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Abstract. Research to date regarding the relative advantages of local versus non-local sources of plant

material for restoration has produced equivocal results. This research has typically focused on the

performance of individual species at individual locations and without addressing higher order community

and ecosystem properties. We investigated the effects of seed source (local, non-local, and mixed-source

treatments) on species, community, and ecosystem properties under a range of environmental conditions

using reciprocal common gardens at locations in three states (Nebraska, Kansas, and Oklahoma). In order

to mimic the restoration of grassland vegetation under realistic conditions where multiple species interact

with one another during establishment, we seeded twelve species together between December, 2009 and

January, 2010, and assessed responses in 2010, 2011, and 2012. Both common garden location and seed

source affected the establishment of individual species (measured as species-specific biomass), but

responses were not consistent among species. No seed source had a consistent advantage across all sites or

across all species. In a few cases, the local source was most productive for a particular species at one

location, but no species showed a consistent local advantage across locations or years. Rather, in two out of

three species that exhibited a local advantage at one location, the same source was also the most productive

at a non-local site. Community structure and species richness differed among locations in all years, but

source did not significantly affect seeded species richness, and source only affected community structure in

2011. Despite source effects on individual species and community structure, seed source had no significant

effects on the combined productivity of seeded species. These results do not support the targeted use of

local sources when the establishment of sown species and primary productivity are restoration objectives.

Using mixed-source species mixtures may increase chances of restoration success, given the idiosyncrasy of

individual species’ responses among locations and potential site-specific environmental changes likely to

occur in the future.
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INTRODUCTION

Phenotypes and genotypes of plant species

vary across spatial and environmental gradients

(Gustafson et al. 2004, Moncada et al. 2007,

Weißhuhn et al. 2011). Such differences some-

times form the basis for recommending the use of

locally sourced plant material when establishing,

or restoring, native plant communities (Hamilton

2001, Miller et al. 2011), as do concerns regarding
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the loss of local genetic diversity with the
introduction of new genotypes (Wilkinson 2001,
Hufford and Mazer 2003). However, the presence
or direction of source effects can vary among
species (Rice and Knapp 2008, Miller et al. 2011,
Carter and Blair 2012), and there is little
empirical support to date for the assumption
that local sources provide a competitive advan-
tage or enhanced restoration outcomes when
multiple species are used (but see Weißhuhn et
al. 2012). Variable and changing environmental
conditions can also affect the relative success of
different plant sources. This may be increasingly
important, as anthropogenic climate change
(Strzepek et al. 2010, Rahmstorf and Coumou
2011), nutrient deposition (Galloway et al. 2004),
increases in atmospheric CO2 (Hansen et al. 1981,
O’ishi et al. 2009), and the presence of introduced
producers and consumers (Walther et al. 2009,
Burgiel and Muir 2010) continue to cause
worldwide shifts from historical environments.
Recognition of the many potential effects of such
changes has increased debate regarding man-
aged relocation (e.g., McDonald-Madden et al.
2011). Seastedt et al. (2008) also emphasize that
global change may necessitate management
towards novel rather than historic communities,
if the management goal is ecosystem stability and
function. Further, landscape fragmentation has
reduced many populations to small, isolated
relicts, which may possess reduced genetic
diversity (Ellstrand and Elam 1993, Keller and
Waller 2002). This makes it more likely that low
genetic variation may limit their evolutionary
potential to meet environmental challenges
(Broadhurst et al. 2008), although these effects
should be expected to vary among species with
different traits (e.g., pollination syndromes) or
whose populations are structured at different
spatial scales (Loveless and Hamrick 1984).
Where genetic variation is limited, increasing or
changing available variation may improve or
change responses to natural selection (Rice and
Emery 2003). Harris et al. (2006) and Broadhurst
et al. (2008) ask whether the exclusive use of local
material limits the ability of restoration projects
to adapt to predicted climate change, and Harris
et al. (2006) call for the use of common garden
experiments as ‘‘proactive research and action’’
in the context of global change. In particular,
multiple common garden sites can provide

insights into the relative success of different
sources of plant material under a range of
environmental conditions.

In this study, we used three common garden
locations in the U.S. Central Plains to assess the
effects of different seed sources (local, non-local,
and mixed) on the establishment of individual
species growing in mixed species communities,
the combined aboveground productivity of all
seeded species, and species richness and com-
munity structure. These common gardens were
established in the context of tallgrass prairie
restorations, using native grassland species
common to all sites. Our experimental approach
(common gardens at multiple locations with
simultaneous source manipulation of multiple
species) was motivated by the fact that few
common garden studies to date have assessed
whether any intraspecific differences observed
among sources are consistent across multiple
locations or among co-occurring species (e.g.,
Waser and Price 1985, Bischoff et al. 2006). Most
common garden studies also have grown plant
species in isolation, precluding any effects of
interspecific interactions (e.g., Miller et al. 2011).
However, the presence of other species can
affect the magnitude of source effects for focal
species (Bischoff et al. 2006, Rice and Knapp
2008). In reality the restoration of focal plant
populations often occurs in the presence of other
species, and most restoration projects involve
the introduction of native vegetation represent-
ing several or many species (e.g., Cottam and
Wilson 1966, Middleton et al. 2010). Despite this,
we are aware of only a single study, which
utilized a single common site, that simulta-
neously manipulated sources of multiple species
and then evaluated species, community, and
ecosystem responses concurrently (Weißhuhn et
al. 2012). Filling this gap in knowledge is
important, because individual species and/or
community properties (e.g., richness or domi-
nance) can affect productivity (Huston 1997,
Smith and Knapp 2003, Fornara and Tilman
2009, Isbell et al. 2011). Fig. 1 presents a
framework illustrating how single species re-
sponses might affect community and ecosystem
properties (e.g., productivity). If seed source
affects all species (circles, size representing
species-specific biomass) the same way, it
should also affect their combined productivity
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(first column, Fig. 1). However, productivity
may also vary if seed source effects exist but
exhibit different patterns among species (second
column, Fig. 1), although the differential seed
source effects among species could also offset
one-another. For example, there may tend to be
one species that performs very well in every
seed source treatment, but the identity of that
species may vary among treatments. Finally, if
there is no effect of seed source on any species,
then community structure and productivity
should not differ among seed source treatments
(third column, Fig. 1).

We established common gardens of tallgrass
prairie restorations in Kansas (KS), Nebraska
(NE), and Oklahoma (OK), using seed sources
from each location in each of the common garden

sites. Each common garden included plots with
local sources only, non-local sources from the two
other sites, and a mix of local and non-local
sources. Our framework allowed us to ask: (1)
Are there seed source effects on the establish-
ment of individual seeded species when they are
grown in the context of plant communities? (2)
Does seed source affect community properties
such as structure or richness? (3) Does seed
source affect the combined productivity of
seeded species? Both productivity and richness
are common measures of restoration success
(Ehrenfeld 2001, Guo 2007). We predicted that
because our mixed treatment contains at least
some variation from each of the locations for each
species, that it should not underperform in terms
of total productivity or that of its constituent

Fig. 1. Conceptual framework showing how individual species responses might affect productivity at one

location (common garden). Solid arrows indicate effects, the dashed arrow represents potential effects, and

intersecting solid lines indicate no effect. In the first column, similar species responses to seed source

cumulatively affect productivity. In the second column, differential species responses to seed source affect

community structure, which may or may not affect productivity depending on the substitutability of responses.

In the third column, species responses differ homogenously among sources, leading to similar community

structures.
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seeded species relative to other treatments
(Broadhurst et al. 2008).

METHODS

Species selection and reciprocal common gardens
We chose twelve species that occur commonly

in native grasslands near all three common
garden locations. We identified many more
species that occurred in grasslands near all
locations, but the twelve species we chose
represent the subset of species that were both
common and that produced adequate amounts
of viable seed in 2009. These included warm-
season grasses and composite forb and legume
species, groups that respectively contribute the
most to dominance and diversity in Central
North American grasslands (Howe 1994, Towne
2002). We collected seeds from native prairies
near each common garden location (generally
within 10 km, exceptions in Appendix B) and
stored seeds in paper bags at 20–248C for
between 0.5 and 5 months. We tested seeds for
viability (tetrazolium test) at the Kansas Crop
Improvement Association seed laboratory to
permit the sowing of equal weights of live seeds
for each species within each mixture to each
treatment plot.

Seeds were hand broadcast into ex-arable plots
at locations in Nebraska (NE), Kansas (KS), and
Oklahoma (OK) in late December, 2009, and
early January, 2010. These locations were chosen
to cover a broad range of regional abiotic
conditions. In particular, long term average
temperature and precipitation, observed precip-
itation during this study, and soil texture varied
among locations (see Appendix A for details).

Plots were 9 3 9 m with 0.5 m buffers for each
of four seed source treatments and arranged in a
randomized complete block design at each
location (16 total plots/location 3 3 locations).
Treatments included seed sourced from single
locations (3 treatments: NE, KS, and OK) and a
treatment that mixed seed from the three sources
in equal proportions. To ensure uniform disper-
sal of species within plots, seed additions for all
treatments contained equal live weights for each
of the twelve added grassland species (see
Appendix B for sowing details). We assumed
that seed banks and dispersal from adjacent
locations had minimal effects for sown species

(all perennial). This assumption is supported by
histories of crop production at all locations
immediately prior to seed addition and because
nearest populations for all species used were .20
m away from plots. Regeneration of native
vegetation in tallgrass prairie is limited over
periods of years or decades, even where remnant
prairie is adjacent (Kindscher and Tieszen 1998).

Sampling
We used accumulated aboveground biomass at

the end of the growing season as an index of
aboveground net primary productivity (ANPP).
Biomass was harvested to within 1 cm of the soil
surface during September 4–18, 2010, September
18–26, 2011, and August 18–26, 2012. Harvests
were timed to occur at or near peak standing
crop. In 2010, we harvested aboveground bio-
mass from within each of six 0.25-m2 quadrats
placed randomly within each plot (6 subsamples/
plot) at each common garden location and sorted
it by seeded and adventitious species. Seeded
biomass was not sorted by individual species in
2010. These methods were repeated in 2011 and
2012, but we additionally sorted seeded biomass
by species. Due to a wildfire in 2011 biomass
could not be collected at the OK location. The OK
location was not sampled in 2012 either, because
seeded species were nearly absent from the
location (;1–2 plants/treatment plot), perhaps
due to drought (Appendix A). All samples were
stored in paper bags for no more than one day
prior to being dried for 48–72 hours at 608C. We
measured seeded species richness at all three
locations in 2010 and 2011 and in KS and NE in
2012 as the total number of species observed
from May and August censuses of 16 randomly
placed 0.25 m2 quadrats (area 4 m2) in each plot
(plot area 9 m2).

Data analysis
We used separate generalized linear mixed

models in each year to test for differences in
biomass for the each of the four most productive
species, total seeded biomass, and species rich-
ness. Seed source treatment and common garden
location were fixed effects and block within
location was as a random effect. We performed
these analyses in SAS version 9.2 (2012, Cary,
NC) using Proc Mixed with Kenward-Roger
degrees of freedom estimation. In cases of
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unequal variances among locations, we used the
local ¼ exp(trt) option within the REPEATED
statement to model unequal variances and
Satterthwaite degrees of freedom estimation.
Family-wise error rates were controlled for
pairwise contrasts using the Tukey-Kramer alpha
adjustment in the lsmeans statement (adjust ¼
Tukey).

Community structure analyses were executed
within the VEGAN package (Oksanen et al. 2012)
using Program R version 2.14.2 (R Development
Core Team 2012). Separate analyses were per-
formed for the second (2011) and third (2012)
growing seasons. We used non-metric multidi-
mensional (NMDS) scaling with Ružička (quan-
titative Jaccard) dissimilarity matrices based on
biomass (all seeded species) to visualize differ-
ences in seed community structure between NE
and KS locations and among seed source
treatments using function ‘‘metaMDS’’. We as-
sessed significance of source, location, and their
interaction for explaining community structure
using permutational multivariate analysis of
variance on Ružička distance matrices executed
with function ‘‘adonis’’. In cases of significant
location 3 source interaction, we tested effects of
source within individual locations.

RESULTS

Individual species productivity
In order, the four most abundant species in

terms of biomass across years and locations were
Sorghastrum nutans, Oligoneuron rigidum, Achillea
millefolium, and Elymus canadensis (hereafter
referred to by genus). We focused on biomass
patterns for these species (representing 92.4% of
total seeded species biomass across locations and
years), but biomass and associated statistics for
less abundant species are presented in Appendix
C. Source effects differed among locations,
species, and years (Fig. 2).

Seed source effects on Sorghastrum biomass
differed between locations in both years, and the
KS source was consistently among the most
productive (Fig. 2a–b). The OK source was more
productive than the NE source at the NE location
in both years (Fig. 2a–b), but the NE source was
more productive than the OK source at the KS
location in 2012 (Fig. 2b). The mixed source
treatment was not the most productive at either

location in either year, but it was as productive as
at least one other treatment (Fig. 2a–b).

Productivity was greatest at the NE location
for Oligoneuron in both years (Fig. 2c–d). In 2011,
the NE source was more productive than the KS
and OK sources at the NE location (Fig. 2c), but
there were not differences among source treat-
ments in 2012 (Fig. 2d). In both years the mixed
source did not differ significantly in productivity
from the most productive and least productive
source treatments at both locations (Fig. 2c–d).

Productivity for Achillea was greatest at the NE
location in 2011 and greatest at the KS location in
2012 (Fig. 2e–f ). There were no seed source
effects on Achillea productivity (Fig. 2e–f ).

Seed source affected Elymus productivity
similarly at the NE and KS locations in 2011,
but there was no evidence for seed source effects
in 2012 (Fig. 2g–h). The NE source was consis-
tently among the most productive at the KS and
NE locations in 2011 (Fig. 2g), and the mixed
source did not differ significantly in productivity
from the most productive and least productive
source treatments across locations and years (Fig.
2g–h).

Total seeded species productivity (ANPP)
The total aboveground productivity of com-

bined seeded species differed among locations in
2010 and 2011with greater productivity at the NE
location (Fig. 3a, b). However, seeded productiv-
ity was not significantly different between the KS
and NE locations in 2012 (Fig. 3c). Seeded
productivity did not significantly differ among
source treatments in any year (Fig. 3).

Community properties
Species richness differed among locations in

each year, but there were no significant effects of
seed source on species richness (Fig. 4). Commu-
nity structure differed among locations in 2011
and 2012 and differed among sources in 2011, but
source effects on community structure in 2011
varied by location (Fig. 5). When analyzed within
each common garden location, source effects
remained significant (Adonis within locations:
sourceNE; F3,15 ¼ 2.25, p ¼ 0.005, sourceKS; F3,15 ¼
1.95, p ¼ 0.006). Generally, Sorghastrum was
relatively more abundant than average at the KS
common garden location, Elymus and Oligoneuron
were relatively more abundant than average at the
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NE location, and the proportional representation
of Achillea in communities in KS and NE differed
among years (Fig. 5).

DISCUSSION

Our results do not indicate a general local
advantage in terms of aboveground productivity
of individual species or the total community, nor
did source affect the richness of seeded species.
Effects of source on community structure were

detectable in 2011, but not 2012. Although there
were some significant source effects on the
productivity of individual species, where the
local source for a particular species at a particular
location performed best, the same source also
performed well where it was not local (e.g.,
Sorghastrum sourced from KS, Elymus sourced
from NE). The presence of source effects or the
identity of the source that performed best also
differed among species. Such equivocal or
idiosyncratic results regarding local advantage

Fig. 2. Aboveground biomass from 2011 (a, c, e, g) and from 2012 (b, d, f, h) for the four most abundant species

across years and common garden locations Sorghastrum, Oligoneuron, Achillea, and Elymus (mean 6 1 SE). Lower-

case letters indicate significant differences among sources within locations (when the interaction p-value was �
0.05) or among sources across locations (when the interaction p-value was . 0.05) after alpha adjustment (adjust

¼Tukey, SAS). Statistics (F-statistic, with degrees of freedom in subscript) and significance are provided for seed

source, location and seed source 3 location effects from Proc Mixed ANOVA.
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for different species are not unique (Bischoff et al.
2006, Leimu and Fischer 2008, Hereford 2009,
Weißhuhn et al. 2011), suggesting that the
assumption of local advantage is not well
supported by empirical data. One potential
reason is that local environments can experience
high variability in environmental conditions,
which may alter the advantages of different
ecotypes. For example, conditions in KS and
OK were drier than average throughout this
study, while conditions in NE were wetter than
average in 2011 and drier than average in 2012
(Appendix A). In addition, the contemporary
environments of many sites may not reflect past
conditions due to prior agricultural use (Tiessen
et al. 1982) and larger scale environmental
changes (e.g., Hansen et al. 1981, Galloway et
al. 2004). Such changes have the potential to
interact to create conditions that differ from
historical conditions to which local sources may
be matched (Broadhurst et al. 2008, Breed et al.
2013), which could influence source effects.
Source effects were more pronounced among
the most abundant species in 2011 than 2012,
which may explain why we detected seed source
effects on community structure in 2011 but not
2012 (Fig. 1). Productivity may not have signif-
icantly differed among sources, even in 2011
when community structure differed, because
sources did not differ in terms of seeded species
richness (Isbell et al. 2011). This may have
maintained the possibility that a species with
relatively high productivity could compensate
for another with lower productivity (e.g., Yachi
and Loreau 1999).

Differences in environmental conditions could
explain effects of site location on individual sown
species and their combined productivity. Soil
texture, and observed temperature and precipi-
tation varied across common garden locations
(see Appendix A). The productivity of C4 grasses
in Central Plains grasslands is positively associ-
ated with precipitation and soil sand content, but
the productivity of C3 grasses is negatively
associated with soil sand content (Epstein et al.
1997a), and varies with temperature when
precipitation effects are accounted for (Epstein
et al. 1997b). Here, identical seed mixtures
resulted in different community structures at
different locations, which suggests that location
environmental differences were important deter-

Fig. 3. Total aboveground biomass for all seed

species combined in (a) 2010, (b) 2011, and (c) 2012

(mean 6 1 SE). Upper-case letters indicate significant

differences among locations. Statistics and significance

follow Fig. 2.
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minants of community structure (e.g., Tilman
1997, Myers and Harms 2011). Differences in
productivity among common garden locations
may also result from differences in communities,
as well as differences in the performance of
individual species (e.g., Kahmen et al. 2005).

The lack of generality in effects of seed source
on single species is consistent with our prior
work that focused on the initial establishment
and survival of Sorghastrum, Oligoneuron, and
Elymus within this experiment (Carter and Blair
2012). These patterns are unfortunate when
viewed in terms of idiosyncratic and variable
patterns of source effects among individual
species, because predictability is a desired char-
acteristic of restoration projects (Benayas et al.
2009). However, seed source may be less impor-
tant for higher order properties like productivity,
because source effects on combined productivity
need not mirror source effects on the productiv-
ity of single species (Fig. 1). Tilman (1996)
showed that instability in productivity within
species could contribute to the stability of
productivity among species.

While mixtures of the three sources did not
significantly outperform single source treatments
in terms of combined productivity or the
productivity of individual species, mixtures also
never performed significantly worse than the
least productive single source treatment. Given
the lack of consistent source responses among
species or locations, the mixing of multiple seed
sources may deserve further exploration as a
potential means of decreasing the chance of low
single species establishment or combined pro-
ductivity across variable locations

Had we used single species in a single
common garden in a single year, or had we
investigated many species in isolation from
interspecific interactions, we may have found
support for local advantage. In 2011, three of
eight, and in 2012, one of eight single species
responses would have suggested that local
sources establish best (Fig. 2). Conversely, we
may have found no source effects at all. This may,
in part, explain why our conclusions differ from
those of Weißhuhn et al. (2012), which were
based on one common garden. While we utilized
only a subset of the potential diversity in tallgrass
prairie systems, our results strongly suggest that
investigations of source effects on single species,

Fig. 4. Species richness in (a) 2010, (b) 2011, and (c)

2012 for all seeded species combined (mean 6 1 SE).

Upper-case letters indicate significant differences

among locations. Statistics and significance follow

Fig. 2.
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particularly if narrow in spatial or temporal
scope, have the potential to misinform the
management or restoration of natural systems.

Our results from multiple species grown in the
more realistic context of interspecific interactions
do not support the targeted utilization of local
sources in restoration. The prominence of year-
to-year versus spatial variability in our study
system (e.g., precipitation, Appendix A) may
have reduced the development of local adaption
(Kassen 2002, Kawecki and Ebert 2004). Alterna-
tively natural selection may still act, or have
acted in the past, to tune source populations to
their local environments (Linhart and Grant
1996). However, environmental changes and
potential losses of genetic diversity (see Intro-
duction) may lead to changes in the relative
performance of sources at particular locations
and may affect whether or not the raw genetic
material is present for selection in the first place.
Managed relocation based on performance mea-
sures as an alternative approach to relying on
local sources for restoration and conservation
may address such mismatches between genes
and environments (McDonald-Madden et al.
2011). However, our research suggests that
unique species responses will likely make that
approach less tractable when the restoration of
communities is an objective. We may safely bet
that environmental changes will continue, but
there is more uncertainty surrounding the pre-
diction of local than global change (Kerr 2011).
Using mixed-source species mixtures, which did
not perform significantly worse than exclusively
locally-sourced species mixtures under present
conditions, may represent an alternative way of
hedging bets in a changing world.
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and H. Müller-Schärer. 2006. Detecting local
adaptation in widespread grassland species: the
importance of scale and local plant community.
Journal of Applied Ecology 94:1130–1142.

Breed, M. F., M. G. Stead, K. M. Ottewell, M. G.
Gardner, and A. J. Lowe. 2013. Which provenance
and where? Seed sourcing strategies for revegeta-
tion in a changing environment. Conservation
Genetics 14:1–10.

Broadhurst, L. M., A. Lowe, D. J. Coates, S. A.
Cunningham, M. McDonald, P. A. Vesk, and C.
Yates. 2008. Seed supply for broad scale restoration:
maximizing evolutionary potential. Evolutionary
Applications 1:587–597.

Burgiel, S. W., and A. A. Muir. 2010. Invasive species,
climate change and ecosystem-based adaptation:
addressing multiple drivers of global change.
Global Invasive Species Program, Washington,
D.C., USA.

Carter, D. L., and J. M. Blair. 2012. Seed source affects
establishment and survival for three grassland
species sown into reciprocal common gardens.
Ecosphere 3:art102.

Cottam, G., and H. C. Wilson. 1966. Community
dynamics on an artificial prairie. Ecology 47:88–96.

Ehrenfeld, J. G. 2001. Defining the limits of restoration:
the need for realistic goals. Restoration Ecology
8:2–9.

Epstein, H. E., W. K. Lauenroth, I. C. Burke, and D. P.
Coffin. 1997a. Productivity patterns of C3 and C4

functional types in the U.S. Great Plains. Ecology
78:722–731.

Epstein, H. E., W. K. Lauenroth, and I. C. Burke. 1997b.
Effects of temperature and soil texture on ANPP in
the U.S. Great Plains. Ecology 78:2628–2631.

Ellstrand, N. C., and D. R. Elam. 1993. Population
genetic consequences of small population size:
implications for plant conservation. Annual Re-
view of Ecology and Systematics 24:217–242.

Fornara, D. A., and D. Tilman. 2009. Ecological
mechanisms associated with the positive diversi-
ty-productivity relationship in an N-limited grass-
land. Ecology 90:408–418.

Galloway, J. N., F. J. Dentener, D. G. Capone, E. W.
Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner,
C. C. Cleveland, P. A. Green, E. A. Holland, D. M.
Karl, A. F. Michaels, J. H. Porter, A. R. Townsend,
and C. J. Voosmarty. 2004. Nitrogen cycles: past,
present, and future. Biogeochemistry 70:153–226.

Guo, Q. 2007. The diversity-biomass-productivity
relationships in grassland management and resto-

ration. Basic and Applied Ecology 8:199–208.
Gustafson, D. J., D. J. Gibson, and D. L. Nickrent. 2004.

Conservation genetics of two co-dominant grass
species in an endangered grassland ecosystem.
Journal of Applied Ecology 41:389–397.

Hamilton, N. R. S. 2001. Is local provenance important
in habitat creation? A reply. Journal of Applied
Ecology 38:1374–1376.

Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D.
Rind, and G. Russell. 1981. Climate impact of
increasing atmospheric carbon-dioxide. Science
213:957–966.

Harris, J. A., R. J. Hobbs, E. Higgs, and J. Aronson.
2006. Ecological restoration and global climate
change. Restoration Ecology 14:170–176.

Hereford, J. 2009. A quantitative survey of local
adaptation and fitness trade-offs. American Natu-
ralist 173:579–588.

Howe, H. F. 1994. Response of early-flowering and
late-flowering plants to fire season in experimental
prairies. Ecological Applications 4:121–133.

Hufford, K. M., and S. J. Mazer. 2003. Plant ecotypes:
genetic differentiation in the age of ecological
restoration. Trends in Ecology & Evolution
18:147–155.

Huston, M. A. 1997. Hidden treatments in ecological
experiments: re-evaluating the ecosystem function
of biodiversity. Oecologia 110:449–460.

Isbell, F., V. Calcagno, A. Hector, J. Connolly, W. S.
Harpole, P. B. Reich, M. Scherer-Lorenzen, B.
Schmid, D. Tilman, J. van Ruijven, A. Weigelt, B.
Wilsey, E. Zavaleta, and M. Loreau. 2011. High
plant diversity is needed to maintain ecosystem
services. Nature 477:199–202.

Kahmen, A., J. Perner, V. Audorff, W. Weisser, and N.
Buchman. 2005. Effects of plant diversity, commu-
nity composition and environmental parameters on
productivity in montane European grasslands.
Oecologia 142:606–615.

Kassen, R. 2002. The experimental evolution of
specialists, generalists, and the maintenance of
diversity. Journal of Evolutionary Biology 15:173–
190.

Kawecki, T. J., and D. Ebert. 2004. Conceptual issues in
local adaptation. Ecology Letters 7:1225–1241.

Keller, L. F., and D. M. Waller. 2002. Inbreeding effects
in wild populations. Trends in Ecology & Evolution
17:230–241.

Kerr, R. 2011. Vital details of global warming are
eluding forecasters. Science 334:173–174.

Kindscher, K., and L. Tieszen. 1998. Floristic and soil
organic matter changes after five and thirty-five
years of native tallgrass prairie restoration. Resto-
ration Ecology 6:181–196.

Leimu, R., and M. Fischer. 2008. A meta-analysis of
local adaptation in plants. PLoS ONE 3:E4010.

Linhart, Y. B., and M. C. Grant. 1996. Evolutionary

v www.esajournals.org 10 August 2013 v Volume 4(8) v Article 93

CARTER AND BLAIR



significance of local genetic differentiation in
plants. Annual Review of Ecology and Systematics
27:237–277.

Loveless, M. D., and J. L. Hamrick. 1984. Ecological
determinants of genetic structure in plant popula-
tions. Annual Review of Ecology and Systematics
15:65–95.

Myers, J. A., and K. E. Harms. 2011. Seed arrival and
ecological filters interact to assemble high-diversity
plant communities. Ecology 92:676–686.

McDonald-Madden, E., M. C. Runge, H. P. Possing-
ham, and T. G. Martin. 2011. Optimal timing for
managed relocation of species faced with climate
change. Nature Climate Change 1:261–265.

Middleton, E. L., J. D. Bever, and P. A. Schultz. 2010.
The effect of restoration methods on the quality of
the restoration and resistance to invasion by
exotics. Restoration Ecology 18:181–187.

Miller, S. A., A. Bartow, M. Gisler, K. Ward, A. S.
Young, and T. N. Kaye. 2011. Can an ecoregion
serve as a seed transfer zone? Evidence from a
common garden study with five native species.
Restoration Ecology 19:268–276.

Moncada, K. M., N. J. Ehlke, G. J. Muehlbauer, C. C.
Sheaffer, D. L. Wyse, and L. R. DeHaan. 2007.
Genetic variation in three native plant species
across the state of Minnesota. Crop Science
47:2379–2389.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R.
Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos,
M. H. H. Stevens, and H. Wagner. 2012. Vegan:
Community Ecology Package. R package version
2.0-4. http://CRAN.R-project.org/package¼vegan

O’ishi, R., A. Abe-Ouchi, I. C. Prentice, and S. Sitch.
2009. Vegetation dynamics and plant CO2 respons-
es as positive feedbacks in a greenhouse world.
Geophysical Research Letters 36:L11706.

R Development Core Team. 2012. R: A language and
environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

Rahmstorf, S., and D. Coumou. 2011. Increase of
extreme events in a warming world. Proceedings of
the National Academy of Sciences USA 108:17905–
17909.

Rice, K. J., and N. C. Emery. 2003. Managing
microevolution: restoration in the face of global
change. Frontiers in Ecology and the Environment
1:469–478.

Rice, K. J., and E. E. Knapp. 2008. Effects of
competition and life history stage on the expression

of local adaptation in two native bunchgrasses.
Restoration Ecology 16:12–23.

SAS Institute Inc. 2012. SAS 9.2. SAS Institute, Cary,
North Carolina, USA.

Seastedt, T. R., R. J. Hobbs, and K. N. Suding. 2008.
Management of novel ecosystems: are novel
approaches required? Frontiers in Ecology and
the Environment 6:547–553.

Smith, M. D., and A. K. Knapp. 2003. Dominant
species maintain ecosystem function with non-
random species loss. Ecology Letters 6:509–517.

Strzepek, K., G. Yohe, J. Neumann, and B. Boehlert.
2010. Characterizing changes in drought risk for
the United States from climate change. Environ-
mental Research Letters 5:art044012.

Tiessen, H., J. W. B. Stuart, and J. R. Bettany. 1982.
Cultivation effects on the amounts and concentra-
tion of carbon, nitrogen, and phosphorus in
grassland soils. Agronomy Journal 74:81–85.

Tilman, D. 1996. Biodiversity: population versus
ecosystem stability. Ecology 77:350–363.

Tilman, D. 1997. Community invasibility, recruitment
limitation, and grassland biodiversity. Ecology
78:81–92.

Towne, E. G. 2002. Vascular plants of Konza Prairie
Biological Station: An annotated checklist of
species in a Kansas tallgrass prairie. Sida 20:269–
294.

Walther, G. R., et al. 2009. Alien species in a warmer
world: risks and opportunities. Trends in Ecology
& Evolution 24:686–693.

Waser, N. M., and M. V. Price. 1985. Reciprocal
transplant experiments with Delphinium nelsonii
(Ranunculaceae): evidence for local adaptation.
American Journal of Botany 72:1726–1732.

Weißhuhn, K., H. Auge, and D. Prati. 2011. Geographic
variation in the response to drought in nine
grassland species. Basic and Applied Ecology
12:21–28.

Weißhuhn, K., D. Prati, M. Fischer, and H. Auge. 2012.
Regional adaptation improves the performance of
grassland plant communities. Basic and Applied
Ecology 13:551–559.

Wilkinson, D. M. 2001. Is local provenance important
in habitat creation? Journal of Applied Ecology
38:1371–1373.

Yachi, S., and M. Loreau. 1999. Biodiversity and
ecosystem productivity in a fluctuating environ-
ment: the insurance hypothesis. Proceedings of the
National Academy of Sciences 96:1463–1468.

v www.esajournals.org 11 August 2013 v Volume 4(8) v Article 93

CARTER AND BLAIR



SUPPLEMENTAL MATERIAL

APPENDIX A

Table A1. Site location, 1981–2010 mean and 2010, 2011, and 2012 observed total precipitation and temperature

means for meteorological summer (June–August), and history for each common garden location.

Common
garden
location

1981–2010 2010 observed 2011 observed 2012 observed

HistoryMean ppt (mm) T (8C) ppt (mm) T (8C) ppt (mm) T (8C) ppt (mm) T (8C)

NE 272 23 274 24 318 24 162 25 agricultural land: corn
KS 360 25 142 25 221 27 268 26 agricultural land: wheat/

soy
OK 342 26 237 27 109 28 NA NA agricultural land: wheat

(wildlife plots)

Notes: Common locations: NE¼Central Platte River Valley (408440 N, 988350 W), KS¼Konza Prairie Biological Station (398060

N, 968360 W), OK¼ J.T. Nichol Preserve (368040 N, 948490 W). Weather station locations: NE¼Hastings 4 mi N, Nebraska (408390

N, 988230 W); KS ¼Manhattan 6 mi SSW, Kansas (398060 N, 968370 W); OK¼ Tahlequah, Oklahoma (358560 N, 948580 W). We
obtained climate data online from the National Climatic Data Center (URL: http://gis.ncdc.noaa.gov/map/cdo/, accessed 12/16/
2012) with the exception of observed conditions for OK, which were accessed online from Oklahoma Mesonet (URL: http://
www.mesonet.org/index.php/weather/category/past_data_files, accessed 12/16/2012).
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Fig. A1. Soil texture (sand, silt, and clay proportions) at the three common locations 6 1 SE with statistics (F-

statistic, with degrees of freedom in subscript) for location and block(location) effects where significant (Proc

Mixed ANOVA). Two 10 cm deep, 2.54 cm diameter cores were taken near the center of each plot at each location

in April–May, 2012. The two cores for each location were combined, dried, sieved, and sent to the Kansas State

Agronomy Soil Testing lab for textural analysis.
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APPENDIX B

Table B1. Seed weights for species sown into common garden plots. Species in seed additions (nomenclature from

United States Department of Agriculture Plants Database, URL: plants.usda.gov/java, Accessed 3/2012),

amount of live seed added to each plot (equal among all seed sources), and broad functional groupings. The

OK sources for D. illinoense and O. rigidum were collected .10 km from the OK common garden location (64

km and 28 km, respectively).

Species Grams live seed/plot (9 m2) Functional group

Achillea millefolium 1.104 forb
Andropogon gerardii 21.760 C4 grass
Dalea candida 0.878 legume
Desmanthus illinoense 10.293 legume
Elymus canadensis 10.900 C3 grass
Monarda fistulosa 0.096 forb
Oligoneuron rigidum 8.068 forb
Schizachyrium scoparium 14.415 C4 grass
Silphium integrifolium 10.718 forb
Sorghastrum nutans 36.279 C4 grass
Symphiotrichum ericoides 0.398 Forb
Total 115.009 NA
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APPENDIX C

Fig. C1. Aboveground biomass in 2011 (a, c, e, g) and 2012 (b, d, f, h) for the species with abundance (biomass)

ranks 5–8 between common garden locations: Silphium, Vernonia, Desmanthus, and Schizachyrium (mean 6 1 SE).

Statistics (F-statistic, with degrees of freedom in subscript) and significance are provided for seed source, location

and seed source 3 location effects from Proc Mixed ANOVA.
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Fig. C2. Aboveground biomass in 2011 (a, c, e, g) and 2012 (b, d, f, h) for the species with abundance (biomass)

ranks 9–12 between common garden locations: Symphyotrichum, Andropogon, Dalea, andMondarda (mean 6 1 SE).

Statistics (F-statistic, with degrees of freedom in subscript) and significance are provided for seed source, location

and seed source 3 location effects from Proc Mixed ANOVA where data were sufficient.
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