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NOMENCLATURE

A - area of the outlet nozzle, ft2
a - velocity shape factor
b - radial distance from the centerline to the boundaries of the jet, ft
c - integration constant
c - temperature shape factor
C2 -~ integration constant
C - constant pressure specific heat, BTl
e 1b°F
Ct - hyperbolic decay constant, °F ft
)
CTamb ambient temperature constant, F
D0 - nozzle outlet diameter, ft
: . .2
g - acceleration of gravity, ft/min
K - distance from apparent point source where velocity is constantly
P accelerating
b
M.F.E. - Mass Flow Entrained, l.m
min
Pbar - ambient barometric pressure, inches of mercury
P - atmospheric pressure, lb/sq ft
Q - axial flow rate, cubic ft/min
QD - initial axial flow rate, cubic ft/min
o
R - gas constant for air, ft - 1bf per 1lbm per R
r - radial distance from centerline, ft
Ta - ambient air temperature, °p

iii
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AT

AT

ATo

air

ambient temperature, OF

centerline temperature, °F

ambient dry bulb temperature, °F
stratification factor, %F/ft

temperature of the jet, c'F

initial jet temperature, °p

temperature at the radial distance b, °p

)
ambient wet bulb temperature, F

time average velocity, ft/min

centerline time average velocity, ft/min
initial outlet velocity, ft/min
axial distance from the apparent point source, ft

axial distance from the nozzle outlet, ft

1
coefficient of volumetric expansion, o
F

difference between the jet temperature and ambient temperature,

difference between the centerline and ambient temperature, °p

initial temperature difference, °rp

eddy diffusivity, 1lb/min-ft

density of ambient at a specific axial locationm, ft3/1bm

iv
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[ — density of the chilled jet at a specific axial location, ftallbm

jet

T - time average shear, lbf/sq ft



INTRODUCTION

In the early 1950's, as the standard of living in America rose, so did
what might be called the standard of comfort. People became more concerned
with their personal comfort. As the concern for personal comfort grew,
additional attention gave rise to research devoted to the development of new
techniques, and implementation of existing methods, for ventilation and air
conditioning.

During the 1950's the use of turbulent air jets for air conditioning and
ventilation was investigated. H. B. Nottage (1) studied the velocity pro-
files, entrainment, shear, and boundary edges of isothermal jets, and their
relationship with axial distance. Nottage's work is probably the most notable
investigation concerning ventilation jets. His study is the basis for many
following articles on air distribution jets(2), (4), (5), including the ASHRAE
Fundamentals (6) chapter on air space distribution. While Nottage continued
his work and began studying chilled horizontal jets, Linn Helander and his
associates (3) at Kansas State College were compiling experimental data deal-
ing with vertical heated jets. Helander, using the resultant data, was able
to formulate empirical equations dealing with the given throw of a vertical
heated jet at prescribed outlet velocities, diameters and temperatures. His
data has long been accepted as the norm for heated jets and therefore is
used as a basis for checking theory concerning heated jets. Following
Helander's experimental investigation, A. Koestel (4) of Case Institute,
attempted to predict the velocities and temperatures of vertical non-iso-
thermal jets using a theoretical analysis. Comparing Koestel's theory with
experimental data shows a general agreement between theory and experiment.

The work of G. L..Tuve (5) should be mentioned. Tuve may be termed as the



pioneer in the investigation of ventilation jets. His work, which dates back

to the middle 1930's, concerns the fundamentals of jet theory, such as entrain-
ment and velocity profiles. His work is still used as a basis for various air
jet phenomena. Tuve was also the advisor and tutor of such engineers as
Nottage and Koestel at Case Institute. These men, together with their asso-
ciates have formulated the major basis of the existing knowledge concerning
ventilation jets.

Today, instead of the basis of concern being for comfort, the major con-
centration of effort is on energy conservation. However, people are not
generally willing to give up their comfort for energy conservation. There-
fore, the need for new methods and improvement of existing techniques util-
ized in air conditioning has arisen. The increased activity in air condition-
ing studies will most probably include air jet studies for such purposes as
spot cooling. The reasoning behind the use of spot cooling is the energy
savings in conditioning small work spaces as compared with cooling large
areas, such as an entire factory. The major purpose of this study is to pre-
dict centerline velocities of chilled vertical axisymetrical jets for possible
use In spot cooling,utilizing theory and experimental background. In doing so,
any deficiencies of theoretical or experimental data may be found to allow

further, more detailed study at a later time.



REVIEW OF LITERATURE

The first comprehensive study of axisymmetrical jets by Corrsin (12)
found that temperature diffuses much more rapidly than the velocity in a
turbulent heated jet. In comparing his results to theory, Corrsin (12) found
that none of the existing theories satisfactorily predicted the relationship
between the spread of velocity and the spread of temperature, but that Prandtl's
constant effective shear coefficient gave the best agreement for velocity profiles.
In later experiments, Corrsin and Uberoi (13) found that the rate of spread of
a turbulent jet increases with a decrease in jet density,while the turbulent
Prandtl number, which approximately equals the laminar Prandtl number, re-
mains constant in the fully developed region.

Following these preliminary investigations the iaea of using jets for
ventilation purposes became popular. Rydberg and Norback (14) theoreticaliy
analyzing an axisymmetrical jet, suggested several equations to calculate the
centerline velocity and temperature distribution,utilizing simplified momentum
equations.

Koestel, Herman and Tuve (15) made a comparative study of various types
of outlets used in ventilation jets in which a number of semiempirical equa-
tions were proposed for use in isothermal jets. Experimental results indicate
that the formulae afford a reasonable amount of accuracy for the jet from the
axial distance 8/A to 50VA. They also mention that no simple method seemed to
be available to predict the main stream velocity in the near region of the jet.

Nottage, Slaby and Gojsza (2) in a series of papers written directly
from Nottage's Ph.D. dissertation (1) investigate the fundamentals of iso-
thermal ventilation jets. The authors discuss the various characteristics of

isothermal jets such as boundary contours, axial velocities, outlet



characteristics, cross jet profiles and jet flow rates. Their investigations
serve as a basis for most of the established isothermal ventilation jet theory
used today.

Helander, Yen and Crank (3) showed that the maximum throw of a heated
axisymmetrical jet was a function of the buoyancy number, BO.

v 2/gD

B sl o
o To/Ta -1
They proposed an empirical equation to predict the maximum throw, utilizing
the buoyancy number, which could be used for various diameter nozzles.

Koestel (4) analyzed the velocities and temperatures of a non-isothermal
Jet in a constant temperature environment by the use of integral momentum and
energy equations. Assuming similarity of velocity and temperature profiles,
Koestel (4) developed an equation used to describe the buoyancy forces in the
jet. Simplifying this equation through the use of the assumptions of negli-
gible differences in density and coefficient of expansion throughout the jet,
Koestel (4) performed the integration necessary to derive the following equa-
tion describing the centerline velocity of the jet.
DDATOBg 1

v 2 x/Do
(o]

v |3 K ]3
= |—E cz[—+1]

Through a similar analysis of the convective energy within the jet, utilizing
an energy balance, Koestel (4) derived an equation describing the centerline
temperature difference in the jet. To complete his analysis, Koestel (4) re-
arranged the derived equations to predict the maximum throw of a heated jet.
Comparing his results to Helander's (3), good agreement was found in pre-

dicting the maximum throw.



Kleinstein (16), modifying the techniques of Carrier and Lewls using the
Von Mises Transformation, suitably linearized the momentum equations. From
his analysis, Kleinstein (16) concluded that as a result of the linearization,
fhe radial distribution of any fluid properity at an axial station was found
to be a function of the initial conditions and the value of the properity on
the axis. %

Sforza, Steiger and Trentacoste (17), utilizing momentum equations
describing three dimensional flow, investigated different types of jets, in-
cluding round and planar jets. They concluded that each jet approached
axisymmetrical decay as confirmed by velocity profile analysis.

Wang and du Plessis (18) developed a numerically explict method to ana-
lyze a jet, either in the near or far region. Using this method the velocity
profiles were described by a cosine series which satisfies the wvanishing
velocity gradient at the centerline of the jet.

Mollendorf and Gebhart (19) showed that thermal buoyancy effects do not
produce extreme changes, but that they may have an important influence on the
stability of the jet.

Susarla, De and Dutta (20) investigated the temperature, velocity and
entrainment characteristics of preheated and isothermal jets. Using experi-
mental data, they formulated various empirical equations utilizing the initial
conditions of the jet to calculate the entrainment, temperature and velocity
of the jet.

Since previous investigation failed to deal with possible stratification
of surrounding air and most assumed density to be constant, this work was

undertaken.



ZORES OF A VENTILATION JET

A ventilation jet may be broken into four different zones. Each zone
has distinguishing characteristics (6), as shown in Figure 1. Zone 1 is
generally called the near zone. It 1s a short zone extending only to a dis-
tance of about four diameters from the outlet face. Zone 2 is termed a tran-
sition zone. It too, is a short zone extending only to about eight diameters
from the outlet face. In this zone the effects of entrainment begin to be
noticed. Zone 3 is called the long zone and may extend as much as one hundred
diameters from the outlet. This zone is also known as the zone of fully
established turbulent flow in which the mechanism of entrainment is completely
operative. Zone 4 is the terminal zone where the jet dies quickly and reaches
very low velocities which are generally accepted as still air. For the pur-

poses of this study, the work was done in the third zone.
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DIFFERENTIAL EQUATIONS DESCRIBING JET FLOW

To examine the flow of a chilled jet, the interactions at a typical cross
section were studied,as is shown in Figure 2. To simplify and aid in the
understanding of the problem, the approximate von Karman integral differ-
ential equation technique, similar to the method used by Holman (7) in his

description of convection principles, was used.
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FIGURE 2

MOMENTUM EQUATION

The influx of momentum into the cross section of Figure 2,assuming the

surroundings are at rest, is equal to:

b 2 (1)
Iopjetv 2rrdr



Utilizing a steady-state momentum balance, the momentum influx plus the net
forces acting on the system equal the momentum outflux. The momentum outflux

is equal to:

b 2 d||b 2
Vv —_—
Iopjet 2rrdr + ax Iopjetv 2nrdr [dx (2)

Substracting the momentum influx from the outflux, it is found that the net

forces acting on the system are equal to:

d|[b 2
PP Jopjetv 2mrdr |dx 3)

Upon examination, Figure 2 reveals that there are three forces acting on the
flow; shear force, pressure differential and buoyancy forces. Realizing the
turbulent shear makesup the major portion of the shear force, the shear force
T is equal to (8):

—
m dr (4)

It can be seen that the shear force on the cross section reduces to zero be-
cause the change in velocity at the width b is zero. The force due to pres-

sure differential is equal to:

b o] fep
Jopzﬂrdr Jo p4{dx dx] 2mrdr (5)

which equals:

|:- Jb ap, andr:ldx ’ (6)
o dx

dp . .
However, it is generally accepted in boundary layer workthatai-ls approxi-

mately equal to zero in air. Therefore, the force due to the pressure differ-
ential is negligible. The buoyancy forces result due to the differences in the

densities of the jet and air surrounding it. The jet weighs more than the



surrounding ambient so there is an accelerating effect on the jet. The buoy-

ancy force is equal to:

b
g[o[pjet - pair]2ﬂrdr dx (7

which is assumed to be the only force acting on the jet. Combining equations

3 and 7:
d|(b 2 b
1 Jopjetv 2rrdridx = gJo(pjet - pair]Zﬁrdr dx (8)

dividing by dx and using that:

B = {pair = pjet] (9)
o] AT
jet
where,
AT = (Tjet - T 5) (10)

equation 8 can be simplified to:

d (b 2 _ b
deopjet V72nrdr = gJopjetBATZHrdr an
Thus, the change in momentum is due to the buoyancy forces caused by the tem-

perature difference between the jet and the surroundings.

ENERGY EQUATION

As indicated in Figure 2, there are three major sources of energy ex-
changes in the flow; conduction, radiation and convection. The energy
radiated and conducted is small in comparison to the convected energy and may
be considered negligible. Therefore, the incoming energy is the convective

influx of energy. The convective influx is the sum of the axial convective
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term and the entrained energy. The axial convective influx is equal to:

b
ijopjetVTjetZHIdr (12)

The entrained energy is equal to:

(13)

C (mass flow entrained)T
P r=b

where Tr— is the temperature of the cross section at the radial distance b.

b

However, the difference between Tr and the ambient temperature is small.

=b
Since the difference is small, the entrained energy is approximately equal to:

(14)

C (mass flow entrained)T
P amb

For a steady-state flow, the incoming energy is equal to the energy leaving

the system. The incoming energy is the sum of the entrained and axial energy

which is:
C bp VT 2nrdr + C (mass flow entrained)T (15)
pJo jet “jet p amb
The energy flowing out is equal to:
b d||b
+ —_ T, 2 16
Cpfopjetvrjetzﬂrdr Cp ix Jopjetv jet nrdr |dx (16)
Combining equations 15 and 16:
C bp VT 2nrdr + C (M.F.E.)T
pjo jet jet p amb ‘
(17)

b d| b
= + —_— v 2
CPIOpjetVTjetZFrdr Cp s Jopjet Tjet nrdr |dx

where M.F.E. is the mass flow entrained. Substracting like quantities equation

17 becomes:

| d(b
.F.E. =C |— A
CP(M F.E )Tamb 5 deopjet TjetZHrdr dx (18)
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CONTINUITY EQUATION

Equating the mass flows in Figure 2, using a steady-state mass blance,
the incoming mass flow equals the outgoing mass flow. The mass flow out is
equal to:

bp_etVZHrdr dx (19)

pr; Vonrdr + Ji—J
t 0"

o je dx

The mass flow in,is the sum of the mass flow entrained and the axial mass

flow. The mass flow in,is equal to:

jzpjetVZHrdr + M.F.E. (20)

Combining equations 19 and 20:

b b d{|b
F.E. = v + — ]
anjetVZﬁrdr + M.F.E Jopjet 2rrdr Ix JopjetVZHIdr dx (21)

Subtracting like quanities and simplifying, equation 21 becomes:

d|(b
M.F.E. = ax JopjetVZWIdr dx (22)

CENTERLINE VELOCITY FROM SIMPLIFICATION OF MOMENTUM EQUATION

Equation 11 can be simplified using various assumptions to find the
centerline velocity of chilled axisymmetrical jets. In order to integrate

equation 11:
d b 2 L
dxjopjetv 2rrdr = —gJopjetAT82wrdr (11)

the relation of pjet’ V, AT, and Bto r must be known. It is usually assumed

that the radial temperature difference and velocity profiles may be approximated
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by error function shaped curves for axisymmetrical jets (5), (6), and (9). It
is also usually assumed, that the curves are similar throughout the entire third

2
zone. Therefore, assume that AT = ATCE cr , where ATC is the axial temperature

difference between the centerlinme temperature and the surrounding ambient tem-
perature and ¢ is the temperature shape factor describing the error curve.

2
Also assume the V = Vce ar , where Vc is the centerline velocity and a is the

velocity profile shane factor. Assuming that the jet fluid behaves as an ideal

gas, the relationships for pjet and 8 can be found. However, their varia-

tion with radial distance is negligible, so they were assumed to be functions

of x alone.
Substituting the error function assumptions and moving the functions of

x from within the integrals, equation 11 becomes:

2

2
2 b -2ar b -cr
= 2
o ZnVc pjetJore dr gATchjetJo Tre dr (23)
dividing by 27T yields:
2 2
2 b -2ar b -cr
e = - 2
o VC pjetJore dr gATchjetJOre dr (24)

Assuming that the velocity is zero at the jet edge b and that the temperature
difference is sufficiently small as to be assumed zero, equation 24 can be

integrated to yield:

a2 1. 1
dx[’rc pjet anF gpjet:‘."\TcBZc: (25)
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Assuming that the apparent point source for the velocity and temperature dif-

ference boundaries are the same then (4):

= ,65 (26)

wle

for a turbulent Prandtl number of .7, which has been generally accepted in jet

work (1). In order to find ¢, a must be known. From Koestel's (4) work:
C
2
a=-—5 (27)
x

where C2 is an integration constant. Substituting equations 26 and 27 into

equation 25 and simplifying:

2 2 ~ 2
Id[pjetvc X /(4C2)] = f-gpjetATch /(1.382)dx (28)

Performing the left hand integration equation 28 becomes:

2
pjetvczx g 2
+C=- p. AT Bx dx (29)
402 l.3C2 jet

where C is the integration comnstant. To integrate the right hand side, an

assumption of Tc as a function of x must be made. It has been found that the

centerline temperature difference obeys a hyperbolic decay representation (10):

C

AT =-% (30)
Cc X

where Ct is an undetermined constant. Using ideal gas assumptions then:

o
Pjet ~ RT (1)
and:
B =z (32)
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The definition of ATC is:

ATc - Tc - Tamb (33)

where Tc is the centerline temperature of the jet. Rearranging equation 33:

L L (34)
Substituting equation 34 into equations 31 and 32:
Piet - R(T Y ) (35)
amb c
g = ! (36)
(Tamb * ATC)

Now utilizing equations 30, 35 and 36, equation 29 can be shown to equal:

v 2x2 Cc 3d
Eie_t_fl__. _ ~8p e °F
+ C = (37)
4 1.3R (T .x+C )2
amb t
To evaluate this integral, the stratification relationship between Tamb and x

must be known. Assume that:
= - 38
T o Coramb _Tgx (38)

where CTamb is the ambient temperature at the point source of the jet, and Tg

is the change Tam makes with the change in axial distance. Using equation

b
38, equation 37 can be shown to become:

2 Crp 3

t X dx
p, .V = =g J (39)
jet ¢ 4 1.3R (=T XZ

2
+
+ Cp i X Ct)

To solve this equation, an initial condition is necessary to find the integra-
tion constant C. Usually in isothermal jets, there is a cone of constant

velocity which extends a distance Fp from the apparent point source of the

jet (2). This distance is a characteristic of the outlet orfice. However, in
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a chilled jet, there would more likely be a cone of constant acceleration
caused by constant buoyancy forces. Using this assumption as an initial
condition, the constant C can be solved for and a solution found to equation

39. The closed form solution to equation 39 is:

2
v 2. —gCt&(—?gfr * Cpop + G
¢ 331.3
1 2
5y 3 1n (-Tgx + CTambx ¥ Ct)
B
2 1/2
CTamb 1 [_ZTgx % CTamb - (CTamb ® 4Tgct) J_

- 1n =
2 2 172 ‘ 2 1/2
- + C
2T (C anb T ActTg) ZTgx + Conty ¥ (CTamb ATg t)

- C

Ct (CTambx * ZCt) Tamb
T 2 &4 +C)_(4TC-C 2)

& (-aTgCt - CTamb )(_Tg}L Tambx t gt Tamb

j .
2 i 3
- - C
( % L [ 2T % + Cromp e ¢
2 1/2 2 1/2}
- + + + 4T C

lfCTamb * 4CtTg) [ 2Tgx CTamb (CTamb g t)

c . Z+4TcHx+C. .C
+ Tamb Tamb gt Tamb t

T _ . i
g -Tg(_&TgCt CTamb ) ( Tgx t CTambx Ct)
+ zct 1n
2 2 1/2
(—4TgCt - CTamb )(CTamb + 4Tgct)
- -
2 1/2
["ZTgx * Cramb =~ Cramp T 4TeC) ] __4c
2 1/2 2

- C
l 2Tgx T CTamb * (CTamb * ATg t) ] pjetx

(40)



16

where C is the integration constant solved for using the initial condition

of constant acceleration to the distance Kp.
However, one problem remains: the determination of Ct' It is possible

to use the energy and continuity equations to solve for the constant. This
would be a lengthy and complex manipulation, with many indefinite assumptions

to be made. Therefore, Ct was determined experimentally.
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EXPERIMENTAL APPARATUS

The experimental goal of this research was to test the assumptions made
in the theoretical analysis and compare theoretical with experimental results.
To achieve this, required an apparatus to measure the temperature and velocity
at point locations throughout the jet,while maintaining constant chilled jet
properties.

A unit air conditioner connected to the jet plenum, as shown in Figure 3,
by means of plastic PVC piping was used to supply the necessary chilled air
to the 2 inch ASME nozzle. The 23,500 BTU/hr air conditioner was equipped
with two plenums, as shown in Figure 3. One plenum supplied chilled air from
the exhaust of the air conditioner,while the other returned air to the intake
of the unit. A recirculatory piping system interconnecting the supply, return
and jet plenums, as shown in Figure 3, was used to reduce the heat gain caused
by long residence time in the supply piping. To further reduce heat gains,
the entire system was insulated. The flow rate and temperature in the system
was controlled through the use of a slide valve and cone reheater. In order
to keep frost from forming on the evaporation coils, the return plenum was
equipped with three cone preheaters. To further reduce the possibility of the
formation of frost, the supply and return plenums were interconnected to main-
tain the highest possible flow across the evaporation coil. The cone heaters
in both plenum were manually controlled, using variable AC transformers. By
using the variable transformers and manual adjustment of the supply plenum
slide valve, it was possible to maintain consistﬁﬁt chilled jet conditioms.

The jet plenum was equipped with temperature and pressure probes as shown
in Figure 3, to monitor the jet conditions. A Digitec temperature measuring

C
unit, coupled with a thermister placed in the jet plenum provided the necessary
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10.

11.

12.

PLATE I

Digitec Temperature Meter
Thermo Systems Inc. Velocity Meter
Nanovolt Amplifer

Digital Multimeter
Micromanometer

Thermocouple Switch

Ice Bath Reference Junction
Interlocking Collar
Horizontal Traverse Bar
Vertical Traverse Bar
Velocity Probe

Thermocouple Probe

19
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information to maintain constant jet temperature. To keep the flow rate con-
stant, the jet plenum was equipped with a static pressure tap coupled to a
micromanometer. Observing the micromanometer and Digitec, it was possible
through manual adjustment of the system to maintain constant jet conditions.
To achieve the primary goal of the experimentation, to check the theo-
retical assumptions and to compare theoretical with experimental results, a
traversing mechanism was designed to measure temperature and velocity at
each 1 inch vertical and 6 inch horizontal plan of the jet. The traversing
device consisted of a horizontal pole, interconnected to a vertical pole using
an interlocking collar as shown in Figure 3. The jet temperature was measured,
using a copper constant thermocouple directly connected to the horizontal bar
of the transversing device. A similar thermocouple attached to the inter-
locking collar,was used to measure the ambient temperature. Through the use
of a thermocouple switch, these non-shielded thermocouples used the same ice
water bath reference junction and potientiometer system. The potientiometer
system consisted of a high impedence nanovolt amplifier coupled with a digital
multimeter reading the thermocouple outputs in millivolts. A Thermo Systems
Incorporated hot wire anemometer, attached to the horizontal pole at the same
location as the jet temperature probe, was used to measure the velocity. The
velocity meter, calibrated in FPM, at 70° F and 14.7 psia, required corrections
due to differences in temperature and pressure from the calibration conditions.
The temperature and velocity measurements within the jet were substanti-
ally'influenced by random currents of the room air. To reduce these disturb-
ances,a baffle curtain was placed between the unit air conditioner and the
experimental apparatus to shield the jet from the condeng%r exhaust air. Also

during test periods, all doors to the test location were locked.
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DATA TAKING PROCEDURES

The micromanometer was balanced and zeroed. Then, the entire system wasr
turned on and allowed to reach steady-state conditions which generally took
1 to 2 hours. During this time, the ice bath was readied and the thermo-
couple potientometer system zeroed. The plenum temperature was constantly
checked to see if steady-state had been achieved. The test then began, pro-
vided steady-state conditions had been reached. The initial temperature and
pressure difference of the jet plenum was measured and recorded. Then using
a sling psychrometer, the wet and dry bulb temperatures were measured and re-
corded. Lastly, the velocity and temperature measurements of the jet were taken.
Starting at the horizontal cross section closest to the jet outlet, a tra-
verse was made until the edges of the jet were found. Having completed the
first horizontal cross section, the traversing mechanism was moved down to
the next horizontal cross section. This procedure was continued until 5 to 8
cross sections had been examined, depending upon the initial velocity. The
entire system was then turned off and the traversing mechanism returned to
its initial position. Finally for purposes of velocity correction, the bara-

metric pressure was measured using a mercury barometer.
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EXPERIMENTAL RESULTS AND DISCUSSICHN

The original data are contained in Appendix A. The errors associated with
their measurement are discussed in Appendix D. All computer simulations and
results were carried out on the KSU IBM 370 digital computer,utilizing WATFIV
FORTRAN language.

To ﬁerify the assumption of error functions to describe the temperature
and velocity profiles at each horizontal cross section of the jet, required
that the apparent point source of the jet be found. The distances from the
apparent point source to the edge of the outlet nozzle are lisfed in Appendix F.
Using the experimental results for boundaries of the jet at each horizental
cross section, it was possible to graphically solve for the apparent point

source of the jet. Having found the apparent point source, the dimensionless

T :
parameters i%g and éﬁ were plotted as functions of el similar to the
c i

method used by Nottage (1) in his experimental work. Utilizing Nottage's (1)

work on 500 FPM isothermal jets, a value of 65.3 for C2 was used in the error

curves of Figures 4, 5, 6, 7, and 8. Because of a lack of other data for
vertically chilled jets, this value was used. The Tolmien curve used for com-
parative analysis with the error curve in Figures 4, 5, 6, 7, and 8, was ob-
tained from Nottage's (1) analysis of a 500 FPM isothermal jet. The 500 FPM
data was used because of the small variations with velocity. The Tolmien
curve comes from Nottage's (1) study of Tolmien's solution for the velocity
profiles of an isothermal jet using Prandtl's mixing length formula. Examin-
ing Figures 4, 5, 6, 7, and 8, representative of the different ranges of
velocities studied, it can be seen that the error curve functions provide a

satisfactory approximation of the velocity and temperature profiles.



23

? 40014
X
XA . 02 T or S0
o ) O v L...l.. . :
® 0 oohwe uw/ /0
® D/ ] /9. l =
o) /9 o N
® N o /o./
N . t b
mo o/n,wo /o ©
g 5
W..,FO % o r9}
A@;ﬂﬁv Q// O
N\ .
SINIIWIo| .o V" / g
o — i ° e o\
»SCO0P O . //
l/l s
i ) & nDed m —10]
zwo..mu < 6'05=L
wSZ'91 6c< = N
~STol v .
:m.ﬂ.f D lx

€LSIL



24

S MaN91d

)

...l.l.......l....r.............. D
—~— D}...f..f.l. + 2
/ ......!_I.
- Ow !e f AV /NVG, 1l V.
< 0 ) O/%- l..//l 0
- So .8 . .
¢ " /AYONE /_w,,..x o IR w.m
0 . (0} ,;.././.....
Lit] HBe @ e /@..IO/@!/O%
L'22:3)59 O O o % Lo
L4 ¥OUYJ— - — a /%..ql o ®
YOUU e ® ® @ & © ~~. Av
S20p O ] 00 O é L Q.\
i 606+ "°L
~s291 O 6¢¢ = °K
5201 V
«S2v O =X



TEST S

25

15

05

9
t ¥y 3 r LT 5 Z
ahatiky g 2 .
qug-oﬂdﬁlv'o;n o
N g g -o"' o
gpb<oozed Wi >
3 X Yy
| ] OJ o
o
o~ ..‘O‘
3e /
= f/&o‘ /
q ;
- '-D = g
- ® =]
o o 5 /
: <
cye )
g . /
<« q/ q
) e
:c/é’%b o
i, /7
4 : -1/
:
@ /e
4 ,0 Y
4 o
A
(/
s @ N

FIGURE 6



26

{ WN9I4

A

SNaIW0 | - e
WO¥¥Y] — . —

.52 H

.:M;M.Ov O .mr.m¢ ﬂo._l
S282 O LOQ =9\
L2911 VO

S22 O =X

9153 L




27

8 TANOId
- . g
WW “ 2 ] S | \ | 50°
——
/..
o —.0 o
o v S N
g v° ofa a% ;
2] D/O. o0

AN RN

UL R, B

'22:°089Y . .
. Lty %Ommw —e— ~~.0 /QO/

527251 oo i ]
M-l le) '8y =
52930 L né_ﬂ
w$391 Y

Sy 0 Y




28

Use of error function distributions required knowledge of the centerline
temperature’'s variation with axial distance. It was assumed in the theoretical
analysis that the centerline temperature difference decays hyperbolically. It
was also assumed that the ambient air temperature could be approximated with a
linear distribution. Using least squares curve fits, these assumptions were
verified. The results are included in Appendix E. To complete the analysis
of the centerline temperature of the jet, the experimental results for center-
line temperature were plotted and compared with the theoretically experted re-

sults as calculated from the combination of equations 34 and 38 where

C

t
= — + -T
Te ™% ¥ Cpgm ~ Tg® (42)

In Figure 9, the values -30 and -50 for Ct were used to formulate the
theoretical boundaries, as they represent the range of experimentally found Ct.
In addition, -.7 for Tg and 6.0 inches for the distance from the apparent point

source to the nozzle outlet were used in equation 42 because they represent
the experimental data found. From Figure 9, it can be seen that the shape of
the theoretical boundaries closely follows the experimental results, with a
majority of the experimental points falling on or between the boundaries.
Having verified the assumptions used in the theoretical analysis, the
theory predicting centerline velocity was compared with experimental results.
Due to the excessive length of equation 40, a numerical integration of equa-

tion 25 with the appropriate substitutions for c, a, ATC and R, was used to

predict the centerline velocity. Performing the left hand differentiationm,

equation 25 can be shown to equal:
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- Vv .
dVe _ 2 gCt 3 c Vc( 2Tgx t CTamb)
@ by g s +C)—2—"_+2T * 4 R
oV g Ta (- gx Coamp, T € )

mb t mb t
Using a Runge Kutta numerical integration (11) with .0l foot steps and assuming

constant acceleration to Kp as the initial point for the numeric method, it

was possible to generate the theoretical centerline velocity. The numerical
integration program is contained in Appendix B. The experimental results were

v X

formed into the dimensionless parameters VE and-ﬁﬂ as shown in Table I and in
o o

Figure 10. To compare theoretical and experimental results, the boundaries for
centerline velocity from the numerical integration of equation 25 were plotted
in Figure 10. Also included in the figure,are the boundaries for isothermal
data given by Nottage's (1) summary on previous isothermal experimentation.
The experimental results closely follow the theoretical boundaries. For an
initial velocity of 1099 FPM the experimental and theoretical results are
approximately the same. It should also be noted, that all but three ex-
perimental points lay within the boundaries of isothermal data. The results
indicate that the theoretical analysis provides a good approximation for the
centerline velocity in the developed region of the jet.

Using the experimental results, it was possible to analyze the entrainment

ratio, Jl. Breaking each horizontal cross section in a series of rectangles as
o

shown in Figure 11, it was possible using average velocities to find flow rate
at each rectangle, which represented a concentric flow area. Adding the flows
from each of the rectangles, the flow rate at each horizontal cross section was
found. fhe results of this graphical integration performed by the computer are

contained in Appendix C. To analyze these results, the dimensionless parameter



UI=N

2.125
5.125
8.125
11.125
14.125
17.125
20.125
23.125

26.125

338.780

.935

+120

.579

.398

430

.186

.186

437.710

1.039

.612

.333

.239

.169

TABLE I
390.370  807.000
Ve
vo
1.001 1.000
«755
.512 .604
404
.325 448
.215
.215 .309
.161
«233

1099. 000

1,006

+593

428

.320

- 246

1390.160

.988

.658

.466

31

1474.260

1.006

.693

.466

.331

.232
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x
él-was plotted as a function of EE° Figure 12 shows that distribution of él
o o

o
is approximately linear with a slope of .196. The linear approximation agrees
with Nottage's (1) results for a chilled horizontal jet, except the slope from
his data was found to be .215. However, Susarla (20) found that the entrain-
ment ratics for heated and isothermal jets could be approximated by exponential
power cufves. The difference in these results suggest the need for further

investigations.

Finally, the effect of changing the stratification factor Tg upon the

centerline velocity was investigated,using the numerical integration of equation

25. Varying Tg from -2 CF/ft to 2 0F/ft caused a difference of 2 to 4 FPM in

the calculated centerline velocities. Since the difference in the centerline
velocity was less than the error of the velocity meter, the effect of changing

the stratification factor was assumed negligible within the range of Tg tested.
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CONCLUSIONS

From this research it was found:

1

(2)

(3)

(4)
(5)

The velocity and temperature profiles at each horizontal cross
section could be approximated by error functions.

The centerline temperature difference hyperbolically decayed.
The centerline velocity decay is correctly predicted by the
numerical integration of equation 25.

The entrainment function is linear with a slope of .196.

The effect of changes in the stratification factor with the
range of -2 0F/ft to 2 oF/ft has a negligible effect upon the

centerline velocity.
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RECOMMENDATIONS

As a result of theoretical and experimental research done, the following

recommendations are made:

(1)

(2)

(3}

(4)

(5)

Further investigate the use of equation 25 to predict the
centerline velocities in chilled jets for different nozzle
sizes and different temperature ranges.

Experimentally investigate the effect of stratification on a
chilled jet.

Obtain an empirical relationship between Ct and the factors
that control its value such as Vo’ Tg and the diameter of

the outlet nozzle.
Obtain an empirical relationship between the slope of the
entrainment curve and the factors that control its value.

Correlate the entraimment ratio to entrainment of pollutants.
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73.5 75.0
75.0 76.0
75.0 76.5

77.0

78.0
82.0 83.0

°p

79.
79.
78.
78.
78.
7.
76.
75.
74,
73.
72.
71.
71.
72,
T
73.
75.
76.
76.
T
78.
78.
79.

84.

0
0
0
0
0
0
0
0
0
0
0
0
0
5
5
0
0
0
0
0
0
0
0

0

80.0
80.0
79.5
79.0
79.0
78.5
78.0
77.0
77.0
76.0
75.0
74.0
74.0
74.0
74.0
76.0
75.5
76.0
76.0
77.0
77.0
78.0
78.5
79.0
79.5
8§0.0
80.0

83.5
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TEST 7

Velocity - FPM

14
13
12
11

O
WoOoSNOO U LWNKMRP RN WERUO O

1 3 8 7 9
5
16
5 32
16 52
5 31 52
10 52 73
52 104 115
10 94 146 188
83 207 208 208
31 287 309 260 229
1093 556 452 311 250
1106 652 471 352 271
6838 608 454 353 251
41 326 310 270 188
5 103 186 187 157
5 83 115 115
31 73 84
5 31 42
10 21
11
11
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1390.16 FPM
46.9° F
83.5° F
61.5° F
28.85" H

g

80.
80.
80.
79.
54.
41.
52.
75.
76,
76.
79.
80.

OOoOULMoOoOoODWLODWLMOOO

80.
80.
79.
79.
77.
75.
65.
59.
62,
68,
73.
79.
9
80.
82,

COoOUVOoOULWOOOOOWULMO VOO

TEST 8

Temperature —

83.
83.
82.
82.
82.
81.
80.
78,
74.
71.
69.

LN o OO O OoOWno o

Op
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42
1409
1374

701

26

74
419
720
915
715
289

73

Velocity - FPM

11

32
116
179
355
562
648



Mo

db
wb

w -

bar

14
13
12
11

weoNocnmPsLWNNHEPRERNDWEREULON

n

1474.26 FPM
50.9° F

85° F

64.5° F
28.63" H_

81.0
81.0
80.5
80.0
54.0
41.0
50.0
74.0
75.5
76.0
77.0
78.0

B7.5

81.5
81.0
81.0
80.5
73.0
63.0
51.5
65.0
70.0
75.0
78.0
79.0
80.0
80.0

88.0

TEST 9

Temperature -

89.

OO0 ODDOUVMULOOCOOOO

oz

86,
85.
85.
85.
84.
83.
82.
B1.
80.
79.
79.
78.
79.
79.
80.
81.
B2.
83.
B4.
84.
85.
85.
86.

89.

OO uWVOoOOoDOoOOOC oo OoOOOQOWVWOWLWOOOWMO

87.
86.
86.
86.
85.
85,
84,
84.
83.
83.
82.
82.
81.
81.
82.
82.
83.
83,
84.
85.
85.
86.
86.
86.
87.
87.

90.

COoODOOQOOoOOO0O0OO0O0DOoODOoOODOOoOULMOWULMOOWLVO
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32
1420
1483

755

32

379
774
1021
855
335
74
11

Velocity - FPM

11
32
96
180
381
578
687
634
423
234
85
21

21
54
75
128
213
362
425
488
425
319
234
139
86
32
11

11
32
32
54
86
118
150
192
278
320
342
300
235
182
139
118
65
54
32
11
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APPENDIX D

Uncertainity Analysis
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EXPERIMENTAL ERROR

Velocity Measurements

= 2%

= 4%

at V = 600 FPM A
v
150%

4

at V = 500 to 1000 2
vm
o B

at very low velocities V < 25 2

Temperature Measurements
= .17 + 1 digit = .1%

M

digital multimeter error - A
=0
o o}
2.52 at T = 60 F

-~

nanovolt amplified error
thermocouple error = 1 1/2 °F
T = 2.5%

total temperature error — AT

Positioning Error

resolution error for am 8 ft
2 "
J = 044194

horizontal location:
1/16" division steel tape,
1/1612 1/16
{597+ 4

resolution error for a 1/16" division

vertical location:
= .044194"
= .0625"

steel tape, XV
vertical positioning error, AVP = 1/16"
=90

horizontal positioning error, AHP
.0883" = 8.83% for 1" increments

total error, lTP =



APPENDIX E

Hyperbolic Decay Constants
and

Stratification Factors
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v
[o]
339 438 807 1099 1474
-30.4567 -37.50704 -35.804928 -34.1206 -51.3495
-.78571 -.4000 -.71682936 -.7000 -.673396
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APPENDIX F

Distance from
Apparent Point Source

to Qutlet
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339

438

390

807

1099

1474

X

X
n

4.51"

5.54"

3.59"

6.48"

5.35"

6.68"
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ABSTRACT

A numerically integrated equation, derived from the integral momentum
équation, describing the centerline velocity of a axisymmetrical vertical
chilled jet projected in a stratified environment, is experimentally verified.
The momentum equation was simplified utilizing, similarity of temperature and
velocity profiles, assumption of ideal gas relations and assuming the center-
line temperature difference decays hyperbolically. The similarity and hyper-
bolical decay assumptions were experimentally verified. Several parameters
were futher investigated using both the experimental and theoretical results.
It was found the entrainment ratio is approximately linear and the effect of
increasing the stratification of the environment upon the centerline velocity is

negligible,
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