sent via an amplifier-discriminator system to a Langly-
Ford 64 channel digital correlator. The contents of the correlator
memery were continuously monitored via an oscilloscope diéplay. The
memory contents could also be stored on diskets of a PDP-11 computer
which was used in data analysis.

The sample was made from 3/8in thick Rohm and Haas sheet Plexiglass.

A square rod was cut from the sheet and turned on a lathe to forma small
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Figure 6.1.1

The main components used in our light-scattering experiment.
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cylinder rod. The sample was then polished until it became transparent.

The sample was then placed in a small test tube filled with glycerin.
The glycerin was used to minimize stray light due to reflections from
the various surfaces. The index of refraction of glycerin at 20°C is
1.47 and is fairly close to that of the glass (1.50) and the PMMA (1.49).

The test tube with sample was placed into a cylindrical aluminum
heating cell. The cell was wrapped with mylar to provide electrical
insulation for the nichrome heating wire. The cell had three small
windows, two for the entrance and exit of the laser beam and one at 90°
for the exit of the scattered light.

The temperature was controlled with a Cryogenic Research Company
temperature controller in conjunction with a platinum resistance thermo-
meter. The temperature stability of the system is estimated to be
~0:59C;

The heating cell, collecting optics, and the laser were all placed
on top of a Newport Research Corporation air table. The air table was
necessary to eliminate building vibrations of approximately 30 Hz. The
vibrations were the result of the heater and airconditioning motors that

are sjtuated in the room next to our lab.

6.2 Effects of Experimental Conditions

Before proceeding any further, it will be instructive to review the
form of the unnormalized autocorrelation functions. From Egs. (3.1.1)

and (3.1.2) we have

Gy (t) = 2+ H285(t) (6.2.1)
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G .(t) = 7% + 2h, Ao (t) (6.2.2)

het(

The correlation function data received from the digital correlator is
' 2

represented in the above equations by G(t). The background term, n®,
is equal to the square of the average count rate over the duration of
the experiment times the duration of the experiment. The information
necessary to compute the background is received from the correlator.
The data, G(t), can be put into a form that is easier to handle by

2

first subtracting and then dividing by the background, n“, to get

=2

c(t) - 1= SLELZD (6.2.3)
n

If we perform the same operations on the theoretical expressions

(6.2.1) and (6.2.2), we get

Coon(t) = 1 = 92(t) (6.2.4)
T of
Cpap(t) = 1 = z—%-gé o(t) (5.2.5)

which for a Williams-Watts relaxation function become

-2(t/TC)B

Chom(t) -1l=e (6.2.6)
n,.n B

Crag(t) = 1 = z—%g—§-e'(t/Tc) (6.2.7)

The right hand side of Egs. (6.2.6) and (6.2.7) represent the form the

data wouid assume under ideal circumstances. In reality, however, there
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are a number of experimental factors that serve to reduce correlations.
In addition, several factors can produce small errors in the calculated
background. As a result, the observed autocorrelation functions, for

any single sample time, have the following form

N[Chom(t) = 11 = o + Fa)g(B)e2(t/) (6.2.8)
i i .

MChet () - 13 = o + 2195 £ (W)g, (B8l (H/7c) (6.2.9)
n

The new factors f, g, and B are dependent on the experimental conditions
at the time of measurement and should be optimized according to the
discussion contained in the following paragraphs.

Finite values of o can arise due to systematic errors in the calcula-
tion of the background, and N is a number that facilitates the fitting
of data taken at different sample times. Let's discuss each of the new
factors included in the above equations.

The spatial coherence factor f(A),62 (1 2 f(A) > 0) is a function
that depends on tﬁe number of coherence areas falling on the cathode of
the photomultiplier. If the scattered light is spatially coherent over
the entire surface of the cathode, then photoelectrons emitted from one
region of the surface will be correlated with those emitted from other
regions. Under these conditions, f(A) has its maximum value of unity.
On the other hand, if one region of the surface is illuminated with
light that is not coherent with the light falling on other regions,

averaging will occur and the value of f(A) will decrease. In the hetero-

55



dyne case, fh(A) behaves similariy but decreases less rapidly with

decreasing coherence area than does f(A).63

The spatial coherence factors can be theoretically ca]cu]ated64
or experimentally determined.65 In the experiments reported in this
thesis, the precise values of f(A) and fh(A) are not needed. However,
small values of these functions translate into small signal to noise
ratios and are therefore undesirable. The number of coherence areas
falling on the céthode can be reduced by decreasing the size of the pin-
hole placed in front of the PMT. This will, of course, reduce the
detected intensity which in itself could be a problem at short sample
times. With these two factors in mind, a 0.0lin diameter pihho1e was
chosen for use.

It is known that the value of the measured correlation function

62 the

is affected by the_finite sample time of the digital correlator.
number of pulses entering the correlator dufing a single sample time is
proportional to the averaged scattered intensity detected during that
same sample time. In view of this, it is evident that the saﬁp]e time
should be chosen so that it is less than the characteristic fluctuation
time of the scattered light. _ |

The funptional forms of gh(i) and g(t) have been derived for single

66

Lorentzian spectrums. The forms of these functions for a distribution

of relaxation times are not presently known. However, as long as t < <>

67 _Care was taken

both are expected to be approximateiy equal to unity.
to observe this condition.
The heterodyning efficiency-[B],68 is a measure of how well the two

superimposed fields are spatially matched on the detector surface. There
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are three factors that would cause [B] to have values less than the
theoretical maximum value of unity. 1) Angular misalignment of the two
fields, 2) wavefront radius mismatch, and 3) wavefront distortion caused
by the surfaces of the collecting and focusing optics.

In this experiment the local oscillator source, if any, was pro-
duced by particlates within the scattering volume. Therefore, angular
misalignment and wavefront radius mismatch are not expected to contribute
to reductions of [B]. To reduce the affects of wavefront distortion one
should use high quality Schlieren-free lenses.

Systematic errors in the calculated background (ﬁe) can occur for
several reasons. First, long term laser intensity fTuctuations and
secondly, scattering processes with relaxation times long compared to
the process being.étudied. The ¢ in Eqs. (6.2.8) and (6.2.9) accounts
for the misnormalization caused by these sources of error.  The manner
in which ¢ is estimated from the experimental data will be discussed
in the next section.

A data set taken at a single sample time covers about two decades
of time. However, to adequately determine a relaxation funﬁtjon, with
a width parameter of 0.20, six to seven decades are needed. A composite
relaxation function can be produced by combining individual data sets
taken at different sample times. Obviously adjacent (in time) runs
should have the same correlation in the time regime where they overlap.
But because of variations of the count rate and the run time, thg differ-
ent runs did not match but had to be adjusted by a multiplying factor

we call N.
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One of the scattering mechanisms contributing to the background
intensity is fluorescence. We have observed that the fluorescence in
PMMA decreases slowly with time after the initiation of the Taser beam.
This would lead to unreliable results if data was being taken during the
time the fluorescence was changing.

In addition to fluorescence, thé Taser intensity fluctuates by
approximately 15% during the first hour of operation and by about 2%
thereafter. |

The best procedure to follow would be to allow the laser to warm up
for an hour with the beam directed through the sample. When taking data,
take several runs at each sample time. In this manner inconsistant data
could be recognized and discarded.

In conclusion, we did not measure the exact values of the spatial

coherence factor, the heterodyne efficiency etc. As a result, the pro-

n, n

ducts f(A)g{t) and 2 18 S fh(A)gh(T)[B] of Eqs. (6.2.8) and (6.2.9) are
n

treated as adjustable parameters to.give the best fit to the experimental

data. Therefore, the autocorrelation functions simplify to

B
N[C = [0 + ae'z(t/Tc) ] (6.2.10)

—_——
ot
—
1
—
L}
1!

[o+ ahe“(t/Tc)B] (6.2.11)

=
|y |
(5]
-
L1}]
t
—
ot
S
1
bt
—1
]

6.3 Preliminary Discussion

Several groups working independently have discovered that it is
impossible to completely eliminate the particulates or inhomogeneities

responsible for the elastic scattering in PMMA.GQ’70 This is not true
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for at Teast two other clear polymers that have been polymerized under
extremely clean conditions. The Rayleigh-Brillouin spectrums of poly-
styrene and poly(ethyl methacrylate) show very low apparent Lan&au-
Placzek ratios near Tg. This indicates that the samples are essentially
free of eTasfic scattering. As a result the light scattering experiments
in these polymers have been conducted in the homodyne mode.

It has already been pointed out that in a heterodyne experiment,
the intensity of the local oscillator (elastically scattered light in
this case) must be at least 30 times the intensity of the inelastically
scattered 1ight. This insures that the homodyne term in Eq. (2.3.8) can
be neglected. For commercial PMMA rods the heterodyne condition is
probably satisfied as indicated by the very low signal to noise ratios
(S/N < 0.02) obtained by Jackson et al. and Cohen et al. On the other
hand, our samples (taken from commercial sheet PMMA) do not produce as
much elastically scattered light as do the rods. Originally, we had
assumed that the amount of elastically scattered light was still suffi-
cient to satisfy the heterodyne condition. Recent preliminary results
tend to indicate that our assumption may have been incorrect. When an
outside local oscillator is purposely introduced, the slope of the room
temperature relaxation function at 2ms sample time decreases. This
indicates a possible shift of the relaxation function to longer times.
This would not occur if the heterodyne condition had been initially
satisfied. These results are by no means conclusive but they do cast

some doubt on the manner in which the data was analyzed and should be

interpreted.
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The difference in correlation times between a strictly homodyne and

a strictly heterodyne experiment is given by

ter = 2 E T (6.3.1) -
Without the knowledge of the relative intensities of the elastic and
inelastic scattered light, precise values of the correlation times are
impossible to obtain. Due to the uncertainties in these values for the
experiments reported here, the correlation times in Eq. (6.3.1) repre-
sent limiting values. The true correlation times are expected to be
somewhere between these two extremes. For values of B near 0.2, this
range of uncertainty can cover more than two decades of time. Thus,
the combined uncertainties due to a number of other factors (such as
temperature variations) are completely over-shadowed by the uncertainty
in the mode in which the experiment was conducted.

Nevertheless, it will be instructive to go ahead and analyze the
data as if the true mode of the experiment was known. This will enable
us to examine Lee's method of analysis and to pose some interesting
questions pertaining to the interpretation of their results.

Our analysis was conducted with the assumption that the data is
well described by the Williams-Watts relaxation function. Using the

. homodyne representation, the composite data was fit to Eq. (6.2.10).

N[C(t) - 1] = o + ae*z(t/Tc)B (6.3.2)

The following procedure was followed to determine t_., <t> and g in

c
PMMA.
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6.4 Analysis of the Data

At each temperature studied data was taken at as many as seven
different sample times. A typical data set for a sample time of 20ms
is shown in Fig. 6.4.1. The individual data sets from each run were
matched with the aide of a computer program and a video terminal. The
values of N were adjusted to achieve good agreement at the points of
overlap.

The composite relaxation function N[C(t) - 1] was then plotted on
similog paper. A typical plot of this kind, for a temperature of 35°C
is shown in Fig. 6.4.2, The values of the baseline (¢) and the intercept
(0 + a) were estimated from this graph. Due to the breadth of the relaxa-
tion process, the relaxation function, at this temperature, will not
reach its intercept at the shortest times studied (10us) nor will it
reach its baseline at the longest times studied (25sec). This leads to
an uncertainty in the estimated values of these quantities and hence to
uncertainty in the (l/e)2 point (TC). Experience indicates that for
widths parameters near 0.2, at least three decades on either side of
the 1/e point are needed to determine the baseline and the intercept
with an uncertainty of less than 5%. This translates into a 20% uncer-
tainty for T and 10% uncertainty for 8.

The statistics of the individual data sets are also important in
determining the relaxation function. A relatively large spread in
the individual data points at the shortest and Tongest times makes it
more difficult to estimate the intercept and baseline. Poor statistics
also increases the uncertainty in the matching of the individual data

sets.
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Figure 6.4.1

A typical plot of the data as a function of time. The sample
time was 20ms and the temperature was 35°C., The ordinate repre-

sents the number of correlations registered for each channel.

62



0862 08¥2 00l

(995.01 X) dwif
000 006 008 00L 009 00¢S 1010}

00¢

00¢

00l

73
I o

I ! | ! | | |

— cPEl

el

2577

—8PE"

— 0GE1

—1 ¢GE

-4 vGe

2Gel

(SWN03 ,01 X) (19

63



Figure 6.4.2

The composite relaxation function N[C(t) - 1] as a function of
time. Five sets of data was used at five different sample times.
® - 10us, X - 0.2ms, © - 2ms, + - 20ms, and A ~ 0.5 sec. The

temperature was 35°C.
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As the length of the sample time is decreased, the number of photons
detected during a single sample time also decreases. Thus, Tong run
times are needed to obtain good statistics. With the scattered inten-
sities encountered in our-experiment, run times of typically six hours
or more were needed to achieve only fair statistics at a sample time of
10us.

To determine the parameters g and L Eg. (6.3.2) was manipulated

by taking the natural logarithm and then the logarithm of both sides,

log { -%Jn[ELELE%—:—ll-- gﬂ } =g logt -8 log T . (6.8.1)
On the assumption that the data fits the form of Eq. (6.3.2) a plot of
the left-hand side of Eq. (6.4.1) versus the logarithm of time should
yield a straight line. Curve a) of Fig. 6.4.3 shows this kind of plot
for the same data of Fig. 6.4.2. (The points in Fig. 6.4.3 are not
actual data points but are representative points taken from Fig. 6.4.2.
Error bars on these preliminary plots are omitted for clarity.) The
estimated values from Fig. 6.4.2 for ¢ and o+a are 0.20 and 1.10 respect-
ively. The plot is clearly not a straight line. Evidently the above
estimated values are incorrect. The long time end of the graph can be
brought into line by increasing the value of o by 10% to 0.22. The
result of this adjustment is shown in curve b) of Fig. 3.4.3. A further
increase in o by approximately 5% would lead to a noticeable "curving up"

of the data at longest times.

By ihcreasing ota by 9% to 1.20, the short time end of the graph can
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Figure 6.4.3

A plot of log {r%Jn[N ¢ ta =i gﬂ } versus the logarithm
of time. The values of ¢ and a are estimated from Fig. 6.4.2

1.10, b) x ¢ = 0.22 and o+ta = 1.10, and

0.20 and o+a

a)'cr

1.20.

c) og =0.22 and g+a
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be brought in 1ine. This is shown in curve c) of Fig. 6.4.3 and in

Fig. 6.4.4 complete with error bars. Changing the va]ué of the intercept
by +5% from this final value of 1.20 produces a noticable departure

from a straight 1ine. Thus, the data can be linearized by making reason-
able adjustments in the values of the baseline and the intercept.

One of the drawbacks of this method of analysis is the distortion

produced by the double logarithm at short and long times. This leads to
further uncertainty in estimating the values of the intercept and base-
line. The distortion becomes especially noticable when the normalized
relaxation function has values higher than 0.80 and lower than 0.10.
The increase in the length of the error bars at long times in Fig. 6.4.4
represent this type of distortion. The longer error bars at short times
is primarily due to the poor statistics of the data taken at 10us sample
time.

Once a value for the intercept and baseline are decided upon, the
- values of g and T, can be determined from the slope and the y-intercept
respectively. The dotted lines in Fig. 6.4.4 give the extreme values for
the slope and y-intercept and hence give estimates of the uncertainty in
g and Te?

The results are

-
i
o
S
I+

0.2 sec

0.02

H

g = 0.21

It is possible to change the value of the intercept and baseline
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Figure 6.4.4

A plot of log { -é%n[ﬂLELE%—:—ll - %ﬂ } versus the logarithm of
time. The increase in the léngth of the error bars at long times
is due to the distortion produced by the double logarithm. The
increase at short times is due primarily to the poor statistics of

the 10us data. The dotted Tines give the extreme values for the

slope and y-intercept.
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very slightly and still obtain straight lines. But the uncertainties
in B and To 25 2 result of these changes are within the uncertainties
stated above.

The uncertainties produced by the *0.5°C temperature variations are
not expected to be significant. This is due to the expected low activa-
tion energy of the relaxation process at 35°C. Thus the primary source
of uncertainty at this temperature is due to the relatively poor statis-
tics of the data at short times.

The above analysis was conducted in the homodyne mode. As previously
mentioned, the exact mode in which the experimental data was obtained is
~uncertain. If we had analyzed our data in the heterodyne mode, the corre-
lation time, from Eq. (6.5.1), would be approximately 0.015sec. The value
of B would be unchanged.

The results for temperatures above and below the glass temperature

are presented in Table 6.4.5 and will be discussed further in Sec. 6.6.

6.5 Discussion

As previously mentioned, five to seven sets of data were taken at
each temperature studied. Except for the data at 35°C adjacent (in time)
runs did not always match in the time regine where they overlapped. An
example of this problem is illustrated in Fig. 6.5.1.

We investigated this problem at a later date by taking several sets
of data at the same sample time and position in the sample. We found
that about 70% of the runs were consistent with each other and overlapped
smoothly. The other 30% of the runs did not match well, and furthermore,

were inconsistent with each other. These difficulties were most likely



Table 6.4.5

The pertinent parameters of the data taken at various temperatures.

T is the temperature in degrees celsius, 7_ is the (1/e)2 point of

-
the distribution, <T>yom is the average homodyne relaxation time

given by Eq. (3.2.5), ot+a is the intercept, o is the baseline, g

is the width parameter, is the average value of the width para-

Bavg

meter, and-<-r>avg is the average homodyne relaxation time computed

from Eq. (3.2.5) using Eavgf

73



2 . 210 12°0 00°G ) c0Ix9 | o¢l
c0IX2 =D bI'0 | 00 002 | oe¢ | zoIxs | ozl
ol 11'0 | 2¢°0 0G| Ol Y GG
cOIX 2 . 21'0 | sz20 0¢’l 0.¢ 9'0 Ob

cOl S0 120 | 220 02 ob b0 G¢
cOIXb 1'o | 900 0G'l Ol Gl 0¢

[ By [ Bog [ g | o D+0  [009™cy[ (095)2 | (Do) L |

74



Figure 6.5.1

ITlustration showing how some of the sample time data sets did

not always match smoothly in the time regime where they overlap.
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due to laser intensity fluctuations.

The inconsistent data sets for each temperature were discarded and
the remaining sets were used to construct the composite relaxation func-
tions.

These functions were plotted on semilog paper from which the baseline
and intercept were estimated. The data was then plotted in the repre-
sentation of Eq. (6.4.1). The baseline and intercept were adjusted to
give the best possible straight line in a reasonable length of time. In
only one case, 35°C, did sufficient data exist that allowed for easy and
reliable values of the baseline and intercept to be obtained from the
data. In all other cases, one or more sets of data at a given tempera-
ture had to be discarded. This usually resulted in a decrease in the
time window. It has been noted previously that at least three decades of
time on either side of the (1/e) point (B * 0.20) are needed to determine
the baseline and intercept with any reasonable degree of certainty. For
distributions with width parameters near 0.10 these 1imits will have to
be extended to four or more decades, a total of more then eight decades.

To illustrate this problem, consider Fig. 6.5.2a. If the estimated
value of the baseline is larger than the actual value, the data will
curve upward on the long time side of a plot of 1og5{-%4n[ﬂLELE%~:ﬁél—- gﬂ 1
versus Tog t. In addition, if the estimated value of the intercept is
larger than its true value, the data is seen to curve upward on the short
time side of the graph as in Fig. 6.5.2b (dotted curve). On the other
hand, under estimating these parameters will result in a downward curve

of the expected line at both ends as in Fig. 6.5.2b (solid curve). By
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Figure 6.5.2

A hypothetical plot of log {~%4n[ELELE%—:—ll-— gﬂ } versus the
logarithm of time. a) The chosen value of the baseline is too
large and results in a curving up of the data at long times.

b) If the chosen values of both the baseline and intercept are
too large the data curves up at both ends of the graph (dotted
curve). The data curves down at both ends if the baseline and
intercept are under estimated (solid curve). c) If the time win-
dow of the experiment lies between the dotted vertical Tines, ad-
justment in the baseline and the intercept have little affect on

the data.
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appropriate adjustments of the baseline and intercept the data can be
linerized. The width parameter and correlation time can then be extracted
from the data according to the discussions in Sec. 6.4.

The curving of the data as described above can be seen effectively
only if one has data that extends to about three decades of time either
side of the 1/e point. If, for example, one has data that lie in
between the vertical dotted Tines in Fig. 6.5.2c any adjustments of the
baseline and intercept will affect the data very 1ittle. The result is

a large uncertainty for these values.

6.6 Ana]yéis of Additional Data

At730°C two of the five sets were discarded. The resulting time

window extended from 1(}"4

sec to 6.5 sec. The data on a plot of
N[C(t) - 1] versus log t, Fig. 6.6.1, showed very little change in the
rate of decay over this range. The data does not display the character-
istic rounding off to the intercept at short times and leveling out to
the baseline at long times. Evidently, the data fall in the region of
the 1/e point of the distribution. Since there was not sufficient data
to.adequately determine the intercept and baseline a precise value for
the correlation time was impossible to obtain. The average homodyne
relaxation time is in the vicinity of 105 sec with a width parameter of
approximately 0.11.

At 35°C five of the six sets of data were used. The time window

extended from 10us to 25 sec. Figure 6.6.2 shows that, even thbugh there

is still moderate relaxation strength at 10us, the data appear to be
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Figure 6.6.1

The composite relaxation function N[C(t) - 1] as a function of
time. Three sets of data were used at three different sample
times. x = 0.1 ms, + - 10 ms, and &4 - 50 ms. The equation of

the solid curves is given by Eq. (6.3.2). In all cases ¢ = 0.06
and ota = 1.50. The parameters of the curve that best fit the
experimental data are By = 1.52 and g8 = 0.11. The other three
curves are presented for comparison. The 1/e points were adjusted
to give a convenient display. The graph shows convincingly, that
there exists a wide distribution of relaxation times. The tempera-

ture was 30°C.
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Figure 6.6.2

The composite retaxation function N[C(t) - 1] as a function of
time. Five sets of data were taken at five different sample
times. ® - 10us, x - 0.2ms, 0 -2ms, +-20ms, and & - 0.5
sec. The equation for the solid curve is given by Egq. (6.3.2).
o =0.22, *ta = 1.20, t_ = 0.4, and g = 0.21. The temperature
was 35°C.
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approaching the intercept. At the long time side of the graph the base-
line is well defined. Very little relaxation strength remained at
10 sec.

The average relaxation time is about 40 sec and the width parameter
is 0.21.

At 40°C three of the five sets of data were used. The time window
extended from 10us to 2.5sec. As can be seen from Fig. 6.6.3, the data
fall near the expected 1/e point with the baseline and intercept unde-
fined. The average relaxation time is near 370sec with a width para-
meter of Q.17.

At 55°C four of the five sets of data were used. The time window
extended from 0.2ms to 25sec. The relaxation function had decayed to
less than 5% of its maximum value by 10 ms and no noticable change could
be detected past 1 sec. As Fig. 6.6.4 shows most of the data fall to
the Tong time side of the expected 1/e point. The average relaxation

3

time is near 10°sec and the width parameter is 0.11.

Above the glass transition temperature (Tg = 110°C) at 120°C four
of the five sets of data were used. The time window extended from 50us
to 2.5sec. Figure 6.6.5 shows that the data have begun the character-
jstic leveling out to the baseline by 1Oms. On the other hand, there
is sufficient relaxation strength at the shortest times studied to leave
the intercept undefined. The average relaxation time is near 390sec and
the width parameter is about 0.14.

At 130°C four of the five sets of data were used. The time window

extended from 20ps to 3sec. No noticable change in decay can be observed
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Figure 6.6.3

The composite relaxation function N[C(t) - 1] as a function of
time. Three sets of data were used at three different sample
times. ® - 10us, x - 0.1 ms, and + - 10 ms. The equation for

the three curves is given by Eq. (6.3.2). Solid curve; ¢ = 0.30,

1.30,'-:C = 0.33, and B

ota 0.166. Broken curve; ¢ = 0.25,

1]
H
1t

ota = 1.30, T 0.56, and 8 = 0.168. Dotted curve; ¢ = 0.20,

ota = 1.30, Te © 1.34, and g = 0.156. At least three different
curves with widely different correlation times fit the experi-
mental data fairly well. This is an indication of the degree of

uncertainty in Te The temperature was 40°C.
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Figure 6.6.4

The composite relaxation function N[C(t) - 1] as a function of
time. Four sets of data were used at four different sample

times. ® - 20us, x - 0.2 ms, + - 20 ms, and 4 - 0.5 sec. The
equation of the solid curve is given by Eq. (6.3.2). o = 0.32,

3

ota = 1.50, 7, = 1.31 x 107" and B = 0.111. The temperature

was 550°C.
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Figure 6.6.5

The composite relaxation function N[C(t) - 1] as a function of
time. Four sets of data were used at four different sample
times. ® - 50us, x - 0.2 ms, o - 1'ms, and & - 50 ms. The
equation of the solid curve is'given by Eq. (6.3.2}. o = 0.04,

2

o*a = 2.00, t_ = 5.07 x 107°, and B = 0.139. The temperature

was'IZOOC.
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Figure 6.6.6

The composite relaxation function N[C(t) - 1] as a function of
time. Four sets of data were used at four different sample
times. ® - 20us, + - 0.1 ms, x - 2 ms, and * - 50 ms. The
equation of the solid curve is given by Eq. (6.3.2). o = 0.21,
o+a = 4.80, t_ = 5.79 x 107, and § = 0.118. The temperature

was 130°C.
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past 0.5sec. in Fig. 6.6.6. Most of the data 1ie to the Tong time

side of the 1/e point. The data show a definite shift to shorter times
as compared with the 120°C data. The average relaxation times is near
7sec. The width parameter is about 0.12.

A1l retaxation data in the literature for polymers show that the
average relaxation times for the g-process obey the Arrhenius relation.
That is, as the temperature increases the average relaxation time
decreases exponentially. In addition, the width parameters from correla-
tion data have been found to be constant as long as one is not too close
to the glass transition temperature. As can be seen on inspection of
Table 6.4.5, our average relaxation times first decrease then increase
with increasing temperature. This behavior is due to the lack of
precision in the values of g. The value of g fluctuates between 0.11
and 0.21.

The average relaxation time is given by Eq. (3.2.5)
<> = t/8 T (1/8) ; (6.6.1)

As can be seen, <t> is very sensitive to fluctuations and uncertginties
in 8. As a result our average relaxation times are not very.reliab1e.
In order to extract additional information from the data, we
have computed an éverage of the'existing width parameters for the tempera-
ture ranging from 30°C to 35°C. Using this average value we have
computed new aﬁerage relaxation times that now show Arrheniu; behavior.
The Arrhenius equation is given by Eq. (4.3.4)

VO/KBT

<> = C'e (6.6.2)
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where VO is the activation energy, KB is the Boltzmann constant, T is
the temperature in degrees Kelvin, and C' is a constant. Figure 6.6.7
(solid dotts) shows a piot of Tn<t> versus 103/T for our data. From
the slope of the line the activation energy was determined using the
method of least squéres and found to be approximately 45 kcal/mole.
This compares with about 20 kcal/mole from dielectric measurements.

Above the glass transition; polymers exhibit non Arrhanius behavior
as discussed in chapter 4. A plot of In<r> versus 103/T is not a
straight line but is curved indicating an increase in activation energy
as the glass temperature is approached from above. Since we have only
two data points in this temperature region, it is impossible to observe
this behavior.

Figure 6.6.7 shows our data plotted on a graph of In<t> versus
103/T. It is clear that the datartaken above the glass temperature is
distinct from that taken below the glass temperature. It is pdssible :
that these are two separate processes, the a-process above the glass

temperature and the g-process below the glass temperature.

6.7 Data Comparison

The correlation time (rc) has no physical meaning. However, <t> is
interpreted as the average relaxation time of the underlying distribution
of relaxating processes. Only when there is a single relaxation process
does the average rélaxation time equal the correlation time. |

It would be useful to know how to compare corre]atiqn spectroscopy
data with relaxation data from other.types of measurements. One frequently

used method is dielectric relaxation. The sample is placed in an
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Figure 6.6.7

A plot of In<t> versus 103/T. The solid line represents a Teast
square fit to the experimental data. The slope of the Tine is
2.27 X 104 and the y-intercept is -66.4. The activation energy

is approximately 45 kcal/mole. ® - The a-process above the glass
transition temperature. e - The g-process below the glass transi-

tion temperature.
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oscillating electric field with angular frequency w. The imaginary
part of the complex dielectric constant, E"(w), is measured as a
function of frequency.
A semi-empirical equation purposed by Cole and Davidson that has
been successful in fitting dielectric data is given by
E, - Es

E"(w) = Ep + 3 (6.7.1)

where ES and E. are the limiting low and high frequency dielectric
constants of the sample.?1
A graph of E"(w) versus w shows a maximum when wr.p = 1. The

average relaxation time is given by Eq. (3.3.3)

<t>ep = Bep/Unax = TepBep (6.7.2)

The values of <T>0p and <r> are the same only when Bep = 1.0. For
values of Bep less than one, <t> is slightly larger than <T>ep-
Empirical relationships have been devised to compare photon correlation

72 Unfortunately, mbst dielectric

data and dielectric data if Beo is known.
data is presented in the form of an Arrhenius plot of log Tcp (not Tog
<T>CD) versus the logarithm of time. Furthermore, Bep is not givén which
makes it impossible to determine <t>qp from 7op using Eq. (6.7.2). Thus,
with the exception of the activation energies, comparison of our data
with dielectric data was not possible.

The Fabry-Perot interferometer‘can be utilized to measure the half-

width at half-height of the power spectrum of the scattered Iight. As
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mentioned previously, if the relaxation function is a single exponential
decay, then the power spectrum is a Lorentzian with half-width at half-
height I given by 1/t. For a distribution of relaxation times the half-
widths at half-height are smaller than would be predicted using 1/<t>.
Here again, empirical relationships exist that would allow one to compare

photon correlation data and power spectrum data.73

6.8 Discussion

The main contribution of this report is the demonstration that a
distribution of relaxation times exists at all temperatures studied
in PMMA. This is in contfast to the results of Jackson et al. and
Cohen et al. As mentioned previously, both observed two exponentially
decaying processes.

In both publications, the behavior of the correlation function at
a single sample time was discussed. When the correlation function was
plotted versus time it appeared as if two exponentially decaying processes
were present. A fast process in front of the long tail of a slower
process. We have found that when a wide distribution of relaxation times
are present, the correlation functions at any sample time frequenfiy have
this same type of structure.

One must exeréise caution when éttempting to extract meaningfu]
information from déta taken at a single sample time. When a wide distri-
bution of relaxation times is présent, six or more decades of time will
be needed to adequately determine the relaxation function. A single

sample time usually covers only two decades.
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As mentioned in Sec. 6.1, Lee et al. reported the observation of
two separate relaxation processes in polystyrene. They were the first to
introduce the idea of plotting the data in the representation of Eq.
(6.4.1). Figure 6.8.1 is a rebroduction of Lee et al's. data at a
temperature of 111.5°C plotted in this manner. Note the striking resemb-
lance of their p]pt and the plot of our data before the adjustment of
the intercept (curve b) Fig. 6.4.3. Lee et al. attributed the break in
the slope of their plot to the presence of two relaxation processes.

The slope of the line at short times is near one indicating a single
exponential. 'The relaxation time of 0.035sec was obtained from the
y-intercept. The slope of the Tine at longer times is near 0.4. The
correlation time obtained was 0.79 x 10'3 sec. The results from the line
at long times is consistent with Patterson et al's. earlier results in
po1ystyrene;

In the same publication the composite autocorrelation function is
presented as a function of time (Fig. 6.8.2). We now make a critical
test to their interpretation of the break in the linear slope of Fig.
6.8.1. Using the values they obtained for the widths parameters and 7
correlation times, the combined relaxation functions are plotted on the
same graph as the experimental data (Fig. 6.8.2 broken curve). As can
be seen, -the curve remains well below the experimental data up to ébout
10'2 sec. At times longer than this the curve describes the data fairly
well.

It appears that the value Lee et al. choose for the 1ﬁtércept is

too Tow. Figure 6.8.3 shows the results of increasing the intercept by
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Figure 6.8.1

A reproduction of Lee et al's. data at a temperature of 111.5°C

in polystyrene.
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Figure 6.8.2

A reproduction of Lee et al's. data. The composite autocorrela-
tion function as a function of time. The dotted curve represents
the combined relaxation functions using the parameters reported
by Lee et al. The solid curve represents the new relaxation

function using the new parameters.
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Figure 6.8.3

A plot of Lee et al's. data after an 8% increase in the value

of the intercept.
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8%. The data points now fit well to a single straight line. The new
values of g and T, can then be determined in the usual manner.

The new relaxation function using the new parameters is shown on
the same graph as the experimental data (Fig. 6.8.2 solid curve). As
can be seen, the new relaxation function describes the data much better
then the two relaxation functions that Lee et al. reported.

It appears that the break in the linear slope in Lee et al's. plot
is the result of misnormalization and not to the presence of two
relaxation processes.

Experience has shown that digftal correlation spectroscépy is not
well suited for the separation of distinct processes. This is especially
true when the experiments have been conducted in the homodyne mode.
However, Lee et al's. method‘may possibly be usefu} in separating relaxa-
tion processes from a heterodyne spectrum. |

To test the validity of the graphical method we described in Sec.
6.4, the scattered 1ight from 0.234um diameter pojystyrene balls in water
solution was analyzed. The relaxation function for such a system is
well described by a single exponential with a relaxation time of
2)-1

T, = (2Dg

at a temperature of 20°C, %c = 4,65 x 10'4 sec. Using the graphical

, where D is the diffusion constant. For 90° scattering

method we obtained a value of 4.6 X 10"4 sec for tc'and 1.04 for g(g = 1.00
for a single exponential). Thus, the graphical method appears to be a
creditable way of obtaining the bertinent parameters of the relaxation

function.
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Chapter VII

CONCLUSION

Photon correlation spectrdscopy was used to measure average relaxa-
tion times and width parameters in PMMA. In contrast to previous experi-
ments performed by other workers, a wide distribution of relaxation times
was found at all temperatures. The width parameters below the glass
temperature were near 0.15 and about 0.13 above. We were unable to
separate the data, at any temperature, into two singly relaxating processes
as did Cohen et al. and Jackson et al.

The Williams-Watts relaxation function was used as a fitting func-
tion. This function seemed to describe the data very well; we
did not attempt to fit the data to any other function.

Below the glass temperature, the observed relaxating process was
attributed to rotations of the ester side-group and local motion of the
main chain. This process is commonly referred to as the g-process.

The relaxation times above the glass temperature appeared to be
distinct from those below the glass temperature. This re]axating process
was attributed to the a-process, microbrownian motion of small molecules
and main chain segmental motion.

The activation energy for the g-process was found to be about 45
kcal/mole compared to about 20 kcal/mo1e as deterﬁined by dielectric

measurements. The discrepancy is believed to be due to the 1argé uncer-
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tainties attached to our relaxation times and width parameters.
A graphical method, first utilized by Lee et al., was used to

obtain relaxation times and width parameters. The method has several

N[C(t) - 1] _
a

log t, suffers from distortion produced by the double Togarithms at

drawbacks. The data, on a plot of 109‘{—%ﬂn[ gﬂ } versus
short and long times. In addition, many hours are needed to plot
the data by hand. The best procedure would be to use a nonlinear least
squares computer program to extract the desired parameters from the
data. -

Several factors Ted to large uncertainties in our results and'are
discussed below.

At the present time, we are uncertain as to whether the experiment
was conducted in the homodyne or heterodyne mode. For width parameters

near 0.15, the difference between gt and THet is almost three decades

om
of time. Before further studies are made in PMMA, this problem must
be solved. |

Due to laser intensity fluctuations individual data sets taken at
different sample times did not always overlap smoothly. A laser intensity
stablizer is a prerequisite for further light-scattering studies in
poiymers.

Poor statistics at short sample times made estimating the intercept
difficult and increased the uncertainty in matching adjacent data.
Twelve or more hours at a sample time of lus may be needed to achieve

good statistics. Increasing the intensity of the incident laser will

not solve the problem. With high laser intensities degradation of the
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sample was observed after several hours.

Due to the breadth of the experimental relaxation functions, as
many as three or more decades of time either side of the 1/e point may
be needed to properly characterize the data. Correlation spectroscopy
is Timited to a time window of about lus to 100sec., a total of eight
decades. Thus, we would expect the relaxation functions that would be
the easiest to chafacterize would have 1/e points that fall between
about 1ms and 0.lsec. This represents the mid-range of the correlation
spectroscopists time window. According to our results in PMMA, the
temperature range that would most likely yield meaningful results for
the B-process, is between 25°C and 45°C. And for the a-process, between

120°C and 115°C.
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ABSTRACT

Average molecular relaxation times and activation energies in Poly
(methyl methacrylate)(PMMA) were measured using digital correlation
spectroscopy. The average relaxation time obtained by this method is
related to the half-width at half-height of the corresponding power
spectrum. Measurements were made above and below the glass transition
temperature (110°C). Contrary to previous light-scattering results in
PMMA a wide distribution of relaxation times were found at all tempera-
tures studied. The data were fit to the empirical Williams-Watts relaxa-
tion function. An Arrhenius plot of the data showed two distinct pro-
cesses, one above and one below the glass transition temperature. The
relaxation times above the glass temperature were attributed to the
a-process, microbrownian motion and main-chain segmental motion. And the
relaxation times below the glass temperature were attributed to rotations

of the ester side-group and Tocal motion of the main-chain.



