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Abstract 

Reliable and economical design of Portland Cement Concrete (PCC) pavement structural 

systems relies on various factors, among which is the proper characterization of the expected 

permeability response of the concrete mixes. Permeability is a highly important factor which 

strongly relates the durability of concrete structures and pavement systems to changing 

environmental conditions. One of the most common environmental attacks which cause the 

deterioration of concrete structures is the corrosion of reinforcing steel due to chloride 

penetration. On an annual basis, corrosion-related structural repairs typically cost millions of 

dollars. This durability problem has gotten widespread interest in recent years due to its 

incidence rate and the associated high repair costs. For this reason, material characterization is 

one of the best methods to reduce repair costs. To properly characterize the permeability 

response of PCC pavement structure, the Kansas Department of Transportation (KDOT) 

generally runs the Rapid Chloride Permeability test to determine the resistance of concrete to 

penetration of chloride ions as well as the Boil test to determine the percent voids in hardened 

concrete. Rapid Chloride test typically measures the number of coulombs passing through a 

concrete sample over a period of six hours at a concrete age of 7, 28, and 56 days. Boil Test 

measures the volume of permeable pore space of the concrete sample over a period of five hours 

at a concrete age of 7, 28, and 56 days. In this research, backpropagation Artificial Neural 

Network (ANN)-based and Regression-based permeability response prediction models for Rapid 

Chloride and Boil tests are developed by using the databases provided by KDOT in order to 

reduce or eliminate the duration of the testing period. Moreover, another set of ANN- and 

Regression-based permeability prediction models, based on mix-design parameters, are 

 



developed using datasets obtained from the literature. The backpropagation ANN learning 

technique proved to be an efficient methodology to produce a relatively accurate permeability 

response prediction models. Comparison of the prediction accuracy of the developed ANN 

models and regression models proved that ANN models have outperformed their counterpart 

regression-based models. Overall, it can be inferred that the developed ANN-Based permeability 

prediction models are effective and applicable in characterizing the permeability response of 

concrete mixes used in transportation applications.   
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CHAPTER 1 - INTRODUCTION 

1.1 Overview 
Material modeling is a fundamental phenomenon in engineering research and practice. A model 

is typically developed to describe the material constitutive/mechanical behavior under certain 

boundary conditions. Material model serves as the basis for numerical calculations and guidance 

for analyzing, designing, constructing and rehabilitating the structures including the material. 

Many concrete structures are built today with specifications emphasizing for low-permeability 

concrete because the durability problem of the concrete structures has become widespread in 

recent years. Due to its incidence and related high repair costs, many research projects have been 

conducted by government agencies to better understand the testing methods used and to evaluate 

the concrete behavior when subjected to various environmental and/or  loading conditions. The 

long-term durability of concrete is dependent on its permeable pores. In other words, the 

permeability of concrete is used as the main assessment criterion which has been established 

based on empirical, conventional and correlation techniques. In this study, concrete which is one 

of the most important and widely used construction materials is evaluated in order to develop a 

material permeability response model. The permeability of concrete mixes mainly depends on 

the internal pore structure. The pore structure in turn depends on some factors such as the mix 

design, curing condition, degree of hydration, use of supplementary cementitious materials, and 

construction practices. Concrete behavior has to be evaluated in terms of movement of water, 

sulphate ions, alkali ions, and other causes of chemical attack within the interconnected pores. 

This evaluation is typically conducted to avoid a potential risk of chloride-ingress which may 

lead to corrosion of the reinforcing steel and a subsequent reduction in strength, serviceability, 

and structural aesthetic. For appropriate design and quality control of reinforced concrete 

structures, the ability of chloride ions to penetrate the concrete must be known. However, the 

penetration of chlorides in concrete is a slow process which can not be directly determined in a 

time frame that would be useful as a quality control measure (Mackechnie and Alexander, 2004). 

In other words, concrete permeability to water and chloride ion is a design feature which can not 

be measured quickly for upcoming projects. For this reason, the Federal Highway Administration 

developed a rapid test method for determining the apparent chloride permeability of various 
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concrete mixes. It is commonly called the AASHTO T277 test method and also known as the 

“Rapid Chloride Permeability Test”. The Rapid Chloride Permeability test is the most widely 

used and suitable test method for evaluation of materials and material properties for design 

purposes, research and development. This method measures the electrical conductance of 

concrete to provide a rapid indication of its resistance to the penetration of chloride ions. Another 

alternative method for Rapid Chloride test that has been published by American Society for 

Testing Materials (ASTM) is the Boil test which is conducted to measure the percent (%) volume 

of permeable pore space by determining the concrete sample’s weight before and after the test.   

 

A new period of engineering material modeling emerged with the utilization of the Artificial 

Neural Networks (ANNs) approach to properly characterize the behavior of geo-materials during 

the 1990s by Ghaboussi et al. (1991), Basheer and Najjar (1994), Najjar and Basheer (1996a) and 

Najjar et al (1996b). ANN is a mathematical or computational model that attempts to emulate the 

structure and/or functional aspects of biological neural networks. ANNs-based material modeling 

approach has been receiving increasing interest in the engineering area during the past 20 years. 

ANNs approach is considered the best function approximation technique that is well suited for 

proper material behavior characterization. In a typical modeling process, ANNs-based model is 

trained to attain a specific knowledge through training or retraining via mathematically-based 

process. As a result, the resulting model stores the extracted knowledge, features embodied in the 

database, within its connection weights. ANNs possess the following unique advantages in 

information processing tasks: 

 

1. ANNs are capable of directly learning complex nonlinear relationships from a large 

body of datasets without the need for any simplifying assumptions; 

2. Model prediction accuracy can be improved by adding new training datasets which can 

internally adjust the model’s connection weights in order to capture new features 

hidden within the new datasets; 

3. ANNs have the ability to extract information from incomplete or partially incorrect 

datasets;  

4. ANNs can be used to develop general purpose models to characterize various 

responses of material behavior.  
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ANNs-based material modeling approach has been successfully used to properly characterize the 

material behavior for various geo-materials such as concrete, sand, clay, and asphalt. The 

research conducted in this thesis aims at exploring the potential use of ANNs to efficiently model 

the permeability response of concrete mixes used in transportation applications such as PCC 

pavements and bridges. To properly characterize the permeability responses, various ANN- and 

Regression-based prediction models were developed and their prediction accuracy measures 

were numerically and graphically assessed. Rapid Chloride and Boil Test based prediction 

models were developed from previously conducted experimental tests performed by Kansas 

Department of Transportation (KDOT). Furthermore, another set of ANN and regression Rapid 

Chloride prediction models involving mix-design input variables were developed by using 

datasets obtained from the literature. In the following chapters, test procedure protocols, 

databases used, ANN model developments phases and their corresponding prediction accuracy 

measures obtained will be discussed in details.  

 

1.2 Organization of the Thesis 
 

Chapter 1- Introduction: This chapter presents a brief discussion on ANNs-based modeling 

approach and advantages of using ANN method in material modeling. Also, brief summaries 

about the contents of each chapter are presented.  

 

Chapter 2- Literature Review: This chapter contains a brief literature review related to the 

research conducted in this study. Several relevant publications on ANN material modeling that 

contributed significantly to this research study are highlighted.  

 

Chapter 3- Artificial Neural Network: This chapter discusses the aspects of ANN 

computational algorithms. Basic definition, elements, and Backpropagation learning algorithm 

used in ANN approach are discussed in details. Statistical prediction accuracy measures used to 

identify the best performing ANN models are also defined in this chapter.   
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Chapter 4- Rapid Chloride Testing: Development of KDOT-Based Rapid Chloride 

Prediction Model: This chapter describes the experimental procedure of the “Rapid Chloride 

Test” and the data collection process. ANN and Regression, permeability prediction models, as 

well as their development stages are discussed in details. Corresponding graphical results and 

their statistical accuracy measures are presented at the end of the chapter.  

 

Chapter 5- Rapid Chloride Testing: Development of Mix-Design Based Prediction Model: 

This chapter gives information about the mix-design parameters used in relation to the Rapid 

Chloride Test discussed in Chapter 4. Data collection process, ANN and Regression model 

development phases for the mix-design based permeability prediction models are discussed in 

details. Prediction accuracy comparisons in graphical and statistical terms for the developed 

ANN and regression models are also presented in this chapter.   

 

Chapter 6-Boil Testing: Development of KDOT-Based Prediction Model: This chapter 

describes the experimental procedure of the KDOT used “Boil Test” and the data collection 

process used to build the needed database. ANN and Regression, % void prediction models, and 

their development phases are discussed in details. Graphical prediction comparisons and 

associated statistical accuracy measures for all developed models are presented at the end of this 

chapter.   

 

Chapter 7- Summary, Conclusions and Recommendations: Summary of the research work 

performed in this study and major conclusions obtained are presented in this chapter. 

Recommendations for future research studies are also presented.   
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CHAPTER 2 - BACKGROUND 

One of the most important properties of concrete affecting the durability of a structure is chloride 

diffusivity. The diffusivity of porous materials is determined formally by diffusion cells or by 

immersion in a solution. However, these methods are time-consuming and typically require 

months or years to obtain the needed results. Engineers and researchers need a rapid method to 

evaluate existing structures, new materials, and treatments. For this reason, the conventional 

methods can not meet engineering requirements. An existing rapid method, Whiting’s coulomb 

test (1981), has been adopted as an ASSHTO standard method. However, there have been a 

number of criticisms of this technique (Stanish et al., 2000). 

 

One of the criticisms is that the coulomb test does not only measure the chloride ion, but rather 

measures all ions in the pore solution. As an alternative method to avoid this drawback, Luping 

and Nilsson (1992) established a mathematical model of ion diffusion under the action of a 

constant electrical field and found the exact analytical solution for the differential equation 

describing the modeled behavior by utilizing the semi-infinite diffusion concept.  A simple 

method characterizing chloride penetration into concrete was proposed by Luping and Nilsson 

(1992) which enables rapid assessment of chloride penetration profiles and their associated 

depths. Furthermore, Shi (2004) has reported that Rapid Chloride Test is not a valid test for the 

evaluation of permeability of concrete mixes made from different materials and/or different 

proportions. He accordingly recommended the use of the reliable and fast test method developed 

by Luping and Nilsson (1992).   

 

The other criticism is concerning the fact that the conditions under which all measurements are 

made may cause notable changes to the tested concrete specimens. A study was conducted by 

Feldman et al. (1994) to observe how changes in the testing procedure can affect the obtained 

results. Factors such as temperature, alternating current (AC) impedance, initial direct current 

(DC), amount of charge passed, and chloride ion profiles were monitored during polarization of 

four different concrete mixes. It was found that simple measurement of initial current or 

resistivity yielded the same ranking as those obtained via conventional testing for the four 

concrete mixes. As a result, Feldman et al. (1994) believed that the proposed simple initial 
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measurements can be used to produce reliable results similar to those obtained from conventional 

chloride testing method but at much faster time. Therefore, yielding a considerable time saving 

benefits.  

 

A simplified method of measuring concrete resistivity was established by Riding et al. (2008). 

Cylinders measuring 100 mm x 200 mm were cured in 100% relative humidity and tested using 

the same equipment as specified in ASTM C1202. The method has been developed to eliminate 

the problem of the temperature rise in the sample during the test. In this method, concrete 

resistivity can be calculated by taking only one current reading 5 minutes after the test had 

started. Therefore, potential temperature rise in the concrete sample is avoided especially when 

testing low quality concrete. The good correlation reported between the new method and the 

standard testing method proves the validity and potential promise of the proposed method.  

 

A computer model has been developed by Claisse et al. (2010) to simulate the Rapid Chloride 

Permeability test described in ASTM C1202. The key process of diffusion and electromigration 

using standard equations is represented in the model. The model also maintains charge neutrality 

by modeling changes to in voltage distribution. This method empowers the model to predict 

current-time transient similar to those recorded in experiments. It can also be utilized to obtain 

basic parameters such as diffusion coefficients for tested samples from the observed data.  

 

A faster and simpler alternative testing method to AASHTO T277/ASTM C1202 based on the 

AC impedance techniques is proposed by Liu and Beaudoin (2000). This method provides at 

least an equivalent indication of the concrete permeability with respect to AASHTO 

T277/ASTM C1202. Moreover, it overcomes many of the shortcomings of current methods. The 

result can be obtained within minutes and without the potential for heat build up. Therefore, 

causing no microstructural changes. A similar alternative method has already been proposed by 

Zhao (1998). However, it appears to be too simplistic when compared with the method proposed 

by Liu and Beaudoin (2000). 

 

Another accelerated testing method has been developed by Srinivasan et al. (2007). This method 

requires a simple experimental set-up. The method involves polarization of a coated concrete 
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cylindrical specimen containing rebar under a constant voltage in sodium chloride solution with 

respect to an external cathode. In this research, it was reported that the current time-dependent 

response was found to be similar to that of a typical service life model indicating depassivation 

and corrosion propagation. This test method can be used for performance evaluation of coatings 

and high performance concrete containing different mineral admixtures.  

 

Based on a set of multi-scale computer models, an equation has been developed by Bentz (2000) 

for predicting the chloride ion diffusivity of high performance concretes containing silica fume 

as a function of mixture proportions and expected degree of hydration. It is indicated that the 

model-predicted relative improvements appear to be in good agreement with the experimental 

data generated in two recent studies (Hooton et al., 1997; Alexander and Magee, 1999). By using 

the technical background and employing the numerical assumptions, Bentz (2007) has presented 

a prototype virtual test method that includes prediction of the conductivity of the cementitious 

binder pore solution and total charge passed during an ASTM C1202/AASHTO T277 Rapid 

Chloride Permeability test. In addition, the computer implementation of the virtual test is 

presented as a set of HTML/Java-Script web documents. Validation against existing datasets is 

presented with a reasonable agreement noted between the experimental and virtual test results.  

 

Boil Test (ASTM C642) has been used as another alternative method for Rapid Chloride 

Permeability test (AASHTO T277/ASTM C1202). In ASTM C642, the volume of the sample is 

determined by the displacement method, in which the difference between weighing in air and 

weighing in water is attributed to the buoyant effect of the water. This in turn is related to the 

density of the water and the displaced volume. In informal testing, the volume of the specimen is 

frequently calculated from the physical dimensions of the sample. As a result, this approach can 

be useful only when the shape of the specimen is highly regular and the dimensions can be 

accurately measured (Lamond and Pielert, 2006). Due to the fact that there is no reference 

standard available for comparison, bias for this test method can not be determined. However 

several research studies (i.e., Gonzalez-Fonteboa and Martinez-Abella, 2008; Padmini et al., 

2002; Lomboy and Wang, 2009; Tosun et al., 2008; Sahmaran and Li, 2009) have considered the 

Boil Test method to be a viable method for determining the percent volume of voids in their 

research studies.  
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CHAPTER 3 - ARTIFICIAL NEURAL NETWORK 

3.1 Definition and Elements  

3.1.1 Definition 
An artificial neural network (ANN) is a method based on the operation of biological neural 

networks. In other words, is a simulation of biological neural system. ANN is a mathematical 

model or computational model that attempts to emulate the structure and/or functional aspects of 

biological neural networks. The interest in neural networks re-emerged only after some 

important theoretical results were attained in the early eighties, notably after the discovery of the 

error back-propagation scheme. Nowadays, artificial neural networks can be most adequately 

characterized as ‘computational models’ with particular properties such as the ability to adapt, 

learn, generalize, cluster or organize data in an operation based on parallel processing. However, 

many of the mentioned properties can be attributed to existing models for which the neural 

network approach can be suited better in certain applications. Parallel processing is often 

described with biological systems. However, there is still so little known about biological 

systems. Models developed by artificial neural network approach can be identified as 

oversimplification of the biological systems (Krose and Smagt, 1996). Artificial neural networks 

are highly interconnected structures consisting of many simple processors (neurons) that perform 

massively parallel computation for data processing and knowledge representation. ANNs 

approach is represented by mathematical algorithms designed to imitate methods of information 

processing and knowledge acquisition of the human brain (Pham 1994). ANNs systems typically 

consist of the same following basic components (Agrawal and Daiutolo, 1992): 

 

i. a neuron or node, 

ii. an activation function associated to each node, 

iii. a real-valued weight associated with each link between two nodes,  

iv. a real-valued bias associated with each node, 

v. a transfer function, 

vi. a propagation rule, and  

vii. a learning rule. 
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The ANNs have generalization capability which is highly dependent on the size of training 

samples, range of data domain, and density of solution space. Generalization process by an 

ANNs approach is very much similar to the human nervous system by increasing the acquainted 

knowledge through long-term experimentations.     

3.1.2 Elements 
The most important element in every ANN architecture is the neuron which is similar to the 

biological neurons. It is considered as a cell with a built-in activation function connected to other 

neurons by a set of connections. Main elements of an Artificial Neural Network are the input 

layer, hidden layer(s), output layer, and connection weights. An example of an ANN structure is 

depicted in Figure 3.1. Prediction accuracy of the network depends on its interconnected weights. 

A network usually performs the following three sequential tasks (Najjar et., 1996a):  

 

a. Input variables fed to the input layer, 

b. Processing of information within the hidden layer, 

c. Production of outputs at the output layer. 

 

The input layer contains the input nodes and does not perform any mathematical operation. The 

number of the input nodes is based on input variables which are assumed to influence the output. 

The number of the input variables affects the performance of the network. Information is 

received, processed and forwarded to the hidden nodes by the input layer. The hidden layer may 

contain one or more layers consisting of a set of nodes which processes information within the 

network body. The hidden layer which is a transition layer between input layer and output layer 

is the most important element in the network. The hidden layer processes the information passed 

on from the input layer and feeds it forward towards the output layer. In other words, it facilitates 

the flow of information between the input nodes and the output node via the connecting links. 

The accuracy of the developed models is considerably affected by the number of the hidden 

layers as well as the number of neurons involved within each layer. Connection weights are the 

interconnecting links between the neurons in sequential layers. Each neuron is connected to 
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every other neuron in the next layer via links which have individual and adjustable connection 

weights. There are no side connections used in this modeling approach.   

 

3.2 Backpropagation Learning Algorithm 
Backpropagation neural networks consist of a number of layers including a specified number of 

neurons. The input layer includes the input neurons corresponding to parameters which are 

assumed to affect the outcome of the phenomenon. The output layer consists of the output 

neuron(s) which represent(s) the solution of the problem. The hidden layer located between the 

input layer and the output layer is not designed to have any direct contact with the outside 

environment. It has been shown (Hornik et al., 1989; Funahashi, 1989; Cybenko, 1989; Hartman 

et al., 1990) that only one layer of hidden units can approximate any function with finitely many 

discontinuities to arbitrary precision, provided that the activation functions of the hidden units 

are non-linear (the universal approximation theorem). In most applications, a feed-forward 

network with a single layer of hidden units is used.  

 

A sigmoidal function which is the most widely used function is where the input passes through to 

calculate the output of a neuron at the output layer. The calculated outputs are then compared to 

actual outputs to determine the error which is consequently used for error function determination. 

Then, the error function is used to adjust the error starting from the connection weights linked 

with the output, and backward to the input layers. In other words, the generated error by the 

network is used to adjust the connection weights. The connection weights are initially not known 

and typically assigned random or specified values. The output value obtained using the initial 

connection weights may not be close to the target value. The error correction is done based on 

the calculated error and the initial connection weights are adjusted by propagating the error 

backwards. With the new adjusted connection weights between input layer nodes and hidden 

layer nodes as well as hidden layer nodes and output layer node, the inputs are forwarded once 

again to determine the new output value accordingly, then the new error is determined and is 

used to adjust the connection weights.  The forward activation of signals and the 

backpropagation of error are continuously repeated on all training datasets until the error is 

reduced to a predetermined minimum or an allowed tolerance (Najjar et al., 1997; Najjar and 
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Zhang, 2000). The final connection weights which produce an error within the allowed tolerance 

range are then stored to represent the network. The final network can be used to predict the 

desired output(s) of a new dataset that have no actual output values. Note that, backpropagation 

ANN is a feedforward network and the backpropagation term does not mean the same with 

feedbackward propagation since the backpropagation is used for the error distribution in contrast 

to direction of signals’ flow. In other words, the training algorithm starts with a feedforward of 

the input variables, followed by backpropagation of the associated error and connection weights’ 

adjustment.  

3.3 Learning Algorithm  
The learning process of a standard Backpropagation Neural Network is demonstrated in this 

section.  

 

Nodal Input Values  

The nodes in a certain layer are connected to all other nodes in the following layer. Each node 

receives signals from all other neurons in previous layer and integrates those signals as a 

weighted average. For instance, input value for neuron “A” is the sum of the integrated signals 

multiplied by their corresponding connection weights. The input value for a neuron “A” can be 

expressed with the following equation:  

 

weightconnectionvaluenodeInput A ×∑= )()(       3.1 

 

As depicted in Figure 3.2, the input of one node (i.e., Neuron A) is the all incoming signals and 

collective effect signal calculated as the weighted sum of all incoming signals is calculated 

according to the following equation:  

 

∑
=

−=
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L
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Where  refers to the excitation of neuron L
jNet j  in the thL layer,  represents the numerical 

value of the interconnection weight between neuron  in the  layer and neuron 

L
jiw

i thL )1( − j in the 
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thL layer.  is the output from the  neuron in the layer. Finally, is 

nonlinearly transferred via an appropriate activation function.  

)1( −L
iOut thi thL )1( − L

jNet

 

Activation Function: Sigmoidal Function 

To calculate the output of a neuron, the input (i.e., excitation) must be processed through a 

transfer function because the input might either be very large or negative. In order to avoid large 

or negative values and to introduce nonlinearity in the model, the neuron’s input experiences an 

additional nonlinear transformation to produce an output based on the following equation:  

 

AA inputfOut )()( =           3.3 

 

Where “f” is a transfer function and “ ” is the input value for node A previously 

calculated using equation 3.1.  

Ainput)(

 

In this study, the Sigmoidal function, among the most common activation functions, was used as 

the activation function. The Sigmoidal function is the most widely used activation function in 

Backpropagation networks. The final output signal is positive, continuous and has a specified 

interval between 0 and 1. Sigmoidal function is expressed as  

 

)(1
1)( Inpute

Inputf −+
=            3.4 

 

Since a neuron receives a total excitation (i.e., input) which is equivalent to “ ”, then the 

output from the neuron can be expressed as  

Net

 

)(1
1)( Nete

Netfa −+
==          3.5 

 

As “ ” reaches a high (approx. 4.0) or low (approx. -4.0) values, activation stabilizes at 

values between 0 and 1, respectively.  

Net
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Weight Adjustment 

At the last stage of the backpropagation algorithm, the latest adjusted weights are updated by 

adding the weight adjustment values to the previous weight values. While the inputs are 

processed forward through every single layer of the network to produce outputs, the error 

between predicted and target values is used to adjust the connection weights. The incremental 

change for the current weight can be calculated as follows:  

 
)()( previousL

ji
newL

ji
L
ji www −=Δ          3.6 

 

where “new” and “previous” stand for the current and previous iterations. According to 

Backpropagation neural network algorithm (Zupan and Gasteiger, 1993), incremental change, 

 can be computed using the Delta-rule: L
jiwΔ

 
1−=Δ L

i
L
j

L
ji Outw δη           3.7 

 

where η is the learning rate which controls the size of the updating process. The error factor,δ , 

reflects the weighted error on the connection ji . The term represents the output from the 

 neuron in the  layer.  

1−L
iOut

thi thL )1( −

 

Learning Process 

The learning process of a neural network is given as follows 

 

1) Input vectors are marked as X1, X2, ……, Xn, 1  where n refers to total number of input 

variables and last input stands for the threshold or the bias.  

2) Propagate the input vectors, X1, X2, ……, Xn, via the connection weights to compute the 

output vectors,  using the Equation 3.3 until consequently reaching . 1Out lastOut

3) Itemize initial weights,  and update connection weights on output layer using the 

equation: 

L
jiw

)(1 previouslast
ji

last
i

last
j

last
ji wOutw Δ+=Δ − μηδ       3.8 

 13



Where δ  is the correction factor (i.e., the weighted error) and is computed as 

 

( ) ( )last
j

last
j

last
jj

last
j OutOutOuty −−= 1δ        3.9 

 

in which  is target value of component, jy j in the output vector, Y. The function shown 

in Equation 3.8 is called generalized Delta-rule with a momentum rate (μ ) where, )10( << μ  

(Rumelhart et al., 1986). The current connection weight is updated by adding the adjustment to 

the previous connection weight. Biases are similarly updated on the last layer based on the 

following equation:  

 
)( previouslast

ji
last
j

last
ji bb Δ+=Δ μηδ         3.10 

 

 

4) All weights on any hidden layer are updated by using the following equation: 
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Where δ  is the correction factor and is computed as 
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The biases are corrected within the hidden layer(s) using 

 
)( previousL

ji
L
j

L
ji bb Δ+=Δ μηδ         3.13 

 

5) Steps (1) through (4) are repeated for each training dataset. 

6) Steps (1) through (5) are repeated until the predicted output meets the corresponding 

target output within a predetermined tolerance or the training iterations reaches the 

maximum limit.  
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3.4 Initial Number of Hidden Nodes  
The number of initial hidden nodes and the maximum allowed hidden nodes in ANN model 

development are specified by the user. ANN process starts with a user-specified initial hidden 

node and goes up to the maximum allowed number of hidden nodes. At the end of this process, 

ANN structures which have the least number of hidden nodes and the best statistical accuracy 

errors are chosen to be reevaluated in terms of statistical accuracy measures as well as graphical 

accuracy measures. The maximum number of hidden nodes (HN) can be calculated by the 

following equation: 

 

( ) ( )
( ) ( ) 1varvar

var
++

−
≤

iablesoutputofnumberiablesinputofnumber
iablesouputofnumberdatasetstrainingofnumberHN    3.14 

 

Note that, choosing too many hidden nodes could lead to overtraining situation. On the other 

hand, very few hidden nodes may not be enough to obtain a model for a complex phenomenon. 

Concerning the number of hidden layers, networks with one hidden layer are more adequate and 

efficient. In this research, only one hidden layer was used for ANN architecture.  

 

3.4 Model Selection Criteria 
In order to compare the performance of generated networks and to select the best performing 

network, statistical accuracy measures such as the Coefficient of Determination (also known as 

R2), the Mean Absolute Relative Error (MARE), and the Averaged of Squared Error (ASE) are 

evaluated. Training, testing, validation and overall performance parameters should be considered 

during the evaluation process. The level of agreement between the predicted and actual output 

values is interpreted based on statistical measures of the network producing the minimum values 

of ASE and MARE; and the highest R2. The ASE value can be expressed by the following 

equation:  
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Where is the output (i.e., predicted permeability value in this study) produced by the network 

and is the real value (i.e., actual permeability value in this study). The MARE value is 

computed by the following equation:  
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Further information about ANN can be found from the following references: Rumelhart and 

McClelland (1986); Hopfield (1982); Haykin (1999); Rumelhart et al. (1986); Fausett (1994); 

Basheer (1998); Ali (2000); Herz et al. (1991); Wu and Ghaboussi (1995); Ghaboussi et al. 

(1991). ANN method is used to develop permeability prediction models in the following 

chapters.  Model development process for each chapter is described in details and the statistical 

accuracy measures and graphical comparisons for the best performing networks are shown at the 

end of their corresponding chapter.   
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3.4 Figures 
 

 

Figure 3.1 Structure of an ANN 

 

 

 

Figure 3.2 Activation Process of a Neuron 
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  CHAPTER 4 – RAPID CHLORIDE TESTING: DEVELOPMENT 

OF KDOT-BASED RAPID CHLORIDE PREDICTION MODEL  

4.1 Introduction  
Permeability of the concrete in PCC pavement is an important factor for long-term durability. 

Wherever there is a potential risk of chloride-induced corrosion, the concrete should be evaluated 

for chloride permeability (Joshi and Chan, 2002).  Rapid Chloride Test is the most widely used 

and suitable test method for evaluation of materials and material proportions for design purposes, 

research and development. This method measures the electrical conductance of concrete to 

provide a rapid indication of its resistance to the penetration of chloride ions. In other words, this 

test method basically monitors the amount of electrical current passing through 50-mm (2-in) 

during a six-hour period. It is well known that diffusion controls the transport of chloride ions in 

concrete. The AASHTO T-259 90-day ponding test requires considerable time to enable 

measurement of the diffusion of chloride ions in hardened concrete (Shi et al., 1998). Based on a 

preliminary study, a potential difference of 60 V dc is applied across the ends of the specimen, 

one of which is immersed in 3 percent (by mass) chloride solution (NaCl), the other is in 0.3M 

sodium hydroxide solution (NaOH). The total charge, in coulombs, passed through the specimen 

can be related to the resistance of the specimen to chloride penetration. It is marked in AASHTO 

T277-05 that the correlations between this test procedure and long-term chloride ponding 

procedures have to be established in order for this method to be applicable. The laboratory 

evaluation of the electrical conductance of concrete samples provides a rapid indication of their 

resistance to chloride ion penetration. In applications such as quality control and acceptance 

testing, the experimental results (total charge passed, in coulombs) must be evaluated by using 

Table 4.1 unless otherwise noted by the specifying agency.  

 

When this test is used on surface-treated concrete, for instance, treated with penetrating sealers, 

interpreting results should be done carefully because the results from this test show low 

resistance to chloride ions while 90-day chloride ponding tests indicate high resistance. 

Misleading results can be obtained if calcium nitrite is admixed into concrete. Therefore, as a 

result of this case, it is expected to indicate higher coulomb values than from tests on identical 
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concrete mixtures without calcium nitrite. AASHTO T277-05 recommends long-term ponding 

tests if an admixture, which might similarly affect results of this test, is suspected.  

Depending on the type of concrete and curing procedure, sample age may have significant 

effects on the test results. Most concrete becomes significantly less permeable with time, if it is 

cured properly. The relation between chloride ion permeability (coulomb) and time of moist 

curing (day) for different water/cement ratios is depicted by Plante and Bilodeau (1989) in 

Figure 4.1.  

In this chapter, ANN approach is used to characterize the Rapid Chloride permeability response 

of concrete. Regression approach was also used to ensure the developed ANN model has 

comparable accuracy measures.  In the following sections, the procedure of the test method and 

model development procedure are described in details.   

4.2 Problem Statement 
In recent years, the durability problem of the concrete structures has been widespread. Due to its 

incidents and repair costs, there have been many research investigations (Examples: Feldman et 

al., 1994; Bassuoni et al., 2005) conducted to better understand the test methods. Rapid Chloride 

Test is one of the test methods commonly referred to by researchers and government agencies. 

However, its cost, inadequate test equipment and need for qualified technicians to conduct the 

sample preparation and test procedure, and the six hours actual testing time needed are the main 

issues needing to be addressed. During the summer time, construction industry is really active 

and because of that numerous amounts of concrete samples, either collected in the field or mixed 

in the lab by the government agencies, are placed in the curing room for 7, 28, and 56 days and 

will be processed for testing at later dates. However, due to inadequate test equipments, concrete 

samples must be kept in curing room for more than 56 days. This is the reason that concrete 

samples in the database used have an age range from 7 to 111 days. A prediction model is 

purposed to overcome this issue. Thus, in this chapter, the question to be answered with this 

research is: Can the six hours testing time be replaced, with reasonable degree of accuracy, with 

a permeability response prediction model? 
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4.3 Data Description 
The database for the development of the Rapid Chloride permeability prediction model was 

provided by KDOT. The samples included in the database are either prepared in the laboratory or 

collected in the field. In order to properly characterize the permeability of concrete, total 265 

datasets are used to build the desired database; 133, 73 and 59 datasets are used, respectively, for 

training, testing and validation purposes. By using the database, the ANN- and Regression-Based 

models are developed to predict the permeability response in order to choose the best prediction 

model. Three ANN-based models are developed and the most accurate model has been selected 

based on the accuracy measure criteria such as Mean Absolute Relative Error (MARE), 

Averaged-Squared-Error (ASE) and Coefficient of Determination (R2) values. The predicted 

permeability response is computed via Excel-based Program by entering the needed input 

variables such as oven dry weight (A), saturated surface dry weight (B), weight in water (C), and 

curing time. Further details are given in the following sections. 

4.3.1 Lab Procedure 

The concrete samples either prepared in the lab or collected in the field are placed in curing room 

for 7, 28, and 56 days. The cured specimens for 7, 28, and 56 days are taken out of the curing 

room and cut into three 2 inch thick pieces. The sliced concrete samples are let to dry for one 

hour, Dry Unit Weight (A) is measured afterwards and then the cylindrical surface is covered 

with epoxy. After the epoxy is tack free, the concrete slice is placed into vacuum desiccator and 

vacuuming is applied for three hours. While the vacuum pump still running, the desiccator is 

filled with de-aerated water to cover the specimen. Vacuuming is applied for another hour, then 

it is shut off and the concrete slice is soaked for 18 hours. The surfaces of the saturated 

specimens are dried out with a towel and then Saturated Surface Dry Weight (B) is measured as 

well as the Weight in Water (C).  It is important that to obtain consistent chloride permeability 

values for a concrete batch, each slice must be conditioned to start the test at the same moisture 

content (Suprenant, 1991). After 18 hours soaking, the specimens are removed, excess water is 

blotted off and the specimen is stored in a sealed container. The specimens are connected to 

voltage cell where one side of the specimen is in contact with a sodium chloride solution and the 

other side is in contact with a sodium hydroxide solution. After connecting the voltage cell, a 

voltage of 60V dc is maintained across the ends of the sample throughout the test. Electrical 
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current (in amperes) versus time (in seconds) are plotted. A smooth curve is drawn through the 

data and the area underneath the curve is integrated in order to obtain the ampere-seconds, or 

coulombs, of charge passed during the six hours test period. As given in AASHTO T277-05, a 

sample calculation by assuming the current recorded at 30 minute intervals is given by:  

 

( )36033030060300 222............22900 IIIIIIQ ++++++=      4.1    

 

where: 

Q  = charge passed (coulomb) 

0I  = current (amperes) immediately after voltage is applied, and  

tI  = current (amperes) at t min after voltage is applied. 

 

After determining the charge passed through the concrete sample, Table 4.1 is used to classify 

the test results. If the specimen diameter is different from the standard 95 mm (3.75 in.) value, 

then the value for the total charge passed must be adjusted by using the following equation: 
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QQ xs          4.2 

 

where: 

sQ  = charge passed (coulombs) through a 95-mm (3.75-in) diameter specimen, 

xQ  = charge passed (coulombs) through x mm (in) diameter specimen, and 

x  = diameter mm (in) of the nonstandard specimen 

 

  

The input parameters used in model development includes the measurements taken before the 

test, which are; surface dry weight (A), saturated surface dry weight (B), weight in water (C), 

and curing time. The total charge passed through sample during the six hours test is used as the 

output variable. Also, Specific Gravity (Gs) and Water absorbed (W %) dependent variables are 
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calculated out of the measured values prior to the test. In terms of A, B and C, Specific Gravity 

and Absorbed Water are given by:  

 
CB

A
−

=Gravity  Specific         4.3 
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A)-(B  absorbedWater ×=        4.4 

 

4.4 ANN Model Development 
The ANN model was developed in four sequential stages. In the first stage, the ANN architecture 

was determined based on problem characteristics and ANN knowledge, and input and output 

categories were chosen accordingly. This step also includes classifying the datasets as training, 

testing or validation sets. In the second stage, the network was trained and tested on the 

experimental data to obtain the optimum number of hidden nodes and iterations for the ANN 

architecture determined in stage one. In the third stage, the best performing network obtained 

from the second stage is validated on the validation database. If accuracy measures from training, 

testing and validation database are very comparable, then the model may not be trained on all 

data.  In the fourth stage, the best performing network obtained in the second stage is retrained 

on all experimental data to increase the prediction accuracy and evaluate how well the ANN 

model characterized the desired behavior. Normally, retraining the network on all experimental 

data is expected to provide reliable predictions and accuracy measures if the dataset 

classification is done in an appropriate manner. However, it has been shown through several 

research studies by Najjar and Coworkers [Najjar & Mryyan (2009), Najjar & Huang (2007), and 

Najjar & McRyenold (2003)] that the stage four is recommended to arrive at a better performing 

network model.  

 

4.4.1 ANN Model Architecture 

Based on the knowledge gained from experimental data analysis, ANN model architecture has 

been built by considering 6 inputs and 1 output, which respectively are: 

 

 1-   (A) Surface dry weight (grams) 
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 2-   (B) Saturated surface dry weight (grams) 

 3-   (C) Weight in water (grams) 

 4-   Curing time (days) 

 5-   (Gs) Specific gravity  

 6-   (W %) Percent of water absorbed  

and  

 1-   Output (Q): Total charge passed through the concrete sample (coulombs)  

 

The number of inputs could have been reduced to 4 by removing dependent variables such as 

Specific Gravity and Water absorbed. However, any additional inputs will most likely assist the 

network to find out the best correlation between the inputs and the output. In this study, 3 models 

giving appropriate statistical measures have been selected based on optimum hidden nodes, 

minimum values of Mean Absolute Relative Error (MARE) and Averaged-Squared-Error (ASE) 

and maximum values of Coefficient of Determination (R2). Total 265 datasets are used to build 

the desired database; 133, 73 and 59 sub-databases are used, respectively, for training, testing 

and validation purposes. Datasets that include that the minimum and maximum values of each 

variable are included in the training phase in order for the network to represent the characteristics 

of the response. The maximum and minimum ranges of each input/output variable for ANN 

model development are chosen on purpose to be wider than their actual ranges for better 

mathematical mapping.         

4.4.2 Model Training and Testing 

Based on statistical measures such as Averaged-Squared-Error (ASE), Coefficient of 

determination (R2) and Mean Absolute Relative Error (MARE), the optimal network structure 

for the Model 1 was found at 8 hidden nodes and 20,000 iterations. The corresponding accuracy 

measures for this network are ASEtr=0.004984, R2
tr=0.89, MAREtr=15.73% (for training 

database) and ASEts=0.008256, R2
ts=0.83, MAREts= 21.099% (for testing database). The optimal 

network for Model 2 was found at 14 hidden nodes and 20,000 iterations. The corresponding 

accuracy measures for this network are ASEtr=0.004585, R2
tr=0.90, MAREtr=13.34% (for 

training database) and ASEts=0.008662, R2
ts=0.828, MAREts= 19.609% (for testing database). 

The optimal network for Model 3 was found at 15 hidden nodes and 19,900 iterations. The 
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corresponding accuracy measures for this network are ASEtr=0.005034, R2
tr=0.89, 

MAREtr=13.949% (for training database) and ASEts=0.009042, R2
ts=0.815, MAREts= 23.021% 

(for testing database). The training graphical comparison plots between predicted and actual 

response for Model 1, Model 2 and Model 3 are shown, respectively, in Figure 4.2, Figure 4.3 

and Figure 4.4. The testing graphical comparison plots between predicted and actual response for 

Model 1, Model 2 and Model 3 are shown, respectively, in Figures 4.5, Figure 4.6 and Figure 

4.7. Also, statistical accuracy measures for the training and testing are shown in Table 4.2 with 

the best performing model is identified in bold.  

4.4.3 Model Validation 

After training and testing procedures by using, respectively, 133 and 73 datasets, validation is 

conducted by using 59 datasets. After classifying the datasets as training, testing, and validation 

as described in Section 4.4, each network was trained and tested on experimental data to obtain 

the optimum number of hidden nodes and iterations for the ANN architecture determined in the 

stage one. The graphical comparison plots, for the validation stage, between predicted and actual 

responses for Model 1, Model 2 and Model 3 are shown, respectively, in Figures 4.8, 4.9 and 

4.10. Also, statistical accuracy measures are shown in Table 4.2 where the best performing 

network is identified in bold. 

4.4.4 Model Selection 

Statistical accuracy measures for training and testing databases at optimal ANN structure with 8 

hidden nodes and 20,000 iterations showed considerable difference. Even though Model 2 has 

better accuracy measures, Model 1 has less number of hidden nodes which means that Model 1 

has less complicated structure which will potentially show more consistent response. For this 

reason, Model 1 has been chosen to be used as the best network structure. Thus, all of the 265 

datasets from the Rapid Chloride test were used to retrain the network at this optimal structure to 

obtain the generalized response throughout the entire database. Statistical measures of Model 1 

model trained with all data are: ASEall=0.004841, R2
all

 =0.894 and MAREall=15.484%. The 

graphical comparison plots between predicted and actual response for Model 1, Model 2 and 

Model 3 are shown, respectively, in Figures 4.11, 4.12 and 4.13. Statistical accuracy measures 

for all 3 models are shown in Table 4.2. The good agreement between predicted results and 
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experimentally acquired results is apparent. The network structure of the best performing model 

is depicted in Figure 4.14.  

4.5 Regression Model 
Regression analysis is another method to understand how the typical value of the dependent 

variable changes when the independent variables are varied. In other words, it is to understand 

which among the independent variables are related to the dependent variables. Regression model 

development has been accomplished using Excel Data Analysis Toolkit. Total 265 datasets used 

for ANN-Model development was processed to obtain the prediction model. The input variables 

and the output as used in ANN-Model development are respectively:  

 

X1 = (A) Surface dry weight (grams) 

 X2 = (B) Saturated surface dry weight (grams) 

 X3 = (C) Weight in water (grams) 

 X4 = Curing time (days) 

 X5 = (Gs) Specific Gravity  

 X6 = (W %) Percent of water absorbed  

and 

 X7 =Output (Q) Total charge passed through the concrete sample (coulomb)  

 

Using linear regression approach, the following equation was developed; 

 

654321 68.15X-1483.43X11423.43X78.50X-476.77X436.87X- 18579.71- Q +++=  4.5  

 

Statistical measures of the linear regression model obtained using Excel Data Analysis Toolkit 

are: MARE (%) = 36.90%, R2
all

 = 0.61566 and Standard Deviation of Error, SDE, (%) = 63.1%. 

The graphical comparison plots between predicted and actual response is shown in Figure 4.15. 

The statistical measures’ comparison of ANN Model and Regression Model are depicted in 

Table 4.3. It is very clear from the comparison plots in Figure 4.11 and 4.15 that the ANN model 

is out performing the regression-based model. It is possible to increase the accuracy measures of 

the regression model by non-linear regression. However, the effort spent on this task will be 
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unbounded since many trials have to be performed. Over the past 17 years, Najjar and 

Coworkers [Najjar & Ali (1998a, b), Najjar & Basheer (1996a), and Najjar et al. (1996b)] have 

shown that the best non-linear regression model will not produce accuracy measures that are 

better than those obtained via an appropriately developed ANN-based model. Typically, the 

accuracy measures by the ANN-based model are the upper bounds to any non-linear regression 

model describing the same behavior. Therefore, the development of nonlinear regression model 

was not carried in this research study.  

4.6 Excel Application 
By using the connections weights, threshold values and coefficients which are described in 

Chapter 3, the excel-based application is developed. In this application, by entering the measured 

input variables for A, B, C  and Curing time in the Excel interface shown in Figure 4.15, W% 

(Water Absorbed), and Gs (Specific Gravity) are automatically calculated. Following that, ANN- 

and Regression-based models utilize all 6 input values (4 user-provided and 2 calculated) to 

predict the corresponding permeability value (i.e., the charge passed through the sample). The 

computed permeability response values and categorical variables converted using table 4.1 by 

ANN and Regression are placed in the output cells colored with blue as depicted in Figure 4.15. 

The applicable ranges for the input variables are also shown in Figure 4.15. Any value of an 

input variable that is outside the applicable range may cause the models to produce unreliable 

predictions. 

4.7 Concluding Remarks 
In this chapter, a static artificial neural network with backpropagation learning algorithm was 

developed to predict the Rapid Chloride permeability response of concrete. As seen from the 

graphical results depicted in Figures 4.2 to 4.13 and the accuracy measures of the developed 

ANN models listed in Table 4.2, Model 1 has been selected to characterize the permeability 

response. The comparison of the predicted responses by ANN and Regression shown in Table 

4.3 indicates that ANN model attains better prediction accuracy than the Regression model. It is 

apparent that the ANN model has efficiently characterized the Rapid Chloride test response 

when compared to the regression model. Moreover, the predicted permeability responses by 

ANN and Regression models are converted to categorical variables using Table 4.1 and 
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evaluated in terms of success and failure classification cases. The results of classification 

evaluation in terms of success and failure percentages, depicted in Table 4.4, have shown a good 

trend between predicted-based and actual-based categorical results. Therefore, ANN-based 

model can reliably be used for permeability prediction tasks to reduce the duration of the 6 hours 

testing period as long as the input variables fall within the applicable ranges. Moreover, 

developed ANN model can be used to verify measured responses for planned-to-be conducted 

Rapid Chloride tests without the need for any additional experimental-based information. Even 

though, development of the ANN model requires good fundamental understanding of the Rapid 

Chloride Test procedure and ANN knowledge, Excel-based application, which is the utilization 

tool of the developed ANN model, is simple and does not require the user to have prior 

knowledge of model development.  The ANN model overcomes the drawback of the 6 hours 

testing time; making it a powerful, rapid, and low cost alternative to obtain the permeability of 

concrete with a reliable level of accuracy. Note that, A, B and C variables are the measurements 

which are not essentially specified in AASHTO T277-05. However, they are the measurements 

conducted as part of ASTM C 642-97 Standard Test Method for Density, Absorption, and Voids 

in Hardened Concrete. This procedure has also been applied to AASHTO T277-05 by KDOT to 

understand the correlation between Boil Test and Rapid Chloride penetration test method. For 

this reason, the developed Rapid Chloride permeability prediction model is applicable only for 

KDOT applications such as experimental studies, quality control and testing acceptance.  
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4.8 Figures and Tables 

 

 
 

Figure 4.1 Change in permeability with time (adopted from Plante and Bilodeau, 1989) 
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Figure 4.2 Training Graphical Prediction Accuracy for the Model 1 
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Figure 4.3 Training Graphical Prediction Accuracy for the Model 2 
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Figure 4.4 Training Graphical Prediction Accuracy for the Model 3 
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Figure 4.5 Testing Graphical Prediction Accuracy for the Model 1 
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Figure 4.6 Testing Graphical Prediction Accuracy for the Model 2 
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Figure 4.7 Testing Graphical Prediction Accuracy for the Model 3 
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Figure 4.8 Validation Graphical Prediction Accuracy for the Model 1 
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Figure 4.9 Validation Graphical Prediction Accuracy for the Model 2 
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Figure 4.10 Validation Graphical Prediction Accuracy for the Model 3 
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Figure 4.11 All Data Graphical Prediction Accuracy for the Model 1 
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Figure 4.12 All Data Graphical Prediction Accuracy for the Model 2 
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Figure 4.13 All Data Graphical Prediction Accuracy for the Model 3 

 

 
 

Figure 4.14 The Network Structure of the Best Performing Model (Model 1) 
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Figure 4.15 Graphical Prediction Accuracy for the Regression Model 

 

 

 
 

Figure 4.16 Excel Application Screen-shot 

 

 

 35



Table 4.1 Chloride Permeability Category Based on Charge Passed (ASTM C1202) 

 

Charge Passed 
(coulombs) 

Chloride 
Permeability 

Category 
Typical of 

>4,000 High High W/C ratio (0.6) 
conventional PCC 

2,000 - 4,000 Moderate Moderate W/C ratio (0.4 - 
0.5) conventional PCC 

1,000 - 2,000 Low Low W/C ratio (<0.4) 
conventional PCC 

100 - 1,000 Very Low Latex-modified concrete or 
internally-sealed concrete 

<100 Negligible Polymer-impregnated 
concrete, Polymer concrete 

 

 

Table 4.2 Statistical Accuracy Measures of the ANN-Models 

 

Model  Model 1  Model 2  Model 3 

Architecture  6‐(5‐8‐17‐20000)‐1  6‐(2‐14‐17‐20000)‐1 6‐(9‐15‐17‐19900)‐1

MARE (%)  15.73% 13.34% 13.95% 

R2  0.89191 0.90096 0.89082 

Tr
ai
ni
ng

 

ASE  0.004984 0.004585 0.005034 

MARE (%)  21.10% 19.61% 23.02% 

R2  0.83121 0.82831 0.81521 

Te
st
in
g 

ASE  0.008256 0.008662 0.009042 

MARE (%)  18.71% 18.30% 19.48% 

R2  0.80618 0.85658 0.80521 

Va
lid
at
io
n 

ASE  0.008349 0.006554 0.008763 

MARE (%)  15.48% 14.16% 13.86% 

R2  0.89427 0.90479 0.9047 

A
ll 
D
at
a 

ASE  0.004841 0.004363 0.004354 

Final Structure  6 - 8 - 1 6 - 14 - 1 6 - 15 - 1 
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Table 4.3 Comparisons of Statistical Accuracy Measures for ANN and Regression Models 

 

Statistical 
Measures 

ANN 
(6 – 8 – 1) REGRESSION 

MARE (%) 15.48% 36.90% 

SDE (%) 23.61% 63.10% 

R2 0.894 0.616 

 

 
Table 4.4 Classification Evaluation Results for ANN and Regression Models 

 

Classification ANN     REGRESSION  

Success (%) 80.38% 61.89% 

Failure (%) 19.62% 38.11% 

Max. Degree of 
miss-classification 1 2 
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CHAPTER 5 –RAPID CHLORIDE TESTING: DEVELOPMENT 

OF MIX-DESIGN BASED PREDICTION MODEL  

5.1 Introduction  
As stated before in Chapter 4, permeability is an important factor which is directly related to 

concrete durability. Permeability of concrete depends on the volume of the interconnected 

capillary pores in the cement paste, and also on the intensity of microcracks at the aggregate-

cement paste interface as well as within the paste itself. The resistance to the movement of water, 

sulphate ions, alkali ions, other causes of chemical attack can be improved by obtaining low 

permeability (Alhozaimy et al., 1996). The chloride permeability of concrete is such an inherent 

property of the concrete needing to be assessed independently, especially in the design and 

construction of structures to be built in a salt-laden environment. If the chloride concentration of 

concrete exceeds a certain threshold value, depassivation of the steel occurs and corrosion of 

reinforcing bars starts to take place (Thomas, 1996; Alonso et al., 2000). Blended (or pozzolanic) 

cements are being used worldwide to obtain dense and impermeable concrete. They enclose a 

blend of portland cement clinker and a variety of natural pozzolans and/or supplementary 

cementing materials such as blast furnace slag, fly ash, silica fume, etc. The use of these 

materials is also environmentally friendly because it conduces to reduce the CO2 emission to the 

atmosphere (Malhotra, 1998). The positive effects of combining these materials are widely 

discussed in the literature (Examples: Berke, 1989; Swamy, 1991; Hussain, 1994). Permeability 

of concrete is considerably reduced by using pozzolanic materials. Use of wide range of blending 

materials of differing chemical composition introduces significant diversity into cementing 

system. Since pozzolanic reaction is extremely dependent on appropriate curing day, there is 

often concern as to the effect of curing on the permeability of pozzolanic cement concrete. 

Manhoman and Mehta (1981) and Nagataki and Ujike (1986) believe that a curing period of 

about 28-90 days is required for the pozzolanic cement concrete specimens to achieve properties 

better than that of the plain cement concrete.  In a composite material such as concrete, the 

parameters of the mixture composition and the interactions between them determine the behavior 

of the material. Some basic properties of concrete depending on the concrete mixture parameters 

using different mathematical modeling techniques has been modeled by many researchers. 

Various experimental studies regarding the chloride permeability of the concrete have been 
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conducted over the years. The main governing factors affecting the performance of the concrete 

against chloride ingress are: curing condition, testing age, water-cement ratio, and mineral 

admixture such as silica fume, fly ash, slag, etc. (Alhozaimy, 1996; Berke, 1989; Ozyildirim and 

Halstead, 1994; Guneyisi et al., 2002). For this reason, in this chapter, ANN approach is used to 

characterize the Rapid Chloride permeability response of concrete by utilizing the mix-design 

parameters. A regression approach was also used to ensure the developed ANN model has 

comparable accuracy measures.  In the following sections, model development procedure and 

results are discussed in details.   

5.2 Problem Statement  
In recent years, as discussed in Chapter 4, the durability problem of the concrete structures has 

been widespread. Due to its incidents and repair costs, there have been many research 

investigations (Examples: Feldman et al., 1994; Bassuoni et al., 2005) conducted to better 

understand the test methods. The ASTM C 1202 test is one of the widespread and easy-to-

perform test methods typically preferred by researchers and government agencies. However, its 

cost, required test equipment and qualified technicians to conduct the sample preparation and test 

procedure, sample preparation time, and the six hours actual testing time needed are the main 

issues needing to be addressed. A prediction model based off of mix-design information is 

proposed to overcome these issues. Thus, in this chapter, the question to be answered with this 

research is: Can the six hours testing time and sample preparation procedure be replaced, with 

reasonable degree of accuracy, with a permeability response prediction model? 

5.3 Data Description  
In this Chapter, a database for ANN model development is collected from the literature (i.e., 

Ramzanianpour and Malhotra, 1995; Feldman et al., 1999; Oh et al., 2001; Naik et al, 1998; 

Mackechnie and Alexander, 2000; Ozyildirim, 1994; Feng et al, 2002; Yang and Chiang, 2005; 

Guneyisi, 1999; Boddy et al., 2001; Gu et al., 1999.) Guneyisi et al. (2009) has evaluated the 

influence of cement type, curing condition, and testing age on the chloride permeability of 

concretes by conducting Rapid Chloride permeability test on 90 samples. In this database, five 

different cement types and two water-cement ratios were deployed. After casting concrete 

samples, they were subjected to three different curing conditions and tested at the age of 28, 90, 
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and 180 days to determine the chloride permeability of concrete samples through the rapid 

chloride permeability test. Using this experimental database, ANN model was developed to 

estimate the chloride permeability of concrete as a function of water-cement ratio (W/C), 

aggregate-cement ratio (Ag/C), superplasticizer-cement ratio (SP/C), cement type (CT), curing 

condition (namely, uncontrolled curing (UC), controlled curing (CC), and wet curing (WC)), and 

testing age (A). In order to properly characterize the permeability of concrete, a total of 128 

datasets were used to build the desired database; 57, 39 and 32 datasets were used, respectively, 

for training, testing and validation purposes. By using the database, the ANN- and Regression-

Based models were developed to predict the permeability response in order to choose the best 

prediction model. Three ANN-based models were developed and the most accurate model has 

been selected based on the accuracy measure criteria such as Mean Absolute Relative Error 

(MARE), Average-Squared-Error (ASE) and Coefficient of Determination (R2) values. The 

predicted permeability response is computed via Excel-based Program by entering the needed 

input variables such as Cement Type (CT), Water-cement ratio (W/C), Aggregate-cement ratio 

(Ag/C), Superplasticizer-cement ratio (SP/C), Curing condition (CC), and Testing age (A). 

Further details are given in the following sections. 

5.3.1 Experimental Program 

5.3.1.1 Materials  

Five different cements, specifically portland cement (CEM I), Portland composite cements 

(CEM II/A-M and CEM II/B-M), composite cement (CEM V/A), and blast furnace slag cement 

(CEM III/A) were used (Guneyisi et al., 2009). These cement types meet the requirements of 

Turkish Standards (TS EN 197-1), which correspond to European Standard (EN 197-1). The 

physical and chemical properties with the composition details of the cements are given in Table 

5.1. The coarse aggregate was crushed limestone with a maximum particle size of 20 mm 

whereas the fine aggregate was a mixture of natural and crushed sand. Proporties of the 

aggregates are depicted in Table 5.2. A sulphonated naphthalene formaldehyde-based 

superplasticizer was used to obtain a workable and fresh concrete. The properties of the 

superplasticizer are shown in Table 5.3.  
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5.3.1.2 Mixture Proportions, Casting and Curing Methods      

In the first phase of making concrete, the samples having W/C ratio of 0.65 with a cement 

content of 300 kg/m3 were produced. Following that, the samples having W/C ratio of 0.45 with 

a cement content of 400 kg/m3 were produced. Five different cements such as CEM I, CEM II/A-

M, CEM II/B-M, CEM V/A, and CEM III/A were used in the two phase of making concrete. 

Gradation of the aggregate mixture was kept constant for all samples. The concrete mixtures 

designed to have a slump of 17± 2 cm for practical easiness. All concrete mixtures were mixed 

as per ASTM C192 in a power-driven revolving pan mixer. For each mixture, 18 cylinder 

samples of 100 mm diameter and 200 mm height were cast for the determination of chloride ion 

permeability. The specimens were cast in three layers and compacted using a vibrating table. 

After casting, the molded specimens were covered with a plastic sheet and left in the casting 

room for 24 hours. They were then demolded and divided into three equal groups and cured 

under following conditions:  

Uncontrolled Curing (UC): Specimens were air cured without controlling the temperature and 

relative humidity until the testing age. The variable relative humidity and temperature of the 

room was considered as uncontrolled curing.  

Controlled Curing (CC): Specimens were soaked in 20 ± 2ºC water for 7 days and then air cured 

in a room at 20 ± 1ºC and 50 ± 5% relative humidity until the testing age.  

Wet Curing (WC): Specimens were soaked in 20 ± 2ºC water until the testing age.         

 

5.3.1.3 Test Procedure 

The rapid chloride permeability test was conducted to determine the resistance of the concrete to 

the penetration of chloride ions according to AASHTO T277 as discussed in Section 4.1.3.  

 

 5.4 ANN Model Development 
The ANN model was developed in four sequential stages. In the first stage, the ANN architecture 

was determined based on problem characteristics and ANN knowledge, and input and output 

categories were chosen accordingly. This step also includes classifying the datasets as training, 

testing or validation sets. In the second stage, the network was trained and tested on the 

experimental data to obtain the optimum number of hidden nodes and iterations for the ANN 
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architecture determined in stage one. In the third stage, the best performing network obtained 

from the second stage was validated on the validation database. If accuracy measures from 

training, testing and validation database are very comparable, then the model may not be trained 

on all data.  In the fourth stage, the best performing network obtained in the second stage is 

retrained on all experimental data to increase the prediction accuracy and evaluate how well the 

ANN model characterized the desired behavior. Normally, retraining the network with all 

experimental data is expected to provide reliable predictions and accuracy measures if the dataset 

classification is done in an appropriate manner. However, it has been shown through several 

research studies by Najjar and Coworkers [Najjar & Mandavilli (2004), Najjar & Mryyan (2009), 

and Najjar et al. (2003)] that stage four is recommended to arrive at a better performing network 

model. 

5.4.1 ANN Model Architecture 

Based on the knowledge gained from experimental data analysis, ANN model architecture has 

been built by considering 12 inputs and 1 output, which respectively are: 

 

1. (CT1) Cement Type (CEM I=1, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=0) 

2. (CT2) Cement Type (CEM I=0, CEM II/A-M=1, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=0) 

3. (CT3) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =1, CEM V/A=0, and 

CEM III/A=0) 

4. (CT4) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=1, and 

CEM III/A=0) 

5. (CT5) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=1) 

6. (W/C) Water-cement Ratio 

7. (Ag/C) Aggregate-cement Ratio 

8. (SP/C) Superplasticizer-cement Ratio 

9. (CC1) Curing Condition (UC=1, CC=0, and WC=0)   

10. (CC2) Curing Condition (UC=0, CC=1, and WC=0)   
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11. (CC3) Curing Condition (UC=0, CC=0, and WC=1)   

12. (A) Testing Age 

and 

1. Output (Q): Total charge passed through the concrete sample (coulombs) 

 

Instead of using 6 inputs, twelve inputs were used because the cement type was categorized in 5 

groups and curing condition was categorized in 3 groups. The reason for the categorizations of 

cement type and curing condition is that there is no mathematical relation among the sub-

categories which can be expressed numerically. Since only one of the sub-categories can be used 

at a time, categorical variables were used to model these inputs parameters to evaluate the 

correlation between cement type and the permeability response as well as curing condition and 

the permeability response. For this reason, five different cement types were considered as 

individual inputs which are, respectively, CEM I (CT1), CEM II/A-M (CT2), CEM II/B-M 

(CT3), CEM V/A (CT4) and CEM III/A (CT5) and curing condition as UC (CC1), CC(CC2) and 

WC (CC3).  For instance, if cement type and curing condition are specified ,respectively, CEM I 

and Uncontrolled curing, then CT1 is coded as “1”, all other cement types, CT2, CT3, CT4, and 

CT5, are as “0” and CC1 is coded as “1” and other curing conditions, CC2 and CC3, are coded 

as “0”.   

 

In this study, 3 models giving appropriate statistical measures have been selected based on 

optimum hidden nodes, minimum values of Mean Absolute Relative Error (MARE) and 

Averaged-Squared-Error (ASE) and maximum values of Coefficient of Determination (R2). A 

total of 128 datasets were used to build the desired database; 57, 39 and 32 sub-database were 

used, respectively, for training, testing and validation purposes. Datasets which include 

minimum and maximum values of each variable were included in the training phase in order for 

the network to represent the characteristics of the response. The maximum and minimum ranges 

of each input/output variable for ANN model development were chosen on purpose to be wider 

than their actual ranges for better mathematical mapping.         
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5.4.2 Model Training and Testing 

Based on statistical measures such as Averaged-Squared-Error (ASE), Coefficient of 

determination (R2) and Mean Absolute Relative Error (MARE), the optimal network structure 

for the Model 1 was found at 5 hidden nodes and 4,500 iterations. The corresponding accuracy 

measures for this network are ASEtr=0.001242, R2
tr=0.972, MAREtr=8.46% (for training 

database) and ASEts=0.010815, R2
ts=0.785, MAREts= 27.22% (for testing database). The optimal 

network for Model 2 was found at 4 hidden nodes and 4,900 iterations. The corresponding 

accuracy measures for this network are ASEtr=0.001812, R2
tr=0.960, MAREtr=14.48% (for 

training database) and ASEts=0.007625, R2
ts=0.831, MAREts= 27.83% (for testing database). The 

optimal network for Model 3 was found at 6 hidden nodes and 600 iterations. The corresponding 

accuracy measures for this network are ASEtr=0.009302, R2
tr=0.854, MAREtr=18.52% (for 

training database) and ASEts=0.01043, R2
ts=0.780, MAREts= 27.48% (for testing database). The 

training graphical comparison plots between predicted and actual response for Model 1, Model 2 

and Model 3 are shown, respectively, in Figure 5.1, Figure 5.2 and Figure 5.3. The testing 

graphical comparison plots between predicted and actual response for Model 1, Model 2 and 

Model 3 are shown, respectively, in Figures 5.4, 5.5 and 5.6. Also, statistical accuracy measures 

for the training and testing are shown in Table 5.4 while the best performing model is identified 

in bold. 

5.4.3 Model Validation 

After training and testing, respectively, on 57 and 39 datasets, validation is conducted by using 

the remaining 32 datasets. After classifying the datasets as training, testing, and validation as 

described in Section 5.4, the network was trained and tested on experimental data to obtain the 

optimum number of hidden nodes and iterations for the ANN architecture determined in stage 

one. For the model validation, the third stage is performed by utilizing the best performing 

network, identified in stage two, to predict the output of the validation datasets. The graphical 

comparison plots between predicted and actual response, for validation datasets, for Model 1, 

Model 2 and Model 3 are shown, respectively, in Figures 5.7, 5.8 and 5.9. Also, corresponding 

statistical accuracy measures are shown in Table 5.4 where the best performing network is 

identified in bold. 

 44



5.4.4 Model Selection 

Statistical accuracy measures for training and testing databases for, Model 1, at optimal ANN 

structure with 5 hidden nodes and 4,500 iterations showed better prediction accuracy compared 

with those for Model 2 and 3. Even though Model 3 has a better accuracy with validation dataset, 

Model 1 has overall the best performance. For this reason, Model 1 has been chosen to be used 

as the best network structure. Thus, all of the 128 datasets from the Rapid Chloride test were 

used to retrain the network at this optimal structure to obtain the generalized response throughout 

the entire database. Statistical measures of Model 1 trained with all data are: ASEall=0.002965, 

R2
all

 =0.93 and MAREall=15.68%. The graphical comparison plots between predicted and actual 

response for Model 1, Model 2 and Model 3 are shown, respectively, in Figures 5.10, 5.11 and 

5.12. Statistical accuracy measures for all 3 models are shown in Table 5.4. The good agreement 

between predicted results and experimentally acquired results is apparent. The network structure 

of the best performing model (Model 1) is depicted in Figure 5.13.  

5.5 Regression Model 
Regression model development, discussed in Chapter 4, has been accomplished using Excel Data 

Analysis Toolkit. For the regression model development, categorical variables are also used 

similar to ANN Model development, discussed in Section 5.4.1. The 128 datasets used for ANN-

Model development were utilized herein to obtain the regression prediction model. The input 

variables and the output as used in ANN-Model development are respectively:  

 

Inputs: 

1. X1= (CT1) Cement Type (CEM I=1, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=0) 

2. X2= (CT2) Cement Type (CEM I=0, CEM II/A-M=1, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=0) 

3. X3= (CT3) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =1, CEM V/A=0, and 

CEM III/A=0) 

4. X4= (CT4) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=1, and 

CEM III/A=0) 
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5. X5= (CT5) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and 

CEM III/A=1) 

6. X6= (W/C) Water-cement Ratio 

7. X7= (Ag/C) Aggregate-cement Ratio 

8. X8= (SP/C) Superplasticizer-cement Ratio 

9. X9= (CC1) Curing Condition (UC=1, CC=0, and WC=0)   

10. X10= (CC2) Curing Condition (UC=0, CC=1, and WC=0)   

11. X11= (CC3) Curing Condition (UC=0, CC=0, and WC=1)   

12. X12= (A) Testing Age 

 

Output: 

1. Output (Q): Total charge passed through the concrete sample (coulombs) 

 

Using linear regression approach, the following equation was developed; 

 

765421 1642.99X-35.50562X49.1438X35.228X22.14092143.42X 1299- Q X+−−++=

1211108 70.957.196657.159963.2979 XXXX −−−−       5.1  

 

Statistical measures of linear regression model obtained using Excel Data Analysis Toolkit are: 

MARE (%) = 32.68%, R2
all

 = 0.676 and Standard Deviation of Error, SDE, (%) = 56.2%. The 

graphical comparison plots between predicted and actual response is shown in Figure 5.14. 

Comparison between accuracy measures of ANN Model and Regression Model are depicted in 

Table 5.5. It is very evident from the comparison plots in Figure 5.10 and 5.14 that the ANN 

model is out performing the regression-based model. It is possible to increase the accuracy 

measures of the regression model by non-linear regression. However, the effort spent on this task 

will be unbounded since many trials have to be performed. Over the past 17 years, Najjar and 

Coworkers [Najjar & Ali (1998a, b), Najjar & Basheer (1996a), and Najjar et al. (1996b)] have 

shown that the best non-linear regression model will not produce accuracy measures that are 

better than those obtained via an appropriately developed ANN-based model. Typically, the 

accuracy measures by the ANN-based model are the upper bounds to any non-linear regression 

model describing the same behavior. 
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5.6 Excel Application  
Even though twelve input variables were used in ANN and Regression model development 

process, the developed excel application has only 6 input variables because the codification 

process of cement type and curing condition in the excel application are programmed by excel 

operational functions. By using the connections weights, threshold values and coefficients which 

are described in Chapter 3, the excel-based application is developed. In this application, by 

entering the appropriate input variables for Cement Type, Water-cement ratio, Aggregate-cement 

ratio, Superplasticizer-cement ratio and Testing age in the Excel interface shown in Figure 5.15, 

chloride permeability response is calculated automatically by ANN and Regression Models. 

Following that, ANN- and Regression-based models utilize all 6 input values to predict the 

corresponding permeability value (i.e., the charge passed through the sample). The computed 

permeability response values and categorical variables, converted using table 4.1, by ANN and 

Regression are placed in the output cells colored with blue as depicted in Figure 5.15. The 

applicable ranges for the input variables are also shown in Figure 5.15. Any value of input 

variable that is outside the applicable range may cause the models to produce unreliable 

predictions. 

5.7 Concluding Remarks   
In this chapter, a static artificial neural network with backpropagation learning algorithm was 

developed to predict the Rapid Chloride permeability response of concrete. As seen from the 

graphical results depicted in Figures 5.1 to 5.12 and the accuracy measures of the developed 

ANN models listed in Table 5.4, Model 1 has been selected to characterize the permeability 

response. The comparison of the predicted responses by ANN and Regression shown in Table 

5.5 indicates that ANN model attains better prediction accuracy than the Regression model. It is 

apparent that the ANN model has efficiently characterized the Rapid Chloride test response 

when compared to the regression model. Moreover, the predicted permeability responses by 

ANN and Regression models are converted to categorical variables using Table 4.1 and 

evaluated in terms of success and failure classification cases. The results of classification 

evaluation in terms of success and failure percentages, depicted in Table 5.6, have shown a good 

trend between predicted-based and actual-based categorical results. Therefore, ANN-based 

model can reliably be used for permeability prediction tasks to reduce the duration of the 6 hours 
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testing period and sample preparation period as long as the input variables fall within the 

applicable ranges. Moreover, developed ANN model can be used to verify measured responses 

for planned-to-be conducted Rapid Chloride tests without the need for any additional 

experimental-based information. Even though the development of the ANN model requires good 

fundamental understanding of the Rapid Chloride Test procedure and ANN knowledge, an 

Excel-based application, which is the utilization tool of ANN model, is simple and does not 

require for the user to have specific knowledge needed for model development. ANN model 

overcomes the drawback of the 6 hours testing time and sample preparation procedure; making it 

a powerful, rapid, and low cost alternative to obtain the permeability of concrete with a reliable 

level of accuracy. As a result, it can be inferred that the developed ANN model has high 

prediction accuracy for the chloride permeability of concrete samples when presented with the 

appropriate water-cement ratio, aggregate-cement ratio, superplasticizer-cement ratio, cement 

type, curing condition, and testing age. This study has proven that ANN approach is an effective 

function approximation method that can also be used for modelling concrete mixture properties.   
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5.8 Figures and Tables  
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Figure 5.1 Training Graphical Prediction Accuracy for the Model 1
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Figure 5.2 Training Graphical Prediction Accuracy for the Model 2 
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Model 3_Training
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Figure 5.3 Training Graphical Prediction Accuracy for the Model 3 
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Figure 5.4 Testing Graphical Prediction Accuracy for the Model 1 
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Model 2_Testing
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Figure 5.5 Testing Graphical Prediction Accuracy for the Model 2 
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Figure 5.6 Testing Graphical Prediction Accuracy for the Model 3 
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Model 1_Validation
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Figure 5.7 Validation Graphical Prediction Accuracy for the Model 1 
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Figure 5.8 Validation Graphical Prediction Accuracy for the Model 2 
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Model 3_Validation
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Figure 5.9 Validation Graphical Prediction Accuracy for the Model 3 
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Figure 5.10 All Data Graphical Prediction Accuracy for the Model 1 
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Model 2_All Data
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Figure 5.11 All Data Graphical Prediction Accuracy for the Model 2 
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Figure 5.12 All Data Graphical Prediction Accuracy for the Model 3 
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Figure 5.13 The Network Structure of the Best Performing Model (Model 1) 
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Figure 5.14 Graphical Prediction Accuracy for the Regression Model 
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Figure 5.15 Excel Application Screen-shot 
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Table 5.1 Properties of cements used (redrawn from Guneysi, 2009) 
Chemical Composition CEM I CEM II/A-M CEM II/B-M CEM V/A CEM III/A 

Silicone dioxide,  20.64 18.38 28.34 25.63 28.81 
Aluminum oxide,  5.06 5.05 7.33 5.06 7.2 
Ferric Oxide,  3.14 2.89 2.89 3.72 2.31 
Calcium Oxide ,  63.98 61.78 52.55 48 49.94 
Magnesium Oxide ,  1.2 1.36 2.09 - 4.44 
Sulfur trioxide,  2.38 2.34 2.88 2.3 2.41 
Sodium oxide,  0.31 0.28 0.21 - 0.15 
Potassium oxide,  0.8 0.73 - - 0.87 
Chloride,  0.035 0.036 - 0.01 0.027 
Insoluble residue, 0.46 0.48 7.8 - 0.64 
Loss of ignition 1.72 6.44 1.16 - 0.83 
Free lime 1.41 1.44 0.35 - 0.83 
Results of physical tests 
Specific Gravity 3.15 3.12 3.01 3.05 2.94 
Vicat (hour:minute)      
Start 02:28 02.28 02:40 02:32 02:40 
Stop 03:02 03:08 03:30 03:22 03:30 
Le Chatelier (mm) 2 2 1 1 1 
Fineness(%) 
45µm 11.7 18.1 - - 1.3 
90µm 0.8 3 6.4 0.2 0.0 
200µm 0.0 0.4 0.7 - - 
Specific Surface (m2/kg) 336 334 406 430 464 

)()2( MPadayfcc  27.5 23.7 23.1 20 13.3 
)()7( MPadayfcc  41.3 39 35.9 31 24.6 
)()82( MPadayfcc
 51.4 46.2 51.2 45 - 

Component fraction in 
cement (% by height) 

     

Clinker, K 95.5 78.7 70.5 57.5 46.7 
Blast Furnace Slag, S 0 2.0 13.0 21.8 48.3 
Limestone, L 0 11.9 0 3.0 0 
Natural Pozzolans, P 0 3.2 13.0 12.6 0 
Gypsum 4.5 4.2 3.5 5.1 5.0 
Total 100 100 100 100 100 
 

Table 5.2 Sieve analysis and physical properties of aggregates (redrawn from Guneysi, 2009) 

Fine Aggregate Course Aggregate 
Sieve Size 

Natural Sand Crushed 
Sand No I No II 

31.5 
16.0 
8.0 
4.0 
2.0 
1.0 
0.50 
0.25 

Fineness modulus 
Specific Gravity 

Absorbtion 

100 
100 
100 
98.2 
94.8 
91.2 
82.3 
14.3 
1.19 
2.60 
0.50 

100 
100 
98.7 
89.8 
53.6 
34.6 
22.3 
9.5 

2.92 
2.69 
1.00 

100 
100 
62.6 
22.8 
3.5 
2.3 
1.8 
1.4 

5.06 
2.70 
0.50 

100 
76.9 
1.6 
0.9 
0.7 
0.6 
0.2 
0.2 
6.19 
2.70 
0.40 
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Table 5.3 Properties of the superplasticizer (redrawn from Guneysi, 2009) 

SG State 
Freezing 

Point 
Color 

Chloride 

Content 

Nitrate 

Content 

Main 

Component 

1.22 Liquid -4 
Dark 

Brown 
None None 

Sulphonated 

Naphthalene 

 

 

 

 

 
Table 5.4 Statistical Accuracy Measures of the ANN-Models 

Model Model 1  Model 2 Model 3 

Architecture 12‐(4‐5‐9‐4500)‐1  12‐(3‐4‐9‐4900)‐1 12‐(6‐6‐9‐600)‐1 

MARE(%) 8.46% 14.48% 18.52% 

R2 0.97239 0.95978 0.85477 

Tr
ai

ni
ng

 

ASE 0.001242 0.001812 0.009302 

MARE(%) 27.22% 27.83% 27.48% 

R2 0.78471 0.83083 0.78019 

Te
st

in
g 

ASE 0.010815 0.007625 0.01043 

MARE(%) 32.05% 33.33% 24.62% 

R2 0.43369 0.44789 0.56189 

V
al

id
at

io
n 

ASE 0.028268 0.024029 0.018297 

MARE(%) 15.68% 17.75% 20.68% 

R2 0.93012 0.92135 0.82852 

A
ll 

D
at

a 

ASE 0.002965 0.00324 0.008192 

Final Structure 12 - 5 - 1 12 - 4 - 1 12 - 6 - 1 
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Table 5.5 Comparisons of Statistical Accuracy Measures for ANN and Regression Models 

 

Statistical 
Measures 

ANN        
( 12 - 5 - 1 ) REGRESSION 

MARE (%) 15.68% 32.68% 

SDE (%) 21.71% 56.20% 

R2 0.930 0.676 

 
Table 5.6  Classification Evaluation Results for ANN and Regression Models 

 

Classification ANN    REGRESSION  

Success (%) 89.06% 75 % 

Failure (%) 10.94% 25% 

Max. Degree of 
miss-classification 1 4 
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CHAPTER 6 – BOIL TESTING: DEVELOPMENT OF KDOT-

BASED PREDICTION MODEL 

6.1 Introduction 
Permeability of the concrete in a portland cement concrete pavement is a major factor for long-

term durability. The permeability of concrete depends on its pore network, which comes 

primarily from the excess water used during mixing in the initial hardening process. The porosity 

of concrete consists of closed or logged pores in addition to a network of interconnected pores 

(Saraswathy, 2008). Pore size ranges from a few angstroms to about 100 A° for the so called ‘gel 

pores’, from 100 to 100000 A° in ‘capillary pores’, and a few millimeters in ‘air or large pores’. 

Inter connected pores endow the concrete permeability. All the hydrated cement products are 

subjected to attack by sulphates, chlorides and acids, and water. This is because of a low 

equilibrium solubility of the hydrated components and low mass transfer of well cured concrete. 

It is a common practice to evaluate the water permeability characteristics when assessing the 

durability characteristics. Permeability can be measured by conducting standard test methods. In 

this chapter, % of water absorption, % of permeable voids and % of total voids have been 

determined as per ASTM C 642-97. This test was done as per procedure given in ASTM C 642-

97 by oven-drying method. In this chapter, the measurements as part of ASTM C 642-97 such as 

Oven-dry mass (A), Saturated surface-dry weight (B) and Curing time (CT) were used to 

develop prediction models by ANN and Regression to predict Saturated surface-dry weight after 

boiling(C), and Weight in water after boiling (D). Therefore, two models are developed to 

predict C and D individually using the same database. Finally, absorption after immersion and 

boiling, bulk density, bulk density after immersion, bulk density after immersion and boiling, 

apparent density, and volume of permeable pore space (voids) can be calculated by the equations 

provided in the following sections. A, B, C, D and CT are the only values used for model 

development. However, volume of permeable pore space is the final value calculated out of A, C 

and D and was used for accuracy measure comparisons accordingly. In this chapter, ANN 

approach was used to model the absorption and volume of permeable voids of concrete. 

Regression approach was also used to ensure the developed ANN model has comparable 

accuracy measures.  In the following sections, the test method procedure and model development 

procedure are described in details. 
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6.2 Problem Statement 
In recent years, durability problems in concrete structures have been widespread. Due to the high 

number of incidents and repair costs, there have been many research investigations (Examples: 

Feldman et al., 1994; Bassuoni et al., 2005) conducted to better understand the test methods. For 

this reason, the Boil Test has been used as an alternative method for Rapid Chloride Permeability 

which the researchers and government agencies use.  However, the five hour actual testing time 

needed have made contractors and inspectors hesitant to require the test. During the summer 

time, the construction industry is really active and because of that numerous amounts of concrete 

samples, either collected in the field or mixed in the lab by the government agencies, are placed 

in the curing room for 7, 28, and 56 days and will be processed for testing at later dates. 

However, due to inadequate amount of test equipments, concrete samples must be kept in curing 

room for more than 56 days. This is the reason that concrete samples in the database used have 

an age range from 7 to 96 days. A prediction model is proposed to overcome these issues. Thus, 

in this chapter, the question to be answered with this research is: Can the five hours boil testing 

time be replaced, with reasonable degree of accuracy, with a permeability response prediction 

model? 

 

6.3 Data Description 
The database for the development of the boil void prediction model was provided by KDOT. The 

samples included in the database were either prepared in the laboratory or collected in the field. 

In order to properly characterize the permeability of concrete, a total of 414 datasets were used to 

build the desired database; 211, 112 and 91 datasets are used, respectively, for training, testing 

and validation purposes. By using the database, the ANN- and Regression-Based models are 

developed to predict the boil permeability response in order to choose the best prediction model. 

Three ANN-based models are developed and the most accurate model has been selected based on 

the accuracy measure criteria such as Mean Absolute Relative Error (MARE), Average-Squared-

Error (ASE) and Coefficient of Determination (R2) values. The predicted permeability response 

is computed via Excel-based Program by entering the needed input variables such as oven dry 

weight (A), saturated surface dry weight (B), and curing time. Further details are given in the 

following sections. 
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6.3.1 Laboratory Procedure 

For this test, three samples per mix design are prepared and tested separately. The samples shall 

consist of 2” thick by 4” diameter specimens taken from the top portion of cylinders or cores. It 

is specified in ASTM C 642-97 that the volume of the each portion shall not be less than 350 

cm3; and each portion shall be free from observable cracks, fissures, or shattered edges.  

6.3.1.1 Oven Dry Mass (A) 

After determining the mass of the portions, they are oven dried at 100 to 110oC for not less than 

24 hours. After removing each specimen from the oven, they are allowed to cool in a desiccator 

to a temperature of 20 to 25oC, after which the mass is determined. If the specimen is 

comparatively dry when its mass is first determined, and the second mass closely agrees with the 

first, consider it dry. If the specimen is wet when its mass is first determined, it needs to be 

replaced in the oven for a second drying treatment of 24 hours and the mass determination is 

done again. If the third value checks with the second, it is considered as dry. In case of any 

doubt, the specimen can be redried for 24 hours until the check values of mass are obtained. If 

the difference between values obtained from two successive values of mass exceeds 0.5% of the 

lesser value, the specimen is returned to the oven for an additional 24 hours drying period, and 

the procedure is repeated until the difference between any two successive values is less than 

0.5% of the lowest value obtained. This value is designated as A. 

6.3.1.2 Saturated Mass after Immersion (B) 

After final drying, cooling, and the determination of mass, the specimen is immersed in water at 

approximately 21oC for not less than 48 hours until two successive values of mass of the surface-

dried sample at intervals of 24 hours show an increase in mass of less than 0.5% of the larger 

value. The surface of the specimen is dried by removing surface moisture with a towel, after 

which the specimen mass is determined. The final surface-dry mass after immersion is 

designated as B.  

6.3.1.3 Saturated Mass after Boiling (C) 

The specimen processed as described in 6.3.1.2 is placed in a suitable receptacle, covered with 

tap water, and boiled for 5 hours. Then, it’s allowed to cool by natural loss of heat for not less 
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than 14 hours to a final temperature of 20 to 25oC. The surface moisture is removed by a towel 

and the mass of the specimen is determined. The soaked, boiled, and surface-dried mass is 

designated as C.  

6.3.1.4 Immersed Apparent Mass 

The specimen is suspended in a container covered up with water by a wire and then its 

submerged weight is determined. This apparent mass is designated as D.  

6.3.1.5 Calculation 

By using the values determined in accordance with the procedure described, absorption after 

immersion and boiling, bulk density, bulk density after immersion, and bulk density after 

immersion and boiling, and apparent density, the volume of permeable pore space (voids) can be 

calculated using following equations: 

 

100
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where: 
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A = Mass of oven-dried sample in air (grams) 

B = Mass of surface-dry sample in air after immersion (grams) 

C = Mass of surface-dry sample in air after immersion and boiling (grams)  

D = Apparent mass of sample in water after immersion and boiling (grams)  

g1 = Bulk density (Mg/m3) 

g2 = Apparent density (Mg/m3) 

ρ = Density of water (1 Mg/ m3 = 1 g/cm3) 

 

It is noted in ASTM C 642-97 that this test method does not involve a determination of absolute 

density. Hence, such pore space as may be present in the specimen that is not emptied during the 

specified drying or is not filled with water during the specified immersion and boiling or both is 

considered “impermeable” and is not differentiated from the solid portion of the specimen for the 

calculations, especially those for percent voids. Depending on the pore size distribution and the 

pore entry radii of the concrete and on the purposes for which the test results are desired, the 

procedures of this test method may be adequate, or they may be insufficiently accurate. In the 

event that it is desired to fill more of the pores than will be filled by immersion and boiling, 

various techniques involving the use of vacuum treatment or increased pressures may be used. If 

a rigorous measure of total pore space is desired, this can only be obtained by determining 

absolute density by first reducing the sample to discrete particles, each of which is sufficiently 

small so that no impermeable pore space can exist within any of the particles. If the absolute 

density were determined and designated g3, then:  

 

100g  (%)  volume voidTotal
3

13 ×⎥
⎦

⎤
⎢
⎣

⎡ −
=

g
g        6.8 

 

Since there is no reference standard available for comparison, bias for this test method can not be 

determined. So, in this study, it is not aimed to come up with a discussion of whether or not this 

test method is reliable. However, some of results are evaluated to better understand the test 

method for future studies.    
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6.4 ANN Model Development 
The ANN model was developed in four sequential stages. In the first stage, the ANN architecture 

was determined based on problem characteristics and ANN knowledge, and input and output 

categories were chosen accordingly. This step also includes classifying the datasets as training, 

testing or validation sets. In the second stage, the network was trained and tested on the 

experimental data to obtain the optimum number of hidden nodes and iterations for the ANN 

architecture determined in stage one. In the third stage, the best performing network obtained 

from the second stage is validated on the validation database. If accuracy measures from training, 

testing and validation database are very comparable, then the model may not be trained on all 

data.  In the fourth stage, the best performing network obtained in the second stage is retrained 

on all experimental data to increase the prediction accuracy and evaluate how well the ANN 

model characterized the desired behavior. Normally, retraining the network with all experimental 

data is expected to provide reliable predictions and accuracy measures if the dataset 

classification is done in an appropriate manner. However, it has been shown through several 

research studies by Najjar and Coworkers [Najjar & Ali (1998a, b), Najjar & Basheer (1996a), 

and Najjar et al. (1996b)] that stage four is recommended to arrive at a better performing 

network. In this chapter, four sequential stages have been conducted twice to arrive at two 

desired prediction models for C and D.  In order to develop boil test permeability prediction 

model, two models for predicting C and D have been proposed and three best performing model 

for each one have been developed to obtain the most accurate response. The network developed 

for C and D has one hidden layer. Fully connected internal structure, i.e. any node in one layer 

connects to all the nodes in the next layer. ANN Model architectures for C and D are explained 

in details.   

 

6.4.1 ANN Model Architecture for C 

Based on the knowledge gained from experimental data analysis, ANN model architecture for C 

has been built by considering 3 inputs and 1 output, which respectively are: 

Inputs: 

 1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 
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 3-   (CT) Curing Time (days) 

Output: 

 1-   (C) Mass of surface-dry sample in air after immersion and boiling (grams)  

 

In this study, 3 models giving appropriate accuracy statistical measures have been selected based 

on optimum hidden nodes, minimum values of Mean Absolute Relative Error (MARE) and 

Averaged-Squared-Error (ASE) and maximum values of Coefficient of Determination (R2). 

Total 414 datasets are used to build the desired database; 211, 112 and 91 sub-database are used, 

respectively, for training, testing and validation purposes. Datasets that include minimum and 

maximum values of each variable are included in the training phase in order for the network to 

represent the characteristics of the response. The maximum and minimum ranges of each 

input/output variable for ANN model development are chosen on purpose to be wider than their 

actual ranges for better mathematical mapping.        

  

Model Training and Testing for C 

Based on statistical measures such as Averaged-Squared-Error (ASE), Coefficient of 

determination (R2) and Mean Absolute Relative Error (MARE), the optimal network structure 

for the Model C1 was found at 3 hidden nodes and 20000 iterations. The corresponding accuracy 

measures for this network are ASEtr=0.000103, R2
tr=0.989, MAREtr=0.34% (for training 

database) and ASEts=0.00009, R2
ts=0.984, MAREts= 0.31% (for testing database). The optimal 

network for Model C2 was found at 3 hidden nodes and 19500 iterations. The corresponding 

accuracy measures for this network are ASEtr=0.000027, R2
tr=0.997, MAREtr=0.16% (for 

training database) and ASEts=0.000023, R2
ts=0.996, MAREts= 0.15% (for testing database). The 

optimal network for Model C3 was found at 4 hidden nodes and 19900 iterations. The 

corresponding accuracy measures for this network are ASEtr=0.000035, R2
tr=0.996, 

MAREtr=0.18% (for training database) and ASEts=0.000033, R2
ts=0.994, MAREts= 0.18 (for 

testing database). The training graphical comparison plots between predicted and actual response 

for Model C1, Model C2 and Model C3 are shown, respectively, in Figure 6.1, Figure 6.2 and 

Figure 6.3. The testing graphical comparison plots between predicted and actual response for 

Model C1, Model C2 and Model C3 are shown, respectively, in Figures 6.4, 6.5 and 6.6. Also, 
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statistical accuracy measures for the training and testing are shown in Table 6.1 with the best 

performing is identified in bold. 

 

Model Validation for C 

After training and testing, respectively, on 211 and 112 datasets, validation is conducted by using 

the remaining 91 datasets. After classifying the datasets as training, testing, and validation as 

described in Section 6.4, the network was trained and tested on experimental data to obtain the 

optimum number of hidden nodes and iterations for the ANN architecture determined in the 

stage one. For model validation, the third stage is performed by utilizing the best performing 

network, identified in stage two, to predict the output of the validation datasets. The graphical 

comparison plots between predicted and actual response, for validation datasets, for Model C1, 

Model C2 and Model C3 are shown, respectively, in Figures 6.7, 6.8 and 6.9. Also, 

corresponding statistical accuracy measures are shown in Table 5.1 where the best performing 

network is identified in bold. 

 

Model Selection for C 

Statistical accuracy measures for training and testing databases at optimal ANN structure with 3 

hidden nodes and 19,500 iterations showed better prediction accuracy compared with those for 

models C1 and C3. Even though Model C1 has same amount of hidden nodes as Model C2, 

Model C2 has better accuracy measures than Model C1. All of three models can be used as a 

prediction model since they all have considerably good statistical results. In this case, the best-

performing model is considered in the final selection. For this reason, Model C2 has been chosen 

to be used as the best network structure. Thus, all of the 414 datasets from the Boil test were 

used to retrain the network at this optimal structure to obtain the generalized response throughout 

the entire database. Statistical measures of the selected model trained with all data are: 

ASEall=0.000025, R2
all =0.997 and MAREall=0.164%. The graphical comparison plots between 

predicted and actual response for Model C1, Model C2 and Model C3 are shown, respectively, in 

Figures 6.10, 6.11 and 6.12. Statistical accuracy measures for all 3 models are shown in Table 

6.1. The good agreement between predicted results and experimentally observed results is 

apparent. The network structure of the best performing model is depicted in Figure 6.13. 
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6.4.2 Regression Model for C 

Regression analysis is another method to understand how the typical value of the dependent 

variable changes when the independent variables are varied. In other words, it is to understand 

which among the independent variables are related to the dependent variables. Regression model 

development has been accomplished using the Excel Data Analysis Toolkit. The 412 datasets 

used for ANN-Model development were used herein to obtain the prediction model. The input 

variables and the output as used in ANN-Model development are respectively:  

Inputs: 

1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 

 3-   (CT) Curing Time (days) 

Output: 

 1-   (C) Mass of surface-dry sample in air after immersion and boiling (grams) 

 

Using linear regression approach, the following equation was developed; 

 

0.010CT-1.065B0.0727A- 7.555 C +=        6.9  

 

Statistical measures of linear regression model obtained using Excel Data Analysis Toolkit are: 

MARE (%) = 0.171%, R2
all

 = 0.996 and Standard Deviation of Error, SDE, (%) = 0.255%. The 

graphical comparison plot between predicted and actual response is shown in Figure 6.14. The 

comparison of ANN Model and Regression Model are depicted in Table 6.2. It is very clear from 

the comparison plots in Figure 6.11 and 6.14 that the ANN model is slightly out performing the 

regression-based model. This indicates that the modeled behavior is mostly linear. In this case, 

generally ANN-based models will not show significant improvements over linear regression type 

models.  

6.4.3 ANN Model Architecture for D 

Based on the knowledge gained from experimental data analysis, ANN model architecture for D 

has been built by considering 3 inputs and 1 output, which respectively are: 
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Inputs: 

 1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 

 3-   (CT) Curing Time (days) 

Output 

 1-   (D) Apparent mass of sample in water after immersion and boiling (grams)  

 

In this section, 3 models giving appropriate accuracy statistical measures have been selected 

based on optimum hidden nodes, minimum values of Mean Absolute Relative Error (MARE) 

and Averaged-Squared-Error (ASE) and maximum values of Coefficient of Determination (R2). 

Total 414 datasets are used to build the desired database; 211, 112 and 91 sub-database are used, 

respectively, for training, testing and validation purposes. Datasets that include minimum and 

maximum values of each variable are included in the training phase in order for the network to 

represent the characteristics of the response. The maximum and minimum ranges of each 

input/output variable for ANN model development are chosen on purpose to be wider than their 

actual ranges for better mathematical mapping. 

 

Model Training and Testing for D 

Based on statistical measures such as Averaged-Squared-Error (ASE), Coefficient of 

determination (R2) and Mean Absolute Relative Error (MARE), the optimal network structure 

for the Model D1 was found at 2 hidden nodes and 20,000 iterations. The corresponding 

accuracy measures for this network are ASEtr=0.000776, R2
tr=0.926, MAREtr=1.203% (for 

training database) and ASEts=0.0006, R2
ts=0.943, MAREts= 1.132% (for testing database). The 

optimal network for Model D2 was found at 3 hidden nodes and 20,000 iterations. The 

corresponding accuracy measures for this network are ASEtr=0.00073, R2
tr=0.929, 

MAREtr=1.144% (for training database) and ASEts=0.000536, R2
ts=0.948, MAREts= 1.077% (for 

testing database). The optimal network for Model D3 was found at 4 hidden nodes and 20,000 

iterations. The corresponding accuracy measures for this network are ASEtr=0.000729, 

R2
tr=0.929, MAREtr=1.144% (for training database) and ASEts=0.000536, R2

ts=0.948, MAREts= 

1.076 (for testing database). The training graphical comparison plots between predicted and 

actual response for Model D1, Model D2 and Model D3 are shown, respectively, in Figure 6.15, 
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Figure 6.16 and Figure 6.17. The testing graphical comparison plots between predicted and 

actual response for Model D1, Model D2 and Model D3 are shown, respectively, in Figures 6.18, 

6.19 and 6.20. Also, statistical accuracy measures for the training and testing are shown in Table 

6.3 with the best performing is identified in bold. 

 

Model Validation for D 

After training and testing, respectively, on 211 and 112 datasets, validation is conducted by using 

the remaining 91 datasets. After classifying the datasets as training, testing, and validation as 

described in Section 6.4, the network was trained and tested on experimental data to obtain the 

optimum number of hidden nodes and iterations for the ANN architecture determined in the 

stage one. For model validation, the third stage is performed by utilizing the best performing 

network, identified in stage two, to predict the output of the validation datasets. The graphical 

comparison plots between predicted and actual response, for validation datasets, for Model D1, 

Model D2 and Model D3 are shown, respectively, in Figures 6.21, 6.22 and 6.23. Also, 

corresponding statistical accuracy measures are shown in Table 6.2 where the best performing 

network is identified in bold. 

 

Model Selection for D 

Statistical accuracy measures for training and testing databases, for Model D2, at optimal ANN 

structure with 3 hidden nodes and 20,000 iterations showed better prediction accuracy compared 

with those for Model D1 and D3. Moreover, all of the three models have performed considerably 

well. However, Model D2 has the least ASE, MARE, and the most R2 among the other models. 

The best-performing model is considered in the final selection. For this reason, Model D2 has 

been chosen to be used as the best network structure. Thus, all of the 414 datasets from the Boil 

test were used to retrain the network at this optimal structure to obtain the generalized response 

throughout the entire database. Statistical measures of selected model trained with all data are: 

ASEall=0.000643, R2
all =0.934 and MAREall=1.110%. The graphical comparison plots between 

predicted and actual response for Model D1, Model D2 and Model D3 are shown, respectively, 

in Figures 6.24, 6.25 and 6.26. Corresponding statistical accuracy measures for all 3 models are 

shown in Table 6.2. The good agreement between predicted results and experimentally acquired 
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results is apparent. The network structure of the best performing model (Model D2) is depicted 

in Figure 6.27. 

6.4.4 Regression Model for D 

Regression analysis is as discussed before has been accomplished using Excel Data Analysis 

Toolkit. Total 414 datasets used for ANN-Model development were utilized herein to obtain the 

regression prediction model. The input variables and the output as used in ANN-Model 

development are respectively:  

Inputs: 

1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 

 3-   (CT) Curing Time (days) 

Output:  

1- (D) Apparent mass of sample in water after immersion and boiling (grams) 

 

Using linear regression approach, the following equation was developed; 

 

0.0175CT0.5463B0.1679A129.1371- D +++=       5.10  

 

Statistical measures of linear regression model obtained using Excel Data Analysis Toolkit are: 

MARE (%) = 1.30%, R2
all

 = 0.909 and Standard Deviation of Error, SDE, (%) = 1.762%. The 

graphical comparison plot between predicted and actual response is shown in Figure 6.14. The 

statistical comparison of ANN Model and Regression Model are depicted in Table 6.2. It is very 

clear from the comparison plots in Figure 6.11 and 6.14 that the ANN model is slightly out 

performing the regression-based model. As in the case of Model C, this indicates that the 

modeled behavior is mostly linear. As stated earlier, in this case, ANN-based models will 

generally not show significant improvements over linear regression counterparts.  

 

6.5 Excel Application for the Void Model 
By using the connection weights, threshold values and coefficients which are described in 

Chapter 3, the excel-based application is developed. In this application, the two developed 
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models by ANN and Regression to predict C and D are combined in one Excel sheet where the 

connection weights of Model C and Model D and linear regression equations are utilized. In 

other words, operations of one function for Model C and one function for Model D are merged in 

one user-friendly application. By entering the compatible input variables for A, B and Curing 

time in the Excel interface shown in Figure 6.29, ANN- and Regression-based models utilize all 

3 input values (user-provided) to predict the C and D values. Percentage of volume permeable 

pore space (voids) is then calculated since C and D are known variables. The computed C and D 

values are placed in the output cells colored with blue and % volume of permeable pore space 

(voids) is placed in the cells colored with pink as depicted in Figure 6.29. The applicable ranges 

for the input variables are also shown in Figure 6.29. Any value of input variable that is outside 

the applicable range may cause the models to produce unreliable predictions.  

6.6 Predicting % of Voids 
By using the developed Excel sheet described in Section 6.5, % volume of permeable pore space 

(voids) are calculated for all 414 datasets. Actual and predicted values are then compared. The 

statistical accuracy measures of ANN Model are; MARE (%) =  3.431%, R2
all

 =  0.894 and 

Standard Deviation of Error, SDE, (%) = 4.822%. The ANN graphical comparison plot between 

predicted and actual response is shown in Figure 6.30. The statistical accuracy measures for the 

linear regression model are; MARE (%) = 3.698%, R2
all

 = 0.883 and Standard Deviation of Error, 

SDE, (%) = 4.928%. The Regression-based graphical comparison plots between predicted and 

actual response is shown in Figure 6.31. The statistical comparison of ANN Model and 

Regression Model are listed in Table 6.5. As can be seen from the comparison plots in Figure 

6.30 and 6.31 and the comparison in Table 6.5, the ANN model is slightly out performing the 

regression-based model. Therefore, both ANN-Model and Regression-Model can be used 

efficiently to predict % voids typically obtained from the boil test. These models can also be 

used to verify experimentally-based boil test results regarding the %voids in concrete samples.   
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6.7 Concluding Remarks  
In this chapter, a static artificial neural network with a backpropagation learning algorithm was 

developed to predict the Boil Test-based % voids in concrete mixes. As seen from the graphical 

results depicted in Figures 6.1 to 6.31 and the accuracy measures of the developed ANN models 

listed in Table 6.1, 6.3, Model C2 and Model D2 have been selected to aid in characterizing the 

% void response. The comparison of the predicted responses by ANN and Regression shown in 

Table 6.2, 6.4 and 6.5 indicates that ANN model attains better prediction accuracy than the 

Regression model even though the statistical difference between the ANN model and Regression 

model is not significant. It is apparent that the ANN model and Regression model have 

efficiently characterized the Boil test response. Therefore, ANN- and Regression-based model 

can reliably be used for % void prediction tasks to reduce the duration of the 5 hours testing 

period as long as the input variables fall within the applicable ranges. Moreover, developed ANN 

and Regression models can be used to verify measured responses for planned-to-be conducted 

Boil tests without the need for any additional experimental-based information. Even though the 

development of the ANN model requires good fundamental understanding of the Boil Test 

procedure and ANN knowledge, Excel-based application described in section 6.5, which is the 

utilization tool of the developed ANN model, is simple to use while not requiring the user to 

acquire specific knowledge about model development. ANN and Regression models overcome 

the drawback of the 5 hours testing time; making it a powerful, rapid, and low cost alternative to 

obtain the % void of concrete mixes with a reliable level of accuracy. Due to fact that the 

database for model development was provided by KDOT, the developed Boil Test % void 

prediction models in this study are applicable only for KDOT applications. A similar research 

procedure can be performed to develop reliable prediction models.   
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6.8 Tables and Figures 
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Figure 6.1 Training Graphical Prediction Accuracy for the Model C1 
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Figure 6.2 Training Graphical Prediction Accuracy for the Model C2 
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Model C3_Training

825

865

905

945

985

1025

825 865 905 945 985 1025
Actual Value of C 

Pr
ed

ic
te
d 
V
al
ue

 o
f C

 
 

Figure 6.3 Training Graphical Prediction Accuracy for the Model C3 
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Figure 6.4 Testing Graphical Prediction Accuracy for the Model C1 
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Model C2_Testing
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Figure 6. 5 Testing Graphical Prediction Accuracy for the Model C2 
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Figure 6.6 Testing Graphical Prediction Accuracy for the Model C3 
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Model C1_Validation
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Figure 6.7 Validation Graphical Prediction Accuracy for the Model C1 
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Figure 6.8 Validation Graphical Prediction Accuracy for the Model C2 
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Model C3_Validation
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Figure 6.9 Validation Graphical Prediction Accuracy for the Model C3 
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Figure 6.10 All Data Graphical Prediction Accuracy for the Model C1 
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Model C2_All Data
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Figure 6.11 All Data Graphical Prediction Accuracy for the Model C2 
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Figure 6.12 All Data Graphical Prediction Accuracy for the Model C3 
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Figure 6.13 The Network Structure of the Best Performing Model of C 
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Figure 6.14 Graphical Prediction Accuracy for the Regression Model of C 
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Figure 6.15 Training Graphical Prediction Accuracy for the Model D1 
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Figure 6.16 Training Graphical Prediction Accuracy for the Model D2 
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Model D3_Training
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Figure 6.17 Training Graphical Prediction Accuracy for the Model D3 
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Figure 6.18 Testing Graphical Prediction Accuracy for the Model D1 
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Model D2_Testing
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Figure 6.19 Testing Graphical Prediction Accuracy for the Model D2 
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Figure 6.20 Testing Graphical Prediction Accuracy for the Model D3 
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Model D1_Validation
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Figure 6.21 Validation Graphical Prediction Accuracy for the Model D1 
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Figure 6.22 Validation Graphical Prediction Accuracy for the Model D2 
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Model D3_Validation
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Figure 6.23 Validation Graphical Prediction Accuracy for the Model D3 
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Figure 6.24 All Data Graphical Prediction Accuracy for the Model D1 
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Figure 6.25 All Data Graphical Prediction Accuracy for the Model D2 
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Figure 6.26 All Data Graphical Prediction Accuracy for the Model D3 
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Figure 6.27 The Network Structure of the Best Performing Model of D 
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Figure 6.28 Graphical Prediction Accuracy for the Regression Model of D 
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Figure 6.29 Excel Application Screen-shot for the Void Model 
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Figure 6.30 Calculated %Volume of Permeable Pore Space by ANN Model 
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Regression
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Figure 6.31 Calculated %Volume of Permeable Pore Space by Regression Model 

 

Table 6.1 Statistical Accuracy Measures of the ANN-Models of C 

 

Model Model C1  Model C2 Model C3 

Architecture 3‐(1‐3‐18‐20000)‐1  3‐(2‐3‐18‐19500)‐1  3‐(3‐4‐18‐19900)‐1

MARE(%) 0.336% 0.164% 0.184% 

R2 0.989 0.997 0.996 

Tr
ai

ni
ng

 

ASE 0.000103 0.000027 0.000035 

MARE(%) 0.310% 0.149% 0.177% 

R2 0.984 0.996 0.994 

Te
st

in
g 

ASE 0.00009 0.000023 0.000033 

MARE(%) 0.319% 0.174% 0.189% 

R2 0.989 0.996 0.996 

V
al

id
at

io
n 

ASE 0.000087 0.000033 0.000037 

MARE(%) 0.33% 0.164% 0.16% 

R2 0.989 0.997 0.997 

A
ll 

D
at

a 

ASE 0.000092 0.000025 0.000025 

Final Structure 3 - 3 - 1 3 - 3 - 1 3 - 4 - 1 
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Table 6.2 Comparisons of Statistical Accuracy Measures for ANN and Regression Models of C 

 

ANN Statistical 
Measures (3 – 3 – 1) 

REGRESSION 

MARE (%) 0.164% 0.171% 

SDE(%) 0.245% 0.255% 

R2 0.997 0.996 
 

 

 

 

 

Table 6.3 Statistical Accuracy Measures of the ANN-Models of D 

 

Model Model D1  Model D2 Model D3 

Architecture 3‐(1‐2‐12‐20000)‐1  3‐(1‐3‐12‐20000)‐1  3‐(2‐4‐12‐20000)‐1 
MARE(%) 1.203% 1.144% 1.144% 

R2 0.926 0.929 0.929 

Tr
ai

ni
ng

 

ASE 0.000776 0.00073 0.000729 

MARE(%) 1.132% 1.077% 1.076% 

R2 0.943 0.948 0.948 

Te
st

in
g 

ASE 0.0006 0.000536 0.000536 

MARE(%) 1.21% 1.14% 1.15% 

R2 0.918 0.926 0.925 

V
al

id
at

io
n 

ASE 0.00072 0.000631 0.000633 

MARE(%) 1.112% 1.110% 1.111% 

R2 0.933 0.934 0.933 

A
ll 

D
at

a 

ASE 0.000644 0.000643 0.000644 

Final Structure 3 - 2 - 1 3 - 3 - 1 3 - 4 - 1 
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Table 6.4 Comparisons of Statistical Accuracy Measures for ANN and Regression Models of D 

 

ANN Statistical 
Measures (3 – 3 – 1) 

REGRESSION 

MARE (%) 1.110% 1.300% 

SDE(%) 1.449% 1.762% 

R2 0.934 0.909 

 
Table 6.5 Comparisons of Statistical Accuracy Measures for Calculated %Voids by ANN 

and Regression Models 

Statistical 
Measures ANN REGRESSION 

MARE (%) 3.431% 3.698% 

SDE(%) 4.822% 4.928% 

R2 0.894 0.883 
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CHAPTER 7- SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 
 

7.1 Summary  
For long term durability of concrete, permeability is a highly important parameter which needs to 

be evaluated to reduce the potential risk of chloride-induced corrosion damage. Recognizing this 

fact, an enormous amount of efforts were devoted to better understand this phenomenon and to 

evaluate the potential hazards and consequences of chloride-induced corrosion. Therefore, 

permeability is used as one of the main assessment criteria which has been established based on 

empirical, conventional and correlation techniques. For this reason, the two test methods to 

determine the permeability of concrete were established. The most common and reliable method 

to determine the permeability of concrete is the rapid chloride permeability test which measures 

the electrical conductance of concrete to provide a rapid indication of its resistance to the 

penetration of chloride ions. Additionally, another test as of an alternative method for rapid 

chloride permeability test is the Boil Test which is conducted to measure the volume of 

permeable pore space. In applications such as quality control and acceptance testing, the 

experimental methods are always preferred to evaluate the permeability of concrete response. 

However, their cost, inadequate test equipment and qualified technicians needed to conduct the 

sample preparation and test procedure, and actual testing time are a concern for owners and 

inspectors.  

 

During the last 20 years, artificial neural networks (ANN) have come out as a new powerful 

numerical technique able to learn by example. The learning by example technique allows ANN 

to successfully mimic the information process as occurs in the human brain. Among the several 

neuronets that have been developed, the three-layered feed-forward error-backpropagation 

network with supervised learning was chosen for material characterization.  

 

The first main objective of this study was to investigate the ability of backpropagation ANN to 

contain the complex correlations and gain the main logic for a better characterization. To achieve 

this objective, rapid chloride permeability and Boil Test databases were used to train, test and 
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validate the ANN models. Moreover, the developed models were simplified to produce accurate 

permeability response equation that can be easily used for prediction.  

 

Rapid chloride permeability and Boil Test databases were developed from previously collected 

experimental tests by KDOT. Also, another Rapid Chloride database in which different input 

variables (mix-design) involved was developed with the information collected from literature. 

Several training cases were developed using various combinations of available input variables. 

The three best performing ANN-based models for each database were investigated in more 

depth. Prediction accuracy of the developed models was illustrated and verified. Then, the results 

obtained by ANN-based model and Regression-based model were compared graphically and 

numerically. As a result, the knowledge gained in the trained ANN-based models was utilized to 

produce relevant numerical applications capable of characterizing the permeability response 

behavior of concrete.     

  

7.2 Conclusions  
Based on results obtained from the first part of this study, the following sets of conclusions are 

drawn: 

1. A static artificial neural network with backpropagation algorithm was developed using 

KDOT Rapid Chloride Permeability test database to model the permeability response of 

concrete. Comparison between experimental data and ANN model predictions indicated 

that the developed ANN model has efficiently characterized the Rapid Chloride Test 

response. Therefore, the developed ANN model can be used by KDOT to verify 

measured responses for planned-to-be conducted experimental studies, quality control 

and acceptance testing without the need for any additional experimental-based 

information. The developed Excel-based application is simple and doesn’t require the 

user to have specific knowledge.  

2. A static ANN with a backpropagation algorithm was developed using mix-design based 

Rapid Chloride Permeability test database collected from literature to model the 

permeability response of concrete. It can be inferred that the developed ANN model has 

successfully captured the Rapid Chloride Permeability response. In addition, the ANN 
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model has a high prediction capability of the chloride permeability of concrete in terms of 

quantitative and categorical variables. In this study, a significant compromise between 

the literature data and ANN model has been shown. The mix-design based ANN model 

can be used for early prediction, quality control and acceptance testing without the need 

for any additional experimental-based information.   

3. Another static ANN with backpropagation algorithm was developed using KDOT Boil 

test database to model the determination of permeable voids of concrete. Comparison 

between experimental data and ANN model predictions has proven that the developed 

ANN model has efficiently characterized the determination of permeable voids. 

Therefore, the developed ANN model can be used by KDOT to verify measured 

responses for planned-to-be conducted experimental studies, quality control and 

acceptance testing without the need for any additional experimental-based information. 

The developed user-friendly Excel-based application is simple and doesn’t require the 

user to have specific knowledge.    

 

 

The results indicated that the methodology described using Backpropagation Artificial Network 

is a useful, powerful tool not only for accurately predicting permeability, but also to identifying 

correlations between output and inputs. However it is necessary to mention that the accuracy of 

the neural network highly depends on the accuracy of the database. A significant amount of 

inaccurate data may lead to inappropriate and unreliable results. The small database may not be 

enough to capture the features of the proposed network structure which otherwise will generate 

inaccurate or unreliable predictions but in this study, ANN models overcame the drawback of 

testing time; making it a powerful, rapid, low cost alternative to determine the permeability of 

concrete mixes with a considerably reliable level of accuracy. All of the results obtained with 

this approach and the verifications carried out demonstrated the applicability of artificial neural 

networks in the concrete materials industry.  This study has also proven that ANN approach is an 

up-to-date application which can also be used for modelling of some concrete properties.   
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7.3 Recommendations  
Even though the results obtained in this study are reasonably acceptable, the developed ANN 

models in this study have few drawbacks. First, it is not recommended to use KDOT 

permeability prediction models by other agencies since some of the measurements are not 

specified in ASTM standards. The number of datasets used in Mix-design based Rapid Chloride 

test model development may not be enough to generalize the permeability response of concrete 

mixes. For this reason, more experimental results are recommended to be included in ANN 

model development for future studies. 

 

It is specified in ASSHTO T-277 that factors which are known to affect chloride ion penetration 

include: water-cement ratio, the presence of polymeric admixtures, sample age, air-void system, 

aggregate type, degree of consolidation, and type of curing. Thus, ongoing research for KDOT 

rapid chloride permeability test will look into expanding the models to include mix-design 

parameters. Moreover, the period from sample preparation to taking the measurements will be 

considered in the following phases of the ongoing research. In the second phase of the study, the 

difficulties due to lack of mix-design parameters and supplementary materials’ information will 

be clarified and the ongoing research will be conducted to investigate correlation between mix-

design parameters and the measurements (A, B and C) taken before the test. In the third phase of 

the study, correlations between the measurements and the charge (coulomb) passed through the 

sample will be investigated. Consequently, two combined prediction models will be developed 

and the permeability response of the concrete will be estimated accordingly by using mix-design 

information. In addition, ongoing research for the KDOT Boil Test will look into expanding the 

ANN models to contain mix-design parameters. In this case, the part of the research related to 

Boil test will be about modeling with mix-design parameters to predict the variables (A and B) 

used in this study. Then, second phase will inspect the correlation between predicted variables (A 

and B) and C and D.  
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