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ABSTRACT 

Meta analysis is a statistical technique for synthesizing of results obtained from multiple 

studies. It is the process of combining, summarizing, and reanalyzing previous quantitative 

research. It yields a quantitative summary of the pooled results.  

Decisions of the validity of a hypothesis cannot be based on the results of a single study, 

because results typically vary from one study to the next. Traditional methods do not allow 

involving more than a few studies.  Meta analysis provides certain procedures to synthesize data 

across studies.  When the treatment effect (or effect size) is consistent from one study to the next, 

meta-analysis can be used to identify this common effect. When the effect varies from one study 

to the next, meta-analysis may be used to identify the reason for the variation. 

The amount of accumulated information in fast developing fields of science such as 

biology, medicine, education, pharmacology, physics, etc. increased very quickly after the 

Second World War. This lead to large amounts of literature which was not systematized. One 

problem in education might include ten independent studies. All of the studies might be 

performed by different researchers, using different techniques, and different measurements.  The 

idea of integrating the research literature was proposed by Glass (1976, 1977). He referred it as 

the meta analysis of research.    

There are three major meta analysis approaches: combining significance levels, 

combining estimates of effect size for fixed effect size models and random effect size models, 

and vote-counting method.    
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INTRODUCTION 

 Meta analysis is concerned with pooling or combining results from several different 

studies.  

The term “meta analysis” was first proposed by Glass who called it "analysis of analysis" 

(Glass, 1976). Glass suggested that there are three levels of data analysis. The first level or 

primary analysis corresponds to an original data analysis in a research study. The secondary 

analysis (second level) is a re-analysis of data with regards to original research questions using  

the most appropriate statistical techniques or answering a new question using old data. And 

finally, an advanced secondary analysis (the third level) is the meta analysis of research or 

analysis of analysis. It is the statistical analysis of a collection of analysis results that come from 

individual different studies. The purpose of meta analysis is to choose appropriate techniques to 

integrate or combine different studies to better answer an original question.    

The need for the meta analysis of research studies seemed to be clear 30-40 years ago 

because of rapidly growing collections of research literature in social science fields. Fast 

developing fields such as medicine and pharmacology need advanced statistical methodologies 

as well. Each field of science contains hundreds of unsolved problems with dozens of papers 

devoted to each of them. Usually each study involves more than one topic.  The importance of 

choosing the right topic and the corresponding collection of studies arises immediately after 

determining a question of interest.  Even if the topic is the same, techniques and measurements 

may vary from one study to another.    

Assume that a question of importance is determined. What is the next step? To determine 

the study or topic, or to collect literature? One study may contain several topics. How does one 

recognize whether a study topic contains important information?  Or if one has several studies 

involved, how does one decide which studies to include?  There is no a single method that can 

answer all these questions in general. Meta analysis techniques allow one to describe quantitative 

data and combine evidence across studies.  

One problem concerns the standardization of different studies. Published studies may 
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come from different research laboratories, different centers, etc. The studies are almost always 

performed independently of one another. Unfortunately there are no standardized methods or 

commonly used report forms under which such studies are published. 

Difficulties in determining the methodology of meta analysis starts with the assumptions 

that define what studies should be included. Usually studies involve many different subjects that 

produce different numbers or kinds of findings. Most studies produce more than one finding. 

Moreover, different studies usually use different scales, measures, etc.  So, a big issue is how one 

can combine many different findings that may have used different measurement scales?  If one 

study produces ten findings, and another study produces a hundred findings, should one average 

findings within each study?  If the answer to this question is yes, should one average the number 

of subjects first and then find the average of the findings?  Or should one assign a weight to each 

study?  If one is going to weight each study, then how should the weights be obtained?  Should it 

be some number or should it be some weight function? All these questions arise at the first level 

of meta analysis.        

A simple example considers the analysis of the effectiveness of open classrooms in the 

education of students (Hedges, 1985). Students from traditional schools were compared with 

students from experimental open classroom schools. About 200 studies were involved.  They 

classified 16 different dependent variables using a variety of different outcomes. Here are few of 

the variables considered:  anxiety, attitude toward teacher, cooperativeness, creativity, curiosity, 

general mental ability, mathematical achievement, reading achievement,  etc. 

An important question is: how does one recognize poorly designed studies among 

hundreds of studies if one only has the exact findings from previous studies? There is a paradox 

that was popular at early stages of meta analysis. Many added weak studies (with poor design, 

say) may lead to a strong conclusion. But even if it works, one should recognize the 

“weaknesses” in each study and avoid consistently repeating weaknesses from one study to 

another one. Assume one has 10 studies. Suppose that the first two are weak with respect to data 

analysis but strong in other components (representative samples, measurements utilized).  

Suppose another two studies are weak in the way that samples were collected.  The point is to 

avoid repeating weakness in sampling in all 10 studies. Sampling weaknesses would lead one to 

question the trustworthiness of the design, its description, and conclusions made from the study. 
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How many studies should be involved to answer a particular question using known 

statistical methods to determine “aggregate findings”?  Collecting results from a thousand studies 

could lead to the same answer as collecting results from ten representative studies. Typical meta 

analysis of research studies is to formulate a conception of the topic at the stage of literature 

collection (Glass 1977). The researcher may then narrow the topic concept at the meta analysis 

stage.  

Designed experiments produce some outcomes or “findings”. Researchers carrying out 

their own experiments follow their own interests. A researcher‟s interest is to get a desired result 

and he may not think of additional experiments that would make his report clear for ensuing 

investigations, i.e. include detailed information about their experiment. Many published reports 

are full of limitations on such aspects as study and design descriptions, measurements, data 

analysis (primary and/or secondary analysis of research in this context). In such cases it is very 

difficult to decide whether a study and/or findings are appropriate for research integration and 

further investigations. So,  it can be confusing when  one investigates a certain topic and  uses 

published studies and findings even if previous designs were not perfect and published reports 

contain  limitations. Another possible situation occurs when a study "fails" desired criteria or 

some conditions and the study is eliminated from consideration. "The researcher does not want to 

conduct a poor study ... but it hardly follows that after a less-than-perfect study has been done, its 

findings should not be considered " (Glass 1977).     

 Are there some commonly used criteria to justify a "grade" of a design?  Probably not.  

Nevertheless, there are some ways to improve the design. One way is to study "the covariation 

between design characteristics and findings" (Glass, 1977).  Hence, research integration can help 

one perform a better design. It may help to avoid some of the problems indicated above. A 

detailed description of the study design and analysis may clarify some limitations.  Further study 

of covariation between findings and analysis may lead to a determination of the number of 

findings and better descriptions of the findings.    

 The next issue is combining or “integrating” studies.  A point of interest is to integrate 

different studies and find methods for combining them. For example, a suppose a researcher 

investigates several cattle diets. He picks eight farms in Kansas. After performing a completely 

randomized design, he gets some results or findings. Then he picks six farms in Iowa and 
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produces randomized complete block design to investigate the same diets.  He is testing the same 

hypothesis but the two designs are different and therefore these particular studies can be 

classified as different studies trying to answer the same question.    

To be able to combine results from different studies, the results from the different studies 

should be comparable. If they differ too much, it will not be possible to   combine the studies.  

Another issue is:  How does one integrate different studies that are not easily compared, i.e. 

those having different structures, different measurements, or different scales?  It is necessary that 

the different studies attempt to answer the same question or serve as parts of the same problem.  

So, the question is: How does one make inadequate studies adequate?  For example (Glass, 

1977), a researcher wants to find evidence of the relative effectiveness of unequal studies on 

computer-assisted instruction (CAI) and cross-age tutoring (CAT).  Assume that 100 studies in 

CAI were divided into two groups such as 25 were in science and 75 were in math. Meanwhile 

100 studies in CAT consisted of two groups such as 25 studies were in math and 75 were in 

science. 

The problem of comparison is obvious. Each field has the same number of studies, but 

they have different sizes! Suppose that one is interested in the effectiveness of installing CAI in a 

traditional school (Glass, 1977). Then it is obvious that the researcher should have evidence of 

using CAI instruction for math more often (say, three times) than for science.  But, if the 

researcher is interested in "effective medium" CAI versus CAT, the necessity of having some 

technique to make adequate size measurements for both fields would be eliminated.   

The first attempts to integrate several individual studies used classifications of studies by 

type and then interpreted statistical significance. Historically, Tippett first proposed a test of 

statistical significance of combined results (the minimum p method) in 1931. Then Fisher (1932) 

and Pearson (1933) independently derived a test of statistical significance of combined results 

(now called Fisher or Pearson methods or p-value across the study). Next Cochran (1937) 

proposed a method based on numerical estimates of treatment effect. Many researchers used the 

methods mentioned above but all of them have disadvantages. We will consider some of the 

disadvantages in Chapter 1.  

The next step was taken in the 1970s.  This approach could be briefly described as that 

which consisted of finding some deficiencies when analyzing the collection of studies and then 
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developing one or two of the most acceptable studies.  Most criticism of this approach was that it 

seemed to be hardly possible to compare significance of results coming from poorly-designed 

and well-designed experiments. 

Glass suggested that one should group studies by “quantification and measurement of 

study characteristics, by experimental outcomes, by correlation outcomes, and by problems of 

statistical inference”.   

Quantification of study characteristics requires the presentation of descriptions of 

findings in quantitative terms. It is not always easy because some findings are categorical. One 

has to have a bridge.   Even if quantification is possible, problems with using reports of studies 

that omit important information still remain and missing data methods are necessary.     

To resolve the issue of outcomes of experimental and correlation studies, two free-scale 

values to measure effect magnitude were proposed by Glass (1976, 1977).  

The first is called effect-size and was derived by Cohen (1969). He wrote "we need a 

‟pure„ number, one free of our original measurement unit. This is accomplished by standardizing 

the raw effect size as expressed in the measurement unit of the dependent variable by dividing it 

by the (common) standard deviation... 

  
ζ

μμ
=δ ba                                                                                                               (0.1)          

where   is the standard deviation of either population (they are assumed equal)".   

The effect size is used to combine the results of studies and to measure the effectiveness 

of the experimental treatments.  

Another commonly used free-scale index of effect magnitude is the product-moment 

correlation coefficient.  Glass (1977) suggested that a correlation analysis may be carried out in 

the metric of xyr or 2

xyr . The usual approach is to obtain a Pearson correlation coefficient or its 

approximation from reported statistics. Glass (1977) also gave “guidelines” for converting 

various summary statistics into product-moment correlations.  

This report will concentrate on methods that involve effect size estimations.   

One of the techniques used to estimate effect size across studies involves computing the 
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effect size for each of individual studies and then averaging them. Also regression analysis and 

analysis of variance have been used (Hedges and Olkin, 1985).  

The inferential statistical problems are complex. In fact, data are usually independent 

statistically. Two suggestions were proposed (Glass 1977). One is based on considering 

independent findings. It is wrong, but practical, because it reduces standard errors. Otherwise, 

one can not use some studies that yield enormous standard errors. Another method known as the 

jackknife method was proposed by Mosteller and Tukey (1968). This method is not discussed in 

this report.  The interested reader should refer to their paper. 

There are two meta-analysis approaches that investigate an effect size. One of them is a 

so-called  traditional approach proposed by Glass (1976, 1977), Cohen (1969), and Hedges and 

Olkin (1985) is based on investigating the standardized mean difference, its estimation, 

distribution, distribution of estimates, different types of effect models, hypotheses testing, etc .  

Another one is based on measuring the absolute mean difference in two groups of study.  

This is common in the field of medicine.  The absolute difference in the means is defined as 

| |E Cθ = μ μ                                                                                                             (0.2)  

where  E  is a mean of experimental population and  C is a mean of control population. 

Meta-analysis methodology is widely used in medicine. Most clinical research studies 

are based on randomized controlled trials. The forms and amount of data may vary but what 

makes such research special is the presence of individual patient data. Meta analysis methods are 

conducted by using individual patient data as well as summary statistics obtained from individual 

clinical trials. Statistical packages are very useful, especially in cases where obtaining an exact 

analytical solution is difficult. In this report some SAS
®

 procedures for the analysis of clinical 

trials are presented.  Methodology for conducting meta-analysis for clinical trials with detailed 

explanations and examples including SAS
®
 codes are given in Whitehead (2002).  

Data for conducting meta analyses in clinical research may be provided in the form of 

summary information obtained from clinical trial reports or from studies when individual patient 

data are available. Three forms of data are commonly used: i) an estimate of the treatment 

difference and its variance or standard error; ii) summary statistics for each treatment group; and  
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iii) individual patient data.  In general, there are five different types of outcome data: normally 

distributed data, binary data, survival data, interval-censored survival data, and ordinal data.  In 

this report normally distributed and binary data and methods of their analyses are considered.   

A particular interest for researchers performing clinical experiments is to investigate 

absolute mean differences between two groups in studies. To conduct analyses for individual 

patient data researchers usually use Student‟s two sample t-test, F- tests, and maximum 

likelihood approaches. Examples of models for different types of outcome and statistical 

analyses are given in detail in Whitehead (2002).  In her book she also describes the traditional 

statistical approach based on summary statistics information proposed by Hedges and Oklin 

(1985) and refers to applications in clinical trials.     

                        

                         

CHAPTER 1 - TESTS OF SIGNIFICANCE OF COMBINED 

RESULTS 

This chapter is devoted to statistical methods for testing the statistical significance of 

combined results. These methods are based on combining significance levels or p-values 

obtained from different independent studies testing the same directional hypotheses. Such  

procedures are called omnibus or nonparametric procedures (Hedges and Olkin, 1985) because 

they do not depend on the distribution of the data but only on observed significance levels called 

p-values. Moreover, the distributions of the test statistics might be unknown. In fact, continuous 

test statistics yield p-values that are distributed uniformly under the null hypothesis regardless of 

the distribution from which they arise, (Casella, Berger, 2002), (Hedges and Olkin, 1985).  

The first publications that combined significance tests belonged to Tippett (1931), Fisher 

(1932), and Pearson (1933). Wallis (1942) continued working on Fisher's method and described 

important discrete cases. Further investigations were continued by Wilkinson (1951), Birnbaum 

(1954), Littell and Folks (1971), Rosental (1978).   

The problem of producing a specific statistical procedure for quantitative synthesis is as 
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follows. There are sets of null hypotheses, test statistics, and p-values for some parameters 

obtained from independent experiments (studies). In order to combine results one has to develop 

a common null hypothesis as well as a common test statistic for the whole set of experiments. 

There are two possibilities i) either values of test statistics or their distribution are unknown or ii) 

even if such information is available it is impossible to make up an appropriate single test. For 

example, a slight simplification of the example stated by Birnbaum (1954) is as follows:  Two 

independent experiments to measure a certain drug effect are performed.  At least one of the 

possible effects may be asserted: a) an increase in the mean of a certain measurable physiological 

quantity; b) an increase in the variance (within a subject) of the same or a second measurable 

physiological quantity. Suppose that the tests for each of these two independent experiments are 

based on two statistics 1 2andT T . The goal is to produce a single test based on some combination 

of the two test statistics.  Unfortunately there is no single optimal method of combining 

independent test statistics.   

1.1 Preliminaries and Notations 

Consider k independent studies. Each study is characterized by one parameter 

1,iθ , i = ,k  such as a mean, a difference between two means, or a correlation coefficient. 

Therefore, for k studies, there are k parameters kθ,,θ 1 to be investigated (Hedges and Olkin, 

1985). There are k null hypotheses to be tested such as kiH ii ,,1,0:0  .  Assume that the 

ith study produces a test statistic iT . It is not necessary that all k null hypotheses have the same 

meaning and/or the corresponding test statistics have the same distributions. The composite 

hypothesis 00 =θ==θ=θ:H k21   is valid if each of the 0iH  being true implies that none of 

the iθ is significantly different from zero. 

The p-value for the ith study is defined as follows  Pri i i0p = T t  where i0t is the value 

of the statistic that was obtained in the ith study. If 0iH  is true, then the ip 's are uniformly 

distributed in the interval (0,1) (Hedges and Olkin, 1985).  

The question “which test produces false 0H ” does not have a direct answer. All 

parameters 1,...iθ , i = ,k  greater than zero yield false 0H and one parameter greater than zero, i.e. 
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1 2 0 with some 0kθ θ = = θ >   also gives a false null hypothesis. One test does not appear to 

be sensible to all possible alternatives. An illustration of null and alternative hypothesis variation 

is described for two-dimensional space below.  

Let 1,2iθ , i =  be parameters to be tested.                            

                       θ2                                                                                           θ2                                                                                                                            

 

                                           θ1                                                                                         θ1            

                                                                   

 

 Cθ+θ:θθ 2

2

2

121,                                                       
 

 C|>θ|C,|<θ:|θθ

C|<θ|C,|>θ:|θθ

2121

2121

  ,

or        ,
 

 

                                           θ2 

                                                     

                                                         θ1                                       

                                                                         

 

 

    

    DD:θθD>θD,θ:θθ
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21212121
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 and           , ,or         ,




 

 

Fig 1. Examples of alternative hypotheses in two-dimensional parameter spaces (Hedges 

and Olkin, 1985). 
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The null hypothesis 0H corresponds to the origin (0,0) (region A) implies both 

1 2andθ θ are close to zero in region A.  In region B just one of the θ ‟s is close to zero. In regions 

C and D both 1 2andθ θ  are far from zero.  

There are three general alternative hypotheses. The first one implies that there is one 

known direction of all deviations from 0H .  The alternative hypothesis would be  

1 0, 1,...iH : θ i = ,k  and at least one 0>θi . Such an alternative hypothesis is 

appropriate in the case of F-statistics in an analysis of variance or for a chi-square statistic where 

one rejects for large values of the test statistics. 

A second alternative hypothesis is that 02 iθ:H  or 0iθ  and at least one 0iθ . 

Such an alternative hypothesis would result in the case of t-statistics or a correlation coefficient. 

A third alternative hypothesis is given by :H3 at least one 0iθ .  The hypothesis is 

relevant in the case when effects that arise from different studies need not have the same sign.  

Choosing an appropriate alternative hypothesis depends on the problem. 

1.2 Combined Test Procedures 

This section is devoted to using tests of significance to combine results. Consider 

continuous test statistics. 

1.2.1 Methods Based on the Uniform Distribution 

Tippett (1931) first proposed a test of the significance of combined results. The 

procedure involves ordered independent p-values kp,,p ...1  that are distributed uniformly on the 

(0,1) interval under 0H .  Let ][p 1  be the minimum of kp,,p ...1 , then a size α  test procedure is  

reject 0H  if 
k

][ α)(<p /1

1 11   . 

Wilkinson (1951) generalized Tippett‟s procedure. Let ordered p-values, kp,,p ...1 , be 

obtained from k independent studies satisfy the condition that 

[k]][][ ppp  21 . 
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He used the rth smallest p-value as a test statistic and compared it to a critical value αr,p . 

Because )1,(~][  rkrbetap r , the critical values can be obtained from the tables of the 

incomplete beta distribution function for a desirable size α (Hedges and Olkin, 1985).  

1.2.2 The Inverse Chi-square Method  

The inverse chi-squared method is the most widely used test of significance for 

combining results based on p-values. It was proposed by Fisher (1932).  Fisher used the product 

of the p-values obtained from k independent studies.  Recall that if U is distributed uniformly on 

(0,1), then  U2log  has a chi-square distribution with 2 degrees of freedom.  Therefore, since 

the p-values are distributed uniformly under true 0iH , 2log 1,...ip , i = ,k  has a chi-square 

distribution with 2 degrees of freedom. Then if 0H  is true,  

kk ppp=)pp(p 2log2log2log2log 2121    

has a chi-square distribution with 2k degrees of freedom. Fisher‟s test is to   

reject 0H  if     
k

=i

α,i χp=P
1

2

2klog2 . 

A modification of Fisher's method was proposed by Good (1955). The modification 

combines the p-values as k
v

k

v
1

v

1w ppp=P 2
2 , where k2 v,,v,v 1  are nonnegative weights 

chosen such that the test becomes more sensitive. When 11 =v==v k , one gets the Fisher 

method.  

The distribution of wP   was obtained by Robbins (1948) and Good (1955) for the case 

when all weights are distinct.  

They obtained the cumulative distribution function as 

 
k

k
vv

w
a

q
++

a

q
=qP

/1

1

1
/1

Pr   

where 
1

1

1121



 
k

ki+iiiiii
i

v

)v(v)v)(vv(v)v)(vv(v
=a


. 
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No general expression for the distribution of wP  has been obtained for the case when 

weights are not distinct.  Note, that under 0H , WPlog2   is distributed as a weighted sum of chi-

squared variables, and this has complicated representations (Hedges and Olkin, 1985).     

1.2.3 Pearson's Method 

A method known as Pearson's method was proposed by Pearson (1933). He combined p-

values as the product )p()p)(p( k 111 21  . His test is to  

reject 0H  if С)p()p)(p( k  111 21  , where C is a critical value corresponding 

to a desired significance level and obtained by following  Fisher's method. 

1.2.4 The Inverse Normal Method 

Stouffer, Suchman, DeVinney, Star and Williams (1949) and Liptak (1958) 

independently proposed the inverse normal method. Define iZ  by )Φ(Z=p ii , where Φ(x)  is 

the standard normal cumulative distribution function. The test statistic is a transformation of the 

p-values to a standard normal score as  

k

)(pΦ++)(pΦ
=

k

Z++Z+Z
=Z kk2

1

1

1

1

 
, 

where Z has the standard normal distribution. The test is to  

reject 0H  if CZ   where C is a critical value obtained from standard normal 

distribution. 

1.2.5 The Weighted Inverse Normal Method  

The weighed inverse normal method was proposed by Mosteller and Bush (1954). The 

test statistic was derived as follows  

2

k

2

2

kk

2

k

2

2

kk2
w

v++v+v

)(pΦv++)(pΦv
=

v++v+v

Zv++Zv+Zv
=Z








2

1

1

1

1

1

2

1
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, 

where kv,,v ...1 are nonnegative weights. Note that wZ  has the standard normal distribution. When 

it exceeds the corresponding critical value of the standard normal distribution, a null hypothesis 
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is rejected. No general procedure for computing weights has been obtained.  

1.2.6 The Logit Method 

The method based on logarithm transformation for the p-values was proposed by 

Mudholkar and George (1979). The test statistic was derived as follows 

k

k

p

p
++

p

p
=L

 1
log

1
log

1

1  .  

It was difficult to obtain the distribution of L and Mudholkar and George (Hedges and Olkin, 

1985) showed that the Student‟s t-distribution with 5k+4 degrees of freedom could approximate 

the distribution of L closely up to a constant. They suggested the following test procedure   

reject 0H   if  
2

*

5k 4

3/ 5k 4

5k 2
α, +

( π )( + )
L =| L | > t

k( + )
. 

 For large k,  0.55
25k

45k/3 2


+

)+)(π(
 and * 0.55/ | |L = ( k ) L .  

The weighted modification is  

k

k
k1w

p

p
v++

p

p
v=L

 1
log

1
log

1

1    

where 1,...iv , i = k  are nonnegative weights. wL  also has an approximate t-distribution. More 

precisely ww cL=L /  has approximate t-distribution with m degrees of freedom where  

)v++(v)π(mm=с 2

kw 2

1

22/3  and )v++(v)v++(v+=m 4

k

2

k  4

1

22

1 /54 . The test 

becomes  

reject 0H  if     mα,w tL  . 

Both the inverse normal and the logit methods are symmetric in the sense of a p-values 

property. The p-values are accumulated about zero in the same way as they are near unity. Both 

of these tests are appropriate when the direction of deviation from 0H  is not known, i.e. an 

3H type alternative hypothesis. 
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Comparisons among the above methods involve some “goodness of test” criteria. Two 

criteria are generally used. The admissibility criterion proposed by Birnbaum (1954) consists of 

two principles: monotonicity and convexity.  A complete discussion is given in Birnbaum (1954) 

and by Hedges and Olkin (1985).  

Another criterion is asymptotic Bahadur optimality (ABO) proposed by Bahadur (1967). 

The description of ABO using a conception of Bahadur relative efficiency was given by Littell 

and Folks (1971) and Berk and Cohen (1979).   

Bahadur efficiency is formulated (Littell and Folks, 1971) as follows: Let  ),x,(x 2 ...1  

denote an infinite sequence of independent observations of a random variable X, whose 

probability θP  distribution depends on a parameter Θθ . 

Let H be a null hypothesis 0Θθ:H   and A be an alternative 0Θθθ:A  . Let 

1,2,...nT , n =  be a real valued test statistic depending on the first n observations nx,,x ...1 . Large 

values of nT  will be considered critical for testing H. Assume nT  is continuous, and its 

probability distribution is the same for all 0Θθ , and that    t<TP=t<TP=(t)F n0nθn . The 

significance level attained by nT  is defined by )(TF=L nnn 1  and for 0Θθ , nL  is distributed 

uniformly on the (0,1). There is a positive valued function  Θс , called the exact slope of { nT }, 

such that for ,ΘΘθ 0  )log/2 c(θLn)( n   with probability one.  Let { )(

nT 1 } and { )(

nT 2 } be 

two sequences of test statistics with exact slopes 1 ) and )2c (θ c (θ , respectively. The exact Bahadur 

efficiency of )(

nT 1  relative to )(

nT 2  is as the ratio )/)) 212 (θс(θс=(θθ 1 . If 1)12 >(θθ , the sequence 

{ )(

nT 1 } is judged superior to { )(

nT 2 } at θ .  The calculation of exact slopes is given in Littell and  

Folks (1971) and Berk and Cohen (1979).  Littell and Folks carried out a comparison of four 

methods: Fisher‟s method, the normal inverse method, the maximum significance method, and 

the minimum significance method. (The latter two methods are not discussed in this report). 

They claimed that according to Bahadur efficiency, the Fisher method is the most efficient.  

1.2.7 Lancaster’s Method  

Berk and Cohen (1979) described some specific methods of combining p-values. 

Lancaster (1961) proposed giving weights to the individual statistics and is ABO.  Let 
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 , where 
i
αΓ  is a gamma cumulative distribution function with 

parameters ),(αi 2/1 , where the iα  play a role as weights and the choice of weights is flexible.  

The statistic is  iW=W  such that ~ 1/ 2iW Γ( α , ) . Critical values are obtained from chi-

square distribution tables if  iα  is an integer.  Berk and Cohen (1979) claimed that the 

Lancaster‟s method is ABO.  

They also established that the method proposed by Good (1955) (a weighted Fisher 

method) is not ABO.   

Rosental (1985) compared nine methods of combining independent tests by computing p-

values obtained from five independent studies. He compared seven basic methods such as 

Fisher‟s method, Edgington‟s method (1972), a method of adding ts proposed by Winer (1971), 

the inverse normal method, the weighted inverse normal method, testing the mean p proposed by 

Edgington (1972), method of testing the mean Z proposed by Mosteller and Bush (1954). He also 

compared two additional methods such as counting and blocking methods.  

Results of five methods are presented in Table 1.1 (Rosental, 1985). The first column 

gives the calculated t-statistic.  The sign (+) means that the difference was consistent with a 

majority of the results, the sign (-) means that the difference was not consistent. The second 

column presents the degrees of freedom for each t-test. The third column gives the one-tailed p 

associated with each t. The column labeled Z is associated with a standard normal deviate for 

each p. The final column presents the natural logarithms of the one-tailed p’s in column 3 

multiplied by 2 that is, 2

22log χ~p .  
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Table 1-1. Statistics from five independent experiments  

Study t df p (one tailed) Z        p2log  

1 +1.19 40 .12 +1.17 4.24 

2 +2.39 60 .01 +2.33 9.21 

3 -0.60 10 .72 -0.58 0.66 

4 +1.52 30 .07 +1.48 5.32 

5 +0.98 20 .17 +0.95 3.54 

Σ  +5.48 160 1.09 +5.35 22.97 

Mean +1.10 32 .22 +1.07 4.59 

Median +1.19 30 .12 +1.17 4.24 

 

 

1.2.8 Fisher’s Method 

Fisher‟s test statistic and overall p-value is   006.,97.22)log2()2(2

2 ppkdfχ , 

and it is a one tailed test. 

One disadvantage for a simple sign test (t or Z columns) is inconsistency.  Thus the null 

hypothesis may be rejected by the sign test if consistent p-values are not below .05 by very 

much.  Another property of the Fisher‟s test is the possibility of supporting significant results in 

any direction.  If two studies show strong significant results in opposite directions, Fisher‟s 

method may support the significance of either outcome. Despite all of its limitations (Rosental, 

1985), Fisher‟s method remains the best known and the most discussed of all the methods of 

combining independent tests. 

1.2.9 The Edgington Method  

The Edgington method is useful but is limited to small sets of studies, since it requires 

that the sum of p-values do not exceed unity by very much. It gives an overall p-value as 
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.006
5

1.09 5

=
!

)(
=

k!

p)(
=P

k
 and it is also a one tailed test. 

1.2.10 The Method of Adding t’s  

The method of adding t’s was proposed by Winer (1971).  Winer‟s test statistic and 

overall one-tailed p-value is  

    
01.,33.2

18/2028/308/1058/6038/40

48.5

)2/(
2/12/1












p

dfdf

t
Z . 

The method is free of the disadvantages of two methods described above.  A limitation is 

that the method can not be used if the sample size is less than three (division by zero in the 

denominator).  

1.2.11 The Inverse Normal Method 

The test statistics for the inverse normal method and its corresponding one-tailed overall 

p-value is     009.0,39.2
5

35.5
2/12/1




p
k

Z
Z .      

1.2.12 The weighted inverse method 

The test statistic for the weighted inverse method and its corresponding one-tailed overall 

p-value is  

1 2

1/ 2 2 2 1/ 2

40 1.17 20 0.95
=3.01 .0013

40 20

1 2 n n

2 2 2

1 2 n

df Z + df Z + + df Z ( )( )+ +( )( )
Z = = , p =

(df + df + + df ) [ + + ]

 

 
. 

Lancaster noted (Rosental, 1985) that when weighting is employed this method is preferable to 

the weighted Fisher method for reasons of computational convenience and because the final sum 

obtained is again a normal variable.  It also shows the smallest p-value.   

1.2.13 Method of Testing Mean p 

The method of testing proposed by Edgington (1972) uses the mean of the added 

probabilities values. The test statistic and its corresponding  one-tailed overall p-value is 

.0152.17512.22.5012.50 =p,=))()((=)k)(p(=Z  , where p  is the mean of k 
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p-values. The presence of 1/12 in the denominator is derived from the fact that the variance of 

the population of the p-values is 1/12 (Rosental, 1978). The test is appropriate for four or more 

combined studies.    

1.2.14 Method of Testing  the Mean Z 

In the method of testing the mean of Z, the test statistic and overall one-tailed p-value are  

   
05.,4,26.2

22513.

07.1

/

/
2/12/1




pdf
kMS

kZ
t

Z

;  or 

 
 

05.,4,1,09.5

2




pdf
MSk

Z
t

Z

. It yields the largest combined p-value of all 

methods.  

1.2.15 Counting  Method 

The binomial model can be used for evaluating the probability of obtaining the results  

completely by chance ( Brozek and Tiede (1952); Jones and Fiske (1953), Wilkinson (1951)). In 

a series of 15 experiments, the probability of obtaining 3 or more results  which exceed  the  

significance level p=0.05 completely by chance can be evaluated as 

    0.0360.950.05
15 15

15

3

=
j

=P
jj

=j



 







 and equal to 3.6%, that is less than 5% level of 

significance.  

Thus, if 12 of 15 studies are consistent in either direction, i.e. p-values are less or greater 

than 0.05, the probability of obtaining 12 consistent results by chance is 3.6%. 

The sign test is simple to apply. It can be used as an additional method for probability 

counting and for checking the consistency of the results. 

1.2.16 Blocking Method 

The blocking method was suggested by Snedecor and Cochran (1967) (Rosental, 1985) 

and it requires one to construct the means, sample sizes, and mean squares within each condition 

for each of the studies and then combine the data into an overall analysis of variance (ANOVA) 

in which studies are regarded as a blocking variable. Because of differences among studies on 

their means and variance, it requires one to put the dependent variables on a common scale (e.g. 
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zero mean and unit variance). The only real disadvantage in this approach is that it may involve 

more work than some of the other methods especially when there are a large number of studies.    

A procedure of choosing an appropriate method depends on special circumstances. Most 

of the methods described above give satisfactory results. A counting method gives a quick result 

but it is not powerful.  The blocking method often requires too much work without any special 

benefits.  Edgington‟s method is bounded with small sets of studies but it is preferable for a few 

studies to the method of testing the mean Z and the counting method. There is no the best 

method under all conditions (Birnbaum, 1954, Rosental, 1985), but the one that seems the most 

serviceable under the largest range of conditions is the inverse normal method with or without 

weighting. The chi-square test might be chosen as the best one since this test is both admissible 

and ABO (Hedges and Olkin, 1985). When the number of studies is small, the inverse normal 

method might be suggested and compared with at least two other procedures. When the number 

of studies is large, it can be combined with one or more of the counting methods to check. It 

should be mentioned that if p-value is very small, it is hard to say anything about the typical size 

of the examining effect.    

CHAPTER 2 -  ESTIMATION OF EFFECT SIZE FROM A 

SINGLE EXPERIMENT  

In this chapter estimators of effect size for a single two-group experiment are discussed.   

Both  normally distributed data and binary data are considered. Several different standardizations 

of the difference in the group means are described in the first section of this chapter. The first 

section also consider estimators for the absolute difference between means.  The second section 

of the chapter is devoted to estimates of effect size for binary data. 

2.1 Normally Distributed Data 

2.1.1 Standardized Mean Difference  

This section is devoted to several point estimators of the effect size δ  from a single two-

group experiment. Estimators considered in this section are based on the sample standardized 
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mean difference for normally distributed data and have identical large sample properties. They 

differ by constants that depend on the sample size, they also differ in terms of small sample 

properties (Hedges and Olkin, 1985). 

Let  E

n

E
EY,,Y ...1  represent the data collected from an experimental group and let C

n

C
CY,,Y ...1  

represent the data collected from a control group.  Both sets of data are assumed to be distributed 

normally, so    

2

2

~i.i.d. 1,... ,

~i.i.d. 1,...

E E E

j

C C C

j

Y N(μ ,ζ ), j = ,n

Y N(μ ,ζ ), j = ,n
  .                                                                            (2.1) 

The  standardized mean difference effect size δ  is defined as 

./ζ)μ(μ=δ CE                                                                                                        (2.2) 

The effect size δ is the standardized z score of the experimental group mean in the control 

group distribution, Φ(δ)  represents the proportion of control group scores that are less than the 

average score in the experimental group. For example, if the effect size is 0.5=δ , then 

0.69=Φ(δ) , so that 69% of the individuals in the control group have values that are smaller than 

the mean of the experimental group. Positive effect size implies the average score in the 

experimental group is greater than the average score in the control group.  Thus the score of the 

average individual in the experimental group exceeds that of 69% of the individuals in the 

control group. A negative effect size of  0.5δ =   implies that the only 31% of the  individuals in 

the experimental group have values that exceed  the mean of the control group (Hedges and 

Olkin, 1985).   

Another interpretation of effect size is to convert δ  to an estimate of a correlation 

coefficient as to 

  
  nnnδ

δ
=ρ

ba
~/22

2
2


                                                                                       

where   baba n+nnn=n /~ . This is primarily used to summarize the relationship between two 

continuous variables. 
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 2.1.2 Estimators of Effect Size Based on the Standardized Mean Difference 

The idea of estimating an effect size δ  with standardized mean difference as  

s,)YY( CE /   

where EY and CY  are the observed experimental and control group sample means, respectively, 

and s is a standard deviation estimate was proposed by Glass (1976).  Different choices of a 

standard deviation estimate yield different estimators of the effect size.    

Glass (1976) proposed to using Сs , the standard deviation of the control group, and then 

the estimate of effect size is   

./ CCE s)YY(=g'   

The idea of using Сs  is obvious when the assumption of different sample standard 

deviation for each treatment group holds. Indeed different sample standard deviations lead to 

different estimator values.  Assume two treatment groups with the different quantity of the 

standard deviation E2E1 s,s .  Using one or the other would yield different values of the estimator 

.g'  For an equal variances case, the estimator might  be changed for 

 s,)YY(=g CE /                                                                                                     (2.3) 

where s  is the pooled sample standard deviation defined by 

2

11 22




CE

CCEE

n+n

))(s(n+))(s(n
=s   

where andE Cn n  are the experimental and control group sample sizes, respectively. 

For the two sample statistics andg g' , Hedges and Olkin (1985) derived their sampling 

distributions, and showed that they are close to non-central t-distributions.  They showed that 

~ 2,E Cng t (n +n nδ)    and ~ 1,Cng' t (n nδ)   , where .~
CE

CE

n+n

nn
=n  

It is an important fact (for a detailed discussion see Hedges, 1981) that the bias and 

variance of g  is smaller than that of g' .  Therefore g is a (uniformly) better estimator of δ  than 

g'  and the latter estimator is omitted from further discussion. 
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Hedges and Olkin (1985) showed that  

   ,
+

δ
+δgE

94N

3
                                                                                                    (2.4) 

where  .CE n+n=N  

The exact mean is   

,
)J(N

δ
=E(g)

2
                                                                                                       (2.5) 

 where J(m)     is a constant closely approximated by 

.
14m

3
1


=J(m)                                                                                                       (2.6)      

The variance of g  is approximately 

  .
3.942

1
~
1 2

)(N
δ+

n
gVar


                                                                                     (2.7) 

It follows from (2.4) that the bias in estimating  δ  by g  turns out to be 

  .
94N

3

)(

δ
gBias


    

For small sample sizes (N<12) the bias is 0.08 δ  with the bias getting larger as the value 

of the effect size increases.   

 2.1.3 An unbiased estimator of effect size 

An unbiased estimator of δ is defined by 

   
s

YY
NJ=gNJ=d

CE 
 22  ,                                                                       (2.8) 

and      .
94N

3
1 gd 










                                                                                 

Both the bias and the variance of d are smaller than that of g. (Indeed, for 3>N , the 

value )(=)J(N 94N/312   is smaller than one.) Therefore d has a smaller mean squared 
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error than g.  For CE n=n , d is also a unique minimum variance unbiased estimator (Hedges, 

1981). Consequently, for small N, d turns out to be preferable to g as an estimator of δ .  For 

large N, d and g are approximately equal.  

 2.1.4 The maximum likelihood estimator (MLE) of effect size 

The MLE of CE μμ  is CE YY  . The MLE of the pooled within group variance is 

NNs /)2(ˆ  . Therefore the maximum likelihood estimator δ̂  of the effect size δ  is given 

by 

g
N

N

s

YY

N

N CE

22
ˆ







                                                                             (2.9) 

For large samples, the asymptotic distributions of the estimators g, d, and ̂  are 

approximately normal.  

The MLE may be obtained numerically using SAS
®
 PROC GLM  as follows 

PROC GLM; 

MODEL  y= treat; 

In the output the estimate of effect size turns out to be in the 'treat' statement and the 

value of 2s appears as the error mean square.  

 A shrunken estimator of effect size is defined by (Hedges and Olkin (1985) as 

 
.

22

4

22

4~
2

)J(N

d

N

N
=

)J(N

g

N

N
=g








                                                                (2.10) 

It has smaller mean-squared error than d. 

 2.1.5 Comparing parametric estimators of effect size 

Four estimators of the effect size have been discussed above. The result of their ordering 

is as follows  

2222 ~ˆ gdg  .  

The order of their variance is   
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)~()()()ˆ( 2222 gVardVargVarVar  . 

The best estimator by mean squared error criterion is  g~   (Hedges and Olkin, 1985).  The 

differences among these estimators are largest when the total sample size is small. 

  2.1.6 Distribution Theory and Confidence Intervals for Effect Sizes. 

 The asymptotic distribution of estimators of effect size.  

Hedges and Olkin (1985) showed that if and
E Cn n

N N
 are fixed (i.e. andE Cn n  increase at 

the same rate), the asymptotic distribution of d is  

2~d N(δ, ζ (d))                                                                                                             (2.11) 

where .
2

2
2

)n+(n

δ
+

nn

n+n
=(d)ζ

CECE

CE

                                                                                   (2.12) 

This asymptotic distribution can be used to obtain a large sample approximation to the 

variance of d  which is obtained by substituting d  for δ  in (2.12).  The estimated variance is   

)(2
)(ˆ

2
2

CECE

CE

nn

d

nn

nn
d





 .                                                                               (2.13) 

A α)( 1100 percent confidence interval )δ,(δ UL  for δ is given by 

 / 2 / 2
ˆ ˆ( ) and ( )L Uδ d C d δ d C d       where 2/αC  is the two-tailed critical value of 

the standard normal distribution. These exact and asymptotic distributions were examined and 

described by Johnson and Welch (1939).    

 Confidence Intervals for Effect Sizes Based on Transformations. 

Since the variance of d depends on the unknown parameter δ  (equation  (2.12)), one can  

use the variance-stabilizing transformation  

            






















  1log2sinh2)(

2

2
1

a

d

a

d

a

d
dh                                              (2.14) 
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where    .nn+nn+=a ECCE /2/24  

Denote the transformed value of the estimate by  dh=h  and of the parameter by 

 δh=η . Then    ,N~ηhN 0,1 where .CE n+n=N  Therefore, a  α1100 percent 

confidence interval is  UL η,η  where  

 / 2 / 2andL α U αη = h C N η = h+C N  and                                                       

where 2/αC is a two-tailed critical value of the standard normal distribution. Thus a confidence 

interval  UL δ,δ  for δ is  

   UULL ηh=δ,ηh=δ 11  ,                                                                    

where    2/sinh1 xa=xh . 

 Exact confidence intervals for effect sizes 

Asymptotic confidence intervals for effect sizes can be used for large sample sizes 

( 20N ). For small sample sizes exact confidence intervals are obtained from the exact 

distribution of the effect size estimator g.  

~ 2,
E C E Cn n n n

g t N δ ,
N N

 
 

 
 

    where .CE n+n=N  

The cumulative distribution function of g has a complicated analytical form.  Denote it 

by .2,δ)NF(g;   Unfortunately it difficult to compute the distribution function by hand. The 

confidence interval for δ  are solutions of the equations 

2,/2, α=)δNF(g; L  and 2./12, α=)δNF(g; U                                               (2.15) 

 2.1.7  Absolute Difference Between Means Estimation 

The meta analyses methods applied for investigating the absolute difference of the two 

mean parameters is a particular point of interest in medicine.  The theory of estimating the 

absolute difference between two mean parameters, the distribution of the estimate, and analyses 

of obtained results are given in Whitehead (2002).   
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The absolute difference between means      

| |E Cθ = μ μ  

is estimated using the likelihood approach and the MLE is to  

ˆ | |E CY Y   . 

The variance is given by  











CE nn
Var

11
)ˆ( 2 . 

The maximum likelihood estimate of )ˆ(Var is  
CE

CCEE

M
nn

snsn
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2 ))(1())(1(

̂ .  

2.2 Binary Data 

A binary variable is scored as either 1 or 0 and is often referred to as a “success” or a 

“failure”. Such an outcome may be recorded for each patient. A typical clinical experiment/study 

involves two groups; one is a treated group and one is a control group.  Outcome data are 

individual records of the patients in each group.   A binary outcome is recorded for each patient. 

The probability of a success may be denoted by Ep and Cp for the experimental and control 

groups, respectively.  Assume that En and Cn subjects are involved in the experimental and the 

control groups, respectively.  The number of successes and failures in each group are denoted by 

Es  and Ef and Cs and Cf  respectively. 

Table 2-1.  Data for two groups study with a binary outcome 

Outcome Experimental      

group 

Control group Total 

Success 
Es  Cs  s 

Failure 
Ef  Cf  f 

Total 
En  Cn  n 
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There are three widely used measures for binary data. One is the probability difference, 

CE pp  . A second is the log-odds ratio,  
 
 















EC

CE

pp

pp

1

1
ln . And a third is the log-relative risk, 












C

E

p

p
ln . The log-odds ratio is preferred because the corresponding test statistic has the closest 

asymptotic approximation to a normal and/or a chi-square distribution (Whitehead, 2002). 

2.2.1 Log-odds ratio 

Let the log-odds ratio be denoted by 

 
 















EC

CE

pp

pp
=θ

1

1
ln  

which is the log-odds of success on the treatment relative to the control.  Methods of analyzing 

binary data are based on the binomial distribution (Whitehead, 2002). The MLE of the log-odds 

ratio is commonly obtained by using a linear logistic regression model.  The linear logistic 

regression model for binomially distributed data kjminpBY ijijij ,,1,,,1),,(   , with  

known numbers of Bernoulli trials ijn  and unknown probability of success ijp   is given by 

 
  ik,ki

ij

ij

ij xβ++xβ+β=
p

p
=plogit 1,10

ˆ1

ˆ
lnˆ
















 

where ijijij nYp /ˆ   and 0β represents an intercept,  and 1,jβ , j = ,k  are unknown parameters 

usually estimated by the maximum likelihood method . The jix  denote explanatory variables 

one of which is an indicator variable that represents the treatment received . Suppose the 

indicator variable is equal to “1” for the treatment group and “0” for the control group.  

One possibility of obtaining the MLE for θ is to use SAS
®
-GENMOD.  For this 

procedure the data for each patient should be entered separately. The response coded as “1” is 

indicates a “success” and “0 ” indicates “failure”. The MODEL statement is 

MODEL resp = treat / dist = bin  link = logit; 
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The ”dist” option indicates that the distribution of the data is binomial.  The “link” option 

specifies the link function to use in the model.  The estimate of θ appears as the “treat” parameter 

estimate in the output.   

 Another option is to enter the data as the number of success and the number of trials 

format.  In this case, 

MODEL  succ/tot = treat  / dist = bin link=logit; 

is used as the model statement. 

The MLE of the sample log-odds ratio is given by  













EC

CE

fs

fs
ln̂ .                                                                                                            (2.16) 

The asymptotic estimate of the variance of ̂ , obtained by the delta method, and is 

CECE ffss
Var

1111
)ˆ(  .                                                                                    (2.17) 

An asymptotic two-sided  α1100 percent confidence interval for the parameter  θ  

based on a Wald test is  

)ˆ(ˆ
2/   Varz . 

2.2.2 Probability difference 

Now let θ denote a probability difference as   

CE pp=θ  .  

The MLE turns out to be 

C

C

E

E

n

s

n

s
̂ .                                                                                                              (2.18) 

The asymptotic estimate of variance derived by delta method is to 

C

CC

E

EE

n

fs

n

fs
rVa )ˆ(ˆ  .                                                                                             (2.19) 
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2.2.3 Log-relative risk 

Let  θ  denote the log-relative risk as to 












C

E

p

p
=θ ln . 

The MLE of θ is given by  













CC

EE

ns

ns

/

/
ln̂ .                                                                                                         (2.20) 

The asymptotic estimate of variance derived by delta method is  

CC

C

EE

E

ns

f

ns

f
rVa )ˆ(ˆ  .                                                                                             (2.21)    

For additional methods that analyze binary data, see Whitehead (2002).  

 

CHAPTER 3 -  PARAMETRIC ESTIMATION OF EFFECT SIZE 

FROM A SERIES OF EXPERIMENTS 

In this chapter some methods of obtaining estimates of the standardized mean difference 

effect size from a series of experiments are discussed.  It is assumed that the data are distributed 

normally.  

Suppose a series of k studies share a common effect (a standardized difference of two 

means)  δ ,  it is necessary to have  a combined  estimate of  δ.   The sample sizes in these studies 

may vary from moderate to large.  

One method is based on computing the average of the estimated effect size obtained from 

each study.  It is easy to compute a common estimate when all studies have a common sample 

size. For unequal sample sizes some weighting procedures proposed by Hedges and Olkin  

(1985)  are described. “Optimal” combinations of estimates appear to be  (i) a direct weighted 

linear combination of estimators from different studies; (ii) a maximum likelihood estimator.  
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Both estimators have the same asymptotic distributions, and therefore they are asymptotically 

equivalent. Other methods are based on transformations of the effect size estimators.   

3.1 Model and Notation 

 Suppose the data are obtained from a series of k independent studies and that each study 

involves a comparison of an experimental group (E) with a control group (C). The effect size δ 

proposed by Cohen (1969) was described in Chapter 2.  Typical statistical analyses for mean 

differences involve Student's two-sample t-test or an F- test.  If the assumptions of these tests are 

met, i.e. the data arise from normal distributions and variances for two groups are equal, the 

estimator of  δ  can be computed directly as 
s

YY CE 
̂ .   

Assume that for the ith study in the experimental group (E) the observations 

E

ik

E

i1 Y,,Y  are distributed normally with a common mean E

iμ and a common variance E

iζ , 

k,=i 1, .  Assume also that for the ith study the control group (C) observations C

ik

C

i1 Y,,Y  are 

distributed normally with a common mean C

iμ and a common variance C

iζ , k,=i 1,  as 

indicated in Table 3.1 and Table 3.2. Table 3.1 lists the experimental observations  

1, , 1,E E

i, j iY , i = ,k j = ,n   and the control observations 1, , 1,C C

i, j iY , i = ,k j = ,n  for the ith 

study, k,=i 1, , where E

in and C

in are the samples sizes in the experimental group and the 

control group studies, respectively.  

Table 3-1    Data arise from a series of k experiments, in which each study is a comparison 

of an experimental group (E) and a control group (C)  : 

 Observations 

Study Experimental Control 

1 Y 11

E

,..., Y kn1

E

 Y 11

C

,..., Y kn1

C

 

      

k Y k1

E

,..., Y kn k

E

 C

k1Y ,..., C

knY
1
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The corresponding parameters for each study such as the mean E

iμ and the variance E

iζ , 

k,=i 1,  for experimental group and mean C

iμ and variance C

iζ  for control group  are 

presented in Table 3.2. The last column of Table 3.2 lists the effect sizes 1,iδ , i = ,k  for the ith 

study. 

Table 3-2    Parameters such as the mean and the variance for the experimental group and 

the control group for each study indicated in Table 3: 

 Experimental Control  

Study Mean     Variance          Mean         Variance Effect size 

1 Eμ1  2

1ζ  Cμ1  2

1ζ    1111 /ζμμ=δ CE   

            

k E

kμ  2

kζ  C

kμ  2

kζ    k

C

k

E

kk ζμμ=δ /

 

 

 In other words, 

 
 

 

2

2

1, 1,

1, 1,

E E E

ij i i i

C C C

ij i i i

Y ~ N μ ,ζ , j = ,n , i = ,k,

Y ~ N μ ,ζ , j = ,n , i = ,k

 

 
.                                                                (3.1) 

The effect size for the ith experiment is given by  

  i

C

i

E

ii ζμμ=δ / .                                                                                                     (3.2) 

The assumption that each study measures the same effect implies that  

1 2 kδ = δ = = δ = δ . 

3.2 Weighted Linear Combinations of Estimates 

 If the sample sizes of the studies are different, the studies with large sample sizes give 

more precise estimators of the effect size than the studies with small sample sizes. To obtain a 

better estimator of the common effect size using data from studies with different sample sizes, 
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one may use a weighted estimator as   

  kkw dw++dw=d 11                                                                                                (3.3)   

where 1, kw , w   are nonnegative weights that sum to unity.  Recall that an unbiased estimate of 

δ from a single study is given by  
s

YY
NJ=d

CE 
 2  (see equation (2.8), Chapter 2). 

 3.2.1 Estimating Weights 

It is recommended that the weights be given by   
   

k

j= ji

i
dζdζ

=w
1

22

1
/

1
 where  idζ 2 is 

the variance of id (see equation (2.13)). Using large sample theory, the weights are  

  
   



k

=j ji

i
dζdζ

=w
1

22

1
/

1
                                                                                           (3.4)    

where  idζ 2

 is the large sample variance given in (2.13). 

The weights can be approximated by 




k

j=

j

i

i

n

n
w

1

~

~
                                                                                                                  (3.5) 

where  C

i

E

i

C

i

E

ii n+nnn=n /~ .  The approximate weights are close to optimal when δ is near zero 

and the  in~ are  large.  

The weighted  estimator of δ  is given by 

  
   





k

j= j

k

i i dζdζ
=d

1
2

1
2

i

ˆ

1
/

ˆ

d
                                                                                     (3.6)   

where  jdζ 2ˆ is defined in (2.13).  As stated in Chapter 2, d is an unbiased estimator.  The bias 

of +d tends towards zero as the sample sizes  get large.  

Hedges and Olkin (1985)  showed that if the sample sizes of the experimental and 

control groups in each of the k studies, 1 1andE E C C

k kn , , n n , , n   become large at the same rate  
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so that / and /E C

i in N n N  remain fixed where C

k

CE

k

E nnnnN   11 . Then the 

distribution of  +d tends to normality with a mean  

   


k

=i i

k

=i i

i
+

dζdζ

δ
=δ

1
2

1
2

1
/                                                                                         (3.7)  

and a variance 

 
 

1

1
2

2 1




 











k

=i i

+
dζ

=dζ .                                                                                            (3.8) 

Under the assumption that   k21 ,    and a  α1100 percent 

confidence interval for δ  turns out to be 

/ 2 / 2
ˆ ˆ( ), ( )L Ud C d d C d           ,                                                              (3.9) 

where 2/αC   is the two-tailed critical value of the standard normal distribution and 

)(ˆ
d is the sample estimate of the variance of +d given by  

  
 

1

1
2

2

ˆ

1
ˆ



















k

=i i

+
dζ

=dζ  .                                                                                          (3.10) 

3.3 The Maximum Likelihood Estimator of Effect Size from a Series of 

Experiments 

Let 1 2 kδ = δ = = δ = δ . The maximum likelihood estimator ̂ based on observed effect 

sizes kg,g 1, defined in (2.3) is the solution of the equation 

0ˆˆˆ 2

1

2

1  kk cBcBA                                                                      (3.11)   

where  
     

 
1 1

2 2

2 2 /

/ 2 and 4 / 1,

E C E C

k k i i i i i i i i i i i

i i i i i i i i i i

A= n L + + n L , B = signg n L , n = n n N , N = n + n ,

L = n g n g + N , c = N n L , i = ,k.

 

 

   

  
 

In general, it is not possible to obtain the exact formula for k>2. However it is possible 

to obtain approximate numerical solutions of equation (3.11) using statistical software.  Since 
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the properties of +d and ̂  for large sample sizes are equivalent (Hedges and Olkin, 1985),   

̂ tends to normality (for large samples) with a mean δ and a variance of  
 

1

1
2

2

ˆ

1ˆˆ



















k

=i idζ
=ζ  . 

3.4 Estimators of Effect Size Based on Transformed Estimates  

When the sample sizes of both experimental and control groups are equal within each 

study, i.e. 1,E C

j j jn = n = n , j = ,k , then a variance-stabilizing transformation for d   is given by 

   22/sinh2 1 d=dh  .                                                                                           (3.12) 

Let    1 1 k kh = h d , , h h d  be transformed estimates and  δh=η be the transformed effect 

size parameter.  The parameter η is assumed to be the same for all studies.  Each of the 

transformed estimates ih has an approximate normal distribution with mean η and a variance of 

 i2n/1 . The linearly weighted estimate of η with the smallest variance (Hedges and Olkin, 

1985) is given by  


k

=i

ii
+

N

hn
=h

1

2                                                                                                               (3.13) 

where  in=N 2 is the total sample size.  A  α1100  percent confidence interval for η is given 

by  

/ 2 / 2/ /L + α U + αη = h C N , η = h +C N ,                                                                  (3.14)    

and a confidence interval for δ is to 

   2/sinh222/sinh22 UULL η=δ,η=δ .                                                          (3.15) 

3.5 Testing for Homogeneity of Effect Sizes 

A statistical test for the homogeneity of effect size is a test of the hypothesis 

kδ==δ=δ:H 210 versus jia δδ:H   for some ji  .  For large sample sizes the test 

statistic is 



35 

 

  
k

=i idζ

dd
=Q

1
2

2

i

ˆ

)-(
                                                                                                      (3.16)  

where  idζ 2ˆ is defined in (2.13). If all k studies have the same effect size, i.e. 0H is true, then 

 12 kχ~Q  (Hedges and Olkin, 1985). Therefore to produce a statistical test or construct a 

confidence interval, one can use  a critical value  from the  2χ  distribution with k-1 degrees of 

freedom.   

The  statistic Q  may be obtained by using the weighted least-squares regression method 

which is available in SAS
®
 package as follows: 

PROC GLM; 

MODEL y= / inverse; 

WEIGHT w; 

where  ii dζw 2ˆ/1 and w is a  kk  matrix whose  diagonal elements consist of the  iw ‟s.  

There is no variable in the right hand side of the MODEL statement which implies that the 

“intercept” value in the output is equal to +d .  The inverse option displays the matrix of 

  1
WXX T  where for this case X is a 1k vector with components equal to 1.  The  WEIGHT 

option requests minimization of a weighted residual sum of squares.  

3.5.1 Small Sample Significance Levels for the Homogeneity Test Statistics 

For small sample sizes an exact test statistic is unknown.  The Q-test is accurate when the 

sample sizes are at least 10 per group.  See Hedges and Olkin (1985).  

3.5.2 Other Procedures for Testing Homogeneity of Effect Sizes 

Since the likelihood ratio test involves rather difficult calculations, Hedges and Olkin 

(1985) recommend that one should use the Q-test.    

If the groups in each study have the same size, i.e. an experiment is balanced, one can use 

a transformation method.  Let 1=a  in (2.14). Then transform 1, kd , d to kh,h 1, and 

kδ,δ 1, to kη,η 1, via 
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 22/sinh2 1

ii dh    and    22/sinh2 1

ii                                              (3.17) 

The equality of 1, kδ , δ is equivalent to the equality of 
1, kη , η . To test 

kδ==δ:H 10 vs. jia δδ:H  , for some ji  , calculate 

  
k

i=

+ii hhn=Q
1

2

1 2 , then                                                                                       (3.18) 

reject 0H if C>Q1 , where C  is a critical value obtained from chi-square distribution 

with  k-1 degrees of freedom. 

3.6 Estimation of Effect Size for Small Sample Sizes 

The large sample theory is not accurate for sample sizes less than 10.  Another option for 

obtaining asymptotic results is to use a large number of studies.  This requires a different version 

of normal theory.  While the results are not the same as the results  obtained for large sample 

sizes, they are very close.   

There are several methods to estimate the effect size from a large series of studies when 

each study has small sample size.  

3.6.1 Estimation Effect Size from a Linear Combination of Estimates 

 One of the simplest methods of estimating a common effect size is based on a weighted 

mean. The weighted mean with the smallest variance (Hedges and Olkin, 1985) is given by 

kkw dw++dw=d 11                                                                                                (3.19) 

where the optimal weights are given by 

   
k

j= ji

i
dvdv

=w
1

1
/

1
                                                                                                 (3.20)  

where d is the mean of 1, kd , d ,   

  2db+a=dv iii ,                                                                                                       (3.21) 
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       4~/22
2

 iiii NnNJNa  and           4/422
2

 iiiii NNNJNb   (3.22) 

and J(m) is given in equation (2.6).  

Hedges and Olkin (1985) noted that  d ~ N δ,v where v is the estimated variance given 

by         
 

1

1

1














k

=k i dv
=v .                                                                                                      (3.23) 

A  α1100  percent confidence interval for the effect size δ is given by  

vCdwL 2/   and vCdwU 2/  .                                                              (3.24) 

CHAPTER 4 -  PARAMETRIC FIXED EFFECT MODELS  

4.1 Categorical Models 

4.1.1 Normally Distributed Data 

Model and Notation 

Assume that the studies are sorted into p disjoint classes and that there are im   studies in 

the ith class, p,=i 1, . Let 
E

ijlY and 
C

ijlY be the lth experimental and control group observations 

in the jth experiment in the ith class.  Sample sizes of the experimental and the control groups for 

the  jth study in the ith class are denoted by andE C

ij ijn n , respectively.  The set of observations, 

parameters, and their estimators are described above and summarized in Table 4.1. 
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Table 4-1.   Parameters and Estimates for the Control and Experimental Groups 

Class Study Experimental Control 

Parameters Estimates Parameters Estimates 

Mean Variance Mean Variance Mean Variance Mean Variance 

1 1 Eμ11  2

11ζ  EY11   211

Es  
Cμ11  2

11ζ  CY11   211

Cs  

                    

1 
1m  E

mμ 11  
2

1 1mζ  
E

mY
11   21 1

E

ms  
C

mμ 11  
2

1 1mζ  
C

mY
11   21 1

C

ms  

                    

p 1 E

p1μ  
2

p1ζ  
E

p1Y   2E

p1s  
C

p1μ  
2

p1ζ  
C

p1Y   2C

p1s  

                    

p 
pm  E

p
pmμ  

E

p
pmζ  

E

p
pmY   2E

p
pms  

C

p
pmμ  

2

p
pmζ  

C

p
pmY   2C

p
pms  

 

 

Suppose that 

pimjnlNY

pimjnlNY

i

C

ijij

C

ij

C

ijl

i

E

ijij

E

ij

E

ijl

,,1,,,1,,,1),,(~

,,1,,,1,,,1),,(~

2

2












  and                                       (4.1) 

The effect size for the jth experiment in the ith class is given by (Hedges and Olkin 

(1985) )     ij

C

ij

E

ijij ζμμ=δ / .                                                                                               (4.2)  

Three methods of testing hypotheses are considered:  

i) The studies from different classes share a common but unknown effect size δ . An 

hypothesis of interest is   

 :H 0   
11 12 1m

1
1 , ,

p1 p2 pm
p

class : δ = δ = = δ = δ

classp : δ = δ = = δ = δ

 


.                                                               (4.3) 

ii)  The effect sizes within classes are equal, but are not the same for all classes.  A 

hypothesis of interest might be   
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:H1     
11 12 1m 1

1
1 , ,

p1 p2 pm p
p

class : δ = δ = = δ = δ

classp : δ = δ = = δ = δ

 


.                                                            (4.4) 

iii) All effect sizes may be different. In this case the hypothesis is given by 

 :H 2      ijδ unrestricted.                                                                                              (4.5) 

The test of 1H vs. 2H is a test of homogeneity of effect size within classes. The test of 

0H vs. 1H is a test of homogeneity between classes, given that there is a homogeneity within 

classes. 

An unbiased estimator of the effect size ijδ  is given by 

 2 1, 1,

E C

ij ij E C

ij ij i ij ij ij

ij

Y Y
d = J N , j = ,m , i = , p, N = n + n

s


                                (4.6)   

where ijs  is estimated pooled sample standard deviation.                              

For large sample sizes   ijijij dζ,δN~d 2

 , where the asymptotic variance is given by 

  
)n+(n

δ
+

nn

n+n
=)(dζ

C

ij

E

ij

ij

C

ij

E

ij

C

ij

E

ij

ij
2

2

2

 ,                                                                            (4.7) 

and the asymptotic variance is estimated by  

)n+(n

d
+

nn

n+n
=)(dζ

C

ij

E

ij

ij

C

ij

E

ij

C

ij

E

ij

ij
2

ˆ

2

2 .                                                                              (4.8) 

4.1.2 Some Tests of Homogeneity 

4.1.2.1 Testing homogeneity of effect sizes across classes when all studies have a 

common effect  

For a test of 0H  versus 2H the test statistic is given by 

 



p

=i

m

j ij

T

i

dζ

dd
=Q

1 1
2

2

ij

ˆ

)-(
                                                                                             (4.9) 
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where  )(dζ ij

2ˆ is defined in (4.8) and  

   
 



k

i

m

j= ij

k

i

m

j ij

ii

dζdζ

d
=d

1 1
2

1 1
2

ij

ˆ

1
/

ˆ
.                                                                          (4.10) 

The approximate distribution of  QT  is    121

2 pT m++m+mχ~Q  . 

4.1.2.2 Testing homogeneity of effect sizes across classes 

To test 0H versus  1H  , the between class goodness of fit test statistic is  

   




 

 
p

=i

m

j ij

p

i i

B

i

dζ

dd

dζ

dd
Q

1 1
2

2

i

1
2

2

i

ˆ

)-(

ˆ

)-(
                                                                 (4.11) 

where 

 
   





ii m

j= ij

m

i ij

i
dζdζ

d
=d

1
2

1
2

ij

ˆ

1
/

ˆ
.                                                                                    (4.12)  

The approximate distribution of QB is  12 pχ~QB . 

4.1.2.3 Testing homogeneity of effect sizes within classes 

To test 1H versus 2H ,  the within class goodness of fit test  statistic  is  

 



p

=i

m

j ij

i

W

i

dζ

dd
Q

1 1
2

2

i

ˆ

)-(
.                                                                                            (4.13) 

The approximate distribution of QW is     111

2  pW m++mχ~Q  . 

Since WBT Q+Q=Q and since each of these statistics has a chi-square distribution, one can 

obtain a summary table that is analogous to an Analysis of Variance table.  See Table 4.2 where 

pm++m+m=k 21  
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Table 4-2. An Analogy to an Analysis of Variance table 

Source  Statistics Degrees of freedom 

Between classes 
BQ  p-1 

Within classes 
WQ  k-p 

Total 
TQ  k-1 

  

4.2 Meta Analysis for Fixed Effect Models Based on Individual Patient Data 

Traditional meta-analysis methods described in Chapters 2 and 3 are also available when 

one is lucky enough to have individual patient data. Typical statistical approaches on modeling 

when one has individual patient data are based on likelihood theory (Whitehead, 2002).   For 

individual patient data, meta-analyses models are extensions of linear models for a single study.  

Numerical analyses may be conducted by using  SAS
®
 as a statistical package.  In this section, 

both normally distributed data and binary data are considered.  The theory of obtaining analytical 

expressions for likelihood statistics is omitted in this report in favor of application examples 

related to clinical trials and using the SAS
®
 package. 

4.2.1 Normally Distributed Data 

4.2.1.1 Model and Notation 

Let the random variables ijY be normally distributed with means ijμ and common 

variance 2ζ . That is,  2 1 1,ij ij r iY ~ N μ ,ζ , i = , ,n , j = ,n  . Let ijy denote the response 

(observation) from patient j in study i, moreover, let 
r

=i

in=n
1

be the total number of patients in 

all studies.  The general linear model is 

ijijij ε+μ=y   

where ijε are the error terms that are distributed normally  20,ζN~εij .   

Without loss of generality, assume that  

ijij η+α=μ  
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where α  represents an intercept.  Also suppose that 1,kβ , k = ,q are unknown parameters and 

that qijqij xβ++xβ+xβ=η 2ij21ij1 . Explanatory variables 1,kijx , k = ,q can be quantitative 

variables such as age. They also can be qualitative factors and have fixed factor levels.  For 

example, if a qualitative variables kijx  represents a particular study, only two levels such as “1” 

and “0” are needed.    

The model provides the fixed effect of the absolute mean difference between the two 

treatment 

 CE μμ=θ   

defined in (0.3) is given by  

1ij10i xβ+β+α=μij ,                                                                                                  (4.14) 

where α represents the  effect in the control group in rth study,  0iβ+α represents the  effect in 

the control group since x1ij=0 for the control group in the ith study, and 1β represents  the 

absolute treatment mean differences between experimental and control groups since x1ij=1 for the 

treatment group .   

4.2.1.2 Estimation and Hypothesis Testing 

The null hypothesis is that the treatment difference in all studies is 0, i.e. 0=θ and in 

terms of model (4.14) , 01 =β .  Therefore, model (4.14) is compared to the model 

0iβ+α=μij .                                                                                                               (4.15) 

Model (4.14) is called the full model with r+1 degrees of freedom, and (4.15) is the 

reduced model with r degrees of freedom  (Whitehead, 2002).  The estimator of 2ζ has n-r-1 

degrees of freedom. Therefore the F test for comparing the full model to the reduced model is 

     
 11,

1
/

1





rnF~

rn

FSSEFSSERSSE
. To obtain test results numerically, one may use the 

SAS
®
-GLM procedure as  

PROC GLM; 

CLASS study; 
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MODEL y= study treat / ss1 solution; 

where “treat” represents 1ijx  which is the explanatory variable defined  in models (4.14), (4.15).  

The solution option allows one to obtain the parameter estimates, standard errors, and the 

estimate of 1β appears as the “treat” parameter estimate.  It is also possible to include “treat” into 

the CLASS statement.  

  4.2.1.3 Testing for Heterogeneity in the Absolute Mean Difference Across Studies  

 For testing the treatment difference parameter θ across all studies the model is  

1ij1i0i xβ+β+α=μij ,                                                                                                 (4.16) 

where 1iβ varies from study to study. The F statistic has r-1 d.f. in the numerator  and n-2r d.f. in 

denominator.  Using SAS
®
-GLM, the commands are 

PROC GLM; 

MODEL  y=study treat study*treat / ss1 solution; 

where the desired F statistic is associated with the “study*treat” term. 

4.2.2 Binary Data 

Model and Notation  

 Let the random variables Yij be distributed binomial such as 

,,,1,,1),,(~ kjripnBY ijijij    and let ijY be the number of successes for the jth treatment 

in the ith study , and let 
r

=i

in=n
1

.  The parameters ijp represent the probability of success for a 

patient in the jth treatment group in the ith study.  The model that yields an overall fixed effect 

estimate of treatment difference (Whitehead 2002) is to   

  1ij10i
ˆ1

ˆ
ln xβ+β+α=

p

p

ij

ij
















                                                                                   (4.17) 

where ijijij nYp /ˆ  and 1β represents the common log-ratio of success on treatment relative to 

control. 
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4.2.2.1 Estimation and Hypotheses Testing 

Parameters are estimated by using the maximum likelihood method.  PROC GENMOD 

in SAS
®
 that fits a linear logistic regression model is appropriate. 

To test the absolute difference between treatment means, one has to state the null 

hypothesis which is 00 =θ:H   which implies there is no difference versus the  alternative that 

is : 0aH   .  The reduced model is defined by 

  0i
ˆ1

ˆ
ln β+α=

p

p

ij

ij
















, ri ,,2,1                                                                            (4.18) 

and the likelihood ratio test may be obtained by using  

PROC GENMOD; 

CLASS study; 

MODEL y= study treat / type1 dist = bin link = logit waldci; 

The parameter 1β is associated with “treat” in the output, “waldci” option gives a Wald 

CI, the “lrci” option might also be used to obtain CIs based on  the maximum likelihood method.  

Another possibility to enter data is a binomial form. For each treatment group in each 

study the total number of patients n is available as well as the total number of successes,  ijsy .  

The MODEL statement in this case  appears to be  

MODEL s/n = study treat / type1 dist = bin link = logit waldci; . 

4.2.2.2 Testing for Heterogeneity in the Log-odds Ratio Across Studies  

An appropriate model for testing heterogeneity of the treatment difference parameter 

across studies includes the study by treatment interaction term that is 

 
  1i1i0i

ˆ1

ˆ
ln xβ+β+α=

p

p

ij

ij
















.                                                                                 (4.19) 

This test makes a comparison between models (4.17) and (4.19) using likelihood method 

and  SAS
®
-GENMOD, the  MODEL statements are   
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MODEL y=study treat study*treat / type1 dist = bin link = logit;  

the  12 rχ  statistics are associated with the “study*treatment” term in the output, 

1rβ represents the “treat” effect and 1r1i ββ  relates to “study i * treat”. 

CHAPTER 5 - RANDOM EFFECT MODELS FOR EFFECT 

SIZES 

 In this chapter a brief description of the process of estimating the standardized effect size 

for random models is given. The theory of obtaining estimators and hypotheses tests as well as 

confidence intervals for desired parameters is very close to the theory of obtaining estimates of 

effect sizes for the fixed effect models described in Chapters 2-4.  It is assumed that the data are 

distributed normally.  An example using SAS
®
 to obtain numerical results is given.       

As previously mentioned in both the Introduction and Chapter 2 of this report, Cohen 

(1969) proposed a population measure δ of effect size in connection with the t- test for the 

difference between means.  Glass (1976) proposed g as the quantitative estimator of the results of 

a collection of experimental/control group studies by estimating δ for each study.  Assume that 

requirements for the validity of the two-sample t- test are met by each study.  

In the previous chapters the effect sizes 1, kδ , δ were assumed to be fixed but unknown 

parameters.  In this Chapter the effect sizes 1, kδ , δ are treated the same way and iδ  is 

considered as a population parameter for  the ith study.  At the same time 1, kδ , δ are “sample 

realizations” of the random variable Δ because the studies  are considered as a sample from a 

population of studies with a distribution of iδ  values.    

5.1 Model and Notation 

Suppose (Hedges, 1983) that the data arise from a series of k independent studies, where 

each study compares an experimental group (E) with a control group (C).  Let 
E

ijY  and
C

ijY  be the 

jth observations from the ith experiment for the experimental and control groups, respectively.  

Assume that for fixed i, 
E

ijY and
C

ijY  are independently normally distributed such as  
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  1, 1,E E E E

ij i i iY ~ N μ ,ζ , j = ,n , i = ,k  ,                                                                 (5.1) 

  1, 1,C C C C

ij i i iY ~ N μ ,ζ , j = ,n , i = ,k   as presented in Table 3.1. 

The effect size for the ith study was defined in Chapter 2 by 

 
i

C

i

E

i
i

ζ

μμ
=δ


.                                                                                                          (5.2) 

An unbiased estimator id  of the effect size (4.2) is  

   i

C

i

E

iii sYYNJ=d /2                                                                                        (5.3) 

where , andE C E C

i I I i i iN = n +n ,Y , Y s are the experimental and control group sample sizes, means 

and the pooled within group standard deviation from the ith study, respectively,  and J(m)  is the 

correction factor defined in (2.6).  

5.2 Estimating the Mean Effect Size 

Let the mean effect size, that is the mean of the populations of δ, be denoted by .  The 

most precise weighted estimator kk dw++dw 11 of   has weights as  

  
k

=j ji

i
vv

=δΔ,w
1

22

1
/

1
                                                                                                  (5.4) 

where     2 2 2 1,i i iv = ζ Δ +ζ d | δ , i = ,k  and                                                                   (5.5) 

       ,δa+na=δ|dζ iiiiii

22 1~/                                                                                 (5.6) 

where      
2

/ and 2 2 / 4E C E C

i i i i i i i i i i in = n n N , N = n + n , a = N J N N   
 

 .                  (5.7) 

Since the parameters  Δζ  and  1, kδ , δ  are unknown, it is necessary to estimate the weights in 

(4.4).  The estimated weights are given by  

  
k

=j ji

i
vv

=δΔ,w
1

22 ˆ

1
/

ˆ

1
ˆ                                                                                                  (5.8) 
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where     2 2 2ˆ ˆ 1,i i iv = ζ Δ +ζ d | δ , i = ,k ,                                                                         (5.9)    

     ,da+na=δ|dζ iiiiii

22 1~/ˆ                                                                                  (5.10) 

 ia is defined in (4.7),  and  

   222

11

2

2 /)1(~/
1

)(/)1(~/
1

1

)(
ˆ

iiiiiiii

k

i

ii

k

i

i daana
k

dsdaa+na
kk

dd
Δζ 




 



.      

(5.11) 

The test procedure is similar to the one described in Chapter 3 where the formula of the 

test statistic involves  ii δ|dζ 2ˆ instead of  idζ 2ˆ . Discussion and details are given in Hedges 

and Olkin (1985). 

There are a lot of applications using random effect models for medical problems given in 

Whitehead (2002).  She not only discusses different types of test procedures applicable for 

different models but also writes SAS
®
 code with detailed explanations for the models.  

One example of a simple meta analysis based on individual patient data is given in 

Higgins et.al (2001). They discussed a two-level model so that patients correspond to level one 

units and trials corresponds to level two units. Observations ijy  denote the outcome of patient j 

in trial i. The variable 1ijx represents a treatment group with a value of 1 for the treated group and 

0 for the control group.  

The random effects meta analysis model for normally distributed responses ijy  is given 

by 

ijij ε+xv+xβ+β+α=y 1ij1i1ij10i                                                                                 (5.12) 

where  2

1i 0, ηζN~v and  20, iij ζN~ε are random terms corresponding to level two and level 

one, respectively  (Higgins et.al 2001).  The covariances between different levels are assumed to 

be zero. Model (4.12) is a general linear mixed model. 

For example, to analyze the model in (4.12) with SAS
®
–MIXED, one can use  

PROC MIXED; 
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CLASS study; 

MODEL  y = study treat / htype = 1  ddfm = kenwardroger solution; 

RANDOM treat / subject = study; 

The fixed term appear to be in the MODEL statement and the random effect term is in the 

RANDOM statement.  The “subject= study” option indicates that the random effect “treat” varies 

from study to study.          

CHAPTER 6 - VOTE-COUNTING METHODS 

The conventional vote-counting or box-score methods synthesize results across studies by 

sorting studies into categories and counting outcomes (consistent or not) of tests of hypotheses 

found in literature. Like combining independent tests described in Chapter 1, vote-counting 

methods require little information about the individual studies. The idea is based on knowing the 

signs of mean differences or correlations or an assumption that a hypothesis test yields a 

statistically significant result (Hedges and Olkin, 1985).  All studies are divided into three 

categories: the first one contains those studies yielding significant results with a positive mean 

difference, the second category contains those studies yielding significant results with a negative 

mean difference, and the third category contains those studies that did not  yield a significant 

result.  

In this chapter methods of obtaining confidence intervals for parameters based on 

asymptotic theory (Hedges and Olkin, 1985) and methods yielding exact confidence intervals for 

parameters (Molenaar, 1970, Blom, 1954) are described. Estimators of effect size defined for 

vote-counting methods are given.   

6.1 Preliminaries 

Suppose that one wants to integrate k independent “identical” studies. Suppose a statistic 

T (for instance Student‟s t-test statistic) can be obtained for each study.  Assume that the 

standardized mean difference is the same for all k  studies.  A positive significant result occurs if 

a trial is a success, a negative significant result or no significant result implies a failure of a trial. 

The probability that a study yields a positive significant result is  
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 Pr .
C

p signific result | δ,n = f(t;δ,n)dt




   

where n)δ,f(t;  is the probability density function of the statistic T in samples of size n 

with effect magnitudes δ, and the critical value αC  of the statistic T.  It is known the number of 

successes has a binomial distribution.    

An effect δ turns out to be positive if the proportion of the studies with positive 

significant results is greater than 1/3 (the cutoff value 0С ).  Let X be the number of success, 
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k
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k
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[C=i

iki

1
1PrPr

0

00 , 

where [a] is the greatest integer less than or equal to a, 10 0 С .   

Assume one wants to estimate a common parameter θ for all k studies.  One obtains k test 

statistics kT,,T 1  which represent k parameters kθ,,θ 1 .  The null hypothesis for the ith study is 

00i =θ:H i .  One rejects 0iH  if C>Ti  where C is a critical value obtained from the 

distribution of iT . Usually the test statistics kT,,T 1  are not known. The only known 

information that is known is the number U of successful results (positive result, null hypothesis 

is rejected) and the number of failures (negative result, null hypothesis is not rejected) in the k 

independent trials.   Therefore the sample proportion of successes kU /   is available, that is 

(Hedges and Olkin, 1985)  the maximum likelihood estimate of the probability )(θpC   of 

success is kU / . The maximum likelihood estimator  ̂  of θ is obtained from the maximum 

likelihood estimator of )θ̂(pC   by solving the equation  kUθ(pC /)ˆ   for ̂ .  Since the power 

function )(θpC  is a monotone function of θ, confidence intervals for )(θpC  can be translated to 

confidence intervals for θ. 

6.2 Confidence Intervals for Parameters  

There are several methods for obtaining confidence intervals for the parameter )(θpC  

(Hedges and Olkin, 1985). One approach uses simpler asymptotic theory for the distribution of 

U/k based on the large sample normal approximation to the binomial distribution.  Another 
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approach based on approximations to the distribution of U/k   allows obtaining exact confidence 

intervals for )(θpC .  Different approximation methods to the distributions of U/k obtained by 

different researchers independently are described in Molenaars‟s monograph (1970). One of the 

methods for obtaining exact confidence intervals for a desired parameter is given in Blom 

(1954).   

6.2.1 Confidence Intervals Based on Asymptotic Theory 

6.2.1.1 Use of normal theory  

Any consistent estimator of p , p̂  may be used to estimate the variance of p̂ ,  

kp)p( /1  by   kpp /ˆ1ˆ   and a  α)( 1100  percent confidence interval )p,(p UL  for p is  

  kppCp=p αUL, /ˆ1ˆˆ
2/   where 2/αС  is the two-tailed critical value of the standard normal 

distribution. The confidence interval )p,(p UL  for p can be translated to the confidence interval 

)θ,(θ UL  for θ by solving andC L L C U Up (θ )= p p (θ )= p (Hedges and Olkin 1985). 

6.2.1.2 Use of chi-square theory 

It is a well known fact that )(χp)p(p)pk(=z 1~1/ˆ 222   for large k (Hedges and 

Olkin, 1985). To obtain a confidence interval for p one needs to solve  the  equation  

αC=p)p(p)pk(  1/ˆ 2   for  p  

where αC  is the upper critical value of the chi-square distribution with one degree of freedom.  

Set ./~ kC=)pg( α   An analytical solution allows obtaining two points UL pp ~,~  is as follows 

2 2ˆ ˆ ˆ ˆ ˆ ˆ2 4b 1 2 4b 1
and

2 1 2 1
L U

p+b b + p( p) p+b+ b + p( p)
p = p =

( +b) ( +b)

  
   where ./ kC=b α  

6.3 Estimating an Effect Size 

Let each study consist of two groups: an experimental (E) group and a control (C) group 

that have the same sample sizes such as n=n=n C

i

E

i  for the whole collection of k studies. Let 

C>Ti for  all k studies.  Let Yij denote the score of the  individual j in the ith study. Assume that 
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2 2~ and ~ 1,... 1,2,..., .E E C C

ij i i ij i iY N(μ ,ζ ) Y N(μ ,ζ ),i = ,k, j = n  The effect size iδ  for the ith experiment   

is  1,... .
E C

i i

i

i

μ μ
δ = , i = ,k

ζ


 

Assume that the effect size is the same for all studies .1 δ=δ==δ k  The estimate of 

iδ is the  Glass effect size defined by 

1,...
E C

i i

i

i

Y Y
g = , i = k,

s


 

where E

iY  and C

iY  are the experimental and control sample  means, and is  is the pooled within 

group sample standard deviation in the ith experiment.  Then  

.2/2,2n~2/ )nδt(ng=t ii   To estimate an effect size, one counts the number of 

times that i αt > C .  Thus (Hedges and Olkin, 1985) the probability )(Cp  of success is the 

probability that a noncentral t-variate exceeds .αC  For example, if 0.50=α , the critical value 

0.00.5 =C , then ig  are positive.  

6.4 Limitations of the vote-counting estimators. 

The estimators have several limitations that restrict their application (Hedges and Olkin, 

1985). One limitation relates to the asymptotic theory that holds as k gets large. Therefore vote-

counting estimators depend on having a large number of studies.  

Another one relates to the issue of averaging identical sample sizes. If sample sizes of 

studies are not very different, Hedges and Olkin (1985) recommend  an average value such as  

.

2

1















k

n++n
=n

k
    

The next limitation relates to the case when 0=U  or .k=U  This means that the 

estimate of )(θpC  turns out to be zero or unity. If 10 =)(θpC  for some 0θ , then  1) (θpC  for 

all 0θθ   and therefore it is impossible to define a unique θ. 
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6.5 Vote-counting Method for Unequal Sample Sizes. 

Using the same notation as in the case of equal sample sizes, let kT,,T ...1  be independent 

estimators of parameters kθ,,θ ...1  obtained from experiments with sample sizes ....1 kn,,n   The 

critical values iC  may differ from study to study (Hedges and Olkin, 1985).  The probability that 

ii C>T  is  

 .Pr iiiiii n,θ|C>T)n,p(θ    

The idea of estimating a parameter iθ in each study is based on the fact that the 

probability function is a function of ii n,θ  for .1 θ=θ==θ k   

Suppose 0 or 1iX = .   Then     .Pr1Pr )np(θ(=nθ,|C>T=nθ,|=X iiiiii  

Maximum likelihood methodology can be used to estimate θ and the log likelihood 

function  is  

1 1 1 1 1... log 1 log 1

log 1 log 1 .

k

k k k k

L(θ | X , ,X )= X p(θ,n )+( X ) [ p(θ,n )] + +

X p(θ,n )+( X ) [ p(θ,n )]

 

 


 

Since and 1,...i in X , i = ,k  are known, the likelihood function is a function of θ and can 

be maximized over θ  to obtain an estimator ̂ .  It is difficult to get the estimator in a closed 

form, but one method to get the estimator numerically is to obtain a grid of possible values for θ  

and then select ̂  in the grid so that it yields the greatest value for the likelihood function.  

To estimate an effect size for unequal sample sizes one may observe whether 

0>YY CE   for each study. Under condition of a homogeneous effect, i.e. δ,=δ==δ k1  the 

model turns out to be  

2~ /E C

i i i i iY Y N(δζ ,ζ n )   where ./~ )n+(nnn=n C

i

E

i

C

i

E

ii  

The probability function of positive result is to  

  .~10Pr~ δ)nΦ(=>YY=)np(δ( i

C

i

E

ii   

The likelihood is 
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k

=i

iiiik δ)nΦ()X(+δ)]nΦ([X=)X,,X|L(δ
1

1
~log1~1log...   

And it must be maximized numerically to obtain the maximum likelihood estimator ̂ . 

The report introduces many of the basic techniques used in meta analysis. One should 

consider the references given for a more in depth study of meta analysis. 
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