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ETTRODUCTICN

Bergman (1) started to generalize Gibb's classical statistical mechanics

so as to make it applicable to both relativistic and quantum mechanical

system. His interesting method, however, involves some complicated differ-

ential geometry and the resulting formula are not easily manageable.

Scheidegger and Krotkov (10 ) tried to avoid such complexity by by-passing

the intermediate step, nonquantized relativistic statistical mechanics, and

directly formulated the quantized statistical mechanics which led merely to

a relativistic expansion of Maxwell-Boltzman distribution lav.

In this paper an effort is made to start from a general classical basis

and obtain a simpler result. Nonquantized relativistic statistical mechanics

is formulated by expanding the classical Maxwell-Boltzman distribution law

and the Gibb's statistical mechanics for a system, by requiring conservation

of momentum now as well as of energy of an isolated system.

One will find that it is helpful in this discussion to introduce three

reference frames; rest, secondary and primary, Leaf (8). The quantized

relativistic statistical mechanics can be obtained from this formulation

by simply introducing operators for the appropriate physical variables.

REFERENCE FRAMES AND NOTATION

The rest frame is attached momentarily to an element of a physical

system whose properties are to be measured. The primary frame with respect

to which the rest frame has relative velocity v as measured by the primary

observer, is further introduced. However in many physical experiments, the

primary observer does not measure the property of the system relative to



the rest frame, but rather relative to sons arbitrary franB, the secondary

frame (£). For example, consider the concept of temperature in a system

of molecules. If a rest frame is fixed at each individual molecule, then

clearly the temperature has no significant meaning with respect to these

frames. However when a secondary reference frame which is attached to the

container of the system is introduced, the concept of temperature will be

meaningful for the system as a whole. Indeed in thermometry and in the

theory of gases, it is essential to take a standard in the secondary frame

and measure the temperature as a proper quantity, since the indication of a

thermometer moving rapidly through a fluid is of no practical interest.

Now let the secondary frame have a constant velocity v* with respect

to the primary frame as measured by a primary observer and let the rest

frame have a velocity v» with respect to the secondary frame as measured

by a secondary observer.

The transformation p;= l^P^T gives the values p/ of measurements

ade upon the quantity p
* in the rest frame by a secondary observer and

r«-*Wc P-c gives the values p^- of measurement made upon the quantity

v in the rest frame by a primary observer. In the above relations, the

summation convention for T is used, and unless specified otherwise, this

summation convention will be used in the rest of this paper. By requiring

the group property of the Lorentz transformation, one has:

Further
pf
*
= ]jje ^ S^s the value p/" of measurement made by the

primary observer upon a property f^ of a physical system at rest in the

secondary frame. By the orthogonality property of the Lorentz transformation
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atrix, the Kronecker's delta is given by:

*&
zr x Li»-1^= J-r* «U«-f

;
etc. (2)

Unit vectors at rest in the secondary frane will be denoted by:

"H - (1, 0, 0, 0)

S* - (o, l, o, o) (3)

k* - (0, 0, 1, 0)

\t$ - (o
t 0, 0, v )

The configuration space in the primry frams can be defined by the

orthogonal unit vectors

:

Then the following relation can be verified:

where c. * _ *>* ">
., ^* ">»- ^* ^ * f«}

Now for a given vector
P<- »

Rr- ^zf* - ff-4 - ST*) Pi

= Trl p. -TVS: p. = pr
w

-r y«>. (6)

where:

IV- 1~ fv - 15
Jj£

is the value of the space components (Pl», P? », P3I, 0) relative to the

secondary frams as measured by a primry observer.
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u

^.^rUj^-U, ? \

is the time component (0, 0, 0, P*^) relative to the secondary frame as

easured by the primary observer.

Further unit vectors at rest in each rest frame will be introduced asi

e «Xg. = Iff, JV , |«r, U<rJ

tc &| °» Of °)t ^ * (0, 1, 0, 0) (7)

?4-« (o, 0, 1, 0), Vr s (0, 0, 0, )

The orthogonal unit vectors in the primary frame being related to the unit

vectors edj* in the j-th rest fraraet

s*jr -
1 iv", jv, k<r

;
^3

can be defined by:

? <U 1
l*> f» o G rt ' - 1

b
'

; U °

or, in the abbreviated notation, by:

(8)

r U;
where X>o-z is the Lorentz transformation matrix which connects the J-th

rest frame and the primary frame.

Considering a system of particles whose position U - vectors relative

to the primary frame are given by*

x? -(«,•, *«>, **,,*«'-,<-t*)

with the superscript J refering to the j-th particle, the proper time

interval ^z b) in the j-th reference frame is defined by:

(9)

^°- 4-1^^5? =V\-*f>- ^



where: y'iL (
d-tj*' <**& d^ \

- ?
li;

= •% (J • a* a )

The velocity four-vector is now defined by:

w.*~4S?.(
v&

•<?y ^/Trp- ' /Til*1' (10)

and the energy-momentum U - vector byt

&-»!>»?.(}»>, f%)
(U )

with

|*« m*fc tfl

/
t «*, m»V£*

;
w tf,» 7Jii' /iTT b^2- (12)

Now one can define: ' * r

?,"'. % x? , ii», y x? ,
\*.& *? (13)

which are equal in magnitude to the Cartesian components of position as

measured relative to the secondary frame. Further the invariant quantities

which are equal in magnitude to the Cartesian components of momentum of the

particles relative to the secondary frame, are defined by:

T.*-V )} , v>-T* (V
UJ

, t!*- It Pr '

(u)

(j = 1, 2, )

In connection with these quantities, one may define the invariant quantities:

t»»--t?H?-^VfN^e
.

(15)

where E«U> is equai to the relativistic kinetic energy of the j-th particle

relative to the secondary frame.



Prom (5): U 2 tf«- s tf r<r — * ? «-

How, 'S*,. ft fr = I IS [, + Si fA KrfO pa p,

-
( Ti'!)N ItwT + IT,

1*)*- ("N'^

U^'-pV- P"r?-UW

-it,'"- >, - C ttr^-t-fw.^]^

ID
restricting ourselves to IT^. ? °

(16)

MAXUELL-BOLTZMAN DISTRIBUTION LAW

Consider a property of a system as associated with a set of k boxes

with a definite value of the property attached to each box. The elements

are assumed to he indistinguishable in nature and to move freely except

when any kind of collision occurs between elements. One is not principally

concerned with such phenomena as ionization, dissociation and radiation.

Therefore the counting process of obtaining the number of discrete elements

in a box is an absolute operation. Let there exist N elements as a whole

and let them be arranged such that each box contains Nlt N2 , Nk



elements respectively. Then the total number of methods of arrangement

is seen to bet

IL--TT?
N

71. to
(17)

with

t ^ - N
(18)

If the apriori probability is given by:

8l» g?, 1 gJcJ

the probability associated with the above distribution will be given by:

w-n.;^* (19)

Assuming the whole system to be isolated, the components of the total

momentum as well as the total energy should be conserved with respect to

any reference frame. Thus the following holds:

^N/ P^ • a constant ( 6T s l, 2, 3, U) (21)

whore f€ is the energy-momentum U - vector for the j-th box. Prom (17)

and (19):

For maximum probable distribution, the following relations should be

satisfied simultaneously:

Using Stirling's formula:

a N J*«j N - N ,
(22) can be shown to yield:
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(%ys m^ •; 5S n, -*

y « p" ;n, - °

(23)

Introducing Lagrange's undetermined multipliers:

must be a four-vector in order that the formulation be covarlant and

is a scalar quantity. It is seen that ^ and cd are not related to

the individual elements in any specific way, but are to be related to the

system as a whole. Varying ^Nj arbitrarily, it is obtained:

H %t + * + ^ P'°
= D

M-rfc* (25)

.•.«.*»c?T «''**? n

<** f/ (26)

The distribution function is defined by:

*,»-*— ; ^Wy]-1

with the partition function 2 * T *}/ e.
*"

In the case of uniform apriori probability, that is when

gl - g2 *
gfc

one has p d*j**'
, m H)

(27) and (28) are the desired covariant Maxwell-Boltzman distribution

functions.

(27)

(28)



PROPERTIES OF THE VECTOR «*«~

In Maxwell-Boltzman distribution law, the U - vector o/<s- appeared to

lead to a covariant formulation. To clarify the properties of this vector,

one writes:

1 *~ f&fr *i/rr ĉ .

Let

i c- c . t- uw
*

l-V"^

(29)

^4- = —
,

oijc*
'K

/h»^- // i-^*yf x

Ve—

1

(k 1, 2, 3)

where V^.* and fe are four new parameters replacing (/*-( o~s 1, 2, 3, 4.)

where (r is a scalar invariant quantity. Now substituting (30) into (29):

.» 1,0- ... •!•-. w*^ U)

i-^FPV^ V^*(h& .

m _.jb-r t'-W^'
n»*«"e

VT^-l/T1^ (31)

Now define the velocity 4, - vector for a particle at rest in the secondary

frame by (15 )t

Mr* » ( o, 0, o
y

t c )

which leads to:

W/- 1^ n* =: Jjt4.lCs.1N J_, r4 (32 )
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Comparing with (4), one has:

U/ = cV
Similary one defines*

(33)

where

u/- !,•*«/ *, l
'c)

is the velocity 4- - vector for a particle at rest in the rest frames.

Thus: , *- i};

_ _c* -^ WV ***

y l-.^,/|-^»

Substituting the above Into (3l)t

olrp) ; *J»V tf
* M*

(,;

- WiJ'V Ur U<r

=s —1 f~- c
:'"''

h~*y<*-

>
where \Ar is the velocity U - vector of the J-th particle as measured by

the secondary observer.

Thu3 the distribution law (28) is reduced to a form identical with

the classical Maxwell-Boltaman law, namelyt

t

* tdr^V 6*fl
*

(34)

Thus finally one sets

.'. ^e * tWr
(35)
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Corresponding further with the classical formula, one nay obviously

set t.lKTr 1

(36)

where K is the Boltsman constant and T is the sealar invariant temperature

as measured at rest in the secondary frame. (36) can be further assured

by considering the entropy of a system as a world invariant quantity defined

by*

<, = -Hl<2 w; l»A w>
* (37)

It can be easily verified that the above definition gives the statistical

interpretation of the tendency of increasing entropy for which results

from mixing two systems (10).

Prom (28) with (35 )i

Since, y*-l, *»/?.** t
(average)

S Uy J*fi Wy = 6- u/
-

JV- l*j Z
(38 )

Substituting this into (37), one obtains*

(39)

>

«^?(^*e^J-^P (40)

« Mr* JV ^ B"
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e. n<r jo depends in general on an external parameter tensorA-<ry-. ,

which is to include all physically interesting "variables in a system and

can be considered as independent of 6 , Then the thermodynamic functions

will depend not only on 6- but also on A*/. • The force acting in the

direction of S^Jf l. is now given byt

with its average value

i

Nowt

p.11- =

"
,

2 ' »>>££-

•

(42)

How let A^''be chnn«ed by a small amount "h^l^.taid (- byj'e • This will

change the canonical ensemble into another neighboring but still canonical

one, with slightly different entropy. Then, the average work, as a scalar

quantity, done for an element in this process can be given by

Then by (42):

Since the partition function 2 now depends on both 6- and^\^T j

Substituting this into (44-)»

(43)

(44)
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fc.Jw-J!^-E-*il5- J«

Further substituting (£0) into the above equation:

Uslng (45): r

(45)

- t? ^}

* N|c / t 5 (ui p,-) - 5^ z. •+
(. urf p* /6]

-N^ S Uujf,)- Ji
i 2

j

5T{ NK C C- M# |v — ^*)\

From (39), thu3

Js« - k*[ N 5c*/f«-)- H f^i
Now:

(total work done by the system)

N$(«*]$r)-N 5(-t')*-N 3V«~?U

( £u is total internal energy change)

5<,= kt- ( £u+ J IV)

If the total heat absorbed by the system is TQ , one has:

^a4iJ4 S~ w
thus yielding:

1>S = k^S SI
(46)

Thus as it was given in (36), it is again found that:

C-= t:\cji*

Thus finally by (35) and (36):

<?l<r = fe-n/ » uf [kjl'* (47)
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(47) is seen to be in ggreonant with the previous statement that oU-is only

related to a system as a whole and not to an individual component system in

any specific way. With (47), (27), and (28) one has:

(48)

and fe-w/P^ _,-i _ ^«^«" ?«"

->

(4-9)

For a given physical quantity, for instance A^ , its average value will be

given by using (49).

Ar-5 A^Vy-*Are r -:z
>. J 11/ t««r fir

= -W^ At W,.
; ^U;.

J

where A z
' is the average value taken relative to the secondary fran»

and will be given by:
'u>

* <* R^'

Since

For a system consisting of an ideal gas, the 6 - dimensional phase 3pace

( *»s"JIV. I will be introduced, and it will be divided into cells of size h3

so that the number of cells per a phase volume ^fs.Wfk^Hu which itself
k-t
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lg invariant according to (19) and (20) f is:

Then the average value of any function of ^ K and "JTt<, £-( ?k,Tk- ) can *»

obtained byt

-c [tN («.c^^r
-ff
^ft .

f^TW =r
i-H<K "fr*) e Wil K'k*1

I... I

e -ctirS(>H.o*]
)^T ^ £i l^Tk.

K»

In particular we get tfic^, if the limits of integration are, in approxi-

mation,^ ; Unfortunately still no general method for the evaluation of

(51) for m«,-4 o seems to be available (ll).

EQ&ATIGNS OP MOTION

Now a formulation of the Gibb*s relativistic covariant statistical

mechanics will be discussed. Consider a system of particles whose relative

position A - vector oC<^ satisfies the following operations, namely:

* 1, 2, 3, ) (52)

where t* is an invariant time parameter equal to the relative time as read

by the synchronized clocks in the secondary frame. Since f \. (k = 1, 2, 3)

defined in (13 ) is also scalar invariant to the Lorentz transformation, any

scalar function of these quantities, \£V t is also invariant. Indeed a new
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generalized Lagrangian function -L for a system of particles can be defined

as a function of £K and ^ = -jp with t' as parameter. The covariant formu-

lation of Hamilton principle can then be given by

M.*I
W
M!p,ft.f>.t> (53)

Ji-

lt is not always possible to set up a completely covariant formulation

of a given problem in this manner. The explicit form of the potentials are

determined by the nature of the forcos Involved, and not all types of forces

are available in a covariant form. Actlon-at-a-distance forces cannot be

involved in this treatment and thus one has only to consider those theories

from which the concept of action-at-a-distance can be eliminated. This is

possible in the theory of collisions and one 3hall be concerned with an

ideal gas system in which the molecules are assumed to be infinite sijnal in

size and for which the interaction takes place only at the instant that the

distance between two particles is negligible. Before and after this

infinite 3imall;/ short time interval of collision, the motion of the particles

is not accelerated and during the short period of interaction, the conser-

vation laws of momentum and energy are fulfilled.

The Hamilton principle (52) will lead to the Lagrangian equations of

motion, namely

j

— K?W ^%t (54)

These describe the motion of the particles relative to the secondary frame

as seer, by the primary frame.

The canonically conjugate momentum of % y is defined by,

-^4- - Tr«; (55)
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From (16), (20):

v ;

,

(k 1, 2, 3)

(56)

v\-
'IIHV

x*>\ 3 , ^j. =r Ur, jr
/ (57)

9L - -nf - w** ft
K

II k -

|/l- »!#-

This can be satisfied by setting:

where
J\J

Thus j

y
id L 1 Is sone function of 1 *' only.

(58)
: -K^t-l/i-^,*] -rii

From (56):

*=*?*i^ 9)

(k - 1, 2, 3)

According to the principle of conservation of energy and momentum:

h.w •• constant ( «1, 2, 3, 4)

Also,

€*- j ,_ * a constant (k * 1, 2, 3)

3, U)

Therefore:

*TTk =a constant (k - 1, 2, 3) (59)

Summing up (5A) over J:

A-l-
<** I
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By (55):

i K

y ^ 5 »v

(k * i, 2, 3) (60)

As L a^L -+ JL and only L» involves "^ » this yields:

r* ?l>,
- ° Ck-l f 2, 3) (60)

t

(60)' is a homogeneous linear partial differential equation of the first

order with its coefficients all unity. Its subsidiary equations nay be

written aat^Ujf- ^g- =^"'»
, ^ L« « 0, (k * 1, 2, 3).

(n-l) independent Integrals of the above can be obtained, namely:

* » a constant.

*2->

•
c = <h«.

—
"%jc_ • a constant.

,0V) H> y«J
K » a constant.

(l^j; k*l, 2, 3,J i, 3=1, 2 )

(k . 1, 2, 3.)

Therefore the general integral of (60)« is given by:

(i j J| k s 1, 2, 3,1 i, J * 1, 2 )

Substituting the above into (58 )i
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Further idbe Hamiltonian function is defined byt

= F. if? it + y ^^/7-% + v
Substituting (56) i

l*» c

->' /IT^i
+ v

The relations appearing in the formulation are all alike in form with

the classical formulation. But in essence the two cases are different. In

this formulation, only invariant quantities are involved and thus the formu-

lation is completely covariant, hut the classical formulation is not. For

examples .. £« Qi

and thust

1 *vT7SrvM
It is seen that V is solely dependent on the relative distances of

the particles, and thus, in the ideal gas problem, V shall be appreciable

instantaneously at the limit of jf<* \$ (k - 1, 2, 3) etc., and otherwise

vanishes. V is only to control such Instantaneous collision process
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previously described, and one is thus assuming that its interacting inter-

im Mf.
vals for collision are so short that the only sum ^F ^_S=— . the total

relativistic kinetic energy, itself can, at any instant, express the total

energy of the system. One will not be concerned about the explicit form of

V, but V will be kept In the Hamiltonian H only to indicate the fact that

the particles are not completely free but execute collisions between parti-

cles, changing from one free motion state to another. Therefore, for any

given instant, one nay puti

Total energy of toe system (relative to the secondary

wiJ*' en-

frame) s
J-

~o*bnP)
where P«- is the energy-momentum U - vector for j-th particle as defined

by (16).

Finally Hamilton equations of motion can be given by:

(63)
VTT5 **'

(k = 1, 2, 3)

STATIONARY STATE

A phase space is defined by Introducing position-momentum coordinates

(Jv. ,
"nV ) into a single coordinate organization for an ensemble. Intro-

ducing the phase density o which is a world invariant quantity, the phase

currents along the phase coordinate axes can be defined byj

iMdjs, Dtt'£)
(6*)
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J> ^V ** f ** (65)

Since the number of representative points in the ensemble is conserved,

the equation of continuity shall be satisfied t

-^L 4 -r I lPi*i ?*M \ - o (66)

With the use of the Hamilton equations of aotiont

XL

Vj. <H' ^TT'

where use is made of the fact that f is to be a function cf the form:

and the differentistions of H with respect to %® andTT^are interchange-

able. Thus covariant Liouville's theorem is given by:

-1£- »o (67)
\*>

or, by using the Poisscn^s brackets, it can also be written as:

vfc- n** >*«>> >Tr
tf» ar-n-tD >xUJ17 *n' »ir2 *'**

Jt + v,h>«

The stationary condition will be given by:

(68)
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5v
sC

(69)

to yieldi

(70)

The condition for a steady state is satisfied, therefore, by choosing the

phase density function f to be a function of the constants of the motion

of the system, for then the Poisson bracket with H must vanish. In (59),

it is shown that ^ Hy' (k = 1, 2, 3) are conserved in an isolated system.

Further by (16), it is also seen that ^Tr"' is also conserved. They are

the components of total momentum and energy of a system as measured relative

to the secondary frame. Since these quantities are the most significant

conserved quantities under consideration, one may indeed assume P to be a

function of total components of such quantities. It should, however, be

noted that angular momentum and isotopic spin, etc. are also conserved in

general, but this treatment has previously been restricted to the above

simpler case.

Thus the phase density function can be given by:

f>
«= f [ T,, Tv TTi, IK; (71)

a& TT<r - »'^
where

(
«-- 1, 2, 3, l)

CANONICAL DISTRIBUTION

The volume element in the phase space can be given byt

1 r* i*
sl

(72)

if there exist n elements in an ensemble. The probability coefficient W
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In the phase space ie defined by?

W~f/rx
/ \\n*\~\ <73)

For a physical quantity A characteristic of the system being described, the

average value is given byj

fi = J/W^ (74)

where the integration is to be taken over the whole phase occupied by the

ensemble •

For the ideal gas problem, an ensemble is resolved into a number of

component systems which are independent of each other save for the possibility

of enargy-.omentum exchange. Thus in an ensemble of the aggregation of the

gas molecules of a given mass, the component system might be an individual

molecule and its four energy-«omentum components may be exchanged during

collision process between particles* Denote the resultant system by S and

its n-<jomponent system by s^ s2 , , s^ Since each component system

has three degrees of freedom, a six-dimensional phase space
(

|'/', %l'J |£'J -|J"®

"TT*. , TT» ) for each component system is introduced. The total number of

degrees of freedom of S is 3 n and, for this resultant system, 6 n-diraen-

siomal -y space will be employed, 6-diraensional M j-space are employed

for the component systems.

Now by the previous argument, the phase probability coefficient

for the resultant system is a function of the total components of energy and

momentum relative to the secondary frame, that i«» ^ ("ffiy-fl"* TT> T* ).

To be specific, consider an ensemble for a single particle system.

For instance, one may consider the case where all the particles are taken

out of the system except the j-th particle. Then one has:



W « V ( tt/» Tt« ^ -^ )

It must be emphasized that in constituting the canonical ensemble for a

single particle, one cannot assume that the energy and momentum of the

canonical ensemble are fixed. By the very nature of the canonical ensemble,

it must be assumed that the energy and momentum of the single particle

system being described is able to fluctuate. It cannot, therefore, be

considered free In the usual dynamical sense, «ven though its energy and

momentum are treated as wholly kinetic.

Then returning to the original ensemble, it is further assumed that

there will presumably exist a phase probabilityj

in each \k *-space, which is a function of the instantaneous values of

energy and momentum of the component system.

Now the probability that the phase point for system s^ lies In

4faT4#dW cf Mi-space, , for system sj lies in^jy sTT^'fif?

of ^-space, , etc., will be given bys

Since the component systems are assumed to be independent, the probability

will be given byt

As Tf J^. ^ J a , it yields:

* ^( -mW TtJ?T# . v.( -nv ttv TT^-ir*;
(76)

It;

Since: —. .

Trltf' frTV^TV 7H^r
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One can seti

^L = l^i_=lrL_ (i, |.lf 2, ---,n)
bt"; a-v >*«- (77)

Alsot

Substituting Into (77):

Dividing by W=f^ J

or

/ L>n = _L.]^ _. l
V-^ (78)

"«" IV (i, J « 1, 2, )

*M-ir,h » --itO >tt^

i ^^U iv,:--nr^

i

Thus it is seen that the variables are completely separated and thus °t
c
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Is a constant. Further by the last terra, it is also seen that d-r is related

to the system as a whole and not to any individual component system in any

specific way, as was "^ in the Maxwell-Boltzman distribution law. Equation

(78) can be written now*

1

1

\

H,tf
'

Trwy

1

1

(a constant)

(a constant)

(a constant)

(a constant)

--, n)

(79)

For (79 )» a possible solution isi

leg Wj * olrT^'-t ^
where, in the right hand side, the suwnation convention notation is used.

However, it should be noticed that <V , in this new formulation, is to be

an invariant quantity in contrast with c^—of the Maxwell-Boltzraan distri-

bution law which was four vector.

s j

G ^ ^ "to
= e B e

^V

Uiwhere B m s: Jb"' ,

By (73)

J

VV A V ar £*

•J

)

e ^f - 1
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e Mile 4]
-\

c*flTo

W =
r

y
<*J-~V<-4

(|

(80)

th8 partition function Is,

(»')

Now, it can be shown that, with P^- IT fi^"

fc 'W'c^lT, * jJ*- TTx-r Kr oMTj * Ul 0VH4.

Tberefore, one obtains the Maxwell-Boltzraan distribution law from Gibb»s

formulation by setting

dr j>, - d^r ISs—
-~~"~

(8!)

from which is obtained:

Thus finally one has, according to (47)*

^ ^ l^lf = l
o, -, *, - '-/M (82)

and

SS^fe^r 4f e-^Tj|

in agreement with (49).

It should be noticed once again that, in (81), the lefWiand-eide of

the equation is an Inner product of two four vectors, whereas the right side

is merely a sum of products of scalar quantities.
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The average values can be obtained In this formulation by a procedure

similar to that previously discussed in connection with the Maxwell-Boltzman

distribution law.

MULTIPLE-TIME FORMULATION

The preceding covariant formulation of Glbfc^s statistical mechanics

can be termed as a single time, t*, formulation. The main feature of the

formulation is that it involves only invariant quantities, and does not

contain the space and time coordinates in a symmetrical manner. In a

multiple-time formulation, one should assign to each component system its

\i) f IJ/ li' \j) I)

j

i \jj \
own individual space-time coordinates X r * \*\y *v *>, >W~ l

'c t '•

With respect to the orthanormallzed unit vectors given by (3)|

namely*

e-^ - (
lV
«-, **> '*'/ M<r )

the position U - vector of a clock at rest in the secondary frame can be

established byj

leading to the position A - vector in the primary frame t

Now then the scalar invariant quantity:

<5> (86)

is equal to the time read on a clock at rest in the secondary frame.

This procedure is Identical to the one leading to obtaining the proper

time in the rest frame. Indeed when one measures a quantity at rest in the

secondary frame, there exists no essential difference between the secondary
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frame and the rest frames. Therefore one may set:

(J -1, 2, 3, )

1*1

where t is the proper tine for the j-th particle. This indicates the

fact that the rate of flow of tine is the same with respect to any reference

frame when measured by a clock at rest in that frame. One will, however,

distinguish dT ,i; from Jf tap a while, though both are essentially the same.

It is known that the Lagrangian function does not have any particular

Lorentz transformation property and thus one must expect it to be a world

invariant scalar. The physically significant invariant Lagrangean of ft

system for the multiple-time formulation shall be given byil( */*, w ^'7 )

where ?~ enters as an implicit parameter and u<r" is defined byj lf£- -^L

-

—j^Z » which is the velocity 4- - vectors as given by (m). It is noted

here that the above defined Lagrangian is rheonomic, i.e. time dependent,

and is in the most general form.

How the Hamilton principle can be given by

T

r*>

J t *

the Lagrangian equations of motion for a system of ideal gas particles can

be derived from it, as usual, leading toi

Jk r JL^> _ 2J=. s (89)

The canonically conjugate momentum can be defined byi

> L, . c» (90)

T> U <su r s~
r



30

In this system, the •ootal components of energy-momentum 4- - vector should

be conserved leading to*

( ^-1, 2, 3, 4)

Thus from (89 )»

>1^ = °
(91)

Since p«r= m=''ur
U

'

, with (90) and (91), one can evaluates

y 2. '

^?V^ ~ Vf^-^o) (92 )

where V is an Invariant function which depends only on the relative distances

of the particles. Here again V shall only be appreciable instantaneously at

the limits of x<r — J-<r~ , and otherwise vanishes. Thus one can again assign

the same role to V (*£'—*£ ) as was done to V ( tl- \£ ) in the single-

Um formulation. That is, V shall only control the instantaneous collision

process, and assuming the interacting intervals for collisions to be so

short that the part of L, namely:

itself can, at any instant, express the complete invariant Lagrangian of

the system. In other words, one again keeps V in the Lagrangian L, just to

indicate the fact that the particles are not completely free but execute

collisions between themselves, changing instantaneously from one free motion

state to another.

Now the Eamiltonlan is defined by:



31

- -L-T"<7

l±J» . r m w\ (93)

The corresponding Hamilton equations of motion are:

or

l~U J t>>
n,

-* J^j_ JltV

|V ^2^ / »**">" ",/ 2 «"
(94)

Now assuming that each component of Xr and P^'are completely inde-

pendent, one defines the phase space by introducing space-tiaB and energy-

momentum coordinates into a single coordinate organization for an ensemble.

If there exist n component systems, therefore, the total number of degrees

of freedom of the resultant system is then 4n and one shall consider 8h-

dimensional phase space*

to.ce again introducing the invariant phase density function/5 (^] V^)

where ^ *s involved as an Implicit parameter, the phase current vector can

be defined byt

D =
( P*-*, P-fciO <95)

where

One assumes the existence of the equation of continuity in an-dinensional

phase-srace

:
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divD » 3 *-P*J»

Using the Hamilton equations of motion (94) , it can be written by:

divD r Cf, H 1***0

(97)

(97)«

whtrc

a *«*" *-[»/' a^w/w^-
(9g)

which indicates the Poisson*s bracket in the ( x^', Y>/
;

) 8n-dinensional

phase space.

To see the physical significance of the fin-dimensional equation of

continuity, consider the fact that actually P^-i§ are not completely inde-

pendent but they are related by a relation, namely:

•~'" u. li>
* U)Z I*.

-*" ^ (li^ 'f» > t- l*f "*-

r-

b'» f £ Ci/

— i l/J^Tn Sw
of simply:

(>M

fil I n 0,

(99)

(99)'

By imposing the functionality (99), with 3csme rearrangement, (98) can be

shown to yieldi

divD = ^
^>

-LfL -^^ 4, ^ 41%
K)

i*? 4*.' +P l{
J- °lz'l
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?Ih^2* 1"^^^ za
*=i*flg h

./

j
21

ĴO

(100)

Again noting the functionality of P ( ;><"<o ]^ ) with ?°as an implicit

parameter, one writes:

r H<" dz- ^A
(101)

keeping in mind that^— indicates a partial derivative of x with respect

to parameter 7 *•
, only varying"t^and fixing all the other variables as

constants. (100) can then be written as:

o (102)

where which indicates the

corresponding Poisson*s bracket in ( ofj^
, pjj ) 6n - dimensional phase

space. It is seen that (102) yields the identical form of Liouville^

theorem with the single time formulation in the 6n-pha3e space, if one lets

-|^ correspond to~~^-, and t/lHlj* to *f, hD in (68).

The above fact can be interpreted as follows: One may consider that

each component of zk?' and fr
' are completely Independent and thus nay

define the trivial ?h - dimensional phase space i*r*f f^ ). Once this
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proceditre la achieved, one can always reduce it to the corresponding 6n -

dimensional phase space formulation by Imposing the condition (98). There

exists an advantage in this procedure. Since the 8n - dimensional formu-

lation (97) is completely covariant in form, if one can impose the condition

(99) in the relativistic covariant form, one can be assured of a completely

covariant formulation leading to the corresponding results obtained by the

ordinary 6n - dimensional formulation. Later this procedure will be seen

to be possible by introducing an additional covariant <& -function.

It is noted here that (97)', ^f, H^ 8n * 0, is not the condition for

a stationary state, bat is a general condition to be obeyed by P . The

stationary state condition can be, however, defined from (102) by an

additional condition, namelyt

Therefore for the equilibrium distribution function, one solves (97 )» and

(103) simultaneously. It is again seen that they can simultaneously be

satisfied by choosing the world Invariant phase density function f to be

a function of constants of the motion of a system. Further, as it was done

before, one may again assume /> to be a function of total components of

energy-momentum vector of our isolated statistical system, leading to:

/ ~f <P1, P2, P3» Vu
* i~) (10^)

where: ^^ |V ,
^"'-t ( <r= 1, 2, 3, U)

The phase probability coefficient w • f/n of a whole system can be

connected with the component ohase probability coefficients w£sWy
(fit

-- P^" )

which can be defined with the similar assumption as in the single-time

formulation by:



35

(105) is identical with (76) in form, thus it can be led to a relation

similar to (78) in form, namely*

o^'* -L 2^i = J-JCS.-!*!? (a constant) (106)

with its solution:

log vv/y - o^' p<$^'+ *" J

wy- e e

_ ^^ ft- T °^"r^
u; * it w,. = e. ' e -e <^ (107)

where
"J-

= -sr
"F

,;
' !>,_= "3C

f>°''

Now the volume element in the phase space can be writtens

4\ miiM df
<108)

It is tempting in this formulation to set
J
^^

«f
- 1. However, in equi-

librium state, no statistical quantity is to be explicitly dependent either

on the relative time t(*) or on the proper time f^ . Therefore the

integration over the time in
J
vd| |g essentially meaningless. Further

the condition (99) is to be imposed in a covariant form. The restriction

(99) and the elimination of the trivial tiro factor can be carried out in

a relativistic manner by adding to the phase volume element dj the

invariant factor ^ , which is defined byj

/-i Jftfft) '

r c y
(109)

where ^ (x) is the Dirac delta function.
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The following relation holds for the Dirac delta function:

l*i -oM
Now S ( fV'ff'H-C^V^r ) can then be written aa:

U^'-t^)-*? ( i°>~*%)
2-^ u>

jv p, r c^fJ

A> L 5 < s 4+ *%) +\ ft+^ *$>]

**•/"where f' - ^ p^+ ^^t
restricting oneself to ^^o only*

Now with this ^ - function, the phase probability coefficient V^ mist

satisfyi

/
4^ - A <A

\
(111)
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Then from (107 )»

j
~ (partition function)

e" <*'«!£ <U2>

In analogy with the case of the single time formulation, comparing with

the result obtained in the Maxwell-Boltzman distribution law, one sets:

-, " a u/x (1U)

Neglecting the part of a ( £ -+ ^ ), it yields:

Again to be specific, restricting oneself to an ensemble for a single

particle system, one hasj

e

d£ =
e* 1

ji|«n-vt)^^-"-ri (U5 )

yV<* if =r

e^Cs-^;^!,^^
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For a physical quantity A<f, its average value is given byj

wherei

j e^n^^d^J^^h

where i*|f iy*-+ o^ . Remembering that it is essentially:

(116)

it is seen that (116) is exactly in agreement with (51), a result of the

Maxwell-Boltzman distribution law. In deriving (51), the 6 - dimensional

phase space was rather arbitrarily introduced, but the above agreement is

seen to bo a logical verification of its validity.

CONCLUSIONS

The conservation law of the four energy-momentum veotor components of

a whole isolated statistical system is utilized in formulating the covariant

statistical mechanics. The three reference framest rest, secondary, and
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prlnary, are helpful devices in this discussion.

First the expansion of the Maxwsll-Boltzman distribution lav is dis-

cussed and found to yield the result:

»" - 1* &
^f<r*

)

J \, e
**-*

where*

To formulate the single-time Gibb's statistical mechanics, the equa-

tions of motion are set up with Invariant quantities only, and it leads to

the covariant Idouville's theorem*

with the stationary condition ~: * 0. This is identical with the classical

formulation in form, but is not essentially the same.

One is led to the canonical distribution lawj

fa ~nv-

uo

I

<*<r ~fr#- t

Further the multiple-time formulation is considered with the result!

W*>£ i

with

4 " - /f*V*»*«^ <> ° / J "£•»•* J
$.
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This formulation i3 based on the covariant Liouville'a theorem j

with the stationary condition

In any of the above formulations, the phenomenologictJ relativistic

distribution law appears to be an approximation at low relative 'velocity

W , and the quantized statistical law can now be obtained simply by

replacing the variables by their appropriate operators. Indeed the Krotkov

and Scheidegge^s quantized statistical law can be obtained from (28) by

simply replacing the momentum pj^with its operator in the position represen-

tation, and by making the appropriate change of note.ticms.
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The conservation law for the four conponont3 of the energy-momentum

vector of a whole isolated statistical system is utilized in formulating

the covuriant statistical Mechanics. Three reference frames, rest, secon-

dary and primary, are helpful devices in thi3 discussion.

Unit vectors at rest in the secondary frame are defined by:

C^ * (1, o, 0, o)

^ ft (0, 1, 0, 0)

*' (0, 0, 1, 0)
^&
*' = (o, o, o, i)

The orthogonal unit vectors in the primary frame e^j^- • (v^ 1* \c£ U& )

are then given by:

A similar definition is given for the orthogonal unit vectors transforming

from the rest to the priaary frame by:

where

an* (^^j r is essentially the same as e^ and jj|^ ia the Lorenta

transformation matrix from j-th rest frame to the primary frame.

With position 4. - vector 2C®* Uf^f/X?' X%= ?<<:*), the following

Invariant quantities are defined:

(^-1,2,3 )

( 3 - 1, 2, 3, )



where t* is an invariant parameter equal to the tine as read In the

secondary frame and |J is ©oiial in magnitude to the Cartesian - -.ts

of position aa measured relative to the secondary frame. Further vith the

energy-momentum U - vector f^ »*>**
, the Invariant quantities which are

equal in magnitude to the Cartesian components of momenta and energy of

the particles relative to the secondary frame, are defined by:

7U - e.« J<r !<?> ( ^- 1, 2, 3)

To formulate the Maxvwll-Boltzraan distribution law In a covariant

form, one must consider a property of a system as associated vith a set of

k boxes with a definite value of the promrty attached to each box. Tha

•lMients are assumed to be indistinguishable In nature and move freely

except executing any kind of collision between elements. Considering the

maximum probable distribution, one obtains

i

W.. =

J*
1^^"'

where
g;J

is the apriori probability related to the j-th box.

p^
; is the energy-momentum 4 - vector related to the j-th box,

and thus
W;J is the probability that an element may be found in the j-th box.

The properties of 4 - vector <4-are discussed yielding:

where U/ ls the velocity 4 - vector of the secondary frame as seen by a

primary observer.

Gibb's single tine, f, in relativists covariant statistical me-

chanics is further considered in terms of such invariant quantities as ^



M' + i -J -rr

>

Sj^ , t 1 and T^ 5
'

. Starting from the covariant Hard1tan principle!

/

the Lagrangian equations of motion:

and the Hamilton's equation of motion t

are derived with

the Lagrangean, L - ^(-0)^]/ ,_ ?»**) "" V( W~W
U _ 1_ 1*. r *"

the Han&ltonian^*^fr^ tVfjS~^
The covariant Liouville's theorems

*/*. * l
'+&--•

is obtained with the stationary condition —^£- * 0, where /" is the world

invariant phase density function. This procedure is identical x/ith the

classical formulation in form, but it is seen that they are essentially

different. Finally the canonical distribution law is given by:

*#._«•
<*£ -fly-

I
where l£L= j^ -f]^

V
, <4<j> ^TTTr^l^ Jfpjf' » the phase volume element, and

Purther the Multiple-time formulation i3 considered with the result*



w«ki s^.vy p*
%
-+ (**><- >•, j^-^ ^f

I

[
$cf^**>+V**-^]

?** cwi D

These results are based on the relativlstie covariant Liouville's theorem

in multiple-time formulation:

with the stationary condition*

The Haniltonian of this case is given by H • "ST ^^ w,
-t-V I

*•- — ^<rj

In any of the above formulations, the ordinary relativlstie distribution

law appears to be en approximation at low relative velocity v*, and. the

quantized statistical law can be obtained simply by replacing the variables

by their appropriate operators and by change of notations.


