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CHAPTER 1

INTRODDCTION

American industry, as a whole, and the automobile industry in

particular, has been investing heavily in recent years to modernize

manufacturing facilities, to lessen manufacturing costs, and to improve

quality. Emphasis has been placed on teachable automation in an

effort to ensure that new equipment will be flexible enough to

accomodate future products with minimal additional investment. Tlie

primary teachable components of flexible manufacturing systems are

robots, and the primary component of a robotic system that allows it to

be teachable is computer control.

However, computer control of robots is not well refined and robots

do not perform upto their physical capabilities. Higher performance

robots would be valuable in manufacturing. For example, many

applications of robots in factories can be justified economically only

if implemented with a faster robot than state-of-the-art control

permits. Other applications could be implemented with fewer faster

robots, which would result in considerable investment savings. Another

performance limitation, besides speed, is the maximum load bearing

capacity of commercially available robots.
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These performance limitations can be traced to the manner in which

existing robots are controlled. State-of-the-art control schemes are

based solely on stability requirements. The control law is designed to

produce stability in axis position and then the fact of stability itself

is used to induce motion by iteratively changing the position reference.

This form of control gives rise to inaccuracy at high speeds and to

position overshoots. Consequently robot designers have restricted the

peak speed and acceleration of their products so that accuracy and

overshoot can be limited to acceptable levels. This is a performance

limitation due to the control laws and not due to the capabilities of

the machine. Therefore, to control the robot for high performance, the

true physical performance limitations must first be established. The

limitations are then based on constraints and not merely on the

control [1].

A real life example will illustrate this difference in performance

levels. The standard PUMA arm equipment could allow base motor speeds

of up to 144 rad/s, and currently, the limit set in the Puma controller

is 89.9 rad/s [1]. A 60% improvement is possible if the full potential

of the motor can be tapped.

The question of what is minimum time control can be answered

with a commonly used analogy. If a person vfere travelling in a car and

wished to get to the next intersection in the shortest possible time,

what would he do? He would push the accelerator to the floor for a

certain amount of time and then releasing the accelerator apply maximun

braking (switch controls) for some other period of time to come to a

stop. If the control switched too late, the car would slide into the
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intersection. If it switched too soon, the car would stop short of the

intersection. Thus, it is obvious that the switching time is critical

in obtaining the desired final position and velocity. This is the basic

idea in the minimum time optimal control of a robot manipulator or

articulated mechanism. This type of control is also called bang-bang

control [2], because the control is always on the control boundary, in

one direction or the other.

The minimum time, optimal control problem for a robotic

manipulator can be divided into two main classes, minimum time control

along a specified path and minimum time control with no path

constraints. Task oriented problems and obstacle avoidance planning

fall into the former class. The second class can be subdivided into two

categories, that of problems where the complete nonlinear minimum time

system is considered and the true solution is sought, and of problems

where approximations (usually linearizations) are made on the nonlinear

system and the near-minimum time control is investigated. Extensive

work has been done with problems belonging to the first class [3] - [7].

Problems dealing with the near-minimum time control have also been quite

extensively investigated in recent years. In 1971 Kahn and Roth

published a paper on the near-minimum time control of open loop

articulated kinematic chains [8]. They developed a suboptimal feedback

control by linearizing the equations of motion for a three degree of

freedom manipulator. Approximations were made for the effects of

gravity loads and angular velocities in the nonlinear dynamic equations.

The suboptimal control was obtained by decoupling the system into three

double integrators and deriving the equations for the switching curves
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of the transformed system. The response time of the snboptimal control

was compared to that of the optimal control which was obtained by an

iterative technique. Wen and Desrochers [9] investigated two control

strategies for suboptimal control, the method of averaging dynamics (AD)

and the method of linear equivalence (LE) . The first method is used

when a time-fuel suboptimal solution is required. The latter uses exact

linearization where the dynamic equations are written for a reduced

system of decoupled double integrators. The LE method is found to be

superior to the AD method in obtaining a smaller final time. However

both methods need a very good model of the system since the nonlinear

part of the system has to be evaluated repetitively. Sato, Shimoj ima

and Kitamura [10] obtained switching tines of the control variables for

a two degree of freedom manipulator by approximating the velocity of a

DC servomotor. They found that when the driving force was operating at

saturation it was necessary to make additional approximations on the

angular velocities. Kao, Sinha and Mahalanabis [11] developed an

algorithm for the near-minimum time control of a three link robotic

manipulator. They linearized the dynamic equations by expanding them in

a Taylor series and neglecting the higher order terms. The poles of the

linearized closed loop system were placed in the z-plane so as to permit

minimum time response without violating the actuator torque constraints.

This is a digital algorithm that can be implemented using

microprocessors.

However very little work has been done in the area of the complete

problem, the problem of determining the minimum time optimal control

history for a system with no linearizations or approximations. Kahn and
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Roth [8] obtained the minimum time optimal control by an iterative

technique. Guesses were made on the unknown constants at the final time

X(t.), and the dynamic equations were integrated backwards in time to

the initial time to give the states x(t ) and the constants X(t ). If
o

x(t ) is not sufficiently close to the specified initial state x then a
o

'^

o

new set of variables 3l(t.) are chosen and the integration is repeated.

The iteration is continued till x(t ) is sufficiently close to x . Then
o '

the constants X(t ) and x are substituted into the dynamic equations

and the optimal control is obtained by integrating the equations forward

to the final time.

The purpose of this work is to develop an alternate method of

solving the complete minimum time problem , to examine the deviation of

the discrete time solution (finite element method) from the continuous

case, and to explore the feasibility of a real-time minimum time

controller.

In Chapter 2, the minimum time control problem is stated. The

basic concepts of control theory, as well as some variational calculus

principles, utilized in the problem formulation, are presented.

In Chapter 3, the mathematical model of the r-theta manipulator (a

two degree of motion manipulator) is developed. The dynamic

equations, derived using the Lagrangian formulation, are used in the

control algorithm for the minimum time simulation of the manipulator.

In Chapter 4, the finite-element solution technique for the

minimum time problem is developed.
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In Chapter 5, the simulation results are presented. The finite

element method is found to converge to the solution with reasonable

initial guesses on unknown parameters. When this method is used in

conjunction with a grid search method to start the algorithm, it

converges quite rapidly to the true solution. The discrete time solution

compares favorably with the continuous case, and as the grid density of

the finite element mesh is increased the accuracy of the solution is

improved.

Some of the limitations of the technique, as well as

recommendations on areas for further investigations are also presented.
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CHAPTER 2

THE MINIMUM TIME CONTROL PROBLEM

Optimal Control Theory

The objective of optimal control theory is to determine the

control signals that will cause a process to satisfy the physical

constraints and at the same time minimize (or maximize) some performance

criterion.

In order to evaluate the performance of a system quantitatively,

the designer has to select a performance index or cost function J. An

optimal control is defined as one that minimizes (or maximizes) the

performance index.

In the general case, it will be assumed that the performance of a

system is evaluated by a measure of the form [12]

J = h(x(t^),t^) + /^* g(x(t).u(t).t) dt (2.1)

o

where t is the initial time, t. is the final time, and h and g are

scalar functions. The final time t. may be specified or free depending

on the problem statement. For the minimum time problem

t

t

o

J = // 1 dt (2.2)
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where t is unspecified.

Throughoat this paper bold face characters will represent vectors.

For example z(t) and u(t) are the state and control vectors.

The optimal control problem is to find an admissible control which

causes the system described by the set of first order ordinary

differential equations

x(t) = •(x(t).n(t).t) (2.3)

to follow an admissible trajectory z (t) that minimizes (or maximizes)

the performance index J. The quantity n (t) which minimizes J is called

the optimal control and z (t) an optimal trajectory. The elements of

equation (2.3) are called state equations and involve the state

variables z(t) and the controls ii(t). A more formal definition of state

variables is provided in Chapter 3.

A control history which satisfies the control constraints during

the entire time interval [t ,t.] and achieves the desired final state
o f

z(t.) is called an admissible control. A state trajectory which

satisfies the state variable constraints, both the differential equation

constraints as well as the boundary constraints, during the entire time

interval [t ,t,] is called an admissible trajectory.
1

^ J

Variational Formulation

Variational calculus is a branch of mathematics that is very

useful in solving optimization problems. The performance index J is a

functional. A functional is a function of a function and/or functions.
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For example, if

x^= fjCq^-qj^ (2.4.1)

and X2=
^2^h''^2^

(2.4.2)

where <!. >4,, ai'e independant variables and £^

,

f. are scalar functions

then the quantity J = g(x ,x.

)

(2.4.3)

is a functional where g is a scalar function.

Variation of a Functional

The variation of a functional plays the same role in determining

extreme values (maximum or minimum) of a functional as does the

differential in finding maxima or minima of functions. The

differential, df, of a function, f, of variables q,>qo'**>'4 is given
1 z n

by the relation

df = ^ dq, + ^ dq- + ... + ^ dq . (2.5)1^2 . n
aq^ aqj aq^

Similarly, the variation, SJ, of a functional, J, of functions

X. ,x_,...,x is given by the relation
1 Z n

5J = " &x, +
^-^ 8x,+ ... + " 8x . (2.6)

3 ^ a •^ a '^
OX, OX- OX12 n

Fundamental Theorem of the Calculus of Variations

The fundamental theorem states that the variation must be zero on

an extremal (maximum or minimum) curve, provided there are no bounds

imposed on the curves.
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In other words

6J(x*.8x) = (2.7)

for all admissible 6x . By admissible 5x, it is meant that x + 8x must

be of some class H to which x belongs. For example, if Q is the class

of continuous functions, x and 6x must both be continuous. In this

case Q comprises all the state histories which satisfy (2.3).

Constrained Minimization of Functionals

So far, functionals involving the state vector x(t) have been

discussed and it has been assumed that the components of x(t) are

independent. This is usually not the case in control problems where the

state trajectory is determined by the control u(t) and the state

equations. Therefore it is necessary to consider functionals of n+m

functions, x(t) and a(t), but only m of the functions are independent -

the controls. The next step is to derive the necessary conditions for

extremals of constrained systems. The Lagrangian multiplier method will

be used.

The Lagrangian Multiplier Method for a System
with Differential Equation Constraints

The objective is to find the necessary conditions for functions

* *
X (t) and n (t) to be extremals for a functional

J(x,u) = /^ g(x(t),u(t),t) dt (2.8)
o

where x (t) is the state vector of order n and n (t) is the control

vector of order m. These vectors must also satisfy equation (2.3), the
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differential equation constraints on the states. To include these

constraints the augmented functional is formed . The augmented

functional is defined as

J (x.u.X) = //{g(x(t).u(t),t)+ X^(t)[a(x(t),u(t).t)-x(t)])dt (2.9)
a t

o

where X.(t) i = 1,2, ...,n are the Lagrangian multipliers whose values

are to be determined. ^Then the constraints are satisfied, the augmented

functional, J , equals the functional, J, for any X(t).
a

The quantity g (x(t) ,x(t) ,u(t) ,X(t) , t)can be defined as
a

g (x(t),x(t).m(t),X(t).t) = g(x(t),ii(t),t)

+ X^(t)[«(x(t),u(t).t)-x(t)l (2.10)

so that

J (x(t),x(t),tt(t),X(t).t) = fit {g (x(t),x(t).ii(t).X(t),t)}dt.(2.11)
a t a

o

The variation of the functional J , SJ , after integrating by parts and
a a

simplifying is

6J^ = [fia(x(t^),x(t^),u(t^),X(t^).t^)]^5xj+ [g^(x(t j) ,x(t^).
dx

n(t^).X(t^),t^) - [lia(x(t^),x(t^),ii(t^),X(t^),t^)]^x(t^)l8t^
dx

+ /^^{[[fia(x(t).x(t).u(t).X(t),t)]'
o dz

- f_[fia(x(t),x(t),u(t),X(t),t)]'''l 8x(t)
dt dx
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+ [^a(x(t).x(t),u(t),A.(t).t)]^ 8tt(t)

dn

+ [fia(x(t),i(t).tt(t).X(t).t)]^ 8>.(t)} dt. (2.12)

dX

The necessary conditions can be derived from the above equation by

applying the fundamental theorem. However it is more convenient to use

another functional, the Hamiltonian, which can be defined as [12]

H(x(t).n(t).X(t).t) = g(x(t).u(t),t) (2.13)

+ X^(t)[»(x(t).n(t).t)l

where a(x(t) ,ii(t) , t) is the right hand side of equation (2.3).

For the minimum time problem, the Hamiltonian can be written as

H = 1 + X^(t)[a(x(t).ii(t).t)l. (2.14)

For an extremal curve the fundamental theorem gives us the

condition

5J (x (t).ii*(t).A.*(t).t) = 0. (2.15)
a

The superscript • signifies the extremal or optimal value.

The above equation gives us the necessary but not the sufficient

conditions for optimal control which are

x(t) = ff (x*(t).u*(t).X*(t),t). (2.16)
dX

XU) = -f^ (x*(t).u*(t),X*(t),t). (2.17)
dx

dE * * *_ (x (t).ii (t),X (t).t) = . (2.18)
da

and = [- X*(t^)l''^6x^ + [H(x*(t^),u*(t^),X*(t^). t^)l6t^ . (2.19)
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Equation (2.16) constitutes the n state equations. Equation (2.17)

constitutes the n co-state equations. Equation (2.18) constitutes the

m optimality conditions. Equation (2.19) constitutes the boundary

condition equation. The conditions above are not sufficient to solve

the minimum time problem because constraints on the controls are

required to solve the problem. If the controls are unconstrained then

the optimal control will be infinte torque or infinite force and the

minimum time will be zero. The control constraints are defined in

Chapter 3. For the minimum time problem the final time, t., is free to

vary, but the final state x is fixed. Therefore

8x^ = 0. (2.20)

The boundary condition equation reduces to

H(x (t^).u (tj).X*(t^).t^) = 0. (2.21)

This equation is also called the transversality equation.

So far it has been assumed that the admissible controls and states

are not constrained by any boundaries, however, in realistic systems

such constraints do commonly occur. Physically realizable controls

generally have magnitude limitations. Actuators in robot joints have a

maximum torque output beyond which they saturate. The generalization of

the fundamental theorem to include the effects of the control boundary

constraints leads to Pontryagin's minimum principle.

Pontryagin's iniaaa principle states that an optimal control

must minimize the Harailtonian, i.e.

e(x (t),ii*(t),3l*(t),t) = H(x*(t),n(t).X*(t).t) (2.22)

-13-



for any t e [t >t.] and for all admissible controls,of
The conditions for minimum time control, equations (2,16), (2,17),

(2,18), (2,21) and (2.22) are utilized in the continuous time simulation

and in the discrete time simulation of a robotic manipulator in Chapters

3 and 4, respectively.
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CHAPTER 3

MATHEMATICAL MODEL

The Concept of State

The concept of state occupies a central position in modern control

theory. It is a complete summary of the status of the system at a

particular point in time. Knowledge of the state at some initial time

t , plus knowledge of the system inputs after t , allows the
o

determination of the state at some later time t . At any fixed time the

state of a system can be described by the values of a set of variables

z., i = 1, 2, ... , n where n is the order of the system. These

variables are called the state variables.

The Mathematical Model

An important part of any control problem is modelling the process.

The objective is to obtain the simplest mathematical model that

adequately predicts the response of the physical system to all

anticipated inputs. The r-theta manipulator belongs to the class of

systems that can be described by ordinary differential equations in

state variable form. Thus if x,(t),x_(t), ,x (t) are the state12 n

variables of the process at time t and u, ( t ), u« (t ),..., u (t) are the12 m

-15-



control inputs to the process at time t, then the system may be

described by n first order differential equations, such as

i,(t) = a,(x,(t).x-(t),....x (t),u,(t),u-(t),...u (t))
i. iiz nxz m

i-(t) = a,(x,(t),x,(t)....,x (t),u,(t),n,(t),...n (t))

. (3.1)

i (t) = a (x,(t),x-(t),...,x {t),u,(t),u-(t),.
n n 1 z n 1 z

The state vector x(t) of the system is defined as

.u (t))
m

dt) =

and the control vector is defined as

i(t) =

x^(t)

X2(t)

i*(t)
n

u (t)

uj(t)

u*(t)
m

The state equations in vector form are

(3.2)

(3.4)

x(t) = B(x(t),n(t).t) (3.4)

Kinematic Model

The two de grees-of-freedom robotic manipulator on which the

minimum time control is performed is called an r-theta manipulator. A

schematic of the manipulator is shown in Figure 3.1. The kinematic

model is illustrated in Figure 3.2.
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The r-theta manipulator has two joints. Joint 1 is revolute and

joint 2 is prismatic. The joint variables are 6 and r (or D. in the

Denav i t-Ha r

t

enberg representation [13] used in Figure 3.2),

respectively. The torque on joint 1 is T and the force on joint 2 is F.

The plane of motion of the manipulator is parallel to the ground and

hence the gravitational force does not enter into the dynamic equations.

Dynamic Model

The equations of motion are nonlinear and coupled. In order to

simplify the equations, and hence the simulation, the following

assumptions are made.

1. The mass of the payload is much greater than the mass of the

links and actuators.

2. The payload m is treated as a point mass.

The first assumption allows the r-theta links to be treated as massless

kinematic linkages. The second assumption simplifies the inertia terms.

The dynamic equations are derived from Lagrange's equation of

motion. If not all the forces acting on the system are derivable from a

potential, then Lagrange's equations can be written in the form [14]

d_(ai^) _(aL_) ^ Q (3 5j

dtOq.) Oq.) •'

J J

where L is the Lagrangian, q. represents the generalized coordinates,

and Q. represents the forces not arising from a potential.
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If K£ is the kinetic energy and PE the potential energy then the

Lagrangian is defined as [14]

L = KE - PE . (3.6)

Soiniaing up the kinetic energy of the manipulator gives

KE = ^ n(r)^ + 1 m(re)^ (3.7)

2 2

where m is the mass of payload, 9 is the joint 1 variable, 9 is the time

derivative of 9 , namely (9), r is the joint 2 variable, and r is the

dt

time derivative of r , namely (r). The potential energy of the

dt

manipulator is

PE = . (3.8)

The quantities r and 9 are explicit functions of time, t.

Throughout this chapter the independant variable t is omitted from the

notation of the explicit functions of t for brevity. Also, throughout

this chapter the superscript * will indicate the first differential with

d
respect to time and the superscript will indicate the second

dt

2

2

differential with respect to tine

dt

The forces at the joints are

Q^= T (3.9)

»nd 0^= F (3.10)
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where T is the torque at joint 1 and F is the force at joint 2.

Substituting equations (3.7) and (3.8) in equation (3.6) gives the

Lagrangian

L = _ m(r + rV) . (3.11)

2

For the r-theta manipulator, the independent generalized

coordinates are r and 9. The Lagrangian equations for the r-theta

manipulator are of the form

d_(3L) jaL) ^ P (3.12)

dtOr) Or)

and L^'l^ -^'±' = T . (3.13)

dtoe) (^«)

From equation (3.11) the expressions for the various derivative terms of

equations (3.12) and (3.13) are

fi = mre^ . (3.14)

dr

d OL) d (mr) ••

,, ,,,= = mr , (3.15)
dtOf) dt

!!l = . (3.16)
ae

. d OL) d (mr^e) 2 " ^ , .

'

,, ,.,>and = =mr9+ ZmrrS . (3.17)

dtoe) ^^

Substituting equations (3.14) and (3.15) into equation (3.12) gives

'2
m r - mre = F . (3.18)

Substituting equations (3.16) and (3.17) into equation (3.13) gives

-21-



2 "
mr e + 2mrre = T . (3.19)

The controls are defined as

Uj =
^

(3.20)
Fmaz

«nd u^ =
^

(3.21)
Tmax

where u is the control at joint 2, u is the control at joint 1, T is

the actual torque applied at joint 1, Tmax is the maximum torque that

can be applied at joint 1, F is the actual force applied at joint 2, and

Fmax is the maximum force that can be applied at joint 2. The controls

u. and u_ are explicit functions of t.

Substituting equations (3.21) and (3.20) into equations (3.19) and

(3.18), respectively, gives

2"
mr e + 2mrre - Tmax u, ~ ° (3.22)

*2
and mr - rare - Fmax u = 0. (3.23)

The state variables x., x., x. , and x are now introduced. They are

defined as

^^ = r, (3.24.1)

^2 = r, (3.24.2)

X3 = e, (3.24.3)

aiid
^4 = ® • (3.24.4)
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From equations (3 .22 ) , (3 .23 ) and (3.24) the state equations can be

written as

ij = x^. (3.25.1)

ij = x^xj +!!:!!u^ . (3.25.2)

m

i, = x^. (3.25.3)
3 4

2x_x. . Tfltax ,- -, ..
and X. = - 24 + u. (3.25.4)

4 r 2

1 mx

where x , x. , x,, x. are explicit functions of t.

In this paper the performance index J is formulated in 2 ways
a

which are :

1. The First Order Foranlation where the performance index J is

augmented with first order ordinary differential equation

state constraints (refer to equation (2.9)). This formulation

is used in the continuous time simulation (numerically

integrated using the Runge-Kutta method).

2. The Second Order Fomalation where the performance index J is

augmented with second order ordinary differential equation

state constraints. This formulation is used in the discrete

time simulation (using Finite Element methods).

The First Order Formulation

From equations (2.9) and (3.25) the augmented performance index J

can be written as

-23-



1 , 2 Fmai
J^(x.i.ii.X)= // {1+ k^U^ - ij] + ^2^Xl^4* ^^^

""l
" ^2^

a

+ xhx, - i,] + \][-'!V4. +^ u- - xJ}dt (3.26)
3 4 3 4 ,2 4

1 mz.

where the superscript 1 on the X's signifies first order formulation and

1111
where X., X- , X., X. are the Lagrangian multipliers which are explicit

functions of t.

From equations (2.14) and (3.25) the Uamiltonian for the r-theta

manipulator can be defined as

1 1 , P
1

H(x.ii,X) = 1 + X^x^ + >-2l»i*4 +
''

^i
^ + 5^3%

m

. . r 2x_x. Tmax , /« «»»+ X,[- 2 4 + u, ] . (3.27)

1 mx

Substituting equation (3.27) in equation (2.17) gives the co-state

equations for the r-theta manipulator as

X = - X,x2 - X.[!!2^- 51^ u, ]. (3.28)
1 2 4 4 2 3 2

.1 11
Xj = - X^ - X^[-l^] , (3.29)

*1

.1

X^ = , (3.30)
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.11 11 -2x
and 5l . = - X-[2x,x.] - X, - X . [ _ ] . (3.31)

4 2 14 3 4
^1

Sabstituting equation (3.27) into equation (2.21) gives the

transversality condition for the r-theta manipulator as

« , . , . , r 2 ,
Fmax ,0=1+ X^x^ + X2[x^x^ + u^ ]

m

. ,1 ,
,l.(-2x-x.) Tmax , /»-.«»+ X,x. + X. [ 2 4 + u- ] (3.32)

3 4 4 _ 2
X, 2
1 mx

at t = t^.

For the simulation example it is assumed that the manipulator

starts from rest and come to a stop at the final state. Therefore, the

state variables

X2(t^) = (3.33)

and X. (t.) = . (3.34)
4 f

Substituting equations (3.33) and (3.34) into equation (3.32) gives

1 + X-[!^ u, ] + X^!!!f u, ] = 0. (3.35)

mx^

The Second Order Formulation

The augmented functional J is defined in terms of the second
a

order differential equation constraints (3.22) and (3.23) as
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J (x.x.u.X.t) = / (1+ X, [Fmax u, - mr + mrG ]

t ^ ^

o

+ X,[Tinax u, - f_(mr^e)l} dt (3.36)
^ ^ dt

where the X's with no superscripts signify the second order formulation.

Taking the variation J and applying the fundamental theorem gives

the two multiplier equations and the transversality equation (refer to

Appendix I). The multiplier equations are the second order differential

equations in the Lagrangian multipliers. They are given by the

following relations

- m X + mX e + X,2mre = (3.37)

and 2m[Xj{fe + r 9 } + k t9] + X^mr + X 2mrf = . (3.38)

When the velocities at the final state are zero the transversality

equation is

1 + X^[Fmax u^ ] + X^ETmax u^ ] = (3.39)

which is eqvivalent to the first order formulation (equation (3.35)).

The Optimality Conditions for a Problem with
Inequality Constraints

Figure 3.3 [2] provides one-dimensional illustrations of two

possible types of minima with inequality constraints. It is required to

minimize a functional Ku) subject to the inequality constraints

f(«) < (3.40)
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where in general f and n are vectors of different dimensions. The

constraints can be appended to the functional I(u) to give the augmented

functional I
a

I iu.n) = I(u) + |if(ii) (3.41)
a

where |i is the vector of the inequality constraint multipliers. Y/hen

these constraints are satisfied

I (n.^) = Kb) . (3.42)
a

*
There are two cases for the optimal value of v. n , which are

f(u*) < (3.43)

and £(«*) = . (3.44)

In the former case (i = so that equation (3.42) is satisfied. In the

latter case consider small perturbations about v . If Ku ) is a

minimum, then

51 = f^ 6u > (3.45)
du

for all admissible values of 5n, which must also satisfy

8f = ££ 8n < . (3.46)

da

For equations (3.45) and (3.46) to be true they must be of opposite

sign which indicates

sgn (") = -sgn (^) (3.47)
dn du

or ^ = (3.48)
du

where the signum function, sgn, is the sign of the argument and
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31 ^^1 ^^2 ^^
where ( ) is the negative linear combination of , » • • • #,

du du du du

where m is the number of constraints. Equations (3.47) and (3.48) can

be combined to give

!!+|i!!=0 (3.49)
dn du

for |i 2 0. (3.50)

Therefore the necessary conditions for minimizing I(n) are

(3.51)

(3.52)

(3.53.1)

(3.53.2)

(3.53.3)

(3.53.4)

For minimum time problems bang-bang control is used, that is

» = + u (3.54)— max

* =

dn

and f(n) i

subject to the conditions |i >

for f(ii) =

and p =

for f(ii) < 0.

where u is the control vector and a is the maximum control magnitude.max "

For the r-theta manipulator

n = 1 . (3.55)max

From equations (3 .52 ) , ( 3 . 54 ) and (3.55) the inequality control

constraints for the r-theta manipulator are

fjCa^) = u^ - 1 . (3.56.1)
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f^Cu ) = -u^ - 1 , (3.56.2)

f (u^) = u - 1 . (3.56.3)

and f^(u,) = -u, - 1 . (3.56.4)
4 2 2

The functional I for the first order formulation is equal to H in

equation (3.27)

1 1 , P 1

Kx.u.X) = 1 + X^i^ "
^2^''l''4

^ —- "l ^ ^ ^3%
m

+ X.t- ^^2^ + !!!! u, ] . (3.57)

1 mx^

From equations (3.41) and (3.57) I is
a

I^(x,n,X,|i,t) = I + n^(Uj-l) + ii^i-vi^-1)

+ li^in^-1) + ^^(-u^-l) . (3.58)

Substituting equation (3.58) into equation (3.51) gives

du^ n

31 1-.

and = X
"' ^

+ (1 -n = (3.60)
3u- ^ 2 "*

^

2 mx.

subject to the conditions (3.52), and (3.53). From equation (3.59)

if
''l

" ^ (3.61.1)

^^^^ Pj 2 (3.61.2)
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and ^ = . (3.61.3)

TTierefore K ^ ^ (3.61.4)

in order for equation (3.59) to be true. If

u^ = -1 (3.62.1)

then H = (3.62.2)

and Hj - ° • (3.62.3)

Therefore ^2 - ^ (3.62.4)

in order for equation (3.59) to be true. From equations (3.61) and

(3.62) the control u can be defined as

U I 1

u = - = -sgn(A. ) (3.63)^1 ^

for \^ ^ . (3.64)

The signum function, sgn, takes on a value which is equal to the sign of

the argument. Similarily from equation (3.60) the control u. is defined

as

U I 1

u, = - = -sgn(X.) (3.65)
^ 1

*
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for X. / . (3.66)
4

1 1

When X_or X. is zero the respective control can move away from

the constraint boundary. However for the r-theta manipulator X and X.

are at zero for only an instant and therefore the effect of control at

those instances is not significant.

For the second order formulation the control a is defined as

U I

u = - = -sgnO. ) (3.67)
X

for X^ * (3.68)

and the control a. is defined as

\X \

Uj = - = -sgn(A.2) (3.69)

^2

for X^ ?* . (3.70)

These optimality conditions are used in the continuous time and discrete

time simulations.
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CHAPTER 4

THE FINITE ELEJIENT METHOD

Introdaction

In Chapter 3 the mathematical model of the manipulator was

formulated. The state equations, the multiplier equations, the

transversality equation, and the optimality conditions were derived for

the r-theta manipulator by both the first and the second order

formulations. The first order formulation is used in the continuous

time simulation where the set of eight first order differential

equations are numerically integrated using the Runge-Kutta method. The

guesses on the unknown parameters (the Lagrangian multipliers at the

initial time t and the final time t.) are iterated upon using
o I

"^ "

conventional minimization techniques like the conjugate gradient method

[15], the Quasi-Newton method [16], and the Newton-Raphson method [17].

However none of the methods converge to the solution if the initial

guesses on the unknown parameters are not sufficiently close to the

optimal values.

A more robust method of solving the minimum time problem, a two

point boundary value problem (TPBVP), is needed. Both the optimal

control problem and the finite element method can be developed from

variational principles. The finite element method has been successfully

applied to a wide range of nonlinear problems as well as to the TPBVP.
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Therefore, this method was applied to the solation of the minimua time

problem with the objective of investigating the advantages and drawbacks

of a discrete time simulation as compared to the continuous case. A

flow chart of the finite element program is included in Appendix II.

Finite Element Analysis

The finite element method is a numerical analysis technique for

obtaining approximate solutions to a wide range of engineering problems.

In nonlinear problems, as in this particular case, closed form solutions

are not available, so it is necessary to obtain approximate numerical

solutions. Two of the more commonly used methods are the finite

difference and the finite element methods [18]. For some problems,

especially problems with irregular geometry or unusual boundary

conditions, the finite element method is superior to the finite

difference method.

The finite element method takes a continuum problem and

discretizes the solution region into a finite number of elements. By

expressing the unknown solution within each elenent in terms of assumed

approximating functions called interpolation functions, the infinite

number of unknowns in terms of the Taylor series expansion is reduced to

a finite number.

One of the advantages of this method is the ability to formulate

the properties of the individual elements, before putting them together

to represent the entire problem. In effect, a complex problem is

reduced to considering a series of greatly simplified problems. Another

advantage is the variety of ways in which the problem can be formulated.
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These include the direct approach (from physical laws), the variational

approach, the weighted residual approach, and the energy balance

approach [18]. In this paper the variational approach was used in

determining the element properties.

There are 5 basic steps to the finite element method. These are:

1. Discretization of the continuum.

2. Selection of the interpolation function.

3. Determination of the element properties.

4. Assembly of element properties to obtain system equations.

5. Application of boundary conditions and solution of system

unknowns

.

Discretization of the Continuum

The first step is the discretization of the solution region into

elements. The range of the independent variable, time t, from the

initial state to the final state is discretized into elements of uniform

length At. These elements are connected to adjoining elements by

sharing common nodes. The element length. At, varies with change in

grid density or the final time. The element unknowns are the position

coordinates (r,0) and the Lagrangian multipliers (X , k ) at each node

and the length of element (At). The performance index J will be
a

expressed in terms of the approximations so that the continuous time
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problem of minimizing J over the time interval [t ,t.] is reduced to
a of

one of minimizing J for each element in the time domain.
a

Discretizing equation (3.35) gives

-. n riAt,, , ._ *2 " ,
J = snm J [1+ \ [Fmaz u, + mrS - mr ]

* i=l (i-l)At ^ ^

+ X-ETmax u. - f_ (mr^G ) ] } dt (4.1)
^ ^ dt

where n is the number of elements and At is the length of each element

and sum is the summation over the elements 1 to n.

i=l

Selection of the Interpolation Function

The next step is to assign nodes to each element (points in time)

and choose the interpolation function to represent the variation of the

unknown variables over the elements. The state variables r, r, 9, 9

and the multipliers and their time derivatives X X . k X. will be

represented by linear interpolation functions of the form

x(t) = N^(t)x^ '^^2^^'''^2
'

^"^'^^

*2~^1
and x(t) =

^
(4.3)

At

where x , x. are the values of the given unknowns x(t) at nodes 1 and 2

of each element and the natural coordinates N , N vary as shown in

Figure 4.1
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N

1

Noda 1 Node 2

> t

At

Figure 4.1: Natural Coordinates for First Order,
One Dimensional Finite Element
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The natural coordinates are defined by the relations

N = 1 - ^ (4.4)

At

and N = L. . (4.5)
^ At

Therefore,

and

/J^N^} dt = /f {N^} dt = ^ . (4.6)

/q^N^N^} dt = ^ . (4.7)

6

&^\}fy
dt = /^^N^} dt = ^ . (4.8)

The relations (4.6), (4,7) and (4.8) will be extensively used in the

development of the element equations.

From equations (4.2) and (4.3) the unknown variables are defined

as

r(t) = N^r^ + N^r^ . (4.9.1)

e(t) = N^e^ + N^e^ , (4.9.2)

A.j(t) = NjX^^ + N^X^^' (4.9.3)

^^(t) = N^X^^ + N^X^j. (4.9.4)

Vl
r(t) = : . (4.9.5)

At

®2-®l
e(t) =

^
, (4.9.6)

At

^12~^11
^.(t) =

^^
. (4.9.7)

At
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and Lit) = ^^ ^^ (4.9.8)
^

At

where X and X are the values of X.(t) at nodes 1 and 2,

respectively, of each element while X and X.. are the values of X (t)

at the respective node designated by the second subscript.

Determination of the Element Properties

The variational approach will be used in the formulation of the

element properties. The equations for the minimization of the

performance index J over a single element will be derived in this

section. In the next section the elements will be assembled to give the

equations for the minimization of J over the entire time period
a

J in equation (4.1) is simplified by integrating by parts the

second derivative terms in the equation. This gives rise to two

boundary terms. For interior elements the boundary terms cancell with

those from the adjoining elements. For exterior elements these terms go

to zero because r(0), 0(0), f(t_) and 9(t.) are specified as zero in the

boundary conditions. Considering equation (4.1) for a single element

and substituting equations (4.6) - (4.9) into (4.1) gives
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6At " ^2

2 1

1 2

pi

L2_

1 -1

[e^ e^]
-1 1

^

3_

m

6At

[r, r^]

At

2 1

1 2

1 -1

-1 1

^1

'2

1 -1

^hl h2^
-1 1

e.

rAt,
+ /. { X Fmax u + X Tmax u 1 dt . (4.10)

For terms containing the controls two situations will be considered.

Mo switching of controls

If no switch (change of sign) occurs within the elenent, then

(4.11.1)

and

sgn(Xj^j^) = sgnCX^^)

sgn(X2j^) = sgn(X^2) (4.11.2)

are true. Substituting equations (3.63), (4.6) and (4.9.3) into the

first integral term in equation (4.10) gives

/^*{X,Fmai u, } dt = - ^^ At ( ! X,, I + I X,^ ! ) . (4.13)oil 11 12

Similarly the second integral term in equation (4.10) is found to be

/^X^Tmax u^} dt = - I^ At (I ^21 '
"^

' ^"22 ' ^ * ^"^'^"^^
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Switching of controls

If a switch in u occurs within the elenent then

sgnO.^^) = - sgn(X^2) • (4.15)

Let t be the time to switch from the start of the element in which the
s

switching occurs. Then

X, (t ) = (4.16)
1 s

or N,(t )X,, + N-(t )>.,- = (4.17)
1 S 11 L S IZ

t t

or (1 - _! )X,, + (^ )X,- = . (4.18)

At ^^ At
^^

Rearranging the above equation yields

At \

t =
. (4.19)

^ \ - X

Therefore, for a switch

/^^{Xj^Fmax u^ } dt = - /^^{X^Fmax sgn(X^j)} dt

- /^*^{X^Fmax %%n.{\^^)^ dt . (4.20)

s

Substituting equation (4.19) into (4.20) above and simplifying gives

2 ^ 2

/f {X.Fmax u. } dt = -^^^ sgn(X„) At ^^ ^ ^^
. (4.21)

2 (X,^ - X^^)

For switch in u within the element

sgn(X2j^) = - sgn(X22^ • (4.22)

-41-



Following the same steps as in the case of u switch gives

t = (4.23)

^21~ ^22

2 2

and /Q*{^Tmax u 1 dt = -'^^ sgnCX^.) At ^^ ^^
. (4.24)

2 (X^, - X^j)

Element equations from a Variational principle

The finite element solution to the problem involves picking the

values of (t* . (consisting of r, 0, X. , X. ) where i goes from 1 to p and

p is equal to four times the niunber of nodes, and element length At, so

as to make the functional J ((j(. At) stationary. To make J ((b. At)
a a

stationary with respect to 4> . and At the fundamental theorem of
1

variational calculus requires that

dJ p dJ

SJ (*,At) = 1 5At + sum t 5(>. = . (4.25)
* 3At i=l a*. ^

1

Since the 5^.'s and At are independant, equation (4.25) can hold only if

3J

_!. = (4.26.1)
a<t>.

1

and t = . (4.26.2)
dAt

Therefore, J in equation (4.10) is differentiated with respect to the

nodal unknowns, r , r , , , X.,, X . X , X ^, and with respect to
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time At, to get the ejenent equations. Differentiating J with respect

to r , r gives

dJ
m

6At

[e^ e^]

1 -1

-1
1_ «2

2 1

1 2

hi

hi

3At

1 -1

-1 1

r«i

«2

_ —

2 1

1 2

m

At

1 -1

-1 1

hi

hi

= (4.27)

Let cml3 = _^ (9 - 9 )^
,

6At -^ "^

(4.28)

cnll =

3At
^^1-V^hrhi^ ' (4.29)

and cm31 = m

At

Substituting equations (4.28), (4.29), (4.30) into (4.27) gives

(4.30)
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3J 2 1
a

= cnlS

1d

^2

2

—
_ _

11

12

+ cmll
2 1

1 2

+ cm31
1 -1

-1 1

11

12

(4.31)

Let

and

m

3At

cm24 = (r + r r, + r )

3At ^ ^ ^ ^

(4.32)

(4.33)

Differentiating J with respect to 9 and 9 plus substituting cn22 and
a J. ^

cm24 into the expression gives

3J
a = cin22

1 -1

-1 1

— —

\
^2

+ cm24
1 -1

1 1

21

22

(4.34)

Differentiating J with respect to X,.and X,-, and substituting c:nl3 and
a 11 12 °

cm31 into the expression gives
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5J
a = cml3

11
^12

2 1

1 2

+ cn31
1 -1

-1 1

11
^12

/g^CX^Fnax u^ } dt = (4.35)

For the last term of equation (4.35) there exist tv/o situations

depending upon the occurance of a switch in X . If a switch does not

occur then \ does not change sign. Differentiating equation (4,13)

with respect to \ , \ gives

i /^^{X^Fmax u^ } dt =
Fmax

11
^12

At sgn(X.^^ ) (4.36)

If a switch occurs then X will pass through zero. Differentiating

equation (4.21) with respect to A. and X... gives

3 X

/^^{X^Fraax u^ } dt = - ^°°^
At sgn(X. )

11

[.
11 ixl^ . xl^)

] (4.37.1)

^11- ^12 2a^^-X^^)'
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and
a X

f {X.Fmax u } dt = -
"

At sgn(X,.)

12

[.

'12 (X^ + xj )

_ + ].(4.37.2)

^ll" ^12 2(X^^-/L^2^^

Differentiating J with respect to X.,, X_- and substituting cm24 into
a 21 22

the expression gives

3J
a = cin24

^22

1 -1

-1 1

/At,

''^'

«2

_

+ ! /q {X^Tnas u^ } dt =

^22

. (4.38)

For the last term in equation (4.38) there exist tv/o situations

depending upon the occurrence of a switch in X^ . For the situation of

no switch, differentiating equation (4.14) with respect to X^^and X^^
21 22

gives

fn {X-Tmax u. } dt =
rr —^ U ^ z

>^
^22

Tnax
At sgn(X-.) (4.39)

For the situation where a switch occurs, differentiating equation (4.24)

with respect to X. and X gives
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! /^*{X,Tmax u, 1 dt = -!!:!! At sgn(X,,)

^21 ^^1 ^ ^22 >

[_Ji_ - _^^^ ] (4.40.1)

Sl~ ^2 2(X -X )^

and t /J^X^Tmax u^ ) dt = - l!!f At sgn(;i2^)

^ ^22 2

, ^2 J^21
^ 4)

, ,, ,, ,,
[ + ]. (4.40.2)

^21- ^22 2a^^-X^^)^

Derivation of the transversality equation.

Differentiating J in equation (4.10) with respect to time At and

simplifying gives

dJ

! = 1 - ^[ cm22 f^ cml3 + cm24 f^ cmll + cm31(r - t.)(X.- X.,.)]

aAt At m m ^ ^ ^^ ^^

+ /q {A-jFmax u^ + X^Tmax u^ } dt . (4.41)
3At

There are two situations for the integral terms. If no switch occurs,

then

!_ /^^X^Fmax u^ } dt = -^^ (I X„ ! +
I X,J) (4.42)

flAt 2
^

and i_ /o'{X Tmax n 1 dt = -"^ (I X.J + I X,J ) . (4.43)
3At 2

If a switch on u occurs, then
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2 2

f_ /^'{X^Fmax u, } dt = -!!!! sgn(X,, ) ^^^^^^^ . (4.44)

If a switch on a. occurs, then

2 2

9 r^'fi T 1 ^4. Tmax ,, /*-21 "^ *'22^
,. ...

J f. iX-Tmax u 1 dt = - sgn(X_ ) . (4.45)

The nine element equations derived above, (4.31), (4.34), (4.35),

(4.38) and (4.41) are assembled to give the 9x9 element matrix [A] as

shown in Figure 4.2. The nodal unknowns, r , r. , 9 , , X , X . , X_^,

X.. ,and At constitute the vector x. The element sub-matrices, M(i,j),

are two by two matrices for values of i and j ranging from one to four.

The submatrices M(i,5) are two by one vectors while the submatrices

M(5,i) are one by two row vectors. The submatrix M(5,5) is a scalar.

The element equation can be stated as

[ A ] X = f(x) = . (4.46)

To solve the system of nonlinear equations the Newton-Raphson

method will be used. The nonlinear equations are linearized by using a

Taylor series expansion about the true solution f(x ). Guesses on the

unknown variables can be expressed as

x.= x*+ Ax.. (4.47)

where i is the iteration number and Ax. is the vector of deviations from

*
the solution vector x .
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Considering the first two terms of the Taylor series expansion

gives

f (X* + Ax^. X* + Ax^.
* * * * 3f

,x + Ax ) = f (x, , x_, . . .,x ) + Ax,
P P 12 p

—
1

axj

+ ^^ Ax,+...+ ^' Ax (4.48)
'k

2 T p

where f is a vector of order p for a system of p equations. From

equation (4.46)

f(x) = .

Therefore, equation (4.48) reduces to

f (x) = !f Ax .

dx

(4.49)

(4.50)

The Jacobian [ J ] is defined as

[ J 1
= 3f

ix

bt 3f
P P

3x^ TT^

Therefore equation (4.50) can be written as

f(x) = [ J ] Ax .

ax, ax^

af^ af^

af.

dx

af.

dx

af

dx

(4.51)

(4.52)
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Equation (4.50) is solved iteratively and the guesses are updated each

iteration until the convergence criterion

.2
(Ax.y

CONV = [ sum ]°*^
< l.OE-10 (4.53)

i=l ( X.)
1

is satisfied.

Evualation of the Jacobian

The Jacobian is a 9 x 9 matrix that is defined by several

sub-matrices as shown in Figure 4.3. These sub-matrices are presented

in the following development.

From equations (4.46) and (4.51)

eh
J(i.i) = = cmll

2^-1

2 1

1 2

(4.54)

and

where

Bh
J(1.2) = = cjl2

(1.3)

(2.3)

-(1.3)

-(2.3)

cjl2 = m

3At

and

(1.3)

(2.3)

(4.55.1)

(4.55.2)

0.21" hl^^^^l^ ^2^ * ^V ®2^^^Sl'^ ^2^ '
^'*-55-3)

(>.2i~ ^2'^^!"^ ^'2^ * ^®r ®2^^'^ll'^ ^^12^ •
('•55.4)

-51-



<D

r-;::—

;

8" S"
— CM

e^ d
1 .. «^ #-> r-. ^ 1

l/> LO U> ir> LO
N \ > > N

CM CO ^ LO
\^ v^ v-/ Vw/ *-'
-D -5 -5 -D -5

r^ r^ «-% ^ r-\
"^ -^ •<*- "^ "^
N N N \ N

Csl CO "^ LO
V^ v-/ ^^ y^ «^
-D -^ -> -^ -D

r*» r>t

!

r>>
CO CO CO CO CO

> N N N N— CJ CO Tt- LO
s-/ v-x s-^ v-/ \^-^ -5 -^ -D -^

r-\ ('-^ .-> r*\ QCJ CM CM CM
N "k ^ \ N•— CM CO '^ LO

\^ ^-«» S-' ^w* v>»^ -5 "5 -D ->

/-»» r-\ r^ r> r-%— -»— «»— — •«—
N N N N N— CM CO ^ LO

N-^* •w/ \^ v> \^

1 ^ •:> -> ^ ^
1

2

I
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The (1,3) and (1,4) submatrices are

Bh
J(1.3) = = cnlS

dfl
11
^12

2 1

1 2

+ cm31

1 -1

-1 1

(4.56)

and

3h
J(l,4) = = cjl4

^22

(1,7) -(1.7)

(2.7) -(2,7)
(4.57.1)

where
m

and

The (1.5) sabmatrix is

3h
J(1.5) =

cji4 = (e - e ) .

3At ^ ^

(1,7) = (2r^+ r^) .

(2,7) = (r^+ iT^)

[ call

aAt a
At

2r^^ r^

V 2^2

+ cml3

(4.57.2)

(4.57.3)

(4.57.4)

2^1^ ^12

+ cm31
^11~ ^12

^11^ ^2
(4.58)

Since the Jacobian is symmetric we have the condition

,h
J(2.1) = = [ J(l,2) ] .

'l
^2

Rl- - __ ^
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The other terms from the second row of subaatrices in the Jacobian are

a^j
J(2,2) = cm22

V
1 -1

-1 1

(4.60)

J(2,3) =

3^ J
a

= cjl4
d

h2_

d

K
(1.7) (2.7)

-(1.7) -(2,7)
(4.61)

J(2.4) =
e' J

a
= cia24

1 -1

-1 1d

'^22

d

H
(4.62)

3h
and J(2.5) =

OAt 3

By symmetry we have

= - [cm22

At

eh
J(3.1) =

V^2
-«1^ «2

+ cni24

hl^ hi
(4.63)

= [ J(1.3) ]

""l
^2

d

1- —

1

\— —

1

(4.64)
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eh
and J(3,2) =

m4
= [ J(2,3) ] (4.65)

There are two separate expressions for T(3,3) given by

eh
J(3.3) =

11
^12

For no switch on u^ we have

(4.66.1)

J(3.3) = (4.66.2)

For switch on u we get the result

J(3,3) = cj33
12 ^11^12

^11^12 *-ll

(4.66.3)

where .,, 2 Fmax At ,, ,cj33= - sgn(X. ) (4.66.4)

The last two terms in row 3 are the submatrices
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J(3,4) =

3' J
a

—
d

^22

a

'•12

(4.67)

and
eh

J(3,5) =

dAt d
11

42

1

At

(5.9)

(6.9)

(4.68.1)

where the quantities (5,9) and (.6,9) for no switch on u are given by

(5,9) = (2cml3 +cm31)r +(cnil3 -cm31)r - ff^ At sgn(X ) (4.68.2)
1 2 2 11

and (6.9) = (cml3 -cm31)r^+(2cml3 +cm31)r2-
^"^^

At sgn(Xjj) (4.68.3)

while for switch on n we get

(5,9) = (2cml3 + cm31)r + (cnil3 - ecSDr -
^"^^

At

sgn(X. )[
11 <' ^12 >

(4.68.4)

^^11" ^12^ 2(X^^- k^^)^

and (6,9) = (cml3 - cm31)r + (2cml3 + cm31)r - ^"'^
At

sgn(X )[
12

2 2
^11" ^12

(4.68.5)

^hr hl^ 2(Xj^- X^^)^
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For the fourth row of submatrices we have by symmetry

ah
J(4.1) = a

d d

_ 22_

= [ J(1.4) ]^
. (4.69)

Sh
J(4,2) = = [ J(2.4) ] ,

H
d

*-22

(4.70)

and
3h

J(4.3) = = [ J(3,4) ] .

11
^12 ^22

(4.71)

There are two separate expressions for J(4,4) given by

3h
J(4.4) =

^22

(4.72.1)

For no switch on u we have

J(4,4) = (4.72.2)

For switch on a. we have the result
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J(4.4) = cj44
hi ^21^22

"^21^22 ^21

(4.72.3)

where
... 2 Tmax At ,. .

cj44= - sgnCX-j^) (4.72.4)

The last term in the fourth row of submatrices is

^h
J(4,5) =

aAt a rx

^22

1

At

(7,9)

(8,9)

(4.73.1)

where if no switch on n. occurs the quantities (7,9) and (8,9) are given

by

(7.9) = cm24 9^- cm24 9^ -
^°"^^

At sgnO.^^) (4.73.2)

and (8,9) = - cm24 9^+ cin24 9^ -
^'^^'^

At sgn{\^^) . (4.73.3)

If a switch occurs on u. then (7,9) and (8,9) are given by

(7.9) = cm24 9^- cm24 9^ - ^"^^
At sgn(\^^)

[.

*21 <i' Ai)

^hi- hl^ liX^^- x^,)"

(4.74.4)
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and (8,9) = - cm24 9^+ cm24 9^ -
^"^^

At sgn(X2^)

[.

22

2 2

Si" ^2
1 .

<Sr hi^ 2(x^^- x^^)'

For the last row of snbmatrices we have by symmetry

3h
J(5.1) = = [ j(i.5) r .

afr: dAt

Bh
J(5,2) = = [ J(2.5) V .

dAt

a^j
J(5,3) = = [ J(3.5) Y .

^1]

^12

aAt

Bh
and J(5.4) = = [ J(4.5) V

23
^22

aAt

The last term in the fifth row of the submatrices is given by

a^j
J(5.5) = I = — [f^ cm22 cml3 + f^ cm24 cmll

a^At At^ °

(4.74.5)

(4.75)

(4.76)

(4.77)

(4.78)

+ cm31(r^- r^)^.^^- \^^)} . (4.79)
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Assembly of element properties
to obtain system equations

To solve for the unknowns in the whole solution region it is

necessary to assemble or combine the element matrix equations to form

the global equations governing the behavior over the entire problem

domain. The basis for the assembly procedure stems from the fact that

at a node where elements are interconnected, the values of the unknowns

are the same for each element sharing that node. The assembly is

performed by two routines. These are:

1. Node : Converts the nodal unknowns in the local (element)

numbering scheme to the nodal unknowns in the global (system)

numbering scheme (refer to Appendix II).

2. Build : Combines all the element unknowns to form the system

unknowns (refer to Appendix II).

Application of boundary conditions
and solution of system unknowns

Before the system equations can be solved, they must be modified

to account for the boundary conditions of the problem, otherwise the

system matrix will be singular. The application of the boundary

conditions is performed in routine Solve (refer to Appendix II) where in

addition to the boundary conditions on the states the transversal ity

equation is applied on the Lagrangian multipliers X. and X- at both the

initial and final time.
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Application of transversalitv equation
as boundary conditions

Substituting equations (3.67) and (3.69) into the transversality

equation (3.39) gives the equation

f(x) = Fmax sgn(X )X. + Tmax sgn(X. )X -1 = 0. (4.80)

To apply equation (4.80) in the Hewton-Raphson iteration it should be of

the form

^ Ax = . (4.81)

dx

Differentiating equation (4.80) with respect to X. gives

^ = Fmax sgn(X ) . (4.82)

Differentiating equation (4.80) with respect to X.. gives

lf_ = Tmax sgn(X. ) . (4.83)

Substituting equations (4.82) and (4.83) into equation (4.81) gives

Fmax sgn(A, )A>. + Tmax sgMX )^k = f(x.) (4.84)

where f(x ) is equal to zero. The right side vector elements f(x.) at

t and t. are modified in the MATRX subroutine while the left hand side
o f

of equation (4.84) is implemented in the SOLVE subroutine (refer

Appendix II).

In chapter 5 the results from the continuous time and the discrete

time simulations are presented. The discrete case is compared to the
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continuous case. The effect of varying the grid density, on the final

time is examined. Recommendations for further study are also presented.
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CHAPTER 5

RESULTS AND RECOMMENDATIONS

Introdnction

In this paper two methods of determining the minimum time control

for the r-theta manipulator, the continuous time method and the discrete

time method were investigated. Two formulations, the first order and

the second order, were used in the continuous time method. In the

discrete time method the second order formulation was used. The

simulations were written in Fortran 77 and implemented on an IBM 370

mainframe as well as a HARRIS H-800 computer. The reason for using two

computer systems was the availability of different minimization routines

on the two systems.

Continuous Time Method

Four IMSL routines [18] on the IBM 370 were used in the continuous

time simulation. These include DVERK (a differential equation solver),

LEQTIF (a linear equations solver) and two minimization routines, ZXJ.JIN

(a Quasi-Newton Method), and ZXCGR (a conjugate-gradient method).

The continuous time problem required a large number of iterations

in order to get good initial guesses on the unknowns (initial values on

Xj^, X,.' ^3' ^4 and final t imu t ). A combination of the

conjugate-gradient method and Newton's method was used. However, if the
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initial guesses were not close to the optimum values the routines

diverged. This difficulty is caused by the state and multiplier

equations being very sensitive to the values of the Lagrangian

multipliers. If the guesses are such that they do not cause switches in

the multipliers then the Jacobian becomes singular. It is then

necessary to come up with guesses on the multipliers at the initial time

that bring about the correct number of switches in order for the

minimization routine to converge.

The minimum time problem is solved for three cases.

Case 1

r(t ) = 1.0 , (5.1)
o

r(tj) = 1.0 . (5.2)

e(t ) = 0.0 , (5.3)
o

and e(t ) = 1.5708 . (5.4)

Case 2

Case 3

r(t ) = 1.5 , (5.5)
o

r(t^) = 1.5 . (5.6)

e(t ) = 0.0 . (5.7)
o

and e(t^) = 1.208 . (5.8)

r(t ) = 1.2 . (5.9)
o

r(t^) = 1.2 . (5.10)

e(t ) = 0.0 , (5.11)
o
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and e(t^) = 1.795 . (5.12)

The velocities r and at both t and t. are set to zero.
o f

Results for the continuous time simulation for case 1 are shown in

Figures 5.1 - 5.4.

Figure 5.1 shows the trajectory of the first joint variable and

its first and second time derivatives. These variables are indicated by

T, TD, and TDD respectively, in the figure.

Figure 5.2 shows the trajectory of the second joint variable r and

its first and second time derivatives. These variables are indicated by

R, RD, and RDD respectively, in the figure.

Figure 5.3 illustrates the trajectory of the Lagrangian multiplier

X^ , and its first and second time derivatives. These variables are

indicated by LI, LDl, and LDDl respectively, in the figure.

Figure 5.4 illustrates the trajectory of the Lagrangian multiplier

X,., and its first and second time derivatives. These variables are

indicated by L2, LD2, and LDD2 respectively, in the figure.

All the variables are seen to exhibit either even or odd symmetry

about t./2. The second derivative curves are not smooth at points

indicating the switchings of the bang bang controls.

Discrete Time Method

Three routines were used in the discrete time simulation. These

include LEQTIF on the IBM 370, and two routines from Sandia

Laboratories, MINA (a grid search minimization technique), and ODE (an
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integration routine) which are available on the HARRIS. The finite

element method also uses a combination of techniques. A grid search

method is used to give a reasonably good guess on the final time t .

This guess is then used in the finite element program to start the

iterations on the nodal unknowns. The program then iterates until the

convergence criterion has been satisfied. The guesses on the multpliers

have to be of correct sign and must constitute a symmetrical path. The

guesses on the joint variables r and 9 must also constitute a

symmetrical path. However the guesses on the magnitude of the

multipliers can be quite far off, sometimes over a 100 percent. With a

reasonable guess on the time t , convergence is achieved quite rapidly.

Results for the discrete time solution for the three cases are

given in Table 5.1. The number of elements used for the three cases is

twenty one. The effect of varying the grid density in the discrete time

solution of Case 1 are presented in Table 5.2. Results for the first

case are illustrated in Figures 5.5 - 5.8.

Figure 5.5 shows the trajectories of 9, and its first and second

derivatives. Figure 5.6 shows the trajectories of r, and its first and

second derivatives. Figure 5.7 illustrates the trajectories of X , and

its first and second derivatives. Figure 5.8 illustrates the

trajectories of A.., and its first and second derivatives.

Conclusions and Recommendations

Comparing the two simulations it is seen that the discrete time

simulation agrees very closely with the continuous case, except in the
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CASE

1

2

3

TABLE 5.1

DISCRETE TIME SOLUTIONS FOR TOE
MINIMTJJI FINAL TILSE

r(t )

o
r(t^) e(t ) 9(t^) F inal Tinie(t )

(ft) (ft) (rad) (rad) (s)

1.0 1.0 0.0 1.5708 1.963

1.5 1.5 0.0 1.208 2.499
1.2 1.2 0.0

TABLE 5.,2

1.795 2.350

EFFECT OF GRID DENSITY ON FINAL TIME
FOR CASE 1

SII-niLATION

continuous time

discrete time

ITOMBER OF ELEMENTS FINAL TIME(s)

21

42

84

1.9644

1.9629
1.9640
1.9643

second derivatives where the discrete time curves are smoother than the

corresponding continuous curves. This is due to the linear

interpolation function used in the formulation of the element equations.

A closer agreement is obtained when the grid density is increased (refer

Table 5.2). However this also introduces corresponding increases in

storage space requirements.

The finite element method achieved the objective of applying a

discrete time method to the solution of the minimum time control. The

transversal ity equation that was enforced at both ends was critical in

heading the iterations in the right direction. This equation is not

only true at the initial and final time but also at the internal nodes.
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The transversality equation at the internal nodes includes some velocity

terms in addition to the terms in the equation at the initial and final

time. An area of further investigation could be the application of the

transversality equation at the internal nodes. The use of higher order

interpolation functions for the formulation of the element equations can

also be investigated. Since a linear interpolation function was used in

this paper, it does not posses first derivative continuity.

This thesis has investigated the application of finite element

methods to the solution of the minimum time problem. The deviation of

the discrete time solution from the continuous time solution has been

investigated and found to be reasonable. Some recomendat ions for

further investigation in the area have been presented.
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APPENDIX I

DERIVATION OF THE MULTIPLIER EQUATIONS FOR

THE SECOND ORDER FORflULATION

From equation (3.35) the performance index is defined as

f " '2
J (x.x.u.X, t) = / {1+ X, [Fmax u, - mr + rare

d 2
*

+ X-[Tmax n - (mr } dt .

dt

(a.l)

The variation of J with respect to r and is
a

8J = dt,+ / {- X,m6r + mX,e 5r + X.,mr2e5e
a f t 1 1 1

o

- X,8 ( ^ (mr^e) )} dt .

^
dt

(a. 2)

Integrating by parts and rearranging gives

5J = dt.+ (- X,m8r + X,, m5r + mr2e(8e)X,
a f 1 1 1

2 * ' 2
- X m2r(8r)e - X mr 59 + X,-mr 69)

+ /^{5r(- mX + mX 9^+ X m2r9)
o

69(- ^ (2mr9X ) - ^ (X mr^ ))} dt . (a. 3)

dt ^ dt ^
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For an extremal curve

5J = .

a
(a. 4)

Setting the integrand in (a. 3) equal to zero gives the multiplier

equations

* /« *

- mX.+ mX 9 + X.-m2re = (a. 5)

and i_ (2mrex,) + t- (X-mr^) = .

dt
^

dt ^

Therefore, equation (a. 4) reduces to

(a. 6)

5J = dt^+ (-X,mSf + X, m6r + mr2e(6e)X,
a f 1 1 1

2 * * 2
- X. m2r(8r)e - X.mr 89 + X.mr 69) (a. 7)

The variation of a variable z at the final time is given by the relation

8x(tj) = 6x^- X dtj (a. 8)

where 5x is the variation of the final x. and x is the slope of x at

time t-. Using equation (3.8) in (3.7) gives

5J = dt_+ (X,m r - X.mr - mr29 X,
a f 1 1 1

* '^ *

2 "
' 2

+ X m2r9r + X mr 9 - X mr 9)

- (- X m8r + X m8r + mr29X 69

2 * * 2- X m2r96r - X.mr 89 + X mr 89)
t=t

From equations (3.21) and (3.22)
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Fmax X u = X^m r - mrG X^ (a. 10)

2
"

and Tmax X. u. = X.mr + X-ia2rf9 . (a. 11)

The initial and final velocities (f.6) are zero in the example and the

initial and final states are specified. Substituting equations

(a.lO)and (a. 11) into (a. 9) together with the boundary conditions gives

1 + Fmax X u + Tmax X u = . (a. 12)

The above equation is the transversality equation for the second order

formulation.
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i\PPENDIX II

FLOW CHAET AND SUBROUTINES USED

IN FINITE ELEMENT PROGRATI

START

i
INITIALIZE VARIABLES

i
JIAKE GUESSES ON NODAL UNKNOV/JIS

X
SUBROUTINE NODE

i
START ITERATIONS

4
SUBROUTirffi SWITCH

i
SUBROUTINE BUILD < >SUBROUTI^!E JIATRX

i
SUEROUTIIffi SOLVE

i
NO* CONVERGED ?

i
YES

I
STOP

Figure A.l Flow chart of

Finite Element Program
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C The MAIN program initializez the variables, defines the initial

C guesses on the unknowns, calls the various subroutines and

C controls the iterations.

C

Q «iji*««***««****«««*«*«**«««*«****«*«******««***4>*4ii|i«****««******««*

C Subroutine NODE is used to convert the local nodal unknowns into

C the global ( or system) unknowns.

SUBROUTINE NODE (NT , NTABLE , MAXELM

)

INTEGER NTABLE (MAXELM. 8 ) . NT, MAXELM, NELM, Al , A2 , A3 , A4 , A5 , A6, A7 , A8

C

C NELM = element number

C NT = Number of elements

C NTABLE = Table containing the global numbers for the element

C unknowns

C MAXELM = Maximum number of elements

NELM=0

DO 10 1=1, NT

A1=4*(I-1)+1

A2=Al+4

A3=4*(I-l)+2

A4=A3+4

A5=4*(I-l)+3



A6=A5+4

A7=4*(I-l)+4

A8=A7+4

C

NELM=NELM+1

C

NTABLE(NELM,1)=A1

NTABLE(NELM,2)=A2

NrABLE(NELM.3)=A3

NTABLE(NELM,4)=A4

NTABLE(NEU1,5)=A5

NTABLE(NELM.6)=A6

NTABLE(NELr.l,7)=A7

NTABLE(NELM,8)=A8

C

10 CONTINUE

C

RETURN

END

Q ********«»*•* *«4i**«**«4i***«*«***i|t**i|i*4i*««*«**«*4c4:*4ii|i*«**4i***«*«««i|i

C Subroutine SWITCH is used to determine if a switch of either

C lambdal or lambda2 or both, has occured within the element. The

C signs on the lambdas at the tyio nodes of the element are compared.

C If the signs are different, a switch has occured within the

C element.
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Q ******** «4>*«**««**4*«4i4>***4tifii|i«**««*i|t«««*«*4i*4>***4i******«i»«4i*«***i|i*

C Subroutine IvIATRX is used to set up the element matrix equations

C as well as the element Jacobian. The relations developed in

C Chapter 4 are used in this routine.

C Subroutine BUILD is used to assemble the element Jacobian into the

C global Jacobian.

SUBROUTINE BUILD (NT. NTABLE, ITABLE, JAC, RSV. SGNLl . SGNL2 ,TS1 . TS2 . GJ ,

M

•AXRG, RSVG, MAXELM, JIAT. R, THETA, LBl . LB2 , flAXN, DT)

Q ********* *«****«****«****4i*******««****i|i«****«*«««««*««**«««**4c**«

REAL* 8 JAC ( 9 . 9 ) . RSV ( 9 ) , SGNLl , SGNL2 . TSl (MAXELM ) , TS2 (MAXELM

)

REAL* 8 GJ (MAXRG , MAXRG ) , RSVG (MAXRG ) , MAT ( 9 , 9

)

REAL*8 R(MAXN) ,TnETA(MAXN) , LBl (MAXN) , LB2 (MAXN) . DT

INTEGER NT, NTABLE (MAXELM. 8 ) . ITABLE ( 8 ) , II , 12

C GJ is the global jacobian.

C RSVG is the global right side vector

C NT is the number of elements

C

C ARRAYS ARE INITIALIZED

C

DO 70 I=1.4*NT+5

DO 80 J=1.4*NT+5

GJ(I,J)=0.0

80 CONTINUE
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RSVG(I)=0.0

70 CONTINUE

C

C THE GLOBAL JACOBIAN AND GLOBAL RIGHT SIDE VECTOR ARE ASSEJffiLED

C

DO 10 11=1, NT

DO 20 J=l,8

ITABLE (J ) =NTABLE ( II , J

)

20 CONTINDE

C

C THE ELEJBENT MATRIX, JACOBIAN AND RIGHT SIDE VECTOR ARE OBTAINED

C

CALL MATRX (R, MAXN, THETA, LBl , LB2 , DT, NT, SGNLl , SGNL2 , TSl , TS2 , MAXELM.

M

•AT,RSV,JAC,I1)

C Tlie element jacobians and the element right side vectors are

C assembled into the global Jacobian and the global right side

C vector here.

DO 30 12=1,8

DO 40 J=l,8

GJ ( ITABLE ( 12 ) , ITABLE (J )
) =JAC ( 12 . J ) +GJ ( ITABLE ( 12 ) , ITABLE (J )

)

40 CONTI^^JE

GJ ( ITABLE ( 12 ) , 4*NT+5 ) =JAC ( 12 , 9 ) +GJ ( ITABLE ( 12 ) , 4*NT+5

)

RSVG ( ITABLE ( 12 )
) =RSV( 12 ) +RSVG ( ITABLE ( 12 )

)

30 CONTINUE
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DO 95 J=l,8

GJ (4*NT+5 . ITAELE(J) )=JAC (9, J)+GJ (4*NT+5 , ITABLE(J)

)

95 CONTINDE

GJ (4*NT+5 . 4*NT+5 ) =JAC (9,9) +GJ (4*NT+5 , 4*NT+5

)

RSVG(4«NT+5)=RSV(9)+RSVG(4*NT+5)

C

10 CONTINUE

RETURN

END

C Subroutine SOLVE is used to apply the boundary conditions and the

C transversality equation on the global jacobian. The system of

C equations are solved by the IMSL routine LEQTIF (gaussian

C elimination technique) and the guesses are updated. The

C convergence criteria is also computed here.

SUBROUTINE SOLV(GJ , RSVG, MAXRG. NT. MRK, YfK, R, THETA, LBl , LB2 , IIAXN. CONV,

•DT , NTABLE , MAXELM , ITAELE , K

)

Q 4ii|i«*««««***********«*****«*««*l»*«*******«*«*«***«****««****«*««***

REAL*8 GJ (IIAXRG, MAXRG) , RSVG(llAXRG) , W(MRE) , PI, CONVI^, CONVD

REAL*8 R(MXN) , THETA ( JIAXN ), LBl (MAXN) ,LB2 (MAX^n ,DT, CONV, A, B, C

INTEGER Ml , N2 , lA, IDGT, lER, NTABLE (MXELM, 8 ) , ITABLE { 8 ) , K

C GJ is the global Jacobian

C RSVG is the global right side vector

C NT is the number of elements.

C R is the Joint 2 variable
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C Theta is the joint 1 variable

C LBl is lambdal

C LB2 is lambda2

C DT is the length of element

C CONV is the convergence criteria

C

CONVN= 0.0

CONVD= 0.0

corw= 0.0

c

C BOUI'TOARY CONDITIONS ARE SPECIFIED

C

DO 60 1=1,3

DO 60 J=l,4*NT+5

GJ(I,J)= 0.0

GJ(4*NT+I,J)= 0.0

60 CONTINDE

DO 65 1=1,2

RSVG(I)= 0.0

RSVG(4*NT+I)= 0.0

65 CONTINUE

C

DO 68 1=1,2

GJ(I,I)= 1.0

GJ(4*OT+I,4*NT+I)= 1.0

68 CONTINUE
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c

C TRANSVERSALITY EQUATION APPLIED AT THE INITIAL AND FINAL TIME

C known data

C Fmax = 1

C Tmax = 1

C m = 1

C at t = t sgn(LBl ) = 1
o

C sgn(LB2) = -1

C at t = t sgn(LBl ) = 1

C sgn(LB2 ) = 1

Substituting the above values into equation (4.83) gives

C

GJ(3,3)= 1.0

GJ(3,4)= -1.0

GJ(4*NT+3,4*NT+3)= 1.0

GJ(4*NT+3,4*NT+4)= 1.0

C

C GLOBAL JACOBIAfJ IS SOLVED

C

Ml=l

N2=4*NT+5

IA=MAXRG

IDGT=0

CALL LEQTIF ( GJ , Ml , N2 , 1A , RSVG . IDGT , ^TK . lER

)
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C UPDATE NODAL VARIABLES

C

DO 20 13=1, NT+1

R(I3)= R(I3)-RSVG(4*(I3-1)+1)

THETA(I3)= THETA(I3)-RSVG(4*(I3-l)+2)

LB1(I3)= LBl(I3)-RSVG(4*(I3-l)+3)

LB2(I3)= LB2(I3)-RSVG(4*(I3-l)+4)

20 CONTirJDE

DT=DT-RSVG ( 4*NT+5

)

C

C CONVERGENCE CRITERION IS COflPDTED. Refer equatioii(4.53)

C

C

c

c

DO 30 1=1, NT+1

CONVN= C0rfVN+(RSVG(4*(I-l)+l)**2)

CONVD= C0NVD+(R(I)**2)

CONVN= C0NVN+(RSVG(4*(I-l)+2)**2)

CONVD= C0NVD+(THETA(I)«*2)

COm'N= CONVN+(RSVG(4»(I-l)+3)**2)

CONVD= C0NVD+(LB1(I)*»2)

CONVN= C0NVN+(RSVG(4*(I-l)+4)**2)

CONVD= C0NVD+(LB2(I)**2)
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30 CONTINUE

C

CONVN= CONVN+(RSVG(4*NT+5)**2)

CONVD= C0NVD+(DT**2)

C

CONV= CONVN/CONVD

CONV= DSQRT(CONV)

RETURN

END

-91-



A SOLUTION TECnNIQUE FOR TIIE

MINIMUM-TIJE CONTROL PROBLEM
OF AN R-THETA MANIPULATOR

by

ANUP SHETTY

B.S. .Wichita State University, 1985

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of

the requirements for the degree

MSTER OF SCIENCE

Department of Mechanical Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1987



ABSTRACT

This paper investigates the minimum time control of a two degree

of freedom manipulator subject to control magnitude constraints. Two

methods of solution, a continuous time method and a discrete time method

are applied, and their relative merits are examined.

The mathematical model for the r-9 manipulator, a two degree of

freedom manipulator operating in the horizontal z-y plane is developed.

The necessary conditions for the minimum time control of the

manipulator are presented. Two formulations, the first and the second

order formulations, are used.

The finite element method is developed for the discrete time

simulation of the time optimal control of the manipulator. A

combination of a grid search technique and Mewton-Raphson iteration on

the finite element equations is used to obtain the minimum time with the

state and control histories . The discrete time solution is compared to

the continuous time solution. The results of the computer simulations

are presented, as well as recommendations for further study.


