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I. INTRODUCTION

Understanding the behavior of non-Newtonian fluids such as

molten plastics, pulps, slurries, emulsions, and colloidal solu-

tions which do not obey Newton's law of viscosity in motion is

becoming increasingly important industrially. Much attention

so far has been given to the mechanism by which momentum and

heat are transferred to a moving non-Newtonian fluid under the

simple flow configurations.

One area of fluid flow which has received extensive treat-

ment in recent years is that of fluid dispersion. The importance

of fluid dispersion in continuous flow systems has been well

recognized and a number of theories and models of fluid disper-

sion have been proposed. In flow systems, fluid dispersion plays

a significant role in the system's performances. Even in hetero-

geneous systems such as solid particles, liquid droplets, and

gas bubbles distributed in fluids, dispersion characteristics

affect their performances. However, both analytical and experi-

mental investigations of the fluid dispersion have been mainly

confined to Newtonian fluids. The literature of fluid disper-

sion in non -Newtonian flow is almost non-existent, but fluid

dispersion is as important in the processing of non -Newtonian

fluids as it is in the processing of Newtonian fluids. A

partial listing of the areas in which dispersion of non-Newtonian

fluids is of importance is given below:

(1) Dispersion of food additives

(2) Manufacture of pastes



(3) Paint mixing

(4) Processing of heavy oils, coal tar, and coal pastes

(5) Plastic processing and molding

(6) Pulp digestors

(7) Production of various colloidal solutions

(8) Continuous processing of glass

(9) Biological blood flow

(10) Polymerization

The major studies of mixing of non-Newtonian fluids have

been carried out in batch mixing tanks by Metzner and co-workers

(1,2). McKelvey (3) in his recent book has briefly considered

mixing in polymer processing. Typical examples of mixing

processes given by him are the dispersion of carbon black in

polyethylene with a Banbury mixer, the compounding of a rubber

formulation on a roller mill, and the blending of two polymers in

an extruder. McKelvey' s work is also mainly concerned with

efficiency of mixing and a determination of the "goodness" of

mixing also in batch systems.

An important tool, commonly used in the study of fluid

mixing or dispersion in continuous flow systems, is the analysis

of residence or holding time distribution of a tracer in the

fluid flowing through the systems. The (exit) residence time

distribution is defined as the fraction of material introduced

into a system at a dimensionless time 9=0, which appears at

the outlet of the system between 9 and 9 + d6 (4). The residence

time distribution function or exit age distribution may be

regarded as the response of a flow system to a Dirac delta



function input of a tracer material (5). The residence time

distribution function may be directly related to the degree of

fluid dispersion and thus can be used to develop either physical

or mathematical models to represent dispersion characteristics

of flow systems.

This thesis will be concerned mainly with the development

of some mathematical models to represent the characteristics of

non-Newtonian fluid dispersion in flow systems.

In cylindrical coordinates a mathematical expression of a

flow model for which both convection and radial and longitudinal

diffusion are considered to be equally important is

2 2
SC „SC R ,SC 1 3C. _ , . ac
at = D

L ^2 + DR <£2 + ? 3?) " V
x(

r
) S7

where the following assumptions are made: D^ and DR are indepen-

dent of position and concentration gradient, no chemical reac-

tion occurs in the system, and flow is isothermal and steady.

When both the radial and longitudinal diffusions are

negligible, the steady-state velocity profile becomes the only

factor governing the overall or apparent fluid dispersion. This

specific case is often called a convective (velocity profile)

model. Such a model is extensively treated in this thesis. Age

distribution curves for flow of fluids which have the properties

of either the Bingham plastic or Ostwald-de Waele fluid are

calculated based on such a model. Comparisons of the convective

model with other models such as the Taylor dispersion, perfectly-

mixed-tanks-in-series, and others are also presented.

When the variation of the axial velocity with radial



position and the lateral material transport by molecular

diffusion are assumed to be the dominant dispersion mechanism,

the equation previously shown is called a dispersion model.

Such a model for the Ostwald-de Waele fluid flowing through an

open-open circular conduit is treated in Chapter V. Age

distribution functions (curves) are presented in order to show

the effects of dispersion coefficients and flow-behavior index

on the performance of the flow.



II. BACKGROUND INFORMATION

NATURE OP FLUID DISPERSION

1. Mathematical Representation

The degree to which the fluid flowing through a flow system

is mixed or dispersed may be characterized by either the distri-

bution of residence times of the fluid elements flowing through

the system or the concentration profile of the fluid in the

system. Theoretically, both of these relationships may be

obtained analytically.

A full mathematical description for the conservation of

mass and the equation of motion for any component of the system

may be written as follows (6).

ac
j

3t
-A = - (v ,

{
C± v + jj) + r

x
; 1 = l, 2, ... n (l)

3 .,

"St

"f _[y • {vv+n}] +
±
r
1 p±gi (2)

These equations are seldom used in the complete form given

above because the exact solution of these equations is beyond

the capability of present day mathematics. The normal procedure

is to disregard terms that are physically negligible or

identically zero, thereby obtaining simpler equations for a

given situation. For example, consider an isothermal and

incompressible fluid of constant mass density and viscosity.

Equations (l) and (2) become

5^ - - v . 7 c
x

- 7 . f
t
+ r

x
(3)



Dv— = - v p
Dt

[v • t
|
+ p g (4)

For a given physical situation of simple geometry (e.g., flow

through a circular tube, Equations (3) and (4) are relatively

easily solved for laminar flow. This is because in laminar flow

the molar flux J\. and stress tensor t are expressed in terms of

Pick's law of diffusion and Newton's law of viscosity (for

Newtonian fluids only). Vlhen considering turbulent flow J\j_ and

t are given by (6)

h - ?i
(l)

?!
(t)

(5)

? = ?(!)+? (t)
(g)

The superscripts (l) and (t) refer to laminar and turbulent

contributions respectively. The Jj_ and f «* ' can be given

by the same expressions as for purely laminar flow. The

difficulty here is that only semi -empirical expressions are

available for ?1 '*J and t (*).

If the geometry of the system becomes complicated, even the

laminar flow situation is impossible, or at least, very difficult

to solve. It is, therefore, convenient to treat fluid dispersion

from semi -empirical and/or mathematical or physical modeling

techniques. Furthermore, it is essential to confirm results from

such a treatment experimentally.

2. Age Distributions

The discussion which follows is based mainly on that



presented by Levenspiel (5) in his book.

a. Internal age distribution , 1(9). The vessel contains, in

general, fluid elements of varying ages, age being the time the

fluid elements have spent in the vessel. Let I (8) be the

internal age distribution function, which is defined so that

l(9)dQ is the fraction of fluid elements with ages between

9 and 9 + d9. A typical plot of 1(9) versus 9 is given in

Figure 1. It follows that the area under the curve is one, i.e.

CO

J l(9)d0 = 1 (7)

The fraction of fluid with ages less than 9, is shown in Figure 1

as the shaded area and is given by

9

r

1

I(9)d9 (8)
"0

The fraction of fluid with ages greater than 9-, is

9
do n

J I(e)d0 = 1 - J I(9)d9 (9)

The internal age distribution I_(t) based on time rather than

reduced time is related to l(©) as

1(9) = t I(t) with T I(t)dt = 1 (10)
'

b. Exit age distribution or residence time distribution

function ( r.t.d.f

.

) , E(9). In a manner similar to 1(9), let

E(9) denote the distribution of ages of all fluid elements

leaving the vessel. E(9) is defined so that E(9)d9 is the



Dimensionless Time , 9

Fig. I. Typical interna! age distribution curve.

o e2

Dimensionless Time , 9

Fig. 2. Typical exit age distribution curve.



fraction of material in the exit stream between the ages of

9 and 9+d9. It follows that

CO

J E(9)d9 = 1 (11)

A typical E(9) curve is given in Figure 2. The fraction of

material in the exit stream younger than age 9 , the shaded area

of Figure 2, is

6
2

T E(9)d9 (12)
J
o

and the fraction older than 9„ is

r E(9)d9 = 1 - r E(9)d9 (13)
"9

2
"~ ~

E(9) is variously referred to as the exit age distribution

function, the exit residence time distribution, or simply the

residence time distribution function (r.t.d.f.). If time, t,

is used instead of 9,

CO

E(9) = t E(t)' with f E(t)dt = 1 (l4)

c. Cumulative ( exit ) age distribution , F_(9) . With no tracer

initially present, let a step function (Appendix l) in time of

tracer be introduced into the fluid entering the vessel in such

a manner that the volumetric flow rate to the vessel remains

constant. Then the concentration-time curve for the tracer in

the exit fluid system, measured in terms of tracer concentration

in the entering stream, C , and reduced time 9 is called the
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cumulative (exit) age distribution curve or F-curve. As shown

in Figure 3 the range of F is 0<F<1.

d. The C-curve. The curve which describes the concentration-

time function of tracer in the exit stream of a vessel In

response to a Dirac delta function or unit impulse input

(Appendix 2) is called the C_-curve, As with the F-curve, the

range and domain are dimensionless. Concentrations are measured

in terms of the initial concentration, C°, as if it were evenly-

distributed throughout the vessel.

of l ,°°

C = r CdG *=f~\ Cdt (15)
'0 s

'

Time is measured in a reduced unit with this choice of unit

CO

f Cd9 = 1 (16)

Figure 4 shows a typical C-curve. The terms F, C_, I, and E were

introduced by Danckwerts (4). They are interrelated as

follows (3):

F(9) + 1(9) m 1 (17)

C(9) = E(9) (18)

e e

F(9) = 1 - 1(9) = P E(Q)d9 =
f

C(9)d9 (19)
' '0

FLOW MODELS

The use of flow models to represent actual dispersion

characteristics or the corresponding residence time distributions

of flow systems is, as mentioned in the first chapter, a very
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Fig.3. Typical F.- curve.
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Dimensionless Time , 9

Fig.4. Typical C-curve
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fruitful approach to the prediction of system performance. The

parameters of models can be correlated with the physical

properties of the fluid, vessel geometry, and flow rates. Once

these correlations are found, performance predictions can be

made without resort to experimentation for all types of fluid

processing.

Two ideal flow patterns, which are often used to approxi-

mate real systems, are plug flow and complete mixing. Patterns

of flow other than plug or complete mixing flow may be called

non-ideal flow patterns (5). Many types of models are avail-

able to describe non-ideal flow patterns within vessels, e.g.,

the dispersion models, convective models, perfectly-mixed-tanks

-in-series models, mixed models, and others (5).

The models may vary in complexity depending on the number of

parameters included. As the number of parameters used increases,

so does the difficulty in establishing general correlations. In

general, therefore, it is best to use as few parameters as is

consistent with adequate description of the system of

interest (5).

1. The Dispersion Model

The mathematical representation of one of the general forms

of the dispersion model is given by

T£ + 9 (-D v C) + v -(^c) + (C) =0 (20)

*The convective model has often been called the velocity profile
model.
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where D is the dispersion coefficient, v the fluid velocity-

vector, C the concentration, and t is the time. The values of D

are different in different directions, and thus the coefficient

may be represented by a second order tensor. The first term of

Equation (20) represents the change of concentration with

respect to time. The second term is an extension of Fick's law

or net outflow due to dispersion. The third term stands for the

velocity gradient and the fourth term represents the depletion

of material caused by the progress of a rate process.

A very important special form of the equation of continuity

is that of an incompressible fluid for which

v- v =

Since the third term of Equation (20) may be written as

v • (vC) = v • vc + C( v • v)

= v • v c

Equation (20) thus becomes

g£ -v
. (- DV c) + v . C + *(C) = (21)

For symmetrical axial flow in cylindrical tubes as

encountered in most of the chemical processes, Equation (21)

reduces to

*t " ^i- D
L( r ) si"j " F3F[»R (r) r lf]+ vx( r ) B7 + * (C) =

(22)
The lack of analytical solutions of this equation makes the
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evaluation of the dispersion coefficients extremely difficult.

Therefore, further simplification of Equation (21) often becomes

necessary.

a. The axial dispersed plug flow model . The most often

treated dispersion model is the axial dispersed plug flow model,

which is obtained from Equation (21) by making the following

assumptions: Only the dispersion in the axial direction is

significant, the dispersion coefficient, D, is independent of

position and concentration gradients, and the fluid flows with

an average axial velocity component V„.

With these assumptions, Equation (2l) reduces to

2

i-D^i-Vx f- *(C) (23)

The usual way of finding the value of D is through unsteady

tracer injection experiments. For a Dirac delta function input

of an inert tracer Equation (23) becomes, in terms of reduced

quantities and variables,

where 5 is the Dirac delta function

L = characteristic length of the system

V L
x

Pe -re _
D

With the selection of proper boundary conditions to be used with
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Equation (24) , the residence time distribution function of the

system can be calculated.

b. The dispersed plug flow model . The dispersed plug flow

model takes into account the dispersion in both the axial and

radial directions. As with the axial dispersed plug flow model,

the dispersion coefficients are assumed to be independent of

position and concentration gradients, and the fluid is assumed

to flow with an average axial velocity component Vx. With

these assumptions, Equation (22) becomes

2 2
^ C 3 C ,

3 C 1 ? C . - aC
, , . . ,

3t = dl7^ + dr (r^ + ?i^ - v* ^-* (c) (25)
ox c r

The method of solution is similar to that of the axial

dispersed plug flow model except for modification, which keeps

both axial and radial dispersions in the equations.

2. Dispersion (Diffusion) Model with Velocity Profile

Consider a steady-state flow inside a circular tube. There

exists a developed velocity profile, and owing to molecular and

turbulent diffusion, both axial and radial mixing will occur.

The presence of a velocity profile will increase the mixing

along the overall flow direction.

Suppose that the following assumptions are valid for flow

through a circular conduit; DL and DR are independent of

position and concentration gradient, no chemical reaction occurs

in the. system, and steady-state flow inside the tube is assumed.
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Then Equation (22) reduces to

2 2
ac 3 c ,a c l 30, , ,

ac

SF = DL ~2 + DR (~2 + ? *> " Vx( r ) ^ ( 26 )

5 x ar *

For laminar flow of Newtonian fluids,

D„ = D_ = D (molecular diffusivity)
R L ra

and

where V represents velocity at central axis and R is the radius
m

of the tube.

Taylor (7, 8, 9) and Tichacek et al. (10) considered solu-

tions of Equation (26) and compared the results with experimental

data. When the diffusion terms in the above equation are negli-

gible, the velocity profile alone accounts for the "apparent"

mixing. The residence time distribution functions for this case

have been solved by Miyauchi (11 ) and Sheppard (12). This

specific case is often termed convective model.

3. Perfectly-Mixed-Tanks -in-Series Model

The perfectly-mixed-tanks-in-series model was first applied

to distillation plates by Kirschbaum (13) who called it the pool

model. It gives tracer response curves that are somewhat

similar in shape to those found from the dispersion model. This

is a one-parameter model, the parameter being the number of tanks

in series.
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Consider j tanks in series, each having the same volume,

a material balance around the i-th tank gives

dC

von - vC
i+

v
i ^r < 28 >

The C_-curve may be found by solving the set of equations

(28) for i = 1, 2, 3,...,j with the condition that the input to

the first tank, i = 1, is a Dirac delta function of tracer.

Solving Equations (28) by the use of Laplace transforms gives (5)

J 3-1

The mean and the variance are

v, = 1 (30)

«
2
= T-

'

(31)

Hence, the experimental C-curve data can be used to determine a

2
variance o and thus j.

Several authors (14, 15, 16) have discussed the similarity

between the axial dispersed plug flow model and perfectly-mixed

tanks-in-series-model. Various methods of comparison have been

suggested. Kramers and Alberda (14) used the variance for the

doubly infinite vessel which is

ff
2,*2 2 JL (32)

Pe VXL

Comparing this with Equation (31) gives

i«J- (33)
J Pe

v:>0/
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Equation (33) extrapolates properly to j —>co as 1/Pe —»

(or D —*0), but does not extrapolate to j = 1 as l/Pe —> °°

(or D —? co
) # Levenspiel (15) has shown that the reason for

the incorrect extrapolation of Equation (33) as l/Pe —* oo

(or D * °°
) is that the doubly infinite vessel is not the

proper one to use for the comparison. The closed vessel must be

used. Then from van der Laan (17), it gives

12 2 -Pe

This expression extrapolates properly to J = 1 for l/Pe —»- °°

(or D —> os
) small values of l/Pe it reduces to Equation (33).

These comparisons are the basis for the statement that an

infinite number of stirred-tanks-in-series is equivalent to plug

flow (11, 15) because j —* oo as l/Pe —* (or D —> 0).

CHARACTERISTICS OP NON-NEWTONIAN FLOW

The distinguishing feature of non-Newtonian systems appears

to be that the colloidal rather than molecular properties are of

significance. Philippoff (l8) has summarized the properties of

colloidal particles which are relevant in determining their

Theological behavior.

The completely general case is that of a fluid for which the

relationship between shear stress and rate of shear is non-

linear, time dependent, and is also dependent upon the extent of

the deformation. Consequently, the non-Newtonian systems may be

divided into three broad classifications; time -independent non-

Newtonian fluids, time -dependent non-Newtonian fluids, and
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systems which have many characteristics of a solid, primarily

that of elastic recovery from the deformation, which occurs upon

flow. To date engineering research in this area has been

concerned mostly with the first of these classifications. Some

work has been done with paints and foods, which generally fall

in the second catagory.

The time independent non -Newtonian fluids can be divided

into ohree classes, whose shear stress and shear rate behaviors

for a two dimensional flow with one-dimensional rheological

statement are shown in Figure 5.

The so-called Bingham plastic or plastic fluid is the

simplest of all non-Newtonian fluids in the sense that the

relationship between stress and shear rate differs from that of

a Newtonian fluid in that the linear relationship does not pass

through the origin. Thus a finite shearing stress, t , is

necessary to initiate movement. For example, slurries of

approximately equi-dlmensional particles in a liquid would be

most likely to exhibit Bingham plastic behavior (19). Specific

examples are drilling muds, nuclear fuel suspensions, suspensions

of chalk, grains and rock, and sewage sludge (20).

The general rheological statement between shear stress

tensor, "f , and rate of deformation tensor, Ais represented

according to Bird et al. (6) as

7=-{u -

T
° }a for | (?:?)>/ (35)

\j \ (A: A)

^ 1 — — 2
A = for o (t : T ) < T (36)

o
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Rate of Shear

Fig. 5. Steady-state non-Newtonian

fluids (6).
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In the flow of a pseudoplastio fluid, Ostwald-de Steele

fluid, or power-law fluid, the apparent viscosity gradually

decreases with increased values of shear rates, that is, the

interraolecular or interparticle interactions smoothly decrease

with increasing rates of shear.

Examples of fluids which exhibit pseudoplastio behavior

Include polymeric solutions or melts, such as rubbers,

cellulose acetate, and napalm; suspensions such as paints,

mayonnaise, paper pulp, and detergent slurries, and even dilute

suspensions of inert, unsolvated solids (21).

The pseudoplastic fluid may be characterized by the

following relationship between shear stress tensor and rate of

deformation tensor (6)

:

v-l

f = _{m /fl*^) }"a (37)

The apparent viscosity of dilatant fluids gradually

increases with increasing shear rate. The best explanation for

dilatant behavior may still be the original explanation given by

Reynolds in 1888 (22). This explanation suggests that all

suspensions of solids in liquids should exhibit dilatant

behavior at high solids contents. Few data are available for

evaluating this conclusion.

The time -dependent non -Newtonian fluids may be divided

into two groups, depending on whether the shear stress increases

or decreases with time of shear at a constant shearing rate (23).

The former are termed rheopectic and the latter thixotropic
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fluids (23).

The causes of thixotropic and rheopectic behavior are

possibly very similar to those for pseudoplasticity and

dilatancy. The alignment of asymmetrical molecules or particles

in pseudoplasticity cannot always be expected to be instantaneous

with respect to time. Therefore, it seems that the pseudoplastic

behavior may be that form of thixotropy which has too small a

time element to be measured on most instruments in current use.

The same argument may be applied to the relationship between

rheopexy and dilatancy (21).
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III. LITERATURE SURVEY

proposed by several investigators (4, 11, 12, 24, 25) to predict

residence time distribution functions of the flow in circular

conduits. Employing the fully developed laminar flow velocity

profile, they obtained the following (or equivalent) expressions

of the cumulative age distribution for the model when the

entrance effect is considered. The cumulative age distribution

at the outlet of the system corresponds to the response to a

step function input of a tracer or a second fluid

»(9) - 1 - i , for 9>l/2

= , for 9<l/2
(1)

Entrance effect consideration will be briefly described as

follows: We may resolve the fluid in the tube into a series

of laminar sleeves. When the fluid flows through the section,

x = and x = X (X/R being small), initially filled with a

uniformly distributed tracer, the tracer may be resolved into a

corresponding series of laminar rings. Since the tracer is

uniform in the section mentioned, or in other words, it is

uniform in length and concentration, the amount of the tracer

per unit cross-sectional area entering each ring will be

constant everywhere. When we relate the amount of tracer which

this ring delivers at the outflow to the time of delivery, we

can obtain the residence time distribution of a tracer in the
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fluid flowing through the tube. This is the case in which the

entrance effect is considered (12, 25). Exit age distribution

for the model in which the entrance effect is considered is the

response to a Dirac delta function input of a tracer and is

expressed by

-^2 >
for 9>|

29
(2)

1= , for 9<2

Now, suppose that the distribution of a tracer is uniform

at the inflow when taken with respect to time coordinates rather

than to space coordinates. The central laminae of the flow will

receive more tracer than will peripheral ones when a relatively

long pipe, as actually encountered in many practical situations,

is used. Thus, the moving laminae contain tracer in proportion

to the fluid velocity (12, 25). This generates a case in which

the entrance effect can be neglected. For this case, they

(4, 11, 12, 24, 25) obtained the following expressions for the

cumulative and exit age distributions

:

P(9) = 1 - —^-r , for 9>l/2 -.

(29)
] (3!

= , for 9<l/2
(

and

F,te>) = -
,3

E(9) = — , for 0>l/2

, for 9<l/2
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A solid curve in Figure 6 is the graphical representation

of Equation (4). Miyauchi (11), however, indicated that such a

curve is generally deformed, probably due to diffusion accom-

panying the flow as shown by the dotted line.

Gonzalez-Fernandez (25) considered the case with a more

generalized velocity profile for the laminar flow of a Newtonian

fluid. He also proposed the velocity profile for Newtonian

fluid flow at a low Reynolds number with slippage at the tube

wall as follows:

V
x
(r >= V

R
+

<
Vm- V I

1 - ( R
)2

J (5)

As described above, most of the convective models considered

are only for laminar flow of Newtonian fluids. Actually, non-

Newtonian flow predominates in many industrial systems as

mentioned in the introductory chapter.

In order to give a more precise description of the

dispersion characteristics of fluids, axial and radial diffusions

and the velocity profile should be considered simultaneously.

The mathematical expression of such a model is shown by Equation

(2.26). The general solutions to this equation do not exist.

Thus, some terms that are physically negligible or identically

zero may be disregarded in order to obtain simpler equations for

a given situation as mentioned previously.

Taylor (7) simplified Equation (2.26) by considering that

the variation of axial velocity with radial position and radial

transport by molecular diffusion to be the main mechanism of
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dispersion of soluble tracer during laminar flow of a Newtonian

fluid in an open tube. The corresponding diffusion equation is

v$*i*>-*.[»-'i>
l,

ie-« < 6 >

where Dm is the molecular diffusivlty which is equal to DR , the

radial diffusion coefficient, as shown in Equation (2.27).

Since it would be difficult to find a complete solution of

Equation (6), Taylor in his first paper (7) presented approximate

solutions, which are valid under the following two limiting

conditions:

"The changes in C due to convective transport along
the tube take place in a time which is so short that
the effect of molecular diffusion may be neglected."

"The time necessary for appreciable effects to appear,
owing to convective transport, is long compared with
the 'time of decay' during which radial variations of
concentration are reduced to a fraction of their
initial value through the action of molecular
diffusion."

The calculated distributions of Cm along a tube for the

first condition have been given by him (7) as follows:

when input of a tracer in the flow is an impulse

C X

C = —

—

, 0<x<V t
m Vmt

=
,

x<0 and x>V
m
t

(7)
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For the step input of a tracer,

Cm = C
Q , x<0

C = C (1 - JL.)
, 0<x<V t ) (8)

m o V
ffl

t m

C =0 . x>V t
m ' m

For the finite pulse input of a tracer the distribution is

described by, if t<X/Vm

Cm = 0, x<

C
m = CcW -

0<x<Vmt

C = C , V t<x<X
m o ' m

C C (1 - £=$.) , X<x<X + V t
o V„t mm

C = , x >X + V t
m ' m

If t>X/Vm , it is given by

c
ra

= c (x/vmt), X<x<Vmt (10)

X + V t - x
C = C (

—
) , V t<x<V t + X

m o V t m m

Cm = , x>X + Vmt

It should be noted that the first simplification proposed by
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Taylor can be considered as the origin of the convective model

whose residence time distribution functions are given by

Equations (l), (2), (3), and (4).

If the molecular diffusion becomes the dominant dispersion

mechanism of a tracer in a fluid flow and if the second condi-

tion is valid, the time necessary for convection, L/V
rn

, to make

an appreciable change in C was given by (7)

_L.»_s!:

—

(id
V
m (3.8)

2Dn

Letting x, = x - -L Vmt and pa £. . Taylor transformed Equation
x 2 '" R

(6) into the following form

Sp
2
+

p 3p = Dm t ' Dm
l 2 " X U2J

Since the mean velocity across planes, for which x-, is

constant, is zero, the transfer of C across such planes depends

only on the radial variation of C. Therefore, if it is assumed

that the radial variation of C is small, and thus 3C/3t is also

small. Then, Equation (12) may be written as

£l_C + 1 _C m tl* (I .
p 2)

SC_
(13)

?p
2 p 3o D

n 2 BXj

Furthermore, since 3C/3x, is independent of p, if 3C/3p is very

small, the solution obtained is

C = Cx +A(p2 -jplt

) (14)

where C, is the concentration at p = and A is a constant.x
l
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Substituting Equation (l4) into Equation (13) one obtains

k _ m2C_
( }

8Dm «!

The rate of transfer of C across the section at x. is

Q = 2nR2 / V
m (| - p

2
) Cpd p (16)

o

Thus, on substituting for C from Equation (14), and integrating

gives

nR V x

(17)
192Dm SXl

Now C is replaced by C„, the mean concentration, since
x
l

ra

radial variation of C is assumed to be small. Thus, on

comparison with Pick's law of diffusion, the expression obtained

for the diffusion coefficient is

rV
K = 21 (18)

192D
ffl

Hence

,

3C
5Q m _ p2 m
5x

1
St

a
2
c

m
-. 2 ~ at
3x

i

because there is no loss or gain of matter.

(19)
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The solution to Equation (19) for an Infinitely long tube

with introduction of a unit impulse input or a Dirac delta

function input at time equal to zero is

CmnR
2

. —i-r exp{ -[x - 1/2 (V
m
t)]

2
/ 4Kt} (20)

(4TiKt)
2

In a later paper (9) Taylor gave further consideration to the

assumption that axially directed molecular diffusion is negli-

gible compared with axial transport by convection. This

assumption is inherent in Equation (6) and thus limits the

applicability of Equations (l8) and (20). He showed that his

previous derivation of Equation (l8) is valid when Dm is

sufficiently small compared with K.

Aris (26) removed this restriction by showing Equation (20)

to be valid when' it satisfies the criterion of Equation (ll) and

if the effective diffusion coefficient is defined as the sum of

K (as given by Equation (19) and the molecular diffusivity, D .

Blockwell (27) in his study of liquid dispersion in long

capillary tubes obtained effective dispersion coefficients,

which showed an agreement with the work by Aris (26).

Taylor in his later paper (8) extended the method of

analysis of laminar flow in round empty tubes to turbulent flow

through open tubes. Several investigators (5, 28, 29, 30, 31)

later used this model to study dispersion in packed units.

When both diffusion and convection are equally important

in effecting dispersion, Equations (l) through (20) should be

modified. Solutions of Equation (6) by numerical and analytical
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(21)

have been presented in the literature (32, 33). For the

analytical solution, Farrel and Leonard (33) started with

Equation (6) and obtained the Laplace transformation of the

residence time distribution function resulting from a unit

impulse input C_ (s, \)

.

2 J (l-pV
m
(M)dp -

C (s,T
x

) = £ Am [eXp(- *
m\) 1

m=l J (1 - p ) p d P

where

SH
2

X = TT~ = Dimensionless Laplace parameter
m

4xD
T) m — = Dimensionless axial coordinate, or dispersion

V Rm parameter

p = — = Dimensionless radial coordinate

a _ = m-th eigen value

A m-th eigen constant

P ( X, p) = m-th eigen function
m

They compared the transformed residence time distribution

function for the two-dimensional case with the limiting one-

dimensional models for a definite range of operating conditions.

Second and third central moments of the one and two-dimensional

models were also compared. The two-dimensional solution was

shown to predict a more skewed distribution than the one-
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dimensional models of equal mean and variance.

Nichols and Lamb (3^) gave the general solution of first-

order chemical reaction in laminar tubular flow with axial and

radial diffusion considered. They solved the general equation

shown in Equation (22) by using a formal series expansion of the

dependent variable with a Bessel function representation of the

radial eigen functions.

D 2
_£, JL (r 5£) + D LH = V (r) K + kC (22)
r 9r Sr L 2 x 9x

ax

They also summarized a number of special cases of the general

equation, which were treated.

In turbulent flow, the diffusivity tensor D, in Equation

(2.20) is no longer the representation of molecular diffusivity

as in Equation (6). It should be taken as the sum of the

"molecular diffusivity," Dm and "eddy diffusivity," e that is,

D- Dm + e
D (35).

Duj can be given by the same expressions as for purely

laminar flow. The difficulty here is that only semiempirical

expressions are available for e_. Values of e^ are always non-

isotropic, but it is sufficiently accurate for many applications

to use the mean value of e Not only is it difficult to solve

for turbulent flow, but also very difficult or even impossible

to solve the laminar flow case if the geometry of the physical

system becomes complicated. It is, therefore, convenient to

treat fluid mixing in turbulent flow from semi -empirical modeling

techniques. Furthermore, it is essential to confirm results from
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such a treatment experimentally.

Taylor (8) also studied axial mixing in turbulent flow

regions. For fully developed turbulent flow region Taylor used

the Reynolds analogy to determine dispersion coefficients in

terms of Fanning friction factor f as

D
L. = 3.57 V?" (23)

V., dx ut

where Dr is the axial dispersion coefficient, Vx is the average

velocity, and d. the inside diameter of the tube; f is the

Fanning friction factor and is related to the Reynolds number.

Tichacek, Barkelew, and Baron (10) repeated Taylor's analysis by

using actually measured average velocity profiles and accounting

for the eddy diffusivity en as well as molecular diffusivity Dm .

According to their analysis, D-/V d. is dependent on. the

Reynolds number, pipe roughness (or friction factor) and Schmidt

number. For high values of f , the Schmidt number affected the

values of DT /V d, . They reported that their theoretical data
Li X U

are applicable with less than 25$ error as shown by comparison

with Taylor's experimental data. Vanderveen (36) determined the

3 4
value of Dr for Reynolds numbers between 4 x 10 and 10 . He

found experimentally that values of D_/V d. showed significant
Li X i-

deviations from Taylor's theory in the range studied. The

results fall between Taylor's model and the results of Tichacek

et al. (10). Vanderveen (36) reported that the data obtained were

believed to be reliable to within 10$ throughout the range of

Reynolds numbers studied, but did not agree with Tichacek'

s

results.
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IV. CONVECTIVE MODELS

The importance of the study of the characteristics of

non-Newtonian fluid dispersion in continuous flow systems and

the usefulness of models to represent real flow systems have

been mentioned in the previous chapters. Starting from this

chapter, the analysis of residence time distributions for some

flow models will be discussed. First of all, convective models

will be treated extensively in this chapter for fluids which

can be represented by the Bingham plastic and Ostwald-de Waele

models. The convective model is such a model that both radial

and longitudinal dispersion terms in Equation (2.26) are

negligible and only the effect of the velocity profile of the

fluid becomes the major influence on the fluid dispersion.

Steady and iso-thermal flow situations and ducts of constant

geometrical configurations are to be assumed. Models for which

both diffusion and convective terras cannot be neglected will be

discussed in the next chapter.

FLOW THROUGH CYLINDRICAL TUBES

1. Bingham Plastic

As previously described, a substance that has the following

general Theological statement between shear stress tensor, T,

and rate of deformation tensor, "A* , is called the Bingham

plastic (6):
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f= for i (^ = T)<t
2

(2)
2 o

where a and T are rheologioal constants.
o °

In any situation, Equations (l) and (2) are to be combined

with the equation of continuity

(v • v) = (3)

and the equation of motion

p
2_v - -v? -["v • T ]

(4)
Dt L J

and solved subject to certain boundary conditions (37).

For flow through a cylindrical tube with length L and

radius R, for which a one -dimensional rheological statement (37)

in cylindrical coordinates is valid (See Figure 7), Equations (l)

and (2) reduce to (Appendix 3) (6)

dV
T = T - „ _JS. for T >t (5)
rx o o dr rx o

dV
—— = for T < t (6)
dr rx o

and the equation of motion at steady state reduces to

- ^— (r t ) = - 5— \l )

r or rx ox

Since the right-hand side of Equation (7) is not a function of
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r, it can be integrated to give

T » (-52) *L+ fi (8)
rx 3x2 r

where C]_ is the constant of integration. Because, at r = 0, the

momentum flux is never infinite, the constant C-^ must be zero.

Equation (8) thus becomes

T = (- |f) I (9)
rx 3x2

Combining Equations (5) and (9) and applying the boundary condi-

tion V = at r = R, one can obtain the following velocity

profile of the Bingham plastic fluid flowing through a pipe

(Appendix 4) (38).

,2 2

V (-AP)R
(1 -t) for r<r (10)

m 4u L °

V (r) = V [l - -2 ] for r>r (ll)

(l-l)
2

Where

r t
v o

and

AP = the pressure drop over L

The mean velocity of the fluid is obtained by summing all the

velocities over a cross -section and then dividing by the

cross-sectional area (Appendix 5) (6)
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2
(-ff)R 4 y 1 y. 4

V
x

= S„ L (l - 3^ + 3 ^ )
(12)

*, Villus i
tL

d-5)
2 J (13)

Let rt= = -
, Equation (13) becomes

(1 -|)
2

V V
x =

_E a
2 (14)

The residence time distribution functions of the Bingham

plastic fluid flowing through a round pipe for an iso-thermal

situation will be developed here. If one assumes that the fluid

is everywhere in unaccelerated laminar flow, and both entrance

effects and molecular diffusion are negligible, the response to

a step function input of a tracer can be obtained through the

following manipulations. The P-curve, as it was defined in

Chapter II of this thesis, can be expressed mathematically as

fOllOWS (11, 12, 25):

r r

T V (r) . 2 nr dr 2 f V (r)r dr

P (e) = -2—

2

= -i°_* (15)— R 2
. vx

• 2nr dr vxR

As shown in Figure 7, the Bingham plastic is a fluid which,



40

theoretically, has a plug flow portion with radius r through

the center of the pipe. Therefore Equation (15) can be

rewritten as (39)

F(e) = p
1
(o) + Pg(e) (16)

where

and

F
x
(9) = ^2 J Vdr (17 ^

(|-^)
2

p
2 ( 9) = =fg f M1 -

-—~z}^ ( l8 )

"o (1 -i)
~ VzR

Introducing a unit step function U
s
(9 - ^) , which has the

properties

Co for 9<f
U
S
(G - f) -J (19)

/ 1 for Q>&

into Equation (17) and combining the result with Equation (14),

we have

*r
2

V«) " ^~ • Us (9 - f) (20)

where 9 is a dimensionless time defined as a ratio of reaction

time to holding time or mean residence time. The response to a

Dirac delta function input is obtained by taking the derivative

of P(9) with respect to 9 as shown in Equation (2.19) and is
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given by

dP (9) yS
-1 2 5

E^O) =^—=-^--8 (Q -
|) (21)

where 6(9 - — ) is a Dirac delta (Appendix 2) function and is

defined as

for 9 / £

1 for 9=2

3y knowing that

V (r) «V (r)
a

V - ~ 29
m 2VV

Equation (18) can be simplified to (Appendix 6)

t - V-

1 29
3

2 V 29

. r l -J . -Jzk 29-0- i -]M
3 (1 -t) a l~7~ + 1~ • 3/2 "

, 2 J
<* 3

9 49

The residence time distribution function is, then (39)

/

(23)

-J ^^ (7^=1+1-^9 (24)

s
2
(e) = ^

":°
( + i -if) (25)

- 29^ ,A . JL
V 29

Therefore, Equation (l6) becomes
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u2

P(0) *.<«
9 (1 -S)r.

r 3
29

(- fc + 1 -%)&$*

29

for 9>|r X 26 )

= for 9<|

The residence time distribution function for the Bingham

plastic fluid flowing through a pipe is then

E(e)
2 S

«(<

=

ff. IJ. -i

2 ) + 3
29

(, + 1

V 1 - 29

for 9>5

for 9<£

'(27)

For the special case when j = and a =» 1, Equations (26) and

(27) reduce to the Newtonian case represented by Equations (3.3)

and (3.4).

2. Ostwald-de Waele Model

In the case for which a one -dimensional rheological state-

ment is valid, Equation (2.37) written in a cylindrical

coordinate reduces to

cV

dr

v-1
dV

(—

)

Mr ' (28)

where m and v are rheological parameters.

Solving the governing differential equation subject to
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appropriate boundary conditions, one obtains (Appendix 7) (6)

dV

^x^"^ = (-fe) 2
(29)

With the boundary condition Vx = at r = R, Equation (29) is

solved to be (3)

n n+1 n+1

where n = — and AP is the pressure drop over L. The maximum
v

velocity occurs at r = 0, and thus has the value (3)

n n+1

v - {=£.) 5

—

(31)m 2mL n+1

Combining Equations (30) and (31) yields (3, 21)

n+1

\M =V
m [1-(|) ] (32)

Figure 8 shows the velocity profiles based on Equations (32).

For n = 0, the fluid is a highly non-Newtonian dilatant, while

the fluid becomes so called "plug flow" when n-><*> . For

Newtonian fluids n = 1. Hence, Equation (32) represents general

velocity profiles for various values of n.

The average velocity, Vx , is calculated by N

2" R

.

r / V (r)rdrd9 n+1
- x r-tF\ /R \ /n+l\
V = ~TZ = (r-r) ( -) (^7
x 2" r 2mL n+1 n+3

r p rdrdQ

'0
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- n+l

The residence time distribution functions of the Ostwald-de

Waele fluid flowing through a pipe will be developed for the two

different cases with and without entrance effect consideration.

When the entrance effect is considered, the F-function is (25)

F(e) =4 f r dr ( 34 >

R

Furthermore, Equations (32) and (33) show that

1

V (r) n+l
*. i . JL_J
R L Vm J

1

n+l

&• (35)

Hence the F-curve can be obtained by substituting Equation (35)

into Equation (34) as (39)

Q
2(e) =

r
-S- 1 ae

J n+3 n-1

n+l 2 r , 1 1 n+1
e
2
[in+ 3 L^ _

vn+l'

for 0>9±i (36)
n+3

^ n+l
for 9<—
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The E-curve (39), residence time distribution function, is

obtained by simply differentiating Equation (36) with respect

to 9

E(G) _2_
" n+3

l
for

n+3

e L

n-l
. 1 1n+l

= for 9<S±i

(37)

When the entrance effect is not considered the F-function is

(11, 12, 25)

r

F(9) = —- r V„(r)r dr

a v
x

o

Therefore, the F-curve is

p(s) = r — de for e> n±I
J n+3 n-l n+3
n+1 n+1
n+3 Q3[ x _^^]S 9

) (38)

for 0<Sg

The E-curve is then

S(9) = -~ ~ r for 9>2±I
- ' n+3 n-l n+3

n+1

93
i
1

- :skr]
Wi^

= ° for e<nS
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For the special case when n = 1 Equations (36), (37), (38),

and (39) reduce to the Newtonian case, as shown by Equations

(3-D, (3-2), (3-3), and (3-4).

FLOW THROUGH A SLIT BETWEEN PARALLEL PLATES

1. Bingham Plastic

An analysis of the Bingham plastic fluid flowing through a

two-dimensional thin slit between parallel plates at steady

state is presented in this section. The coordinate axes are

chosen as shown in Figure 9. For a one-dimensional Theological

statement, Equations (2.35) and (2.36) reduce to

dV

V = T
o - *o jf

for Tyx> T
o ( 4°)

dV
—2- „ o for t <t (41)
dy yx o

The velocity profile can be obtained by combining the above

equations with the equation of motion and solving the resulting

equation subject to appropriate boundary conditions, which state

that momentum flux Is finite at the center of a slit and velocity

is zero at the wall. The velocity profile, thus obtained is

(Appendix 8)

(i - 5 )

2
for y<yQ ^

2n L
*o

r y cs2

x (y) - V
rn I1 " * ^2 1

for y > yo ^
(1 -t)

2
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where

±
y
o

T

5 = H - : T H

Ap = the pressure drop over L

The mean velocity of the fluid is (Appendix 9):

Vx
-^^(l-|^|^i (.4)x 3u L 2 2

o

When ^ = 0, Equations (43) and (44) reduce to Newtonian case (6).

Dividing Equation (44) by Equation (42) yields

Vx = fvm 3 (45)

where

,
0= " £ (46)

(1 -i)
2

When the entrance effect is negligible, a response to a unit

step function input is

p (9) = L__ j.W , y 2 V
x (y) dy dz

2HW V* b o

jfc .f
" Vx (y) dy

X Q

^(e) + I2
(e) (47)

where

^(S) -
J~" J

° V
ra

dy (48)
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and

i ,
y

r
(!->>%

F (9) = —=- J Vm [l -
—

2 ' d ? (^9)
2 H Vx yo (1 -J)

2

Solutions to Equations (48) and (4-9) are

23.(9)- || - u
s

(e - | e) (50)

and

&(«)-; lA^4lL —

—

(51)

|e 3S

v
/r:f

Detailed derivation of Equation (51) is given in Appendix 10.

The F-function and E-function are, therefore.

2 39"
V 3e

for 9 >| 3

and

= for < - 9

3

31., ,„ 8:„, . li.283 »s ^n
for 9>|j3 ?(53)

.2
= for 9<~9
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For the case S = and 9=1, Equations (52) and (53)

reduce to those for the Newtonian flow, that is,

F(9) r

y
1 d9 for 9>—

J
2 3

3 V 39

-2
for 9<2

(54)

and

E(e) i for o>|

39
3\/l 2_

3e
) (55)

.2
= for 9<2

2. Ostwald-de Waele Model

Referring to Figure 10, the velocity profile of the

Ostwald-de Waele fluid flowing through a two-dimensional thin

slit at steady-state can be obtained by solving the equation of

motion in conjunction with Equation (28) with appropriate

boundary conditions. The result is (3)

n n+1 n+1 -,

V^=(^) fe [>-(+) ] (56)

where n = -i— and ^p is the pressure drop over L. The maximum
v

velocity occurs at y = 0. Its value is given by (3)

„ n „n+l
V = ,+1 H

. (57)
ra ( mL) n+1
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Combination of Equations (56) and (57) gives

53

n+ln

Vy) = v
m t

1
-(-jh 1

(58)

The average velocity, V , is

W H
V,x WHh 1 r \ w * dz - nfe

aP H
n+1

raL^ n+2 (59)

o o

The ratio of maximum to average velocity is then represented

by the following relationship:

V_ = ^ vn (60)x n+2 m

When the entrance effect cannot be neglected (a short

channel) the P- function is given by

WW V
F (9) = — I" dy dz
~~ WH

"

o o

Substituting Equations (58) and (60) into Equation (6l) and

simplifying the integrand, we have

(61)

p(o) = r _i_ _
n+2

241 e
2

n+2
S

d 9

[1 __J_ ]H+T
n+2.&

for 9>

for 9<

n+1

n+2

n+1
n+2

(62)

The response to a Dira'e delta function input, the E-function is
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:(G) = 1 1
n+2 _n_

e
2

|"i - -1—
]

n+1

for 9>S±i )(63)
n+2

= for 9<2±i
n+2

When n = 1 Equations (62) and (63) reduce to those for the

Newtonian flow.

When the entrance effect can be neglected (a long channel),

the response to a unit step input is

2(e) = 4- / v (y)dy . ;

9
J. ^9

HVX 'o
»" 'n+1^ _£_

n+3 q
3

[i . _i 1
L n+2 -1

(nTD 9

for 0>^

= for 9<^J (64)

and the response to a Dirac Delta function input, i.e., the

E-function is obtained as

E(9) -_1 L
n+2 _n_

e
3
[i - _i_

]

n+}

fe> 9

for 9>2±|
f (65)

= for e<n±l
n+2
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Equations (54) and (55) can be obtained by setting n = 1

in Equations (64) and (65).

PLOW 0? THE OSTWALD-DE WAELE FLUID WITH SLIP VELOCITY AT THE

TUBE WALL

Velocity profile of this model obtained by applying

boundary conditions of V = V
R

at r = R in Equation (29) gives

V*) - vh + *.[*- (ir)
n+1

]
^

The velocity is maximum at r = 0. It is

V = V„ + V
m R m

Thus

V = V' - V-, (67)
m m k

Therefore, Equation (66) can be rewritten as

\M - ^ * CVB - VR ) [l -
(^)

n+1
] (68)

The average velocity, V , is calculated in the same way as shown

by using Equation (33) as

(n+1) V + 2V
Vx

= SL £ (69)x n + 3

The minimum residence time will be defined as

. -^-- 7-2±i (70)mm v' (n+3 - 2 Y
m
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V
R

Where v is a slip velocity factor and is defined by y

when there is no slip velocity at the wall, y becomes zero.

When the entrance effect cannot be neglected, from Equation (68),

we have

d L

(n+l)(;

1

n+1

(n+3)(l -y )

Differentiating Equation (71) with respect to 9 yields

i/^ = d8
' rJ (n+3)(l

e*i%
(n+l)(i- Y ),

]
(n+3)(l -v) J

n
n+1

(71)

In response to a unit step function input, one has

2 de
P(e) =

(•

n+l (n+3)(l-Y)

(n+3)-2-y e Ti-
,i(n+l)(| -y) -, 5J

(n+3)(l -y)
J

=

for 2+i < 9<I
(n+3) - 2Y Y

for 9< U+l
(n+3) - 2 Y

(72)

= 1 for _JL_ < 9

Y

The response to a Dirac delta function input the 2-function is
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E(0)

(n+3)(l-v) , n-1

2
(n+l)(i -Y) n+1

e ,i 2
]

I
1

(n+3)(l-Y
)

for n+1 -<e<— f(73)
(n+3) -2y Y

= for 9< 2±i and i.<«
(n+3) - 2y y

When the entrance effect is neglected, the corresponding

F-function is

P(9)
(n+3)(l-Y)

n+1

(n+3)-2 Y

d9

n-1

1 n+1
3 r

(n+1) (a - y)
3 [l -

for

(n+3)(l-Y)

n+1 -<o<^-
(n+3)-2r

for 9< n+1

(n+3)-2y

>(74)

= 1 for -i_ < 9

and the corresponding E -curve is then
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3( 3 ) - —J 1

(n+3)(l-Y) i n-l

3 r
(n+l)(§- -v) - n+l

G Ll "
(n+3)(l-Y)

J

for n+1 < <T -i_ / (75)
(n+3) -2v y

= for 9 < —H±i and -JL_ < e
(n+3)-2Y Y

When there is no slip velocity at the wall of the tube, that is,

when y = 0, Equations (72), (73), (74), and (75) reduce to

Equations (3d), (37), (33), and (39). When y= and n = 1, the

above equations reduce to those for the Newtonian flow, i.e.,

Equations (3.1), (3.2), (3.3), and (3.4).

Equations (72), (73), (74), and (75) have been numerically

computed. A computer program for this purpose written for the

IBM 1620 is given in Appendix 11. A family of F and E curves,

shown in Figures 11 through 20, are plotted with flow behavior

index, n, and slip velocity factor, y, as parameters. The F

and E curves for the plug flow cases, n =00, are also shown in

Figures 11 through 20 for comparison. However, it should be

noted that the slip velocity at the wall is actually plug flow

velocity itse'lf.

MAXIMUM POINTS ON E-CURVE3

In order to know the characteristics of E curves for
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Ostwald-de Waele fluid developed previously in detail, the

position of the maximum concentration on the E-curves as given

by Equations (73) and (75) a~e determined.

When the entrance effect cannot be neglected, differen-

tiating Equation (73) with respect to 9 and equating the

derivative to zero, one has

9 -if .

n
t

3
1 (76)

2 k (n+3)-2y J

Substituting this equation into Equation (73), one obtains

E(e) = 2 1 (77)
m

(n+3)(l-Y) , n=l
2 (n+l)(g -Y ) n+1

3m j" m

L "
(n+3)(l-v)

where 9 is 9 given by Equation (76).
m

When the entrance effect can be neglected, dimensionless

residence time corresponding to the maximum point on E curve, is

6 = 2 f^n±2 1 (78)

3
L (n+3) - 2Y

j

Hence, the corresponding maximum is

E (e) . —2 1 (79)
'm

(n+3)(l-Y)

3
6

where 6 is 9 given by Equation (78)

(n+l)(| ) -

m
•Y)

n-1
n+1

]
(n+3)(l-7)
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DISCUSSION AND CONCLUSION

In this treatment of the convective models (velocity

profile models) steady state and isothermal laminar flow

situations are assumed. The velocity profile of the fluid is

a function of r, for cylindrical coordinates, or y, for

rectangular coordinates, only, and thus a one -dimensional

statement of shear stress-shear rate relationship for non-

Newtonian fluids is valid.

Based on these simplifications, F and E curves for the

Bingham plastic flowing through a cylindrical tube and a slit

between two parallel plates have been derived for the case

without entrance effect. The possibility of slip at the tube

wall has been neglected. For the Ostwald-de Waele fluid,

however, the two different cases, with and without entrance

effects, as well as the case with the slip velocity at the tube

wall have been considered. Each case, of course, can be reduced

to the corresponding F and E curves for Newtonian flow as a

limiting or special case.

Comparisons for both cases may be summarized as follows:

(1) Comparing the slopes of E curves for the two cases,

one sees that when the slip velocity at the tube wall is

neglected, Equations (73) and (75) reduce to Equations (3.2)

and (3.4) repeated below for Newtonian flow:

E(9) = -=—
, for entrance effect considered (3.2)

29
2
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E(e) = -=—
, for entrance effect neglected (3.*0

29
3

Both equations are applicable only when 9 >l/2.

Slopes for the above two equations are

an.

as

1

dE

de

3

29

for 9 >l/2 (80)

for 9 >l/2 (81)

Comparing these two equations, one sees that when the values of
dE

9 become infinite or at 9 = 3/2, the two curves, -= vs. 9,

coincide. While the values of 9 are in the range between 1/2

and 3/2 the values of 5= in Equation (80 ) are greater than
d9

those given by Equation (8l) in this range. The situation is,

however, reversed when 9 ^> 3/2.

(2) Equation (76) shows that the values of 9 corresponding

to the maximum points on E-curves are constant regardless of the

values of n for the case without the slip velocity, 7=0, but

with the entrance effect. However, from Equation (78) one

clearly sees that the above explanation is no longer true for

the case without the entrance effect.

(3) Maximum points on E-curves for the case in which the

entrance effect can be neglected are always higher than that for

the case in which the entrance effect be considered.
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Miyauohi (11 ) indicated that, in actual observation, there

will be a deformation in the shape of an E-curve due to

dispersion as shown in Figure 21. In Figure 21, typical E(Q)-

curves for convective models for Newtonian and non-Newtonian

fluids are replotted against 9. The uniaxial Taylor dispersion

model for the Newtonian flow with P = 4 (11) and the tanks-in-

series model (ll) are also presented for comparison.

The models for non-Newtonian fluids treated in this

chapter without considering the diffusion effect clearly show

that the deformation of E curves is still caused by merely

changing the parameter, n, i.e., by deviation from the Newtonian

velocity profile alone. For instance, when n = 0.5, the E-curve

is a closer approximation to the curve actually observed by

Miyauchi than either Taylor's dispersion or tanks -in-series

models as shown in Figure 21.

In Chapter III, it has been mentioned that the first

limiting condition proposed by Taylor (7) can be considered as

an origin of the convective model. Taylor in his paper (7)

showed the predicted distribution of average concentrations,

C , in the tube, generally confirmed by his experiments, for

three transients: an impulse, a step, and a finite pulse.

During his development, the fluid has been assumed Newtonian.

When the fluid is assumed to be the Ostwald-de Waele fluid the

predicted response for an impulse input of a tracer will be

(Appendix 12)



.- o CO .£ .

C
o
'to

0} I* j

CO

notion

r's

d
=

CL-
OT _ <r> = o>-
Q3 °? 1- >>

La

Tanks-in-

Model

fo §££
>» II

o

(0

ributi

ct),
Is

wi

'3 *-

o °
._ *-
c >-J. *

"o cu o
o

/' <D d) cu
II

•

oe - U

" 1

CO
CD

E
i-

nee

tim

entranc

n-

series

9 >>-
P-Q —
o w
<r T3 = #

O 0)
CD
CO

c
o
'to

reside ithout nks-i

So <r>
c
CO ? o

<D C 3 yvv O' E
b

.+_ V_/4-
> CO O <u>"0Op2 // w c += c

^/ >^ y\\ o
o ° o
.1 i .

-fe 7

o

*- c c
2 °oCl o.—M V £ ,£

i

i ^A—!\ .9 o£—
p v ' O <*- Cl

ii

c in

6 f \ (M

il

c °
\

O'
CO

1 1

c
1

1 IT
m ro CO

(9)3



74

C X

Ja n+1 54 •
0<X<V

n+1

v* 1
- v }

>(82)

= , x<0 and l>VJ

For the case of a step input of a tracer, the distributions

of C along a tube become (Appendix 12)

C = C n ,
x<0

M

c_ - C, 1oL ]

n+1 n-1

n+1

!

, 0<x<Vmt

vt(i - —

)

m V t
m

0=0, x>V t
m ' m

(83)

When the input of a tracer is of a finite pulse, and if

t<X/Va , the distribution will be (Appendix 12)
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C = , x<0
m

in n+1

c
o

x

-^ '
0<X<V

n+1

V (1 " 7T }

C = C. , V t<x<X
m m

(84)

' D°.-°oLi -=r
x - X— ]. X<x<X+Vmt

n+1

V t(l - —

)

m v 1-V
E1
L

Cm = , x>X + V
m
t



If t>X/V , it is given by

C = . x<0

ra r.+l

C x

n-i
n+1

V t(l - —

)

m^ v t
rn

ra n+1

c
o
x

v
-
t(1
"v )

m

C_ = Cn 1
X - x

76

, 0<x<X

, X< x<V t
n-1 ' m

n+1

(85)

n+1 n-1
n+1

, Vmt<x<Vmt + X

V t(l - -£-)
m V V t

ra

C = , x>X + V t
m m

Equations (82), (83), (84), and (85) are all derived under the

situation without the slip velocity. As an extension for future

work the case with the slip velocity can also be investigated.

When n =1, all the expressions shown in Equations (82) through

(85) reduce to Equations (3.7), (3.8), (3.9), and (3.10) derived

by Taylor (7) as a special case.
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V. THE DISPERSION (DIFFUSION) MODEL

The mathematical expression of the diffusion equation for

an incompressible fluid flowing in a circular tube is Equation

(2.26). In case the axial diffusion can be neglected (7, 9)

Equation (2.26) becomes

at
= D

R (^2 + r^ " V r
> ix" .

(1)

This equation describes the variation of tracer concentration

with time at a point in a cylindrical tube. Radial diffusion

and convection in the axial direction are the principal methods

of material transport. For the case in which the diffusion term

could not be neglected and also the time for convective transport

to effect a change in concentration was long compared with the

time of decay of radial concentration gradients by molecular

diffusion, Taylor (7) showed that the tracer concentration could

be considered dependent only on axial position and time. The

criterion he derived is given by Equation (2.11). When the decay

of radial concentration could be considered complete, and if the

velocity profile is parabolic Equation (l) was found to be

equivalent, as mentioned in Chapter III, to Fick's law for

molecular diffusion in a moving coordinate system, that is,

? C SC
m m , .

K ~r =
sT- (2)

Sx
1

where
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2 2
R V

m
K =

192D
H

For the case in which the diffusion term in Equation (l)

could be neglected, the convectlve term alone accounts for

material transport. This case has been extensively treated in

the previous chapter. Starting from Equation (l), this chapter

Will, then, concentrate on studying the effect of molecular

diffusion on the fluid dispersion for Ostwald-de Waele fluids

with steady velocity distribution in the isothermal laminar flow

region in an open-open round tube (see Figure 22). The analysis

employed basically follows Taylor's work (7, 9).

When a one -dimensional rheological statement is valid, the

velocity profile of the Ostwald-de Waele fluid in cylindrical

coordinates is expressed by Equations (1.31), (1.32) and (4.33),

V
x
(,) - V

m
[l - (|) j (3)

where

n n+1
v = (z&) 2

—

W
m

2tnL n+1

and

V = (2+1) V (5)
m v

n+1
; x

EFFECT OF MOLECULAR DIFFUSION ON THE FLUID DISPERSION

The eauation for diffusion can be written by combining
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Equations (l), (3), and (5) as

ac , D (

a!c l acj _ (Ba£) - r _
(

r
}

n+1

i
sc

(6)
3t R\ 2

+
r 3r ; v n+l ; x L

V R ;
J x '

or

Introducing the following diraansionless variables

C* •= dimensionless concentration = C/C

tv
G = dimensionless time = =

t L

p = dimensionless radial distance = -
R

Ti = dimensionless axial distance = -
It

Equation (6) becomes

DC 2
3C* R ,3 C* 1 3C. ,n+3

N , n
n+1. 3C* ,_,

sT " IT (r~2
+

o~ a7 ) " fe } ( p } ^ (7)

R op
,

Since the wall Of the tube is impermeable, one of the boundary

conditions is

a_£* = o (8)
a p

p = i

However, it would be difficult to find complete solutions

to Equation (7) giving the value of C* for all values of p , 11

and 9 when the distribution of C* at time 9 = is known; on

the other hand, approximate solutions can be found, which are

valid for the second limiting condition proposed by Taylor (7)

and mentioned in Chapter III. For reference, it is repeated

below
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"The time necessary for appreciable effects to appear,
ovjing to convective transport, is long compared with
the 'time of decay' during which radial variations of
concentration are reduced to a fraction of their
initial value through the action of molecular
diffusion."

In order to find the conditions under which this limiting

condition may be expected to be valid, it is necessary to

calculate how rapidly a concentration, which varies with radial

position, becomes a uniform concentration.

Since it is assumed that the time for convective transport

to effect an appreciable change in concentration is long as

compared with the 'time of decay' of the radial concentration

gradient by molecular diffusion, the axial concentration

gradient 3C*/3T1 may be considered approximately zero. But it

should be noted that the first velocity profile of the fluid

flow still exists. For the case with such an assumption the

solution of Equation (7) is of the form (Appendix 13) (40)

oo 2 a ^

C*(9, o) = S A
m

exp (- <y

m
9) J [

S_
p]

m=l ° (D
R
t)

2

m = 1, 2, ... (9)

where

A = m-th eigen constant
m

a = m-th eigen value
m

Since the rapid convergence of Equation (9) is expected, only

the first term of the summation, that is, m = 1 is considered as

an approximate solution of Equation (7). Besides, a boundary

condition
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C* = 1 when 9=0 and p =

ensures that

2 r
ff

i

R
i

C*(9, p) = exp(-* 9)J
Q [— rPJ ( 10 )

(d
r
F)

2

Furthermore, applying the following boundary condition

|£* =
3 P

p=l

to Equation (10 ), one has

p«1 R
n

J
i [ —i J f ° (n)

(DRt)
2

The root of this equation corresponding to the lowest value of

ol is

a R

1 = 3.83

(D
R
t)

2

or

(Ot)*
a
X = (3.83) -S— (12)

ft

It is necessary to find the time required for a tracer concentra-

tion to become uniform in the radial direction of the flow field.

The time necessary to decay the radial concentration variation,

represented by Equation (10), to the statistically uniform

state; that is, e~ of ti

tube, p= 0; is then (7)

state; that is, e of the initial value at the center of the
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D t

JL 9, = 0.0682

R
2 *

or

D
: 0.0682

R
2

Solving for t , one has

2
t = 0.0682 5_ (13)
1 D

R

Therefore, in order that Taylor's assumption may be valid, or

the time necessary for convective transport, L/Vm , to make an

appreciable change in a tracer concentration is comparatively

long, the following inequality should be satisfied.

Ji_» 0.0682 5-
V Dpvm R

o

J^^> 0.0682 (2+3) S_ (U)
7X n+1 DR

because

vm = (24)
n+l x

SOLUTION OP TWO-DIMENSIONAL DIFFUSION EQUATION FOR NON-NEWTONIAN

FLUIDS BY REDUCING TO ONE DIMENSION

Since the axial dispersion has been neglected, as shown in
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Equation (7), the whole of the axial material transport is thus

due to convection only. Equation (7) signifies that the

distribution of tracer concentration in the steady, laminar

flow region is due to the combined action of convection along

the tube due to variation of velocity over the cross-section

and radial dispersion due to molecular diffusion.

for convenience the concentration and velocity will be

defined relative to axeo which move with mean fluid velocity,

that is,

x - X - Vxt (!5)

With these simplifications Equation (6) becomes (Appendix 14)

n+1

I i. JL) _ v f— - S±^ (-
J r* >r> V I n-u"I n-4-1 R

2 „ n+l ^
3C „ ,h C 1 S> ,7 j- 2 n+3

f
r, -i JC ,,gv

Normalizing Equation (16) by introducing the dimensionless

variables C*, Q, p , n , and T)
]
_
defined previously, one obtains

3C* m ^_ /3
2C* +

1 3_C*) _ (_2_ _ n+3 n+l) 3_C* ( 17 )

59 _2 , 2 p So n+l n+l 81Lnop x

where ti -^ = t, - 9,

Here JL_ represents differentiation with respect to time at a

oG
point fixed relative to axes moving with the mean fluid velocity.

Since the moving axes have been introduced, the transfer of

tracer concentration across the plane at which 1L is constant

depends only on the radial variation of tracer concentration

because the mean velocity across such planes is zero. In solving
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Equation (17), Taylor (7) further assumed that the radial

variation of tracer concentration is small and thus 3C*/3Q

is also small. It should be noted that the transfer of mass

across the constant plane 11
1
depends only on the radial varia-

tion of tracer concentration. Now it can be approximately

calculated from the equation by first neglecting — term, as

D t 2
R , c C* 1 « 3*. ,2 n+3 n+1, <-C* ,

ft
.

Rep 1

In solving this equation, g— is independent of P because
P
l

the moving coordinate is used. The boundary condition

|2^= at o = 1 (19)
dp

is employed. The result for the case n is zero or a positive

integer is (Appendix 15)

C* = C* + A. ( P
2

- Ar p
n+3

) (20)
o d. n+3

v;here C is the value of C* at P = 0, and Ac is a constant,
o ' c

Substituting Equation (20) into Equation (l8) and simpli-

fying, the constant, A_, is found as

{£-) *21 (21)
2 2(n+l)

DR
r i\

Taylor in his later paper (9) mentioned that using the mean

concentration C* over any section was more convenient than using
m

* *
C in solving the problem. Here, C is defined by



2TT 1

r r c*pdoda t
J r\ n --L1 O ' O

c * = 1^i - 2
J"

c * pdp (22)
ra

J J pdpd e

Equation (20), therefore, may be modified to the form

(Appendix 16)

,2 ac"

m 2(n+l)
D F a-R-L

L 2 (n+3)(n+5) n+3

(23)

The .volumetric flow rate at which C* is transported across

a section at T is

Q m 2ttR
2

J"

1
C*V

x ( p)p d p (24)

o

and also one knows that from Equation (l6),

v (p) = vf-2- - 2±1 p"+1) (25)
x x n+l n+1

Substituting Equations (23) and (25) into Equation (24) and

integrating over the range (0,1), one obtains (Appendix 17)

4_2 2_2
ttr v ac* r v ac*

x . m. x I" 1
Iitr

2
!' —\

Q =
" 2(n+3)(n+5)D

R
L Si^'

=
" D

R
L2(n+3) (n+5

)

J { *\'

(26)

Prom Equation (26) it can be seen that C* is dispersed

relative to a plane which moves with mean fluid velocity, V ,

exactly as though it were being diffused by a process which

obeys Fick's law of diffusion, but with the overall dispersion
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coefficient E defined by (7)

2-2

E . _£. [ 1
]

(27)

D
R

2(n+3)(n+5)

Equatio '. (26) then becomes

Q = - E iSl (^H) (28)
L ST1

1

It is important to remember that Equation (28) has been

derived on the assumptions (7) that mass transport across the

plane at which H is constant depends only on the radial varia-

tion of tracer concentration and the radial concentration

gradient is also small so that SC*/^ is small. These assump-

tions will also be applied to derive an unsteady, one-dimensional

diffusion equation by correlating Equation (28) with Pick's

second law of diffusion (6). First of all, starting from the

equation of continuity for the one-dimensional problem without

chemical change occurring in the system, one has (6)

m _ _ 1 / 5Q \

s +• 2 3x
fc ttR 1

or in dimensionless form

m m _ 1 /3Q

a e 2- aii
TIR vx

(2SL.) (29)

From Equation (28) it is clear that

o a2„3 C*
13 = - E 1^

(
SI) (30)

ST
i

L a i^1 ° Ml



Hence combining Equations (29) and (30) gives the governing

partial differential equation of axial dispersion (7)

SC* a C*
-JL.(J-)—

|

(3D
39 VxL ST

1

Solution of Equation (31) subject to the following initial

and boundary conditions (Appendix 18)

I.C. C* = for 9 = and 1>. 4

B.C.I. C* = for 9 > and "J\^±oo

B.C. 2. C* = 6 (9) for all 9 and T\

1
=

gives C* in terms of 9 and \ (7, 41, 42), as

2

c* „ 1 exp
[

1 1 (32)

r
e *

L
4(J-)6

J

2L^)9
J

vxL
x

Since
2 2

R V

^ = „- 9 andE = [ 2(n+3)(n+5)]'
R

Equation (32) becomes

exp r H^sl 1 03)

2|&) ^ f (^)
r- IT. V

L D L 2(n+3)(n+5) J D
R
L (n+3)(n+5)

The distribution function of the tracer concentration at the



outlet of the experimental section (See Figure 22) of the

cylindrical tube can be obtained by setting 11 =1. Thus one

obtains

C* = C(9) = E(9)

expl- (l -9r
1 (34)

£ L 2 k e
d tt MO

i

t _, - u ... J (n+3)(n+5
2(n+3)(n+5)

w-iere

2

i

M =

R V
x

D
r,
L
R

The residence time distribution functions or exit age

distribution curves for various combinations of the dimensionless

parameter M, and flow-behavior index, n, have been calculated by .

using Equation (34) and are plotted on Figures 23 through 29.

When M is very small or n is very large, the values of E(9) are

essentially zero except for the value of 9 close to 1.0. In this

situation, Equation (34) can be approximately reduced to (5)

S(9). *
r esp[- t

1 -9
)

2
1 (35)

2
[ , \

v
; J

2 M

2(n+3)(n+5r (n+3)(n+5)

Curves of E(9) at G - 1.0 and n = oo are also shown in figures.

At 9 = 1.0 and n =Oo , E(e) curves become infinite. They are

consistent with plug (slug) flow situation.
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0.6 0.8 1-0 1.2 14

Dimensionless Time, ©

Fig. 23. Calculated E_ curves for laminar flow of

Ostwald-de Waele model fluids with M-QI.
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It can be seen from the figures that it is sufficiently

accurate to assume that the maximum value of E(9) occurs at

9=1 when the values of K are less than 1. But it is not quite

true when the values of M are greater than 1, due to the cause

of skewness.

MAXIMUM POINTS ON E-CURVES

Equation (34) is differentiated with respect to 9 and the

derivative equated to zero the solution which represents the

time 6 , at which the maximum value, E(9) . occurs, is evaluated
m — m

9
.-.'.

=
{ (
J_) + i}

* - ( JL-) (36)

VxL

where

VXL
2(n+3)(n+5)

Equation (36) can also be written as

(37)

138)

2

L vxL
J VxL

This equation shows that, when — or M/2(n+3) (n+5) is
Vxli

very small, 9 reduces to 1 at which the maximum point occurs.
" * m

1 E
But 9m becomes approximately _^i when the value of —— is of

2(J_) VXL
V L
x

higher order. The general, expression of the maximum -point of the



residence time distribution obtained by substituting Equations

(3°), (37), and (38) into Equation (34) is

!<•>.
2

tt M I / r, M , ,1 M 1a
\

ti M "I < r

,

M . ."I

2(n+3)(n+5) -J L l 2(n+3) (n+5) J 2(n+3)(n+5)

2

I M J

f
i[2(n+3)(n+5 )

J
+ ^ lj \ (39)

(n+3)(n+5)

For the case when 0=1, Equation (34) reduces to

E(e) = = (40)— i
2

r n M 1
2

L 2(n+3)(n+5) J

Conroaring Equations (39) and (40). we see that E(e) and E(e) are— m

practically identical except when values of M are large (43).

MEAN AND VARIANCE OF RESIDENCE TIME DISTRIBUTION

The first moment about the origin and the second moment

about the mean, commonly called the mean, n , and the variance,

a
2

, respectively are used to describe the distribution of the

E-curve. The former is also called the centroid of the

distribution and is the location parameter of the distribution

while the latter measures the spread of the distribution about

the mean. The formulas used to evaluate u and a are (5)

CO

„ « J 9 E(Q)d9 (41)
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and

2 ."
, , v2

a
^ „ r (e -p.) E(9)d9 (4a)

or

o
2
=J G

2E(9)d9 -[/ 9E(9)d9J
2

(43)
" o o

By substituting Equation (34) into Equation (41) and integrating,

the resulting equation (Appendix 19) is

u = 1 +
(n+3)(n+5)

(44)

The variance of the residence time distribution is obtained

by substituting Equations (34) and (44) into Equation (43) as

? °° 2 , ,2

B r ILiLg f
2M9 J d9

U(n+3)(n+5) J (n+3)(n+5 )

. [ 1+ 55 f (45)
L (n+3)(n+5)

J

or (35, 43) (Appendix 20)

2 „T M 2
2 r __J i + 53— (46)

L (n+3)(n+5) J ' (n+3)(n+5)

Solving for M gives

M^
(n+3)(n+5)

[(Sa
2
,!)*-!] (47)

4
L J

Equations (44) and (46) or (47) are used to find M for the fluid
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of known n by injecting an impulse of tracer into the system and

finding the variance of the experimental concentration data by

either graphical or numerical integration.

In case the value of M is very small, that is, DR
is very

large, Equations (44) and (46) can be approximately reduced to

u = 1 (48)

a
2 =

(n+3)(n+5)
(49)

The curves corresponding to the above equations can be

approximated well by the Gaussian distribution (44).

CORRELATION FOR DISPERSION COEFFICIENT

It has been mentioned (10) that the diraensionless group

E/Vxdt is dependent on the Reynolds number, Schmidt number, and

pipe roughness. But the pipe roughness has been shown to be

important only in turbulent flow (45). Hence in the laminar

flow region one may write (44):

r a*.V P n

Vxdt

and consequently a plot of E/Vxd^ vs. O p/n with m/pDjj as a

parameter should result in a family of curves.

Repeating Equation (27), one has

2_2
R V

B- — ("—
1 (27)

D
R

L2
( n+3)(n+5) -

Rewriting this in dimensionless form according to Equation (50),
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d V p
t x

} (

jn_
} (51 ;

Vxdt 8(n+3)(n+5) m pDR

This correlation is shown in Figure 30. Equation (51 ) can also

be written simply as

d V
(_L*) (52)

V d
8(n+3)(n+5) D

R

This relationship is plotted in Figure 31.

DISCUSSION AND CONCLUSION

The dispersion of a tracer injected in laminar flow of

Ostwald-de Waele fluid in an open-open, cylindrical tube is

extensively studied in this work. In the analysis M and n are

considered to be independent of x-r coordinates. The approach

u„ed is basically that of Taylor (7, 9). A family of curves,

2(e) vs. 9, with M and n as parameters is plotted by using

Equation (34). Typical results are those shown in Figures 23

through 29.

The condition for which the Taylor's second limiting

condition can be satisfied has been shown by the inequality in

Equation (14), that is

2

-£_» 0.0632 (2±3) 5_
Vx n+! DR

This condition can be realized by using a long experimental tube

with a small diameter. By using Taylor's assumptions (7) and
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10 10 dtVxP
- Re = -

m

Fig. 30. Correlation of the dispersion coef-

ficient in a cylindrical tube with

Schmidt number as a parameter.
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10 10

(Re)lSc) =dtVx/DR —

-

Fig. 31. Correlation of dispersion coefficient

in laminar flow in a cylindrical tube

as a function of the product of Rey-
nolds and Schmidt numbers.
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axes which move with the mean fluid velocity, Equation (7)

can be reduced to a one-dimensional diffusion equation

represented by Equation (31) with the overall dispersion

coefficient E defined by

2_2
R V

E = x
j"

1 1

DD
L 2(n+3)(n+5)-1

In order to derive Equation (31) analytically, it has been

assumed that n is either zero or a positive integer. If n is a

positive non-integer, solution of Equation (l8), a consequence

after a transformation of Equation (7), becomes impossible

without the aid of- a numerical analysis. Figures 23 through 29

have only shown the cases when the values of n are 0, 1, 2, 3,

and infinity. When n is a positive non-integer, E(e) can still

be found by merely using interpolation techniques. However, in

order to enable one to obtain accurate values of E(9) for n

different from either zero or a positive integer, a family of

curves, E(e) vs. n for M = 1 with 9 as a parameter has been

presented on Figure 32 based on Equation (3*0. This figure

shows that E(e) becomes infinite or finite depending on the

value of 9 as n increases without bound.

As the dimensionless parameter, M, decreases to zero the

behavior of fluid flow becomes the plug flow case. When M

increases to infinity, the model used approaches the backmix

flow case. It is also true that the model becomes plug flow

as n —->- oo . Naturally, all equations so far derived from

Equation (7) can be reduced to the result predicted by Taylor
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for n = 1, i.e., for Newtonian flow.

The first moment about the origin and the second moment

about the mean for the dispersion model are also presented to

indicate the mean and the spread of the exit age distribution

curve about the mean. The E(9) curves coupled with Equations

(44) and (46) or (47) enable one to calculate M and consequently

E for the fluid of known n.

Recently, Bailey and Gogarty (32) solved Equation (7)

directly for the case n = 1 by using a numerical method. The

2
range of dimensionless time, Dt/H , considered by them was

from to 6. Experiments on measuring dispersion coefficient

of a dilute solution of potassium permanganate (0.15 f° by weight)

in water flowing in a capillary tube of 0.1 cm in diameter were

performed. They obtained a good agreement between a numerical

solution and experimental results. They also compared their

numerical solutions with Taylor's two approximate solutions of

Equation (7). The first solution was presented as a variation

from the concentration at the center of the tube, C , and was

given in his first paper as (7)

C* = C* + (JL-) (-2.) (p
2

- I p
4

) (53)
1

° 4v :^i
2

The second solution was given as a variation from the mean

concentration, C* and was presented in his third paper as (9)

C. = C + ( ) (__£) (- i. + p - i. P ) (54)
d °

4DRt 3H-L 3 2
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It should be noted that the latter can also be obtained from

the result of this work, Eo.uation (23), by setting n = 1.

Mathematically, the above two equations differ only by a

constant ratio. However, in analyzing the data, it is more

logical to use Equation (54) rather than to use Equation (53)

because C^ is the quantity more directly measurable than C (9).

The numerical solution by Bailey et al. also showed that both

solutions, Equations (53) and (54), are good approximations but

* •
that the use of C2 yields somewhat better agreement than C]_.

Parrel and Leonard (33) also solved Equation (7) for the

case n = 1, however, they did not directly use a numerical

method. They first obtained the Laplace transformation of the

residence time distribution function resulting from a Dirac

delta function input as shown in Equation (3.21). Second, they

used a numerical method to solve the transformed equation and

to compare with Taylor's work (7, 9) for a definite range of

operating conditions. However, from observation of their

results (33), Taylor's model still has merit in representing

real systems because of its simplicity when the assumptions

proposed by Taylor are valid.

However, it is important to remember that neither Bailey

and Gogarty's work (32) nor Parrel and Leonard's work (33)

treated non-Newtonian flow.

It has been mentioned that one is able to calculate the

overall dispersion coefficient, E, for the fluid of known n by

using E(9) curves and Equations (44) and (46). In addition, E

can also be estimated by using Figure 31. Figure 31 is the
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correlation of E/V d of the fluid in laminar flow region in a

tube as a function of the product of Reynolds and Schmidt

numbers, d^V / D„. The value of n appears as a parameter in
* t X R

the figure. It clearly shows that when n = 1, the curve is the

same as that derived by Taylor (7, 9). Experimental data by

Taylor (7) and Bailey and Gogarty (32) are also presented in

Figure 31 for comparison. The figure shows that the experimental

results of Bailey and Gogarty agree fairly closely with the

Taylor's solution. But the agreement is not equally good over

the entire time range considered.

In conclusion, all the results of this work reduce to those

obtained for Newtonian flow when the flow-behavior index, n,

approaches one. Also, for a given flow condition, the degree

of dispersion decreases inversely proportional to 8(n + 3)(n + 5)

as given by Equation (52) as the fluid behavior changes from

dilctant characteristics (n<l) to pseudoplastic characteristics

(n>l).
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VI. OUTLINE OF PROPOSED RESEARCH WORK

In the previous chapters , treatment is confined to

dispersion of Bingham plastics and Ostwald-de Waele fluids with

steady velocity profiles in the isothermal laminar flow region.

Geometrical configurations used in developing convective models

are those of circular and rectangular conduits while an open-

open cylindrical tube has been used to develop the dispersion

model.

In this chapter, some of the problems of considerable

importance, which may be investigated by immediate applications

or minor modifications of the methods developed in this work,

are summarized.

1. Laminar Flow of non -Newtonian Fluids other than Ostwald-de

Waele Fluids and Bingham Plastics in Circular Pipes

So far, attention has been focused on the Ostwald-de Waele

fluid and Bingham plastics. Other non-Newtonian fluids, however,

are also worthy of consideration. Dilatant fluids, for instance,

display a rheological behavior opposite to that of the Ostwald-de

Waele fluid in that the apparent viscosity increased with

increasing shear rate, or v is greater than unity in Equation

(2.37). Examples of dilatant fluids are those of starch,

potassium silicate and gum arable in water. Therefore, it would

be most interesting to have the work extended to include these

non -Newtonians.
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2. Non-Newtonian Fluid Dispersions in Non-Circular Conduits

Most analytical and experimental investigations on fluid

dispersion have been confined mainly to Newtonian fluids in

circular tubes, probably for simplicity. Many problems arising

in industry are those of non-Newtonian fluids in non-circular

conduits. Therefore, research on the fluid dispersion of non-

Newtonian fluids in such geometrical configurations is of great

importance

.

3. The Convective and Dispersion Models for Non-Newtonian

flow with Slip Velocity

Development of convective models for Bingham plastic fluids

and dispersion models for both Bingham plastic fluids and

Ostwald-de Waele fluids in a cylindrical tube with slip velocity

at the wall is suggested.

4. Solutions of Equation (5.7) Using a Numerical Method and

Following the Farrel and Leonard (33) Approach

Equation (5.31) was derived by assuming flow behavior index,

n, to be zero or a positive integer, since the overall dispersion

coefficient, E, in Equation (5.31) is defined as

R V

"[D
R

L 2(n+3)(n+5)J

where n is a positive integer or zero. In case n is not a

positive integer, the solution of Equation (5.7) will be

difficult to obtain without the aid of a numerical method.
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Furthermore, the original two-dimensional diffusion

equation may be solved using Farrel and Leonard's approach,

i.e., Laplace transformation, the method of separation of

variables, and power series solution are suggested (46). The

mean, variance, and skewness of the E(o) curves may then be

computed. The results can be compared with the uniaxial Taylor

dispersion, and a perfectly-mixed-tanks-in-series models. The

extension of the method of analysis used for the laminar flow

region to the turbulent flow region is also recommended.

5. Experimental Verification of the Models Developed

Mathematical modeling is a very useful, time saving tool,

but like any mathematical approach, its validity must be tested

by experiment because of assumptions involved in developing a

model. The use of radioactive isotopes, electrolytes, dye stuffs,

and temperature perturbation are methods by which dispersion

mechanisms of fluids can be investigated. The objective can be

attained by experimentally measuring E(9) and comparing the

values with those predicted by the use of the models.

Diffusivity and shear rate data for some slurries and a

polymer solution are available (47, 48, 49). The following

table was presented by Clough et al. (48).
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DIFFUSIVITY OP BENZOIC ACID IN A 14.2$ ATTACLAY SLURRY AT 25°C

Fluid
Fluid Shear rate, viscosity, Diffusivity,
mix -1

sec.
centipoise sq. cm. /sec.

I 1,480 11. 0.90 X io"5

I 6,200 7.0 1.21
I 9,100 5.7 0.96
II 3,260 63. 0.69
II 10,500 45. 0.60

6. Extension of Taylor (7, 8) and Tichacek (10) Models to

Non-Newtonian Turbulent Flow

One of the difficulties in extending Taylor's work into

the transition or lower turbulent regions arises from his use

of a universal velocity profile. This profile is valid only in

fully developed turbulence. Tichacek et al. repeated Taylor's

analysis by using measured profiles. Vanderveen (36) determined

the dispersion coefficients in the lower turbulent region of

flow between Reynolds numbers of 4,000 and 10,000. All of their

work considered only Newtonian flow.

In this phase of the proposed research an experimental

approach can be employed in determining the dispersion

coefficient in terms of V-/V &
t

versus Reynolds numbers, Re, for

non-Newtonian fluids in circular pipes in the transition and

fully developed turbulent regions. Work can also be extended to

include non-circular conduits. The effect of enhanced

dispersions induced by mechanical as well as gas agitations also

should be considered.
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7. Effects of Bends, Elbows, Valves, etc. on the Dispersion

Coefficients of Non-Newtonian Fluids

Industrially, fittings such as bends, elbows, and valves,

etc., bring about major effects on fluid dispersion. Determina-

tion of equivalent length of the fittings in terms of straight

pipe from the stand point of fluid dispersion effects would be

most interesting. The information obtained could be used for

better piping design.

8. Minimization of Axial Dispersion for Non-Newtonians by

Using Secondary Plow in Helical Tubes (50)

It has been known (5) that many continuous chemical

reactors give the greatest conversion when axial dispersion is

minimized, that is, when plug flow occurs. It has been suggested

that the use of helical tubes promote plug flow by producing

secondary currents. Experimental work for such an approach is

of importance.

9. Study of Drag Reduction for Non-Newtonian Systems

Drag or friction reduction of Non-Newtonians in laminar

and turbulent pipe flows may be attained by adding certain

types of solvent in the fluids (51). For example, friction

reduction as great as 35$ was reported by adding 5 PPm of

polymeric material to water (52).

10. Viscoelastic Stability and Flow Noise for Non-Newtonian

Fluids

It has been reported (53) that the stability of the laminar
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boundary layer in an annular test section is increased when

small concentrations of a polymeric additive are introduced into

the fluid stream. It has been shown that, in turbulent flow,

the flow noise associated with the turbulence is appreciably

increased when the additive is present. Further study of such

phenomena in relation to dispersion may be desirable.

11. Effects of the Fluid Dispersion on the Chemical Reaction

For simplicity, first-order chemical reaction occurring in

laminar flow of Ostwald-de Waele fluids with axial and radial

diffusion should be considered first. The work could then be

extended to include other fluids and reactions.

12. Extension of the Techniques Developed to Non-Newtonian

Lia.uid-Solid Fluidized Beds

Dynamic analysis of liquid-solid fluidized beds by using

non-Newtonian fluids instead of water, which has always been

used heretofore, is suggested.

13. Extension of the Convective and Dispersion Models to

Polar Fluids

The fluid dynamics of polar fluids have been discussed

recently (54). The stress tensor for polar fluids was described

as being composed of two parts, "?= "t + "t , where"? (theof j s a' s

symmetric part) depends upon the rate of strain associated with

the symmetrized velocity gradient tensor in a manner identical

to a structureless Newtonian fluid, and "r
a

(the skew-symmetric

part) depends only upon the strain arising from opposition
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between internal spin and external spin or vorticity. Based on

these facts, velocity profiles of polar fluids will be different

from those derived by merely assuming fluids to be Newtonian or

non-Newtonian. Hence , the development of convective and

dispersion models for polar fluids becomes interesting.

14. The Application of Wolf and Resnick's Model (55) and other

Similar Models to Non-Newtonian Dispersions

A method of representing a residence time distribution in

real systems has beer, presented by Wolf and Resnick (55). The

use of their model and other models (37, 56) for non-Newtonian

fluids in analyzing residence time distribution functions villi

be an important tool ir. the study of continuous flow systems.

15. Continuous Mixing of Non-Newtonian Fluids in an Annular

Channel and Flowing Through a Rotating Tube (37, 57, 58)

Continuous mixing of two or more than two streams of non-

Newtonians such as molten polymer in an cylindrical annulus

and/or flowing through a rotating tube is of practical

importance.

16. Effects of Magnetic Fields on the Taylor Dispersion for

Newtonian and Non-Newtonian Fluids

Suppose that there are impurities in fluids such as liquid

metals, imposed in magnetic fields, the study of the effect of

such fields on the dispersion of impurities in the fluids

flowing through a slit between two parallel plates is of

considerable interest. Since the analytical solutions to the
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equation of motion have been given by Sarpkaya (59), direct

application of his results may be helpful.
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APPENDICES

1. Step Function (40)

The unit step function U (t-a) is defined as follows:

U_(t-a) =
, t<a

1 , t>a

The Laplace transformation of U (t-a) is

(1)

L (u (t-a)
J-

= r e"
st

U (t-a)dt =
f

e'
st

dt
1 s J

'o a

s

-st

Hence, we have

L (U
s
(t-a)} =^e1 _ -sa

s

iO

(2)

2. Dirac Delta Function

The delta function is the idealization of functions that

vanish outside a short interval. It is, therefore, possible to

approximate the delta function by such functions (50).

Let fn (t) be a function on (-00,00) satisfying the following

conditions (Si, 62):

, t<0

fn (t) = { n , 0<t<l/n (3)

, l/n< t
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If n is very large this differs from zero only in a small

neighborhood of the origin. For all n

oo oo
1/n Vn

P f (t)dt = r f (t)dt = r n d t = n
f

dt = 1 (4)
•'-» n -

c
n »

J

If g(t) is any other function, then

CO 00 l/n
; f

n
(t) s (t)dt = ; fn (t) 5 (t)dt = n ; g (t)dt

-oo

l/n

r. T [ g(0) + tg'(O) + i- t
2g" (0) + dt

- g(0) + -i-S'(O) -r -l-s'-fO) + ... (5)
2In

3:n
2

Now let n —>oo and call

nliS, f
n
(t) = 6(t) (6)

Then if the limit exists within the integral, one has

OO OO

r 6(t)g(t)dt = Urn J f (t)g(t)dt = g(0) (7)
'

_oo
n ->0° "°°

Similarly,

Co

J
6
(t-a)g(t)dt = g(a) , a>0 (8)

-On

Other properties of the Dirac delta function are

6(t-a) =0 , t / a
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cw

r 6(t-a)dt = 1

(s(t-a)} = e"
sa

, a>0

u (t-a) = 5(t-a)
s

3. Derivation of Equations (4.5) and (4.6)

General rheological statements of the Bingham plastic

are (6)

L 2 ( A : A )-!

^=0
,
|(t :?)<t2

(10)
o

Prom Equation (9) and also because T rx and A rx are the only

non-vanishing components of ? and "a respectively, one obtains

Ca :t ) = A. .A .. = A
j- J J -*-lj ji rx xr xr rx

2 dV 2
2a = 2(—S) (11)
rx dr'

for the symmetric system. Similarily, one obtains

(T : T ) = 2T
2

(12)
rx

Based on Equations (ll) and (12), Equations (9) and (10) can

thus be simplified to Equations (4.5) and (4.6) as



dV
T m T -
rx o

u
° a-^ j T >Trx^ o

dV
-£. o
dr

* rx^ o
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(4.5)

(4.6)

A. Derivation of Equation (4.11)

From Bird et al. (6) (Equation (2.3-25) in p. 50 of

TRANSPORT PHENOMENA)

V>)=^ [l-(|)
2

] -^ [l-§>] ^->r
o

where

(13)

(14)

This is equivalent to

> 2 2 (- AP)r R , -,

v (r) . (-aP)R r i . (£) 1 - L2_ [i - (£)]
x' ;

4m,
o
l L V J 2u L

L R J

/ „\„2 r 2 2r 2r -,

=
(^P)R_ f _

(

r
}

__i> + (£)(_^)]
IfuL L R R R R J

o

where

v . (-A*
3 )*

2
(i -i)

2

4u
Q
L

(15)
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Equation (15) can be rewritten as

V
x
(r) = J5L- [d - | f - (1 -£) 2

+ 1 - (|)
2

- 2^ + 8(|)i]

(1 -Jj

-* [i-3Lil!] (,.n)

(i -i)

5. Derivation of Equation (4.12)

Starting from Equation (2.3-27) on p. 50 of TRANSPORT

PHENOMENA by Bird et al. (6), and Equation (4.11), one obtains

2TT R
Q = ,f / Vx (r) r d r d 9 (l6)

o o

r r R ~i

= 2" I J °Vmr d r + J Vv (r)r d r|

2
(1 -I)

2 r
°

R

= 2n Vm fSi - _i Li_ (R4 -r^) + £ (R2-r2) - glm l 2
(1 _^ )2

L
4r2

2 3R

.(r3 - r3)]}

?n v R
2 p 1 I ,1 2 v

, If _ A.JK 1
= 2tt Vra

R
J_ 2 - p U 3 S + 2* 125 J

J
(1 -I)

(-*?)"R (i - i* + i>4 )

6" L 3^ 3
3

'-^-^'-^IS4
) !».«
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6. Derivation of Equation (4.24)

Equation (4.18) can be written as

aw - r' 5 [i - aiii.]
( |,

a(
|)

(i7 ,

ro A

From Equations (4.11) and (4.14), we know that

<5 -» 2

] ^)d^'
2 J R R

(i -i)

i-^d-i) L

S + U-£) L
1

1+ (i-l) [i

1+ (i- s) (i - -—-)'

2 t/t

and

vxU'JTV
m

Vx (r )
1
i

avx
J

rvL/V
X

"1

j

2L/V„ (r)
"

(18)

d(£) = (
1 -$?" ^ (19)

49 (1 - ^L)
2

29

Substituting Equations (18), (19), and (4.14) into Equation

(17) yields
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*
2
(e) - ;

$> + 1 d9

2 26"
ft £0

29

(4.24)

7. Derivation of Equations (4.28) and (4.29)

Repeating Equation (2.37)

I [!(*.*)]
v"Hf (2.37)

For a one -dimensional Theological problem (37), the following

expressions are valid:

:± = dV 2

Therefore, Equation (4.28) can be obtained as

dV
,»-!

dr

dV
x

dr

dV..

(4.28)

Because , in pipe flow, 2. is everywhere negative, the above
dr

equation becomes

dV

rx dr
'

(4.29)

Derivation of Equation (4.43)

From the equation of motion, we have

Sy Sx
[20)
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Combining this equation with Equation (4.40) and solving the

resulting equation subject to the boundary conditions.

t = at y = (21)
yx

V
x (y) =0 at y = H (22)

One has

vx (y) - ^fft [i -
(|)

2

1 - ^ [i - (|)1 , y^y (23)

n
= ^H!(i-^) 2

. y^y (24)

where

H

Since t =
{
z~^-)y , Equation (23) becomes

,r / v
(-ap)h

2
r y

2
]

(-a.p)h r jr -j

x 2u QL o

Using the same technique of manipulation employed in 4,

one obtains

tz
S)

2

(1 -*)

9. Derivation of Equation (4.44)

Since
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W H

J
r VY (y) dydZ
-H

X

J, H

= 2w{r° Vmdy +>r V
x
(y)dy} (26)

o y

Equations (4.42) and (4.43) can be substituted into the above

equation to obtain Q by using the same technique employed in 5.

Thus,

y H (L . £)
2

Q = 2w{j-° Vmdy + ,f V
m

[l - -§ -]*r}
° °

(i -X)

^^(l-IW^ 3

) (27)

where

> H

Since Vx = prjjr . one obtains

v = i^£)h! (i _a i + 15 3
) (4.44)

x 3 u L 2^ 2

10. Derivation of Equation (4.51)

From Equation (4.43), one has

H L V
m

23V (y) ,

= 5+ (1 -J) [l - _
X

j
3 vx
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= * + (1 -•*) (i -
PB i

36'

Hence

,

d(-X-) .

H
. (1

3

-5)8
2

e

dd

(i -hf
(28)

i

38'

Substituting this equation into Equation (4.49) yields

P„(9) -
9

(1 lllfi d9 (4.51)
*-

2 —

2p 30 (1 _ 3)
2

3 36

11. Computer Program (IBM 1620, FORTRAN II) for Computing

Equations (4.72), (4.73), (4.74), and (4.75).

Notations Used In The Computer Program

R= Yj B=n, C = 9 , DELTC = d9

A = (n+3)(l-Y) , F = (n+l)(i - y)
9

1 n_1
(n+l)(g - y) -, n+1

G =
|
1 2

L (n+3)(l - y)
J

D = E(9) in Equation (4.73)

E = E(9) in Equation (4.75)

S = P(9) in Equation (4.72)

P = F(9) in Equation (4.74)
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R(l), R(2), R(3)

B(I),B(2),B(3),B(4)

I
20

J = 1,3

'•

20

1= 1,4

I
c(i)

±
COMPUTE
A, F, G
D(i), E(l)

_
PUNCH
C(I)

D(I),E(I)

SO) =0
P(l) =0

20

K- 1,166

1

C(I)=C(D + QOI

1

COMPUTE
A,F,G,D(K+I),
E(K+I),S(K+I),P(K+I)

\

PUNCH
C(I),D(K+I),

S(K+I) ,E(K+I),

P(K+I)

Fig. 33. Flow chart for computing Equations

(4.72), (4.73), (4.74), and (4.75).
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C F AND E CURVES WITH SLIP VEL AT WALL
C BY TRAPEZOIDAL RULE WITH DELTC=0.01

DIMENSION R (3) ,B(4) ,E(l67) ,0(167) ,S(l67) ,P(l67) ,C(4)
1 FORMAT (3F4.1)
2 FORMAT (4F4.1)

10 FORMAT (3E10.4)
21 FORMAT (5E10.4)

READ 1, R(l), R(2), R(3)
READ 2, B(l), B(2), B(3), B(4)
DO 20 J=l,3
DO 20 1=1,4
READ 10, C(I)
A=(3(I)+3.0)*(1.0-R(J))
F= B(I)-fl.O)* 1.0/C(I)-R(J))
a=(l.O-F/A)** (B(I)-1.0)/(B(I)+1.0))
D(l)= 2.0/A)*(1.0/ (C(I **2 *G))
E(l)=(2.0/A)*(l.0/((C(I)**3)*G))
PUNCH 10, C(I), D(l), E(l)
SI |=0
P(l)=0
DO 20 K=l,l66
C(I)=C(I)+0.01
A=(B(I)*3.0)*(1.0-R(J))
F= B(I)+1.0)* 1.0/C(I)-R(J))
C-=(1.0-F/A)**((B(I)-1.0)/(B(I)+1.0))
DfK+1 =(2.0/A )*(l.0/( C I )**2 )*G)'
E(K+1 =(2.0/A)*(l.O/ (C(I)**3 *G)
S(K+l5=S(K)+0.005*(D(K)+D(K+l)1
P(K+l)=P(K)+0.005*(E(k)+E(K+l )

20 PUNCH 21, C(I), D(K+1), S(K+1), E(K+l), P(K+l)
STOP
END



130

Data Used

0.4 0.8

0.5 1.0 2.0

.3334E - 00 fory =°» n =

.4286E - 00 fory =0, n = 0.5

.5001E - 00 fory =0, n = 1.0

.6001E - 00 fory =0, n = 2.0

.4546E - 00 forv = 0.4, n =

.5556E - 00 fory = 0.4, n = 0.5

.6251E - 00 fory = 0.4, n = 1.0

.7143E - 00 fory = 0.4, n = 2.0

.7143E - 00 fory = 0.8, n =

.7895E - 00 fory = 0.8, n = 0.5

.8334E - 00 fory =0.8, n = 1.0

.8824E - 00 fory = 0.8, n = 2.0

12. Derivation of Equations (4.82), (4.83), (4.84) (7)

The velocity profile of the Ostwald-de Waele fluid is,

repeating Equation (4.32),

If the tracer at time t = is distributed symmetrically, the

concentration of a tracer, C, can be written as

C = C(x, r) (29)

Then, after time t, the concentration -will be

C = C(x, r, t) = C [x - Vx (r) t, r] (30)

The mean value, C
ra

of the tracer concentration over a cross-
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section of a tube is defined by

2
R

Cm - -J f C r dr (31)

"

The response to an impulse input of a tracer is derived

as follows:

Initially the space between two planes x = and x = X

(X/R being small) is filled with a tracer of concentration C .

From Equation (30) it will be seen that the amount of the

tracer, which lies between r + Sr is constant during the flow

and equal to 2™r C X 6r. The tracer will be distorted in

time into

x-VBt[l - (§) J
(32)

The total amount of the tracer between x and x + 6x is therefore

2nr C„ X 3£ 6x and from Equation (32) one hasu ax

£dr m R (R)""
1

(33)
<** (n+l)Vmt

r

Substituting the expression of r/R from Equation (32) into

Equation (33) one obtains

2
rdr R 1

dx n+1 n-1

vmt (i - JL)
m K v t

m
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Therefore,

1 R
2

C_ - —x 2nC X6x
m „R2 n+i n -l

Vmt 1 - _*_ n+1

m

c x
2 o

C
ra n+1 n-l

V (i -^)

for 0<x<V t
m

= for x<0 and x >Vmt

X4.82)

For a step input of a tracer, the response to such a tracer

Input will be derived as follows:

Suppose that the tracer of constant concentration enters

a tube which at time t = congains only the fluid. Here

C = C , x<0
\ at time t = (35)

C = , x>0 J

This case can be solved by imagining that the constant

initial concentration for x<0 consists of a number of thin

sections of the type imagined in the case mentioned above. In

this way, it is found that
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Cm - C
o

Cm = ° .

x<0

2 X
n+1

V
m
t

n-1
n+1

(1 - -£-)
V t
m

1 , 0<x<V t
1 (4.83)

When the Input of a tracer Is of a finite pulse, the situation is

C = , x<0

C = C , 0<x<X ) at time t = (36)

C = , x>X

This ease can be obtained by superposing two examples of the

second case (a response to a step input function), namely

° = °°
'

X<X
} and °

= " °°
'

X<
°

}
(37)

C = , x>X J C = , x>0 J

then, if t <X/V , one can obtain Equation (4.84).

13. Derivation of Equation (5.9)

When |=- = 0, Equation (5.7) becomes

3C*
D
R* f h

2
C*

,
1 ?C*\ f,81

"ST 2
y1 2

+
p a

' v '
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The boundary condition is

= (39)
ac»
Sp

In using the method of separation of variables, one assumes that

the solution of Equation (38) is of the form

c* (e,
p ) = f (e) g ( p )

(4o)

By differentiating Equation (40), one obtains

|^=F'G, ^=FG'
ae ^p

By substituting these equations into Equation (38), one obtains

^ = V
(

G^
+ 1GL

} (41)
F

R
2 G p G

The term on the left hand side of Equation (4l) is, by definition,

a function of 9, and while the right hand side is a function of

P only. Since 9 and p are both independent variables, the only

way the equation can hold for all arbitrary values of the two

variables is for each side to be a constant. For the time being,

let this constant be -a2
, then

£L = 5£ (5l + I 51) = - a
2

(42)
F r2 G p G
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This means

£ - - a
2

(43)
F

and

£
'DRt

8 "

+ ^=- ff
2 (JL) (44)

Solving Equation (43) gives

P = B exp(-c
2
9) (45)

where B-^ is an arbitrary constant. Simplifying Equation (44),

one obtains a Bessel equation

G" + \G< + (-1JL-) G = (46)

DRt

A general solution to this equation is (40)

G = B
2
J

[ ^-t^] +B
3
y
o [-t^rf]

(DRt)
2

('V>
2

(47)

where B? and B, are constants and J and Y are the Bessel

functions of the first and second kind of order zero respec-

tively. Since the concentration of the tracer in the fluid is

always finite while Y becomes infinite as p approaches zero,

we cannot thus use Y and must choose B-, = 0. Clearly, one

thus has
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(9,p) = S A exp (-c 9) J r P
v ' p/

, m mo L _3- J
m=l (D t)

R

m = 1, 2, 3, ... (48)

where

A = m-th eigen constant
m

» = m-th eigen value
m a

14. Derivation of Equations (5.16) and (5.17)

Since the axes which move with the mean fluid velocity,

we may write

x
i

-
* - v - x - %& V ™

where x = moving axial position relative to the mean fluid

velocity.

It is known that C is a function of x, r, and t only; that

is

C = C (x, r, t) (50)

By using the chain rule of differentiation on Equations (49) and

(50) one obtains
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ac _ ^C
3x ~ EL

12 = 5£ - v —
at ^t x ax

ac _ ac
3r 3r

2„ 2„
a c _ _a_c

2 2
3r 8r

Substituting these relations into Equation (5.6) yields

?c _ , a
2c i ac. - r 2 n+3 , r N

n+1
l

at VtJ + ?^)"Vx LnTI-n7f(R-) J ^ (5.16)

By normalizing Equation (5.16) one obtains

D t" 2
ac* r_ , a c* l _ao* _ ,_2_ _ n+3 n+l. ac*_ ,_ j_»

53 „2 , 2
+

p a p
n+l n+l &T|

K dp 1

where

c* = c/c°

r
P = D

A
l

\ -r

15. Derivation of Equation (5.20)
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3C*
Since ^k— has been taken as a constant in order to solve

1

Equation (5.16), we may let

DRt
n+1 *\

Then Equation (5. 18) becomes

B [ 2 - (n+3)p
n+1

] (52)
d
2
C* 1 dC*

2
+

P d
a P

Equation (52) is a linear non-homogeneous ordinary differential

equation, so that the general solution is the sum of a general

solution C* of the corresponding homogeneous equation and an

arbitrary particular solution C of Equation (52) i.e.,

C* = C* + C* (53)
h p

The corresponding homogeneous equation is

d C* 1 dC^ _

2
+

P dP
dp

and its solution is

C* = C
h

= k
1
lnp + k

2
(55)

where k and k are Integration constants.

(54)
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and

Knowing that

-^- = at p= 1,
3p

C* = C
Q

at p =

One has

k =0 and k = C *
1 2

Equation (55) is, therefore,

C* = C* (56)
h

It is first assumed that the solution is of the form

* 2
°° m+3

C* = C = A
1

p + A„p + T A p , m = 1, 2, 3,.. (57)

m=o

Substituting Equation (57) and its derivatives into Equation

(52), one has

ra+1

2A^ + T (m+3)(m+2)A p

2 m+3
m=o

CO m_i.O

+ i. A + 2A p + £ (m+3)A ,p
P

x m=o

= 2g - (n+3)g P

n+1
(58)

Simplifying the above equation, regardless if n is an integer or

not, it becomes
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A DO

-i + (4A - 2(5) + T A „(m+3)
2
o
m+1

+ (n + 3)B P
n+1

=
P 2 m+3

m=o
(5g)

Assuming that the flow-behavior index n is a positive integer or

zero, the third term in Equation (59) can be broken into three

terms, first summing m from m = to m = n-1, second m = n, and

third from m = n+1 to infinity as follows

:

A n-1

— +(l|A-23) + S A (m+3) p

1™"
+(n+3) [ A (n+3)+?lp

+

p 2 m+3 L n+3 J

m=o

oo
. .2 m+1 ,, .

+ T A (m+3) P = (60)
m+3

ra=n+l

Comparing the coefficients of both sides, one has

A
l = °

4A
2

- 20 =

o
A -,(m+3) = when m = 0~n - 1
m+3'

and m = n+1 <^j oo

(n+3) [A
n+3

(n+3) + B ]
=0

Solving these four simultaneous equations, one obtains
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A-j_ =

An = an arbitrary constant

A
3

= A
4
=A

5
= ... = A

n+1
= A

n+2
=0

2A„
A = _ —
n+3 n+3

A
,
= A . . . =

n+4 n+5

The re fore , one has

C* = A, ( p

2
-

2 n+3) (61)
p 2 VM n+3

Equation (53) is then

C* = C* + A
2 ( P

2
- g^ p

n+3
) (5.20)

16. Derivation of Equation (5.23)

From Equations (5.20) and (5.22) we know that

*
r

1
T * 1 / R

2
w?C*w 2 2 n+3"] ,,„.

C
m = 2 ' l°o +

5(n+iy (^)(W)( o2
" n^ P

J
Pdp (62)

•U
R

T' 1

which can be integrated to obtain

C
o

C
m - nTI

(rT } (^7) U " (n+3 )(n+5 )
J

(64)

o
R
t i
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Substituting Equation (64) into Equation (5.20), one has

n* 1 •/ R
2
W SC*, r 1 *

. .2 2 n+31
C * = C

m + 2(^TIT^^ L" 2
+

(n+3 )(n+5 )

+ P " n^3
P

J

V (65)

ac*
Now, §»- is replaced by -xJ~- because radial variation of tracer

i l

concentration has been assumed to be small (7). Then Equation

(65) may be modified to become

° - °™ +
2(n+l)

(

D
- )( v£ L 2

+
(n+3 )(n+5) n+3

(5.23)

17. Derivation of Equations (5.26)

From Equations (5.23), (5.24), and (5.25), one has

, -^ f [C* +W - 4)P-3
] V^-gJp-1

)PdP (66)

where

2 3C*
or. i— (_5_) _SL

2(n+l) D r *\
R

and

i + a

2 (n+3)(n+5)
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Factoring out common term in Equation (66) gives

(Cm + at ) [2 p - (n+3)p
n+

] dp

2_

n+l V
Q

J
1*^*-^)*1**]* -sg J

1
P

n+3

[
2p - (n+3)p

n+2
]d

P

.1

o

2-a
5^-[ (i-aaj --2.(JL.i,]

n+l L v

2 n+5 n+3 n+5 2' J

2 2_
ttR V (n+l) "R V 2 3C*

(n+3)(n+5) 2(n+3)(n+5) D r ML
R x

tiR V 3C*
2 (_B) (5.26)

2(n+3)(n+5)D
R
L 3^

18. Derivation of Equation (5.32) (41, 42)

Rewriting Equation (5.31), one has

ac* _ 3
2
C*

_J± m (_p_) £ (67)
39 V

x
L ai,2i

For simplicity, let JL = a' and C* = C* then Equation (67)
,7 L

becomes
V-

in'

* ^2 *
5C_= aLL (68)
39

3*J
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Consider the expression

2

°* -*«•<-& m
where A is an arbitrary constant

Since

2 -2

&1 , - _A exp (- JL) A
y

exP^ At) (70)
^e 3/2 4^9 572 5»e

29 ^9

and

JgJL . - A exp(- !L.) + _i- exp(- !L)
, (71)

. 2 3/2 4*9 5/2 4a9
311

1 2cy9 4a'9

one can substitute Equations (70) and (71) into Equation (68) to

show that Equation (69) satisfies the equation for diffusion in

axial direction.

Equation (69) is symmetrical with respect to V = 0, and

has the following initial and boundary conditions:

I.C. C* = for 9 = and 1L J

B.C.I C* = for 9 >0 and \ -^. + CO

B.C. 2 C* = «(9) for all 9 and H
1

=

The total amount of tracer injected in the cylindrical tube

of infinite length is given by

r°° C*dT| = 1 (72)
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If the concentration distribution is that of expression

shown in Equation (69) letting

-i- = X . dll
n
- 2(<*9fax , (73)

4<*6 x

one sees that, combining Equations (69), (72), and (73)

i °° 2 i
2Ac a

J"
exp(-X )dX = 2A(to)2 = 1 (74)

-oo

or

A = I . (75)

2(tt«)*

Expression in Equation (74) shows that the amount of tracer

diffusing remains constant and equal to the amount originally-

deposited in the plane 1) = 0. Therefore, on substituting

Equation (75) into Equation (69), one has

C* - i-T exp(-—H (76)

2(TR*e)

where

E
ry

VXL

19. Derivation of Equation (5.44) (63)

For the time being, let

M

2(n+3)(n+5)
(77)
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then from Equations (5.34) and (5.41), one has

H=f 9 1 exp ["- il=S} |d8 (78)

2 ( me

)

The exponent of e containing the expression

(i-Q)
2

= l-29+Q
2
. I - a +B - (0* - 9"i) 2

(79)
e e e

Consequently the integrand in Equation (78) will be simplified

1 X
x = G 2 - 9~ 2

or

2 &
)i . x + (x + 4)

2
^

( 8o j

from which it can be calculated that

d9 = ^_ dx (81)

(x
2
+4)

a

With this substitution the integral takes the form
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po
, . * . 29

I e-^-rexp (-2U
li a- i

-co ,
,a 4 o 2

2(to9) (x +4)

dx

=o 3/2 2

= r J r exP ( - r~) dx

(tier) ^(x2
+4)

. 1
i f x3+3x

2
(x
2+4)?+3x(x

g
+4)+ (x

2
+4)

3/2
exp (

_ xf)dx

(tt<v)

2
-°° 8(x2+4)

2

(82)

because

QJ x+(x
2
+4)?

2

Rearranging and simplifying terms in Equation (82), one obtains

i
°° 2 2 °* 3 -,—±

—

r P (x +1) exp (- *_)dx + _i - r
x-+l exp(- x_) dx

2 (nor) 2(n<?
) (x +4)

-i-r-
1°°

(x
2
+l) exp (- ^)dx + (83)

(nor) o

because, in the first integral of the first line, the integral

is an even function and, in the second the integral is an odd

function.

Let

x
2

2~- «= y or x m 4°<y (84)
4q>
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Since relation between the differentials is

dx = (21)

2

dy (85)

one finally arrives at

A_ J (4 ffy + 1) exp (-y) (*) dy

2

(to)

. i_ [4«
I"

y 2 exp (-y)dy + J y~ 2 exp (-y) dy
|

„S o o

= A; [>«ni> + ni)

n 2

. 2 « + 1 (86)

re P|) = „±whe

Equation (86) can also be obtained from the mathematical table

(64). Therefore,

„ = 1 + 2a = 1 + " - (5.44)
(n+3)(n+5)

20. Derivation of Equation (5.46) (63)

M
Let = a then

2(n+3)(n+5)
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Equation (5.45) can be written as

a
2 = f° 9

2 ^l exp
r H^ll dQ . *

(87)
o 2(TO e) 2 L 4oe J

where

li- 1 + 8 (5.44)
(n+3)(n+5)

Integrand in Equation (87) can be evaluated as follows:

Using a similar manner given in 19 and introducing

i x+ (x
2
+4)?

(8
2

one has

_L_ / e
2 —1 exp (- pi —ge dx

i a 4o 2 |
(to) -* 2(to9) (x+4)

oo 5/2 2

J"
§ exp (- 2L_) dx (88)

i" „,.2 „,* 4"
(to)" -«(x +4)'

Substituting Equation (80) into Equation (88) and

simplifying the terms, one obtains
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-i—
r (x

4
+3x

2
+l) exp (- 5_)dx

2( TO ) -00

+ L_ r £jtS*f±S* exp (- ^)dx

2(n«)
2

-03 (
x2+^)

2

, co h ? 2
i-r

J"
(x +3x +1) exp (- *_)dx +

2(t.«)
-°°

too 2
= —i-r J" (x +3x +D exp (- 5_)dx (89)

5 4o
(m )

Now substituting Equations (84) and (85) into Equation

(89), one obtains

-ir ;°° (l6*
2
y
2
+ 12»y + 1) exp (-y)(^dy

(to)
°

. 1 [l6o.
2
/ y

3/2
exp(-y)dy+12*/ y

texp(-y)dy

+J y~ aexp(-y)dy]
o

12<y
2
+ 6a + 1 (90)

where ["*(=-) = tt2
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Therefore, substituting Equations (86) and (90) into Equation

(87) one obtains

,
2 = 12a

2
+ 6a + 1 - (2« + l)

2

8<y + 2a

I
(n+3)(a+5) (n+3)(n+5)

(5.46)
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NOMENCLATURE

A = tn-th eigen constant

C = concentration
3
m/l

C.* = molar concentration of component i, mols./l

C_(9) = dimenslonless tracer response curve to a unit impulse

input, a function of

C* = dimensionless concentration, C/C°

C_ = Laplace transform of the two-dimensional residence time

distribution function (r.t.d.f.)

C = concentration of tracer in inlet stream, m/l^

C° = mean concentration of pulse of tracer if uniformly

distributed in experimental section of vessel, m/l^

Cm = area mean concentration, m/l-'

2
D = dispersion coefficient, 1 /t

De = effective axial diffusivity, a function of D
L , DR , and

Vx(5), 1
2A

2
DL

= axial dispersion coefficient, 1 /t

2
D
R

= radial dispersion coefficient, 1 /t

o
Dm = molecular diffusivity, 1 /t

dt = inside diameter of round tube, 1

2-2
R V

E = overall dispersion coefficient,
DR _2(n+3)(n+5)_

E(Q) = exit age distribution function or r.t.d.f., a function

of G

E(0) = maximum concentration
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F(9) = dimensionless response curve to a step input of

tracer, a function of 9

F = ra-th eigen function

f = Fanning friction factor

g = gravitational acceleration, l/t

gj = total body force per unit mass of component 1, l/t

1^(9) = internal age distribution function, a function of 9

H = a distance between two parallel plates, 1

J\. = molecular flux of component i, mols./tl2

Jjfl) = laminar contribution to molar flux of component i,

mols./tl2

jWt) = turbulent contribution to molar flux of component i,

mols./tl 2

J = Bessel function of the first kind of order zero

j = parameter in the perfectly mixed tanks in series model

K = effective axial dispersion coefficient for laminar flow

defined by Taylor (7)

k = first-order rate constant for bulk phase chemical

reaction, l/t

L = characteristic length of system, 1, or Laplace trans-

form operator in Appendices

2_
M = parameter, R VX/DRL

m = parameter in Ostwald-de Waele model, dimensions

flepenQ on n

n = flow-behavior index in Ostwald-de Waele model,

di~er.sior.Iess, 1/v
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P = pressure, ra/lt

AP = pressure drop over L, ra/lt

Pe = Peelet number, VXL/D

Q = volumetric flow rate, l
J/t

q = energy flux, m/t

R = tube radius, 1

Re = Reynolds number, dtVx P/m

r = radial coordinate

r\. = molar rate of production of component i, mols./tl

s = Laplace parameter

Sc = Schmidt number, m/pDR

t = time, t

t = mean residence time, t

Us = a unit step function

VR
= wall velocity, l/t

Vx = mean velocity in axial direction, l/t

Vx (r) = axial velocity, a function of r, l/t

Vm = center line velocity for laminar flow, l/t

V' = center line velocity for laminar flow if a slip

velocity at the wall is considered, l/t

v
1

= velocity vector, l/t

W = width of plate in z-direction, 1

X = length of the system, 1

x = axial distance, 1

Xj = x - 1/2 (V
ra
t) = axial position relative to a coordinate

system moving with the mean fluid velocity, 1

Y = Bessel function of the second kind of order zero
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Greek Letters

a = dimensionless constant

a = tn-th eigen value

p = dimensionless constant

Y = a slip velocity factor

X = rate of deformation tensor

6(9) = Dirac delta function, a function of 9

6 (tl — T! ) = Dirac delta function, a function of

2
e Q = eddy diffusivity, 1 /t

£ = dimensionless position variable, y /H or t /t

11 = dimensionless axial distance, x/L

9 = dimensionless time, t/t or tVx/L

9 = dimensionless time at maximum concentration

u = mean of the r.t.d.f. or the first moment about the origin

u = parameter in Bingham model, m/lt

v = parameter in Ostwald-de Waele model, dimensionless

Jp
= dimensionless radial distance, r

Q
/R or t /tr

7t - 3.1416

tt = pressure tensor, m/lt

o = dimensionless radial distance, r/R

o
p = fluid density, m/l J

o

Pi = mass concentration of component i, m/1

a 2 = variance of the r.t.d.f. or the second moment about

the mean

t = shear stress tensor, m/t 1

t(i) = laminar contribution to shear stress tensor, m/t 1
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~r(t) = turbulent contribution to shear stress tensor, m/t 1

t = parameter or yield stress in Bingham model, m/t2l

tr = shear stress or momentum flux at the wall, m/t 1

t™, = tangential shear stress parallel to y plane and in

direction of x axis, m/t 1

$ = a function of Reynolds and Schmidt numbers

t(C) = rate of production, a function of concentration

v = the "del" or "nabla" operator
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The principal purpose of this work was to develop

mathematical models to characterize dispersion of non-Newtonian

fluids in continuous flow systems in the laminar flow region.

First
3
the basic notions of fluid dispersion and residence time

distributions are presented. The analysis of residence time

distributions is one of the most commonly used tools in the

study of fluid dispersion in continuous flow systems.

The convective models (velocity profile models) of fluid

dispersion are derived for Bingham and the Ostwald-de Waele

fluids. It has been indicated that deformation in the shape of

the residence time distritu ion curve is caused solely by the

dispersion effect. The present analysis , however, reveals

that zhe deformation of the residence time distribution curve

can also be caused by deviation of the flow-behavior from

Newtonian characteristics.

Finally, the dispersion (diffusion) model is developed

for the Ostwald-de Waele fluid. Expressions for the residence

time distributions as well as a correlation of dispersion

coefficients are obtained. It is noted that the results

include Newtonian flow as a special case. Also for a given

flow condition, the degree of dispersion decreases as the

fluid changes its characteristics from dilatant (n<l) to

pseudoplastic (n>l).


