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INTRODUCTION

From the standpoint of population genetics, one of the

most elementary steps in evolution Is the change in gene fre-

quency, especially the change due to natural selection. Since

there exist various factors which introduce an element of inde-

terminacy into the process, it is not difficult to imagine that

the process is continuous. One of these factors, random sam-

pling of gametes due to finite population size, is of special

interest. There are also systematic pressures that affect gene

frequency. Among these are selection, migration, and mutation.

The change due to selection is controlled by the amount of

selection, or selection intensity. It is also found that there

exists a fluctuation of these selection intensities from gen-

eration to generation. These two points of interest, random

sampling of gametes and fluctuation of selection intensities,

cause a phenomenon known as genetic drift.

Genetic drift due to random sampling of gametes will cause

the gene in question to become either completely fixed or com-

pletely lost from the population and will approach one of these

limits asymptotically. In reaching one or the other of these

limits, the gene frequency varies as a stochastic process

( see Fig. 1)

.

Genetic drift due to fluctuation of selection intensities

also approaches either fixation or loss asymptotically. But for

this case the gene frequency will become fixed before it reaches

complete homozygosity (see Fig. 2). Thus if we have a pair of

alleles A-. and Ap and genotypes A-jA-,, A-,Ap, and ApAp, after a



generations

Fig. 1. Three examples of genetic drift due to
random sampling of gametes in finite popu-
lations. Original gene frequency is . 5>.
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Pig. 2. Example of genetic drift due to fluctuation
of selection intensity, reaching fixation at

about .9 after k generations.



certain number of generations, the genotypes will become fixed

as A-.A, and A
2
A
2

. On the other hand, drift due to random sam-

pling of gametes will produce all A^-^ or all A
2
A
2

. In both

cases all heterozygotes will be lost.

Mathematical treatments will be presented for these cases

of genetic drift.

HISTORICAL BACKGROUND

Hagedoorn Effect

Appearing in 1921 was some of the first mathematics deal-

ing with genetic drift. Fisher (1921) proposed the following:

If p is the proportion of any gene, and q is the frequency of

its allelomorph, then in N individuals of any generation we have

2Np genes scattered at random. Let cos 0=1- 2p, where

< < %. For a second generation of N individuals formed at

random, the standard deviation of p will be

<Tp

thus

60

2N

fpq d0

2N dp v/2N

Since this is independent of 0, Fisher calculated the changes

in the distribution of 0, in the absence of selection. If

y(0)d0 represents the distribution of in any one generation,

the distribution in the next generation will be
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since r-g

is given by

= 1/2N is very small. The rate of change of y(0)

6y i 62
y

3t i+n de 2
(2)

Since no distinction has been drawn between the gene and

its allelomorph, the above solutions are symmetric. The

stationary case is y = A/it, where A is the number of factors

present (unfixed loci)

.

Fisher explains that when y is increasing,

(3)
p

y = A e cosh p(0
It

- -)
2

2 sinh - pit

2

and when y is decreasing,

P «

7 = A e

where

,2
P

k = —

-kT : # coa p(e _ _) {k)

1 2

2 sin - pit

2

(5)



Gene Extinction Due to Drift . Fisher (1921) represents by

e the chance that a particular gene borne by a single indi-

vidual will not be represented in the next generation. The

chance of extinction for a factor of which b genes are in exist-

ence will be e" 13*1
. When 6 is near zero, p, which is always equal

e
2

to sin 2 -
, will be nearly equal to l/I(. 6 . Let t = sin l/2 0,

2

then the number of genes in existence is 2Nt and the chance of

.. . .. .. . .. -2Nht2
their extinction in one generation is e

This chance is negligible except when t is very small and

may be equated to l/2 9; hence the number of genes exterminated

in any one generation is

. f -2Nht 2
, C -2Nht2

,. ,M2 ye d0 = l\. I ye dt . (6)

Jo Jo

In the stationary case, y = A/re and the number of genes

exterminated will be

A 2 J2%
= A

it Jhm J tthN

if new mutations occur at rate N(i, then gene frequency equilib-

rium will occur at

A= /* N3/2

In the absence of mutation, there is extinction, and the

number of factors diminishes. Considering equation (i\.) when 6



is small, one gets

TC 1 1

cos p(9 - — ) = cos — pit + 2p sin — pot

2 2 2

P
1

2
• t - 2p^ cos - pot . t . .

so the rate of extinction is:

V"1

giving

1
2 sin — pot

2

r
1 1 l~^ icos - pot + 2p sin — pot /

L 2 2 7 2hN J

k = p
P* f 1 1 P -]

/— — cot — pot +
J hN L 2 2 2ithN -I

Equating this to (5) gives

)
2

N L^ hJ VhN 2

p^ r 1 l-i H p 1— - - — = /— — cot — pit

1 1
when cot — pot is of the order of , so that p is near 1,

2 /n

1 = 1/kS.

Hagedoorn (1921) was one of the first to indicate this

random effect and it was so named by Fisher, "The Hagedoorn

Effect". Fisher's value of l/l+N was later disproved by Wright

which will be discussed in the following section.



Sewall Wright Effect

In a paper in 1921, Wright gave a general method for deter-

mining the decrease in heterozygosis. He stated that for two

alleles per locus the rate of loss per generation is l/2N in

the case of a breeding population of N individuals either

equally divided between males and females or composed of monoe-

cious individuals. This is different from the result given by

Fisher above and will be explained later in this section.

Wright expanded on the subject in 1931 and gave these

results.

Consider a population in which there are Nm breeding males

and Nf breeding females, and random mating. The proportion of

1

matings between full brother and sister will be , that
< NmV

(Nm + Nf - 2)

between half brother and sister , and that between
(NmNf )

(Nm - l)(Nf - 1)

less closely related individuals . The cor-

relation between mated individuals may be written, giving due

weight to these three possibilities.

,o 19 r 1 Nm + Nf - 2

M = a
2
b

2
(2 + 2M » ) + — (1 + 2M ' )

L Vf NmNf

(Nm - l)(Nf - 1) -,

+ 1+M' , (7)

m I



where a / is the path coefficient, gamete to fer-

2(1 + F)

tilized egg, b = J\/2 (1 + F '
) is the path coefficient, zygote

to gamete, and F is the correlation between uniting egg and

sperm, and where primes are used to indicate the number of gen-

erations preceding the one in question. The proportional

change in heterozygosis is given by:

Nm + Nf
F = pi + (1 + 2F' + F") .

8NmNf

The proportion of heterozygosis

Nm + Nf
P = P . _ JO. i (2P» - p") .

8NmNf

It is to be expected that the proportional change per gen-

eration will reach approximate constancy. This rate was found

by equating P/P' to P/P" to be:

Af 1 / Nm + Nf

P' 2
\

i^mNf

This gives for small populations

i8Nm 8Nf \ 8Nm 8Nf

as a close approximation, and for large populations



1 1
+ —

8Nm 8N
;

For the simplest case of mating brother with sister or Nm = Nf

= 1, the rate of loss of heterozygosis is l/ij.(3 " ^ *
or

19.1 per cent per generation. For the case Nm = 1 and Nf = «o,

the rate of loss is about 11 per cent per generation. For a

more useful case in which there is a relatively limited number

of males but unlimited number of females, the rate becomes

1/8 N . An especially important case is the population which

is equally divided, or Nm = Nf = l/2 N. In this case the rate

is l/(2N +1), or approximately l/2 N.

If only random mating cases are considered, then gametes

have a chance l/N of coming from the same individual and

(N - 1)/N of coming from different individuals. The correla-

tion between uniting gametes may then be written

1 9
/N - l\

p = _ b
2 + l^bW'

and

N \ N

(2N - 1)

P = P' .

2N

This result does not differ appreciably from that of the pre-

ceding case. The rate of loss is exactly l/2 N instead of

1

2N + 1

The simplest case is continued self-fertilization in which

N = 1 and the formula gives 50 per cent loss per generation,
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as would be expected.

In order to determine generally the distribution of gene

frequencies, Wright (1931) considers the way in which genes A-^

with frequency q are distributed after one generation of random

mating. In a population of N breeding individuals, each of the

specified genes will have 2Nq representatives among the zygotes

and their allelomorphs 2N(l - q) . A random sample of the same

size will be distributed according to the expression

2N
|l - q)A

2
+ qA-J (8)

The contribution of this sample to the frequency class with an

allelomorphic ratio q-^d -
q-j_) will be in proportion to the

2Nq,
th term of the above expression and to the number of genes

included in the contributing class (f ) . The sum of contribu-

tions from all such classes should give the 2Nq^^ term an

absolute frequency which is smaller than its value in the pre-

ceding generation (fj) by the amount l/( 2N +1), as given above,

Thus the following equation is given to solve for f as a func-

tion of q.

1 (2N)J ST 2Nq1/ 2N(l-q-,)

2N + 1 (2Nq
1
)i(2N(l - q± ) )

!

Let f = J?f(q)/2N = ${ q) dq, and replacing summation by integra-

tion, the result is:

*iL . £!! f
1

,"1,1 - q>

a,(1-*Wa,
2N + 1 (2Nq1)J(2N(l - qx ))I Jo

(9)
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The cases of 2 and 3 monoecious individuals as worked out by-

simple algebra suggests an approach to a uniform distribution.

As a trial, let 0(q) = C. This is a solution since

C C(2N)J I^Nq-L +1) | ( 2N - 2Nqx + 1)

2N + 1 (2Nq1)I(2N(l
- qx ) ) J p2N + 2)

It would appear that after a cross mating the gene fre-

quencies will spread out from $0 per cent toward fixation or

loss until a practically uniform distribution is reached. The

frequencies of all classes will then decrease at a rate of

about 1/2N as I/I4H of the genes become fixed and l/i|N become

lost per generation if q = l/2 initially.

Wright (1931) points out that we must examine the terminal

points before fully accepting this solution. The amount of

fixation at the extremes, if N is large, can be found directly

from the Poisson series. The contribution to the zero class

when the mean number in the sample is e (m = 1, 2, 3, • • •

)

is:

-1

(e
_1

+ e
-2

+ e
-3 + . . .)f = r f = .582 f.

1 - e" 1

This is larger than l/2 f as stated above, but is attributed to

the distortion near the ends due to the element of approxima-

tion involved in using integration for summation.

If mutation is occurring, however low the rate, the decline

in heterozygosis cannot go on indefinitely. There will come a

time when the chance elimination of genes will be exactly
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balanced by new genes arising by mutation. The equation to be

solved is equation (9). By trial and error, Wright (193D finds

0(q) = C-^q + 02(1 - q)
' as a solution. The terminal condi-

tion, reduction of the class of fixed genes by an occasional

mutation contributing to the class q = ( 2N - 1)/2N, necessarily

involves the appearance of new genes contributing to the class

q = l/2N. This means that only the symmetrical solution

JZf(q) = Cq~ (1 - q) can be accepted as descriptive of the dis-

tribution of the entire array of genes at equilibrium, provided

there is no selection, migration, or recurrence of the same

mutation. Thus letting

f = — q" 1 (l - q)" 1 and /f = 1,

2N

C =

.577 + log(2N - 1) 2 log 3.6N
(10)

Before attainment of equilibrium with respect to heter-

ozygosis the distribution will pass through phases of approxi-

mately the form jzf(q) = C,q (1 - q) " + C., in which the term

Cn gradually displaces Co as the number of temporarily fixed

genes approaches equilibrium with mutation. As the chance of

complete fixation increases, the chance of mutation must be

taken into account. The distribution passes through phases of

the type 02(1 - q) + C*, C2 gradually displacing C,, rela-

tively, but itself declining as the chance of complete loss

increases.
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If there is reverse mutation, but at a very slow rate, a

term C-.q"
1 must be added to the formula, and an equilibrium will

be reached in the form Cq
_1

(l - q) " . Thus in the long run,

the gene will be completely fixed or completely absent from the

population with frequencies proportioned to the mutation rates

to and from the gene respectively. Occasionally these condi-

tions will not be quite complete and at extremely rare inter-

vals the gene will drift from one state to the other.

The turnover among genes in equilibrium in the distribution

Cq
_1

(l - q)" 1
can be determined by consideration of the variance

of q and independently by application of the Poisson law. Let

Y(q - 1/2)
2
f

£q2 = ±=—^ be the variance of q, excluding the

terminal classes. This variance is increased in the following

generation by the spreading out of each frequency class as a

result of random sampling. The variance from the spreading of

a single class is q(l - q)/2N and the average is thus

.1r q(l - q)f 1 1 9
2N - 1

2NVf 2N 14- (2N) 2

where C is as in (10). The sum 6q
2

+ A<^ 2 includes the

newly fixed factors whose contribution is l/lj. k where k is the

rate of fixation, plus loss, but excludes mutation. The con-

tribution of the new mutations to the variance is

k(N - l)
2

; therefore
(2N) 2



Ik

9? + A6~q
2

- - k + k l^A = 6h
2

k 2N

K = C =
2 log 3-6N

The proportion exchanged at each extreme is thus about half the

corresponding subterminal class when N is large. This compares

with the proportion as determined by the Poisson law, which is

.J4.6 times the subterminal class instead of .50.

Referring to Fisher's equations, (l) and (2), Wright made

the following remarks. He claims that equation (2) gives the

wrong solution, and he also points out a comparison of the

equations. He states that in a breeding population of one mil-

lion with one mutation per 1000 individuals, Fisher's formula

Jti/2 N ' (i gives 1,250,000 unfixed factors with a turnover of

.08 per cent, while his formula 2Nu- log 3^&N, gives 30,000

unfixed factors and a turnover of 3«3 per cent.

Fisher yielded to Wright, and Wright (193D printed a note

from Fisher to this effect. Equation (2) should have read

^- = - ^ (y cot e) + - ^-5
QT l\N O© k$ O9

and with this he agrees with Wright's value of l/2N.



1*

MODERN APPROACH TO GENETIC DRIFT

Kimura ' s Treatment of Random Genetic Drift Due
to Random Sampling of Gametes

As was noted before, Fisher (1921) and Wright (1931) gave

solutions to this problem. Fisher used differential equations

and Wright used differential equations and path coefficients.

Kimura (1955c) states that in these works it was assumed

that a state of steady decay had been reached. Nothing was

known about the complete solution which might show how the pro-

cess finally leads to the state of steady decay. Kimura showed

that the process approaches asymptotically the state of steady

decay by finding the moments of the distribution and using the

Fokker-Planck equation.

Again considering a finite random mating population of N

diploid parents, where A-, and A2 are a pair of alleles with

frequencies x and 1 - x, respectively, when there is no selec-

tion, mutation, or migration, Kimura (1955c) states that an

adequate description of the change in gene frequencies is to

give the frequency distribution f(x, t) at the t
th generation,

where x takes on a series of discrete values: 0, l/2N, 2/2N,

. . ., 1 - l/2N, 1. Without serious error, x can be con-

sidered continuous for large N.

First of all, Kimura (195^) gave as the n moment of the

distribution about zero:
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n-1 (n-2)(n-l)
Jin '(t) = p - 3pq (X-X

1 )

Z - 5pq(p-q) (I'M
n+1

X (n+l)(n+2)

(n-3)(n-2)(n-l) ,

- 7pq(-5pq + 1) (1 - *o)
(n+l)(n+2)(n+3)

_ (n-l4.)(n-3)(n-2)(n-l) .

-9pq(l^pq^ - 7pq + P - q) {l ~ X
(n+l)(n+2)(n+3)(n+lj.) ^

[«i - */]+ * |(i - M (ii)

id + D
where q = 1 - p and X. =

, i = 1, 2, . . .

1
k$

Using a more sophisticated method, Kimura (1955a) presented the

following: Let x. be the gene frequency in the t generation,

and let 6x^ be the amount of change due to random sampling of

gametes per generation, such that

xt+l = x
t

+ 5x
t

' (12)

Let n
'( t+1 ) = E(x^,

n
) be the nth moment of the distribution

about zero in the (t + 1) generation. He then writes

E(xt+1 ) in terms of ( x^. + Sx^.) . This is done in two steps;

first, taking expectation for the random change 6x. , which

will be denoted by Eg, and, second, taking the expectation

for the existing distribution, denoted by E_
;;
_.

Note that E
6
(6x

t
) = 0, E

5
(6x

t )

2 = x
fc
(l - x

t
)/2N, etc.,

so
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Hn
'
(t+1) =E(xt + 6xt )

n

E*[xt
+ Q ^ E

s
{6x

t ]
+ Q

'n \ n-2
x. E

5
(6x

t
) + .

n n(n " 1) n-2 xt(!- xt)
E „ I x . + x + .<K 2N y • 13)

assuming that N is large enough so that terms of l/N and

higher can be omitted without serious error. The equation is

then:

n(n - 1)r n(n - in
=

L
1

- "tH **
.* +

n(n - 1)

UN

,,(t)
L

n-1 Uk)

For large N the moments change very slowly so equation (llj.) is

replaced by the system of differential equations.

(t)
da'
^n

n(n_1)
r ,(t) ,(ty

dt kN

,U) ,(t)"| , _ .

r n " 'n-l '
(

' '
3

' ' *
* J '

(15)

If the population starts from gene frequency p (0 < p < 1)

,

^i \ ) _ pn
Qn(j ^g n moment is a solution of (15) •

M-' n
= P + ^- (2i+l)pq(-D 1 F(l-i, i+2, 2, p)

i=_

x
(n-1) . . . (n-i)

(n+1) . . . (n+i)

^[id+D/lti] t
(16)

where P(l - i, i+2, 2, p) is the hypergeometric function.

For finite n the series is finite.
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He next derives the probability f(l, t) of the gene A^

becoming fixed in the population by the t
th generation. Note

that

1 t t \

f(l, t) = lim ^ *nf(x, *) " lim V- n
n -* o° x=0 x -* **

He now has an infinite series

f(l,t) = p + 7 (2i+ l) Pq (-l)
i
F(l-i,i+2,2,p)e- l^

i+^M t

(17)

whose convergence must be examined. At this point he intro-

duces the Gegenbauer polynomial T. (z) which is related to the

hypergeometric function by

-, i(i + 1) 1 - z

TT
n
(z) = P(I + 2, 1 - i, 2, ) .

i-i
2 2

(1 - r)

Using this relation and putting p = , where
2

(-1 < r < 1) , he obtains:

rr . (2i+l) 2 1, - ri(i+i)AN| t
f(l,t) = p + 2- (-D (l-r)Ti,(r)e L

v '^i
.

i=l 2i(i+l)
(18)

Using the recurrence relation,

(2i+l)(l-r2 )Tj_
1
(r) = i( i+1)

P

i _ 1
(r) - i( i+1)

P

i+1
( r) (19)

the above formula becomes:
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f(l,t) = p + J ^ [Pt-^D - P1+1 (rj a' \}^^M *

(20)

where P (r) represents a Legendre polynomial. For t = 0,

the partial sum of the first n terms of equation (20) is

(-I)"'
1

(P°- 1 ' ?n)
(,2 3 ).

2

To obtain the probability of gene A
2
being fixed, f(0, t)

is obtained by replacing p with q and r with -r.

In the notation of equation (11) he has

f(l,t) = p - 3pq(l-A
1 )

t
- 5pq(p-q)(l-^

2 )

t

- 7pq(-5pq+D(l-A
3

)

t
- 9pq(ll;pq

2
-7pq+p-q)(l-X^)

t

. (21)+ ^ (1 - \
3

)

and again f(0, t) , the probability of complete loss, is found

by replacing p by q.

He now has the probability for the fixed classes and he

makes this statement

f(l,t) +f(0,t) = 1 - I[p2j (r) - P2j+2 (r)] e" [^^H*
(22)

which is when t = and tends to 1 when t —*• «o .

He then considers the probability distribution of unfixed

classes. The variance of the rate of change in gene frequency

x(l - x)
due to random sampling of gametes is V~ = . So if0X

2N

$(x, t) is the relative probability that the frequency of the
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gene in the population will take any value between x and

x + dx (0 < x < 1) in the t
th generation, 0(x, t) satisfies

the partial differential equation derived from equation (l\9) •

(See Appendix.

)

xd - x)m (23)

To solve this equation he uses tf^X^ix) e x or

X^xJ-e" [iti+DAN] t
8nd this gives the hypergeometric equation

d
2X. dX±

X (1_ X )
i + 2(l-2x) —- - (l-i)(i+2)X

i
=

dx2 dx

or using x = (1 - z)/2 such that z = 1 - 2x gives Gegenbauer

equation

d
2
X. dX

i

(z 2 -l) + i^z —i - (i-l)(i+2)X
1

= (2k)
dz 2 dz

Looking at equations (16) and (17), he derives the moment

formula

,(t) _ x
n
f(1 t ) = xn |2f(x, t)dx

n Jo

which suggests a solution of equation (23) of the form

i=l

Comparing this with equation {2k), it was found that a solution

for (2k) is the Gegenbauer polynomial X. = T. , (z). Thus
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*(«,t) = X C lT i. l( t) e
-[i(i +D/W]t

(26)
i=l

He gives this method for solving for the C^. Since

initial gene frequency of population is p, then

6(x - p) = /_ C.t! -(b)
£=1 x 1_x

where 5(x) represents the delta function. Multiply both sides

by (1 - z 2 )T. .(z) and using orthogonal property,

f
1

o ,

2(1+1) i

(1-z 2 )T*(z)t! (z)dz = 6 , (27)
J. x

m 1 X m ' 1 X
(21+1)

where m in Kronecker's notation represents zero or a positive

integer; thus

r ?~\ .
2(1+1)1

2 1 - (l-2p)^ T{_ 1 (l-2p)
= C

1
(21+1)

(21 + 1)

C. = l|Pq T' (1 - 2p) . (28)
1

9(1 + 1)
1_1

Some of these values are given by C-j_ = 6 pq,

C 2 = -30pq(p - 2), C3 = 81|. pq(-5pq + D •

The formal solution is

,«•„„ . I (21+1)(1 - r2)
T : lM t:

l(
z) .- &(^)/Ht (29)

1=1 l(l+l)

or in terms of hypergeometric function,
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0(x,t) = l_ pqi(i+l)(2i+l)F(l-i,i+2,2,p)F(l-i,i+2,2,x)
i=l

e
[i(i+l)/i^]t

( (30)

dP i (z)
By noting that = T|_

1
(z) and Pn (l) = 1, he gives

dt

the possibility that both A-, and A 2
coexist in the tth generation.

£l t
=

j
0(x,t)dx =

J

tf(x,t)

dz

2

. J "JJ" 1>(1 ' r2>
,' . (,, e" f

2- 11^ * (3D
iPl (2m-l)2m

dm~ d

for t > 0, the series is convergent and as t-*- 00 AL. be comes

zero. He then gives the proof that when t = 0, the series con-

verges to 1, If _fL is the partial sum of first n terms,

then by a recurrence relation

= P 2m-2 (r
> - P2m (r >

(l+m-l)(l-r
2
)T2m_ 2 (r)

(2m - l)2m

il0,n = 1 - P
2n

(r) '

Using P
n
(z) = -

| U + Jz
2 - 1 cos t dt

7i Jo L J

he shows that for |r| < 1, P
2n^

r ^
"* ° as n ~^ "^

P2n (p ) — " r + Jv - 1 cos t dt
K JO
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;f[it Jo L

r
2 + (1 - r

2 )cos t dt — as n -* oo .

Also

Y fD . D , ,1 - |(2j+l) C2j+2)/Uu] t

-fi.t
= 4 L

P
2J

(r) " P
2j +2

(r)
j

6 L

from equation (31) which says f(l,t) + _fl t
+ f(0,t) = 1 from

equation (22). For t > the series is seen to be convergent

and as t-»°° , -^-t
—>0

* Siving the asymptotic formula

-(l/2N)t
( j_n t

~ 6 pq e

and for t = 0, -H-
t

converges to 1.

Finally, from equation (29) we have the probability of

heterozygosis,

H+. = / 2x(l - x)0(x, t)dx

. ? Pq ^il T :

l(
i-2p) f

1

(i..2)fi l(
.).-t<*

+1)
>H*d..

feL i(i+l)
1_1

J.-l
1_i

From equation (27) where m = 0, the integral above is zero

except when i = 1. Hence

3
-,

**• -(l/2N)t -(l/2N)t „
E±. - pq • — • 1 • — • e ' = 2pqe / = HQ e

(32)

and this shows that heterozygosis decreases at the rate l/2N

per generation. This is the exact result of Wright and Fisher's

corrected result as given previously.
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Kimura gives a short proof that this is valid. If p is the

frequency of A ± and qp(l - p) is the frequency of heterozygotes,

then if p + 6p is the change in p for one generation, 1 - p - 6p

is the change in 1 - p for that generation. The expected value

of the heterozygotes is

2
E t(p + 6p)(l - p - 6p) = 2p(l - p) - 2E(6p)

= 2p(l - p) - 2

p(l - P)

2N

1 -i

2N-

2p(l - p)

as was to be shown.

Again going back to the notation of equation (11) he writes

* , -(l/2N)t ,.
, , ^ -(6/21) t r-(l5/2N)t]

J[l t
= 6pq e

/ + 11+. pq(-5pq+De + »< I
e

(33)

and also the variance of the distribution in the t generation

is from equations (21) and (25),

-(l/2N)t (Vl)V^ = pq - pq e . IW

This says that the variance approaches its limiting value pq

at the rate l/2N per generation.

Kimura (1955b) also considers the case where N is changing

gradually from generation to generation in a deterministic way

such that N t can be represented as a continuous function of t.

In this case equation (31.1) becomes:

dt/2N
t

J\. ~ 6pq e ° (314..1)

-r
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and equation (32) becomes:

-f dt/2Nt
Ht

= 2pq e
"°

(3^.2)

Thus a necessary and sufficient condition that for a

growing population, Ht and {\ t to vanish at the limit when t

f"°
dt

becomes °° is that the integral
J

— diverges, i.e., N
t
must

J N t

be at most of the order of T at the limit. If the population

increases more rapidly, heterozygosis cannot be eliminated

entirely.

On the other hand, if N changes stochastically around its

mean N with sufficiently small deviations compared with N and

if these deviations are mutually independent, then N in equa-

_ VN
tions (31.1) and (32) should be replaced by N - 3- , where

N
VN is the variance of N.

Random Genetic Drift Due to Random Fluctuation
of Selection Intensities

Kimura (195^4-) considers a pair of alleles lacking domi-

nance and the process of change of their frequencies when their

selection coefficients fluctuate fortuitously from generation

to generation around a mean zero.

Consider a large random mating population where the effect

of random sampling of gametes is negligible with alleles A^ and

A2. If x is the relative frequency of the gene A-^ in the popu-

lation and s is the selection coefficient of A-^, then the rate
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of change of gene frequency due to selection is approximately

6x = sx(l - x)

per generation, when s is small. If there is random fluctua-

tion in the selection intensity, s and 6x are random variables.

Let the mean of s be s and its variance V . Then the mean
s

of 6x is

Mgx = s x(1 - x)

and the variance

V6x " V
s
*2d " *)

2
'

Thus we would expect a certain irregularity in the process of

change in gene frequency from generation to generation.

When the rate of change is small, this process may be

treated as a continuous Markov process. If x is the gene fre-

quency at the t**1 generation and the function ${ x, p; t) de-

notes the density of the conditional probability that the fre-

quency lies between x and x + dx at the t* generation given

that the initial gene frequency was p at t = 0, we have

6tf(x,p;t) 1 Q
2

r -. A r -|

=r = - ^— V5x i2f(x,p;t) -X- M6x 0(x,p;t) . (35)
0t 2 Qx^ L J Ox L -»

This equation is known as "Kolmogorov 1 s forward differential

equation" and also as the "Pokker-Planck equation". Wright

(19/^5) was the first to apply this equation to population

genetics. (See Appendix.)
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The left-hand side of this equation represents the rate of

change of the relative probability of any class per generation

and can be written as the two terms on the right. Of the terms

on the right-hand side, the first is due to random fluctuation

and the second is due to the directed change.

Making the substitutions for M
g

and V"5x , equation (35)

becomes:

8^ v
s & , aS-—S 2- [x

2 (l-x) 2
|rf| -I S_ [x(i-x)tf], (0<x<l) (36)

Ot 2 <jx2 L J (jx L J

Let

* . 2x(l+»lA)-2 (l- x)
< 1+3l/2 )- 2

e
-U lU

and

:Jll + tanh (6/2)1

where t
x

= (tV
g
)/2 and s

1
= (2s)/V

£

This reduces (3&) to

d 2U

d9'

9 ir l+a-,
1

- sx
X = tanh (-)
L

Ij. 2 2

U = 0, (-«> < < °°)

Kimura (1955) gives the following two independent solutions.

~lb

U+ =

,6

1 + e
e

f
L
1 + e

e

ee

F(a+b, a+b+1, l+2a, -)
1+e

6'
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U =

where

1 + e< 1 + e'

e
e

F(-a+b, a+b+1, l-2a, -)

1+e e

(1 - s- '1 + s-

a = - A and b = \ .

If the gene A is randomly selected such that the mean

value of its selection coefficient is zero if taken over very-

long periods of time, then

M6x " °>

V
$X

= V
s
x2(1 - x)2

>

where V g is the variance of s; thus equation (35) reduces to

a^ _
v
3 a

2

dt 2 3x2
x2 (l - x) 2

(Zf (37)

This equation has singularities at the boundaries so that

no arbitrary conditions can be imposed there, but he shows that

if an initial condition ^(x, p; 0) is given, a continuous

stochastic process satisfying equation (37) can be uniquely

determined.

Still considering the case of no dominance, Kimura (1952)

makes the transformation

z = log ( ) .

1 - x
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Then the rate of change of the value of z per generation becomes

6z = s. If the gene frequency in the population is measured by

the z scale, it changes continuously from - CO to <x> as x

changes from to 1. Thus the distribution of z is approxi-

mately normal. The mean and variance of 6z are equal respec-

tively to the mean s and variance V
g

of the selection coef-

ficient s.

It follows that by using the same transformation he was

able to solve equation (37). Let

u=l/2 e
(V^8)t

x3/2 (1 - x)3/2*

and

x
z = log ( )

1 - x

The result is

8t 2 3z 2
(38)

This equation is also known as the heat conduction equation

and it is already established that there is a unique solution

which is continuous for - °o to + <co when t ^ and reduces to

u(z, 0) when t = 0.

u( ,, t) = _±_ ( e-'^ /"' „(p.o)dp
'- OO

Then if the initial distribution of gene frequencies (2f(x, p;0)
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is given and' after making substitutions, we have the unique

solution which satisfies (37) and is continuous between and 1,

,-(V s/8)t

exp

log
x(l-y)'

,-,2-1

i^(x,p;t) = — 7-TJ2J2^t [x(l-xj] *'* J

x yy (l - y) !^(y,0)dy .

(l-x)y

2 Vgt

(39)

On the other hand, if the initial condition is not a con-

tinuous distribution 0(x, p; 0), but is a given gene frequency

Xq, then the relative probability that the gene frequency in

the t
th generation will be between x and x + dx is

0(x,p;t) = exp
x/2ttV

3
t

"
|x(l - x)] 3/2

If!
8

1/2

log
x(1-xq)

(l-x)x

2 Va t

(14-0)

If x = .$, the distribution curve becomes unimodal if the

number of generations is less than 4/3V , but becomes bimodal

if it exceeds this value. (See Pig. 3.)

The mean of the distribution is always

Pi
XQ xj#(x, t)dx (W

but the variance

Vt = / (x - xq) 2 0(x, t)dx
Jo

(1*2)
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Pig. 3. Illustration of the process of change in the
distribution of gene frequencies with random fluc-

tuation in the selection intensities. It is
•assumed that there is no dominance, the
initial gene frequency is .$, and the

variance of the selection coef-
ficient is .Oij.83.
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increases in successive generations.

It can be represented asymptotically for large t

/ nxo(l-xo) -V a t/8Vt
= XQd - Xq) -/ e 3 / + ^

2V
s
t t Jt

(k3)

Thus as t becomes very large, V. is very close to V
3/8.

A highly complicated treatment of the terminal parts of

the distribution is given in Kimura (195#J-)j pages 286-289.

Comparison of Two Methods

Wright has repeatedly emphasized the evolutionary signifi-

cance of random drift in a natural population which is sub-

divided into many partially isolated subgroups. His theory is

accepted by many evolutionists. On the other hand, Fisher and

Ford (I9i|.7) emphasized the prevalence of drift due to fluctua-

tion of selection intensities and challenged the theory of

Wright by denying any significance of random drift due to small

population numbers in evolution. This led to experimental

studies by members of the school of Fisher and Ford (Sheppard,

195D.

In spite of all of the experimental studies, no mathe-

matical analysis was made. This prompted Kimura to make the

studies as mentioned before. With his results he makes the

following comparison.

1 v s- = - (W
2N 8
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Although this is a rather restricted formula, it could be used

to calculate N or V a if one or the other is known.

The effect produced by the random fluctuation in natural

selection is stated as being of relatively little importance

for small populations. However, in large populations it has

a remarkable effect that in the case of no dominance, the dis-

tribution curve is modified markedly in the parts where the

frequency of either allele is low.

Another comparison between drift due to random mating in

small populations and due to fluctuation of selection intensi-

ties is that when due to finite size, the gene in question may

indeed be lost, while if due to the latter case the gene may

reach an equilibrium near the fixation point, called quasi-

fixation. This is the asymptotic case as noted before.

Fixation of Mutant Gene

In large natural populations, gene mutations may be

occurring in each generation. While most of the genes are

deleterious, some turn out to be advantageous. These advan-

tageous mutant genes have a tendency to increase their frequen-

cies in later generations, and thus have a chance for estab-

lishment even in large populations. Wright (1931, 191+2) studied

this problem and gave some solutions. Kimura (1957) and Robert-

son (i960) presented solutions under general conditions for

the probability that a mutant gene would become fixed in a

population.

Equation (I4.9) takes the form
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An p(l-p) A2U r n /^U

V = ^— + sp(l-p) h + (l-2h)p ^- (l&.l)

Ot I4U Op 2 l j Op

where the selective advantage of mutant homozygote is s and

that of heterozygote is sh. The solution, u(p, t) , is the prob-

ability that the mutant gene reaches fixation by the t
tn gen-

eration, given that its initial frequency is p. This prob-

ability is equivalent to that of equation (17)

•

Kimura (1957) defines the probability of ultimate fixation

by

u(p) = lim u(p, t) .

For the neutral mutant gene, u(p) = p. If v is the initial

v
number of mutant genes, u(p) = — and the probability of fixa-

2N

1

tion per mutant gene is — .

2N

For the general case Kimura (19f?7) sets =— = 0, and obtains

-2N s (2h-l)x(l-x)-2N3X

Jo
u(p)=— (kk>2)

P 1 -2N 3 (2h-l)x(l-x)-2N sx
e dx

where 2h - 1 is the measure of dominance.

The following are more simplified equations for ultimate

frequency at fixation.
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For additive:

u(p)
l - e

1 ... n _ -2N s *

2N 3X
1 - e'^s

J

For recessive:

JO
u(p) = —

e °^ dx

'2Nax ,sx; dx

1
-2N Sx

2
.

e dx

Jo

For dominance:

'0

e
"--

' dx

u(p) =
1

2N sx(x-2)
e dx

By expanding each of these by the Taylor series and looking

only at the first two terms, since others will be very small,

for small N s one obtains:

for additive:

u(p) = p + p(l - p)N
s ;

for recessive:

2
P

u(p) = p + - p(l - p^)N ;

3

and for dominance:
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2

u (p) = p + _ p (p - i)( p - 2)N_.
3

APPLICATIONS AND EXAMPLES

Kerr and Wright (195&J-) made a three-part study of genetic

drift presented in three continuous articles. In the first, a

study of genetic drift due to inbreeding, he used the trait

"forked". The other two experiments were with "Bar" and

"spineless". It is stated that for the forked case, the selec-

tion differential is much less than ten per cent so that the

results illustrate random drift from inbreeding in an almost

pure form. Of 96 lines carried to fixation or to 16 genera-

tions, f* became fixed in I4.I lines, f(forked) in 29 lines, and

26 lines were still unfixed. The conclusion was that the amount

of selection against forked is slight.

The Bar experiment was more extensive and use was made of

the Pokker-Planck equation. One hundred eight small popula-

tions were used and little selective mortality was found but

severe selection against Bar from low productivity of homozygous

Bar females and Bar males. Starting from 50 per cent Bar genes

in each case, the distribution soon reached approximate stability

of form (about four generations) as type came to be fixed at a

rate of 22 per cent per generation and Bar at a rate of 0.7 per

cent per generation. After generation 10, type had been fixed

in 95 lines, Bar in three, and 10 were still unfixed. The form

of the distribution agreed well with that expected from a popu-

lation of effective size, 72 per cent of actual size, and an.
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empirically determined rate of change of the frequency ( q) of

Bar, 5q = -.35q(l - q)

•

Crow and Morton (1955) derived a formula for the variance

of random drift of gene frequency and for effective population

number. If N
Q is effective size, then this variance is

q(l - q)/2N, where q is the frequency of allele under discus-

sion. The formula derived is

q(l - q)
V5q =

J

Vk
1 - P» + (1 + P») —

^k

where N is total number of offspring, |x, and V, are the mean

and variance of the number of surviving offspring per parent,

and P' is Wright's coefficient of inbreeding. Also

2N
Ne

=

vk
1 - P' + (1 + P>) —

^k

They also indicate that V|_/nj_ is a measure of the degree

of departure from idealized conditions and thus propose that

this ratio be used as an index of variability in progeny number.

The authors then give an account of an experiment with drosophila

in which they applied these methods.

In a small population experiment Merrell (1953) followed

gene frequency changes in sex-linked recessive genes of

Drosophila Melanogaster. Population sizes were from 10 to 100.

The percentage of wild type flies rose rapidly and remained

above 90 per cent, while some strains decreased in frequency.'
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Large fluctuations occurred due to genetic drift, in some cases

leading to loss of the recessive gene. The results were inter-

preted as due to the combined effects of natural selection and

genetic drift.

Spencer (19^7) analyzed a sample of 110 wild flies showing

a frequency of 10 per cent for the gene "stubble bristles". In

a sample of identical size, collected at a point almost one-

fourth mile distant from the first collection area and two years

later, he found the gene frequency seven per cent for the

"stubble" bristle. The genes "brick" eye color and "dubonnet"

eye color were also recovered more than once in both samples.

The concentration of these genes in the population is explained

as caused by genetic drift brought about by seasonal fluctua-

tions of population size.

An example of the difference in large and small popula-

tions is shown in Pig. l±.

Computer Simulation

For the case of a = given by Kimura (1955), Barker and

Butcher (1966) developed a Monte Carlo computer program to in-

vestigate qua si-fixation of genes due to random fluctuation of

selection intensities. They start with a gene frequency of

0.9 for the desirable allele and a constant mean selection co-

efficient equal to .01. They performed 10 simultaneous experi-

ments with variance of selection coefficient V ranging from

.02 to 0.2. In terms of the probability of quasi-loss of the

desirable allele, the results confirm the theoretical expectation
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LARGE POPULATIONS SMALL POPULATIONS

Pig. Ij.. Difference in gene frequency change when
comparing large- (Jj.000) and small (20) samples
of drosophila, where each sample is divided

into 10 groups. (Dobzhansky, 1957.)
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of Kimura (19&2). The number of generations to final stability

of quasi-loss tended to increase as 2s/V
3

increased and could

be expected to be at least 1000 for 0.5 < 2s/V
s
< 1.0.

SUMMARY

Using a differential equation, Fisher (1922) was the first

to give a mathematical treatment for the problem of random

genetic drift in finite populations due to random sampling of

gametes. His result for the rate of decay of unfixed classes

was not correct, being only half its true value. Wright (1931),

using path coefficients and an integral equation, supplied the

first correct solution for the state of steady decay.

In these results, Fisher and Wright both assumed that a

steady state of decay had been attained, but nothing was known

about how the process leads to the state of steady decay.

Kimura (1955), by calculating the moments of the distribution

with the help of the Fokker-Planck equation, obtained a solu-

tion which assumed an infinite series under the continuous

model, showing that the process approaches asymptotically the

state of steady decay.

When there is drift due to random fluctuations in selection

intensity and random sampling, the process of change in gene

frequency in a population can be represented by a stochastic

process. Kimura (195^-) presented an analysis for this process

for the case of no dominance. In. the case of random drift in

small populations it was found that complete fixation or loss

of an allele would be realized. Complete fixation or loss may
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not be realized in the case of drift due to fluctuation of

selection intensities. It is shown that for large populations,

if a sufficient number of generations are allowed, a situation

will be realized in which the allele is either almost fixed in

the population or almost lost from it. The rate of decay per

generation is given as V
g/8, where V s is the variance of the

selection coefficient.

Kimura (1954) also made a comparison of drift due to

fluctuation intensities with drift due to random sampling. He

gives a rather restricted formula by equating the two rates

of fixation:

2N 8

There are several experimental studies on this subject,

some of which are listed, dealing with experimental animals.

It is noted here that there have been studies of genetic drift

in human populations, especially those of Glass (1952, 1954)

and Lasker (1952, 196ij.) .

A derivation of the Pokker-Planck equation and its use

in deriving the distribution function given by Wright is given

in the Appendix.
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APPENDIX

Derivation of Pokker-Planck Equation and Its
Use in Deriving the Distribution

Equation Given by Wright

Using a method given by Kimura (1955c), let (2f(x, t) repre-

sent the curve for probability distribution of gene frequencies

at time t. The distribution is approximated with histograms,

each column having width h, as shown in Pig. $. The gene fre-

quency of each class is represented by the middle point of the

column. Consider the class with gene frequency x. For suffi-

ciently small h, the area of the column 0(x, t)h gives the prob-

ability that the population has gene frequency x + l/2 h.

By considering a small change in time At, it is sufficient

to consider the movement of the gene frequency to its adjacent

classes. This population, with gene frequency x, will move to

another class due to systematic as well as random changes.

Let m(x) At be the probability that the population moves

to the higher class (x + h) by systematic pressure. Let

v(x) At be the probability that it moves outside the class by

random fluctuation, half of the time to the left class (x - h)

and the other half to the right class (x + h). Movement to

other than adjacent classes is neglected due to the very small

probability.

Thus the probability that the population will have gene

frequency x + l/2 h after At is obtained by considering the

exchange of gene frequencies between these adjacent classes.
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0(x,t + At)h = 0(x,t)h -

fv(x - h)

v(x) + m(x) At 0(x,t)h

At S2f(x - h, t)h

v(x + h)
At 0(x + h, t)h

+ m(x - h) At 0(x - h, t)h W)

The second term on the right is the amount of loss due to

movement to other classes, the third term is contribution from

left class, the fourth- by the right class both due to random

change, and the last term is the contribution from the left

class due to systematic change.

Let 6"2 (x, t) At be the variance of the change in x per At

due to random change,

5"2 (x,t) At - h2
v(x)

L 2

At + (-h)
v(x)

1- 2

At

so

so

6"2
(x,t) = h

2
v(x) .

Let M(x, t) At be the mean change in x per At,

M(x, t) At = h m(x) At

M(x, t) = m(x)h.

(1+6)

(1+7)

Now substitute (1+6) and (i+7) into (1+5) and divide both sides

by At • h. Then on rearrangement
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I I—I I I

x-h x .'x+h

y = 0(x, t)

Pig. $.
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tf(x,t + At) - #(x,t)

At

(f
2 (x+h,t)^(x+h,t)-6'2 (x,t)^(x,t) 5

2 (x,t)^(x,t)-6"
2 (x-h,t)^(x-h,t)

h

M(x,t)0(x,t) - M(x-h,t)^(x-h,t;
(48)

h

Taking the limit At -> 0, h -> gives:

6tf(x,t) 1 32

3t 2 3x2

<$-^(x,t)^(x,t)
a
6*

M(x,t)^(x,t) (24-9)

This is known as the Fokker-Planck equation and also as

the Kolmogorov forward solution.

Rewriting (I4.9) where 4q represents the tendency toward a

stable equilibrium point due to systematic pressure and 6q is

tendency to drift away from that point due to random deviation

and where the mean change is taken as zero:

d
8q

(50:

Then, according to Li (1955),' integrating (50) gives

feq
2 ^^ + constant

- (51 )

1 rl

2 6q

At this point it is seen that the left-hand member Aq • ^(q)

represents the fraction of the distribution that tends to be
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carried past a given value of q by the systematic pressure Aq

in each generation. Since the distribution is stationary, the

right-hand side

; I k< " q)

1 d r

i|U dq
q(l - q) JZf(q)]

must be the fraction of the distribution -which tends to be

scattered away in the opposite direction by random deviations

in each generation.

Rewriting (5l)

Aq
l_6o~q

tf(q)J ="
2 dq66q

£

2 Aq d/dq gg"
q

2
gf(q)

|6o"q tf(q)|

6Ta
2

6JT *«>

then integrating again,

dq
2 g dq = log [^2 (2f(q)

6o~c

+ constant,

Therefore

J*(q)

6o~a

exp

>6q

P ^q

6qq
c

dq

and where C is a constant such that

n
(Zf(q)dq = 1.

(52)



53

This is the general formula (£2) for the distribution

of a gene frequency when a steady state (under the joint

actions of Aq and 6q) has been reached, as given by Wright

(1937, 1938a, 1938b, 1942a).
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Genetic drift due to random sampling of gametes and due to

fluctuation of selection intensities is presented. Both ideas

are considered as stochastic processes and are treated as such.

Fisher, using a differential equation, was the first to give a

mathematical treatment for the first case in finite populations.

His result for the rate of decay of variance was not correct,

being only half large enough. Wright, using path coefficients

and an integral equation, gave the correct solution as l/2 N

per generation. This rate of steady decay was later expanded

by Kimura. By using the Pokker-Planck equation and computing

the moments of the distribution, he agreed with Wright's results

and also obtained a solution which assumed an infinite series

under the continuous model, showing that the process approaches

asymptotically the state of steady decay. It is found that

given enough generations, the gene in question will be either

completely lost or completely fixed in the population.

For the case of drift due to fluctuation of selection in-

tensities, it is found that again the gene frequency becomes

fixed and reaches this fixation asymptotically, but not neces-

sarily is completely lost or fixed at gene frequency 1.0. It

is found that the rate of decay is about V 3/8, where V
s

is the

variance of the selection intensities.

A comparison is made of these two types of genetic drift

and examples are given.

A derivation of the Fokker-Planck equation and its use to

derive the distribution function given by Wright is given in

the Appendix.


