
IMAGE ANALYSIS USING MATHEMATICAL MORPHOLOGY

by

KYUNG HYUN YOO

B.S., Hanyang University, KOREA, 1980

A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

Approved by:

Major professor

TABLE OF CONTENTS

CHAPTER PAGE

1.0 Introduction 1

2.0 Mathematical morphology 4

2.1 Dilation and erosion 5

2.2 Opening and closing 12

3.0 Digital morphology 16

3.1 Image definitions 16

3.2 Software development 17

3.3 Fundamental operators 18

4.0 Image analysis applications 21

4.1 Noise cleaning 21

4.2 Edge detection 24

4.3 Region filling 27

4.4 Morphological skeleton

and minimal skeleton 27

5.0 Summary and conclusions 37

6.0 References 39

APPENDIX

Computer program listing 43

i

LIST OF FIGURES

FIGURE PAGE

2-1 Bl hits X, B2 misses X and

B3 is included in X 5

2-2 Sample image for morphological

operations 7

2-3 Dilation of sample image by circle 8

2-4 Erosion of sample image by circle ll

2-5 Opening of sample image by circle 14

2-6 Closing of sample image by circle 15

3-1 Block diagram of dilation and erosion 20

3-2 Block diagram of opening and closing 20

4-1 Sample image with noise and image 22

cleaned by circle

4-2 Image cleaned by square 23

4-3 Sample image 25

4-4 Edge image of sample in Figure 4-3 26

4-5 Complement of edge image in Figure 4-4 28

4-6 Image after 10 iterations of dilation 29

4-7 Image after 17 iterations of dilation 29

i i

4 -8 Example of skeleton 30

4 -9 Examples of structure element 31

4 -10 Sample image and its skeleton 35

4 -ll Minimal skeleton of Figure 4-10 36

i i i

CHAPTER 1: Introduction

The word morphology refers to the study of form and

structure. The morphological analysis of black-and-white

images was initiated by Georges Matheron[1] in the mid

1960's, in his study of porous materials. Mathematical

morphology provides an approach to the processing of

digital images in terms of some predetermined geometric

shape known as a structuring element. In mathematical

morphology we study the manner in which the structuring

element fits into the image. Therefore, it has the

intrinsic ability to quantitatively analyze object shapes

in both two and three dimensions.

Mathematical morphology treats images from the point of

view of set theory. Geometrically it distinguishes itself

from other image processing techniques such as syntactic

techniques and signal processing techniques. Syntactic

technique is based on generative grammars. These grammars

establish a set of production rules which will produce the

shape from certain symbols. In general these grammars tend

to be quite complex for representing global properties of

shape. Signal processing techniques make use of Fourier and

1

other orthogonal transformations for image analysis. Just

as a one-dimensional signal can be represented by an

orthogonal series of basis functions, an image can be

represented by a series of two dimensional basis functions

called basis images. These basis images can be generated by

unitary matrices. The series coefficients in orthogonal

series expansion can be used for image processing.

In mathematical morphology, an image will be considered as

a set of points and the operations, which are based on

logical relations between pixels, rather than arithmetic

ones, come from set theory. These are dilation and erosion,

and relate directly to shape. It can be used in the areas

of noise cleaning, image enhancement, feature extraction

and shape analysis. Morphological operations are non-

reversible. In other words, morphological operations can

simplify image data which has usually too much information,

preserving their essential shape characteristics, and

eliminating irrelavancies. Therefore, shape description by

mathematical morphology can also provide techniques

suitable for image coding, that permit image transmission

at low bit rates.

The main purpose of this project is to develop algorithms

2

and software for image analysis using morphological

operations. These programs are written on the Electrical

and Computer Engineering Department's AT&T 3B2 computer,

using the C language. The effectiveness of these

morphological operations in image analysis applications

such as noise cleaning, edge detection, region filling and

image representation is also studied.

3

CHAPTER 2: Mathematical morphology

The objectives of computer vision or image processing are

often to segment an image into objects and textures and to

extract certain information for image understanding or

classification. Mathematical morphological techniques are

based on the analysis of images in terms of some

predetermined structuring elements. Mathematical morphology

provides an algebraic formulation for applying the

structuring elements to the image. Both the image and the

structuring elements are considered as sets of points and

the sequence of different structuring elements applied to

an image gives the information about the geometric

measurement of the image. Such knowledge will greatly

depend on the choice of structuring elements.

An image can be considered as a set, X, of points or

pixels. With each set of points of x of the space E, a set

B(x) called a structuring element can be chosen. Every set

X in E can be modified by some B(x) in several ways.

The most important ones are as follows;

dilation of X = { x| B(x) f X >

4

2.1 Dilation and erosion

The language of mathematical morphology is that of set

theory. Sets in mathematical morphology represent shapes.

Sets in Euclidean 2-space denote binary images and sets in

Euclidean 3-space may denote gray scale images. Sets in

higher dimensional space may denote additional image

information, such as color, etc. Morphological

transformations apply to sets of any dimension. Sets in

Euclidean N-space, or its digitized equivalent, the set of

N-tuples of integers, denoted by Z will be considered as

belonging to E. In the following sections we define some

important morphological terms.

Figure 2-1 Bl hits X ,B2 misses X and B3 is
included in X

5

erosion of X = { xI B(x)C X }

The dilation of X by B(x) is the set of all the points x

such that B(x) hits (denoted by f) X. The erosion of X by

B(x) is the set of all the points x such that B(x) is

included in X. This is shown in the Figure 2-1. These two

operations will play a major role in morphological analysis

in image processing.

DBF 1 : Dilation > Dilation is the morphological

transformation which combines two sets using vector

addition of set elements. Let A and B be subset of N-space.

The dilation of A by B is denoted by A © B and is defined

A 0 B = {c € E I c = a + b for some a € A and b G B>

The dilation operation is commutative and associative,i.e,

A © B = B © A (Commutative)

A 0 (B © C) = (A 0 B) 0 C (associative)

Using the associative property, dilation an image A by

large structuring element, which itself can be expressed as

the dilation of B by C, can be computed by successive

dilation by B and C. This operation saves much operation

time. Dilation by disk structuring elements corresponds to

isotropic expansion algorithms common to binary image

processing. This is shown in the Figure 2-2 and Figure 2-3.

6

Figure 2-2 Sample image for morphological operations

7

Figure 2-6 Closing of sample image by circle

8

DBF 2 : Translation> Let A be a subset of N-space and x € E.

The translation of A by x is denoted by (A)x and is defined

(A)x = {c £ E |c = a + x for some a € A}.

It is important to note that dilating a shifted image

shifts the dilated image by the same amount. This property

is called translation invariance of dilation,i.e.,

(A)x 0 B = (A 0 B)x

The dilation of A by B can be computed as the union of

translations of A by the elements of B. From the definition

of translation, we can easily show that

X 0 {t} = (X)t
A 0 (B)t = (A © B)t

Since A @ (B llC) = (A © B) (J(A © C) it follows directly

that
A © B = [J U) b

b£B

Using this property dilation operation can be implemented

in hardware easily.

DBF 3 :

dilation.

Erosion > Erosion is the morphological dual of

It is the morphological transformation which

9

combines two sets using the vector subtraction of set

elements. The erosion of A by B is denoted by A 0 B and is

defined by

A © B = {x £ E | x + b 6 A for every b £ B}

Structuring element B may be visualized as a probe which

slides across the image A, testing the spatial nature of A

at every point. Erosion of A by B can be computed as the

intersection of all translations of A by the points -b,

where b £ B.

b€B

Like dilation, erosion is translation invariant, i.e.,

(A)x © B = (A © B)x

This erosion operation results in a shrunken image. This is

shown in Figure 2-4.

DEF 4 : Reflection > Let B E. The reflection of B is

denoted by B and is defined by

Erosion and dilation are dual operations with regard to

complement. Eroding A is equivalent to taking the

B = {x I for some b 6 B, x = -b>.

c complement of the dilation of A.
_ C c - c (A © B) = A © B

10

Figure 2-4 Erosion of sample image by circle

ll

2.2 Opening and closing

In practice, dilation and erosion are usually employed in

pairs, either dilation of an image followed by the erosion

of the dilated result, or image erosion followed by

dilation. The result of iteratively applied dilations and

erosions is an elimination of specific image detail smaller

than the structuring element without the global geometric

distortion. For example, opening an image with a disk

structuring element smooths the contour, breaks narrow

isthmuses, and eliminates small islands and sharp peaks.

Closing an image with a disk structuring element smooths

the contours, fuses narrow breaks and long thin gulfs,

eliminates small holes and fill gaps on the contours. The

particular significance of opening and closing is that

image transformations employing these operations are

idempotent, that is, their reapplication effects no further

change to the previously transformed result.

DEF 5 : Opening > The opening of image A by structuring

element B is denoted by AO B and is defined as

A 0 B = (A 0 B) <+) B

DEF 6 : Closing > The closing of image A by structuring

12

element B is denoted by A • B and is defined as

A • B = (A © B) © B

If A is unchanged by opening it with A, we say that A is

open with respect to B, while if A is unchanged by closing

it with B, then A is closed with respect to B.

Opening and closing are both idempotent also, i.e.,

(A O B) O B = A O B

(AS B) • B = A • B

Like erosion and dilation, closing and opening are dual

transformations.
c c -

(A • B) = A O B

Figure 2-5 and Figure 2-6 show the opening and closing

operations.

13

Figure 2-6 Closing of sample image by circle

14

Figure 2-6 Closing of sample image by circle

15

CHAPTER 3: Digital morphology

3.1 Image definitions

A digital image refers to a two dimensional light-intensity

function denoted as f(x,y), where x and y are independent

variables denoting the spatial coordinates. The value of f

at any point (x,y) is proportional to the brightness of

that point. This brightness is called the gray level and

the specific coordinates (x,y) are referred to as the

picture elements or pixels. In order to generate the

computer program of morphological operations, systematic

structure of image representation is needed. Matrix

representation is a suitable form of digital image

representation.

A digital image is obtained by assigning a real number,

which refers to a gray level value, to each pixel in some

collection of pixels. A digital image f is defined as a

function f:D->R, where D is called the domain of the image

f, and R is called the codomain. Very often, the domain of

a digital image will be rectangular in shape and contains a

finite number of elements. In such a case a digital image

will be represented in a manner similar to a matrix or a

16

two-dimensional array. Each element of the matrix

represents the gray level value of the pixel at that

location. The location of a pixel in the matrix is

identified by its spatial coordinates.

3.2 Software development

First, imagine two stacks called DOMAIN and RANGE. Each

stack contains the same number of entries, the first

containing ordered pairs(i,j) and second containing real

numbers. Together the stacks implicitly contain an image,

for if they were popped simultaneously, the corresponding

series of numbers would form a location of pixel together

with its gray level. It can be written in the form of a

program as follows:

type>jof struct- position
•f.

:L n t t y y
> p o s i t i o n ;

typedef struct i m 3 S e
•C
int size >

r s n 2 e C 4 0 0 0 3 i
POSITION domairiC40003 '?
> i m a g e ;

With this convenient representation, several basic

operations can be implemented.

17

3.3 Fundamental operators

The following six operators can be considered as the

fundamental operations which will be applied to each pixel

in an image.

EXTMAX - This function compares two images in a pixelwise

manner and outputs the maximum, or highest, gray value at

each pixel at which both input images are defined.

MIN - This function compares two images in a pixelwise

manner and outputs the image which is an intersection of

the domain instead of their union. The resulting image has

the pixels with lowest gray value.

TRANS - This function has the image of f and two integer i

and j as inputs and the image that is identical to f but

moved over i pixels to the r ight(along x-axis) and j pixels

down(along y-axis) as output.

NINETY - This function leaves the gray values of an input

image intact while altering the domain of the image. NINETY

rotates an input image 90 degrees in the counterclockwise

direction about the origin. (In this report, this function

will be used only for structuring elements.)

18

SUB - This function subtracts an image from an other image.

When we subtract an image B from an image A, SUB generates

same image as A except those pixels of which domain is same

in image B.

COMP - This function generates a complementary image of the
input image.

Now, the basic operations, dilation and erosion, in

mathematical morphology can be obtained from these

fundamental functions. Suppose A represents an image and B

represents a structuring element. Dilation and erosion can

be expressed by the following equations:

From these two expression, dilation and erosion can be

implemented as in the following block diagram of Figure

3-1. Based on the definitions of opening and closing, these

operations can be implemented as shown in the block diagram

of Figure 3-2.

Dilation : A @ B = (J(A)b
b€ B

Eros ion

b € B

19

Figure 3-1 Block diagram of dilation and erosion

Figure 3-2 Block diagram of opening and closing

20

CHAPTER 4: Image analysis applications

In this section some applications of morphological methods

in digital image analysis are presented. These applications

include noise cleaning, edge detection, region filling and

image representation.

4.1 Noise Cleaning

The opening of an image A by a convex set B cuts down the

peaks of A, whereas the closing of A by B fills up the

valleys of A. For an image contaminated by salt-and-pepper

noise, closing and opening operations can remove this

noise. Opening operation suppresses the background noise

spike, and closing after opening (X) cleans interior noise

spike. For removing background noise spike, larger

structuring element is better than smaller one. However,

large structuring element may cause unacceptable

distortion. So, the noise cleaning operation depends on

the choice of the structuring element. It is reasonable

that a large spot in background is not considered as noise

because it is bigger than the structuring element. The

noise cleaning operation is shown in Figure 4-1 and Figure

4-2.

21

Figure 4-1 Sample image with noise and image
cleaned by circle

22

Figure 4-2 Image cleaned by square

23

This closing-opening operation is comparable to median

filtering. However, it needs less computation than median

filtering.

4-2 Edge detection

Consider a structuring element B of unit size. Then nB

denotes a structuring element of size n obtained by

dilating B by itself n times. If B is symmetric, the

erosion of A by B denotes a shrunken image of A. Again, the

image difference A - (A 0B) gives the boundary of a binary

image. If we use nB for erosion, orientation and size of n

will determine the orientation and thickness of boundary.

The edge detection process is illustrated in Figure 4-3 and

Figure 4-4.

24

Figure 4-3 Sample image

25

Figure 4-4 Edge image of sample in Figure 4-3

26

4-3 Region filling

This operation requires only dilation and intersection.

Suppose we have an image A which is the boundary of two

disjoint regions and we know a point P inside one of two

regions. After dilating the point P by a small symmetric

and convex structuring element, intersect this intermediate
c c result with X(Figure 4-5). This X limits the result of

dilating effect inside the region. Iteration of dilation

and intersection will make the image fully filled. Figure

4-6 and Figure 4-7 show the results after 10 and 17

iterations of dilation respectively. It is important that

the structuring element should be small with regard to the

thickness of boundaries.

4.4 Morphological skeleton and minimal skeleton

The skeleton is a topologically equivalent thinned version

of image. The skeleton SK(X) of a continuous image object

X, viewed as subsets of 2-D continuous space, is defined

as the centers of the maximal disks inscribable inside X. A

disk is maximal if it is not properly contained in any

other disk totally included in X. Hence, a maximal disk

must touch the boundary of the object X at least at two

different points. Some examples of skeleton are shown in

Figure 4-8. This skeleton is a caricature containing

27

28

Figure 4-5 Complement of edge image in Figure 4-4

Figure 4-6 Image after 10 iterations of dilation

Figure 4-7 Image after 17 iterations of dilation

29

information about the shape, size and orientation.

The skeleton .SK(X) can be obtained from the set union of

Sr(X)z r > 0z which denotes the rth skeleton subset, i.e.,

the set of the centers of the maximal disks whose radius is

equal to r. These skeleton subsets can be obtained by using

morphological erosion and openings. The skeleton SK(X) is

equal to

SK (X) = (Jsr (X)
= Ut (X © rB) - (X O rB)drB]

where rB denotes the disk of radius r and drB is a disk of

infinitesimally small radius dr. The boundaries of the

eroded sets (X 0 rB) can be viewed as the propagating wave

fronts of Blum's grassfires where the propagation time

coincides with the radius r. Subtracting from these eroded

versions of X their opening by drB retains only the angular

points, which are points of the skeleton. The original set

X can be reconstructed as the union for all r > 0 of the

Fig 4-8 Example of skeleton

30

subsets Sr(X) dilated by the open disks rB, respectively.

For digital image Serra[2] provided an algorithm for

morphological , skeleton SK(X) of a discrete binary image X

sampled on a hexagonal grid,

SK (X) = [J 'Sn(X)

n = 0

where Sn(X) denotes the nth skeleton subset of X.

The hexagon is very good approximation to a circle, but in

rectangularly sampled binary image this algorithm can be

used by using symmetric convex structuring elements, such

as the CIRCLE, SQUARE in Figure 4-9. If we considered these

elements to have a discrete radius one, then, as in the

case of the discrete hexagon, we can form similarly shaped

elements of discrete radius n. Then nth skeleton subsets is

obtained by eroding X by nB, and then keeping from every

eroded set (X © nB) only those parts which consist of

Fig 4-9 Examples of structuring element

31

angular points and lines without thickness. These parts

are the only ones remaining after the set difference

between (X ©) nB) and its opening (X0nB)b.
By the properties of erosion, the erosion of X by nB can be

done much faster by successively eroding X by B n times.

Using this method, algorithm for skeletonizing of digital

image can be described as follows.

Let ER0S1, EROS2, OPEN denote three accumulator sets large

enough to hold the image object and its background, then

skeletonization can be achieved by the following steps;

stepl: n = 0, EROS1 = X

step2: EROS2 = EROS1 © B

step3: if EROS2 = 0

then N = n, SN(X) = EROS1 and STOP.

step4: OPEN = ER0S1 0 B

stepS: Sn(X) = EROS1 - OPEN

step6: n = n + 1, EROS1 = EROS2

and go to step 2.

Exact reconstruction of the image from skeleton SK(X) can

be achieved using the following steps;

stepl: n = N, A = 0

step2: A = A (J Sn(X)

32

step3: if n = 0 STOP, otherwise A = A © B

step4: n = n - 1 and go to step2.

It may be possible to remove some points of the skeleton

and still reconstruct the image exactly. It will be called

a minimal skeleton, which is a subset of the original

skeleton guaranteeing the exact reconstruction of the

entire image.

Let X be the original image and let Sn(X), n = 0,1,..,N be

its skeleton subsets with respect to a structuring element

nB. For each skeleton subset index n, shift nB to all the

points of Sn(X). This operation is equivalent to dilation

of each points in Sn(X) by B 2n times. This is the

characteristic function of the set nB. After that add

algebraically all these contributions for all points of

Sn(X) and for all n. This will make gray scale image,

pgf(X), whose region is identical with the original image.

Now, in order to decide to remove a certain point which can

be removed, check first whether the value of the pgf(X) at

all the points of the region of support of the respective

shifted characteristic function is >= 2. If so, this region

of image is supported by skeleton point more than one time.

Therefore, this skeleton point can be removed and

subtracted algebraically from pgf(X). This operation is

repeated until all the skeleton points have been searched.

33

The remaining skeleton points represent the minimal

skeleton. Figure 4-10 shows the skeleton of a sample image

and Figure 4-11 shows its minimal skeleton.

34

Figure 4-10 Sample image and its skeleton

35

Figure 4-11 Minimal skeleton of Figure 4-10

36

CHAPTER 5: Summary and conclusions

The purpose of this report is to analyze images using

mathematical morphology. The fundamental operations are

implemented in computer program and some useful

applications are tested by this program. As a structuring

element, circle and square were used as these are convex

sets and also symmetric.

For simplicity, binary images were tested. Morphological

operations can easily be extended to gray scale images. The

final results fully depends on the size and shape of the

structuring element. Therefore, success of mathematical

morphological methods depends on what kinds of structuring

elements are used and how morphological operations are

combined. Skeletonization of an image is more complex than

other applications, and can be implemented by a combination

of basic operations. Although minimal skeleton has less

pixels, it can reconstruct the original image exactly.

Using the algorithm which was used in this report, it is

possible to reduce the number of pixels in the skeleton to

obtain a minimal skeleton. With certain tolerance, the

number of pixels in the minimal skeleton can be reduced.

However, unique way to do this is very important and not

37

usually easy.

38

CHAPTER 6: References

[1 G. Matheron, Random Sets and Integrated Geometry.

Nev York: Wiley, 1975.

[2 J. Serra, Image Analysis and Mathematical

Morphology. New York: Academic Press, 1982.

3] , "Introduction to Mathematical Morphology,"

Comput. Vision Graphics Image Prcess., vol. 35, pp.

283-305, Sept. 1986.

[4] C. R. Giardiana, and E. R. Dougherty, Morphological

Methods in Image and Signal Processing. New Jersey:

Prentice Hall, 1987.

[5] R. M. Halalick, S. R. Sternberg, and X. Zhuang,

"Image Analysis Using Mathematical Morphology," IEEE

Trans. Pattern Anal. Machine Intell., vol. PAMI-9,

pp. 532-550, July 1987.

[6] Z. Zhou, and A. N. Venetsanopoulos, "Morphological

Skeleton Representation and Shape Recognition,"

Proceeding : ICASSP-88, pp. 948-951, April 11-14,

1988.

[7] P. A. Maragos and R. W. Schafer, "Morphological

Skeleton Representation and Coding of Binary

Images," IEEE Trans. ASSP vol.34 pp. 1228-1244,

Oct.1986.

39

[8] , , "Applications of Morphological

Filtering to Image Analysis and Processing," in

Proc. IEEE ICASSP-86, Tokyo, pp.39.6.1-39.6.4.

[91 , , "Morphological Skeleton

Representation and Coding of Binary Images," in

Proc. IEEE ICASSP, Sand Diego CA, Apr,1984, pp.

29.2.1-29.2.4

[10] , , "A Unification of Linear, Median,

Order-statistics and Morpho1ogicalFiIters under

Mathematical Morphology," in Proc. IEEE ICASSP-85,

Tampa Fla., March 1985, pp. 34.8.1-34.8.4.

[11] T. Pavlidis, "A Review of Algorithms for Shape

Analysis", Comput. Graphics and Image Processing,

vol. 7, no 2, April. 1978, pp. 243-258.

[12] I. Pitas, and A. N. Venetsanopoulos, "Shape

Decomposition by Mathmatical Morphology," IEEE

First Inter. Conf. Computer Vision, pp. 621-625,

June 8-17, 1987

[13] T. R. Esselman, and J. G. Verly, "Some Applications

of Mathematical Morphology to Range Imagery,"

Proceedings ICASSP-87, pp.245-248, April 6-9, 1987.

[14] P. K. Ghosh, "A Mathematical Model for Shape

Description Using MinkowskiOperators," Comput.

Vision, Graphics, Image Processing, vol. 44, pp.

40

239-269, Dec. 1988.

[15] S. R. Sternberg, "Grayscale Morphology," Comput.

Vision Graphics Image Process., vol. 35, pp. 333-

335, Sep. 1986.

[16] F. Meyer, "Automatic Screening of Cytological

Specimens," Comput. Vision Graphics Image Process.,

vol. 35, pp. 356-369, Sept. 1986.

[17] X. Zhung, and R. M. Haralick, "Morphological

Structuring Element Decomposition," Comput. Vision

Graphics Image Process., vol. 35, pp. 370-382, Sep.

1986.

[18] F. Y. -C. Shih, and 0. R. Michell, "Threshold

Decomposition of Gray-scale Morphology into Binary

Morphology," IEEE Trans. Pattern Anal. Machine

Intell., vol. PAMI-ll, pp. 31-42, Jan.1989.

[19] J. B. T. M. Roerdink, and H. J. A. M. Heijmans,

"Mathematical Morphology for Structures without

Translation Symmetry," Signal Processing, pp. 271-

277, 1988.

[20] S. R. Sternberg, "Biomedical Image Processing,"

IEEE Computer, vol.16, pp. 22-34, Jan, 1983.

[21] J. G. Very, P. L. Van Hove, R. L. Walton, and D. E.

Dudgeon, "Silhouette Understanding System," in Proc.

IEEE Conf. ASSP. ICASSP 86, Tokyo, pp. 1457-1460.

41

[22] R. S. Acharya, and R. Laurette, "Mathematical

Morphology for 3-D Image Analysis," Proceedings:

ICASSP-88, pp. 952 - 955, April 11-14, 1988

[23] F. Y. -C. Shih, and 0. R. Michell, "Industrial parts

recognition and inspection by image morphology," in

Proc. IEEE Int. Conf. Robotics Automat.,

Philadelphia, PA, April 1988

[24] , "Automated fast recognition and

location of arbitrary shaped objects by image

morphology," in Proc. Comp. Vision and Pattern

Recognition Conf., Ann Arbor, MI, pp. 774-779, June

5-7, 1988.

42

APPENDIX : Computer Program Listings

This appendix includes the computer listings of some of the

important routines written for this study. These routines

are written to compute basic morphological operations and

skeleton of image. These computer listings include only the

routines which are relevant to the report.

43

/**
* Department of Electrical and Computer Engineering
* Kansas State University
* AT ST UNIX C Source file name 5 m_morp»h **
* *
* DESCRIPTION 5 This is e header file for all morphological
* operation programs. This file? has the
* definition of IMAGE structure.
*

^ >|i ^ ^ ^ >|r ^ ^ ^ ^ jjj jj; ̂ ĵ / ^ ^ jj; ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ jjj ̂ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ jj/ ^ ^ ^ ^ jjf ̂ ^ ^ J

•define MAX 64

typedef struct position <
int >:» y ?
> p o s i t i o n ;

/* Size of image (MAX X MAX) */

/* Type definition of POSITION */

typedef struct image {
int size f

rangeC40003»
POSITION domainC4000D i
> IMAGE?

/* Type definition of IMAGE */

typedef struct str_elemt <
int size»

rangeC213?
POSITION domainC213?
> STR-ELEMT;

/* Type definition of
/* structuring element

*/
*/

•define NORMAL 0
•define ERROR 1

44

m a i n ()

In this program morphological operations
will be performed t such as dilation* erosion
opening and closing.

/**
* Department of Electrical and Computer Engineering
* Kansas State University
* ATXT UNIX C Source file name : morp.c
>V 'j' %V V/ ̂ 1 L# \l/ X xLf ^ ^ Jl (U ̂ ^ ^ ^ a. ̂ ^ ai (K ̂ X ^f yi* .km . If ̂ ^ ^ ^ ^ ^ ^ X \L X X xlf ̂ ^ d/ ̂ ^ vif ̂ X ^ ^ ^ df ̂ ^

*

* *
**
•include <stdio»h>
• include 'm_morp.h"

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS:

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

None

None

None

dilate()
erode()
make-im()
make_out <)
sub ()
comp <)
ninety<)

Kyung Hyun Yoo

30 March 1989

main()
•C

extern IMAGE *make_im()»
*d i1 ate()»
*erode() t
ftcomp()f
*sub<)5

extern int make_out <)>

45

n i n e t y <) t

int i , /# General purpose counte r #/
Job, /* Selected Job number */
sel , /# Selected structuring #/

/* element #/

char nameC103, /# Input file name #/

IMAGE buffer,
-Kpt-test, /# Pointer to input image file #/
pt_sub, / Pointer to i mage in sub */
*pt_close, /# Pointer to image in close #/
Upt.ofen! /* Pointer to image in open #/

STR-ELEMT *pt_se5
static STR-ELEMT CIRCLE = <21* <1,1,1,1,1,lil,1,1,1,1,1,

1,1,1,1,1,1,1,1,1>, -C<0,0>,
<0,-l>,<0,-2>,<0,1>,<0,2>,
•CI ,0>,<1 ,-!>,<! ,-2>,<l, 1>,
<1, 2>,<2,0>,<2,-1>,<2 ,1> ,
<-l,0>,<-l,-l>,<-l,-2>,<-l,l>,
<-!,2>,<-2,0>,<-2,-l>,<-2,l»>,

SQUARE == <9, <1,1,1,1,1,1,1,1,1>, <<0,0>,
C-l,0>,<-l,l>,<0,-l>,<-l,-l>,
<0, i>,<i,-i>h:i ,o>,<i, i»>,

RHOMBUS = <5, <1,1,1,1,1>, <<0»0>,<0,-l>,
<-l,0>,<l,0>,-C0,l>»,

BOXNE = -C4, <1,1,1,1>, <-C0,0>,<0,1>,
<i,o>,<i,i»>;

/*-
/*
/*-

-*/
Make structure element
printf(" Select structuring element?\n")?
printf(" t. CIRCLEXn*) ,
printf(1 2. SQUAREXn'),
printfC 3. RHOMBUSNn*>J
printfC 4, BOXNEXn1),
scanf(' %d ", 8sel)?
switchCsel)

C
case 1!

pt_se = 8CIRCLE ?
b r e a k 5

case 2.
Pt-se = &SQUARE i
b r e a k >

case 3t
pt-se = 8RH0MBUS ,

46

break ?
case 4»

pt_se = &BOXNE?
break;pt.se = SCIRCLE,

break)

/% */
/% Main body i select morphological operations and input files */
/* */

printf(" Enter the number you want to do'Xn')?
printf<" 1, Di1 ation\n 2. Erosion\n 3. Open \n')?
printf(* 4. Close\n 5. Subtract\n A. Comp\n"))
printf<1 7. min\n 8. Exit\n')»
scanf<'%d'»8Job)i
whiIe(Job != 8)

•C
printf<• Enter the file name t')f
scanf('Zs"»name)J
switch(Job)

•C
case 1: /# Dilation #/

<
pt-test = make-im(name)5
make_out(dilate(pt_test, pt.se))!
breakt >

case 2« /# Erosion */
•C
pt_test = make-im(name)»
make-out(erode(pt-te-it t pt.se)) !
break i > .

case 3$ <
pt_test = make-im(name) f
pt.open ~ erode(pt-test»
make-out(dilate(pt_open»
break) >

/# Opening #/

pt.se)i
pt.se)) i

case 4? /* Closing */
•C
pt_test = make-im(name)?
ninety(pt.se)i
ninety(pt.se)f
pt-close = di1 ate(pt_test» pt.se > >
make_out(erode(pt-close, pt.se))J
breaki

47

>
esse 55 /# Substraction #/

•C
pt.sub = 8buffer?
r-t_test ^ make-im (name) »
buffer = *pt_test)
printfC' Enter the file name $')?
scanf("%s",name)i
pt_test = make-im(name),
make-out(sub(pt-sub , pt_test))i
b reak r >

case 6 J /* Complement #/
•C
pt_test = make-im(name)$
make_out(comp(pt_test))»
break» >

case 7*
-C
pt-sub = 8buffer,
pt-test ~ make-im(name)»
buffer = *pt_test$
printf<"Enter the file name »")?
scanf('%s">name)i
pt-tent make-im (name) J
make_out (miri (pt_sub , P t-test)),
b reak $
>

default:
break?

/# Min operation */

Enter the number you want to do!Xn1)?
Open Xn') J

6» Comp\n")?
printf("
printf(" 1. DilationXn 2, ErosionXn
printf(* 4, CloseXn 5. SubtractXn
printfC 7. Min Xn B. Exi t\n") >
scanf('Zd',8Job)i >

return(0)r

48

/**
* Department of Electrical and Computer Engineering
* Kansas State University
* ATXT UNIX C Source -file name t skeleton.c ***
*

FUNCTION: m a i n (>

This program opens input file and find
skeleton and mini rnal skeleton image. User can
choose the structuring element.

None

* *

•include <stdio.h>
•include 'm_morp.h'

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS!

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

None

None

make-im()»
make-ou()t
dilate() »
erode()>
recon <)>
sub() i
min_sk_glob()

Kyung Hyun Yoo

20 March 1989

main()
-C
extern IMAGE *dilate<)»

*e rode()>
* m a k e _ i m () >
*min-iik_glob() t
#recon()»
*sub()i

49

extern int make-out()}
int i»

J,
ki
n p

seli /% For structure element selecting */
char nameC10J) /# Input file name #/

static IMAGE sClOD?
IMAGE m_ske1»

temp»
Kerosl,
*eros2,
*openi
#pt_bufJ

STR-ELEMT *pt_se?
static STR-ELEMT CIRCLE = <21, <1,1,1,1,1,1,1,1,1,1,1*1,1,1,

1,1,1,1,1,1,1>,«0,0>,<0,-1>,
•C0,-2>,<0,1>,<0,2>,<1,0>,<1 ,-l>,
<1,-2>,<l,1>,<1,2>,<2,0>,<2,-l>,
<2,1>,<-1,0>,<-1,-!>,<-!,-2>,
<-l,l>,<-l,2>,<-2,0>,<-2,-l>,
•C-2,1>»,

SQUARE = <9, -Cl,l,l,l,l,l,l,l,l>, -C-C — 1 ,-l>,
•C-l, 0>,-C-l, 1>,-C0,-1>,<0,0>,-C0,1>,
<1 ,-l>,-Cl ,0>,<1,1»>,

RHOMBUS = <S, <1,1,1,1,1>, <<0,-l>,<-l,0>,
•co,o>,<i ,o>,<o, i>»;

/* */
/* Select structure element #/
/* */

printf(' Select structuring element J\n')J
printfC" I. CIRCLEXn*)>
printfC 2. SQUAREXn") J
printfC v$> RHOMBUSXn") i
scanfC"Zd", 8sel)i
switchC sel) <

case 15
pt-se = SCIRCLE?
break ?

case 2:
pt-se = SSQUARE,
break,

case 3 $
pt-se = 8RH0MBUS 5

50

break?
defaulti

pt-se = SCIRCLE,
b reak ?

/* #/
/* Make IMAGE from input image file */
/* */

printf(• Enter the file name Z")?
scanf("Zs1»name)?

n = 0? /* Maximum size of SE */

eror.1 = Stemp ?
Kerosl = *make_im<riame> ?
eros'<! « erode(erosl, pt-se) ?

/* */
/* Main boby of skeleton algorithms */
/% #/

whiIe(eros2->size !* 0) <
open = dilate(eros2, pt-se)?

pt-buf == sub (erosl, open)?

/* */
/* Make skeleton subsets */
/* */

*<s + n) = #pt_buf?

Kerosl = *eros2?

ero«2 erode (erosl, pt-se)?

n + +? >

*(s + n) = *erosl»

/* */
/:* Make skeleton */
/* */

i = 0?
m_skel.size = 0?
f or (J = 0? J <•== n? J++) <

m_skel.size += sCJD.size?
for(k « 0? k < SCJ'3 • size? k++>

•C
m_skel.domainCi3.x = sCJ3.domainCk3.x ?
m-skel .domainCi'J »y - sC.iJ .doma in Ck 3 .y ?
m_skel. ranged 3 =• sC J3 . rangeCk3 ?
i++? >

51

>
p r i n t f (" N o w s k e l e t o n i m a g e w a s m a d e . \ n ') »

p t - b u f - 8 m _ s k e l ?

make-out(pt-buf)»
/ % m a k e _ o u t (r e c o n (s F P t _ s e i - n)) ?

scanf("Zd't8dumm)»
%/

/ % M a k e m i n i m u m s k e l e t o n % /

/% */
m a k e - o u t (m i r i - s k _ g l o b (s f p t - s e t n)) ?

/ * m a k e _ o u t (r e c o n (s » p t _ s e f n)) i t /

r e t u r n (0 > ?

>

52

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS:

f

* Department of Electrical and Computer Engineering
* Kansan State University
* AT8T UNIX C Source file name : dilate.c **

*

*

*

*

*

•include * m_morp.h"

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

dilate(f» s)

This function take an image and a structure
element as inputs and output a dilated image

None

(input) IMAGE *

Pointer to input IMAGE which will be dilated,

(input) STR-ELEMT *
Pointer to the struct re element which will be
used for dilaion.

IMAGE *
This function will return the pointer to
IMAGE which will represent the dilated image,

trans(),
extmax()

Kyung Hyun Yoo

20 March 198?

IMAGE dilated?
IMAGE *dilate<ff s)

/# Dilated image */

IMAGE *F?
STR-ELEMT *s?

/* Input image #/
/* Structure element which will */
/* be used */

53

<
extern IMAGE *trans()t

*extniax() >
IMAGE #pt_di1)
int i >

xt /* Position of pixel in structure #/
y ? /* element */

pt.dil = Sdi1 ated 5
/* */
/# Make dilated image bu taking union of transed image */
/* #/

for (i - 0, i < •5->size? i++) <
x = s->domairiC i 3 •x i
y = s->domainLi3»y»
pt_dil = extmax<trans(f» x» y)» pt_dil)» >

r e t u r n < P t _ d i 1) »

>

54

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS:

erode(f t s)

This function take an
element as inputs and

image and
output an

a structure
eroded imade

None •

(input) IMAGE *
Ponter to input
he eroded•

structure IMAGE which will

/**
* Department of Electrical and Computer Engineering
* Kansas State University
* ATXT UNIX C Source file name : erode.c

*
* *

* *

•include "m.morp.h'

(input) IMAGE *
Pointer to structure
used for erosion.

element which will be

RETURN;

FUNCTION
CALLED:

AUTHOR:

DATE CREATED!

REVISION:

IMAGE *
This function will return the pointer to
structure IMAGE which will represent the
eroded imasle.

mint)
ninety()
trans()

Kyung Hyun Yoo

IMAGE eroded?
IMAGE *erode(f, s)

55

IMAGE f r
STR-ELEMT *s?
•C

extern IMAGE #min<)»
*trans<)f

extern int ninety()?
int i»

J f
k»
x r
y ?

IMAGE *pt_buffer,
*pt_e rod?

pt_erod = Seroded?
ninety(s) ?
ninety< s)5

/* */
/* Initialize all pixels in IMAGE mined to 1 */
/* #/

k = Oi
for(i = 0$ i < MAX? i + +)

for(J == 0? J < MAX? J + +) {
pt_erod->domainCkD.x = i ?
pt_erod->domainCkD.y ~ J?
pt_erod->ranae[k++3 = 1? >

pt_erod->size = MAX * MAX?
/* */
/* Erode operation (IMAGE AND opertion) */
/* */

for(i = 0? i < s->size? i++)
•C
x = s->domainCi3.x?
y - s->domainCiJ.y?
pt_buffer = min(trans(ft x» y)» pt_erod)?
*pt_erod = *pt_buffer? >

return(pt_erod)?
>

56

FUNCTION J

DESCRIPTION J

DOCUMENTATION
FILE?

ARGUMENTS:

sk.sub

pt.se

/##*#*#**##*#*########*##
Department of Electrical and Computer Engineering
* Kansas State University
* AI'ST UNIX C Source file name : min_sk_glob»c

*
^ ^ ^ d/ Of ̂ ^ ^ ib *!/ J/ «J/ d/ \J/ U* ̂ ^ ^ rl/ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^f ^ d/ ̂ ^ d/ ^ ^ ^ ^ ^ V/ ^ ^ ^ J/ ^ •!» ̂ ^ ^ d/ ^ dr ^ dr d* vV df ̂ d/ -J/ "X* /
#P ̂ ^ ^ ^ ^ ^ n* ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ v *v v ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * ^ ^ ^ T T n* n* v M 1 4* * ^ /

•include "m-morp.h"

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

min_sk-glob(sk_sub> pt-se, n)

This function make minimal skeleton image
from skeleton subsets array.

None

(input) IMAGEC3
Skeleton subset array of input image

(input) SE-ELEMT
Structuring element corresponding to
skeleton subsets
(input)
Size of skeleton subsets array

IMAGE »
Pointer to minimal skeleton image

di1 ate()
make-out <)

Kyung Hyun Yoo

30 March 1989

IMAGE min.skf
IMAGE * m in_s k-glob (sk-sub, pt-se, ri)

IMAGE sk.subC 3 i /% Array of skeleton subset: */

57

STR-ELEMT *Pt_se? /*
i n t n i / *
•C

extern IMAGE *dilate<)?
extern int m 3 ke _ o ut()?

Structure element %/
Numbers of skeleton subsets %/

IMAGE min_sk_subC103t

ikpt_buf f e r »
*pt_dummu t
>fcpt_temp j
pa f >
temp?

/* Arrsa of minimsi skeleton #/
/* subsets #/
/# For temporary storage %/
/% For temporary storage #/
/* For temporary storage */
/% pseudo gray level function */

static int pixelCMAX3CMAX3?

int i»J»k»l» /* Counter #/
x»y» /% Location oF pixels */
f l a g »

size? /* Size of IMAGE */

/* */
/* For Oth skeleton */
/* */

miri-sk-subCO] = sk_subC03?
/# */

/* Make modified subsets (dialte(dilate(nk.sub))) */
/* %/
printfC'In modify section\n")?

for < i = 1? i <= n? i++) <
pt_dummy = sk_sub + i ?
J = P't_dummy->size ?
pt_buffer = min_sk-sub + i ?
pt_buffer->size = 0?

/# */
/* Make minimal skeleton subsets which have the gray %/
/% level. Shifted version of each pixels by structure %/
/% element makes this gray level. */
/* */

while(J > 0)
-C printfC "make minimal skeletonXri") ?
pt_temp •- 8temp ?
temp.size = 1?
temp . domairiCO3 . x = pt_dummy->domainC J-13 »x?
teriiP»domainC03 >y - pt_dummy->domainC J-l 'J.y ?
temp . rangeC03 = pt_dummy-> r anjie C J-1 3 ?

pt_temp dilate(pt_temp, pt-se)?

k = i - 1?

whiIe(k > 0) /* Shifting structure element is */

58

/* eausl to taking dilation 2 times*/
{
pt_temp = di1 ate(pt_tempf pt-se)?
k—?

size = pt_buffer->size?

fi3-5 -- 0?
f or<k = 0? k < pt_temp->size ? k + +)

•C
for(l = 0? 1 < size? 1 + +)

-C
if ((pt-buff er->domainC13 . x = =

pt_temp->domainCk3.x>88
(pb_buffer->dom3inC1D.« ==

pt_temp->dom3inCk3.y))

flad = 1?
pt_buffer->rangeC13 += j?
b reak ?

if(flag == 0) <
pt_buffer->domainCpt_buffer->size3.x =

pt_temp->domainCk 1. >: ?
pt_buffer->domainCpt_buffer->size3.y =

pt_temp-.>domainCk3 .y?
pt-buf f er->r3ngeCpt_buf f er->sizell =

pt_temp->rangeCk3?
pt_buffer->size++?
>

else
flag = 0?

>

>
J — ? >

>
/%
/# Make P3f (pseudo draytone function)
/#
print l*(' In p«Jf section\n") ?

#/
#/
*/

pt_dummy = fcpgf?
pt_dummy->size = 0?
flag = 0?
pt_buffer = min_sk_sub?
*pt_dummy =» *pt_buffer? /# For 0th skeleton
forCi - 1? i <-- n? i + + >

pt_buffer = min_sk_sub + i?
size = pt_dummy->size?

59

for(J ~ 05 J < pt_buffer->sizei J++)
/* Add all minimal skeleton */
/* subsets */

•C
for(k = 0 i k < size ? k + +)

•C
if ((pt_buf f er->domain[. J3 . x = =

pt_dummy->domainCk3.x)8&
(pt-buffer->domainCJJ.y == pt_dummy->domainCk3. y))
<
flag = 1i
pt_dummy->rangeCk3 += pt_buffer->rangeCJ3?
b reaki >

>
if(flag == 0)

•C
pt_dummy->domainCpt_dummy->size3.>c =

pt_buffer->domainC J3> xr
pt_dummy->domainCpt_dummy->size3 . y =

pt_buffer->domainCJ3.y»
pt_dumiiiy->rangeCpt_dummy->size3 =

pt_buffer->rangeCJ3 J
pt_dummy->si ze + +i >

else
flag = Oi

>

/* */
/* Make pixel form */ /% %/

printf('In pixel section\n")i
for(i = 05 i < pt_dummy->sizei i++)

•C
x = pt_dummy->domainC i 3.x $
y - pt_dummy->domainCi3. y i
pixelCx3Cy3 = pt_dummy->rangeCi3i >

/* */
/* Check the contributionsof pixels in skeleton substs to */
/% pgf function, 'if this contribution is greater than 2» %/
/* that pixel can be removed. */
/* , */

for< i 1 i i <= ni i++)
•C
pt_dummy = sk.sub + i i
J = p t _ d u m m y - > s i z e i
wh i1e < J > 0)

•C printfC" In checking sectionXn') i
pt_temp - 8temp ?

60

temp.size - 1?
tern p.do mein COD . x « pt_dummy->domainC J-l 3 . x i
temp•domainC03.w - pt_dummu->domainCJ-13.yi
temp. rarisieC03 ™ pt_dummy->r3rideC J-l 3 i
pt_teinp - di 1 ate < pt_temp, pt-se) ?
k = i - 1»
whileCk > 0)

•C
pt_temp = di1 ate(pt_temp, pt-se) 5
k — i
y

f o r (k = 05 k < pt_temp->sizei k + +)
-C
x ~ pt_temp->domainCk3..xi
y ~ pt_temp->doma in Ck]. y i
if (pixelCx3Cy3 < 2)

flag -- 1?
>

i f(f1aa == 0)
-C
for(k = 0$ k < pt_temp->size? k + +) <

x = pt_temp->domainCk3.x?
y != pt_temp->domainUk] .yi
pixe1Cx3Cy3 -= li
>

pt_dummy->domainC J-13 ..x = -li
pt_dummy->domainCJ-l3.y = -li
pt_dummy->ran3eCJ-l3 = Oi >

else
flag = Oi

J-- i

/ *
/% Make minimal skeleton image from subsets */ /# - %/

i - Oi
temp.size = Oi
for(J = Oi J < = ni J + +) <

for(k = Oi k < sk-subCJ3.sizei k++)
•C
if ((sk_subCJ3.domainCk3.x > = 0) X8

(sk-subC J3 . domairiL'k3 • y >= 0))
•C
temp.domainCi3.x = sk_subCJ3.domainCk3.xi

61

temp.domain C i 3,y = sk_subCJ3.domainCk3.
temp.randeC i 3 - sk-subCJ3.randeCIO»
i++5 >

>
>

temp.size - i>
pt_dummy = 8temp?
return(pt_dummy)>

62

/ flk ^ ^ ^ ^ ^ ^ ^ fi f f f ^ ^ ^ ^ ^ v ^ ^ ^ ^ * ^ * * * ^ ^ ^ ^ * ^ ^ T * T * * ^ ^ ^ ^ ^ ^ * ^ ^ ^ f f f ^ ^ f ^ * ^ n* ^

* Department of Electrical and Computer Engineering
He Kansas State University
* ATXT UNIX C Source file name J trans,c

*

*

*

*

* ARGUMENTS:
*

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILE:

trans(f t >:_val, y_val)

This function move the input imase f over
i pixels to the right and J pixels down.

None.

(input) IMAGE He
Pointer to input IMAGE which will be moved.

x_val

y_val

(input) int
Image will be moved along the
value.

.axis by this

* *
* DATE CREATED?
*
*
* REVISION:
*
d/ d/ d* df ̂ Uf Jf d/ Uf d# d/ d/ d/ slm d/ d/ -X- «Jf vb tb iL df df* d/ ^ ^ d> ̂ ^ ^ ^ ^ d/ d/ ̂ ^ d/ ̂ d/ d/ ^ ^ d/ d/ d/ ̂ ^ ^ df d* df ^ df ^ d/ ^ «A* ^ ^ ^ / ^N ̂ ^ ^ f f f ^ f f ^ f ^ ^ f ^ ^ f ^ ^ f ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ V ^ * ^ ^ * * * ^ T * ^ ^ * ^ * ^ * ^ * * * V * V * * * * * ^ /

•include "m_morp.h*

RETURN:

FUNCTION
CALLED:

AUTHOR:

(input) int
Image will be moved along the y_axis by this
value.

IMAGE *
This function will return the pointer to
IMAGE which was moved by x_val and y_val.

None.

Kyung Hyun Yoo

20 March 1989

None

IMAGE transed?
IMAGE *trans(fi x_val> y_val)

/* IMAGE which was moved */

IMAGE *F5 /# Image which will be moved */

63

int x_v31f /% Trsns value x-axis */
y_va 15 /* Trsns value y-axis #/

•C
int i > /* General purpose counter */
IMAGE #pt_t rans i
pt_trans = &transed ?
#pt_tranr> = *f i

/* */
/% Check input imase %/
/* */

ifCf->size <= 0)
•C
printfC' Error ? Size of input IMAGE is less than 0\n*)i
exit CI) i

/* */
/% Make transition imade of input */ /# */

i - 0 J
whileCi < f->size) <

ifC(pt_trans->domainCi3•x = f->domainCiD«x + x-val) >= 64)
pt_trans->domainCiJ»x -= 64?

ifC(pt_trans->domainCi3,y = f->domairiC i3 . y + y_val) >= 64)
pt_trans->domainCi3»y -= 64 ?

i-H? >

returnCpt-trans)?

64

FUNCTION:

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS;

f

* Department of Electrical and Computer Engineering
* Kansas Stats University
* ATXT UNIX C Source file name : extmax.c
^ \1/ ^ J. ̂ vL tb ̂ vl(d/ ^ ^ ^ d/ ^ tL ̂ dj ^ d/ d/ d/ df ̂ d/ ̂ d/ d/ ^ tL d/ X d/ • 1/ d/ ̂ %V d/ rL ̂ d# d/ df d/ ̂ \V \U xV xV d/ >V >Lz d/

*

*

*

*

d/ d/ d/ J/ ̂ ^ (L J/ J, ^ ^ X d/ df ̂ d/ d/ d/ ̂ d/ df d/ ^ J/ d/ ̂ ^ d/ d/ ^ d/ d/ d/ ^ d/ ^ d/ ^ ^ ^ d/ d/ ̂ ^ d/ ̂ d/ ^ -X' d/ d/ d* d/ d* vb ^ ^ \L> d/ d/ d/ d/ ^ Z

• include " m_morp.h *

RETURN!

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

extmax(fi S)

This function compares two input images in a
pixelwise manner arid output the maximum gray
value at each pixel.

None

(input) IMAGE *

Input IMAGE which will be compared

(input) IMAGE # Input IMAGE which will be compared

IMAGE #
This function returns a IMAGE which has the
maximum gray value of input images.

None

Kyung Hyun Yoo

20 March 1989

IMAGE extmaxed ?
IMAGE fcextmax(f r s)

IMAGE #f> /* Pointer to input IMAGE */
g? / Pointer to input IMAGE */

•C 65

int i» /* General purpose counter */
Jt /% General purpose counter #/
flag;

IMAGE #pt_extmax»
pt_extmax = 8extmaxed»
flag = o;

/* */
/* Check IMAGE g. If IMAGE g has no pixel, output IMAGE will */
/# he the same IMAGE as input IMAGE f */
/* . */

if(3->size == 0)
*pt_extmax = #f»

/* #/
/* Check the gray value of each pixels and output the highest */
/* gray value */
/* */

else
-C
*pt_extmax = *g i

for(i = 0) i <f->size? i + +)
•C
for(J = 0 ? J < g->size f J + +)

•C
if((f->domainCi3,x == pt_extmax->domainCJJ»x) 8 8

(f->domainCi"J • w == pt_extmax->domainCJ3»y)) <
flag = If
if(f->rangeC i 3 > extmaxed•rangeCJ3)

extmaxed•rangeCJJ = f->rangeCiJ J
break! >

>
if(flag == 0)

•C
extmaxed•domai nCextmaxed.size3 = f->domainC i 3)
extmaxed.rangeC extmaxed•si zeJ - f->rangeCi35
extmaxed.size++) >

else
flag = 0?

>
>

return(pt_extmax)i
>

66

FUNCTION;

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS!

f

* Department, of Electrical and Computer Engineering
* Kansas State University
* ATXT UNIX C Source file name : min.c
Jf ^ d/ ^ d/ ̂ d/ d/ d/ J/ ̂ si/ d/ ̂ d/ d/ d/ ̂ d/ X d/ ̂ d/ d/ d/ ^ ^ d/ d/ ̂ d/ d/ d/ d/ d/ ̂ d/ tU d/ d/ d/ d/ d/ d/ d/ J/ ^ V^ ̂ d/ ^ d» ^ d/ d/ ^ d/ ^ ̂ ̂ ̂ ̂ f f ̂ f ̂ ̂ f ̂ f ̂ ̂ #P ̂ /p ̂ f ̂ ̂ ̂ ̂ ̂ ̂ ̂ f ̂ ̂ ̂ ̂ ̂ ̂ ̂ ^ ̂S * ̂ ̂ ̂ v ̂ T 'r • ̂ * ̂ ̂ * a* * T ̂ T ̂ v *
*
* *

* *

• include *m_morp • h'

IMAGE minimum,
IMAGE *min(f, g)

RETURN!

FUNCTION
CALLED:

AUTHOR:

DATE CREATED:

REVISION:

m i n (f, g)

This function compares two images in a
pixelwise manner arid outputs the maximum dray
value at each pixels.

None i

(input) IMAGE *

Input IMAGE which will be compared,

(input) IMAGE * Input IMAGE which will be compared.

IMAGE *
This function returns IMAGE which has the
lowest dray level of input IMAGES.

None •

Kyung Hyun Yoo

20 March 1989

IMAGE #f, *g$
•C

int i,
J t

/% Pointer to input imade
/% Pointer to input image

/% General purpose counter
/* General purpose counter

*/
*/

*/
*/

67

f l a s ;

I M A G E * p t _ m i n ?

f 1 3 fJ O f
p t _ m i n = S m i n i m u m ?

/% * /

/ % T a k e a n i n t e r s e c t i o n o f i n p u t i m a S e s a n d l o w e s t g r a y l e v e l * /
/ # f o r e a c h p i x e l s # /
/ # # /

m i n i m u m . s i z e = 0 ?

f o r (i * 0 ? i < f - > s i z e ? i + +)
<

f o r (J = O i J < s - > s i z e ? J + +)
<

i f ((f - > d o m a i n C i 3 . x = = g - > d o m a i n C J 3 . x) 8 8
< f - > d o m a i n C i 3 » y - = 5 $ - > d o m a i n C J 3 . y))
•C
m i n i m u m . d o m a i n C m i n i m u m . s i z e 3 • x - f - > d o m a i n C i 3 . x ?
m i n i m u m . d o m a i n C m i n i m u m . s i z e J . y = f - > d o m a i n C i 3 . y ?
m i n i mum . r a n s e C m i n i m u m . s i z e 3 - f - > r a r i S e C i 3 ?
m i n i m u m » s i z e + + ?
>

>
>

r e t u r n (p t _ m i n) ?

68

/ *
* Department of Electrical and Computer Engineering
* Kansas State University
* AT&T UNIX C Source file name $ ninety.c
^ ^ /p ̂ f f f ^ ^ ^ ^ /p ̂ N ̂ ^ f ^ ^ f ^ ^ f ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ip ̂ f ^ f ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ v V 'r ^ ^ V ^ ^ 'P 'P

*
*
* FUNCTION:
*
*
* DESCRIPTION:
*
*
*
* DOCUMENTATION
* FILE:
*
*
* ARGUMENTS:
*
* s
*
*
* RETURN:
*
*
*
*

* FUNCTION
* CALLED:
*

* AUTHOR:
*

* DATE CREATED:
*
*
* REVISION:
*

*

• include "m_mo rp.h"

int ninety < s)
STR-ELEMT *s» /* Pointer to structure element */
•C

int i, /* General purpose counter */
temp? /* Temporary buffer */

if< s->size <= 0)
•C
printf(" Error * Size of input IMAGE is less than 0\n1)$
exit(1)i
y

ninety(s)

This function rotate structure element
90 degrees.

None.

(input/output) STR-ELEMT *
Structure element which will be rotate.

int
NORMAL
ERROR

None.

Kyung Hyun Yoo

10 March 1989

None

69

/# Rotate 90 degrees */
/ !j()j(3j()j()|l lj()|(% ijc /jc 3j()jc lj()jl l|[/|C)|l lj! 3j()J[l|! ^ ̂ ̂K 'K ̂ ̂ ̂ ̂ ̂ Ijl ̂ ^ ̂ 3fl)j(^ ̂ ̂ /

for(i = 0$ i < s->size» i++)
•C
temp = s->domainCi3»u?
s->domainC i J»w s->domainti3»xf
s->domairiCi3 .x = -1 * tempi >

return(NORMAL)i

70

FUNCTION:

DESCRIPTION;

DOCUMENTATION
FILE:

ARGUMENTS:

name

/######*#****##**####**^^
* Department, of Electrical and Computer Engineering
* Kansas State University
* AT8T UNIX C Source file name : make-im.c
*

*

*

*

*

*include <stdio.h>
•include "m_morp.h'
IMAGE original> /* IMAGE which will represent input */

/* imase file. */

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED!

REVISION:

make-im <name)

This function makes structure IMAGE from
input imase file. Input image file is a
binary image which was expressed by "1" and
"0'. Size of image is *4 * 64 pixels.

None (

(input) charC]
Name of input image file.

*IMAGE
This function will return the pointer to
structure IMAGE.

None.

Kyung Hyun Yoo

20 March 1989

None.

IMAGE *make_ im(name)
char nameC3 $
•C

int c t
i >

/% Name of input image file */
/# Integer value of each pixel */
/* General purpose counter */
71

Jr /* General purpose counter %/
k r /% General purpose counter %/
pixelCMAX3CMAX35 /* Array of pixel value #/

IMAGE #pt_im?
FILE # i ri f i 1 e ?
pt., im = 80 rig inal?

/# #/
/* Open input file */
/* */

if ((infi Le -•= fopen(name, 1 r">) == (FILE *> NULL)
•C
printf(stderr> ' Error? cannot open file (make.im())\n*)?
exit(1)?

/* 1 /
/* Make pixel array from input file (MAX = 64) */ /# % /

for(J = 0? J < MAX? J + +)
for(i = 0? i < MAX? i++)

pixel CJ3C.i 1 = 0?
for(J = 0? J < MAX? J + +)

for(i = 0? i < MAX? i++)
•C
i f((c = Setc(infile)) == EOF)

pixelCJDCiH = EOF?
else i f (c != '\ri')

pixelCJDCiJ = c - 48?
else

i— ?
>

/% #/
/* Make structure IMAGE from pixel array #/ /# #/

k 0?
pt_im->size = 0?
for(J = 0? J < 'MAX? J + +)

for(i = 0? i < MAX? i++) <
if(pixelCJDCil >= 1)

-C
pt_im->domainCk3.x = i?
pt_im->domainI.'k] »y = J?
pt_im->rangeCk++3 = pixelCJ3Ci3?
pt_im->size++? >

>
72

FUNCTION:

DESCRIPTION;

make_out(pt_im)

This function converts structure IMAGE to
image file which has 64 * 64 pixels. Each
pixel will be represented as a number» which
is the gray level.

DOCUMENTATION
FILE:

ARGUMENTS;

pt_im

* Department of Electrical and Computer Engineering
* Kansas State University
* AT&T UNIX C Source file name : make-out.c
He***
*

*

*

•include <stdio.h>
• include * m_morp.h'
int make-out(pt_im)

IMAGE *
to input

RETURN:

FUNCTION
CALLED:

AUTHOR:

DATE CREATED;

REVISION:

None.

<i nput)
Pointe r

int
NORMAL
ERROR

None.

Kyung Hyun Yoo

20 March 1989

None,

structure IMAGE.

IMAGE *pt_in.; {
char nameC103 t /% Name of output image file * /

int 1 r
J r
X I

/% General purpose counter %/
/% General purpose counter %/
/* Location of pixel */

73

ur /# Location of pixel */
pixelCMAX3CMAX3r /* Array of pixel value */

FILE *outfile»
* /

/* Open output file */
/ * * /

printfC'You are go ins! to make ima.de fi 1 e\n\n") ?
printf("Enter the file name within 10 characters? ")?
scanf (" '/.s " i name) ?
if((outfile = fopen(name, " w •)) == (FILE *) NULL) <

printfC" Error* cannot open file (make-out())\n")?
exit(1)? >

/ * * /
/% Make pixel array from structure IMAGE #/
/ * * /

for(J = 0? J < MAX$ J++)
ford = 0? i < MAX» i++)

pixelCJ3 C i 3 = 0?
ford = 0? i < pt_im->size» i++)

•C
x = pt_im->domainCi3.xf
y = pt_im->domainCi3.y?
if((x >= 0) 88 (y >= 0))

pixelCy3Lx3 = pt_im->randeCi3 J
else

return < ERROR)i
>

/ # * /
/* Make output imade file from pixel array %/
/ X ———— — %/

f or (J — Of -j < MAX; J + +)
•c
ford = 0; i < MAX? i++)

•C
if(pixelCJ3Ci3 == 0)

fprintf(outfile,"0")?
else if(pixelCJ3Ci3 >= 1)

fprintf(outfile,"Zd*,pixelCJ3Ci3)?
else

fprintf(outfile,"#")?
>

fprintf(outfile,"\n"); >

fclose(outfile)?
return(NORMAL))

>
74

/**
* Department of Electrical and Computer Engineering
* Kansas State University
* ATXT UNIX C Source file name J sub.c

^ ^ ^ ^ ^ ^ ^ ^ /y. ̂ ^x /fi ^ ^ ^ T* * ^ ^ ^ ^ ^ ^ ^ ^ ^ T 'r * * T * * T * T* ̂ * 'r 'r * M* T^

*

*
*
* AUTHOR:
*

*

*

•include <stdio.h>
• include 1m_morp.h *
IMAGE subed 5

IMAGE *sub< pictl» pict2)

FUNCTION!

DESCRIPTION:

DOCUMENTATION
FILE:

ARGUMENTS:

pictl

pict2

RETURN J

FUNCTION
CALLED:

sub(pictl» pict2)

This function subtract a image from the other
image.

None.

(input) IMAGE*
Minuend IMAGE

(input) IMAGE*
Subtrahend IMAGE

This function returns the pointer to
subtracted image.

DATE CREATED:

REVISION:

None .

Kyung Hyun Yoo

20 March 1989

IMAGE *pictlr
*p i ct2 5

/* Input minuend image */
/* Input subtrhend image */

static int pixel 1CMAX3CMAX3 >
75

pixel2CMAX3CMAX3 ;
X r /* Location of pixel */
y f /* points */
i f /* Counter */
J f /* Counter */
k f /* Counter */
point J /* Gray value difference */

IMAGE *out?
out = Ssubed >

*/
Initialize the pixel arrays */ */
for(i =•= 0? 1 < MAX? i++)

for<J = o; J < MAX; J++) <
pixellCi3CJ3 = 0;
pixel2Ci3CJ3 = 0? >

*/
Make pixel arrays for input imaSes #/ */
for(i - 0; i < Pictl->size; i++)

•C
x = pictl->domainCi3.x»
y = pictl->domainCi3»y»
pixellCx3Cy3 = 15 >

for(i = 0 i i < pict2->size; i + +)
•C
x = pict2->domainCi3.x;
y = pict2->domainCi3.y?
p i x e12 C x 3 C y 3 = If >

k = o;
*/

Subtract Sray level #/ */
for (i = o; i < MAX; i-H)

for(J = 0? J < MAX; J + +) <
point = pixellCi3CJ3 - pixel2Ci3CJ3;
if (point ~ = 1)

•C
out->domainCk3»x = ir
o u t-> d o m a i n C k 3.y = JJ
out->rariSeCk3 = It
k++; >

76

>
out->size =
return(out)

77

IMAGE ANALYSIS USING MATHEMATICAL MORPHOLOGY

by

KYUNG HYUN YOO

B.S., Hanyang University, KOREA, 1980

AN ABSTRACT OF A REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

ELECTRICAL ENGINEERING

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1989

ABSTRACT

This report presents the application of morphological

techniques to binary image analysis. Mathematical

morphology provides an approach to the processing of

digital image in terms of some predetermined geometric

shape known as a structuring element. A brief discussion of

mathematical morphology is included as a background along

with some definitions of basic morphological terms. The

programs for basic morphological operations are developed

using C language on AT&T 3B2 computer. The results of the

application of morphological techniques to applications

such as noise cleaning, edge detection, region filling and

image representation are also presented.

