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Abstract

Leibniz-type rules associated to bilinear pseudodifferential operators have received con-

siderable attention due to their applications in obtaining fractional Leibniz rules and the

study of various partial differential equations. Generally speaking, fractional Leibniz rules

provide a way of estimating the size and smoothness of a product of functions in terms of

the size and smoothness of the individual functions themselves. Such rules are helpful in

determining well-posedness results for solutions of PDEs modeling a variety of real world

phenomena, ranging from Euler and Navier-Stokes equations (which model incompressible

fluid flow, such as airflow over a wing) to Korteweg-de Vries equations (which model waves

on shallow water surfaces).

Bilinear pseudodifferential operators act to combine two functions using their Fourier

transforms and a symbol, which is a function that assigns different weights to the functions’

frequency components as they are combined. Thus, Leibniz-type rules associated to bilinear

pseudodifferential operators serve as a generalization of fractional Leibniz rules by providing

estimates on the size and smoothness of some combination of two functions, for which point-

wise multiplication is recoverable by choosing a symbol identically equal to one. A variety

of function spaces may be used to measure the size and smoothness of functions involved,

including Lebesgue spaces, Sobolev spaces, and Besov and Triebel-Lizorkin spaces. Further,

bilinear pseudodifferential operators may be considered in association with different classes

of symbols, which is to say that the symbol itself (and possibly its derivatives) will possess

certain decay properties.

New Leibniz-type rules in two different settings will be presented in this manuscript. In

the first setting, Leibniz-type rules associated to bilinear pseudodifferential operators with

homogeneous symbols in a certain class are proved, where the sizes of the functions involved

are measured using a combination of Lebesgue space norms and norms corresponding to



function spaces admitting appropriate molecular decompositions, specifically focusing on

the case of homogeneous Besov-type and Triebel-Lizorkin-type spaces. In the second set-

ting, Leibniz-type rules and biparameter counterparts are proved in weighted Lebesgue and

Sobolev spaces associated to Coifman-Meyer multiplier operators. All of the new Leibniz-

type rules proved in the manuscript yield corresponding new fractional Leibniz rules, which

are highlighted as appropriate. Various techniques from Fourier analysis serve as impor-

tant tools in the proofs of these new results, such as obtaining paraproduct decompositions

for bilinear pseudodifferential operators and utilizing Littlewood-Paley theory and square

function-type estimates.
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Chapter 1

An Overview of Leibniz-Type Rules

Our discussion about definitions, motivations, and the history of Leibniz-type rules must

begin with some background on fractional Leibniz rules, the type of estimates which serve

as a foundation for Leibniz-type rules. As the name suggests, fractional Leibniz rules are

closely related to the general Leibniz rule, a formula which gives a representation for partial

derivatives of products of functions. Considering the simplest case, the derivative of the

product of two differentiable functions defined on R, we obtain the product rule (fg)′ =

f ′g + fg′. Notice that in this formula, the right-hand side has two terms, one of which has

the derivative on f and no derivative on g, while the other has no derivative on f and one

derivative on g. In its full generality, the Leibniz rule may be stated for two sufficiently

differentiable functions f and g defined on Rn and any multi-index α ∈ Nn
0 as

∂α(fg) =
∑
β≤α

(
α

β

)
(∂βf)(∂α−βg) = (∂αf)g + f(∂αg) + . . . .

Again, notice that as a part of this formula, there are two terms on the right-hand side,

one of which has all α derivatives on f and no derivatives on g, and another which has

no derivates on f and all α derivatives on g. We briefly note that all standard notation is

collected in Appendix A, including definitions for the multi-indices mentioned above, along

with definitions of function spaces and aspects of Fourier analysis that will be utilized below.
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Fractional Leibniz rules, also known as Kato-Ponce inequalities (due to the pioneering

work done by Kato-Ponce [39]), have the form

‖Ds(fg)‖Lr . ‖D
sf‖Lp1 ‖g‖Lq1 + ‖f‖Lp2 ‖D

sg‖Lq2 , (1.1)

‖Js(fg)‖Lr . ‖J
sf‖Lp1 ‖g‖Lq1 + ‖f‖Lp2 ‖J

sg‖Lq2 , (1.2)

which hold for indices satisfying 1 < p1, p2, q1, q2 ≤ ∞, 1
2
< r ≤ ∞ such that 1

r
= 1

p1
+ 1

q1
=

1
p2

+ 1
q2

, and s > max{0, n(1
r
− 1)} or s ∈ 2N0, and for functions f and g in the Schwartz

class S(Rn). The operators Ds and Js are as defined below, but should be thought of, in

general, as taking s derivatives of a function. Put simply, these fractional Leibniz rules

involve measuring the size of s derivatives of a product of functions f and g, then bounding

this quantity by the sum of two terms, one of which has all s derivatives on f and none on g,

and the other having no derivatives on f and s derivatives on g. In this way, we see a parallel

to the simpler notions of the product rule or general Leibniz rule, as discussed above.

For s ∈ R, define the operator Ds via

D̂sf(ξ) := |ξ|s f̂(ξ), ξ ∈ Rn, f ∈ S ′(Rn),

referred to as a homogeneous differentiation operator of order s if s > 0. There is a connection

between the operator Ds and the homogeneous Sobolev space Ẇ s,p(Rn), which motivates

thinking of Ds as taking s derivatives; see Section A.2 for more details. Similarly, define the

operator Js via

Ĵsf(ξ) := (1 + |ξ|2)s/2f̂(ξ), ξ ∈ Rn, f ∈ S ′(Rn),

which is referred to as an inhomogeneous differentiation operator of order s if s > 0 and

which shares a connection with the inhomogeneous Sobolev space W s,p(Rn).

Inequalities of the forms (1.1) and (1.2) (and related commutator estimates) have received

much attention due to their applicability to problems in partial differential equations. Tech-

niques were initially developed for fractional Leibniz rules to handle the case 1 < r < ∞.
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Specifically, estimates similar to (1.2) were studied in Kato-Ponce [39] in relation to the

Cauchy problem for the Euler and Navier-Stokes equations (which model incompressible

fluid flow, such as airflow over a wing), with previous work in Strichartz [62] for the case

n
p
< s < 1. Further, in both Christ-Weinstein [14] and Kenig-Ponce-Vega [41], estimates

along the lines of (1.1) were considered in connection to the Korteweg-de Vries equation

(which models waves on shallow water surfaces), and in Gulisashvili-Kon [34], estimates of

both forms were studied in relation to smoothing properties of Schrödinger semigroups. In

recent years, the range for r has been extended to include 1
2
< r ≤ 1, treated in Grafakos-

Oh [30] and Muscalu-Schlag [52] (with related work in Koezuka-Tomita [42]), and the case

r = ∞ was settled in Bourgain-Li [9] (see also Grafakos-Maldonado-Naibo [28] for related

results). This is a small selection of previous work done relating to inequalities of the forms

(1.1) and (1.2), and more history will be detailed throughout the manuscript once additional

necessary concepts have been introduced.

On the left-hand side of inequalities (1.1) and (1.2), the functions f and g are combined

via pointwise multiplication. It is natural to consider similar inequalities wherein the func-

tions involved are combined using more versatile methods. In particular, we will combine

functions using bilinear pseudodifferential operators.

Definition 1.1. Let σ(x, ξ, η) be a complex-valued, smooth function defined for x, ξ, η ∈ Rn.

Define Tσ, the bilinear pseudodifferential operator associated to σ, by

Tσ(f, g)(x) :=

∫
R2n

σ(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη, ∀x ∈ Rn.

In general, σ is referred to as the symbol associated with the operator Tσ. If σ does not depend

on x, then σ is referred to as a multiplier, and Tσ is known as a bilinear multiplier operator.

When discussing bilinear pseudodifferential operators, certain decay estimates will be as-

sumed for the associated symbol σ and its derivatives, which will result in σ lying in various

symbol classes. These will be introduced in subsequent chapters as necessary. See Section A.5

for some simple examples of bilinear pseudodifferential operators, along with a remark on
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the connection between such operators and their linear counterparts.

Our main focus in this manuscript is proving various Leibniz-type rules, which are rem-

iniscent of the Kato-Ponce inequalities introduced in (1.1) and (1.2), and which will often

serve as complements and extensions of said equations. Leibniz-type rules are inequalitites

of the form

‖Tσ(f, g)‖X . ‖f‖Y1
‖g‖Z1

+ ‖f‖Y2
‖g‖Z2

, (1.3)

where Tσ is a bilinear pseudodifferential operator as in Definition 1.1 and X, Y1, Y2, Z1,

and Z2 are function spaces measuring some sense of smoothness of the functions involved.

In fact, since Tσ(f, g) = fg for σ ≡ 1, we see that (1.1) and (1.2) may be regarded as

Leibniz-type rules with σ ≡ 1 and X, Y1, Y2, Z1, and Z2 various Lebesgue spaces and

homogeneous/inhomogeneous Sobolev spaces. The history given above for the development

of (1.1) and (1.2) gives some background for Leibniz-type rules, but more can be said in

general. Additional results of the form (1.3) in the case σ ≡ 1 with X, Y1, and Z2 Besov or

Triebel-Lizorkin spaces and Y2 and Z1 Lebesgue spaces, along with applications to partial

differential equations, may be found in Bahouri-Chemin-Danchin [2], Chae [12], and Runst-

Sickel [59], while estimates of the form (1.3) with σ ≡ 1 involving weighted or variable

exponent spaces were obtained in Cruz-Uribe-Naibo [17]. We give more history on the

development of results of the form (1.3) for σ in certain bilinear homogeneous symbol classes

in Chapter 2, and for σ in Coifman-Meyer or biparameter Coifman-Meyer multiplier classes

in Chapter 3. Below, we state the main Leibniz-type rule results proved in Chapters 2 and

3, reserving technical definitions for the respective chapters. We note that the main results

of Chapter 2 were originally published in Brummer-Naibo [11], while those of Chapter 3 are

to appear in Brummer-Naibo [10].

In Chapter 2, we will present a unifying approach towards establishing Leibniz-type rules

of the form (1.3) where Tσ is a bilinear pseudodifferential operator with bilinear symbol σ

in the homogeneous symbol class ḂS
m

1,1 for some m ∈ R, and where Z1 and Y2 are standard

Lebesgue spaces and X, Y1, and Z2 are function spaces admitting a molecular decomposition

in the sense of Frazier-Jawerth [24; 25]. We demonstrate this unifying approach by proving
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explicit Leibniz-type rule results in the case where X, Y1, and Z2 are homogeneous Besov-

type or Triebel-Lizorkin-type function spaces, denoted Ḃs,τ
p,q and Ḟ s,τ

p,q , respectively:

Theorem 1.2. Let m ∈ R and σ ∈ ḂS
m

1,1. If 0 < p, q ≤ ∞, sp < s < ∞, and 0 ≤ τ <

1
p

+ s−sp
n

, it holds that

‖Tσ(f, g)‖Ḃs,τp,q . ‖f‖Ḃs+m,τp,q
‖g‖L∞ + ‖f‖L∞ ‖g‖Ḃs+m,τp,q

, ∀f, g ∈ S0(Rn).

If 0 < p <∞, 0 < q ≤ ∞, sp,q < s <∞, and 0 ≤ τ < 1
p

+ s−sp,q
n

, it holds that

‖Tσ(f, g)‖Ḟ s,τp,q . ‖f‖Ḟ s+m,τp,q
‖g‖L∞ + ‖f‖L∞ ‖g‖Ḟ s+m,τp,q

, ∀f, g ∈ S0(Rn).

Note that sp and sp,q are as in (2.19). We also note that there are homogeneous differ-

entiation operators implicit in the results of Theorem 1.2, making them reminiscent of

(1.1). Specifically, this is seen through the norm equivalences ‖Dsf‖Ḃ0,τ
p,q
∼ ‖f‖Ḃs,τp,q and

‖Dsf‖Ḟ 0,τ
p,q
∼ ‖f‖Ḟ s,τp,q (see Yang-Yuan [69, Proposition 3.5]). The proof of Theorem 1.2 is

detailed in Section 2.4, utilizing as a primary tool Theorem 2.1. Theorem 2.1 establishes

decay properties for certain families of functions relating to Tσ(f, g), allowing us to utilize

established theory for spaces admitting molecular decompositions based on the pioneering

work of Frazier-Jawerth [24; 25] and therefore obtain the Leibniz-type rule results given in

Theorem 1.2. Said results may be considered as bilinear counterparts to Grafakos-Torres [31,

Theorems 1.1 and 1.2], wherein boundedness properties in homogeneous Besov and Triebel-

Lizorkin spaces were addressed for linear pseudodifferential operators (and where such bound-

edness properties were extended to the setting of Besov-type and Triebel-Lizorkin-type spaces

in Sawano-Yang-Yuan [61], again for linear pseudodifferential operators). In Subsection 2.1.2,

we will discuss connections between Theorem 1.2 and Kato-Ponce inequalities in Besov-type

and Triebel-Lizorkin-type spaces, and in Subsection 2.3.1, we detail a number of spaces

which may be realized as particular cases of Besov-type and Triebel-Lizorkin-type spaces so

that Theorem 1.2 will yield Leibniz-type rules and associated fractional Leibniz rules in such

spaces.
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In Chapter 3, one of our goals will be to prove Leibniz-type rules of the form (1.3)

where Tσ is a bilinear multiplier operator with symbol σ a Coifman-Meyer multiplier, and

where X, Y1, Y2, Z1, and Z2 are a combination of weighted Lebesgue spaces and weighted

homogeneous/inhomogeneous Sobolev spaces:

Theorem 1.3. Let σ(ξ, η), ξ, η ∈ Rn, satisfy (3.1) and consider 1 < p, q ≤ ∞, 1
2
< r < ∞

such that 1
r

= 1
p

+ 1
q
, and s > max{0, n(1

r
− 1)} or s ∈ 2N0. If v ∈ Ap(Rn) and w ∈ Aq(Rn),

then for all f, g ∈ S(Rn), it holds that

‖Ds(Tσ(f, g))‖
Lr(v

r
pw

r
q )

. ‖Dsf‖Lp(v) ‖g‖Lq(w) + ‖f‖Lp(v) ‖D
sg‖Lq(w) , (1.4)

‖Js(Tσ(f, g))‖
Lr(v

r
pw

r
q )

. ‖Jsf‖Lp(v) ‖g‖Lq(w) + ‖f‖Lp(v) ‖J
sg‖Lq(w) , (1.5)

where the implicit constant depends on p, q, s, [v]Ap, [w]Aq , and σ. If v = w, different choices

of p and q are allowed in each term on the right-hand side of (1.4) and (1.5).

Estimates of the forms (1.4) and (1.5) for σ ≡ 1 and finite p and q were proved in Cruz-Uribe-

Naibo [17], along with related weighted commutator estimates. Additionally, unweighted

estimates in the spirit of (1.4) were proved in Hart-Torres-Wu [35] for certain multipliers

with minimal smoothness assumptions, and estimates similar to (1.4) are proved in Naibo-

Thomson [56] for A∞ weights in the scales of weighted Besov/Triebel-Lizorkin and weighted

Hardy spaces. Also in Chapter 3, we prove Leibniz-type rules relating to biparameter coun-

terparts of the homogeneous differentiation operator Ds. For s ∈ R and n1, n2 ∈ N such that

n = n1 + n2, define the operators Ds
1 and Ds

2 via

D̂s
`f(ξ) := |ξ`|s f̂(ξ), ξ = (ξ1, ξ2) ∈ Rn1 × Rn2 , f ∈ S ′(Rn), ` = 1, 2,

referred to as partial homogeneous s-th differentiation operators if s > 0, and thought of as

taking s partial derivatives in some subspace of Rn. The Leibniz-type rules we prove relating

to partial homogeneous differentiation operators are of the following form, where the symbol

σ is a biparameter Coifman-Meyer multiplier:
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Theorem 1.4. Let n = n1 + n2 for n1, n2 ∈ N, ξ = (ξ1, ξ2), η = (η1, η2) ∈ Rn1 × Rn2.

Assume σ(ξ, η) satisfies (3.2) and consider 1 < p, q < ∞, 1
2
< r < ∞ such that 1

r
= 1

p
+ 1

q
,

and s` > max{0, n`(1
r
− 1)}, ` = 1, 2. If v ∈ Ap(Rn1 ×Rn2) and w ∈ Aq(Rn1 ×Rn2), then for

all f, g ∈ S(Rn), it holds that

‖Ds1
1 D

s2
2 (Tσ(f, g))‖

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖Lp(v) ‖g‖Lq(w) + ‖Ds1

1 f‖Lp(v) ‖D
s2
2 g‖Lq(w) (1.6)

+ ‖Ds2
2 f‖Lp(v) ‖D

s1
1 g‖Lq(w) + ‖f‖Lp(v) ‖D

s1
1 D

s2
2 g‖Lq(w) ,

where the implicit constant depends on p, q, s1, s2, [v]′Ap, [w]′Aq , and σ. If v = w, different

choices of p and q are allowed in each term on the right-hand side of (1.6).

For σ ≡ 1, biparameter results of the form (1.6) for n1 = n2 = 2 were studied in Muscalu-

Pipher-Tao-Thiele [50] and for the general case n1, n2 ∈ N with n1 = n2 in Grafakos-

Oh [30], while applications of (1.6) were studied in Kenig [40] in relation to local well-

posedness results for the KP-I equation, which models capillary gravity waves. We detail

the proofs of Theorem 1.3 and Theorem 1.4 in Section 3.4 and Section 3.3, respectively,

following a similar procedure for each. Briefly, the shared procedure involves obtaining

paraproduct decompositions for Tσ(f, g), followed by analyzing multipliers associated with

said decompositions and applying various square function-type estimates.
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Chapter 2

Leibniz-Type Rules for Bilinear

Operators with Homogeneous

Symbols and Smooth Molecules

2.1 Introduction

Our main goal in this chapter will be to prove the Leibniz-type rules presented in The-

orem 1.2. As a result, we obtain a process for proving general Leibniz-type rules of the

form (1.3) involving function spaces which admit a molecular decomposition in the sense

of Frazier-Jawerth [24; 25]. The main tool for proving such results is Theorem 2.1, which

provides estimates necessary for verifying that certain families of functions associated to Tσ

are families of smooth synthesis molecules:

Theorem 2.1. Given m ∈ R and σ ∈ ḂSm1,1, there exist σ1, σ2 ∈ ḂSm1,1 with Tσ = Tσ1 + Tσ2

and such that if 1 ≤ r ≤ ∞, 0 < M < ∞, Λ ∈ S(Rn) with Λ̂ supported in {ξ ∈ Rn : 1
2
<

|ξ| < 2}, and γ ∈ Nn
0 , it holds that

|∂γTσ1(Λν,k, g)(x)| . 2
νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M
‖g‖Lr , ∀x ∈ Rn (2.1)
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and

|∂γTσ2(f,Λν,k)(x)| . 2
νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M
‖f‖Lr , ∀x ∈ Rn, (2.2)

for every ν ∈ Z, k ∈ Zn, and f, g ∈ S(Rn), and where Λν,k(x) = 2
νn
2 Λ(2νx− k).

With the decay properties given in Theorem 2.1, we are able to show that, up to multiplicative

constants, we have families of smooth synthesis molecules in the settings of Besov-type and

Triebel-Lizorkin-type spaces given by

{
Tσ1(Λν,k, g)

2νm ‖g‖L∞

}
ν∈Z,k∈Zn

and

{
Tσ2(f,Λν,k)

2νm ‖f‖L∞

}
ν∈Z,k∈Zn

,

where the implicit constants are uniform in ν ∈ Z, k ∈ Zn, and f, g ∈ S(Rn). The

proof of Theorem 1.2 utilizes the molecular decomposition theory pioneered by Frazier-

Jawerth [24; 25] in association with these families of smooth synthesis molecules to obtain

the desired Leibniz-type rule results. Further, because smooth synthesis molecules also serve

as building blocks for a variety of other function spaces, the procedures outlined in the proofs

of Theorems 2.1 and 1.2 will apply to such spaces as well.

The outline for Chapter 2 is as follows: Subsection 2.1.1 details the bilinear homogeneous

class of symbols ḂS
m

1,1 appearing in the statement of Theorem 1.2, followed by Subsec-

tion 2.1.2, which examines Kato-Ponce inequalitites relating to Theorem 1.2. In Section 2.2,

we give the proof for Theorem 2.1, the main tool used in the proof of Theorem 1.2. We

provide the necessary background for Theorem 1.2 in Section 2.3, wherein we introduce full

definitions for the function spaces Ḃs,τ
p,q and Ḟ s,τ

p,q and the relevant material associated to fam-

ilies of smooth synthesis molecules and spaces admitting a molecular decomposition in the

sense of Frazier-Jawerth [24; 25], along with examples of such spaces. Section 2.4 contains

the proof of Theorem 1.2, and we conclude the chapter with some remarks in Section 2.5,

including one about the situations where s ≤ sp and s ≤ sp,q (in which case analogous results

may be obtained if some additional hypotheses are imposed upon the first adjoint of Tσ1 and

the second adjoint of Tσ2), and another which gives a version of the Leibniz-type rule results

of Theorem 1.2 involving Lr(Rn)-norms of f and g instead of their L∞(Rn)-norms.
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2.1.1 Class of symbols ḂS
m

1,1

The class of bilinear symbols associated to results in this chapter are defined below, followed

by two concrete examples of bilinear symbols relating to said class.

Definition 2.2. Let σ(x, ξ, η) ∈ C∞(R3n \ {0}) and m ∈ R. σ is in the bilinear class of

symbols ḂS
m

1,1 if, for all α, β, γ ∈ Nn
0 , there exists Cα,β,γ > 0 such that

∣∣∂γx∂αξ ∂βη σ(x, ξ, η)
∣∣ ≤ Cα,β,γ

(|ξ|+ |η|)|α+β|−|γ|−m , ∀(x, ξ, η) 6= (0, 0, 0). (2.3)

The infimum over all such viable Cα,β,γ is denoted as ‖σ‖γ,α,β.

As examples, we consider two classes of symbols closely related to those defined in Defini-

tion 2.2. First, setting m = 0, we have that the x-independent symbols in ḂS
0

1,1 correspond

exactly with the class of Coifman-Meyer multipliers, defined later in Definition 3.1. Coifman-

Meyer multipliers are introduced in Subsection 3.1.1, and boundedness results for bilinear

pseudodifferentail operators associated with this class of symbols are well-understood, due

in large part to their categorization as bilinear Calderón-Zygmund operators (for a definition

and treatment of such operators, see Grafakos-Torres [33]). As a second example, we con-

sider a class which lacks some of the nice Lebesgue space boundedness properties exhibited

by Coifman-Meyer multiplier operators and is a particular instance of a family of inhomo-

geneous classes of symbols closely related to those given in Definition 2.2, which we define

next.

Definition 2.3. Let σ(x, ξ, η) ∈ C∞(R3n \ {0}), 0 ≤ δ ≤ ρ ≤ 1, and m ∈ R. σ is in the

bilinear Hörmander class of symbols BSmρ,δ if, for all α, β, γ ∈ Nn
0 , there exists Cα,β,γ > 0 such

that ∣∣∂γx∂αξ ∂βη σ(x, ξ, η)
∣∣ ≤ Cα,β,γ

(1 + |ξ|+ |η|)ρ|α+β|−δ|γ|−m , ∀(x, ξ, η) 6= (0, 0, 0).

Specifically, we consider BS0
1,1 for our second example, the so-called bilinear forbidden class

of symbols. The relationship between symbols in BS0
1,1 and ḂS

0

1,1 comes from the fact that,

given σ ∈ BS0
1,1, we can decompose σ as a sum of one symbol which is supported within
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{(x, ξ, η) ∈ R3n : |ξ| + |η| ≤ 1} (and is therefore well-behaved and smoothing) and another

symbol which is in ḂS
0

1,1. For pioneering work related to BS0
1,1, see Coifman-Meyer [15]

(and the references it contains). Symbols in the forbidden class BS0
1,1 are known to produce

bilinear pseudodifferential operators with a bilinear Calderón-Zygmund kernel, but they are

not, in general, bilinear Calderón-Zygmund operators themselves, as they do not always

possess mapping properties of the form Lp × Lq → Lr for 1 < p, q ≤ ∞ with 1
p

+ 1
q

= 1
r
> 0

(for an explicit example, the construction of a symbol in BS0
1,1 which fails to map L2 × L2

into L1 may be found in Bényi-Torres [7]). However, mapping properties (including those

of type (1.3)) for bilinear pseudodifferential operators with symbols in BS0
1,1 have been

established in various other settings, including Sobolev spaces (see Bényi-Torres [7] and

Bényi-Nahmod-Torres [6]) and Besov and Triebel-Lizorkin spaces (see Bényi [3], Naibo [53],

and Koezuka-Tomita [42]). In general, much attention has been given to studying bilinear

pseudodifferential operators with symbols in BSmρ,δ for 0 ≤ ρ ≤ δ ≤ 1 and m ∈ R and

related classes; see Bényi-Bernicot-Maldonado-Naibo-Torres [4], Bényi-Maldonado-Naibo-

Torres [5], Bényi-Torres [7; 8], Herbert-Naibo [36; 37], Koezuka-Tomita [42], Michalowski-

Rule-Staubach [46], Miyachi-Tomita [47–49], Naibo [53; 54], Naibo-Thomson [55], Rodŕıguez-

López-Staubach [58], and references therein.

2.1.2 The case σ ≡ 1 and connections to Kato-Ponce inequalities

Considering the case σ ≡ 1 in Theorem 1.2, we obtain Kato-Ponce inequalities for Besov-type

and Triebel-Lizorkin-type spaces, as highlighted in the following corollary:

Corollary 2.4. If 0 < p, q ≤ ∞, sp < s <∞, and 0 ≤ τ < 1
p

+ s−sp
n

, it holds that

‖fg‖Ḃs,τp,q . ‖f‖Ḃs,τp,q ‖g‖L∞ + ‖f‖L∞ ‖g‖Ḃs,τp,q , ∀f, g ∈ S0(Rn).

If 0 < p <∞, 0 < q ≤ ∞, sp,q < s <∞, and 0 ≤ τ < 1
p

+ s−sp,q
n

, it holds that

‖fg‖Ḟ s,τp,q . ‖f‖Ḟ s,τp,q ‖g‖L∞ + ‖f‖L∞ ‖g‖Ḟ s,τp,q , ∀f, g ∈ S0(Rn).
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As will be discussed in Subsection 2.3.1, homogeneous Sobolev spaces may be realized as

particular cases of Besov-type or Triebel-Lizorkin-type spaces. Thus, we may recover (1.1)

in the case q1 = p2 =∞ directly from Corollary 2.4.

The proof of Theorem 1.2 may be regarded as a procedure for proving Leibniz-type

rules relating to function spaces which admit a molecular decomposition as introduced in

Frazier-Jawerth [24; 25]. Subsequently, the results of Corollary 2.4 yield the following type of

estimates in a given function space X which measures smoothness in some sense and admits

a molecular decomposition:

‖fg‖X . ‖f‖X ‖g‖L∞ + ‖f‖L∞ ‖g‖X . (2.4)

Chapter 1 details the historical development of results similar to (2.4) in the settings where

X is the homogeneous Sobolev space Ẇ s,p(Rn) with s > 0 and 1 < p <∞ (in which case the

Ẇ s,p(Rn)-norm is defined via ‖Ds·‖Lp), and where X is the inhomogeneous Sobolev space

W s,p(Rn) for the same range of parameters (in which case the W s,p(Rn)-norm is defined via

‖Js·‖Lp).

2.2 Proof of molecular estimates

In this section, we present a proof of Theorem 2.1, which we break into a few steps. We

begin by obtaining a paraproduct decomposition for Tσ(f, g), with Tσ a bilinear pseudodif-

ferential operator as defined in Definition 1.1 having symbol σ ∈ ḂSm1,1 as in Definition 2.2.

Lemma 2.5 below will provide such a decomposition suited for our purposes and is proved

in Subsection 2.2.1 (with ideas inspired by Coifman-Meyer [15]). We then procure formulas

for the derivatives of the building blocks within the paraproduct decomposition for Tσ(f, g),

appropriately evaluated as in Theorem 2.1. Said formulas are stated in Lemma 2.6, which

is proved in Subsection 2.2.2. Finally, we pull together the results of the lemmas in Subsec-

tion 2.2.3 to prove Theorem 2.1.

Throughout this section, we will make use of Ψ ∈ S(Rn) satisfying (A.5) and (A.6) and
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Φ ∈ S(Rn) defined via (A.7), along with functions ψ, φ ∈ S(Rn) as defined in (A.9) and

(A.10) for which Ψ = ψΨ and Φ = φΦ. We also note (A.3) and (A.4), which set notation

for certain families of operators associated to the Ψ and Φ: Briefly, for j ∈ Z, ξ ∈ Rn, and

f ∈ S ′(Rn), we define ∆̂Ψ
j f(ξ) := Ψ̂(2−jξ)f̂(ξ) and ŜΦ

j f(ξ) := Φ̂(2−jξ)f̂(ξ)

Finally, before beginning to state and prove lemmas, we give a decomposition for the

symbol σ that will be used throughout the section. Let θ ∈ S(R) be real-valued with

supp(θ) ⊆ (−2, 2) and θ(t) + θ

(
1

t

)
= 1, ∀t > 0. (2.5)

For σ ∈ ḂSm1,1, m ∈ R, we define

σ1(x, ξ, η) := σ(x, ξ, η)θ

(
|η|
|ξ|

)
and σ2(x, ξ, η) := σ(x, ξ, η)θ

(
|ξ|
|η|

)
, ∀x, ξ, η ∈ Rn,

so that σ = σ1 + σ2, and therefore,

Tσ(f, g) = Tσ1(f, g) + Tσ2(f, g), ∀f, g ∈ S(Rn).

As shown in Lemma B.1, σ1, σ2 ∈ ḂSm1,1, and we see by following the proof that

∥∥σ1
∥∥
γ,α,β

,
∥∥σ2
∥∥
γ,α,β

. sup
ᾱ≤α,β̄≤β

‖σ‖γ,ᾱ,β̄ , ∀α, β, γ ∈ Nn
0 ,

where the implicit constant depends only on α, β, γ, and θ. Also, by endowing S0(Rn) with

the topology inherited from S(Rn), a standard argument using integration by parts allows

us to conclude that Tσ1 is continuous from S0(Rn)× S(Rn) to S(Rn) and Tσ2 is continuous

from S(Rn) × S0(Rn) to S(Rn). With this decomposition for σ in mind, we may proceed

with the proof of Theorem 2.1.
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2.2.1 Construction of paraproduct decomposition

In this subsection, we state and prove Lemma 2.5, which gives a suitable paraproduct de-

composition for the operators Tσ1 and Tσ2 with the symbols σ1 and σ2 as defined above,

along with decay estimates for coefficients associated with the decompositions.

Lemma 2.5. Let m ∈ R and σ ∈ ḂS
m

1,1. With the notation introduced above and given

N > n, there exist sequences of functions {C1[j](x, u, v)}j∈Z and {C2[j](x, u, v)}j∈Z defined

for x, u, v ∈ Rn such that if γ ∈ Nn
0 , then

sup
x,u,v∈Rn

∣∣∂γxC`[j](x, u, v)
∣∣ . 2j(m+|γ|), ∀j ∈ Z, ` = 1, 2, (2.6)

and if f ∈ S0(Rn), g ∈ S(Rn), and x ∈ Rn, it holds that

Tσ1(f, g)(x) =

∫
R2n

∑
j∈Z

C1[j](x, u, v)[∆τuΨ
j f ](x)[SτvΦ

j g](x)
du dv

(1 + |u|2 + |v|2)N
(2.7)

and

Tσ2(g, f)(x) =

∫
R2n

∑
j∈Z

C2[j](x, u, v)[SτuΦ
j g](x)[∆τvΨ

j f ](x)
du dv

(1 + |u|2 + |v|2)N
, (2.8)

where ∆̂τuΨ
j f(ξ) = τ̂uΨ(2−jξ)f̂(ξ) and ŜτvΦ

j g(ξ) = τ̂vΦ(2−jξ)ĝ(ξ).

We will restrict our proof to verifying (2.7) and (2.6) in the case ` = 1, for the other

results in the lemma follow analogously. We will consider

Tσ1(f, g)(x) =

∫
R2n

σ1(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη.

Taking into account (A.5), (A.8), and the fact that σ1 is supported within {(x, ξ, η) ∈ R3n :

|η| ≤ 2|ξ|} by definition, it is easily verified that Φ̂(2−j−6η) is equal to 1 within the support of

Ψ̂(2−jξ)σ1(x, ξ, η). To simplify notation, we will denote Φ̂(2−6·) as simply Φ̂ going forward,

as the only features that Φ̂ possesses which are of importance are its membership in S(Rn)
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and its compact support in a ball centered at the origin, both of which Φ̂(2−6·) possesses as

well. Thus, we see that

Ψ̂(2−jξ)σ1(x, ξ, η) = Ψ̂(2−jξ)Φ̂(2−jη)σ1(x, ξ, η), ∀x, ξ, η ∈ Rn, j ∈ Z.

By also considering (A.6) and the facts that Ψ = ψΨ and Φ = φΦ, we have

Tσ1(f, g)(x) =

∫
R2n

(∑
j∈Z

Ψ̂(2−jξ)

)
σ1(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=
∑
j∈Z

∫
R2n

Ψ̂(2−jξ)Φ̂(2−jη)σ1(x, ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=
∑
j∈Z

∫
R2n

σ1[j](x, 2−jξ, 2−jη)Ψ̂(2−jξ)Φ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη,

where σ1[j](x, ξ, η) := σ1(x, 2jξ, 2jη)ψ(ξ)φ(η).

We now analyze σ1[j] for j ∈ Z. For any multi-indices α, β, γ ∈ Nn
0 , an application of

the Leibniz rule implies that ∂γx∂
α
ξ ∂

β
η σ

1[j](x, ξ, η) can be written as a linear combination of

terms of the form

∂α1ψ̂(ξ)∂β1φ̂(η)[∂γx∂
α2
ξ ∂

β2
η σ

1](x, 2jξ, 2jη)2j|α2+β2|, α1 + α2 = α, β1 + β2 = β.

As mentioned in the introduction of Section 2.2, σ1 ∈ ḂSm1,1, so the absolute value of each

term above is bounded by

2j|α2+β2|
∣∣∣∂α1ψ̂(ξ)∂β1φ̂(η)

∣∣∣ · ∣∣[∂γx∂α2
ξ ∂

β2
η σ

1](x, 2jξ, 2jη)
∣∣ (2.9)

. 2j|α2+β2|

∣∣∣∂α1ψ̂(ξ)∂β1φ̂(η)
∣∣∣

(|2jξ|+ |2jη|)|α2+β2|−|γ|−m
= 2j(m+|γ|)

∣∣∣∂α1ψ̂(ξ)∂β1φ̂(η)
∣∣∣

(|ξ|+ |η|)|α2+β2|−|γ|−m
. 2j(m+|γ|),

where all implicit constants are independent of j ∈ Z, and in the first inequality we have

used (2.3) for σ1, and in the last inequality we have used that ψ(ξ)φ(η) is supported in
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{(ξ, η) ∈ R2n : 1
2
≤ |ξ|+ |η| ≤ 9

4
}, so that

∣∣∣∂α1ψ̂(ξ)∂β1φ̂(η)
∣∣∣

(|ξ|+ |η|)|α2+β2|−|γ|−m
≤

∥∥∥∂α1ψ̂
∥∥∥
L∞

∥∥∥∂β1φ̂
∥∥∥
L∞

min
{(

1
2

)|α2+β2|−|γ|−m ,
(

9
4

)|α2+β2|−|γ|−m
} .

We now define coefficients in our paraproduct decomposition using σ1[j]. For u, v ∈ Rn,

set

C1[j](x, u, v) := (1 + |u|2 + |v|2)NF [σ1[j](x, ·, ·)](u, v),

where by F [σ1[j](x, ·, ·)](u, v), we mean to take the Fourier transform of σ1[j](x, ξ, η) with

respect to (ξ, η) ∈ R2n and evaluate at (u, v) ∈ R2n. Define the operator 1 − ∆ξ,η as

the identity minus the standard Laplacian operator with respect to both ξ and η, that is,

[1 − ∆ξ,η](f) := f −
∑n

j=1

(
∂2f
∂ξ2
j

+ ∂2f
∂η2
j

)
. Since [1 − ∆ξ,η](e

−2πi(u·ξ+v·η)) = (1 + 4π2 |u|2 +

4π2 |v|2)e−2πi(u·ξ+v·η), we have that

∣∣∂γxC1[j](x, u, v)
∣∣ =

∣∣∣∣∂γx [∫
R2n

(1 + |u|2 + |v|2)Nσ1[j](x, ξ, η)e−2πi(u·ξ+v·η) dξ dη

]∣∣∣∣
∼
∣∣∣∣∫

R2n

∂γxσ
1[j](x, ξ, η)[1−∆ξ,η]

N(e−2πi(u·ξ+v·η)) dξ dη

∣∣∣∣
=

∣∣∣∣∣
∫

1
2
<|ξ|+|η|< 9

4

[1−∆ξ,η]
N(∂γxσ

1[j])(x, ξ, η)e−2πi(u·ξ+v·η) dξ dη

∣∣∣∣∣
≤
∫

1
2
<|ξ|+|η|< 9

4

∣∣[1−∆ξ,η]
N(∂γxσ

1[j])(x, ξ, η)
∣∣ dξ dη

. 2j(m+|γ|),

where in the third line we have taken into consideration the support of σ1[j] and done

integration by parts, and in the last line we are using the fact that a finite sum of functions

uniformly bounded, up to a constant, by 2j(m+|γ|) (see (2.9)) integrated over a compact set

is itself bounded by 2j(m+|γ|).

Finally, considering the Fourier inversion formula with σ1[j], we obtain

σ1[j](x, 2−jξ, 2−jη) =

∫
R2n

C1[j](x, u, v)e2πi(u·2−jξ+v·2−jη) du dv

(1 + |u|2 + |v|2)N
.
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By substituting back into the formula for Tσ1 and using property (A.3.3) of the Fourier

transform, we obtain

Tσ1(f, g)(x) =
∑
j∈Z

∫
R2n

[∫
R2n

C1[j](x, u, v)e2πi(u·2−jξ+v·2−jη) du dv

(1 + |u|2 + |v|2)N

]
× Ψ̂(2−jξ)Φ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη,

=

∫
R2n

∑
j∈Z

C1[j](x, u, v)

[∫
Rn
e2πiu·2−jξΨ̂(2−jξ)f̂(ξ)e2πix·ξ dξ

]
×
[∫

Rn
e2πiv·2−jηΦ̂(2−jη)ĝ(ξ)e2πix·η dη

]
du dv

(1 + |u|2 + |v|2)N
,

=

∫
R2n

∑
j∈Z

C1[j](x, u, v)[∆τuΨ
j f ](x)[SτvΦ

j g](x)
du dv

(1 + |u|2 + |v|2)N
,

thus completing the proof of the lemma.

2.2.2 Representation for derivatives of paraproduct building blocks

We now state and prove Lemma 2.6, which leads to pointwise estimates relating to the

building blocks within the paraproduct decomposition established in Lemma 2.5. First, we

set some notation by defining, for u, v ∈ Rn,

σ1[u, v](x, ξ, η) :=
∑
j∈Z

C1[j](x, u, v)τ̂uΨ(2−jξ)τ̂vΦ(2−jη),

so that Tσ1[u,v](f, g)(x) =
∑

j∈Z C1[j](x, u, v)∆τuΨ
j f(x)SτvΦ

j g(x) and

Tσ1(f, g)(x) =

∫
R2n

Tσ1[u,v](f, g)(x)
du dv

(1 + |u|2 + |v|2)N
. (2.10)

Similarly define σ2[u, v]. The following lemma deals with derivatives of Tσ1[u,v] and Tσ2[u,v]

evaluated at certain functions in S(Rn) as required for Theorem 2.1:

Lemma 2.6. If γ ∈ Nn
0 , ν ∈ Z, k ∈ Zn, u, v ∈ Rn, and g,Λ ∈ S(Rn) such that supp(Λ̂) ⊆
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{ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2}, then

∂γTσ1[u,v](Λν,k, g)(x) = 2
νn
2

1∑
δ=−1

γ1+γ2+γ3=γ

2ν|γ2+γ3|Cγ1,γ2,γ3∂
γ1
x C1[ν − δ](x, u, v)

×Υ[δ, γ2](2νx− k + 2δu) · [Θ[δ, γ3] ∗ g(2−ν ·)](2νx+ 2δv),

where Υ[δ, γ2],Θ[δ, γ3] ∈ S(Rn) are independent of ν, k, u, v, and g, and Λν,k(x) = 2
νn
2 Λ(2νx−

k). An analogous formula holds for ∂γTσ2[u,v](f,Λν,k) with f ∈ S(Rn).

We are interested in studying derivatives of

Tσ1[u,v](Λν,k, g)(x) =
∑
j∈Z

C1[j](x, u, v)∆τuΨ
j Λν,k(x)SτvΦ

j g(x). (2.11)

By properties (A.3.3) and (A.3.4) of the Fourier transform, we have

Λ̂ν,k(ξ) = 2
νn
2 F [Λ(2ν ·−k)](ξ) = 2

νn
2 e2πi(−2−νk)·ξΛ̂(2ν ·)(ξ) = 2−

νn
2 e2πi(−2−νk)·ξΛ̂(2−νξ), (2.12)

so the support of Λν,k coincides with the support of Λ̂(2−ν ·), which is contained within

{ξ ∈ Rn : 2ν−1 ≤ |ξ| ≤ 2ν+1}. Since supp(Ψ̂(2−j·)) ⊆ {ξ ∈ Rn : 2j−1 ≤ |ξ| ≤ 2j+1}, we may

verify that Ψ̂(2−jξ)Λ̂ν,k(ξ) is zero whenever j < ν − 1 or j > ν + 1. Thus, we simplify our

sum over j ∈ Z in (2.11) to only run over ν − 1 ≤ j ≤ ν + 1, or equivalently, we consider

Tσ1[u,v](Λν,k, g)(x) =
1∑

δ=−1

C1[ν − δ](x, u, v)[(∆τuΨ
ν−δΛν,k) · (SτvΦ

ν−δg)](x).

Using the Fourier inversion formula, we have

∆τuΨ
ν−δΛν,k(x) =

∫
Rn
τ̂uΨ(2−(ν−δ)ξ)Λ̂ν,k(ξ)e

2πix·ξ dξ,

SτvΦ
ν−δg(x) =

∫
Rn
τ̂vΦ(2−(ν−δ)η)ĝ(η)e2πix·η dη.
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We make these replacements in the representation for Tσ1[u,v](Λν,k, g)(x) obtained above,

along with using (2.12) and changes of variables ξ 7→ 2νξ and η 7→ 2νη, to reach a form for

Tσ1[u,v](Λν,k, g)(x) given by

1∑
δ=−1

C1[ν−δ](x, u, v)

(
2
νn
2

∫
Rn
τ̂uΨ(2δξ)Λ̂(ξ)e2πi(2νx−k)·ξ dξ

)(
2νn
∫
Rn
τ̂vΦ(2δη)ĝ(2νη)e2πi(2νx)·η dη

)
.

With this representation for Tσ1[u,v](Λν,k, g) in mind, we define

Gδ[u, v, ν, k](x) := C1[ν − δ](x, u, v)

(∫
Rn
τ̂uΨ(2δξ)Λ̂(ξ)e2πi(2νx−k)·ξ dξ

)
×
(

2νn
∫
Rn
τ̂vΦ(2δη)ĝ(2νη)e2πi(2νx)·η dη

)
,

so that for any multi-index γ ∈ Nn
0 ,

∂γTσ1[u,v](Λν,k, g)(x) = 2
νn
2

1∑
δ=−1

∂γGδ[u, v, ν, k](x).

We conclude the proof by analyzing ∂γGδ[u, v, ν, k](x), which by an application of the Leibniz

rule, may be written as a linear combination of terms having the form

Cγ1,γ2,γ3∂
γ1
x C1[ν − δ](x, u, v)

(∫
Rn
τ̂uΨ(2δξ)Λ̂(ξ)[(2πi2νξ)γ2e2πi(2νx−k)·ξ] dξ

)
×
(

2νn
∫
Rn
τ̂vΦ(2δη)ĝ(2νη)[(2πi2νη)γ3e2πi(2νx)·η] dη

)
, γ1 + γ2 + γ3 = γ.

By associating the (2πi)γ2 and (2πi)γ3 terms with the constant Cγ1,γ2,γ3 and using prop-

erty (A.3.3) of the Fourier transform, we see that each term above may be expressed as

2ν|γ2+γ3|Cγ1,γ2,γ3∂
γ1
x C1[ν − δ](x, u, v)

(∫
Rn
ξγ2Ψ̂(2δξ)Λ̂(ξ)e2πi(2νx−k+2δu)·ξ dξ

)
×
(

2νn
∫
Rn
ηγ3Φ̂(2δη)ĝ(2νη)e2πi(2νx+2δv)·η dη

)
.

Finally, utilizing properties (A.3.2) and (A.3.4) of the Fourier transform, we put everything
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together to obtain the desired result, that is

∂γTσ1[u,v](Λν,k, g)(x) = 2
νn
2

1∑
δ=−1

γ1+γ2+γ3=γ

2ν|γ2+γ3|Cγ1,γ2,γ3∂
γ1
x C1[ν − δ](x, u, v)

×Υ[δ, γ2](2νx− k + 2δu) · [Θ[δ, γ3] ∗ g(2−ν ·)](2νx+ 2δv),

where Υ[δ, γ2],Θ[δ, γ3] ∈ S(Rn) are defined via

Υ̂[δ, γ2](ξ) := ξγ2Ψ̂(2δξ)Λ̂(ξ) and Θ̂[δ, γ3](η) := ηγ3Φ̂(2δη).

By swapping the u and v variables, and replacing g with f , we obtain essentially the same

result for ∂γTσ2[u,v](f,Λν,k)(x).

2.2.3 Conclusion for molecular decay properties

We now pull together Lemmas 2.5 and 2.6 to complete the proof of Theorem 2.1. Let

σ ∈ ḂS
m

1,1, 1 ≤ r ≤ ∞, 0 < M < ∞, Λ ∈ S(Rn) such that Λ̂ is supported within

{ξ ∈ Rn : 1
2
≤ |ξ| ≤ 2}, and g ∈ S(Rn). By Lemma 2.6, we see that

∣∣∂γTσ1[u,v](Λν,k, g)(x)
∣∣ is

bounded by

2
νn
2

1∑
δ=−1

γ1+γ2+γ3=γ

2ν|γ2+γ3|Cγ1,γ2,γ3

∣∣∂γ1
x C1[ν − δ](x, u, v)

∣∣
×
∣∣Υ[δ, γ2](2νx− k + 2δu)

∣∣ · ∥∥Θ[δ, γ3] ∗ g(2−ν ·)
∥∥
L∞

.

By (2.6), we know |∂γ1
x C1[ν − δ](x, u, v)| . 2(ν−δ)(m+|γ1|). Using this identity and Young’s

inequality (see Section B.2), we bound
∣∣∂γTσ1[u,v](Λν,k, g)(x)

∣∣ further by

2
νn
2 2ν(m+|γ|)

1∑
δ=−1

γ1+γ2+γ3=γ

2−δ(m+|γ1|)Cγ1,γ2,γ3 ‖Θ[δ, γ3]‖Lr′ ·
∥∥g(2−ν ·)

∥∥
Lr
·
∣∣Υ[δ, γ2](2νx− k + 2δu)

∣∣ ,
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where 1 ≤ r′ ≤ ∞ satisfies 1
r

+ 1
r′

= 1. We note that

2−δ(m+|γ1|) ≤ 2|m|+|γ|, Cγ1,γ2,γ3 ≤ max
γ̃1+γ̃2+γ̃3=γ

{Cγ̃1,γ̃2,γ̃3},

‖Θ[δ, γ3]‖Lr′ ≤ max
δ̃=−1,0,1
γ̃≤γ

{∥∥∥Θ[δ̃, γ̃]
∥∥∥
Lr′

}
, ‖g(2−ν ·)‖Lr = 2

νn
r ‖g‖Lr ,

so that we have

∣∣∂γTσ1[u,v](Λν,k, g)(x)
∣∣ . 2

νn
2 2ν(m+|γ|)2

νn
r ‖g‖Lr

1∑
δ=−1
γ̃≤γ

∣∣Υ[δ, γ̃](2νx− k + 2δu)
∣∣ ,

where the implicit constant depends on m and γ, but not on ν, k, u, v, or g. Finally, we use

(A.2) to obtain the bound

∣∣Υ[δ, γ̃](2νx− k + 2δu)
∣∣ . (1 + |2δu|)M

(1 + |2νx− k|)M
,

where the implicit constant depends on Υ[δ, γ̃] and M , but we may take the max of such

constants over δ = −1, 0, 1 and γ̃ ≤ γ so that the implicit constant depends only on γ and

M . Therefore, we see that

∣∣∂γTσ1[u,v](Λν,k, g)(x)
∣∣ . 2

νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M
‖g‖Lr

(
1∑

δ=−1

(1 + |2δu|)M
)
,

Plugging this result back into (2.10), we see that

|∂γTσ1(Λν,k, g)(x)| ≤
∫
R2n

∣∣∂γTσ1[u,v](Λν,k, g)(x)
∣∣ du dv

(1 + |u|2 + |v|2)N

.
2
νn
2 2ν(m+|γ|)2

νn
r

(1 + |2νx− k|)M
‖g‖Lr

(∫
R2n

∑1
δ=−1(1 + |2δu|)M

(1 + |u|2 + |v|2)N
du dv

)
.

Finally, letting N > 0 be large enough so that the integral converges yields the desired

result for Tσ1(Λν,k, g)(x). The Tσ2(f,Λν,k)(x) case follows by very similar calculations, thus

completing the proof of Theorem 2.1.
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2.3 Setting for Leibniz-type rules

In this section, we define a number of function spaces relevant to the Leibniz-type rule

estimates stated in Theorem 1.2. We begin by introducing homogeneous Besov-type and

Triebel-Lizorkin-type spaces in Subsection 2.3.1, which are the settings in which Theorem 1.2

is stated. Additionally, we give a number of special cases of such spaces, so that Theorem 1.2

will imply Leibniz-type rules in many familiar function spaces. In Subsection 2.3.2, we give

details on the general class of function spaces for which the procedures outlined in the proofs

of Theorems 2.1 and 1.2 may be utilized to obtain Leibniz-type rule estimates, with the

class of interest being spaces which admit a molecular decomposition in the sense of Frazier-

Jawerth [24; 25].

Before we start defining spaces, we set some notation, beginning with the following

definition:

Definition 2.7. We denote by D the collection of dyadic cubes in Rn. That is, D :=

{Qν,k}ν∈Z,k∈Zn , where

Qν,k := {x ∈ Rn : kj ≤ 2νxj < kj + 1, j = 1, . . . , n}.

Additionally, for any Q ∈ D, we denote its edge length by l(Q) and its volume by |Q|, so that

l(Qν,k) = 2−ν and |Qν,k| = 2−νn. Also, for Q = Qν,k, we denote xQ = xν,k := 2−νk, the

“lower-left” corner of the cube.

In the following subsections, we will require functions λ,Λ ∈ S(Rn) satisfying some or

all of the following properties:

supp(λ̂), supp(Λ̂) ⊆ {ξ ∈ Rn : 1
2
< |ξ| < 2}, (2.13)∣∣∣λ̂(ξ)

∣∣∣ , ∣∣∣Λ̂(ξ)
∣∣∣ > c for all ξ such that 3

5
< |ξ| < 5

3
and some c > 0, (2.14)∑

j∈Z

λ̂(2−jξ)Λ̂(2−jξ) = 1 for ξ 6= 0. (2.15)
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We may construct such a pair by considering real-valued Ψ ∈ S(Rn) satisfying (A.5), (A.6),

and (2.14), then setting λ = Λ = Ψ
1
2 .

2.3.1 Homogeneous Besov-type and Triebel-Lizorkin-type spaces

For the definitions below, we fix λ ∈ S(Rn) satisfying (2.13) and (2.14). In Definition 2.10,

the primary definition of this subsection, we define Besov-type and Triebel-Lizorkin-type

spaces, the settings in which we obtain results in Theorem 1.2. But first, we define a few

other important function spaces, which will help establish some context for the function

spaces in Definition 2.10.

Homogeneous Besov and Triebel-Lizorkin spaces, as presented in Definition 2.8, serve to

unify many well-known classical function spaces, including Lebesgue spaces, Sobolev spaces,

Hardy spaces, and BMO(Rn). For a comprehensive overview of the aforementioned function

spaces and some historical context on the development of homogeneous Besov and Triebel-

Lizorkin spaces, see Triebel [63–65] and references therein.

Definition 2.8. Let s ∈ R and 0 < q ≤ ∞.

(a) For 0 < p ≤ ∞, the homogeneous Besov space, denoted Ḃs
p,q(Rn), is the set of all

f ∈ S ′0(Rn) such that

‖f‖Ḃsp,q :=

(∑
j∈Z

2jsq
∥∥∆λ

j f
∥∥q
Lp

) 1
q

<∞.

(b) For 0 < p <∞, the homogeneous Triebel-Lizorkin space, denoted Ḟ s
p,q(Rn), is the set

of all f ∈ S ′0(Rn) such that

‖f‖Ḟ sp,q :=

∥∥∥∥∥∥
[∑
j∈Z

(2js
∣∣∆λ

j f
∣∣)q] 1

q

∥∥∥∥∥∥
Lp

<∞.
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In the case p =∞, Ḟ s
∞,q(Rn) is defined as the set of all f ∈ S ′0(Rn) such that

‖f‖Ḟ s∞,q := sup
P∈D

 1

|P |

∫
P

∞∑
j=− log2(l(P ))

(2js
∣∣∆λ

j f
∣∣)q dx


1
q

<∞.

We note that the spaces in Definition 2.8 are independent of the choice of the function λ

(see, for example, Triebel [65]). Also, these spaces are in general quasi-Banach spaces, and

in the case where p, q ≥ 1, are Banach spaces, having S0(Rn) as a dense subspace if p and q

are finite.

Somewhat more recently, there has been growing interest in a new family of function

spaces called Q-spaces. Originally introduced in Aulaskari et al. [1] as Qs, 0 < s < 1, to be

a Banach space of analytic functions in the unit disk satisfying

sup
w∈B(0,1)

∫
B(0,1)

|f ′(z)|2 g(z, w)s dz ≤ ∞,

where g(z, w) :=
∣∣∣ log(1−w̄z)

w−z

∣∣∣ is the Green’s function of B(0, 1), these spaces were further

developed in Euclidean spaces in Essén et al. [21] and shown to constitute a nested family

of nontrivial subspaces of BMO(Rn) (for 0 < s < 1 if n ≥ 2, or for 0 < s ≤ 1
2

if n = 1).

Stated in full generality, we make the following definition:

Definition 2.9. Let 0 < s < 1, 0 < p ≤ ∞, and 1 ≤ q <∞. The Q-space, denoted Qs,q
p , is

the set of all f ∈ S ′0(Rn) such that f(x)− f(y) is measurable on Rn × Rn and

‖f‖Qs,qp := sup
I
|I|

1
p
− 1
q

{∫
I

∫
I

|f(x)− f(y)|q

|x− y|n+qs dy dx

} 1
q

<∞,

where I ranges over all cubes in Rn with dyadic edge lengths.

As shown in Essén et al. [21], Qs coincides with Qs,2
n
s

, and such spaces have applications in

the study of Navier-Stokes equations (see Xiao [66; 67]).

We are now able to motivate the definition of our primary function spaces of interest.

Homogeneous Besov-type and Triebel-Lizorkin-type spaces, defined below in Definition 2.10,
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were introduced and studied in Sawano-Yang-Yuan [61] and Yang-Yuan [68; 69] as natural

spaces which extend and unify the scales of homogeneous Besov spaces, homogeneous Triebel-

Lizorkin spaces, and Q-spaces, all as defined above, and therefore unify scales of many

familiar function spaces obtained as particular cases, as detailed following Definition 2.10.

Definition 2.10. Let s, τ ∈ R and 0 < q ≤ ∞.

(a) For 0 < p ≤ ∞, the homogeneous Besov-type space, denoted Ḃs,τ
p,q (Rn), is the set of

all f ∈ S ′0(Rn) such that

‖f‖Ḃs,τp,q := sup
P∈D

1

|P |τ


∞∑

j=− log2(l(P ))

[∫
P

(2js
∣∣∆λ

j f(x)
∣∣)p dx] qp


1
q

<∞.

(b) For 0 < p < ∞, the homogeneous Triebel-Lizorkin-type space, denoted Ḟ s,τ
p,q (Rn), is

the set of all f ∈ S ′0(Rn) such that

‖f‖Ḟ s,τp,q := sup
P∈D

1

|P |τ


∫
P

 ∞∑
j=− log2(l(P ))

(2js
∣∣∆λ

j f(x)
∣∣)q

p
q

dx


1
p

<∞.

From these definitions, it is easily seen that, for s, τ ∈ R and 0 < p <∞, Ḃs,τ
p,p = Ḟ s,τ

p,p . Also,

as in the case with Definition 2.8, we note that the spaces in Definition 2.10 are independent

of the choice of λ (see Yang-Yuan [69, Corollary 3.1]). As in [69], we will use Ȧs,τp,q(Rn) to

denote either Ḃs,τ
p,q (Rn) or Ḟ s,τ

p,q (Rn), excluding p = ∞ in the latter case. Additionally, for

ease of notation we will often refer to ‖·‖Ȧs,τp,q as a norm throughout the remainder of the

chapter, despite the fact that it is only a norm if p, q ≥ 1 and is otherwise a quasi-norm.

Special cases of Ȧs,τp,q(Rn). We refer the reader to Yang-Yuan [68, Section 3] and [69,

Proposition 3.1] regarding the following statements about particular cases and unification

properties of Ȧs,τp,q(Rn). Whenever we say that two spaces coincide, we mean to say they are

comprised of the same set of functions and their function space norms are equivalent.

(i) Let 0 < p, q ≤ ∞ and s ∈ R. If ∞ < τ < 0, then Ȧs,τp,q(Rn) = P(Rn), where P(Rn)

25



denotes the set of all polynomials on Rn. If 0 ≤ τ <∞, then Ȧs,τp,q(Rn) is a quasi-Banach

space with S0(Rn) ⊆ Ȧs,τp,q(Rn).

(ii) If 0 < p, q ≤ ∞ and s ∈ R, then Ḃs,0
p,q(Rn) coincides with the homogeneous Besov space

Ḃs
p,q(Rn).

(iii) If 0 < p < ∞, 0 < q ≤ ∞, and s ∈ R, then Ḟ s,0
p,q (Rn) coincides with the homogeneous

Triebel-Lizorkin space Ḟ s
p,q(Rn), with Ḟ 0

p,2 coinciding with the Hardy space Hp(Rn).

Further, if 1 < p < ∞, then Ḟ s
p,2(Rn) coincides with the homogeneous Sobolev space

Ẇ s,p(Rn), and Ḟ 0
p,2(Rn) coincides with Lp(Rn) (see Theorem A.3).

(iv) If 0 < p <∞, 0 < q ≤ ∞, and s ∈ R, then Ḟ
s, 1
p

p,q (Rn) coincides with the homogeneous

Triebel-Lizorkin space Ḟ s
∞,q. In particular, Ḟ

0, 1
p

p,2 (Rn) coincides with BMO(Rn).

(v) If 0 < p ≤ ∞, 1 ≤ q <∞, and 0 < s < 1, then Ḟ
s, 1
q
− 1
p

q,q (Rn) coincides with the Q-space

Qs,q
p (Rn). In particular, Ḟ

s, 1
2
− s
n

2,2 (Rn) coincides with Qs(Rn).

(vi) Further special cases of the spaces Ȧs,τp,q(Rn) involving homogeneous Besov-Morrey and

Triebel-Lizorkin-Morrey spaces (along with definitions of said spaces) can be found in

Sawano-Yang-Yuan [61, Theorem 1.1].

We make particular note of the new Leibniz-type rules obtained by realizing Q-spaces as

particular cases of Triebel-Lizorkin-type spaces. Theorem 1.2 yields the following immediate

corollary providing Leibniz-type rules for Q-spaces:

Corollary 2.11. Let s, s + m ∈ (0, 1) and σ ∈ ḂSm1,1. If 1 ≤ q ≤ p ≤ ∞ and q 6= ∞, it

holds that

‖Tσ(f, g)‖Qs,qp . ‖f‖Qs+m,qp
‖g‖L∞ + ‖f‖L∞ ‖g‖Qs+m,qp

, ∀f, g ∈ S0(Rn).

In addition, by considering the case σ ≡ 1, Corollary 2.11 yields fractional Leibniz rules for

Q-spaces.
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2.3.2 Families of smooth synthesis molecules and spaces admitting

a molecular decomposition

The ideas in this subsection are based on the pioneering work done in Frazier-Jawerth [24; 25],

with specific results as they relate to homogeneous Besov-type and Triebel-Lizorkin-type

spaces studied in Yang-Yuan [69].

We begin this subsection with a type of wavelet decomposition for functions in a variety

of spaces. Fix λ ∈ S(Rn) satisfying (2.13) and (2.14), and define

λν,k(x) := 2
νn
2 λ(2νx− k) = 2

νn
2 λ(2ν(x− xν,k)), (2.16)

where we note that ‖λ‖L2 = ‖λν,k‖L2 . Given Λ ∈ S(Rn) satisfying (2.13), (2.14), and (2.15),

the following wavelet-type decomposition holds:

f =
∑

ν∈Z,k∈Zn
〈f, λν,k〉Λν,k, (2.17)

where the series converges for f ∈ L2(Rn) in the topology of L2(Rn), for f ∈ S0(Rn) in the

topology of S(Rn), and for f ∈ S ′(Rn) in the the topology of S ′(Rn) modulo polynomials

(see Frazier-Jawerth [24; 25] for details). Note that the notation 〈·, ·〉 denotes the standard

inner product for complex-valued functions.

For some needed results relating to the wavelet decomposition given in (2.17), we require

sequence space analogs to Definition 2.10:

Definition 2.12. Let s ∈ R, 0 ≤ τ <∞, and 0 < q ≤ ∞.

(a) For 0 < p ≤ ∞, define the sequence space ḃs,τp,q(Rn) to be the collection of all sequences

t = {tQ}Q∈D ⊂ C indexed by the dyadic cubes such that

‖t‖ḃs,τp,q := sup
P∈D

1

|P |τ


∞∑

j=− log2(l(P ))

∫
P

 ∑
l(Q)=2−j

|Q|−
s
n
− 1

2 |tQ|χQ(x)

p

dx


q
p


1
q

<∞.
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(b) For 0 < p < ∞, define the sequence space ḟ s,τp,q (Rn) to be the collection of all sequences

t = {tQ}Q∈D ⊂ C indexed by the dyadic cubes such that

‖t‖ḟs,τp,q := sup
P∈D

1

|P |τ


∫
P

[∑
Q⊂P

(|Q|−
s
n
− 1

2 |tQ|χQ(x))q

] p
q

dx


1
p

<∞.

As in the case of Ȧs,τp,q(Rn), we will use ȧs,τp,q(Rn) to denote either ḃs,τp,q(Rn) or ḟ s,τp,q (Rn), excluding

p = ∞ in the latter case. A direct connection between the function spaces Ȧs,τp,q(Rn) and

the sequence spaces ȧs,τp,q(Rn) was established in Yang-Yuan [69, Theorem 3.1], wherein it

was shown that the two spaces are related in the following way: If 0 < p, q ≤ ∞, s ∈ R,

0 ≤ τ <∞, f ∈ S ′0(Rn), and λ ∈ S(Rn) satisfies (2.13) and (2.14), then

‖f‖Ȧs,τp,q ∼ ‖{〈f, λν,k〉}ν,k‖ȧs,τp,q . (2.18)

For our proof of Theorem 1.2, we will make use of (2.18), along with one additional norm

comparison property relating Ȧs,τp,q(Rn) and ȧs,τp,q(Rn) stated below as (2.20), for which we

require a few additional definitions.

In Frazier-Jawerth [24; 25], the authors study sequence spaces characterizing homoge-

neous Besov spaces Ḃs
p,q(Rn) and Triebel-Lizorkin spaces Ḟ s

p,q(Rn), obtaining norm relation-

ships akin to (2.18) and (2.20), with the latter requiring a notion of families of smooth

synthesis molecules in Ḃs
p,q(Rn) and Ḟ s

p,q(Rn). Such families are related to almost-diagonal

operators, another notion defined in [24; 25] which contributes to verifying boundedness

properties similar to (2.20). In Definition 2.13 below, we give an analogous characteriza-

tion for families of smooth synthesis molecules in Ȧs,τp,q(Rn), as presented in Yang-Yuan [69,

Definition 4.2]. First, for s ∈ R, define s∗ := s − bsc, where bsc denotes the largest integer

smaller than or equal to s. Also define

sp := n
(

1
min{1,p} − 1

)
,

sp,q := n
(

1
min{1,p,q} − 1

)
,

J :=

 sp + n if Ȧs,τp,q(Rn) = Ḃs,τ
p,q (Rn),

sp,q + n if Ȧs,τp,q(Rn) = Ḟ s,τ
p,q (Rn).

(2.19)
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Definition 2.13. Let 0 < p, q ≤ ∞, s ∈ R, 0 ≤ τ <∞, and Q ∈ D. A function mQ : Rn → C

is a smooth synthesis molecule for Ȧs,τp,q(Rn) if there exist δ and M satisfying

max{s∗, (s+ nτ)∗} < δ ≤ 1 and J < M <∞,

such that the conditions given below hold for all x, y ∈ Rn:

(i) For γ ∈ Nn
0 with |γ| ≤ max{bJ − n− sc ,−1}, mQ satisfies a vanishing moment condition

given by ∫
Rn
mQ(z)zγ dz = 0.

(ii) mQ satisfies a size estimate given by

|mQ(x)| ≤ |Q|−
1
2

(1 + l(Q)−1 |x− xQ|)max{M,M−s} .

(iii) For γ ∈ Nn
0 with |γ| ≤ bs+ nτc,

|∂γmQ(x)| ≤ |Q|−
1
2
− |γ|

n

(1 + l(Q)−1 |x− xQ|)M
.

(iv) For γ ∈ Nn
0 with |γ| = bs+ nτc,

|∂γmQ(x)− ∂γmQ(y)| ≤ sup
|z|≤|x−y|

|Q|−
1
2
− |γ|

n
− δ
n |x− y|δ

(1 + l(Q)−1 |x− z − xQ|)M
.

A collection {mQ}Q∈D indexed by the dyadic cubes is called a family of smooth synthesis

molecules for Ȧs,τp,q(Rn) if each mQ is a smooth synthesis molecule for Ȧs,τp,q(Rn).

For a smooth synthesis molecule mQ, property (i) of Definition 2.13 states that m̂Q and

sufficiently many of its derivatives must be zero at the origin, since property (A.3.5) of the

Fourier transform implies that, for any γ ∈ Nn
0 ,

∂γm̂Q(0) ∼
∫
Rn
xγmQ(x)e−2πi0·x dx =

∫
Rn
xγmQ(x) dx.
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The remainder of the properties imply that mQ and sufficiently many of its derivatives decay

away from the dyadic cube Q by which the function is indexed, where said decay is enough

to verify a so-called almost-diagonal condition on certain operators associated with families

of smooth synthesis molecules for Ȧs,τp,q(Rn). Below, we conclude the subsection with two

remarks: Remark 2.3.1 shows that any mQ which satisfies property (iii) of Definition 2.13

for all γ ∈ Nn
0 with |γ| ≤ bs+ nτc + 1 necessarily satisfies property (iv) with δ = 1,

and Remark 2.3.2 verifies that {λν,k}ν∈Z,k∈Zn and {Λν,k}ν∈Z,k∈Zn (as defined in (2.16)) are

families of smooth synthesis molecules for any Ȧs,τp,q(Rn) with parameters s, τ , p, and q as in

Definition 2.13, δ = 1, and any M > J .

In the proof of Theorem 1.2, we will make use of Theorem 2.14 below, which gives certain

norm comparisons associated with families of smooth synthesis molecules on Ȧs,τp,q(Rn), and

is proved in Yang-Yuan [69, Theorem 4.2] by analogous ideas on almost-diagonal operators

used to prove Frazier-Jawerth [25, Theorem 3.5].

Theorem 2.14. Let 0 < p, q ≤ ∞, s ∈ R, and 0 ≤ τ < T , where if max{bJ − n− sc ,−1} ≥

0,

T := min

{
1

p
+
M − J

2n
,
1

p
+

1− (J − s)∗

n

}
,

or if max{bJ − n− sc ,−1} < 0,

T := min

{
1

p
+
M − J

2n
,
1

p
+
s+ n− J

n

}
.

If {mQ}Q∈D is a family of smooth synthesis molecules for Ȧs,τp,q(Rn) with parameters δ and

M satisfying max{s∗, (s+ nτ)∗} < δ ≤ 1 and J < M <∞, then

∥∥∥∥∥∑
Q∈D

tQmQ

∥∥∥∥∥
Ȧs,τp,q

. ‖t‖ȧs,τp,q , ∀t = {tQ}Q∈D ∈ ȧs,τp,q(Rn), (2.20)

where the implicit constant does not depend on the family of molecules.

Remark 2.3.1. Suppose mQ : Rn 7→ C satisfies property (iii) of Definition 2.13 for some

M > J and all γ ∈ Nn
0 with |γ| ≤ bs+ nτc+1. We will see that mQ also satisfies property (iv)
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with δ = 1. Indeed, let γ ∈ Nn
0 with |γ| = bs+ nτc. Then, for any x, y ∈ Rn, the Mean

Value Theorem implies the existence of some t ∈ (0, 1) with zx,y = tx+ (1− t)y and

∇∂γmQ(zx,y) =
∂γmQ(x)− ∂γmQ(y)

x− y
.

Note that |∇∂γmQ(zx,y)| ≤
∑n

j=1 |∂γ+ejmQ(zx,y)| with |γ + ej| = bs+ nτc + 1, so that by

property (iii), we see

|∂γmQ(x)− ∂γmQ(y)| ≤
n∑
j=1

∣∣∂γ+ejmQ(zx,y)
∣∣·|x− y| ≤ n· sup

|z|≤|x−y|

|Q|−
1
2
− |γ|+1

n |x− y|
(1 + l(Q)−1 |x− z − xQ|)M

,

where we have used that zx,y = x− z for some z ∈ B(0, |x− y|). Therefore, property (iv) is

satisfied, as desired.

Remark 2.3.2. Let p, q, s, and τ be as in Definition 2.13, and fix ν ∈ Z, k ∈ Zn, and λ ∈ S(Rn)

satisfying (2.13). We will show that λν,k, as defined in (2.16), is a smooth synthesis molecule

for Ȧs,τp,q with parameters δ = 1 and any M > J . Considering the arguments made following

Definition 2.13, we see that λν,k satisfies property (i) since λ̂ν,k has the same support as

λ̂(2−ν ·) (see (2.12)), which is compactly supported away from the origin. Next, let γ ∈ Nn
0 .

Since

∂γλν,k(x) = ∂γ[2
νn
2 λ(2ν(x− xν,k))] = 2

νn
2 [∂γλ](2ν(x− xν,k))2ν|γ|,

we use Definition 2.7 and (A.1) (since ∂γλ ∈ S(Rn)) to see that property (iii) holds for

any γ ∈ Nn
0 (and subsequently, property (iv) holds as reasoned in Remark 2.3.1, as does

property (ii) by taking γ = 0 and N = max{M,M − s} in (A.1)).

2.4 Proof of Leibniz-type rules

We proceed with the proof of Theorem 1.2. Fix λ,Λ ∈ S(Rn) satisfying (2.13), (2.14), and

(2.15). We will consider only Tσ1(f, g); analogous steps apply to Tσ2(f, g). For f, g ∈ S0(Rn),
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we have

Tσ1(f, g) =
∑

ν∈Z,k∈Zn
〈f, λν,k〉Tσ1(Λν,k, g),

with convergence in S(Rn), and where we have used that Tσ1 is continuous from S0(Rn) ×

S(Rn) into S(Rn), that (2.17) converges in S0(Rn), and the linearity of Tσ1 .

Theorem 2.1 implies that, for a constant c1 implicit in inequality (2.1), we have that

{
c12−νmTσ1(Λν,k, g)

‖g‖L∞

}
ν∈Z,k∈Zn

is a family of smooth synthesis molecules for any Ȧs,τp,q(Rn) if 0 < p, q ≤ ∞, s > J − n, and

0 ≤ τ <∞ (with δ = 1 and any M > J). Indeed, property (i) of Definition 2.13 is vacuously

satisfied since bJ − n− sc < 0. Further, by Theorem 2.1, we have for any ν ∈ Z, k ∈ Zn,

and γ ∈ Nn
0 ,

∣∣∣∣∂γ [c12−νmTσ1(Λν,k, g)

‖g‖L∞

]
(x)

∣∣∣∣ . 2
νn
2 2ν|γ|

(1 + |2νx− k|)M
=

|Q|−
1
2 |Q|−

|γ|
n

(1 + l(Q)−1 |x− xQ|)M
,

where we have used Definition 2.7. Since the above holds for all γ ∈ Nn
0 , we see that

properties (ii), (iii), and (iv) hold (for (ii), consider γ = 0, keeping in mind that the result

of Theorem 2.1 holds for any 0 < M <∞, that is, it holds for max{M,M − s}; for (iv), see

Remark 2.3.1).

We will apply (2.18) without any restrictions below, but to apply (2.20), we require that

0 ≤ τ < 1
p

+ s+n−J
n

, so as to satisfy the hypotheses of Theorem 2.14 (we may choose any

M > J , so we let M be large enough so that the minimum in the expression for T in
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Theorem 2.14 equals 1
p

+ s+n−J
n

). Considering Tσ1(f, g), we have

‖Tσ1(f, g)‖Ȧs,τp,q =

∥∥∥∥∥ ∑
ν∈Z,k∈Zn

〈f, λν,k〉Tσ1(Λν,k, g)

∥∥∥∥∥
Ȧs,τp,q

∼

∥∥∥∥∥ ∑
ν∈Z,k∈Zn

(2νm ‖g‖L∞ 〈f, λν,k〉)
(
c12−νmTσ1(Λν,k, g)

‖g‖L∞

)∥∥∥∥∥
Ȧs,τp,q

. ‖{2νm ‖g‖L∞ 〈f, λν,k〉}ν,k‖ȧs,τp,q

= ‖{〈f, λν,k〉}ν,k‖ȧs+m,τp,q
‖g‖L∞

∼ ‖f‖Ȧs+m,τp,q
‖g‖L∞ ,

where in the first line we have used the decomposition for Tσ1(f, g) given above, in the third

line we have used Theorem 2.14 and the fact that the piece in parentheses in the second line

is a smooth synthesis molecule for Ȧs,τp,q(Rn), in the fourth line we have used that, if Q = Qν,k,

then

|Q|−
s
n 2νm = 2νs2νm = 2ν(m+s) = |Q|−

s+m
n

(see Definition 2.12), and in the final line we have used (2.18). Following the above calcula-

tions, we obtain an analogous result for Tσ2(f, g), namely that ‖Tσ2(f, g)‖Ȧs,τp,q . ‖f‖L∞ ‖g‖Ȧs+m,τp,q
.

Since Tσ(f, g) = Tσ1(f, g) + Tσ2(f, g), we use the subadditivity (or quasi-subadditivity, if p

or q is less than 1) of the Ȧs,τp,q(Rn)-norm to obtain the desired result.

2.5 Remarks on Leibniz-type rules

We conclude this chapter with a few remarks regarding extensions of Theorem 1.2. Re-

mark 2.5.1 below gives analogous results for the cases s ≤ sp and s ≤ sp,q by assuming some

additional cancellation conditions on operators Tσ1 and Tσ2 , and Remark 2.5.2 discusses how

the proof of Theorem 1.2 could be altered slightly to give results involving the Lr(Rn)-norm

of functions, 1 ≤ r < ∞, instead of the L∞(Rn)-norm of functions. Finally, Remark 2.5.3

examines how the implicit constants in Theorems 2.1 and 1.2 depend on the symbol σ.

33



Remark 2.5.1. Let m ∈ R, σ ∈ ḂS
m

1,1, and 0 < p, q ≤ ∞, as in the hypotheses for Theo-

rem 1.2. Unlike the statement of Theorem 1.2, let s ≤ J − n. The proof of Theorem 1.2 in

Section 2.4 nearly works exactly in this case, with the only difference being that property (i)

of Definition 2.13 is no longer vacuously true. By imposing some cancellation conditions on

Tσ1 and Tσ2 , we will see that property (i) of Definition 2.13 is satisfied, which then implies

the results of Theorem 1.2 in the case where s ≤ J − n and 0 ≤ τ < 1
p

+ 1−(J−s)∗
n

. The

cancellation conditions we require are as follows:

T ∗1σ1 (xγ, g) = T ∗2σ2 (f, xγ) = 0, ∀f, g ∈ S0(Rn), γ ∈ Nn
0 with |γ| ≤ bJ − n− sc ,

where T ∗1 and T ∗2 denote the adjoint operators of a bilinear operator T . Specifically, if T

is continuous from S0(Rn)× S0(Rn) to S(Rn), then T ∗1 and T ∗2, which map from S ′(Rn)×

S0(Rn) to S ′0(Rn) and from S0(Rn)× S ′(Rn) to S ′0(Rn), respectively, are defined as

〈h, T (f, g)〉 = 〈T ∗1(h, g), f〉 = 〈T ∗2(f, h), g〉.

The cancellation conditions above imply, for ν ∈ Z, k ∈ Zn, and γ ∈ Nn
0 with |γ| ≤

bJ − n− sc,

∫
Rn
xγTσ1(λν,k, g)(x) dx = 〈xγ, Tσ1(λν,k, g)〉 = 〈T ∗1σ1 (xγ, g), λν,k〉 = 0, ∀g ∈ S0(Rn),

and similarly for Tσ2(f, λν,k). Thus, the families of functions indexed over dyadic cubes

defined in Section 2.4 satisfy Definition 2.13 as families of smooth synthesis molecules for

Ȧs,τp,q , so the proof given in Section 2.4 applies directly in this case.

Remark 2.5.2. Let m, σ, p, q, s, and τ be as in the hypotheses of Theorem 1.2 or Re-

mark 2.5.1, and let 1 ≤ r <∞. Since the families

{
c12−νm2−

νn
r Tσ1(Λν,k, g)

‖g‖Lr

}
ν∈Z,k∈Zn

and

{
c22−νm2−

νn
r Tσ2(f,Λν,k)

‖f‖Lr

}
ν∈Z,k∈Zn
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are also families of smooth synthesis molecules for Ȧs,τp,q(Rn), we may follow the reasoning in

Section 2.4 to obtain

‖Tσ(f, g)‖Ȧs,τp,q . ‖f‖Ȧs+m+n
r ,τ

p,q
‖g‖Lr + ‖f‖Lr ‖g‖Ȧs+m+n

r ,τ
p,q

.

Remark 2.5.3. By carefully following the proofs of Theorem 2.1 and Theorem 1.2, we may

verify that the implicit constants in the results of the theorems depend linearly on ‖σ‖K,L
for some K,L ∈ N, where

‖σ‖K,L := max
|γ|≤K,|α+β|≤L

‖σ‖γ,α,β ,

and ‖σ‖γ,α,β is as in Definition 2.2. We omit the careful tracking of constants here, but

we may find that the implicit constants in the inequalities of Theorem 2.1 are multiples of

‖σ‖|γ|,2N with N ∈ N such that N > M + n, and where γ and M are as in the statement of

the theorem. In turn, this implies that the implicit constants in Theorem 1.2 can be taken

to be multiples of ‖σ‖bs+nτc+1,2N with N > max{J + n, 2(s+ n)− J + n}. The latter is also

true for the inequalities from Remark 2.5.1 with N > J + n+ 2(1− (J − s)∗).
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Chapter 3

Weighted Fractional Leibniz-Type

Rules for Bilinear Multiplier

Operators

3.1 Introduction

Our objective in this chapter is to prove the weighted Leibniz-type rules presented in The-

orem 1.3 and Theorem 1.4. In Subsection 3.1.1, we introduce the classes of multipliers ap-

pearing in the statements of Theorems 1.3 and 1.4, along with a history of the development

of boundedness properties for associated multiplier operators. Then, in Subsection 3.1.2,

we highlight new Kato-Ponce inequalities relating to Theorems 1.3 and 1.4. We give the

rest of the background for Theorems 1.3 and 1.4 in Section 3.2, including definitions and

notation relating to weighted Lebesgue spaces and a number of lemmas containing square

function-type estimates for weighted Lebesgue spaces which will be useful in proving the

main Leibniz-type rule results. We conclude the chapter with Sections 3.3 and 3.4, wherein

we prove Theorems 1.4 and 1.3, respectively.
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3.1.1 Coifman-Meyer multipliers

In this section we introduce the classes of multipliers considered in Theorems 1.3 and 1.4.

Definition 3.1. Let σ(ξ, η) ∈ L∞(R2n) be smooth away from the origin.

(a) σ is a Coifman-Meyer multiplier if, for all α, β ∈ Nn
0 , there exists Cα,β > 0 such that

∣∣∂αξ ∂βη σ(ξ, η)
∣∣ ≤ Cα,β

(|ξ|+ |η|)|α|+|β|
, ∀(ξ, η) 6= (0, 0). (3.1)

(b) Let n = n1 +n2 for n1, n2 ∈ N, ξ = (ξ1, ξ2), η = (η1, η2) ∈ Rn1×Rn2 . σ is a biparameter

Coifman-Meyer multiplier if, for all α = (α1, α2), β = (β1, β2) ∈ Nn1
0 ×Nn2

0 , there exists

Cα,β > 0 such that

∣∣∂αξ ∂βη σ(ξ, η)
∣∣ ≤ Cα,β

(|ξ1|+ |η1|)|α1|+|β1|(|ξ2|+ |η2|)|α2|+|β2|
, ∀(ξ, η) 6= (0, 0). (3.2)

We note that symbols which satisfy (3.1) necessarily satisfy (3.2). As outlined in Subsec-

tion 2.1.1, the class of Coifman-Meyer multipliers coincides exactly with the x-independent

symbols in ḂS
0

1,1.

Boundedness properties associated to a general bilinear pseudodifferential operator Tσ

have the following form in the setting of Lebesgue spaces:

‖Tσ(f, g)‖Lr . ‖f‖Lp ‖g‖Lq . (3.3)

When σ is a Coifman-Meyer multiplier, such estimates have been extensively studied; in

particular, (3.3) holds for 1 < p, q <∞ and r such that 1
r

= 1
p
+ 1
q
. See Coifman-Meyer [15] for

the introduction of Coifman-Meyer multipliers and the study of their boundedness properties

on L2(Rn), and see David-Journé [18] and Grafakos-Torres [33] for further work. Also relating

to Coifman-Meyer multipliers, estimates similar to (3.3) in the context of weighted Lebesgue

spaces are considered in Grafakos-Torres [32], with further development of results in Lerner

et al. [45], wherein the authors prove weighted boundedness results for a more general class of
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operators, the class of bilinear Calderón-Zygmund operators. Analogous estimates relating to

biparameter Coifman-Meyer multipliers have also been studied. In particular, boundedness

properties for Tσ with σ satisfying (3.2) with n1 = n2 were proved in the unweighted setting

in Muscalu et al. [50; 51] and Lacey-Metcalfe [44] (see also Journé [38] for some earlier specific

case results) and in the weighted setting in Chen-Lu [13].

Remark 3.1.1. There is a natural connection between studying fractional Leibniz rules and

Coifman-Meyer multipliers. For example, in studying (1.1), we may obtain a decomposition

given by

Ds(fg)(x) = Tσ1(Dsf, g)(x) + Tσ2(f,Dsg)(x) + Tσ3(Dsf, g)(x),

where σ1 and σ2 are Coifman-Meyer multipliers for s > 0, while σ3 is a Coifman-Meyer

multiplier if s ≥ 2n+1 or s ∈ 2N0. Since boundedness properties relating to Coifman-Meyer

multipliers are well-understood (based upon the works mentioned above), we may readily

obtain bounds for some pieces of the decomposition above; the Tσ3 piece requires further

analysis for s < 2n + 1, in which case σ3 is not, in general, a Coifman-Meyer multiplier,

nor does it belong to any class of symbols for which boundedness properties in the setting

of Lebesgue spaces are known to hold. A similar connection may be drawn in relation to

(1.2) by decomposing Js(fg)(x) as a sum of two Coifman-Meyer multipliers and a third

multiplier operator requiring additional analysis, and in relation to fractional Leibniz rules

associated to Ds1
1 D

s2
2 (fg) by utilizing a decomposition involving biparameter Coifman-Meyer

multipliers and other multiplier operators for which further analysis is needed.

3.1.2 The case σ ≡ 1 and connections to Kato-Ponce inequalitites

Restricting to the case σ ≡ 1 in Theorems 1.3 and 1.4, we obtain weighted counterparts

to the fractional Leibniz rules, or Kato-Ponce inequalitites, introduced in Chapter 1. Even

in this simplest case, where Tσ(f, g) is replaced by the pointwise product fg, Theorem 1.3

and Theorem 1.4 yield new estimates, highlighted in Corollary 3.2 and Corollary 3.3 below.

Specifically, the estimates in Corollary 3.2 are new for the cases p = ∞ or q = ∞ (for

1 < p, q <∞, see Cruz-Uribe-Naibo [17]), and the results in Corollary 3.3 are new.
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Corollary 3.2. Let 1 < p, q ≤ ∞, 1
2
< r <∞ such that 1

r
= 1

p
+ 1

q
, and s > max{0, n(1

r
−1)}

or s ∈ 2N0. If v ∈ Ap(Rn) and w ∈ Aq(Rn), then for all f, g ∈ S(Rn), it holds that

‖Ds(fg)‖
Lr(v

r
pw

r
q )

. ‖Dsf‖Lp(v) ‖g‖Lq(w) + ‖f‖Lp(v) ‖D
sg‖Lq(w) ,

‖Js(fg)‖
Lr(v

r
pw

r
q )

. ‖Jsf‖Lp(v) ‖g‖Lq(w) + ‖f‖Lp(v) ‖J
sg‖Lq(w) ,

where the implicit constant depends on p, q, s, [v]Ap, [w]Aq , and σ. If v = w, different choices

of p and q are allowed in each term on the right-hand side of the above inequalities.

Corollary 3.3. Let n = n1 + n2 for n1, n2 ∈ N, ξ = (ξ1, ξ2), η = (η1, η2) ∈ Rn1 × Rn2.

Further, let 1 < p, q < ∞, 1
2
< r < ∞ such that 1

r
= 1

p
+ 1

q
, and s` > max{0, n`(1

r
− 1)},

` = 1, 2. If v ∈ Ap(Rn1 × Rn2) and w ∈ Aq(Rn1 × Rn2), then for all f, g ∈ S(Rn), it holds

that

‖Ds1
1 D

s2
2 (fg)‖

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖Lp(v) ‖g‖Lq(w) + ‖Ds1

1 f‖Lp(v) ‖D
s2
2 g‖Lq(w)

+ ‖Ds2
2 f‖Lp(v) ‖D

s1
1 g‖Lq(w) + ‖f‖Lp(v) ‖D

s1
1 D

s2
2 g‖Lq(w) ,

where the implicit constant depends on p, q, s1, s2, [v]′Ap, [w]′Aq , and σ. If v = w, different

choices of p and q are allowed in each term on the right-hand side of the above inequality.

Notice that, by considering weights identically equal to 1, the results of Corollary 3.2 recover

(1.1) and (1.2), while the results of Corollary 3.3 would yield biparameter Kato-Ponce in-

equalities, as studied in [30; 50]. It is also worth noting that the assumptions on s, s1, and

s2 in the corollaries above (and therefore in the main theorems) are sharp; the estimates do

not necessarily hold if s ≤ max{0, n(1
r
− 1)} in Corollary 3.2 or if s` ≤ max{0, n`(1

r
− 1)} for

` = 1 or ` = 2 in Corollary 3.3. This was shown in the unweighted case in Grafakos-Oh [30].
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3.2 Setting for Leibniz-type rules

In this section, we will introduce weighted Lebesgue spaces, the class of function spaces

with which the main results of the chapter are concerned. Some background is needed first,

beginning with the Hardy-Littlewood maximal operator:

Definition 3.4. For a locally integrable function f defined on Rn, define the Hardy-Littlewood

maximal operator through its action on f given by

M(f)(x) := sup
Q3x

1

|Q|

∫
Q

|f(y)| dy, ∀x ∈ Rn,

where the supremum is taken over all cubes Q ⊂ Rn containing x.

We will also require biparameter versions of the Hardy-Littlewood maximal operator:

Definition 3.5. Fix n1, n2 ∈ N such that n = n1 + n2. Define the Hardy-Littlewood

maximal operators M1
n1

and M2
n2

by their actions on certain f defined on Rn as follows: If

f(·, x2) is locally integrable as a function on Rn1 for a.e. x2 ∈ Rn2 , then

M1
n1

(f)(x1, x2) := sup
Q13x1

1

|Q1|

∫
Q1

|f(y1, x2)| dy1, ∀(x1, x2) ∈ Rn1 × Rn2 ,

where the supremum is taken over all cubes Q1 ⊂ Rn1 containing x1. If f(x1, ·) is locally

integrable as a function on Rn2 for a.e x1 ∈ Rn1 , then

M2
n2

(f)(x1, x2) := sup
Q23x2

1

|Q2|

∫
Q2

|f(x1, y2)| dy2, ∀(x1, x2) ∈ Rn1 × Rn2 ,

where the supremum is taken over all cubes Q2 ⊂ Rn2 containing x2.

Many of the results referenced throughout the paper pertaining toM will have biparameter

analogs associated to M1
n1

and M2
n2

, which will be detailed as necessary.

We next highlight a pointwise inequality in terms of M that will be useful throughout
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the chapter. Fix ϕ ∈ S(Rn), and begin with the pointwise inequality

sup
t>0

∣∣∣∣ 1

tn
ϕ
( ·
t

)
∗ f(x)

∣∣∣∣ ≤ ‖ϕ̃‖L1Mf(x), a.e. x ∈ Rn, (3.4)

where ϕ̃ is an integrable radially-decreasing majorant of ϕ (for a proof, see Grafakos [26,

Theorem 2.1.10]). Considering a translation of ϕ in the above inequality, we obtain the

following estimate involving τuϕ := ϕ(·+ u) and M:

sup
t>0

∣∣∣∣ 1

tn
τuϕ

( ·
t

)
∗ f(x)

∣∣∣∣ . (1 + |u|)n+1Mf(x), a.e. x ∈ Rn. (3.5)

This comes as a result of (A.2), which implies the existence of an integrable radially-

decreasing majorant given by |τuϕ(x)| . (1+|u|)n+1

(1+|x|)n+1 , where the implicit constant depends

only on n and ϕ. Thus,

∥∥∥∥(1 + |u|)n+1

(1 + |·|)n+1

∥∥∥∥
L1

= (1 + |u|)n+1

∫
Rn

dx

(1 + |x|)n+1
. (1 + |u|)n+1,

where the implicit constant depends only on the dimension n.

3.2.1 Weights and weighted Lebesgue spaces

We begin by defining the weighted analogs to standard Lebesgue spaces, which essentially

allow us to assign more or less weight to different regions of Rn when measuring size via

integration:

Definition 3.6. A weight on Rn is a nonnegative locally integrable function defined on Rn.

Given a weight w on Rn and 0 < p <∞, define the weighted Lebesgue space Lp(w) as the

class of measurable functions defined on Rn such that

‖f‖Lp(w) :=

(∫
Rn
|f(x)|pw(x) dx

) 1
p

<∞.

We define L∞(w) := L∞(Rn).
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Note that for w ≡ 1, Lp(w) is simply the standard Lebesgue space Lp(Rn). The hypothe-

ses of Theorems 1.3 and 1.4 reference the Muckenhoupt classes Ap(Rn) and the product

Muckenhoupt classes Ap(Rn1 ×Rn2), collections of weights which are well-studied since they

characterize boundedness properties of the Hardy-Littlewood maximal operator in weighted

Lebesgue spaces. In particular, for 1 < p <∞,

w ∈ Ap(Rn) ⇐⇒ ‖Mf‖Lp(w) . ‖f‖Lp(w) , ∀f ∈ L
p(w). (3.6)

Classically, Ap(Rn) is defined as follows, which is equivalent to (3.6) (see, for example,

Grafakos [26, Theorem 7.1.9]):

Definition 3.7. If 1 < p < ∞, the Muckenhoupt class Ap(Rn) is comprised of all weights

w on Rn satisfying

[w]Ap := sup
Q

(
1

|Q|

∫
Q

w(x) dx

)(
1

|Q|

∫
Q

w(x)−
1
p−1 dx

)p−1

<∞,

where the supremum is taken over all cubes Q ⊂ Rn. We define A∞(Rn) := ∪p>1Ap(Rn).

The biparameter analogs to these standard Muckenhoupt classes are then defined as follows:

Definition 3.8. Fix n1, n2 ∈ N such that n = n1 + n2. If 1 < p < ∞, the product

Muckenhoupt class Ap(Rn1 × Rn2) is comprised of all weights w on Rn satisfying

[w]′Ap := sup
R

(
1

|R|

∫
R

w(x) dx

)(
1

|R|

∫
R

w(x)−
1
p−1 dx

)p−1

<∞,

where the supremum is taken over all sets R = Q1 ×Q2, with cubes Q1 ⊂ Rn1 and Q2 ⊂ Rn2 .

We define A∞(Rn1 × Rn2) := ∪p>1Ap(Rn1 × Rn2).

It is worth noting that, if w ∈ Ap(Rn1 × Rn2), then w(·, x2) ∈ Ap(Rn1) for a.e. x2 ∈ Rn2 ,

and w(x1, ·) ∈ Ap(Rn2) for a.e. x1 ∈ Rn1 , with constants uniform in x1 and x2 (specifically,

[w(·, x2)]Ap and [w(x1, ·)]Ap are bounded uniformly in x1 and x2). Consequently, the operators

M1
n1

and M2
n2

are bounded from Lp(w) to Lp(w), which can be seen by iterating norms.
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For example,

∥∥M1
n1
f
∥∥p
Lp(w)

=

∫
Rn2

∥∥M1
n1
f(·, x2)

∥∥p
Lp(Rn1 ,w(·,x2))

dx2 .
∫
Rn2

‖f(·, x2)‖pLp(Rn1 ,w(·,x2)) dx2 = ‖f‖pLp(w) ,

where we denote ‖f(·, x2)‖Lp(Rn1 ,w(·,x2)) :=
(∫

Rn1
|f(y1, x2)|pw(y1, x2) dy1

) 1
p (and similarly for

M2
n2

).

Remark 3.2.1. The process of iterating norms used above to verify biparameter results

will be a common tool in proving many results in subsequent sections. The same rea-

soning may be applied, so long as the result corresponding to
∥∥M1

n1
f(·, x2)

∥∥
Lp(Rn1 ,w(·,x2))

.

‖f(·, x2)‖Lp(Rn1 ,w(·,x2)) from above is uniform with respect to the necessary parameters (which

will often result from the fact that w ∈ Ap(Rn1 × Rn2) implies [w(·, x2)]Ap and [w(x1, ·)]Ap
are bounded uniformly in x1 and x2).

3.2.2 Littlewood-Paley operators and square function-type esti-

mates

The following square function-type estimate, known as the weighted Fefferman-Stein max-

imal inequality (introduced in Fefferman-Stein [22]), is a vector-valued version of bounded-

ness properties relating to the Hardy-Littlewood maximal operator: If 1 < p, q < ∞ and

w ∈ Ap(Rn), then for all sequences {fj}j∈Z of locally integrable functions defined on Rn, it

holds that ∥∥∥∥∥∥
(∑
j∈Z

|M(fj)|q
) 1

q

∥∥∥∥∥∥
Lp(w)

.

∥∥∥∥∥∥
(∑
j∈Z

|fj|q
) 1

q

∥∥∥∥∥∥
Lp(w)

, (3.7)

where the implicit constant depends on p, q, and [w]Ap . By iterating norms just as we did

in showing that M1
n1

was a bounded operator (see Remark 3.2.1), we obtain that (3.7) is

valid if M is replaced by either M1
n1

or M2
n2

, a result which we will use while considering

norm estimates in Subsection 3.3.3. Additionally, throughout the proofs of Theorems 1.3

and 1.4, many weighted estimates in the spirit of (3.7) which involve various Littlewood-

Paley operators or other generalized operators will be needed. Here, we set notation for said
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Littlewood-Paley operators and state a number of lemmas providing the necessary estimates.

We begin by defining families of operators analogous to those defined in (A.3) and (A.4),

but which will be useful to us in the biparameter setting. Given functions Ψ1 ∈ S(Rn1) and

Ψ2 ∈ S(Rn2) whose Fourier transforms are supported in annuli of Rn1 and Rn2 , respectively,

define families of operators {∆Ψ`
j }j∈Z by

∆̂Ψ`
j f(ξ) := Ψ̂`(2

−jξ`)f̂(ξ), ξ = (ξ1, ξ2) ∈ Rn1 × Rn2 , ` = 1, 2, (3.8)

where f ∈ S ′(Rn). Similarly, given Φ1 ∈ S(Rn1) and Φ2 ∈ S(Rn2) whose Fourier transforms

do not vanish at the origin and are supported in a ball centered at the origin in Rn1 and

Rn2 , respectively, define families of operators {SΦ`
j }j∈Z by

ŜΦ`
j f(ξ) := Φ̂`(2

−jξ`)f̂(ξ), ξ = (ξ1, ξ2) ∈ Rn1 × Rn2 , ` = 1, 2. (3.9)

Many of the lemmas that will be stated below involve Ψ ∈ S(Rn) satisfying one or both

properties (A.5) and (A.6). Some lemmas also involve functions which satisfy biparameter

versions of said properties. Specifically, we will consider Ψ` ∈ S(Rn`), ` = 1, 2, which satisfy

one or both of the following properties:

supp(Ψ̂`) ⊆ {ξ` ∈ Rn` :
1

2
< |ξ`| < 2}, (3.10)∑

j∈Z

Ψ̂`(2
−jξ`) = 1, ξ` ∈ Rn` \ {0}. (3.11)

We defer to Section B.1 for the proofs or proof references of all of the following lemmas.

We note that all lemmas stated below hold for slightly more general functions. In place of

properties (A.5) and (3.10), it would suffice to have the Fourier transform of the functions

supported in any annulus, and in place of properties (A.6) and (3.11), it would suffice for

the sum to equal any constant (uniform in ξ 6= 0), not necessarily 1. The lemmas as stated

here will be sufficient for our purposes.

The first lemma we will utilize gives a characterization of weighted Lebesgue spaces
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associated to weights in the Muckenhoupt classes in terms of square-function operators.

Lemma 3.9. Let 1 < p <∞.

(a) Let Ψ ∈ S(Rn) satisfy (A.5) and (A.6). If w ∈ Ap(Rn), it holds that

‖f‖Lp(w) ∼

∥∥∥∥∥∥
(∑
j∈Z

∣∣∆Ψ
j f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

, ∀f ∈ Lp(w), (3.12)

where the implicit constant depends on p, Ψ, and [w]Ap.

(b) For ` = 1, 2, let Ψ` ∈ S(Rn`) satisfy (3.10) and (3.11). If w ∈ Ap(Rn1 ×Rn2), it holds

that

‖f‖Lp(w) ∼

∥∥∥∥∥∥
(∑
j1∈Z

∑
j2∈Z

∣∣∆Ψ1
j1

∆Ψ2
j2
f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

, ∀f ∈ Lp(w), (3.13)

where the implicit constant depends on p, Ψ1, Ψ2, and [w]′Ap.

Notice in the statement of Lemma 3.9 that the result holds for weights in a specific

Muckenhoupt class Ap(Rn) or Ap(Rn1 ×Rn2) relating to the weighted Lebesgue space Lp(w)

in which the associated functions lie. By relaxing this condition and allowing the weights

to be in any Muckenhoupt class (that is, in A∞(Rn) or A∞(Rn1 × Rn2)), we may obtain

results similar to (3.12) and (3.13) with the loss of one direction of norm comparability, as

the following lemma states.

Lemma 3.10. Let 0 < p <∞.

(a) Let Ψ ∈ S(Rn) satisfy (A.5) and (A.6). If w ∈ A∞(Rn), it holds that

‖f‖Lp(w) .

∥∥∥∥∥∥
(∑
j∈Z

∣∣∆Ψ
j f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

, ∀f ∈ L2(Rn).

(b) For ` = 1, 2, let Ψ` ∈ S(Rn`) satisfy (3.10) and (3.11). If w ∈ A∞(Rn1 ×Rn2), it holds

that

‖f‖Lp(w) .

∥∥∥∥∥∥
(∑
j1∈Z

∑
j2∈Z

∣∣∆Ψ1
j1

∆Ψ2
j2
f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

, ∀f ∈ L2(Rn).
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In proving Theorems 1.3 and 1.4, there will be situations where operators as defined in

(A.3) and (3.8) will appear, but with a translation associated to the multiplier function, that

is to say operators of the form ∆τuΨ
j where τuΨ(x) := Ψ(x+u) and u may depend on j. The

following lemma says that one of the inequalities given in (3.12) and (3.13) holds for such

operators with constants uniform with respect to the translations.

Lemma 3.11. Let 1 < p <∞.

(a) Let Ψ ∈ S(Rn) satisfy (A.5). Given a sequence z̄ = {zj,a}j∈Z,a∈Zn ⊂ Rn, define

Ψz̄
j,a(x) := Ψ(x + zj,a) for x ∈ Rn, a ∈ Zn, and j ∈ Z. If w ∈ Ap(Rn), it holds

that ∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆Ψz̄j,a
j f

∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w) , ∀f ∈ Lp(w),

where the implicit constant depends on Ψ, p, and [w]Ap but is independent of a and z̄.

(b) For ` = 1, 2, let Ψ` ∈ S(Rn`) satisfy (3.10). Given sequences z̄` = {z`j,a}j∈Z,a∈Zn` ⊂ Rn`,

define Ψz̄`

j,a(x) := Ψ`(x + z`j,a) for x ∈ Rn`, a ∈ Zn`, and j ∈ Z. If w ∈ Ap(Rn1 × Rn2),

it holds that∥∥∥∥∥∥
(∑
j1∈Z

∑
j2∈Z

∣∣∣∣∆Ψz̄
1

j1,a1
j1

∆
Ψz̄

2

j2,a2
j2

f

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w) , ∀f ∈ Lp(w),

where the implicit constant may depend on Ψ1, Ψ2, p, and [w]′Ap but is independent of

a1, a2, z̄1, and z̄2.

Next, we state two lemmas which give weighted square function-type estimates involving

more general families of operators. Specifically, we detail Lemma 3.12 (which will be useful

in the proofs of Lemmas 3.13 and 3.15 and Theorem 1.3) and Lemma 3.13 (which is utilized

in the proofs of Lemmas 3.9 and 3.11).

Lemma 3.12. Let 1 < r < ∞ and assume {Tk}k∈Z is a family of operators acting on
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functions defined on Rn such that if w ∈ Ar(Rn), it holds that

∥∥∥∥∥∥
(∑
k∈Z

|Tk(f)|2
) 1

2

∥∥∥∥∥∥
Lr(w)

. ‖f‖Lr(w) , ∀f ∈ Lr(w), (3.14)

where the implicit constant may depend on r and [w]Ar . If 1 < p <∞ and w ∈ Ap(Rn), we

have ∥∥∥∥∥∥∥
∑

j∈Z

(∑
k∈Z

|Tk(fj)|2
) r

2

 1
r

∥∥∥∥∥∥∥
Lp(w)

.

∥∥∥∥∥∥
(∑
j∈Z

|fj|r
) 1

r

∥∥∥∥∥∥
Lp(w)

,

with the implicit constant depending on p, r, and [w]Ap.

Lemma 3.13. Let 1 < p <∞ and n1, n2 ∈ N, and assume {T 1
j }j∈Z and {T 2

j }j∈Z are families

of operators defined for functions on Rn1 and Rn2, respectively, such that if w1 ∈ A2(Rn1)

and w2 ∈ Ap(Rn2), it holds that

∥∥∥∥∥∥
(∑
j∈Z

∣∣T 1
j (f)

∣∣2) 1
2

∥∥∥∥∥∥
L2(w1)

. ‖f‖L2(w1) , ∀f ∈ L2(w1), (3.15)

where the implicit constant may depend on [w1]A2
, and

∥∥∥∥∥∥
(∑
j∈Z

∣∣T 2
j (f)

∣∣2) 1
2

∥∥∥∥∥∥
Lp(w2)

. ‖f‖Lp(w2) , ∀f ∈ Lp(w2), (3.16)

where the implicit constant may depend on p and [w2]Ap. If w ∈ Ap(Rn1 × Rn2), we have

∥∥∥∥∥∥
(∑
j1∈Z

∑
j2∈Z

∣∣T 1
j1
T 2
j2

(f)
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w) , ∀f ∈ Lp(w),

with the implicit constant depending on p and [w]′Ap.

We conclude the section with two final lemmas giving weighted square function-type

estimates relating to certain families of Littlewood-Paley-type operators whose associated
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multipliers have a translation and depend on the summation variable j ∈ N0. Lemma 3.15

requires Lemma 3.14 for its proof, and both lemmas will be utilized in the proof of Theo-

rem 1.3.

Lemma 3.14. Let Ψ ∈ S(Rn) satisfy (A.5). Given s ∈ R and j ∈ N0, define JsjΨ via

ĴsjΨ(ξ) := (2−2j + |ξ|2)
s
2 Ψ̂(ξ) for ξ ∈ Rn. If 1 < p <∞ and w ∈ Ap(Rn), it holds that

∥∥∥∥∥∥
(∑
j∈N0

∣∣∣∆τuJsjΨ

j f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w) , ∀f ∈ Lp(w), u ∈ Rn,

where the implicit constant depends on Ψ and [w]Ap.

Lemma 3.15. Let Ψ ∈ S(Rn) satisfy (A.5). Given s ∈ R and j ∈ N0, define JsjΨ via

ĴsjΨ(ξ) := (2−2j + |ξ|2)
s
2 Ψ̂(ξ) for ξ ∈ Rn. If 1 < p, r <∞ and w ∈ Ap(Rn), it holds that

∥∥∥∥∥∥∥
∑

k∈Z

(∑
j∈N0

∣∣∣∆τuJsjΨ

j fk

∣∣∣2) r
2

 1
r

∥∥∥∥∥∥∥
Lp(w)

.

∥∥∥∥∥∥
(∑
k∈Z

|fk|r
) 1

r

∥∥∥∥∥∥
Lp(w)

,

where the implicit constant may depend on p, r, and [w]Ap, but is independent of u ∈ Rn and

{fk}k∈Z.

3.3 Proof of weighted fractional Leibniz rules associ-

ated to biparameter Coifman-Meyer multipliers

In this section, we prove Theorem 1.4, which we will divide into a few pieces. In Subsec-

tion 3.3.1, we establish a biparaproduct decomposition of Tσ, similar to the ideas introduced

in Subsection 2.2.1. In Subsection 3.3.2, we do some analysis on the multipliers associated

with the decomposition, and we conclude by applying various norm estimates (primarily

from Subsection 3.2.2) to obtain the desired results in Subsection 3.3.3.

Before beginning the proof of Theorem 1.4, we set some notation that will be used

48



throughout the section. Let n1, n2 ∈ N with n = n1 + n2. For ` = 1, 2, fix Ψ` ∈ S(Rn`)

satisfying (3.10) and (3.11). Define Φ` ∈ S(Rn`) via

Φ̂`(ξ`) :=


1, ξ` = 0,∑

j<−2 Ψ̂`(2
−jξ`), ξ` ∈ Rn` \ {0}.

From this definition, we may conclude that for any k ∈ Z,

Φ`(2
−kξ`) =

∑
j<k−2

Ψ̂`(2
−jξ`), ∀ξ` ∈ Rn` \ {0}. (3.17)

Additional properties satisfied by Φ` include

Φ̂`

∣∣∣
B(0, 1

16
)
≡ 1, supp(Φ̂`) ⊂ {ξ` ∈ Rn` : |ξ`| < 1

4
}. (3.18)

Throughout the chapter, we will also require auxiliary functions ψ`, φ` ∈ S(Rn) such that

ψ̂` and φ̂` have slightly larger supports than Ψ̂` and Φ̂`, respectively, and

ψ̂`

∣∣∣
supp(Ψ̂`)

≡ 1, φ̂`

∣∣∣
supp(Φ̂`)

≡ 1. (3.19)

We may without loss of generality choose ψ`, φ` ∈ S(Rn) satisfying

supp(ψ̂`) ⊆ {ξ` ∈ Rn` : 1
2
< |ξ`| < 2}, supp(φ̂`) ⊆ {ξ` ∈ Rn` : |ξ`| < 1

4
}. (3.20)
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3.3.1 Paraproduct decomposition

Let σ be a biparameter Coifman-Meyer multiplier as in Definition 3.1. By (3.11), we have

Tσ(f, g)(x) =

∫
R2n

σ(ξ, η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=

∫
R2n

σ(ξ, η)

( ∑
j1,k1∈Z

Ψ̂1(2−j1ξ1)Ψ̂1(2−k1η1)

)( ∑
j2,k2∈Z

Ψ̂2(2−j2ξ2)Ψ̂2(2−k2η2)

)

× f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=:
3∑

t1,t2=1

Πt1,t2(f, g)(x),

where for t1, t2 ∈ {1, 2, 3}, Πt1,t2 are bilinear multiplier operators with corresponding multi-

pliers given by

σt1,t2(ξ, η) := σ(ξ, η)M t1
1 (ξ1, η1)M t2

2 (ξ2, η2),

where

M1
` (ξ`, η`) :=

∑
j`,k`∈Z
k`<j`−2

Ψ̂`(2
−j`ξ`)Ψ̂`(2

−k`η`) =
∑
j`∈Z

Ψ̂`(2
−j`ξ`)Φ̂`(2

−j`η`),

M2
` (ξ`, η`) :=

∑
j`,k`∈Z
j`<k`−2

Ψ̂`(2
−j`ξ`)Ψ̂`(2

−k`η`) =
∑
k`∈Z

Φ̂`(2
−k`ξ`)Ψ̂`(2

−k`η`),

M3
` (ξ`, η`) :=

∑
j`∈Z

Ψ̂`(2
−j`ξ`)Ψ̂`(2

−j`η`).

Technically, the actual form of M3
` is given by

2∑
δ=−2

[∑
j`∈Z

Ψ̂`(2
−j`ξ`)Ψ̂`(2

−(j`+δ)η`)

]
.

However, carrying the finite sum in δ throughout the proof does not affect the results, it

merely changes some of the constants obtained in inequalities. We will not track the specific

values of such constants, so for ease of notation, we will restrict to the case δ = 0 (as done
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in the definition above for M3
` ). Note that, due to the supports of Ψ̂` and Φ̂`, we have that

M1
` (ξ`, η`) is supported where |η`| ≤ 1

2
|ξ`|, M2

` (ξ`, η`) is supported where |ξ`| ≤ 1
2
|η`|, and

M3
` (ξ`, η`) is supported where |ξ`| ∼ |η`|.

It will suffice to prove the desired boundedness result for each Πt1,t2 , t1, t2 ∈ {1, 2, 3}. In

fact, due to similarities in arguments, we may restrict our analysis to Π1,1 (also representing

the process for Π2,2), Π1,2 (representing Π2,1), Π1,3 (representing Π2,3, Π3,1, and Π3,2), and

Π3,3. In saying that we are representing the process for another operator, we mean that

some functions’ roles are interchanged initially, but by following the same steps outlined

here, we obtain a different acceptable boundedness result for that piece. For example, Π1,1

is a bilinear multiplier operator with associated multiplier

σ1,1(ξ, η) = σ(ξ, η)

(∑
j1∈Z

Ψ̂1(2−j1ξ1)Φ̂1(2−j1η1)

)(∑
j2∈Z

Ψ̂2(2−j2ξ2)Φ̂2(2−j2η2)

)
.

Ultimately, we will obtain a bound associated with Π1,1 of the form

‖Ds1
1 D

s2
2 Π1,1(f, g)‖

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖Lp(v) ‖g‖Lq(w) .

On the other hand, Π2,2 is a bilinear multiplier operator with associated multiplier

σ2,2(ξ, η) = σ(ξ, η)

(∑
j1∈Z

Φ̂1(2−j1ξ1)Ψ̂1(2−j1η1)

)(∑
j2∈Z

Φ̂2(2−j2ξ2)Ψ̂2(2−j2η2)

)
.

Notice that Ψ̂` and Φ̂`, ` = 1, 2, are taking inputs ξ` and η` in the opposite way compared

to the multiplier associated with Π1,1. The result, by following the same procedure we use

for Π1,1, is a boundedness estimate of the form

‖Ds1
1 D

s2
2 Π2,2(f, g)‖

Lr(v
r
pw

r
q )

. ‖f‖Lp(v) ‖D
s1
1 D

s2
2 g‖Lq(w) .

Similar arguments may be made with other multiplier operators representing multiple cases.

First, we consider σ1,1, the multiplier associated with Π1,1. By (3.19), we have for ` = 1, 2
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that Ψ̂` = ψ̂`Ψ̂` and Φ̂` = φ̂`Φ̂`, so we may rewrite σ1,1(ξ, η) as

∑
j1,j2∈Z

σ[j1, j2](2−j1ξ1, 2
−j2ξ2, 2

−j1η1, 2
−j2η2)Ψ̂1(2−j1ξ1)Φ̂1(2−j1η1)Ψ̂2(2−j2ξ2)Φ̂2(2−j2η2),

where

σ[j1, j2](ξ, η) := σ(2j1ξ1, 2
j2ξ2, 2

j1η1, 2
j2η2)Γ1,1(ξ, η)

and Γ1,1(ξ, η) := ψ̂1(ξ1)φ̂1(η1)ψ̂2(ξ2)φ̂2(η2). For multi-indices α = (α1, α2), β = (β1, β2) ∈

Nn1
0 × Nn2

0 , we have that
∣∣∂αξ ∂βη [σ(2j1ξ1, 2

j2ξ2, 2
j1η1, 2

j2η2)]
∣∣ is bounded by

2j1(|α1+β1|)+j2(|α2+β2|)
∣∣[∂αξ ∂βη σ](2j1ξ1, 2

j2ξ2, 2
j1η1, 2

j2η2)
∣∣

.

(
2j1

(|2j1ξ1|+ |2j1η1|)

)|α1+β1|( 2j2

(|2j2ξ2|+ |2j2η2|)

)|α2+β2|

=
1

(|ξ1|+ |η1|)|α1+β1|
1

(|ξ2|+ |η2|)|α2+β2|
,

where we have used that σ satisfies (3.2). Since Γ1,1 ∈ S(R2n), we see that
∣∣∂γξ ∂δηΓ1,1(ξ, η)

∣∣ ≤
Cγ,δ for any γ, δ ∈ Nn

0 . Further, due to the supports of the functions which comprise Γ1,1

(see (3.20)), it holds that

supp(Γ1,1) ⊆ {(ξ, η) ∈ R2n : c1 < |ξ1|+ |η1| < C1} ∩ {(ξ, η) ∈ R2n : c2 < |ξ2|+ |η2| < C2},

where in the specific case of Γ1,1, c1 = c2 = 1
2

and C1 = C2 = 9
4
. Due to the lower bounds

on |ξ1|+ |η1| and |ξ2|+ |η2| within the support of Γ1,1, we may conclude that ∂αξ ∂
β
η σ[j1, j2] is

bounded uniformly in j1, j2 ∈ Z.

Since σ[j1, j2] is compactly supported (with support independent of j1 and j2), we may

consider the Fourier series expansion of a periodic extension of σ[j1, j2] (see Section A.3).
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Let H = [−h
2
, h

2
]2n, where h is large enough so that supp(σ[j1, j2]) ⊆ H, then

σ[j1, j2](2−j1ξ1, 2
−j2ξ2, 2

−j1η1, 2
−j2η2) = (3.21)( ∑

a,b∈Zn
c[j1, j2, a, b]e

2πi
h

(a,b)·(2−j1ξ1,2−j2ξ2,2−j1η1,2−j2η2)

)
χH(2−j1ξ1, 2

−j2ξ2, 2
−j1η1, 2

−j2η2),

where

c[j1, j2, a, b] =
1

h2n

∫
R2n

σ[j1, j2](ξ, η)e−
2πi
h

(a·ξ+b·η) dξ dη.

Fix N ∈ N sufficiently large (where we specify the necessary size for N in Subsection 3.3.3).

Define

C[j1, j2, a, b] := (1 + |a|2 + |b|2)Nc[j1, j2, a, b].

Since [1−∆ξ,η](e
− 2πi

h
(a·ξ+b·η)) = (1 + 4π2

h2 |a|2 + 4π2

h2 |b|2)e−
2πi
h

(a·ξ+b·η), we have that

|C[j1, j2, a, b]| =
1

h2n

∣∣∣∣∫
R2n

(1 + |a|2 + |b|2)Nσ[j1, j2](ξ, η)e−
2πi
h

(a·ξ+b·η) dξ dη

∣∣∣∣
∼
∣∣∣∣∫

R2n

σ[j1, j2](ξ, η)[1−∆ξ,η]
N(e−

2πi
h

(a·ξ+b·η)) dξ dη

∣∣∣∣
=

∣∣∣∣∣∣
∫
c1<|ξ1|+|η1|<C1

c2<|ξ2|+|η2|<C2

[1−∆ξ,η]
N(σ[j1, j2])(ξ, η)e−

2πi
h

(a·ξ+b·η) dξ dη

∣∣∣∣∣∣
≤
∫
c1<|ξ1|+|η1|<C1

c2<|ξ2|+|η2|<C2

∣∣[1−∆ξ,η]
N(σ[j1, j2])(ξ, η)

∣∣ dξ dη,
where in the third line we have done integration by parts and taken into consideration

the support of σ[j1, j2]. Considering the last line and using the fact that a finite sum of

uniformly bounded functions integrated over a compact set is itself bounded, we have that

|C[j1, j2, a, b]| . 1, where the implicit constant is independent of j1, j2 ∈ Z and a, b ∈ Zn.

We obtain a paraproduct representation for Π1,1(f, g) by substituting (3.21) back into the

formula for σ1,1 (and dropping the χH piece, which is redundant due to the supports of Ψ`

and Φ`, ` = 1, 2, in the formula for σ1,1). By also using property (A.3.3) of the Fourier
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transform, the result is a paraproduct representation for Π1,1(f, g)(x) given by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b][∆
τa1Ψ1

j1
∆
τa2Ψ2

j2
f ](x)[S

τb1Φ1

j1
S
τb2Φ2

j2
g](x), (3.22)

where a = (a1, a2), b = (b1, b2) ∈ Zn1 × Zn2 and τuF (·) = F (· + u
h
). In fact, throughout the

remainder of our arguments, our translation operators will always implicity divide the shift

by h, but we relax this notation since the division by h in the shift is negligible.

Obtaining paraproduct representations for Π1,2, Π1,3, and Π3,3 involves exactly the same

steps used in considering the multiplier associated with Π1,1, with a few slight adjustments.

First, Γ1,1 is replaced by a product of appropriate auxiliary functions, where

Γ1,2(ξ, η) := ψ̂1(ξ1)φ̂1(η1)φ̂2(ξ2)ψ̂2(η2),

Γ1,3(ξ, η) := ψ̂1(ξ1)φ̂1(η1)ψ̂2(ξ2)ψ̂2(η2),

Γ3,3(ξ, η) := ψ̂1(ξ1)ψ̂1(η1)ψ̂2(ξ2)ψ̂2(η2),

corresponding to Π1,2, Π1,3, and Π3,3, respectively. The other differences in these cases from

that of Π1,1 are the specific values of c` and C`, ` = 1, 2. However, c1, c2 > 0 and C1, C2 <∞,

which is all that is necessary for the analysis. Finally, we obtain the following paraproduct

decompositions:

Π1,2(f, g)(x) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b][∆
τa1Ψ1

j1
S
τa2Φ2

j2
f ](x)[S

τb1Φ1

j1
∆
τb2Ψ2

j2
g](x),

Π1,3(f, g)(x) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b][∆
τa1Ψ1

j1
∆
τa2Ψ2

j2
f ](x)[S

τb1Φ1

j1
∆
τb2Ψ2

j2
g](x),

Π3,3(f, g)(x) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b][∆
τa1Ψ1

j1
∆
τa2Ψ2

j2
f ](x)[∆

τb1Ψ1

j1
∆
τb2Ψ2

j2
g](x),

where the coefficients C[j1, j2, a, b] are defined slightly differently in each line but are nonethe-

less uniformly bounded in j1, j2 ∈ Z and a, b ∈ Zn.
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3.3.2 Analysis of multipliers

The following functions will be integral components of the multipliers we will come across

in applying the norm estimates in Subsection 3.3.3:

N1
` [j`, a`, b`](ξ`, η`) := |ξ` + η`|s` Ψ̂`(2

−j`(ξ` + η`))τ̂a`Ψ`(2
−j`ξ`)τ̂b`Φ`(2

−j`η`),

N2
` [j`, a`, b`](ξ`, η`) := |ξ` + η`|s` Ψ̂`(2

−j`(ξ` + η`))τ̂a`Φ`(2
−j`ξ`)τ̂b`Ψ`(2

−j`η`),

N3
` [j`, a`, b`](ξ`, η`) := |ξ` + η`|s` τ̂a`Ψ`(2

−j`ξ`)τ̂b`Ψ`(2
−j`η`),

for ` = 1, 2, j` ∈ Z, and a, b ∈ Zn` . In this section, we do some preparatory analysis on the

above functions.

We first consider N1
` [j`, a`, b`](ξ`, η`). Notice that

N1
` [j`, a`, b`](ξ`, η`)

= |ξ` + η`|s` Ψ̂`(2
−j`(ξ` + η`))τ̂a`Ψ`(2

−j`ξ`)τ̂b`Φ`(2
−j`η`)

= |ξ`|s`
[∣∣2−j`(ξ` + η`)

∣∣s` Ψ̂`(2
−j`(ξ` + η`))

] [∣∣2−j`ξ`∣∣−s` τ̂a`Ψ`(2
−j`ξ`)

]
τ̂b`Φ`(2

−j`η`)

= |ξ`|s` F [Ds`Ψ`](2
−j`(ξ` + η`))F [D−s`τa`Ψ`](2

−j`ξ`)τ̂b`Φ`(2
−j`η`).

We consider the Fourier series expansion of a periodic extension of the compactly supported

function F [Ds`Ψ`] (whose support is identical to that of Ψ̂`). Let H` = [−h
2
, h

2
]n` with

supp(F [Ds`Ψ`]) ⊆ H`, then

F [Ds`Ψ`](2
−j`ω) =

[ ∑
m`∈Zn`

cs` [m`]e
2πi
h

2−j`ω·m`

]
χH`(2

−j`ω),

where

cs` [m`] =
1

hn`

∫
H`

|ζ|s` Ψ̂`(ζ)e−
2πi
h
ζ·m` dζ,

with cs` [m`] = O((1 + |m`|)−K) for any K > 0 by (A.1) (replace m` ∈ Zn` by a continuous

variable so we regard cs` as a continuous function defined on Rn` ; then cs` ∈ S(Rn`) is the
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inverse Fourier transform of |·|s` Ψ̂`, which is in S(Rn`) since Ψ̂` ∈ S(Rn`) is supported away

from the origin). Substituting in this Fourier series expansion formula for F [Ds`Ψ`](2
−j` ·)

and using property (A.3.3) of the Fourier transform, we obtain a final representation given

by

N1
` [j`, a`, b`](ξ`, η`) = |ξ`|s`

∑
m`∈Zn`

cs` [m`]F [D−s`τa`+m`Ψ`](2
−j`ξ`)F [τb`+m`Φ`](2

−j`η`). (3.23)

By the same process, we may obtain a representaiton for N2
` [j`, a`, b`](ξ`, η`) given by

N2
` [j`, a`, b`](ξ`, η`) = |η`|s`

∑
m`∈Zn`

cs` [m`]F [τa`+m`Φ`](2
−j`ξ`)F [D−s`τb`+m`Ψ`](2

−j`η`),

(3.24)

where the coefficients cs` [m`] are defined slightly differently, but satisfy the same decay

estimate.

Next, we consider N3
` [j`, a`, b`](ξ`, η`). Define ϕ` ∈ S(Rn`) via ϕ̂` := Φ̂`(2

−6·), so that ϕ̂` is

identically 1 on {ξ` ∈ Rn` : |ξ`| ≤ 4} and is supported within {ξ` ∈ Rn` : |ξ`| ≤ 16} by (3.18).

It is easily verified that ϕ̂`(2
−j`(ξ` + η`)) equals 1 within the support of N3

` [j`, a`, b`](ξ`, η`),

so we have

N3
` [j`, a`, b`](ξ`, η`)

= |ξ` + η`|s` ϕ̂`(2−j`(ξ` + η`))τ̂a`Ψ`(2
−j`ξ`)τ̂b`Ψ`(2

−j`η`)

= |ξ`|s`
[∣∣2−j`(ξ` + η`)

∣∣s` ϕ̂`(2−j`(ξ` + η`))
] [∣∣2−j`ξ`∣∣−s` τ̂a`Ψ`(2

−j`ξ`)
]
τ̂b`Ψ`(2

−j`η`)

= |ξ`|s` F [Ds`ϕ`](2
−j`(ξ` + η`))F [D−s`τa`Ψ`](2

−j`ξ`)τ̂b`Ψ`(2
−j`η`).

We consider the Fourier series expansion of a periodic extension of the compactly supported

function F [Ds`ϕ`]. This results in

F [Ds`ϕ`](2
−j`ω) =

[ ∑
m`∈Zn`

c̃s` [m`]e
2πi
h

2−j`ω·m`

]
χH`(2

−j`ω),
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where

c̃s` [m`] =
1

hn`

∫
H`

|ζ|s` ϕ`(ζ)e−
2πi
h
ζ·m` dζ

with c̃s` [m`] = O((1 + |m`|)−n`−s`) (see Grafakos-Oh [30, Lemma 1]). We substitute this

Fourier series expansion back into the formula found above for N3
` [j`, a`, b`](ξ`, η`) to obtain

a final representation given by

N3
` [j`, a`, b`](ξ`, η`) = |ξ`|s`

∑
m`∈Zn`

c̃s` [m`]F [D−s`τa`+m`Ψ`](2
−j`ξ`)F [τb`+m`Ψ`](2

−j`η`).

(3.25)

3.3.3 Norm estimates

In this subsection, we consider ‖Ds1
1 D

s2
2 (Tσ(f, g))‖

Lr(v
r
pw

r
q )

and obtain the desired bound-

edness results, recalling that the indices p, q, r, s1, s2, and the weights v and w are as

in the statement of Theorem 1.4. Before beginning, define r∗ := min{1, r}, and note that

v
r
pw

r
q ∈ Amax{p,q}(Rn1 × Rn2) ⊂ A∞(Rn1 × Rn2) (see Lemma B.2 with θ1 = r

p
and θ2 = r

q
;

the same reasoning holds for product Muckenhoupt weight classes). Following the first line

of inequalities in Subsection 3.3.1, we see that

‖Ds1
1 D

s2
2 (Tσ(f, g))‖

Lr(v
r
pw

r
q )

.
3∑

t1,t2=1

‖Ds1
1 D

s2
2 Πt1,t2(f, g)‖

Lr(v
r
pw

r
q )
.

As reasoned in Subsection 3.3.1, we need only obtain the desired results for the pieces

associated with Π1,1, Π1,2, Π1,3, and Π3,3.

We begin with the Π1,1 term. By Lemma 3.10, we have

‖Ds1
1 D

s2
2 Π1,1(f, g)‖r

∗

Lr(v
r
pw

r
q )

.

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,1(f, g)

∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

. (3.26)

By recalling the paraproduct representation obtained for Π1,1 in (3.22), we see that ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,1
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is a bilinear multiplier operator with associated multiplier given by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j̃1,j̃2∈Z

C[j̃1, j̃2, a, b]

× |ξ1 + η1|s1 Ψ̂1(2−j1(ξ1 + η1))τ̂a1Ψ1(2−j̃1ξ1)τ̂b1Φ1(2−j̃1η1)

× |ξ2 + η2|s2 Ψ̂2(2−j2(ξ2 + η2))τ̂a2Ψ2(2−j̃2ξ2)τ̂b2Φ2(2−j̃2η2).

By considering the supports of Ψ` and Φ` for ` = 1, 2, it may easily be verified that for each

fixed j` ∈ Z, the sum in j̃` ∈ Z actually need only run over j`−3 ≤ j̃` ≤ j`+3. This simplies

the form of the multiplier associated to ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,1 to be as follows:

3∑
δ1,δ2=−3

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N
C[j1 + δ1, j2 + δ2, a, b]

× |ξ1 + η1|s1 Ψ̂1(2−j1(ξ1 + η1))τ̂a1Ψ1(2−j1−δ1ξ1)τ̂b1Φ1(2−j1−δ1η1)

× |ξ2 + η2|s2 Ψ̂2(2−j2(ξ2 + η2))τ̂a2Ψ2(2−j2−δ2ξ2)τ̂b2Φ2(2−j2−δ2η2).

The next step would be to split the `2-norm and weighted Lr-norm in (3.26) across the sum

in δ1, δ2 = −3, . . . , 3. Since the analysis works in the same way for all δ` cases, we simplify

notation by only considering the case δ1 = δ2 = 0, a case which yields the following form for

the multiplier associated to ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,1:

∑
a,b∈Zn

C[j1, j2, a, b]

(1 + |a|2 + |b|2)N
N1

1 [j1, a1, b1](ξ1, η1)N1
2 [j2, a2, b2](ξ2, η2),

where N1
` [j`, a`, b`] for ` = 1, 2 is as defined in Subsection 3.3.2. With this multiplier in mind,

(3.23) implies that ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,1(f, g)(x) has the form

∑
a,b∈Zn

C[j1, j2, a, b]

(1 + |a|2 + |b|2)N

∑
m1∈Zn1

∑
m2∈Zn2

cs1 [m1]cs2 [m2]

×
[
(∆

D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f) · (Sτb1+m1

Φ1

j1
S
τb2+m2

Φ2

j2
g)
]

(x).
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Substituting this into (3.26), and taking into account that C[j1, j2, a, b] are uniformly bounded,

we see that ‖Ds1
1 D

s2
2 Π1,1(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)Nr∗
∑

m1∈Zn1

∑
m2∈Zn2

|cs1 [m1]|r
∗
|cs2 [m2]|r

∗

×

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣[∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f ] · [Sτb1+m1

Φ1

j1
S
τb2+m2

Φ2

j2
g]
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

,

where we have used Minkowski’s integral inequality (see Section B.2). Recall that we may

choose N > 0 as large as we wish, which only would have affected the definition of the

C[j1, j2, a, b], but not their uniform boundedness property. Also recall the decay properties

of the coefficients cs` [m`], for which cs` [m`] = O((1 + |m`|)−K) for any K > 0. We will see

that, if we can obtain some K̃ > 0 for which the Lr(v
r
pw

r
q )-norm piece above is bounded by

something of the form

(1 + |a|+ |b|+ |m|)K̃ ‖Ds1
1 D

s2
2 f‖Lp(v) ‖g‖Lq(w) ,

where a = (a1, a2), b = (b1, b2),m = (m1,m2) ∈ Zn1 × Zn2 , our work will be complete, for if

we were able to do so, that would imply that ‖Ds1
1 D

s2
2 Π1,1(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b,m∈Zn

(
(1 + |a|+ |b|+ |m|)K̃

(1 + |a|2 + |b|2)N(1 + |m1|)K(1 + |m2|)K

)r∗

‖Ds1
1 D

s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w) .

Choosing K,N > 0 large enough would allow the above summation in a, b,m ∈ Zn to

converge, so that we would conclude the desired result, namely

‖Ds1
1 D

s2
2 Π1,1(f, g)‖r

∗

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w) .

With this goal in mind, we use (3.5) to obtain a pointwise bound (uniform in j1, j2 ∈ Z)
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given by

∣∣∣[Sτb1+m1
Φ1

j1
S
τb2+m2

Φ2

j2
g](x)

∣∣∣ . (1 + |b1|+ |m1|)n1+1(1 + |b2|+ |m2|)n2+1M1
n1
M2

n2
g(x).

Using this pointwise bound and an application of Hölder’s inequality on the Lr(v
r
pw

r
q )-norm

piece of interest, we obtain the following bound for the Lr(v
r
pw

r
q )-norm term:

(1 + |b1|+ |m1|)n1+1(1 + |b2|+ |m2|)n2+1
∥∥M1

n1
M2

n2
g
∥∥
Lq(w)

×

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣[∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(v)

.

Finally, an application of Lemma 3.11 on the Lp(v)-norm term, along with the facts that

M1
n1

and M2
n2

are bounded operators on Lq(w) (as discussed in Subsection 3.2.1) and (1 +

|b1|+ |m1|)n1+1(1 + |b2|+ |m2|)n2+1 ≤ (1 + |a|+ |b|+ |m|)n+2, concludes the case for Π1,1.

We now move on to the Π1,2 term, which will be handled very similarly to the Π1,1 term.

We again begin with an application of Lemma 3.10 to obtain

‖Ds1
1 D

s2
2 Π1,2(f, g)‖r

∗

Lr(v
r
pw

r
q )

.

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,2(f, g)

∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

. (3.27)

Following the arguments in the Π1,1 case, we see that we must examine ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,2,

a bilinear multiplier operator with associated multiplier given by

3∑
δ1,δ2=−3

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N
C[j1 + δ1, j2 + δ2, a, b]

× |ξ1 + η1|s1 Ψ̂1(2−j1(ξ1 + η1))τ̂a1Ψ1(2−j1−δ1ξ1)τ̂b1Φ1(2−j1−δ1η1)

× |ξ2 + η2|s2 Ψ̂2(2−j2(ξ2 + η2))τ̂a2Φ2(2−j2−δ2ξ2)τ̂b2Ψ2(2−j2−δ2η2).

As reasoned in the Π1,1 case, we may disregard the sums in δ1 and δ2. By utilizing the func-

tions studied in Subsection 3.3.2, we see that the multiplier associated with ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,2
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has the form

∑
a,b∈Zn

C[j1, j2, a, b]

(1 + |a|2 + |b|2)N
N1

1 [j1, a1, b1](ξ1, η1)N2
2 [j2, a2, b2](ξ2, η2).

Thus, we may expand the multiplier using (3.23) and (3.24) to see that ∆Ψ1
j1

∆Ψ2
j2
Ds1

1 D
s2
2 Π1,2(f, g)(x)

has the form

∑
a,b∈Zn

C[j1, j2, a, b]

(1 + |a|2 + |b|2)N

∑
m1∈Zn1

∑
m2∈Zn2

cs1 [m1]cs2 [m2]

×
[
(∆

D−s1τa1+m1Ψ1

j1
S
τa2+m2Φ2

j2
Ds1

1 f) · (Sτb1+m1
Φ1

j1
∆
D−s2τb2+m2

Ψ2

j2
Ds2

2 g)
]

(x).

As in the Π1,1 case, we now substitute back into (3.27) to see that ‖Ds1
1 D

s2
2 Π1,2(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)Nr∗
∑

m1∈Zn1

∑
m2∈Zn2

|cs1 [m1]|r
∗
|cs2 [m2]|r

∗

×

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣[∆D−s1τa1+m1Ψ1

j1
S
τa2+m2Φ2

j2
Ds1

1 f ] · [Sτb1+m1
Φ1

j1
∆
D−s2τb2+m2

Ψ2

j2
Ds2

2 g]
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

.

Thus, if there exists some K̃ > 0 for which the Lr(v
r
pw

r
q )-norm piece above is bounded by

something of the form (1 + |a| + |b| + |m|)K̃ ‖Ds1
1 f‖Lp(v) ‖D

s2
2 g‖Lq(w), the Π1,2 case will be

complete, as it would imply ‖Ds1
1 D

s2
2 Π1,2(f, g)‖r

∗

Lr(v
r
pw

r
q )

. ‖Ds1
1 f‖

r∗

Lp(v) ‖D
s2
2 g‖

r∗

Lq(w), again as

reasoned in the Π1,1 case. First, note that by (3.5), we have the following pointwise bounds

(uniform in j2 and j1, respectively):

∣∣∣[∆D−s1τa1+m1Ψ1

j1
S
τa2+m2Φ2

j2
Ds1

1 f ](x)
∣∣∣ . (1 + |a2|+ |m2|)n2+1

∣∣∣[M2
n2

∆
D−s1τa1+m1Ψ1

j1
Ds1

1 f ](x)
∣∣∣ ,

∣∣∣[Sτb1+m1
Φ1

j1
∆
D−s2τb2+m2

Ψ2

j2
Ds2

2 g](x)
∣∣∣ . (1 + |b1|+ |m1|)n1+1

∣∣∣[M1
n1

∆
D−s2τb2+m2

Ψ2

j2
Ds2

2 g](x)
∣∣∣ .

With these pointwise bounds in mind, we may use them with the Lr(v
r
pw

r
q )-norm piece

above, followed by Hölder’s inequality on the Lr(v
r
pw

r
q )-norm, to obtain a bound for the
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Lr(v
r
pw

r
q )-norm term given by

(1 + |a2|+ |m2|)n2+1

∥∥∥∥∥∥
(∑
j1∈Z

∣∣∣M2
n2

∆
D−s1τa1+m1Ψ1

j1
Ds1

1 f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(v)

× (1 + |b1|+ |m1|)n1+1

∥∥∥∥∥∥
(∑
j2∈Z

∣∣∣M1
n1

∆
D−s2τb2+m2

Ψ2

j2
Ds2

2 g
∣∣∣2) 1

2

∥∥∥∥∥∥
Lq(w)

.

Finally, applications of the weighted Fefferman-Stein inequality (3.7) followed by Lemma 3.11

on each weighted term (applying part (a) while iterating norms; see Remark 3.2.1) yield the

desired result, thus concluding the Π1,2 case.

We now consider the Π1,3 term. In this case, we apply Lemma 3.10 while iterating norms

(see Remark 3.2.1) to obtain

‖Ds1
1 D

s2
2 Π1,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

.

∥∥∥∥∥∥
(∑
j1∈Z

∣∣∆Ψ1
j1
Ds1

1 D
s2
2 Π1,3(f, g)

∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

. (3.28)

Using the paraproduct representation obtained for Π1,3 in Subsection 3.3.1, we see that the

bilinear multiplier operator ∆Ψ1
j1
Ds1

1 D
s2
2 Π1,3 has an associated multiplier given by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j̃1,j̃2∈Z

C[j̃1, j̃2, a, b]

× |ξ1 + η1|s1 Ψ̂1(2−j1(ξ1 + η1))τ̂a1Ψ1(2−j̃1ξ1)τ̂b1Φ1(2−j̃1η1)

× |ξ2 + η2|s2 τ̂a2Ψ2(2−j̃2ξ2)τ̂b2Ψ2(2−j̃2η2).

By the same reasoning as in the Π1,1 case, we may, without loss of generality, equate j̃1 with

j1 and disregard the sum in j̃1 ∈ Z. Also, for ease of notation, we rewrite j̃2 as simply j2.

Thus, using the notation of functions introduced in Subsection 3.3.2, we obtain the following
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form for the multiplier associated to ∆Ψ1
j1
Ds1

1 D
s2
2 Π1,3:

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j2∈Z

C[j1, j2, a, b]N
1
1 [j1, a1, b1](ξ1, η1)N3

2 [j2, a2, b2](ξ2, η2).

Expanding the multiplier using (3.23) and (3.25), we see that ∆Ψ1
j1
Ds1

1 D
s2
2 Π1,3(f, g)(x) has

the form

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j2∈Z

C[j1, j2, a, b]
∑

m1∈Zn1

∑
m2∈Zn2

cs1 [m1]c̃s2 [m2]

×
[
(∆

D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f) · (Sτb1+m1

Φ1

j1
∆
τb2+m2

Ψ2

j2
g)
]

(x).

We substitute this formulation back into (3.28), from which we obtain that ‖Ds1
1 D

s2
2 Π1,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)Nr∗
∑

m1∈Zn1

∑
m2∈Zn2

|cs1 [m1]|r
∗ ∣∣c̃s2 [m2]

∣∣r∗

×

∥∥∥∥∥∥∥
∑
j1∈Z

(∑
j2∈Z

∣∣∣[∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f ] · [Sτb1+m1

Φ1

j1
∆
τb2+m2

Ψ2

j2
g]
∣∣∣)2
 1

2

∥∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

,

where we have used the uniform bound on C[j1, j2, a, b] and Minkowski’s integral inequality

(see Section B.2). Due to the decay of the coefficients c̃s2 [m2], namely c̃s` [m`] = O((1 +

|m`|)−n`−s`), the existence of some K̃ > 0 for which the Lr(v
r
pw

r
q )-norm piece above was

bounded by something of the form (1+ |a|+ |b|+ |m1|)K̃ ‖Ds1
1 D

s2
2 f‖Lp(v) ‖g‖Lq(w) would imply

that ‖Ds1
1 D

s2
2 Π1,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b,m∈Zn

(
(1 + |a|+ |b|+ |m1|)K̃

(1 + |a|2 + |b|2)N(1 + |m1|)K(1 + |m2|)n2+s2

)r∗

‖Ds1
1 D

s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w) .

For N,K > 0 sufficiently large, the sum in a, b ∈ Zn and m1 ∈ Zn1 converges, while the sum

in m2 ∈ Zn2 converges due to the hypothesis in Theorem 1.4 that s2 > max{0, n2(1
r
− 1)}
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(that is, this hypothesis guarantees that (n2 + s2)r∗ > n2). With the sum in a, b,m ∈ Zn

above converging, we would obtain ‖Ds1
1 D

s2
2 Π1,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w),

thus completing the Π1,3 case. To analyze the Lr(v
r
pw

r
q )-norm term above, we begin by using

(3.5) for the operator S
τb1+m1

Φ1

j1
(obtaining a bound independent of j1 ∈ Z), followed by an

application of Hölder’s inequality on the `1-norm in j2 ∈ Z, which gives the following bound

for the Lr(v
r
pw

r
q )-norm piece:

(1 + |b1|+ |m1|)n1+1

×

∥∥∥∥∥∥
[∑
j1∈Z

(∑
j2∈Z

∣∣∣∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f
∣∣∣2)(∑

j2∈Z

∣∣∣M1
n1

∆
τb2+m2

Ψ2

j2
g
∣∣∣2)] 1

2

∥∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

.

After pulling the second `2-norm in j2 ∈ Z outside the sum in j1 ∈ Z, an application of

Hölder’s inequality on the Lr(v
r
pw

r
q )-norm yields an upper bound for the original Lr(v

r
pw

r
q )-

norm term of the form

(1 + |b1|+ |m1|)n1+1

∥∥∥∥∥∥
(∑
j2∈Z

∣∣∣M1
n1

∆
τb2+m2

Ψ2

j2
g
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lq(w)

×

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lp(v)

.

We complete the Π1,3 case with an application of the weighted Fefferman-Stein inequality

(3.7) on the Lq(w)-norm piece, followed by an application of Lemma 3.11 on both pieces,

noting that we iterate norms on the Lq(w)-norm piece (see Remark 3.2.1).

Finally, we consider the last case, which relates to Π3,3. From the paraproduct repre-

sentation for Π3,3 given in Subsection 3.3.1, we see that Ds1
1 D

s2
2 Π3,3 is a bilinear multiplier
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operator with the following associated multiplier:

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b]

×
[
|ξ1 + η1|s1 τ̂a1Ψ1(2−j1ξ1)τ̂b1Ψ1(2−j1η1)

]
·
[
|ξ2 + η2|s2 τ̂a2Ψ2(2−j2ξ2)τ̂b2Ψ2(2−j2η2)

]
.

Again switching to notation using functions from Subsection 3.3.2, we may express the

multiplier as follows:

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1,j2∈Z

C[j1, j2, a, b]N
3
1 [j1, a1, b1](ξ1, η1)N3

2 [j2, a2, b2](ξ2, η2).

By (3.25), we see that Ds1
1 D

s2
2 Π3,3(f, g)(x) has the form

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j1j2∈Z

C[j1, j2, a, b]
∑

m1∈Zn1

∑
m2∈Zn2

c̃s1 [m1]c̃s2 [m2]

×
[
(∆

D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f) · (∆τb1+m1

Ψ1

j1
∆
τb2+m2

Ψ2

j2
g)
]

(x).

Therefore, by the uniform bound on C[j1, j2, a, b] and Minkowski’s integral inequality (see

Section B.2), we see that we may bound ‖Ds1
1 D

s2
2 Π3,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)Nr∗
∑

m1∈Zn1

∑
m2∈Zn2

∣∣c̃s1 [m1]
∣∣r∗ ∣∣c̃s2 [m2]

∣∣r∗
×

∥∥∥∥∥ ∑
j1,j2∈Z

∣∣∣[∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f ] · [∆τb1+m1

Ψ1

j1
∆
τb2+m2

Ψ2

j2
g]
∣∣∣∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

.

If we could bound the Lr(v
r
pw

r
q )-norm piece above by ‖Ds1

1 D
s2
2 f‖Lp(v) ‖g‖Lq(w), this would

imply that ‖Ds1
1 D

s2
2 Π3,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b,m∈Zn

(
1

(1 + |a|2 + |b|2)N(1 + |m1|)n1+s1(1 + |m2|)n2+s2

)r∗
‖Ds1

1 D
s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w) .
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For N sufficiently large, the sum in a, b ∈ Zn converges, and as reasoned in the Π1,3 case,

the sum in m ∈ Zn converges due to the hypotheses on s`, ` = 1, 2, in the statement of

Theorem 1.4, which guarantee (n` + s`)r
∗ > n`. With all sums converging, we would obtain

‖Ds1
1 D

s2
2 Π3,3(f, g)‖r

∗

Lr(v
r
pw

r
q )

. ‖Ds1
1 D

s2
2 f‖

r∗

Lp(v) ‖g‖
r∗

Lq(w) ,

which completes not only the Π3,3 case, but also the proof of the theorem. In considering

the Lr(v
r
pw

r
q )-norm term above, we begin with two applications of Hölder’s inequality, first

on the `1-norm in j1, j2 ∈ Z, then on the Lr(v
r
pw

r
q )-norm, which gives the following bound

for the Lr(v
r
pw

r
q )-norm piece:

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣∆D−s1τa1+m1Ψ1

j1
∆
D−s2τa2+m2Ψ2

j2
Ds1

1 D
s2
2 f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(v)

∥∥∥∥∥∥
( ∑
j1,j2∈Z

∣∣∣∆τb1+m1
Ψ1

j1
∆
τb2+m2

Ψ2

j2
g
∣∣∣2) 1

2

∥∥∥∥∥∥
Lq(w)

.

An application of Lemma 3.11 on each piece then concludes the estimate for Π3,3.

3.4 Proof of weighted fractional Leibniz rules associ-

ated to Coifman-Meyer multipliers

In this section, we present the proof of Theorem 1.3, broken up as follows. In Subsec-

tion 3.4.1, we establish an appropriate paraproduct decomposition for the bilinear multiplier

operator Tσ, similar to the work done in Subsection 3.3.1 to determine a biparaproduct

decomposition. Subsection 3.4.2 deals with the proof of the homogeneous estimates (1.4),

while Subsection 3.4.3 considers the inhomogeneous estimates (1.5).

Some boundedness results relating to Coifman-Meyer multiplier operators were men-

tioned in Subsection 3.1.1. Before beginning the proof of Theorem 1.3, we state specifically

one such result for weighted Lebesgue spaces which will be useful in proving both the homo-

geneous and inhomogeneous estimates:

Theorem 3.16. Let σ(ξ, η), ξ, η ∈ Rn, satisfy (3.1) for α, β ∈ Nn
0 with |α + β| ≤ 2n+1, and
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consider 1 < p, q ≤ ∞ and 1
2
< r <∞ such that 1

r
= 1

p
+ 1

q
. If v ∈ Ap(Rn) and w ∈ Aq(Rn),

then for all f ∈ Lp(v) and g ∈ Lq(w),

‖Tσ(f, g)‖
Lr(v

r
pw

r
q )

. ‖f‖Lp(v) ‖g‖Lq(w) ,

where the implicit constant depends on p, q, [v]Ap, [w]Aq , and σ.

For a proof of Theorem 3.16, see Grafakos-Martell [29, Corollary 8.2] or Lerner et al. [45,

Corollary 3.9], both of which give estimates in weighted Lebesgue spaces for the more general

class of bilinear Calderón-Zygmund operators. Note that the statements of the corollaries

mentioned do not include the cases p = ∞ or q = ∞. However, keeping in mind that

L∞(w) = L∞ for any Muckenhoupt weight w, it is easily seen in the succinct proof of [29,

Corollary 8.2] that the operators involved are also bounded from Lp(v) × L∞ to Lp(v) and

from L∞ × Lp(v) to Lp(v) for v ∈ Ap(Rn) with 1 < p <∞, as stated in Theorem 3.16.

Throughout the following sections, we will require auxiliary functions Ψ,Φ ∈ S(Rn).

Specifically, fix Ψ ∈ S(Rn) satisfying (A.5) and (A.6), and define Φ ∈ S(Rn) via (A.7).

Additionally, we will require auxiliary functions ψ, φ ∈ S(Rn) as in (A.9) and (A.10), so that

Ψ = ψΨ and Φ = φΦ.

3.4.1 Paraproduct decomposition

Let σ be a Coifman-Meyer multiplier, as defined in Definition 3.1. By (A.6), we have

Tσ(f, g)(x) =

∫
R2n

σ(ξ, η)

(∑
j,k∈Z

Ψ̂(2−jξ)Ψ̂(2−kη)

)
f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=: Π1(f, g)(x) + Π2(f, g)(x) + Π3(f, g)(x),
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where the Π pieces are bilinear multiplier operators given by

Π1(f, g)(x) =
∑
j,k∈Z
k<j−2

∫
R2n

σ(ξ, η)Ψ̂(2−jξ)Ψ̂(2−kη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=
∑
j∈Z

∫
R2n

σ(ξ, η)Ψ̂(2−jξ)Φ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη,

Π2(f, g)(x) =
∑
j,k∈Z
j<k−2

∫
R2n

σ(ξ, η)Ψ̂(2−jξ)Ψ̂(2−kη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη

=
∑
k∈Z

∫
R2n

σ(ξ, η)Φ̂(2−kξ)Ψ̂(2−kη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη,

Π3(f, g)(x) =
∑
j∈Z

∫
R2n

σ(ξ, η)Ψ̂(2−jξ)Ψ̂(2−jη)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη.

Technically, Π3 is a multiplier operator whose associated multiplier has the form

2∑
δ=−2

[∑
j∈Z

σ(ξ, η)Ψ̂(2−jξ)Ψ̂(2−j−δη)

]
.

However, keeping track of this extra finite sum in δ throughout the proof does not affect the

results, but merely changes some of the constants obtained in inequalities. Since we are not

tracking the specific values of such constants, we will, without loss of generality, consider

only the case δ = 0. Note that, due to the supports of Ψ̂ and Φ̂, the integrand in the formula

for Π1(f, g) is supported where |η| ≤ 1
2
|ξ|, the integrand for Π2(f, g) is supported where

|ξ| ≤ 1
2
|η|, and the integrand for Π3(f, g) is supported where |ξ| ∼ |η|.

It will suffice to prove the desired boundedness result for each Π piece above, and due to

the fact that the Π1 and Π2 cases are handled with very similar arguments, we will restrict

our analysis to the Π1 and Π3 cases (see Subsection 3.3.1 for an example relating to the proof

of biparameter estimates which justifies considering only a few cases). We will first establish

a paraproduct representation for Π1(f, g). Using that Ψ = ψΨ and Φ = φΦ, we see that the
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multiplier associated with Π1 may be expressed as

∑
j∈Z

σ[j](2−jξ, 2−jη)Ψ̂(2−jξ1)Φ̂(2−jη),

where σ[j](ξ, η) := σ(2jξ, 2jη)Γ1(ξ, η) with Γ1(ξ, η) = ψ̂(ξ)φ̂(η). At this point, we follow

through with much of the same type of arguments as used in Subsection 3.3.1, so we will

omit the exact details here. To give an idea of how things proceed, we would next verify

that σ[j] and its derivatives are bounded uniformly in j ∈ Z, due to the support of Γ1 and

the fact that σ is a Coifman-Meyer multiplier. Then, we would consider the Fourier series

expansion of a periodic extension of the compactly supported σ[j], using the Fourier series

coefficients {c[j, a, b]}a,b∈Zn to define another family of coefficients for some fixed N ∈ N

sufficiently large (the exact size of which will be specified in Subsections 3.4.2 and 3.4.3),

given by C[j, a, b] := (1 + |a| + |b|)Nc[j, a, b] and satisfying |C[j, a, b]| . 1 uniformly in j ∈ Z

and a, b ∈ Zn. Finally, by substituting the Fourier series expansion of σ[j] back into the

multiplier for Π1, we arrive at the following paraproduct representation:

Π1(f, g)(x) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b][∆τaΨ
j f ](x)[SτbΦj g](x).

Obtaining a paraproduct representation for Π3(f, g) follows the same steps, with the

notable difference being the use of Γ3(ξ, η) = ψ̂(ξ)ψ̂(η) in place of Γ1. In this case, we obtain

the following paraproduct representation:

Π3(f, g)(x) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b][∆τaΨ
j f ](x)[∆τbΨ

j g](x),

where the coefficients C[j, a, b] are defined slightly differently, but are still bounded uniformly

in j ∈ Z and a, b ∈ Zn.

For both Subsections 3.4.2 and 3.4.3, let p, q, r, s, and the weights v and w be as in

the statement of Theorem 1.3. Note that v
r
pw

r
q ∈ Amax{p,q}(Rn) ⊂ A∞(Rn) (see Lemma B.2

with θ1 = r
p

and θ2 = r
q
), and as before, set r∗ = min{1, r}.
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3.4.2 Homogeneous estimates

We begin in the same way as in Subsection 3.3.3, noting that

‖Ds(Tσ(f, g))‖
Lr(v

r
pw

r
q )

. ‖DsΠ1(f, g)‖
Lr(v

r
pw

r
q )

+ ‖DsΠ2(f, g)‖
Lr(v

r
pw

r
q )

+ ‖DsΠ3(f, g)‖
Lr(v

r
pw

r
q )
.

Our goal is to verify the desired result for each of the Π pieces above (or more precisely,

for the Π1 and Π3 pieces, as justified in Subsection 3.4.1). We will first study the Π1 piece.

Since DsΠ1 is itself a bilinear multiplier operator, we may consider its associated multiplier

o1, given by

o1(ξ, η) :=
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] |ξ + η|s τ̂aΨ(2−jξ)τ̂bΦ(2−jη)

=
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] |ξ + η|s

|ξ|s
(
τ̂aΨ(2−jξ) |ξ|s

)
τ̂bΦ(2−jη).

Thus, we see that DsΠ1(f, g)(x) = To1(f, g)(x) = Tõ1(Dsf, g)(x), where

õ1(ξ, η) :=
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] |ξ + η|s

|ξ|s
τ̂aΨ(2−jξ)τ̂bΦ(2−jη).

In fact, it can be verified that õ1 satisfies (3.1) for all multi-indices α, β ∈ Nn
0 (using techniques

similar to those used to prove Lemma B.1), so an application of Theorem 3.16 yields that

‖DsΠ1(f, g)‖
Lr(v

r
pw

r
q )

= ‖Tõ1(Dsf, g)‖
Lr(v

r
pw

r
q )

. ‖Dsf‖lp(v) ‖g‖Lq(w) ,

thus completing the Π1 case. Note that the restriction on s in the statement of Theorem 1.3

was not needed for the study of Π1.

We now move on to the Π3 case. Following the reasoning in the Π1 case, it can be seen
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that DsΠ3(f, g) = Tõ3(Dsf, g), where

õ3(ξ, η) :=
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] |ξ + η|s

|ξ|s
τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

In the instances where s > 2n+1 or s ∈ 2N0, it may be verified that õ3, like õ1 above, satisfies

the hypotheses on the multiplier in Theorem 3.16, so that an application of said theorem

yields the desired result just as in the Π1 case. More specifically, the hypotheses on the

multiplier require that (3.1) be satisfied for α, β ∈ Nn
0 with |α + β| ≤ 2n+ 1. Recall that in

the Π3 case, |ξ| ∼ |η| within the support of the multiplier õ3. Thus, taking derivatives of the

piece |ξ + η|s in õ3 may prove problematic while checking whether the multiplier satisfies the

hypotheses of Theorem 3.16. However, for s > 2n+1, not enough derivatives need to be taken

for a singularity to develop (since we only need to check α, β ∈ Nn
0 with |α + β| ≤ 2n + 1),

and for s ∈ 2N0, no singularity develops no matter how many derivatives are taken. For the

remainder of the subsection, we deal with Π3 in the general case s > max{0, n(1
r
− 1)}. We

split our analysis into three cases: p and q finite, q =∞, and p =∞.

Case 1: 1
2
< r <∞, 1 < p, q <∞. The reasoning for this case follows very closely to that

of Subsection 3.3.2, so we will omit some of the details which have already been carefully

laid out in that subsection. Note that we may rewrite õ3 as

õ3(ξ, η) =
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b]N3[j, a, b](ξ, η),

where

N3[j, a, b](ξ, η) :=
|ξ + η|s

|ξ|s
τ̂aΨ(2−jξ)τ̂bΨ(2−jη). (3.29)

For ϕ̂ = Φ̂(2−6·), it is easily verified that ϕ̂(2−j(ξ + η)) = 1 for all (ξ, η) ∈ supp(N3[j, a, b]).
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With this in mind, we may express N3[j, a, b] as

N3[j, a, b](ξ, η) =
|ξ + η|s

|ξ|s
ϕ̂(2−j(ξ + η))τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
[∣∣2−j(ξ + η)

∣∣s ϕ̂(2−j(ξ + η))
] [∣∣2−jξ∣∣−s τ̂aΨ(2−jξ)

]
τ̂bΨ(2−jη)

= F [Dsϕ](2−j(ξ + η))F [D−sτaΨ](2−jξ)τ̂bΨ(2−jη).

Due to the compact support of F [Dsϕ], say within H = [−h
2
, h

2
]n with h sufficiently large,

we consider the Fourier series expansion of a periodic extension of F [Dsϕ], obtaining

F [Dsϕ](2−jω) =

[∑
m∈Zn

c̃s[m]e
2πi
h

2−jω·m

]
χH(2−jω),

where the Fourier series coefficients are given by

c̃s[m] =
1

hn

∫
H

|ζ|s ϕ(ζ)e−
2πi
h
ζ·m dζ,

with c̃s[m] = O((1 + |m|)−n−s) (see Grafakos-Oh [30, Lemma 1]). We substitute this Fourier

series expansion for F [Dsϕ] back into the formula above for N3[j, a, b], keeping in mind

property (A.3.3) of the Fourier transform, to obtain a final representation given by

N3[j, a, b](ξ, η) =
∑
m∈Zn

c̃s[m]F [D−sτa+mΨ](2−jξ)F [τb+mΨ](2−jη).

With this identity for the multiplier õ3, we see that DsΠ3(f, g) = Tõ3(Dsf, g) has the form

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b]
∑
m∈Zn

c̃s[m]
[
(∆

D−sτa+mΨ
j Dsf) · (∆τb+mΨ

j g)
]

(x).

We may now consider ‖DsΠ3(f, g)‖
Lr(v

r
pw

r
q )

. Using the fact that the coefficients C[j, a, b] are
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bounded uniformly in j ∈ Z and a, b ∈ Zn, we see that ‖DsΠ3(f, g)‖r
∗

Lr(v
r
pw

r
q )

is controlled by

∑
a,b,m∈Zn

|c̃s[m]|r∗

(1 + |a|2 + |b|2)Nr∗

∥∥∥∥∥∑
j∈Z

∣∣∣[∆D−sτa+mΨ
j Dsf ] · [∆τb+mΨ

j g]
∣∣∣∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

.

Consider just the Lr(v
r
pw

r
q )-norm piece above. Two applications of Hölder’s inequality, first

on the `1-norm in j ∈ Z, then on the Lr(v
r
pw

r
q )-norm, imply that the Lr(v

r
pw

r
q )-norm term

above is bounded by

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆D−sτa+mΨ
j Dsf

∣∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lp(v)

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆τb+mΨ
j g

∣∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lq(w)

.

Applications of Lemma 3.11 on each weighted norm piece then imply that ‖DsΠ3(f, g)‖r
∗

Lr(v
r
pw

r
q )

itself is bounded by

∑
a,b,m∈Zn

(
1

(1 + |a|2 + |b|2)N(1 + |m|)n+s

)r∗
‖Dsf‖r

∗

Lp(v) ‖g‖
r∗

Lq(w) .

For N sufficiently large, the sum in a, b ∈ Zn converges, and the sum in m ∈ Zn converges

due to the hypothesis that s > max{0, n(1
r
− 1)} in the statement of Theorem 1.3. Thus,

‖DsΠ3(f, g)‖r
∗

Lr(v
r
pw

r
q )

. ‖Dsf‖r
∗

Lp(v) ‖g‖
r∗

Lq(w), which concludes case 1 for Π3.

Case 2: q =∞, p = r, 1 < p <∞. In this case, we desire to show that, for v ∈ Ap(Rn),

‖DsΠ3(f, g)‖Lp(v) . ‖D
sf‖Lp(v) ‖g‖L∞ .

We begin by applying Lemma 3.10 to obtain

‖DsΠ3(f, g)‖Lp(v) .

∥∥∥∥∥∥
(∑
k∈Z

∣∣∆Ψ
kD

sΠ3(f, g)
∣∣2) 1

2

∥∥∥∥∥∥
Lp(v)

. (3.30)
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Fix k ∈ Z, then ∆Ψ
kD

sΠ3(f, g) corresponds with Tõ3[k](D
sf, g), where

õ3[k](ξ, η) = Ψ̂(2−k(ξ + η))
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b]N3[j, a, b](ξ, η)

with N3[j, a, b] as defined in (3.29). It is easily verified that, due to the support of Ψ̂, the

summation over j ∈ Z needs only run over j ≥ k − 3. With this in mind, and expanding

N3[j, a, b] using its definition, we see that

õ3[k](ξ, η)

= Ψ̂(2−k(ξ + η))
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j≥k−3

C[j, a, b] |ξ + η|s

|ξ|s
τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
[
2ks
∣∣2−k(ξ + η)

∣∣s Ψ̂(2−k(ξ + η))
] ∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

×
∑
j≥k−3

C[j, a, b]
[
2−js

∣∣2−jξ∣∣−s τ̂aΨ(2−jξ)
]
τ̂bΨ(2−jη)

= 2ksD̂sΨ(2−k(ξ + η))
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

×
∑
j≥k−3

2−jsC[j, a, b]F [D−sτaΨ](2−jξ)τ̂bΨ(2−jη).

With this representation in mind for the multiplier õ3[k], we see that
∣∣∆Ψ

kD
sΠ3(f, g)(x)

∣∣ =∣∣Tõ3[k](D
sf, g)(x)

∣∣ is bounded by

2ks
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j≥k−3

2−js |C[j, a, b]| ·
∣∣∣∆DsΨ

k

[
(∆D−sτaΨ

j Dsf) · (∆τbΨ
j g)

]
(x)
∣∣∣ .

By an application of Hölder’s inequality on the `1-norm in j ≥ k−3, we see that
∣∣∆Ψ

kD
sΠ3(f, g)(x)

∣∣
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is further bounded by

2ks
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

( ∑
j≥k−3

2−2js

) 1
2

×

( ∑
j≥k−3

|C[j, a, b]|2 ·
∣∣∣∆DsΨ

k

[
(∆D−sτaΨ

j Dsf) · (∆τbΨ
j g)

]∣∣∣2) 1
2

.

Using the facts that the coefficients C[j, a, b] are uniformly bounded and
∑

j≥k−3(2−2s)j ∼

2−2sk, we obtain

∣∣∆Ψ
kD

sΠ3(f, g)(x)
∣∣ . ∑

a,b∈Zn

1

(1 + |a|2 + |b|2)N

( ∑
j≥k−3

∣∣∣∆DsΨ
k

[
(∆D−sτaΨ

j Dsf) · (∆τbΨ
j g)

]∣∣∣2) 1
2

.

Substituting back into (3.30) and applying the triangle inequality for Lebesgue space norms

and Minkowski’s integral inequality (see Section B.2), we see that ‖DsΠ3(f, g)‖Lp(v) is

bounded by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∥∥∥∥∥∥
(∑
k∈Z

∑
j∈Z

∣∣∣∆DsΨ
k

[
(∆D−sτaΨ

j Dsf) · (∆τbΨ
j g)

]∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(v)

,

If we were able to bound the Lp(v)-norm piece above by something of the form ‖Dsf‖Lp(v) ‖g‖L∞ ,

the case would be complete, since the sum in a, b ∈ Zn converges for sufficiently large N .

First, we apply Lemma 3.12 with {Tk}k∈Z = {∆DsΨ
k }k∈Z and r = 2, which is possible since

(3.14) holds with r = 2 by Lemma 3.9, implying that the Lp(v)-norm piece is bounded by

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣(∆D−sτaΨ
j Dsf) · (∆τbΨ

j g)
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(v)

≤ sup
j∈Z

{∥∥∥∆τbΨ
j g

∥∥∥
L∞

}∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆D−sτaΨ
j Dsf

∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(v)

.

Finally, we may bound the supremum above by ‖g‖L∞ since

∥∥∥∆τbΨ
j g

∥∥∥
L∞

=
∥∥[2jnτbΨ(2j·)] ∗ g

∥∥
L∞
≤
∥∥2jnτbΨ(2j·)

∥∥
L1 ‖g‖L∞ = ‖Ψ‖L1 ‖g‖L∞ ∼ ‖g‖L∞ ,

(3.31)
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where we have used Hölder’s inequality and we note that the above string of inequalities is

independent of j ∈ Z, and we bound the Lp(v)-norm piece by ‖Dsf‖Lp(v) using Lemma 3.11,

thus concluding this case.

Case 3: p =∞, q = r, 1 < q <∞. In this last case, we desire to show that, for w ∈ Aq(Rn),

‖DsΠ3(f, g)‖Lq(w) . ‖D
sf‖L∞ ‖g‖Lq(w) .

We follow the exact procedure from case 2 (replacing Lp(v) with Lq(w)) until we see that

we may complete the case by verifying

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣(∆D−sτaΨ
j Dsf) · (∆τbΨ

j g)
∣∣∣2) 1

2

∥∥∥∥∥∥
Lq(w)

. ‖Dsf‖L∞ ‖g‖Lq(w) .

Similar to the arguments made in case 2, we have

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣(∆D−sτaΨ
j Dsf) · (∆τbΨ

j g)
∣∣∣2) 1

2

∥∥∥∥∥∥
Lq(w)

≤ sup
j∈Z

{∥∥∥∆D−sτaΨ
j Dsf

∥∥∥
L∞

}∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆τbΨ
j g

∣∣∣2) 1
2

∥∥∥∥∥∥
Lq(w)

.

We bound the Lq(w)-norm piece by ‖g‖Lq(w) using Lemma 3.11, and we bound the supremum

by ‖Dsf‖L∞ , using the fact that, independent of j ∈ Z,

∣∣∣∆D−sτaΨ
j Dsf(x)

∣∣∣ =
∣∣[2jnD−sτaΨ(2j·)] ∗Dsf(x)

∣∣
≤
∥∥2jnD−sτaΨ(2j·)

∥∥
L1 ‖Dsf‖L∞ =

∥∥D−sΨ∥∥
L1 ‖Dsf‖L∞ .

Finally, the case and the proof of the homogeneous estimates are concluded by noting that

‖D−sΨ‖L1 <∞ since, in view of the support of Ψ̂, D̂−sΨ ∈ S(Rn).
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3.4.3 Inhomogeneous estimates

In this final subsection, we seek to prove the inhomogeneous estimates given by (1.5). As in

Subsection 3.4.2, we begin by noting that

‖Js(Tσ(f, g))‖
Lr(v

r
pw

r
q )

. ‖JsΠ1(f, g)‖
Lr(v

r
pw

r
q )

+ ‖JsΠ2(f, g)‖
Lr(v

r
pw

r
q )

+ ‖JsΠ3(f, g)‖
Lr(v

r
pw

r
q )
,

and our goal reduces to verifying the desired result for the Π1 (which also represents the Π2

piece) and Π3 pieces. We begin with the Π1 piece, whose treatment will be very similar to

the Π1 piece in Subsection 3.4.2. JsΠ1 is a bilinear multiplier operator, whose associated

multiplier o′1 is given by

o′1(ξ, η) :=
∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b](1 + |ξ + η|2)
s
2 τ̂aΨ(2−jξ)τ̂bΦ(2−jη).

We see that JsΠ1(f, g)(x) = Tõ1
′(Jsf, g)(x), where

õ1
′(ξ, η) :=

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] (1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

τ̂aΨ(2−jξ)τ̂bΦ(2−jη).

Again, we may apply Theorem 3.16 to obtain the desired estimates in the Π1 case, for it can

be verified that õ1
′ satisfies (3.1) for any α, β ∈ Nn

0 (using techniques similar to those used

to prove Lemma B.1). Theorem 3.16 then yields

‖JsΠ1(f, g)‖
Lr(v

r
pw

r
q )

= ‖Tõ1
′(Jsf, g)‖

Lr(v
r
pw

r
q )

. ‖Jsf‖lp(v) ‖g‖Lq(w) .

As in the homogeneous case, the restriction on s in the statement of Theorem 1.3 was not

needed with the Π1 piece.

We now consider the Π3 case. Similar to the calculations in the Π1 case, it can be reasoned
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that JsΠ3(f, g) = Tõ3
′(Jsf, g), where

õ3
′(ξ, η) :=

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

∑
j∈Z

C[j, a, b] (1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

If s > 2n + 1 or s ∈ 2N0, then similar to the õ1
′ case, we can show that õ3

′ satisfies the

hypotheses on the multiplier in Theorem 3.16, so an application of this theorem takes care

of these values of s. Thus, it remains to analyze Π3 in the general case s > max{0, n(1
r
−1)},

which we split further into three separate cases, just as in the proof of the homogeneous

results. In each case, it will be necessary to decompose õ3
′ as follows:

õ3
′(ξ, η) =

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N
[
õ3

+[a, b](ξ, η) + õ3
−[a, b](ξ, η)

]
,

where

õ3
+[a, b](ξ, η) :=

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

∑
j≥0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη),

õ3
−[a, b](ξ, η) :=

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

∑
j<0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

Since

JsΠ3(f, g) = Tõ3
′(Jsf, g) =

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)N

[
Tõ3

+[a,b](J
sf, g) + Tõ3

−[a,b](J
sf, g)

]
,

we see that ‖JsΠ3(f, g)‖r
∗

Lr(v
r
pw

r
q )

is bounded by

∑
a,b∈Zn

1

(1 + |a|2 + |b|2)Nr∗

[∥∥∥Tõ3
+[a,b](J

sf, g)
∥∥∥r∗
Lr(v

r
pw

r
q )

+
∥∥∥Tõ3

−[a,b](J
sf, g)

∥∥∥r∗
Lr(v

r
pw

r
q )

]
.

If we are able to obtain bounds of the form

∥∥∥Tõ3
+[a,b](J

sf, g)
∥∥∥
Lr(v

r
pw

r
q )

. P+(|a| , |b|) ‖Jsf‖Lp(v) ‖g‖Lq(w) ,
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∥∥∥Tõ3
−[a,b](J

sf, g)
∥∥∥
Lr(v

r
pw

r
q )

. P−(|a| , |b|) ‖Jsf‖Lp(v) ‖g‖Lq(w) ,

where P+ and P− are polynomial functions, the result would be complete by taking N

sufficiently large to counteract the polynomial growth and ensure convergence in a, b ∈ Zn.

Finally, before breaking into separate cases, define ϕ ∈ S(Rn) via ϕ̂ := Φ̂(2−7·) (so that

ϕ̂ is identically 1 on {ξ ∈ Rn : |ξ| ≤ 8} and is supported within {ξ ∈ Rn : |ξ| ≤ 32}). Also,

define the multiplier operator J tj for j ∈ N0, t ∈ R and f ∈ S(Rn) via

Ĵ tjf(ξ) := (2−2j + |ξ|2)
t
2 f̂(ξ).

Case 1: 1
2
< r <∞, 1 < p, q <∞. For this case, we will find that P+ = P− ≡ 1. We first

treat õ3
+[a, b](ξ, η). For any j ∈ Z, it is easily verified that ϕ̂(2−j(ξ + η)) = 1 within the

support of Ψ̂(2−jξ)Ψ̂(2−jη), so

õ3
+[a, b](ξ, η) =

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

∑
j≥0

C[j, a, b]ϕ̂(2−j(ξ + η))τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

Consider the identity

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

=
(2−2j + |2−j(ξ + η)|2)

s
2

(2−2j + |2−jξ|2)
s
2

,

along with the fact Ψ̂ ≡ ψ̂Ψ̂, which yield

õ3
+[a, b](ξ, η) =

∑
j≥0

C[j, a, b]
[
(2−2j +

∣∣2−j(ξ + η)
∣∣2)

s
2 ϕ̂(2−j(ξ + η))

]
×
[
(2−2j +

∣∣2−jξ∣∣2)−
s
2 ψ̂(2−jξ)

]
τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
∑
j≥0

C[j, a, b]Ĵsjϕ(2−j(ξ + η))Ĵ−sj ψ(2−jξ)τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

Since both Ĵsjϕ and Ĵ−sj ψ are compactly supported, we may consider the Fourier series

expansions of periodic extensions of each. Suppose h is large enough so that each function
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is supported within H = [−h
2
, h

2
]n, then

Ĵsjϕ(2−jω) =

[∑
m∈Zn

c̃s[m, j]e
2πi
h

2−jω·m

]
χH(2−jω),

Ĵ−sj ψ(2−jω) =

[∑
µ∈Zn

c−s[µ, j]e
2πi
h

2−jω·µ

]
χH(2−jω),

where

c̃s[m, j] =
1

hn

∫
Rn

(2−2j + |ζ|2)
s
2 ϕ̂(ζ)e−

2πi
h
ζ·m dζ,

c−s[µ, j] =
1

hn

∫
Rn

(2−2j + |ζ|2)−
s
2 ψ̂(ζ)e−

2πi
h
ζ·µ dζ.

With these Fourier series coefficients in mind, define

b̃s[m] := sup
j≥0

∣∣c̃s[m, j]∣∣ and b−s[µ] := sup
j≥0

∣∣c−s[µ, j]∣∣ .
We note decay properties associated with these coefficients given by b̃s[m] = O((1+|m|)−n−s)

(Grafakos-Oh [30, Lemma 2]) and b−s[µ] = O((1 + |µ|)−K) for any K > 0 (Grafakos-Oh [30,

Lemma 3]). Replacing Ĵsjϕ and Ĵ−sj ψ with their Fourier series representaitons and using

property (A.3.3) of the Fourier transform, we see that

õ3
+[a, b](ξ, η)

=
∑
j≥0

C[j, a, b]

[∑
m∈Zn

c̃s[m, j]e
2πi
h

2−j(ξ+η)·m

][∑
µ∈Zn

c−s[µ, j]e
2πi
h

2−jξ·µ

]
τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
∑
j≥0

C[j, a, b]
∑

m,µ∈Zn
c̃s[m, j]c−s[µ, j]F [τa+m+µΨ](2−jξ)F [τb+mΨ](2−jη).

Using this representation for the multiplier õ3
+[a, b], we have

Tõ3
+[a,b](J

sf, g)(x) =
∑
j≥0

C[j, a, b]
∑

m,µ∈Zn
c̃s[m, j]c−s[µ, j]

[
(∆

τa+m+µΨ
j Jsf) · (∆τb+mΨ

j g)
]

(x).
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Taking absolute values, and using the fact that C[j, a, b] are bounded uniformly in j ∈ Z and

a, b ∈ Z, along with the formulas given above for b̃s[m] and b−s[µ], we see that

∣∣∣Tõ3
+[a,b](J

sf, g)(x)
∣∣∣ . ∑

m,µ∈Zn
b̃s[m]b−s[µ]

∑
j≥0

∣∣∣[(∆τa+m+µΨ
j Jsf) · (∆τb+mΨ

j g)
]

(x)
∣∣∣ .

To wrap things up with õ3
+[a, b], we have

∥∥∥Tõ3
+[a,b](f, g)

∥∥∥r∗
Lr(v

r
pw

r
q )

≤
∑

m,µ∈Zn
b̃s[m]r

∗
b−s[µ]r

∗

∥∥∥∥∥∑
j≥0

∣∣∣[∆τa+m+µΨ
j Jsf ] · [∆τb+mΨ

j g]
∣∣∣∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

≤
∑

m,µ∈Zn
b̃s[m]r

∗
b−s[µ]r

∗

∥∥∥∥∥∥
(∑
j≥0

∣∣∣∆τa+m+µΨ
j Jsf

∣∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lp(v)

∥∥∥∥∥∥
(∑
j≥0

∣∣∣∆τb+mΨ
j g

∣∣∣2) 1
2

∥∥∥∥∥∥
r∗

Lq(w)

.
∑

m,µ∈Zn
b̃s[m]r

∗
b−s[µ]r

∗ ‖Jsf‖r
∗

Lp(v) ‖g‖
r∗

Lq(w)

. ‖Jsf‖r
∗

Lp(v) ‖g‖
r∗

Lq(w) ,

where in the second inequality we have applied Hölder’s inequality twice (first on the `1-norm

in j ≥ 0, then on the Lr(v
r
pw

r
q )-norm), in the third inequality we have used Lemma 3.11,

and in the last inequality we have used the decay properties of b̃s[m] and b−s[µ] (where for

b̃s[m] we require the hypothesis that s > max{0, n(1
r
− 1)} for convergence, and for b−s[µ]

we use b−s[µ] = O((1 + |µ|)−K) with K sufficiently large).

We now consider õ3
−[a, b]. For any j ∈ Z with j < 0, it is easily verified that ϕ̂(ξ + η) =

ϕ̂(ξ) = 1 within the support of Ψ̂(2−jξ)Ψ̂(2−jη), so

õ3
−[a, b](ξ, η) =

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

ϕ̂(ξ + η)ϕ̂(ξ)
∑
j<0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

= Ĵsϕ(ξ + η)Ĵ−sϕ(ξ)
∑
j<0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη). (3.32)

Since Ĵsϕ and Ĵ−sϕ are compactly supported, say withinH = [−h
2
, h

2
] where h is large enough
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to contain the support of both functions, we may consider the Fourier series expansions of

periodic extensions of both functions:

Ĵsϕ(ω) =

[∑
m∈Zn

cs[m]e
2πi
h
ω·m

]
χH(ω), Ĵ−sϕ(ω) =

[∑
µ∈Zn

c−s[µ]e
2πi
h
ω·µ

]
χH(ω),

where

cs[m] =
1

hn

∫
Rn

(1 + |ζ|2)
s
2 ϕ̂(ζ)e−

2πi
h
ζ·m dζ, c−s[µ] =

1

hn

∫
Rn

(1 + |ζ|2)−
s
2 ϕ̂(ζ)e−

2πi
h
ζ·µ dζ,

and cs[m] = O((1 + |m|)−K), c−s[µ] = O((1 + |µ|)−K) for any K > 0 by (A.1) (replace

m,µ ∈ Zn by continuous variables so we regard cs, c−s as continuous functions defined on

Rn; then cs, c−s ∈ S(Rn) are the inverse Fourier transforms of the smooth and compactly

supported functions (1 + |·|2)
s
2 ϕ̂, (1 + |·|2)−

s
2 ϕ̂ ∈ S(Rn)). We replace Ĵsϕ and Ĵ−sϕ with

their Fourier series expansions and use property (A.3.3) of the Fourier transform to obtain

õ3
−[a, b](ξ, η) =

[∑
m∈Zn

cs[m]e
2πi
h

(ξ+η)·m

][∑
µ∈Zn

c−s[µ]e
2πi
h
ξ·µ

]∑
j<0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
∑

m,µ∈Zn
cs[m]c−s[µ]

∑
j<0

C[j, a, b]F [τa+2j(m+µ)Ψ](2−jξ)F [τb+2jmΨ](2−jη).

With this representation for the multiplier õ3
−[a, b], we have

Tõ3
−[a,b](J

sf, g)(x) =
∑

m,µ∈Zn
cs[m]c−s[µ]

∑
j<0

C[j, a, b]
[
(∆

τ
a+2j(m+µ)

Ψ

j Jsf) · (∆τ
b+2jm

Ψ

j g)
]

(x).
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Therefore, we obtain

∥∥∥Tõ3
−[a,b](f, g)

∥∥∥r∗
Lr(v

r
pw

r
q )

≤
∑

m,µ∈Zn
|cs[m]|r

∗ ∣∣c−s[µ]
∣∣r∗ ∥∥∥∥∥∑

j<0

∣∣∣[∆τ
a+2j(m+µ)

Ψ

j Jsf ] · [∆τ
b+2jm

Ψ

j g]
∣∣∣∥∥∥∥∥
r∗

Lr(v
r
pw

r
q )

.
∑

m,µ∈Zn
|cs[m]|r

∗ ∣∣c−s[µ]
∣∣r∗ ∥∥∥∥∥∥

(∑
j<0

∣∣∣∆τ
a+2j(m+µ)

Ψ

j Jsf
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lp(v)

∥∥∥∥∥∥
(∑
j<0

∣∣∣∆τ
b+2jm

Ψ

j g
∣∣∣2) 1

2

∥∥∥∥∥∥
r∗

Lq(w)

.
∑

m,µ∈Zn
|cs[m]|r

∗ ∣∣c−s[µ]
∣∣r∗ ‖Jsf‖r∗Lp(v) ‖g‖

r∗

Lq(w)

. ‖Jsf‖r
∗

Lp(v) ‖g‖
r∗

Lq(w)

where in the first inequality we have used the fact that the coefficients C[j, a, b] are bounded

uniformly in j ∈ Z and a, b ∈ Zn, in the second inequality we have applied Hölder’s inequality

twice (first on the `1-norm in j > 0, then on the Lr(v
r
pw

r
q )-norm), in the third inequality

we have used Lemma 3.11 on each piece, and in the final inequality we have used the decay

properties of cs[m] and c−s[µ], thus concluding our analysis of õ3
−[a, b] and completing case

1.

Case 2: q = ∞, p = r, 1 < p < ∞. We begin by considering õ3
+[a, b], in which case our

goal is to show that, for v ∈ Ap(Rn),

∥∥∥Tõ3
+[a,b](J

sf, g)
∥∥∥
Lp(v)

. P+(|a| , |b|) ‖Jsf‖Lp(v) ‖g‖L∞ ,

where P+ is a polynomial function. An application of Lemma 3.10 gives

∥∥∥Tõ3
+[a,b](J

sf, g)
∥∥∥
Lp(v)

.

∥∥∥∥∥∥
(∑
k∈Z

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)

∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(v)

. (3.33)
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Fix k ∈ Z, then we see that ∆Ψ
k Tõ3

+[a,b](J
sf, g) corresponds with Tõ3

+[k,a,b](J
sf, g), where

õ3
+[k, a, b](ξ, η) :=

(1 + |ξ + η|2)
s
2

(1 + |ξ|2)
s
2

Ψ̂(2−k(ξ + η))
∑
j≥0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη).

Due to the support of Ψ̂, it is easily verified that we may adjust the summation in õ3
+[k, a, b]

to run over j ≥ max{0, k − 3}.

We now analyze õ3
+[k, a, b], first for the case k ≥ 3, so that max{0, k − 3} = k − 3, and

õ3
+[k, a, b](ξ, η)

=
(1 + |ξ + η|2)

s
2

(1 + |ξ|2)
s
2

Ψ̂(2−k(ξ + η))
∑
j≥k−3

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=

[
2ks
∣∣∣(2−2k +

∣∣2−k(ξ + η)
∣∣2∣∣∣ s2 Ψ̂(2−k(ξ + η))

]
×
∑
j≥k−3

C[j, a, b]
[
2−js(2−2j +

∣∣2−jξ∣∣2)−
s
2 τ̂aΨ(2−jξ)

]
τ̂bΨ(2−jη)

= 2ksĴskΨ(2−k(ξ + η))
∑
j≥k−3

2−jsC[j, a, b]F [J−sj τaΨ](2−jξ)τ̂bΨ(2−jη).

With this representation for the multiplier õ3
+[k, a, b], and since ∆Ψ

k Tõ3
+[a,b] = Tõ3

+[k,a,b], we

then obtain

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)(x)

∣∣∣ ≤ 2ks
∑
j≥k−3

2−js |C[j, a, b]|
∣∣∣∣∆JskΨ

k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]
(x)

∣∣∣∣ .
Through an application of Hölder’s inequality on `1-norm in j ≥ k− 3 and by recalling that

C[j, a, b] is bounded uniformly in j ∈ Z and a, b ∈ Z, we see that

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)(x)

∣∣∣ . 2ks

( ∑
j≥k−3

2−2js

) 1
2
( ∑
j≥k−3

∣∣∣∣∆JskΨ

k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]
(x)

∣∣∣∣2
) 1

2

.
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Further, we have
∑

j≥k−3 2−2js ∼ 2−2ks, so that

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)(x)

∣∣∣ . ( ∑
j≥k−3

∣∣∣∣∆JskΨ

k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]
(x)

∣∣∣∣2
) 1

2

, ∀k ≥ 3.

Next, we analyze õ3
+[k, a, b] for k < 3, in which case max{0, k − 3} = 0. For k < 3, it is

easily verified that ϕ̂ is identically 1 within the support of Ψ̂(2−k·), so

õ3
+[k, a, b](ξ, η)

=
(1 + |ξ + η|2)

s
2

(1 + |ξ|2)
s
2

ϕ̂(ξ + η)Ψ̂(2−k(ξ + η))
∑
j≥0

C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη)

=
[
(1 + |ξ + η|2)

s
2 ϕ̂(ξ + η)

]
Ψ̂(2−k(ξ + η))

×
∑
j≥0

C[j, a, b]
[
2−js(2−2j +

∣∣2−jξ∣∣2)−
s
2 τ̂aΨ(2−jξ)

]
τ̂bΨ(2−jη)

= Ĵsϕ(ξ + η)Ψ̂(2−k(ξ + η))
∑
j≥0

2−jsC[j, a, b]F [J−sj τaΨ](2−jξ)τ̂bΨ(2−jη).

Since ∆Ψ
k Tõ3

+[a,b] = Tõ3
+[k,a,b], we have

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)(x)

∣∣∣ ≤∑
j≥0

2−js |C[j, a, b]|
∣∣∣∣SJsϕ0 ∆Ψ

k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]
(x)

∣∣∣∣ .
By applying Hölder’s inequality on the `1-norm in j ≥ 0, using the uniform bound on C[j, a, b]

in j ∈ Z and a, b ∈ Zn, and using that
∑

j≥0 2−2js ∼ 1, we obtain

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)(x)

∣∣∣ . (∑
j≥0

∣∣∣∣SJsϕ0 ∆Ψ
k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]
(x)

∣∣∣∣2
) 1

2

, ∀k < 3.

We now combine results from the k ≥ 3 case and the k < 3 case to finish our analysis of
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õ3
+[a, b]. Returning our attention to (3.33), we have

∥∥∥Tõ3
+[a,b](J

sf, g)
∥∥∥
Lp(v)

.

∥∥∥∥∥∥
(∑
k≥3

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)

∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(v)

+

∥∥∥∥∥∥
(∑
k≤2

∣∣∣∆Ψ
k Tõ3

+[a,b](J
sf, g)

∣∣∣2) 1
2

∥∥∥∥∥∥
Lp(v)

.

∥∥∥∥∥∥
(∑
k≥3

∑
j≥k−3

∣∣∣∣∆JskΨ

k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(v)

+

∥∥∥∥∥∥
(∑
k≤2

∑
j≥0

∣∣∣∣SJsϕ0 ∆Ψ
k

[
(∆

J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

]∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(v)

,

where in the first inequality, we have used the triangle inequality twice, first on the `2-norm,

then on the Lp(v)-norm. To handle the two summands following the final inequality above,

we will use a few lemmas introduced in Subsection 3.2.2. We begin with an applicaiton of

Lemma 3.15 (with u = 0 and r = 2) to see that the first summand is bounded by some

constant (independent of a, b ∈ Zn) multiplied by

∥∥∥∥∥∥
(∑
j≥0

∣∣∣∣(∆J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(v)

. (3.34)

For the second summand, we apply Lemma 3.12 with {Tk}k∈Z = {SJ
sϕ

0 ∆Ψ
k }k∈Z, {fj}j∈Z =

{(∆J−sj τaΨ

j Jsf) · (∆τbΨ
j g)}j∈N0 , and r = 2 to obtain that the summand is also bounded by

some constant (independent of a, b ∈ Zn) multiplied by (3.34). To apply Lemma 3.12, we

must verify that {SJ
sϕ

0 ∆Ψ
k }k∈Z satisfies (3.14) with r = 2. For Θ ∈ L2(ω) and ω ∈ A2(Rn),

we see that∥∥∥∥∥∥
(∑
k∈Z

∣∣∣SJsϕ0 ∆Ψ
k Θ
∣∣∣2) 1

2

∥∥∥∥∥∥
L2(ω)

=

∥∥∥∥∥∥
(∑
k∈Z

∣∣∣∆Ψ
k (SJ

sϕ
0 Θ)

∣∣∣2) 1
2

∥∥∥∥∥∥
L2(ω)

.
∥∥∥SJsϕ0 Θ

∥∥∥
L2(ω)

by Lemma 3.9. Finally, SJ
sϕ

0 is a bounded operator on L2(ω) (verified as follows), so that
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{SJ
sϕ

0 ∆Ψ
k }k∈Z satisfies (3.14) as desired. Indeed, we actually have that SJ

sϕ
0 is a bounded

operator on Lρ(ν) for any s > 0, 1 < ρ ≤ ∞, and ν ∈ Aρ(Rn), since |(Jsϕ) ∗Θ(x)| .

|M(Θ)(x)| by (3.4) and M is a bounded operator on Lρ(ν).

Having bounded both summands by a term of the form (3.34), we continue from the

string on inequalities above to conclude the õ3
+[a, b] case:

∥∥∥Tõ3
+[a,b](f, g)

∥∥∥
Lp(v)

.

∥∥∥∥∥∥
(∑
j≥0

∣∣∣∣(∆J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(v)

≤ sup
j≥0

{∥∥∥∆τbΨ
j g

∥∥∥
L∞

}∥∥∥∥∥∥
(∑
j≥0

∣∣∣∣∆J−sj τaΨ

j Jsf

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lp(v)

,

where the supremum is bounded by ‖g‖L∞ due to (3.31) and the Lp(v)-norm piece is bounded

by ‖Jsf‖Lp(v) due to Lemma 3.14 (and all implicit constants are independent of a, b ∈ Zn).

We now move on to the consider the õ3
−[a, b] case, for which we must verify that, for

v ∈ Ap(Rn), ∥∥∥Tõ3
−[a,b](J

sf, g)
∥∥∥
Lp(v)

. P−(|a| , |b|) ‖Jsf‖Lp(v) ‖g‖L∞ ,

where P− is a polynomial function. Using (3.32), we obtain

Tõ3
−[a,b](J

sf, g)(x) = SJ
sϕ

0

[∑
j<0

C[j, a, b][(∆τaΨ
j SJ

−sϕ
0 Jsf) · (∆τbΨ

j g)]

]
(x).

We note that, by the reasoning following (3.34), both SJ
sϕ

0 and SJ
−sϕ

0 are bounded operators

on Lp(v). Further, the symbol
∑

j<0 C[j, a, b]τ̂aΨ(2−jξ)τ̂bΨ(2−jη) satisfies (3.1) for α, β ∈ Nn
0

such that |α + β| ≤ 2n + 1 with constants Ca,b ≤ (1 + |a|)2n+1(1 + |b|)2n+1C ′, which may

be seen by considering property (A.3.3) of the Fourier transform and techniques similar to
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those used in the proof of Lemma B.1. Therefore,

∥∥∥Tõ3
−[a,b](J

sf, g)
∥∥∥
Lp(v)

=

∥∥∥∥∥SJsϕ0

[∑
j<0

C[j, a, b][(∆τaΨ
j SJ

−sϕ
0 Jsf) · (∆τbΨ

j g)]

]∥∥∥∥∥
Lp(v)

.

∥∥∥∥∥∑
j<0

C[j, a, b][(∆τaΨ
j SJ

−sϕ
0 Jsf) · (∆τbΨ

j g)]

∥∥∥∥∥
Lp(v)

. (1 + |a|)2n+1(1 + |b|)2n+1
∥∥∥SJ−sϕ0 Jsf

∥∥∥
Lp(v)
‖g‖L∞

. (1 + |a|)2n+1(1 + |b|)2n+1 ‖Jsf‖Lp(v) ‖g‖L∞ ,

where in the second line we have used the boundedness of SJ
sϕ

0 on Lp(v), in the third line we

have used the uniform boundedness of C[j, a, b] and applied Theorem 3.16, and in the last

line we have used the boundedness of SJ
−sϕ

0 on Lp(v). This then concludes our analysis of

õ3
−[a, b] and subsequently case 2.

Case 3: p =∞, q = r, 1 < q <∞. In this final case, we must show that, for w ∈ Aq(Rn),

‖JsΠ3(f, g)‖Lq(w) . ‖J
sf‖L∞ ‖g‖Lq(w) ,

In the õ3
+[a, b] case, we follow the exact calculations from case 2 until the final set of

inequalities, replacing Lp(v)-norms with Lq(w)-norms. A slight alteration to the last chain

of inequalities yields

∥∥∥Tõ3
+[a,b](f, g)

∥∥∥
Lq(w)

.

∥∥∥∥∥∥
(∑
j≥0

∣∣∣∣(∆J−sj τaΨ

j Jsf) · (∆τbΨ
j g)

∣∣∣∣2
) 1

2

∥∥∥∥∥∥
Lq(w)

≤ sup
j≥0

{∥∥∥∥∆
J−sj τaΨ

j Jsf

∥∥∥∥
L∞

}∥∥∥∥∥∥
(∑
j≥0

∣∣∣∆τbΨ
j g

∣∣∣2) 1
2

∥∥∥∥∥∥
Lq(w)

,

where the Lq(w)-norm piece is bounded by ‖g‖Lq(w) due to Lemma 3.14 and the supremum

is bounded by ‖Jsf‖L∞ (justified as follows), and all implicit constants are independent of
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a, b ∈ Zn. By Young’s inequality, we have

∥∥∥∥∆
J−sj τaΨ

j Jsf

∥∥∥∥
L∞
≤
∥∥2jnJ−sj τaΨ(2j·)

∥∥
L1 ‖Jsf‖L∞ =

∥∥J−sj Ψ
∥∥
L1 ‖Jsf‖L∞ ,

so that

sup
j≥0

{∥∥∥∥∆
J−sj τaΨ

j Jsf

∥∥∥∥
L∞

}
≤ sup

j≥0

{∥∥J−sj Ψ
∥∥
L1

}
‖Jsf‖L∞

≤
(∫

Rn
sup
j≥0

∣∣J−sj Ψ(x)
∣∣ dx) ‖Jsf‖L∞

≤
(∫

Rn

dx

(1 + |x|)K

)
‖Jsf‖L∞

for any K > 0 (see Grafakos-Oh [30, Lemma 3]). Taking K large enough ensures that the

integral in the final line is finite.

All that remains is to consider the õ3
−[a, b] case. Again, we follow the calculations from

case 2 until the final set of inequalities, then conclude with

∥∥∥Tõ3
−[a,b](J

sf, g)
∥∥∥
Lq(w)

=

∥∥∥∥∥SJsϕ0

[∑
j<0

C[j, a, b][(∆τaΨ
j SJ

−sϕ
0 Jsf) · (∆τbΨ

j g)]

]∥∥∥∥∥
Lq(w)

.

∥∥∥∥∥∑
j<0

C[j, a, b][(∆τaΨ
j SJ

−sϕ
0 Jsf) · (∆τbΨ

j g)]

∥∥∥∥∥
Lq(w)

. (1 + |a|)2n+1(1 + |b|)2n+1
∥∥∥SJ−sϕ0 Jsf

∥∥∥
L∞
‖g‖Lq(w)

. (1 + |a|)2n+1(1 + |b|)2n+1 ‖Jsf‖L∞ ‖g‖Lq(w) ,

where in the second and last lines we have used the boundedness of SJ
sϕ

0 and SJ
−sϕ

0 on Lq(w)

and L∞(Rn), respectively, and in the third line we have applied Theorem 3.16 (with the same

justification as given in case 2 at that step). This wraps up our analysis on õ3
−[a, b], thus

concluding case 3 and completing all inhomogeneous estimates.
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Appendix A

A Glossary for Notation

A.1 Frequently used notation

For the following quick definitions, let x = (x1, . . . , xn) ∈ Rn and α = (α1, . . . , αn) ∈ Nn
0 :

Z set of integers

N set of positive integers

N0 set of non-negative integers

R set of real numbers

C set of complex numbers

|x|
√
x2

1 + x2
2 + · · ·+ x2

n

|α| α1 + α2 + · · ·+ αn

xα xα1
1 x

α2
2 . . . xαnn

∂kxjf(x) the k-th partial derivative of f(x1, x2, . . . , xn) with respect to xj

∂αf(x) ∂α1
x1
∂α2
x2
. . . ∂αnxn f(x)

k! k(k − 1) . . . 2 · 1 for k ∈ N (and 0! = 1)

α! α1! · α2! . . . αn!(
α
β

)
α!

β!(α−β)!
for multi-indices α, β ∈ Nn

0

B(x, r) the Euclidean ball of radius r > 0 centered at x
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Sn the n-dimensional unit sphere; the boundary of B(0, 1) ⊂ Rn+1

〈f, g〉
∫
Rn f(x)g(x) dx

τuf(x) f(x+ u) for any u ∈ Rn

a . b a ≤ Cb, where C > 0 may depend on some parameters, but not on functions

or parameters being tracked

a ∼ b a . b and b . a

A.2 Function spaces

For more detailed background and results relating to the following function spaces, see for

example Grafakos [27, Chapters 1-3]:

Space of smooth functions. The space C∞(Rn) denotes the set of complex-valued in-

finitely differentiable functions defined on Rn.

Lebesgue spaces. For 0 < p < ∞, we define the Lp(Rn)-norm of a function f (which is

actually a quasi-norm if p < 1) via

‖f‖Lp :=

(∫
Rn
|f(x)|p dx

) 1
p

,

where dx denotes the standard n-dimensional Lebesgue measure, and we define the L∞(Rn)-

norm via

‖f‖L∞ := ess sup
x∈Rn

|f(x)| = inf{K > 0 : dK(f) = 0}

where dK(f) denotes the standard Lebesgue measure of {x ∈ Rn : |f(x)| > K}. We then

denote Lp(Rn) to be the space of all functions with finite Lp(Rn)-norm, where we consider

two functions equal if they differ on a set of Lebesgue measure zero. By virtue of being

a norm, it is well known that the triangle inequality holds for 1 ≤ p ≤ ∞, implying for

f, g ∈ Lp(Rn) that ‖f + g‖Lp ≤ ‖f‖Lp + ‖g‖Lp .

By replacing Rn with Z and the standard Lebesgue measure with the counting measure

in the definition for Lp(Rn) above, we obtain the Lebesgue sequence space `p. Specifically,
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this space consists of all sequences {xn}n∈Z ⊂ C with finite `p-norm, defined for 0 < p <∞

via

‖{xn}n∈Z‖`p :=

(∑
n∈Z

|xn|p
) 1

p

and for p =∞ via

‖{xn}n∈Z‖`∞ := sup
n∈Z
|xn| .

Schwartz class. The space S(Rn) denotes the set of functions in C∞(Rn) which decrease

rapidly at infinity. Specifically, f ∈ S(Rn) if for every α, β ∈ Nn
0 ,

ρα,β(f) := sup
x∈Rn

∣∣xα∂βf(x)
∣∣ <∞.

The set {ρα,β}α,β∈Nn0 form a collection of seminorms on S(Rn) through which we may define

a notion of convergence within S(Rn). For {fj}j∈Z ⊂ S(Rn), we say that the sequence

fj converges to f ∈ S(Rn) if ρα,β(fj − f) −−−→
j→∞

0 for every α, β ∈ Nn
0 . An equivalent

characterization of S(Rn) may be given as follows: f ∈ S(Rn) if for every α ∈ Nn
0 and

N ∈ N0, there exists some constant C̃α,N > 0 such that for all x ∈ Rn,

|∂αf(x)| ≤ C̃α,N
(1 + |x|)N

. (A.1)

Thus, the Schwartz class is the collection of all smooth functions which decay faster than the

reciprocal of any polynomial at infinty. We give a few examples of Schwartz class functions

below.

• Any smooth function with compact support lies in S(Rn), since such functions vanish

at infinity.

• The function e−|x|
2

is in S(Rn), despite not being compactly supported.

• Suppose f ∈ S(Rn). It is easily verified that ∂αf ∈ S(Rn) for any multi-index α ∈ Nn
0

and that Pf ∈ S(Rn) for any polynomial function P defined on Rn. Further, by the

Leibniz rule for differentiation, fg ∈ S(Rn+m) for any g ∈ S(Rm).
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Finally, we verify a useful property about Schwartz class functions. Given f ∈ S(Rn),

u ∈ Rn, and N ∈ N0, we show that

|τuf(x)| ≤ C̃0,N

(
1 + |u|
1 + |x|

)N
. (A.2)

Since f ∈ S(Rn), we see that

|τuf(x)| = |f(x+ u)| ≤ C̃0,N

(1 + |x+ u|)N
.

We need only show that 1+|u|
1+|x| is a majorant of 1

1+|x+u| . Indeed, by the triangle inequality, we

see that 1 + |x| ≤ 1 + |x+ u|+ |u| ≤ (1 + |u|)(1 + |x+ u|) so that

1

1 + |x+ u|
=

1 + |u|
(1 + |u|)(1 + |x+ u|)

≤ 1 + |u|
1 + |x|

.

Space of tempered distributions. The space S ′(Rn) denotes the dual of S(Rn), that

is, the space of all continuous linear functionals on S(Rn). For T ∈ S ′(Rn), we denote its

action on a given test function ϕ ∈ S(Rn) via T (ϕ). Convergence in S ′(Rn) is defined as

expected for the dual of a function space: for {Tj}j∈Z ⊂ S ′(Rn), Tj −−−→
j→∞

T if T ∈ S ′(Rn)

and Tj(ϕ) −−−→
j→∞

T (ϕ) for every ϕ ∈ S(Rn). We give a few examples of distributions below,

defined for ϕ ∈ S(Rn):

• The Dirac mass at a point x0 ∈ Rn is denoted δx0 ∈ S ′(Rn) and defined as δx0(ϕ) :=

ϕ(x0).

• Any f ∈ Lp(Rn), 1 ≤ p ≤ ∞, can be identified with a tempered distribution Tf ∈

S ′(Rn) by defining Tf (ϕ) :=
∫
Rn f(x)ϕ(x) dx.

• Any finite Borel measure µ can be identified with a tempered distribution Tµ ∈ S ′(Rn)

by defining Tµ(ϕ) :=
∫
Rn ϕ(x) dµ(x).

We make the following definitions associated to a tempered distribution T ∈ S ′(Rn) acting

on a test function ϕ ∈ S(Rn):
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• Define a notion of derivatives for tempered distributions via [∂αT ](ϕ) := (−1)|α|T (∂αϕ)

for any multi-index α ∈ Nn
0 .

• Define a notion of the Fourier transform for tempered distributions via T̂ (ϕ) := T (ϕ̂)

and [F−1T ](ϕ) := T (F−1ϕ).

Sobolev spaces. For 0 < p < ∞ and s ∈ R, the spaces Ẇ s,p(Rn) and W s,p(Rn) denote

the homogeneous and inhomogeneous Sobolev spaces, respectively, where the corresponding

function space norms (or quasi-norms, if p < 1) are defined via

‖f‖Ẇ s,p := ‖Dsf‖Lp and ‖f‖W s,p := ‖Jsf‖Lp .

Through certain parallels involving the Sobolev function space norms, we may think of the

operators Ds and Js as taking s derivatives of a function. Specifically, for k ∈ N, it is

well-known that f ∈ Ẇ k,p(Rn) if and only if
∑
|α|=k ‖∂αf‖Lp < ∞ (so that all k-th order

derivatives are in Lp(Rn)), while f ∈ W k,p(Rn) if and only if
∑
|α|≤k ‖∂αf‖Lp < ∞ (so that

all derivatives up to order k are in Lp(Rn)).

Hardy spaces. Let 0 < p ≤ ∞ and ϕ ∈ S(Rn) such that
∫
Rn ϕ(x) dx 6= 0. The space

Hp(Rn) denotes the Hardy space, having function space norm given by

‖f‖Hp :=

∥∥∥∥sup
t>0
|ϕt ∗ f |

∥∥∥∥
Lp
,

where ϕt(x) := t−nϕ(x/t). We note that different choices of ϕ ∈ S(Rn) yield equivalent

norms and that Hp(Rn) = Lp(Rn) for 1 < p ≤ ∞.

Space of bounded mean oscillation. The space BMO(Rn) denotes the space of all

locally integrable functions for which the supremum of their mean oscillations over cubes in

Rn is finite, measured via

‖f‖BMO := sup
Q⊂Rn

1

|Q|

∫
Q

|f(x)− fQ| dx <∞,

where |Q| denotes the volume of Q and fQ is the average of f on the cube Q, that is
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fQ := 1
|Q|

∫
Q
|f(x)| dx. We also note that BMO(Rn) is the dual vector space of the Hardy

space H1(Rn).

A.3 Fourier analysis background

Fourier coefficients and series. Suppose that f ∈  L1(R) is periodic of period h, that

is to say f(x) = f(x + h) for any x ∈ R. Define the Fourier series expansion of f by∑
a∈Z c[a]e

2πi
h
ax, where {c[a]}a∈Z are the corresponding Fourier series coefficients, defined by

c[a] =
1

h

∫ h
2

−h
2

f(y)e−
2πi
h
ay dy.

Now suppose that f is a continuous compactly-supported function defined on Rn, say with

compact support inside H = [−h
2
, h

2
]n for some h > 0 large enough. By extending f period-

ically and iterating the formula for the Fourier series expansion of a function defined on R

given above, we obtain the following pointwise equality:

f(x) =

(∑
a∈Zn

c[a]e
2πi
h
a·x

)
χH(x),

where

c[a] =
1

hn

∫
H

f(y)e−
2πi
h
a·y dy.

Fourier transform on S(Rn). For a function f ∈ S(Rn), define its Fourier transform by

f̂(ξ) = F [f ](ξ) :=

∫
Rn
f(x)e−2πiξ·x dx.

The definition of the Fourier transform is extended to S ′(Rn) by duality (see Section A.2).

Note that F is a bijection on S(Rn) and S ′(Rn) and an isometry on L2(Rn). Moreover,

f(x) =

∫
Rn
f̂(ξ)e2πix·ξ dξ, ∀f ∈ S(Rn).
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Many other convenient properties hold for the Fourier transform as well, listed below for

f, g ∈ S(Rn):

(A.3.1) F [af + bg] = af̂ + bĝ for constants a, b ∈ C

(A.3.2) F [f ∗ g] = f̂ · ĝ

(A.3.3) τ̂uf(ξ) = e2πiu·ξf̂(ξ) for any u ∈ Rn

(A.3.4) F [f(1
t
·)](ξ) = tnf̂(tξ) for any t > 0

(A.3.5) ∂f̂
∂ξj

(ξ) = −2πiF [xjf(x)](ξ) for 1 ≤ j ≤ n, which implies ∂αf̂(ξ) = (−2πi)|α|F [(·)αf ](ξ)

for any α ∈ Nn
0

(A.3.6) F [ ∂f
∂xj

](ξ) = 2πiξj f̂(ξ) for 1 ≤ j ≤ n, which implies ∂̂αf(ξ) = (2πi)|α|ξαf̂(ξ)

For further Fourier analysis background information, including proofs of many of the state-

ments above, see for example Duoandikoetxea [20, Chapter 1] or Grafakos [26, Chapters 2

and 3].

A.4 Auxiliary functions and associated operators

While determining paraproduct decompositions in various situations throughout the manuscript,

certain operators will frequently appear, which we define as follows. Given Ψ ∈ S(Rn) whose

Fourier transform is supported in an annulus, we define the family of operators {∆Ψ
j }j∈Z by

∆̂Ψ
j f(ξ) := Ψ̂(2−jξ)f̂(ξ), ξ ∈ Rn, (A.3)

where f ∈ S ′(Rn). Similarly, for Φ ∈ S(Rn) whose Fourier transform does not vanish at the

origin and is supported in a ball centered at the origin, we define the family of operators

{SΦ
j }j∈Z by

ŜΦ
j f(ξ) := Φ̂(2−jξ)f̂(ξ), ξ ∈ Rn. (A.4)
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The operator ∆Ψ
j acts to effectively zero out all but a specific band of frequencies of order

2j of the function to which it is applied, while SΦ
j isolates all frequencies of order below 2j.

Specific instances of auxiliary functions Ψ,Φ ∈ S(Rn) satisfying the support conditions

mentioned above will also be useful throughout proofs in the manuscript. Fix a real-valued

Ψ ∈ S(Rn) satisfying

supp(Ψ̂) ⊆ {ξ ∈ Rn : 1
2
< |ξ| < 2}, (A.5)∑

j∈Z

Ψ̂(2−jξ) = 1, ∀ξ ∈ Rn \ {0}. (A.6)

Having fixed such a Ψ, we define Φ ∈ S(Rn) via

Φ̂(ξ) :=


1, ξ = 0,∑

j<−2 Ψ̂(2−jξ), ξ ∈ Rn \ {0}.
(A.7)

Obtaining Ψ satisfying (A.5) and (A.6) can be done in a straightforward manner. For

example, take any real-valued ϕ ∈ S(Rn) which is non-negative, radial, decreasing, and for

which ϕ|B(0, 1
2

) ≡ 1 and supp(ϕ) ⊆ B(0, 1). By defining

Ψ̂(ξ) := ϕ(ξ/2)− ϕ(ξ),

it is easily verified that Ψ satisfies (A.5) and (A.6). Further, it may be verified that Φ, as

defined in (A.7), has a Fourier transform which does not vanish at the origin and is supported

in a ball centered at the origin:

Φ̂
∣∣∣
B(0, 1

16
)
≡ 1, supp(Φ̂) ⊂ {ξ ∈ Rn : |ξ| < 1

4
}. (A.8)

We will also require functions ψ, φ ∈ S(Rn) relating to Ψ and Φ as defined above satisfying

ψ̂
∣∣∣
supp(Ψ̂)

≡ 1, φ̂
∣∣∣
supp(Φ̂)

≡ 1, (A.9)
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and satisfying

supp(ψ̂) ⊆ {ξ ∈ Rn : 1
2
< |ξ| < 2}, supp(φ̂) ⊆ {ξ ∈ Rn : |ξ| < 1

4
}. (A.10)

A.5 Pseudodifferential operator background

We give a few specific examples of symbols and the bilinear pseudodifferential operators with

which they are associated, all of which may be verified using properties in Section A.3:

• If σ is independent of both ξ and η, that is, σ(x, ξ, η) = σ(x), then Tσ(f, g)(x) =

σ(x)f(x)g(x). Of particular note is the symbol σ ≡ 1, for which Tσ(f, g)(x) = f(x)g(x).

In discussing Leibniz-type rule results relating to bilinear pseudodifferential operators,

we can often obtain results more reminiscent to (1.1) and (1.2) by considering the

symbol σ ≡ 1, so that Tσ(f, g) appears as pointwise multiplication.

• If σ is a multiplier of the form σ(ξ, η) = ξαηβ for multi-indices α, β ∈ N0, then

Tσ(f, g)(x) =
1

(2πi)|α+β| (∂
αf)(x)(∂βg)(x).

That is, products of derivatives of functions may be expressed via bilinear pseudodif-

ferential operators with the right choice of symbol.

• Combining the previous two examples, we note that if σ is of the form

σ(x, ξ, η) =
∑
α,β

Kα,β(x)ξαηβ,

where the sum is taken over some finite set of multi-indices, then

Tσ(f, g)(x) =
∑
α,β

Kα,β(x)

(2πi)|α+β| (∂
αf)(x)(∂βg)(x).
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Remark A.5.1. Definition 1.1 is naturally motivated by the analogous definition for linear

pseudodifferential operators which act on a single function, as we examine in this remark. For

m(x, ξ) a complex-valued, smooth function defined for x, ξ ∈ Rn, the linear pseudodifferential

operator associated to m is defined via

Tm(f)(x) :=

∫
Rn
m(x, ξ)f̂(ξ)e2πix·ξ dξ, ∀x ∈ Rn.

The following identity holds for f, g ∈ S(Rn):

Tm(fg)(x) =

∫
Rn
m(x, ξ)f̂ g(ξ)e2πix·ξ dξ =

∫
Rn
m(x, ξ)[f̂ ∗ ĝ](ξ)e2πix·ξ dξ

=

∫
Rn
m(x, ξ)

[∫
Rn
f̂(ξ − η)ĝ(η) dη

]
e2πix·ξ dξ =

∫
R2n

m(x, ξ + η)f̂(ξ)ĝ(η)e2πix·(ξ+η) dξ dη,

where in the second equality we have used property (A.3.2) of the Fourier transform, and in

the last equality we did a change of variables ξ 7→ ξ+ η. Thus, we may recover the action of

any linear pseudodifferential operator acting on a product of functions using an appropriate

bilinear pseudodifferential operator: Tm(fg) = Tσ(f, g) where σ(x, ξ, η) := m(x, ξ + η).

A.6 Littlewood-Paley theory background

We briefly introduce Littlewood-Paley theory, from which many techniques and results will

be useful throughout discussions of our main results. Littlewood-Paley theory is built upon

the idea of decomposing a function into a sum of functions with localized frequencies using

the operators ∆Ψ
j defined in (A.3). One way to obtain such a localization is by considering

square functions:

Definition A.1. The square function associated with a family of Littlewood-Paley operators

{∆Ψ
j }j∈Z is defined by

f 7→

(∑
j∈Z

∣∣∆Ψ
j f
∣∣2)1/2

.

Another aspect of Littlewood-Paley theory concerns itself with relating the size of a
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function to the strength of the frequencies from which it is built. For functions in L2(Rn),

there is a straightforward relationship:

Theorem A.2 (Plancherel theorem). The Fourier transform is an isometry on L2(Rn), that

is, for any f ∈  L2(Rn),

‖f‖L2 =
∥∥∥f̂∥∥∥

L2
.

However, for functions in general Lp(Rn), no such simple isometry holds. The following

theorem serves as somewhat of an analog for Lp(Rn) functions, relating the sizes of a function

and its corresponding square function as in Definition A.1:

Theorem A.3 (Littlewood-Paley theorem). Let 1 < p < ∞ and Ψ ∈ S(Rn) satisfy (A.5).

Then for any f ∈ Lp, ∥∥∥∥∥∥
(∑
j∈Z

∣∣∆Ψ
j f
∣∣2)1/2

∥∥∥∥∥∥
Lp

. ‖f‖Lp .

If in addition Ψ satisfies (A.6), then the reverse inequality is true, that is,

‖f‖Lp .

∥∥∥∥∥∥
(∑
j∈Z

∣∣∆Ψ
j f
∣∣2)1/2

∥∥∥∥∥∥
Lp

.

Theorem A.3 serves as a basis for many square function-type estimates we will find useful in

proving results throughout the manuscript. For more extensive background on Littlewood-

Paley theory, including a proof of this result, see for example Duoandikoetxea [20, Chapter

8] or Grafakos [26, Chapter 6].
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Appendix B

Useful Results

B.1 Proofs of various lemmas

Lemma B.1. Let σ ∈ ḂSm1,1, and let θ ∈ S(R) be real-valued satisfying (2.5). Then σ1, σ2 ∈

ḂS
m

1,1, where

σ1(x, ξ, η) := σ(x, ξ, η)θ
(
|η|
|ξ|

)
and σ2(x, ξ, η) := σ(x, ξ, η)θ

(
|ξ|
|η|

)
.

Proof. We consider only the σ1 case, as the σ2 case follows analogously. Fix α, β, γ ∈ Nn
0 .

We wish to show that

∣∣∂γx∂αξ ∂βη σ1(x, ξ, η)
∣∣ . 1

(|ξ|+ |η|)|α+β|−|γ|−m , ∀(x, ξ, η) 6= (0, 0, 0),

where the implicit constant may depend on the multi-indices involved. Due to (2.5), θ is

constant on B(0, 1
2
) ∪ (R \ B(0, 2)), so the result clearly holds within {(x, ξ, η) ∈ R3n : |η||ξ| <

1
2

or |η||ξ| > 2}. Thus, we restrict our attention to {(x, ξ, η) ∈ R3n : 1
2
|ξ| ≤ |η| ≤ 2 |ξ|}, a

region wherein |ξ| ∼ |η|. By an application of the Leibniz rule for differentiation, we see that

∂γx∂
α
ξ ∂

β
η σ

1(x, ξ, η) may be expressed as a linear combination of terms of the form

∂γx∂
α1
ξ ∂

β1
η σ(x, ξ, η)∂α2

ξ ∂
β2
η τ(ξ, η), α1 + α2 = α, β1 + β2 = β,
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where τ(ξ, η) := θ( |η||ξ| ). Note that τ(λξ, λη) = τ(ξ, η) for any λ > 0, which implies that for

any α2, β2 ∈ Nn
0 ,

∂α2
ξ ∂

β2
η τ(ξ, η) = λ|α2+β2|[∂α2

ξ ∂
β2
η τ ](λξ, λη), ∀λ > 0.

Taking λ = |(ξ, η)|−1, we then have

∣∣∂γx∂αξ ∂βη σ1(x, ξ, η)
∣∣ . ∑

α1+α2=α
β1+β2=β

∣∣∂γx∂α1
ξ ∂

β1
η σ(x, ξ, η)

∣∣
∣∣∣[∂α2

ξ ∂
β2
η τ ]

(
(ξ,η)
|(ξ,η)|

)∣∣∣
|(ξ, η)||α2+β2|

.
∑

α1+α2=α
β1+β2=β

1

(|ξ|+ |η|)|α1+β2|−|γ|−m

∣∣∣[∂α2
ξ ∂

β2
η τ ]

(
(ξ,η)
|(ξ,η)|

)∣∣∣
(|ξ|+ |η|)|α2+β2|

∼ 1

(|ξ|+ |η|)|α+β|−|γ|−m ,

where in the second line we have used (2.3) and the fact that |(ξ, η)| ∼ |ξ| + |η|, and in

the last line we have used the fact that τ(ξ, η) is smooth away from the ξ- and η-axes

by definition, and therefore, ∂α2
ξ ∂

β2
η τ is bounded on the compact subset of the unit sphere

{(ξ, η) ∈ S2n−1 : 1
2
|ξ| ≤ |η| ≤ 2 |ξ|}, the closure of which is disjoint from the ξ- and η-axes.

Lemma B.2. Let v ∈ Ap(Rn) and w ∈ Aq(Rn) for some 1 < p, q <∞ with 1
p

+ 1
q

= 1
r
. Then

vθ1wθ2 ∈ Amax{p,q}(Rn) for any 0 < θ1, θ2 < 1 with θ1 + θ2 = 1.

Proof. Without loss of generality, we suppose p ≥ q. By standard nesting properties of Muck-

enhoupt weights, w ∈ Ap(Rn) (see, for example, Grafakos [26]). To satisfy Definition 3.7, we

desire to show that

sup
Q

(
1

|Q|

∫
Q

v(x)θ1w(x)θ2 dx

)(
1

|Q|

∫
Q

(v(x)θ1w(x)θ2)−
1
p−1 dx

)p−1

<∞,

where the supremum is taken over all cubes Q ⊂ Rn. Consider the first piece in parentheses,

which by an application of Hölder’s inequality (see Section B.2) and the fact that θ1 +θ2 = 1
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yields

1

|Q|

∫
Q

v(x)θ1w(x)θ2 dx ≤ 1

|Q|θ1+θ2

(∫
Q

(v(x)θ1)
1
θ1 dx

)θ1 (∫
Q

(w(x)θ2)
1
θ2 dx

)θ2
=

(
1

|Q|

∫
Q

v(x) dx

)θ1 ( 1

|Q|

∫
Q

w(x) dx

)θ2
.

Similar calculations on the second piece in parentheses give

(
1

|Q|

∫
Q

(v(x)θ1w(x)θ2)−
1
p−1 dx

)p−1

≤
(

1

|Q|

∫
Q

v(x)−
1
p−1 dx

)(p−1)θ1 ( 1

|Q|

∫
Q

w(x)−
1
p−1 dx

)(p−1)θ2

.

Finally, we obtain the desired result by noting that v and w are both in Ap(Rn).

Proof of Lemma 3.9. For part (a), see Rychkov [60, Proposition 1.9] (see also Kurtz [43]);

part (b) is a consequence of part (a), Lemma 3.13, and a duality argument (see also

Fefferman-Stein [23, pp. 128–129]).

Proof of Lemma 3.10. Part (a) follows from the facts that if Φ ∈ S(Rn) has integral 1 and

f ∈ L2(Rn), then |f | ≤ supt>0

∣∣ 1
tn

Φ( ·
t
) ∗ f

∣∣ pointwise, and

∥∥∥∥sup
t>0

∣∣∣∣ 1

tn
Φ
( ·
t

)
∗ f
∣∣∣∣∥∥∥∥
Lp(w)

∼

∥∥∥∥∥∥
(∑
k∈Z

∣∣∆Ψ
k f
∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

for 0 < p < ∞ and w ∈ A∞(Rn) (see Qui [57, Theorem 1.4] for such norm equivalence).

Part (b) was proved in Ding et al. [19, Theorem 3.5] for 0 < p ≤ 1; the case p > 1

follows from the latter along with an extrapolation result on A∞ weights (see Cruz-Uribe-

Martell-Pérez [16, Theorem 2.1] with p0 = p for any 0 < p ≤ 1 and the family of functions

F =

{
f,
(∑

j1,j2∈Z

∣∣∆Ψ1
j1

∆Ψ2
j2
f
∣∣2) 1

2

}
f∈L2(Rn)

).

Proof of Lemma 3.11. For part (a), see Cruz-Uribe-Naibo[17, Theorem 2.1]; part (b) is a
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consequence of part (a) and Lemma 3.13.

Proof of Lemma 3.12. The case p = r is easily verified:

∥∥∥∥∥∥∥
∑

j∈Z

(∑
k∈Z

|Tk(fj)|2
) r

2

 1
r

∥∥∥∥∥∥∥
r

Lr(w)

=

∫
Rn

∑
j∈Z

(∑
k∈Z

|Tk(fj)(x)|2
) r

2

w(x) dx

=
∑
j∈Z

∥∥∥∥∥∥
(∑
k∈Z

|Tk(fj)|2
) 1

2

∥∥∥∥∥∥
r

Lr(w)

.
∑
j∈Z

‖fj‖rLr(w)

=

∥∥∥∥∥∥
(∑
j∈Z

|fj|r
) 1

r

∥∥∥∥∥∥
r

Lr(w)

,

where in the third inequality we have used (3.14), which is independent of fj. The p 6= r

case follows from the latter case and extrapolation (see, for example, Duoandikoetxea [20,

Theorem 7.8]).

Proof of Lemma 3.13. This is an immediate consequence of Lemma 3.12 with an iteration

of norms. We have∥∥∥∥∥∥
(∑
j1∈Z

∑
j2∈Z

∣∣T 1
j1
T 2
j2

(f)
∣∣2) 1

2

∥∥∥∥∥∥
p

Lp(w)

.
∫
Rn2

∥∥∥∥∥∥
(∑
j2∈Z

∣∣T 2
j2
f(·, x2)

∣∣2) 1
2

∥∥∥∥∥∥
p

Lp(Rn1 ,w(·,x2))

dx2

=

∫
Rn1

∥∥∥∥∥∥
(∑
j2∈Z

∣∣T 2
j2
f(x1, ·)

∣∣2) 1
2

∥∥∥∥∥∥
p

Lp(Rn2 ,w(x1,·))

dx1

.
∫
Rn1

‖f(x1, ·)‖pLp(Rn2 ,w(x1,·)) dx1

= ‖f‖Lp(w) ,

where in the first line we have applied Lemma 3.12 with r = 2 (which is applicable due to
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(3.15) and the fact that w(·, x2) ∈ Ap(Rn1) uniformly in x2 ∈ Rn2), and in the third line we

have used (3.16), noting again that w(x1, ·) ∈ Ap(Rn2) uniformly in x1 ∈ Rn1 .

Proof of Lemma 3.14. As reasoned in (A.10), consider ψ ∈ S(Rn) satisfying (A.5) and such

that ψ̂Ψ̂ = Ψ̂. For s ∈ R, j ∈ N, and u ∈ Rn, we have

∆
τuJsjΨ

j f(x) =

∫
Rn
e2πi(2−jξ)·u(2−2j +

∣∣2−jξ∣∣2)
s
2 Ψ̂(2−jξ)f̂(ξ)e2πix·ξ dξ

=

∫
Rn
Ĵsjψ(2−jξ)τ̂uΨ(2−jξ)f̂(ξ)e2πix·ξ dξ,

where Ĵsjψ(ξ) = (2−2j + |ξ|2)
s
2 ψ̂(ξ). Let {cs[m, j]}m∈Zn be the Fourier series coefficients of the

periodic extension of ĴsjψχH , where H = [−h
2
, h

2
]n with h large enough so that supp(ψ̂) ⊂ H.

By Grafakos-Oh [30, Lemma 3], it follows that supj≥0 |cs[m, j]| = O((1 + |m|)−K) for any

K ∈ N. Then, we get

∣∣∣∆τuJsjΨ

j f(x)
∣∣∣ =

∣∣∣∣∣
∫
Rn

(∑
m∈Zn

cs[m, j]e
2πi
h

(2−jξ)·m

)
τ̂uΨ(2−jξ)f̂(ξ)e2πix·ξ dξ

∣∣∣∣∣
=

∣∣∣∣∣∑
m∈Zn

cs[m, j]

∫
Rn
F [τu+m

h
Ψ](2−jξ)f̂(ξ)e2πix·ξ dξ

∣∣∣∣∣
=

∣∣∣∣∣∑
m∈Zn

cs[m, j]∆
τu+m

h
Ψ

j f(x)

∣∣∣∣∣
.
∑
m∈Zn

1

(1 + |m|)K
∣∣∣∆τu+m

h
Ψ

j f(x)
∣∣∣ ,

where we have used property (A.3.3) from Section A.3 in the second equality. Therefore,

∥∥∥∥∥∥
(∑
j∈N0

∣∣∣∆τuJsjΨ

j f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

.
∑
m∈Zn

1

(1 + |m|)K

∥∥∥∥∥∥
(∑
j∈Z

∣∣∣∆τu+m
h

Ψ

j f
∣∣∣2) 1

2

∥∥∥∥∥∥
Lp(w)

. ‖f‖Lp(w) ,

where we have applied the triangle inequality for weighted Lebesgue spaces, Lemma 3.11,

and assumed K > n to ensure convergence in the sum in m ∈ Zn.
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Proof of Lemma 3.15. We merely apply Lemma 3.12, noting that (3.14) holds by Lemma 3.14.

B.2 Known results

Theorem B.3 (Hölder’s inequality). Let 1 ≤ p, q ≤ ∞ satisfy 1
p

+ 1
q

= 1. The for all

f ∈ Lp(Rn) and g ∈ Lq(Rn),

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lq .

Theorem B.4 (Young’s inequality). Let 1 ≤ p, q, r ≤ ∞ satisfy 1
p

+ 1
q

= 1 + 1
r
. Then for all

f ∈ Lp(Rn) and g ∈ Lq(Rn), we have

‖f ∗ g‖Lr ≤ ‖f‖Lp ‖g‖Lq .

Theorem B.5 (Minkowski’s integral inequality). Let 0 < p1, p2 <∞, and suppose (S1, µ1)

and (S2, µ2) are two σ-finite measure spaces with F : S1 × S2 → R measurable. Then

(∫
S2

∣∣∣∣∫
S1

F (x, y)p1 dµ1(x)

∣∣∣∣
p2
p1

dµ2(y)

) 1
p2

≤

[∫
S1

(∫
S2

|F (x, y)|p2 dµ2(y)

) p1
p2

dµ1(x)

] 1
p1

.
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