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Abstract 

 

Unpredictable power outages due to environmental factors such as lighting, wind, trees, 

and animals, have always been a concern for utilities because they are often unavoidable. This 

research aims to study squirrel-related outages by modeling past real-life outage data and provide 

the optimal result which would assist utilities in increasing electric system reliability. This 

research is a novel approach to benchmark system performance in order to identify areas and 

durations with higher than expected outages. The model is illustrated with seven years (2005-

2011) of animal-related outage data and 14 years of weather data (1998-2011) for four cities in 

Kansas, used as training data to predict future outages. The past data indicates that the number of 

outages on any day varies with the seasons and weather conditions on that day. The prediction is 

based on a Bayesian Model using conditional probability table, which is calculated based on 

training data. Since future weather conditions are unknown and random, Monte Carlo Simulation 

is used with the past 14 years of weather data to create different yearly scenarios. These 

scenarios are then used with the models to predict expected outages. Multiple runs of Monte 

Carlo analysis provide a probability distribution of expected outages. Further work discusses 

about cost-to-benefit analysis of implementation of outage mitigation methods. The analysis is 

performed by considering different combinations of outage reduction and mitigation levels. In 

this research, eight cases of outage reduction and nine cases of mitigation levels are defined. The 

probability of benefit is calculated by a statistical approach for every combination. Several 

optimal strategies are constructed using the probability values and outage history. The outcomes 

are compared with each other to propose the most beneficial outage mitigation strategy. This 

research will immensely assist utilities in reducing the outages due to squirrels more effectively 

with higher benefits and therefore improve reliability of the electricity supply to consumers.  
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Chapter 1 - Introduction 

This chapter introduces the research work, beginning with background research 

about the significance of overhead distribution system reliability. Next, the chapter 

provides a study of characteristics of squirrel-related outages on overhead distribution 

systems and outages dependence on weather conditions using historical data of weather 

and outages for four major cities in Kansas: Manhattan, Lawrence, Topeka, and Wichita. 

Monte Carlo Simulation is used to predict future outages using concepts of Bayesian 

model and Conditional Probability Table. Results obtained from the model are compared 

with observed outages to estimate the model accuracy in predicting future outages. 

Further research focuses on cost-to-benefit analysis for implementation of outage 

mitigation methods and proposes the most economical outage mitigation strategy for 

squirrel-related outage reduction. Objectives, scope, and importance of this research work 

are explained at the end of the chapter. 

 Overhead Distribution System  

The three major components of an electric power system are generation, 

transmission, and distribution. Distribution, which is categorized as primary and 

secondary distribution, is the part of the power system that extends from distribution 

substations to customer doorsteps. Depending on the type of feeders used to carry power 

to customers, distribution system is again divided into overhead distribution system and 

underground distribution system. In comparison to underground distribution systems, 

overhead distribution systems are more prone to outages. Outages occur regardless of 

time and place, causing severe impact on reliability of electric supply, affecting the 

industries, and hampering economic development of country. Through analysis of past 

history of outages, the observation was made that 80% of interruptions experienced by 

customers are due to outages in distribution systems [1]. Since distribution systems are 

located in densely populated areas with simple protection mechanisms, they are more 

vulnerable to outages than generation and transmission systems [2]. In the past, utilities 

have maintained a very high level of reliability; however, they must continue to increase 

their level of reliability in order to compete with recent advancements in technology. 

Many utilities are required to submit an annual reliability related system performance 
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report to the utility commissions [3]. Thus, distribution system reliability is becoming a 

very significant component of the utility business. 

Causes of Outages in Distribution System 

Various factors cause outages in distribution systems, but to achieve uniformity 

for comparison purposes, the IEEE Task Force has defined ten categories in 

benchmarking studies. However, the recommended categories do not prevent a utility 

from collecting additional detailed data, but the collected data must be grouped under one 

of the following categories [4]: 

 

Table 1.1 IEEE Task Force Recommended Outage Cause Categories 

 

Equipment Lightning 

Planned Power Supply 

Public Vegetation 

Weather(Other than Lightning) Wildlife 

Unknown Other 

 

Of these causes, animal outages have become a major concern for utilities due to 

their unpredictable nature. Animal/wildlife includes mammals, birds, reptiles, and insects 

or any other member of the animal kingdom. Squirrels and snakes cause outages in 

distribution systems by climbing up the distribution poles or transformers and creating 

short circuits between phase wires and ground [5]. Birds usually perch on the power lines 

and spread their wings, resulting in short circuits [5]. Wildlife can cause interruptions 

directly through contact, as with snakes, mice, ants, raccoons, squirrels, or birds, or 

indirectly as with nests and bird excrement. In Figure 1.1 [6], an owl perched on the lines, 

spread its wings and caused a short circuit fault. In Figure 1.2 [6], a squirrel climbed up 

the distribution pole and very possibly would have caused equipment damage. 
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Figure 1.1 An Owl Caused Outage in the Distribution System [6] (With Permission 

of Rick Harness) 

 
 

Figure 1.2 A Squirrel Perched on a Power Line [6] (With Permission of Rick 

Harness) 
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Figure 1.3 shows outage percentages by different causes in the overhead 

distribution system in the Manhattan area in 2010 and 2011. The categories in Manhattan 

are different from recommended categories because of two additional causes: extreme 

winds and ice storms. As shown, animals caused 10% of the outages which is a 

significant contribution to the total outages in the system. Outages translate into millions 

of dollars lost due to reduced power use, man-hours paid for repair, and the cost of 

replacing damaged equipment. Thus, an efficient method to evaluate the impact of animal 

activities on overhead distribution lines that involves tracking the animal-related outage 

events, would allow utilities to gauge the effect of animal impacts on distribution 

reliability and to choose better operation and maintenance plans. 

 

Figure 1.3 Percentage of Outages by Different Causes in Manhattan in 2010 and 

2011 
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 Previous Work 

In the past, Zhou, Pahwa and Yang demonstrated that the weather-related failures 

on overhead distribution can be modeled by the Poisson regression model and the 

Bayesian model [2]. The Poisson regression model determines correlation of wind and 

lightning with overhead feeder failures. The second method is based on one-layer 

Bayesian network, which uses conditional probabilities to model the causal relationship. 

Later, Sahai and Pahwa did research on the weather’s impact on animal-related 

failures in overhead distribution systems. By analyzing the historical data, it is 

determined that the animal-related outages are comparatively high on fair weather days. 

The behavioral patterns of animals in different months and their effect on animal-related 

outages were discovered and the 12 months are classified into three month types 

depending on animal activity. A one-layer Bayesian network is constructed which 

captures the correlation between type of month and number of fair days per week to 

predict animal-related outages in overhead distribution systems. The Bayesian model is 

applied to data of four cities in Kansas [7]. 

Gui, Pahwa and Das refined the models presented in [7] and have presented some 

additional methods to investigate the impact of weather and time of the year on the 

animal-related outages. Poisson regression model, neural network model, wavelet based 

neural network model and Bayesian model combined with Monte Carlo simulations are 

applied to the weekly data of four cities in Kansas. The classification of months used in 

Gui’s research is different from Sahai’s classification, as in previous work by Sahai the 

month type classification was only based on observation of historical data of one city, 

Manhattan, instead of four cities [13].   

 

 

 

 

 

 



6 

 

 Motivation 

Distribution system reliability is crucial in order for utility companies to compete 

with increased power demand and the growth of technology. The present work aims to 

propose the optimal outage mitigation strategy with a detailed study of outages caused by 

animals and prediction of outages using Bayesian Network Model and Monte Carlo 

Simulation. By performing cost-benefit analysis, utilities can protect the distribution 

system effectively with exceptional benefits in terms of revenue and reliability of electric 

supply. Though records of outages caused by various factors were kept, the recorded data 

can be used to identify areas with excessive outages and control these excessive outages 

to achieve higher reliability of distribution systems. Various statistical methods and 

neural network models can be used to predict outages. 

To predict animal-related outages more accurately, the effect of weather is also 

considered and the weather days are divided into low, medium, and high fair day levels. 

Similarly, recorded animal-related outages data is used to divide outages into nine outage 

levels. The conditional probability table is constructed using inputs, i.e., weather data and 

outages. 

Objectives of this work are 

(i) Construction of model using Bayes’ theorem and Conditional Probability Table 

(CPT) using past data from 2005-2011.  

(ii) Running Monte Carlo Simulation 10,000 times to predict future weather using 

past data from 1998-2011 and predict future outages using above constructed 

CPT. 

(iii) Cost-to-benefit analysis of the implementation of outage mitigation methods and 

determination of the most economical outage mitigation strategy for utilities to 

take corrective actions in order to improve reliability of electricity supply to 

consumers. 
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Chapter 2 - Bayesian Model Construction 

Because outage occurrences are random events, they can be successfully modeled 

by using probabilistic methods [7]. This research uses Bayesian Model to predict future 

outages constructed using five-year data, from 2005-2009, referred to as training data. 

The developed model has been tested by comparing results with two-year outage data, 

from 2010-2011, known as testing data. Predictions have been conducted on a weekly, 

monthly, and yearly basis. Monte Carlo simulation is used to find confidence intervals for 

the predictions. 

 Introduction to Bayesian Model 

Bayes’ Theorem 

Bayes' theorem presents the relationships of conditional probabilities and 

marginal probabilities of two random events. Usually the theorem is used to update the 

conditional probability of event A, taking account of new observations of occurrences of 

event B. Mathematically, Bayes' theorem is formulated by the following Equation [8]: 

 

 ( | ) 
 ( | )  ( )

 ( )
                                                         (   ) 

 
 

 P(A) is the prior probability or marginal probability of A. It is "prior" because no 

information about B is considered. 


 P(A|B) is the conditional probability of A, given B. It is also called the posterior 

probability because it is computed after the event B has been observed. 


 P(B|A) is the conditional probability of B given A. 


 P(B) is the prior or marginal probability of B. 
 
Note that B must have a non-zero prior probability in Equation 2.1. 

 Bayesian Network 

A Bayesian network is comprised of a set of variables{x1, x2… xn}, a graphical 

structure and a set of conditional probability tables. A Bayesian network is a directed 

acyclic graph, or a graph with no loops [9-11]. Each variable is represented by a node in 
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the graph, and connection arcs are present between nodes. An arc leads a parent (casual) 

node to a child (influenced) node and denotes conditional dependence between the child 

and parent nodes. Conversely, if no connection arc is between two nodes, it indicates 

conditional independence. A conditional probability table, which can be computed by the 

prior probabilities of the parent nodes, exists for each child node. 

 Prediction by Bayesian Model 

In addition to conditional probability tables, casual relationships can also be 

established from the data [12]. However, the conditional probability tables are much 

easier to learn compared to graph topology learning [12]. Also, the conditional 

probability table is easier to learn with fully observed data, as compared to partially 

observed data in which some nodes are hidden or data is missing [12]. With fully 

observed data and known structure, the Maximum Likelihood Estimation (MLE) 

algorithm is effective [12]. For unknown graph structure, algorithms that search through 

model space are used [12]. MLE is a method of estimating parameters of a population 

such that selected values maximize the likelihood of a sample [12]. The goal of learning 

in this case is to find parameter values of each cumulative probability distribution, thus 

maximizing the likelihood of the training data [12]. 

A Bayesian network can be used to learn causal relationships between parents and 

child nodes which are captured in the conditional probability tables [9]. After graph 

structure and conditional probability tables are learned, a Bayesian model can be used for 

predictions. Given the values of parent nodes and the learned conditional probability 

tables, the values of the child nodes can be estimated [12]. To predict the child nodes 

given the status of the parent nodes, top-down reasoning is used in which the probability 

of an effect given the cause can be computed [12]. 

 Analysis of Bayesian Model 

Figure 2.1 shows a one-layer discrete Bayesian network with three nodes 

representing the three variables: month type, fair days level, and weekly animal-related 

outage level [7,13]. The variables, are classified into discrete levels because with discrete 

variables conditional probability tables are simple to compute and easy to use. With three 

input states classified for month type, dividing the number of fair days per week into 
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three different levels results in nine input states. 

Classification of the input data to discrete levels, however, is at the expense of the 

model performance in predictions because a loss of information occurs during the 

classifications and all data points in each level are treated with similar priority. In order 

for the model to be as accurate as possible, the data must be examined carefully to get the 

best classification. Parent nodes should be classified in such a way that all data points 

with similar influences on the child nodes are grouped into the same level. Conversely, 

data points which have contrasting impacts on the child nodes should be grouped into 

different levels [7]. Also, sufficient data entries should be present for each combination 

of inputs because a reliable conditional probability distribution requires adequate 

observations in the data. On the other hand, classification of child node is required to 

retain as many levels as possible, with relevant number of data entries in each level [7]. 

The more levels that are present for the child node, the more information is available 

regarding the effects of parent nodes on the child node and, therefore, a sophisticated 

prediction of outages will be obtained. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 One-layer Bayesian Model for Prediction of Squirrel-related Outages 

 Classification of Weather Conditions 

According to previous work by Gui, Pahwa and Das, the proposed classification 

of 12 months into three levels based on squirrel activity is shown in Table 2.1 [13]: 

 

Month Type  

(1, 2, 3) 

Fair Days Level 

(1, 2, 3) 

Outage Level  

(1, 2, 3…, 9) 
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Table 2.1 Classification of Months 

 

Month Type Months Squirrel Activity 

1 January, February, March Low 

2 
April, July, August, 

December 
Moderate 

3 
May, June, September, 

October, November 
High 

 
 

Squirrel activity is high for Month Type 3 because these months have more fair 

weather days and higher squirrel population compared to months of Month Type 1 and 

Month Type 2. Fair weather days are days on which temperature stays between 40 and 85 

degrees Fahrenheit with no other weather activity like rain, snow, thunderstorm etc. [7]. 

The classification of fair day level is done by counting the number of fair days per week. 

For uniformity and ease of classification of data, each month is composed of exactly four 

weeks. Since a month can have 28, 29, 30 or 31 days, it is difficult to allocate the weeks 

evenly in a particular month. To make sure that all the days in a month are considered, 

some weeks may have eight days [7]. Therefore, the number of fair days per week can 

vary from zero to eight. Thus, referring to previous work [13], classification for the 

number of fair days per week is as follows: 

 

Table 2.2 Classification of Fair Weather Days per Week 

   

Fair day Level Fair weather days per week 
Impact on animal caused 

outages 

1 0 Low 

2 1~3 Moderate 

3 4~7(or 8) High 
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 Classification of Weekly Squirrel-Related Outages 

Overhead distribution feeder outage information from 2005 to 2011 for different 

areas in Kansas was obtained from Westar Energy. Histograms of weekly squirrel-related 

outages of training data from 2005 to 2009 for all the cities are shown in Figure 2.2 to 

2.5. Proper classifications of outages should improve the model performance. Previous 

work demonstrates that classifications with nine outage levels provided the best results 

for almost all cities compared to other outage-level classifications [13]. Therefore, in 

order to maintain uniformity and simplicity, nine levels of outages are used for all cities. 

To construct outage levels for Wichita, every bin is made approximately of the same 

count of occurrences as much as possible. For instance, Wichita has a total of 240 

occurrences of weekly outages varying from 1 to 65. Therefore, to obtain equal number 

of occurrences for every bin, which is approximately 27 (240 divided by 9), bars were 

grouped to sum to 27. Following this general rule, outage levels for Wichita based on 

Figure 2.2 are given in Table 2.3. Classifications of outage levels for other cities are 

given in Tables 2.4 to 2.6. 

 

Figure 2.2 Histogram of Weekly Squirrel-related Outages from 2005-2009 in 

Wichita 
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Figure 2.3 Histogram of Weekly Squirrel-related Outages from 2005-2009 in 

Topeka 

 

 

Figure 2.4 Histogram of Weekly Squirrel -related Outages from 2005-2009 in 

Lawrence 
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Figure 2.5 Histogram of Weekly Squirrel-related Outages from 2005-2009 in 

Manhattan 

 

Table 2.3 Classification of Outage Levels for Wichita 

 

Number of 

occurrences 

(weeks) 

Animal Caused 

Outages per Week 

Outage Level 1 30 1~3 

Outage Level 2 31 4 ~ 5 

Outage Level 3 35 6 ~ 7 

Outage Level 4 33 8 ~ 9 

Outage Level 5 37 10 ~ 12 

Outage Level 6 30 13 ~ 17 

Outage Level 7 21 18 ~ 21 

Outage Level 8 13 22 ~ 30 

Outage Level 9 10 31 ~ 65 

 

Table 2.4 Classification of Outage Levels for Topeka 

 

Number of 

occurrences 

(weeks) 

Animal Caused 

Outages per Week 

Outage Level 1 16 0 

Outage Level 2 40 1 ~ 2 
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Outage Level 3 19 3 

Outage Level 4 31 4 

Outage Level 5 38 5 ~ 6 

Outage Level 6 28 7 ~ 8 

Outage Level 7 28 9 ~ 11 

Outage Level 8 29 12 ~ 20 

Outage Level 9 11 21 ~ 40 

 

Table 2.5 Classification of Outage Levels for Lawrence 

 

Number of 

occurrences 

(weeks) 

Animal Caused 

Outages per Week 

Outage Level 1 36 0 

Outage Level 2 45 1 

Outage Level 3 37 2 

Outage Level 4 26 3 

Outage Level 5 31 4 

Outage Level 6 28 5 ~ 6 

Outage Level 7 18 7 ~ 8 

Outage Level 8 11 9 ~ 11 

Outage Level 9 8 12 ~ 29 

 

Table 2.6 Classification of Outage Levels for Manhattan 

 

Number of 

occurrences 

(weeks) 

Animal Caused 

Outages per Week 

Outage Level 1 62 0 

Outage Level 2 63 1 

Outage Level 3 42 2 

Outage Level 4 25 3 

Outage Level 5 22 4 

Outage Level 6 13 5 

Outage Level 7 9 6 

Outage Level 8 3 7 

Outage Level 9 1 8 
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Conditional Probability Table 

The conditional probability table (CPT) provides the probability of occurrence of 

each outage level given a month type and a level of fair weather days per week, that is, 

P (Outage Level = i | Month Type = j, Fair Weather Days per Week Level =k)  

where i = 1,…,9, j =1,2,3 and k = 1,2,3. 

Since the graph structure is fully known, MLE is used to learn the values in the CPT with 

fully observed historical data. The input states are tabulated in Table 2.7 and the learned 

conditional probabilities are listed in Table 2.8 for Wichita. Table 2.7 shows sufficient 

training cases for each input state, with the exception of input state 7 because this state 

represents Month type 1, i.e., January, February, and March, which typically have less fair 

weather days. The equation used to compute conditional probabilities for input state m is:  

 

P (Outage level = i | Input state = m) = 

Number of occurrences in outage level i / Total number of occurrences in input state m 

 

Table 2.7 All Possible States and Number of Observations for Wichita 

Input State 1 2 3 4 5 6 7 8 9 

Month Type 1 2 3 1 2 3 1 2 3 

Fair Day Level 1 1 1 2 2 2 3 3 3 

Number of 

Occurrences 
38 44 24 19 24 35 3 12 41 

 

Table 2.8 Conditional Probability Table with Nine Input States for Wichita 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.289 0.289 0.184 0.158 0.079 0.000 0.000 0.000 0.000 

Input State 2 0.205 0.159 0.250 0.136 0.182 0.023 0.023 0.023 0.000 

Input State 3 0.000 0.083 0.000 0.125 0.125 0.292 0.250 0.083 0.042 

Input State 4 0.316 0.158 0.263 0.105 0.105 0.053 0.000 0.000 0.000 
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Input State 5 0.083 0.208 0.083 0.250 0.208 0.125 0.042 0.000 0.000 

Input State 6 0.029 0.086 0.114 0.029 0.143 0.200 0.257 0.057 0.086 

Input State 7 0.000 0.000 0.667 0.000 0.000 0.333 0.000 0.000 0.000 

Input State 8 0.083 0.000 0.167 0.250 0.250 0.250 0.000 0.000 0.000 

Input State 9 0.000 0.000 0.049 0.146 0.195 0.171 0.098 0.195 0.146 

 

The possible input states and conditional probability tables for other cities are shown in 

Table 2.9 to 2.11 and Table 2.12 to 2.14 respectively. 

 

Table 2.9 All Possible States and Number of Observations for Topeka 

Input State 1 2 3 4 5 6 7 8 9 

Month Type 1 2 3 1 2 3 1 2 3 

Fair Day Level 1 1 1 2 2 2 3 3 3 

Number of 

Occurrences 
40 32 17 16 32 41 4 16 42 

 

 

Table 2.10 All Possible States and Number of Observations for Lawrence 

Input State 1 2 3 4 5 6 7 8 9 

Month Type 1 2 3 1 2 3 1 2 3 

Fair Day Level 1 1 1 2 2 2 3 3 3 

Number of 

Occurrences 
43 31 13 15 32 38 2 17 49 
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Table 2.11 All Possible States and Number of Observations for Manhattan 

Input State 1 2 3 4 5 6 7 8 9 

Month Type 1 2 3 1 2 3 1 2 3 

Fair Day Level 1 1 1 2 2 2 3 3 3 

Number of 

Occurrences 
43 30 16 15 29 37 2 20 48 

 

Table 2.12 Conditional Probability Table with Nine Input States for Topeka 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.200 0.300 0.175 0.175 0.125 0.025 0.000 0.000 0.000 

Input State 2 0.094 0.219 0.063 0.188 0.125 0.188 0.094 0.000 0.031 

Input State 3 0.000 0.000 0.118 0.059 0.118 0.059 0.353 0.235 0.059 

Input State 4 0.125 0.563 0.125 0.063 0.063 0.063 0.000 0.000 0.000 

Input State 5 0.094 0.125 0.125 0.094 0.344 0.188 0.031 0.000 0.000 

Input State 6 0.000 0.049 0.000 0.122 0.146 0.098 0.171 0.293 0.122 

Input State 7 0.000 0.000 0.000 0.500 0.500 0.000 0.000 0.000 0.000 

Input State 8 0.000 0.313 0.125 0.250 0.188 0.000 0.125 0.000 0.000 

Input State 9 0.000 0.024 0.000 0.048 0.095 0.214 0.214 0.310 0.095 

 

Table 2.13 Conditional Probability Table with Nine Input States for Lawrence 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.256 0.349 0.163 0.047 0.070 0.047 0.047 0.023 0.000 

Input State 2 0.258 0.226 0.129 0.161 0.129 0.097 0.000 0.000 0.000 

Input State 3 0.077 0.000 0.000 0.231 0.231 0.154 0.231 0.077 0.000 

Input State 4 0.267 0.200 0.267 0.133 0.067 0.000 0.000 0.067 0.000 

Input State 5 0.063 0.250 0.219 0.156 0.125 0.188 0.000 0.000 0.000 

Input State 6 0.079 0.053 0.132 0.053 0.132 0.237 0.105 0.184 0.026 

Input State 7 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Input State 8 0.176 0.294 0.353 0.000 0.118 0.059 0.000 0.000 0.000 

Input State 9 0.061 0.082 0.082 0.143 0.184 0.102 0.184 0.020 0.143 

 

Table 2.14 Conditional Probability Table with Nine Input States for Manhattan 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.349 0.395 0.093 0.093 0.047 0.000 0.000 0.000 0.023 

Input State 2 0.500 0.300 0.100 0.033 0.067 0.000 0.000 0.000 0.000 

Input State 3 0.063 0.188 0.250 0.063 0.125 0.125 0.125 0.063 0.000 

Input State 4 0.333 0.267 0.200 0.067 0.133 0.000 0.000 0.000 0.000 

Input State 5 0.172 0.276 0.310 0.103 0.069 0.000 0.069 0.000 0.000 

Input State 6 0.135 0.108 0.189 0.108 0.162 0.108 0.135 0.054 0.000 

Input State 7 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Input State 8 0.350 0.300 0.100 0.100 0.150 0.000 0.000 0.000 0.000 

Input State 9 0.188 0.208 0.208 0.188 0.063 0.146 0.000 0.000 0.000 

 

The CPT represents the influence of month and number of fair weather days per week on 

the number of animal-related outages per week [7]. Zero occurrences for high outage 

levels in the CPT indicates that if the month type is 1 and no fair weather days occur in a 

week, then a very low number of animal-caused outages will takes place. In addition, other 

inferences can be drawn from the table similar to those of previous work [7, 13].   

 Expected Value of Outages  

Expected values of the outages can be calculated by multiplying the average value 

or median of each outage level to its corresponding conditional probabilities obtained from 

the Bayesian Model. In this research work, average values are characterized for each input 

state because the average values retain the distribution of outages in the same outage level 

and thus more accurately represent the outage levels. Average values for outage levels in 

the data for Wichita are tabulated in Table 2.15. 
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Table 2.15 Average Values for Each Outage Level for Wichita 

 

Outage 

Level 
1 2 3 4 5 6 7 8 9 

Average 

Value 
2 4.5 6.5 8.5 11 15 19.5 26 48 

 

 

Using Equation 2.2 [7], the expected number of squirrel-caused outages can be computed 

in each input state: 

 

E (Number of Outages | Input state = j) = 

∑  (              |             

 

   

)         (              )            (   ) 

 

where, 

 E (Number of animal-caused outages|Input state = j) is the expected number of 

animal-caused outages in input state j, j = 1… 9 

 P (Outage level = k |Input state = j) is the conditional probability of the occurrence 

of outage level k, given input state j, which can be learnt from Table 2.8. 

 Average (Outage level = k) is the average value of the outage level k, k=1… 9. The 

average values can be learnt from Table 2.15. 

 

Expected values of animal-caused outages in each input state for Bayesian models 

with nine input states are shown in Table 2.16 for Wichita. For clear observation of trends 

in the expected values, they are plotted in Figure 2.6-2.9, which illustrates the increasing 

trend in expected values of animal-related outages when the month type increases from 1 

to 3. When the fair day level increases from 1 to 3, a similar but not-as-obvious increasing 

trend is observed in the expected values of outages. However, for other cities, when the 
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fair days level increases from 2 to 3, there is a slight decrease in the expected values of 

outages in several cases. This is due to the fact that we are considering point estimates for 

outages. Also, the size of the cities can have an influence. Since Wichita is the biggest city, 

it gives the best results due to smoothing of the data as seen in Figure 2.6. On the other 

hand, observing Figures 2.8 and 2.9 shows that the results for Lawrence and Manhattan 

have most inconsistencies as these estimates considers only average values ignoring the 

actual range of outages per week. 

Table 2.16 Expected Values of Animal-related Outages for Wichita by Bayesian 

Model with Nine Input States 

 

Outage Level Month Type Fair day level Expected Number 

Input State 1 1 1 5.29 

Input State 2 2 1 7.28 

Input State 3 3 1 16.23 

Input State 4 1 2 5.89 

Input State 5 2 2 8.75 

Input State 6 3 2 16.61 

Input State 7 1 3 9.33 

Input State 8 2 3 9.88 

Input State 9 3 3 20.27 
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Figure 2.6 Trends in Expected Values of Animal-related Outages for Wichita 
 

 
 

Figure 2.7 Trends in Expected Values of Animal-related Outages for Topeka 
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Figure 2.8 Trends in Expected Values of Animal-related Outages for Lawrence 

 

Figure 2.9 Trends in Expected Values of Animal-related Outages for Manhattan 
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The expected value in any input state is considered to be the estimated value for 

weeks with the same input state. A time series estimation by Bayesian model with nine 

input states for Wichita is shown in Figure 2.10. As shown in this figure, the model 

underestimates for the months in which the numbers of animal-related outages have been 

high, and this is mainly because of loss of information during outage classifications. The 

average values represent an outage level during estimations; thus, higher observed values 

of outages in one outage level are ignored during estimations. To overcome the above 

problem, the outage levels are considered as outputs instead of the numbers of outages. 

Outage levels can be obtained using Table 2.16 for each expected value of outages and 

then listed as the expected outage levels, shown in Table 2.17. The time series estimation 

of outage levels for Wichita is shown in Figure 2.11. Comparing Figure 2.11 to Figure 

2.10, improved performance was observed when the estimates are represented as outage 

levels instead of number of outages. 

 

Table 2.17 Expected Outage Levels for Wichita by Bayesian Model with Nine Input 

States 

 

Outage Level Month Type Fair day level Expected Outage 

Level 

Input State 1 1 1 2 

Input State 2 2 1 3 

Input State 3 3 1 6 

Input State 4 1 2 3 

Input State 5 2 2 4 

Input State 6 3 2 6 

Input State 7 1 3 4 

Input State 8 2 3 5 

Input State 9 3 3 7 
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From Bayesian Model results, it is clear that the model performance is similar to 

conclusions drawn in [13]. Similar results for other cities are shown in Figure 2.11 to 2.16. 

The results show that using only point estimates of outages or outage level is not satisfactory. 
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Chapter 3 - Monte Carlo Simulation 

In Chapter 2, the assumption was made that the computed value of outages for each state 

is the expected value, which represents a point estimate for the number of outages. However, 

since a particular month type and particular level of fair weather days per week are composed of 

a number of entities, an input state represents a range of different values of factors and is only a 

rough classification of the effects of month and fair weather days on animal-caused outages. 

Thus, the model is expected to contain errors in prediction and a range of values should be found 

within which the observed numbers of outages are expected to lie. Monte Carlo simulation is a 

common method to determine the confidence intervals. Moreover, classifying input data into 

discrete levels causes the model prone to inaccuracies in predictions because all outages in one 

level are represented by an average value, causing clearly observed underestimations in 

predictions. Outages higher than the average in an outage level are ignored while computing 

average. To overcome this insufficiency, Monte Carlo simulations were utilized in order to 

obtain a range for predicted outages. 

Monte Carlo simulation uses random numbers to resample a system and gives 

distributions of the output. Such methods are typically used when the computation of an exact 

result with a deterministic algorithm is not feasible or impossible [14]. Results of a Monte Carlo 

simulation are distributions of possible outcomes instead of one predicted outcome. In other 

words, Monte Carlo simulations give the range of possible outcomes that could occur and the 

likelihood of any of those occurrences. Given the same weather conditions, occurrences of 

animal-related outages are observed for hundreds or thousands of times instead of the limited and 

oftentimes insufficient training cases. Even though a Monte Carlo simulation is an approximate 

technique, any degree of precision can be achieved by increasing the number of iterations [15]. 

Monte Carlo simulations have greatly impacted many different fields of computational science, 

especially reliability assessment of power system [16-18]. 
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 Algorithm 

The same algorithm which was implemented in [19] was used for Monte Carlo simulations based 

on normalized CPT of Bayesian model with nine input states (MCS CPT9). 

The algorithm outline for MCS CPT9 is provided below: 

 Find the input state for a given week. 

 Generate a uniform random number. 

 Use roulette wheel selection with this random number to select an outage level based on 

CPT (not normalized by bin sizes in outage levels). 

 Generate another uniform random number. 

 Use roulette wheel selection with this random number to select a value of outage from 

each outage level. The outages follow uniform distribution within one outage level. 

 Repeat the simulation 10000 times each week. 

 

Animal-related outage data and weather data from 2005-2009 for Wichita, Topeka, 

Lawrence, and Manhattan have total 240 weeks. Each week has a given input state. Using the 

week’s input state information, the algorithm generated one outage level for that week using 

CPT. Then, this outage level information generated outage value for that week using uniformly 

distributed values that assigns equal probabilities for every outage value depending on outage 

level. Since the simulation was repeated for 10000 iterations, 10,000 simulated sample points 

were obtained for each week; the expected outage is the mean of its 10,000 sample points. By 

totaling the sample points of four weeks in the same month in an iteration, 10,000 sample points 

for monthly outages were acquired, and by adding the sample points of 48 weeks in the iteration, 

10,000 sample points were gathered for the yearly outages. The mean of 10,000 simulations was 

taken as prediction instead of using the expected value computed by Equation 2.1, thus 

improving the performance of Bayesian model outputs since every outage has a chance to be 

generated instead of representing one outage level by only the average value. 

 Confidence Interval 

With 10,000 sample points for every week, the confidence interval could easily be 

determined. The upper limit for 95% confidence is the smallest integer X such that the 

percentage of all numbers below X exceeds 97.5% of the 10,000 data points. The lower limits 
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are assumed to be the largest integer, which makes the percentage of all the numbers below it 

smaller than 2.5%. The confidence intervals were computed based on the 10,000 aggregated 

monthly and yearly data points in the same way as for the weekly data. The upper limits gave a 

range in which the actual observed values are expected to lie given the combination of month 

type and the number of fair weather per week. As the amount of confidence is reduced, the range 

allowed for the predicted value decreases. With a lower confidence, more observed values may 

lie outside the predicted range of values. In this research, only the upper limits are given more 

attention, because they provide a benchmark for the utilities of animal-caused outages that could 

occur in the system. The utilities can take preventive actions based on these upper limits. 

 Testing of Model Accuracy  

To test if the results of Monte Carlo simulations are accurate, the histogram of input state 

6 was compared with the histogram of 10,000 simulation points of the first week of May 2011 in 

Wichita. A comparison of Figures 3.1 and 3.2, clearly demonstrate that values generated by MCS 

CPT9 are in consonance with CPT values of input state 6. Therefore, the model generates the 

every outage value depending on CPT. However, the summation of outages for outage levels 

with same probability value might not be same as the outage values are generated randomly. 

 

 

Figure 3.1 CPT Values of Wichita for Input State 6 
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Figure 3.2 Histogram of MCS 10,000 Points for Each Outage Level of Wichita 

 

Results for the weekly and monthly estimations by MCS for training data: 2005-2009 are 

shown in Figures 3.3-3.10 for all four cities, and for testing data: 2010-2011 are shown in 

Figures 3.11-3.18 for all cities. Also, the upper 95% limit for outages is shown in these figures. 

Observation of the weekly estimated simulation of Wichita indicates that most weeks fell below 

the 95% confidence interval, except Week 24, Week 44, and Week 48. In monthly estimations, 

January 2011 was above the confidence interval. For Topeka, nine weeks out of 96 weeks were 

outside the upper limit of 95% confidence interval in weekly estimations and one month was 

outside the upper limit for monthly estimation. For Lawrence, eight weeks were outside the 

upper limits and all months were below the upper limit. For Manhattan, more than ten weeks and 

four months were outside the upper limit for weekly and monthly estimations, respectively. 

Therefore, estimations are more accurate on a monthly basis since the time series evens out for 

bigger aggregation, resulting in a more consistent data pattern. However, in yearly estimations of 

all cities, excessive information was ignored and the estimations tended to flatten out over the 

years since weather conditions are similar from year to year.  

Absolute Average Error (AAE) values are tabulated in Table 3.1. The AAE value shows 

closeness of estimations to the observed values. 
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Table 3.1 AAE Obtained from MCS  

City 

AAE 

Training data 

(2005-2009) 

Testing data 

(2010-2011) 

Wichita 4.7414 8.0208 

Topeka 3.4458 7.7917 

Lawrence 2.2542 2.3750 

Manhattan 1.2375 2.4479 

 

From Table 3.1, the AAE values are higher for testing data as the years 2010 and 2011 

had more outages than in previous years. Therefore, the CPT constructed using 2005-2009 

outage data resulted in higher values of AAE for testing period than training period. 
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Figure 3.19 Histogram of Estimated Outages in year 2010 for Wichita 

 

 

Figure 3.20 Histogram of Estimated Outages in year 2011 for Wichita 
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Figure 3.21 Histogram of Estimated Outages in year 2010 for Topeka 

 

 

Figure 3.22 Histogram of Estimated Outages in year 2011 for Topeka 
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Figure 3.23 Histogram of Estimated Outages in year 2010 for Lawrence 

 

 

Figure 3.24 Histogram of Estimated Outages in year 2011 for Lawrence 

0 50 100 150 200 250 300 350
0

20

40

60

80

100

120

140

160

180
Histogram of predicted outages in 2011

Number of outages

O
c

c
u

re
n

c
e

s
y(x) = a exp( - ((x - x

0
)^2) / (2 ^...

a = 153.61

 = 25.846
x

0
 = 175.53

R = 0.99092  (lin)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

160

180

200
Histogram of predicted outages in 2011

Number of outages

O
c

c
u

re
n

c
e

s

y(x) = a exp( - ((x - x
0
)^2) / (2 ^...

a = 168.19
 = 23.536
x

0
 = 168.52

R = 0.99321  (lin)



57 

 

 

 

Figure 3.25 Histogram of Estimated Outages in year 2010 for Manhattan 

 

 

Figure 3.26 Histogram of Estimated Outages in year 2011 for Manhattan 
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By observing Figures 3.19-3.26, it is found that the animal-related estimated outages in 2010 and 

2011 are almost in the same range for all cities. The observed outages and its 95% confidence 

intervals for years 2010 and 2011 are given in Table 3.2. From Table 3.2, it is seen that the 

observed outages are below the upper limit of 95% confidence interval, which implies that the 

Bayesian network model is able to capture the time-based pattern in animal-related outages. 

 

Table 3.2 95% Confidence Intervals by MCS and Observed Outages for Different Cities for 

years 2010 and 2011 

City Year Mean Lower 

95% 

Upper 

95% 

Observed 

Outages 

Wichita 2010 515.50 79 1518 944 

2011 517.92 88 1518 744 

Topeka 2010 348.70 48 1075 721 

2011 355.82 55 1110 708 

Lawrence 2010 178.94 0 590 261 

2011 171.79 0 545 243 

Manhattan 2010 89.90 0 252 184 

2011 89.19 1 249 165 

 

Tables 3.2-3.5 show the mean and sigma (standard deviation) obtained from 10,000 

Monte-Carlo Simulations points and by fitting Gaussian curves to the histogram of 10,000 

simulation points. These values do not have significant difference. Therefore for cost-benefit 

analysis in Chapter 5, the distributions based on the Gaussian fit are used. 

Table 3.3 Comparison of Mean and Standard Deviation Values from MCS and Gaussian 

Fits to Estimated data of Wichita for Years 2005-2011 

Year 
MCS Gaussian Fit 

Mean Sigma Mean Sigma 

2005 500.19 57.41 494.87 57.33 

2006 521.90 59.95 516.66 59.58 

2007 498.78 56.43 492.97 55.40 

2008 512.51 57.13 506.92 55.70 

2009 516.62 59.05 511.65 57.95 

2010 515.58 58.02 511.65 57.87 

2011 517.19 58.08 512.25 57.42 
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Table 3.4 Comparison of Mean and Standard Deviation Values from MCS and Gaussian 

Fits to Estimated data of Topeka for Years 2005-2011 

Year 
MCS Gaussian Fit 

Mean Sigma Mean Sigma 

2005 347.19 39.56 343.81 39.66 

2006 348.78 41.38 345.52 41.67 

2007 357.42 40.46 353.69 40.23 

2008 341.61 37.50 339.03 37.64 

2009 344.38 37.97 340.56 37.67 

2010 348.66 41.27 344.98 41.09 

2011 354.99 41.82 350.95 41.37 

 

Table 3.5 Comparison of Mean and Standard Deviation Values from MCS and Gaussian 

Fits to Estimated data of Lawrence for Years 2005-2011 

Year 
MCS Gaussian Fit 

Mean Sigma Mean Sigma 

2005 174.77 23.62 172.07 23.20 

2006 178.89 25.96 175.24 25.15 

2007 174.95 25.81 171.81 25.27 

2008 182.41 27.42 179.4 26.96 

2009 176.18 27.70 172.71 27.17 

2010 178.42 25.99 175.55 25.65 

2011 171.62 24.24 168.75 23.71 

 

Table 3.6 Comparison of Mean and Standard Deviation Values from MCS and Gaussian 

Fits to Estimated data of Manhattan for Years 2005-2011 

Year 
MCS Gaussian Fit 

Mean Sigma Mean Sigma 

2005 94.88 11.54 94.11 11.56 

2006 90.70 11.27 89.83 11.28 
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2007 90.18 11.36 89.26 11.43 

2008 92.97 11.36 92.08 11.43 

2009 89.55 11.14 88.85 11.30 

2010 89.90 11.20 89.07 11.16 

2011 89.39 11.23 88.63 11.20 
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Chapter 4 - Prediction of Outages in The Future 

To predict future outages using past data, the same model was used that was discussed in 

Chapter 3. However, since outages due to squirrel are known to be dependent on weather, future 

weather must also be predicted. The prediction for future weather was obtained by running 

Monte Carlo simulations 10,000 times based on the weather history. 

 Prediction of Future Weather 

Prediction of weather data was performed by using the past 14 years of data, from 1998-2011. 

For every month, the number of fair days in each week were calculated and a histogram of 

number of fair days per month was plotted for the four cities as shown in Figures 4.1-4.4.  
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Figure 4.1 (a)-(c) Histogram Showing Number of Fair Days for Wichita from 1998-

2011  
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Figure 4.2  (a)-(c) Histogram Showing Number of Fair Days for Topeka from 1998-

2011 
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Figure 4.3 (a)-(c) Histogram Showing Number of Fair Days for Lawrence from 1998-

2011 
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(c) 

 

 

 

As observed from the histogram plots, the number of fair days was greater for month type 

3: May, June, September, October, and November, followed by month type 2: April, July, 

August, and December. Also, the weather pattern for all the four cities is very similar. Using this 

14 year weather data from 1998-2011, the probability values are calculated by dividing the 

number of fair days per month by 56, as for each month we have 56 (14 years×4 weeks) data 

points. The probability tables for four cities are shown in Table 4.1- 4.4. Monte Carlo 

simulations combined with these probability tables were performed to predict future weather. 

This predicted weather data was used to predict outages for an unknown year in the future. 

Table 4.1 Probability Table of 1998-2011 Weather Data for Wichita 

No. of Fairdays 0 1 2 3 4 5 6 7 8 

January 0.86 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.00 

February 0.66 0.21 0.13 0.00 0.00 0.00 0.00 0.00 0.00 

March 0.38 0.16 0.13 0.16 0.11 0.04 0.02 0.02 0.00 

April 0.11 0.05 0.05 0.14 0.21 0.16 0.20 0.05 0.02 
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Figure 4.4 (a)-(c) Histogram Showing Number of Fair Days for Manhattan from 

1998-2011 
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May 0.04 0.05 0.07 0.07 0.27 0.20 0.21 0.09 0.00 

June 0.32 0.20 0.20 0.14 0.07 0.05 0.00 0.02 0.00 

July 0.61 0.23 0.11 0.04 0.00 0.00 0.02 0.00 0.00 

August 0.57 0.21 0.05 0.09 0.05 0.00 0.02 0.00 0.00 

September 0.14 0.16 0.07 0.14 0.23 0.11 0.05 0.05 0.04 

October 0.04 0.04 0.11 0.11 0.16 0.18 0.21 0.11 0.05 

November 0.29 0.14 0.13 0.20 0.09 0.05 0.07 0.04 0.00 

December 0.80 0.11 0.07 0.02 0.00 0.00 0.00 0.00 0.00 

 

Table 4.2 Probability Table of 1998-2011 Weather Data for Topeka 

No. of Fairdays 0 1 2 3 4 5 6 7 8 

January 0.88 0.11 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

February 0.77 0.20 0.04 0.00 0.00 0.00 0.00 0.00 0.00 

March 0.43 0.27 0.09 0.07 0.05 0.07 0.02 0.00 0.00 

April 0.07 0.09 0.13 0.21 0.16 0.18 0.13 0.04 0.00 

May 0.00 0.02 0.11 0.13 0.23 0.23 0.20 0.05 0.04 

June 0.18 0.13 0.25 0.18 0.09 0.14 0.04 0.00 0.00 

July 0.39 0.20 0.14 0.18 0.02 0.04 0.02 0.00 0.02 

August 0.46 0.16 0.13 0.11 0.07 0.04 0.04 0.00 0.00 

September 0.05 0.11 0.05 0.20 0.20 0.07 0.16 0.11 0.05 

October 0.04 0.05 0.13 0.20 0.16 0.21 0.18 0.04 0.00 

November 0.25 0.23 0.25 0.13 0.07 0.04 0.02 0.02 0.00 

December 0.77 0.18 0.02 0.02 0.02 0.00 0.00 0.00 0.00 

 

Table 4.3 Probability Table of 1998-2011 Weather Data for Lawrence 

No. of Fairdays 0 1 2 3 4 5 6 7 8 

January 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

February 0.89 0.09 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

March 0.54 0.14 0.18 0.05 0.04 0.05 0.00 0.00 0.00 

April 0.09 0.07 0.18 0.18 0.25 0.11 0.07 0.05 0.00 

May 0.02 0.05 0.05 0.09 0.20 0.20 0.14 0.21 0.04 

June 0.09 0.13 0.16 0.21 0.23 0.05 0.11 0.02 0.00 

July 0.36 0.16 0.20 0.13 0.09 0.04 0.00 0.04 0.00 

August 0.38 0.18 0.14 0.13 0.07 0.05 0.05 0.00 0.00 

September 0.05 0.07 0.07 0.11 0.16 0.23 0.07 0.20 0.04 

October 0.05 0.11 0.11 0.16 0.20 0.20 0.11 0.05 0.02 

November 0.34 0.25 0.23 0.07 0.05 0.02 0.02 0.02 0.00 

December 0.86 0.11 0.04 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 4.4 Probability Table of 1998-2011 Weather Data for Manhattan 

No. of Fairdays 0 1 2 3 4 5 6 7 8 

January 0.93 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

February 0.82 0.16 0.00 0.02 0.00 0.00 0.00 0.00 0.00 

March 0.46 0.18 0.20 0.07 0.07 0.02 0.00 0.00 0.00 

April 0.04 0.14 0.13 0.20 0.11 0.21 0.14 0.02 0.02 

May 0.00 0.02 0.05 0.16 0.07 0.32 0.16 0.18 0.04 

June 0.14 0.07 0.20 0.21 0.18 0.09 0.11 0.00 0.00 

July 0.41 0.16 0.20 0.11 0.05 0.02 0.02 0.04 0.00 

August 0.38 0.13 0.23 0.07 0.09 0.07 0.04 0.00 0.00 

September 0.07 0.05 0.09 0.11 0.21 0.18 0.14 0.13 0.02 

October 0.00 0.11 0.14 0.13 0.32 0.18 0.07 0.05 0.00 

November 0.48 0.21 0.18 0.07 0.02 0.04 0.00 0.00 0.00 

December 0.88 0.09 0.02 0.00 0.02 0.00 0.00 0.00 0.00 

Prediction of Future Outages 

In order to predict outages for an unknown year in the future, seven years of outage data, 

from 2005-2011, were utilized. A new CPT was constructed with these data for each city as 

shown in Table 4.5-4.8, and the same method discussed in Chapter 3 was followed for the 

prediction of outages, except for weather data. The predicted weather data was used as input for 

this model. 

Table 4.5 CPT for Wichita Using 2005-2011 Outage Data 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.283 0.283 0.189 0.151 0.075 0.000 0.000 0.019 0.000 

Input State 2 0.143 0.127 0.222 0.159 0.175 0.111 0.032 0.032 0.000 

Input State 3 0.000 0.069 0.000 0.138 0.172 0.207 0.138 0.138 0.138 

Input State 4 0.308 0.115 0.269 0.154 0.115 0.038 0.000 0.000 0.000 

Input State 5 0.067 0.167 0.100 0.233 0.233 0.100 0.067 0.033 0.000 

Input State 6 0.020 0.059 0.078 0.020 0.118 0.235 0.255 0.118 0.098 

Input State 7 0.000 0.000 0.600 0.200 0.000 0.200 0.000 0.000 0.000 

Input State 8 0.053 0.000 0.158 0.211 0.316 0.211 0.053 0.000 0.000 

Input State 9 0.000 0.000 0.033 0.100 0.150 0.117 0.100 0.217 0.283 

 

Table 4.6 CPT for Topeka Using 2005-2011 Outage Data 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.155 0.276 0.379 0.103 0.069 0.017 0.000 0.000 0.000 

Input State 2 0.058 0.135 0.154 0.269 0.269 0.058 0.058 0.000 0.000 
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Input State 3 0.000 0.000 0.143 0.095 0.333 0.286 0.095 0.048 0.000 

Input State 4 0.095 0.476 0.238 0.190 0.000 0.000 0.000 0.000 0.000 

Input State 5 0.075 0.100 0.175 0.450 0.150 0.025 0.025 0.000 0.000 

Input State 6 0.000 0.031 0.077 0.138 0.138 0.338 0.231 0.046 0.000 

Input State 7 0.000 0.000 0.400 0.600 0.000 0.000 0.000 0.000 0.000 

Input State 8 0.000 0.250 0.300 0.150 0.250 0.050 0.000 0.000 0.000 

Input State 9 0.000 0.019 0.037 0.204 0.204 0.296 0.204 0.019 0.019 

 

Table 4.7 CPT for Lawrence Using 2005-2011 Outage Data 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.172 0.359 0.219 0.078 0.063 0.063 0.031 0.016 0.000 

Input State 2 0.170 0.170 0.170 0.106 0.149 0.170 0.043 0.000 0.021 

Input State 3 0.050 0.050 0.000 0.200 0.200 0.300 0.150 0.050 0.000 

Input State 4 0.222 0.167 0.333 0.167 0.056 0.000 0.000 0.056 0.000 

Input State 5 0.048 0.238 0.190 0.143 0.167 0.167 0.024 0.000 0.024 

Input State 6 0.056 0.037 0.093 0.056 0.130 0.185 0.167 0.167 0.111 

Input State 7 0.500 0.500 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Input State 8 0.130 0.261 0.348 0.087 0.087 0.087 0.000 0.000 0.000 

Input State 9 0.045 0.061 0.076 0.106 0.136 0.121 0.242 0.076 0.136 

 

Table 4.8 CPT for Manhattan Using 2005-2011 Outage Data 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.323 0.403 0.161 0.065 0.032 0.000 0.016 0.000 0.000 

Input State 2 0.413 0.239 0.109 0.043 0.109 0.065 0.022 0.000 0.000 

Input State 3 0.045 0.182 0.182 0.136 0.091 0.227 0.136 0.000 0.000 

Input State 4 0.316 0.211 0.211 0.158 0.105 0.000 0.000 0.000 0.000 

Input State 5 0.195 0.195 0.293 0.122 0.122 0.049 0.000 0.024 0.000 

Input State 6 0.098 0.137 0.157 0.098 0.118 0.196 0.118 0.059 0.020 

Input State 7 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Input State 8 0.333 0.250 0.125 0.167 0.125 0.000 0.000 0.000 0.000 

Input State 9 0.132 0.162 0.191 0.176 0.088 0.132 0.074 0.029 0.015 

 

Predictions were carried out on weekly, monthly, and yearly basis for four cities. 

Examples of results for Wichita are shown in Figures 4.5-4.7. Results for yearly prediction for 

other cities are shown in Figure 4.8-4.10. Weekly and monthly predictions of other cities are 

included in Appendix A. As demonstrated, normal distribution fits the yearly predictions 

histogram and the parameters of normal distribution for each city are tabulated in Table 4.9. Both 



71 

 

 

mean and standard deviation for all the cities are slightly higher than those found for 2005 to 

2011 shown in Tables 3.3-3.6. This could be due to the fact that 14 years of weather data was 

used for the future prediction whereas the outages are based only on seven years of data. 
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Figure 4.5  (a)-(c) Wichita Weekly Predictions by MCS  
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Figure 4.6 (a)-(c) Wichita Monthly Predictions by MCS  
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Figure 4.8 Topeka Yearly Predictions by MCS  
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Figure 4.7 Wichita Yearly Predictions by MCS  
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Figure 4.9 Lawrence Yearly Predictions by MCS  

 

 

Figure 4.10 Manhattan Yearly Predictions by MCS  
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Table 4.9 Parameters of Normal Distribution for Yearly Predicted Outages 

City Mean Standard Deviation 

Wichita 609.05 69.01 

Topeka 453.44 53.21 

Lawrence 206.09 29.29 

Manhattan 114.86 16.29 
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Chapter 5 - Cost-Benefit Analysis of Outage Mitigation 

In this chapter, costs which utilities incur after installation of animal guards at vulnerable 

points are discussed, including the calculation of savings obtained for outage reductions. Real-

time data was used to perform all calculations in order to maintain credibility of results. This 

analysis was conducted for Wichita, Topeka, Lawrence, and Manhattan since outage mitigation 

strategies vary by city size. 

 Installation of Squirrel Guards 

Conventional methods which are implemented to prevent animals from reaching out to 

vulnerable points include tree trimming, installing animal guards on devices such as transformers 

and fuses, using chemical repellants or ultrasonic units [21]. Additionally, appropriate measures 

in initial construction stage include reviewing construction design standards and making sure the 

devices are not mounted in such a way that they facilitate animal contacts [21]. A variety of 

squirrel guards, commonly called Critter Guards, are currently available on the market. 

According to data provided by a utility in Kansas: 

 

Cost of installation (including animal guard cost) = $77 per animal guard 

Annual Cost of replacing of damaged animal guards = 4% of total installation cost 

Crew wage on a weekday = $95/hr. 

Crew wage on a weekday: 6 pm-6 am shift, and weekend = $143/hr. 

Average time taken by crew to respond to an outage  

(excluding duration of outage) 

= 30 minutes per outage 

 

In order to determine the total installation cost of animal guards, the knowledge of total 

vulnerable points is required. These vulnerable points are the devices on overhead distribution, 

such as transformers, fuses, cutouts, switches, reclosers, etc., which must be protected from 

animals that can cause outages. Table 5.1 shows the number of vulnerable points in the 

distribution systems of Wichita, Topeka, Lawrence, and Manhattan as provided by the utility. 
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Table 5.1 Vulnerable Points in Four Cities in Kansas 

City Total Number of Vulnerable Points 

Wichita 8646 

Topeka 4250 

Lawrence 3837 

Manhattan 3871 

 

Since most of the animal outages take place on the single-phase laterals, devices on three-

phase lines were not counted. The number of vulnerable points increases with the size of the 

cities. However, Manhattan has larger number of vulnerable points compared to its size. 

The total investment which a utility would incur for installing animal guards at all the 

points for Wichita, Topeka, Lawrence, and Manhattan are calculated using the given data and 

shown in Table 5.2. 

Table 5.2 Total Investment for Installing Animal Guards  

City Total Investment  

Wichita $868,289.46 

Topeka $426,813.58 

Lawrence $385,337.34 

Manhattan $388,751.85 

 

For the cost-benefit analysis, the initial investment is converted to an annual cost-per-

year with time duration of 20 years and a discount rate of 10%. The Present Worth Factor for 

these values is given by Equation 5.1. 

 

                                                     
(   )   

  (   ) 
                                                            

 

                                  Cost - per - year = 
                  

                     
                                     5.2 

 

In order to propose optimal outage mitigation strategy, different percent of vulnerable 

points starting from 20% were considered. They were increased by 10% in each step. Cost-per-

year for all four cities are given in the Table 5.3. For example, if the utility plans to install animal 

guards on 20% of vulnerable points in Wichita, which equals to 1729 devices, the cost-per-year 

incurred by the utility with a 10% discount rate is $20,964.70/yr for a period of 20 years. 
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Table 5.3 Cost-per-year Values for Four Cities 

Mitigation 

Level 

% of TVP Wichita ($/yr.) Topeka ($/yr.) Lawrence 

($/yr.) 

Manhattan 

($/yr.) 

1 20% $20,964.70 $10,305.34 $9,303.90 $9,386.34 

2 30% $31,447.04 $15,458.01 $13,955.85 $14,079.52 

3 40% $41,929.39 $20,610.68 $18,607.80 $18,772.69 

4 50% $52,411.74 $25,763.35 $23,259.76 $23,465.86 

5 60% $62,894.09 $30,916.02 $27,911.71 $28,159.03 

6 70% $73,376.43 $36,068.68 $32,563.66 $32,852.21 

7 80% $83,858.78 $41,221.35 $37,215.61 $37,545.38 

8 90% $94,341.13 $46,374.02 $41,867.56 $42,238.55 

9 100% $104,823.48 $51,526.69 $46,519.51 $46,931.72 

 

Outage Reduction 

Installations of animal guards are expected to reduce squirrel-related outages by as much 

as 80% [20]. Thus eight cases of outage reduction from 10 % outage reduction to 80% outage 

reduction in increments of 10% are considered in this research. In this section, new CPTs are 

constructed for different cases of outage reduction using the original CPT discussed in Chapter 4. 

For example, using the original CPT of Wichita given in Table 4.1, the new CPT for 10% outage 

reduction was calculated by multiplying all values for all outage levels in the original CPT by 

0.9, except for outage level 1. Since the sum of probability is always 1, probability values for 

outage level 1 will be the difference of one and the summation of other probability values of 

outage level 2 to outage level 9 for every corresponding input state. Similarly, to construct a CPT 

for 20% outage reduction, all values for all outage levels in the original CPT are multiplied by 

0.8, except for outage level 1, and the same steps are followed to obtain values of outage level 1. 

It is understood that X% outage reduction implies that new outage levels will be (100-X) % of 

the original outage levels. Therefore, for 2005-2011 outage data, the outage levels were formed. 

In the originally selected outage levels, outage level 1 has zero outages except for Wichita. 

Outage levels using 2005-2011 outage data for four cities is shown in Table 5.4. The CPT of 

Wichita for 10% outage reduction is given in Table 5.5. CPT for other cases are shown in 

Appendix B. Using similar procedure, CPT for other cities were obtained. 
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Table 5.4 Outage Levels Using 2005-2011 Outage Data 

Outage levels Wichita 

(Animal outages 

per week) 

Topeka 

(Animal outages 

per week) 

Lawrence 

(Animal outages 

per week) 

Manhattan 

(Animal outages 

per week) 

Outage level 1 1~3 0 0 0 

Outage level 2 4~5 1~2 1 1 

Outage level 3 6~7 3~4 2 2 

Outage level 4 8~9 5~7 3 3 

Outage level 5 10~12 8~11 4 4 

Outage level 6 13~17 12~20 5~6 5~6 

Outage level 7 18~21 21~35 7~8 7~9 

Outage level 8 22~30 36~50 9~11 10~12 

Outage level 9 31~65 51~56 12~29 13~15 

 

Table 5.5 CPT of Wichita for 10% Outage Reduction Case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.355 0.255 0.170 0.136 0.068 0.000 0.000 0.017 0.000 

Input State 2 0.229 0.114 0.200 0.143 0.157 0.100 0.029 0.029 0.000 

Input State 3 0.100 0.062 0.000 0.124 0.155 0.186 0.124 0.124 0.124 

Input State 4 0.377 0.104 0.242 0.138 0.104 0.035 0.000 0.000 0.000 

Input State 5 0.160 0.150 0.090 0.210 0.210 0.090 0.060 0.030 0.000 

Input State 6 0.118 0.053 0.071 0.018 0.106 0.212 0.229 0.106 0.088 

Input State 7 0.100 0.000 0.540 0.180 0.000 0.180 0.000 0.000 0.000 

Input State 8 0.147 0.000 0.142 0.189 0.284 0.189 0.047 0.000 0.000 

Input State 9 0.100 0.000 0.030 0.090 0.135 0.105 0.090 0.195 0.255 

 

As the percentage of outage reduction increases, the probability values for outage level 1 

increase for all nine input states. Using the new CPTs, outage values per year are predicted for 

four cities using the Bayesian model and running Monte-Carlo simulation 10,000 times. For 

example, the yearly predictions of outages for eight cases for Wichita and Manhattan are shown 

in Figures 5.1 to 5.16 and the data is fitted to normal distribution with appropriate mean and 

sigma values. The yearly outage predictions for Topeka and Lawrence are given in Appendix C. 
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Figure 5.1 Wichita Yearly Outages with 10% Outage Reduction  

 

 

Figure 5.2 Wichita Yearly Outages with 20% Outage Reduction 
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Figure 5.3 Wichita Yearly Outages with 30% Outage Reduction 

 

 

Figure 5.4 Wichita Yearly Outages with 40% Outage Reduction 
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Figure 5.5 Wichita Yearly Outages with 50% Outage Reduction 

 

 

Figure 5.6 Wichita Yearly Outages with 60% Outage Reduction 
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Figure 5.7 Wichita Yearly Outages with 70% Outage Reduction 

 

 

Figure 5.8 Wichita Yearly Outages with 80% Outage Reduction 
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Figure 5.9 Manhattan Yearly Outages with 10% Outage Reduction 

 

 

Figure 5.10 Manhattan Yearly Outages with 20% Outage Reduction 
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Figure 5.11 Manhattan Yearly Outages with 30% Outage Reduction 

 

 

Figure 5.12 Manhattan Yearly Outages with 40% Outage Reduction 
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Figure 5.13 Manhattan Yearly Outages with 50% Outage Reduction 

 

 

Figure 5.14 Manhattan Yearly Outages with 60% Outage Reduction 
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Figure 5.15 Manhattan Yearly Outages with 70% Outage Reduction 

 

 

Figure 5.16 Manhattan Yearly Outages with 80% Outage Reduction 
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The above figures show that the mean value of outages decreases with increased outage 

reduction. The significance of fitting normal curve to yearly predicted outage data is discussed in 

the following section. The mean and sigma parameters of normal distribution for eight cases of 

outage reduction for four cities are tabulated in Tables 5.13-5.16. 

Table 5.6 Normal Distribution Parameters for Wichita 

Outage Reduction (%) Mean Sigma 

0% 609.5 70.277 

10% 551.15 72.562 

20% 496.23 73.758 

30% 439.45 72.553 

40% 382.03 71.594 

50% 324.89 68.334 

60% 267.44 63.58 

70% 209.92 57.468 

80% 151.87 48.515 

 

Table 5.7 Normal Distribution Parameters for Topeka 

Outage Reduction (%) Mean Sigma 

0% 454.1 53.004 

10% 408.07 54.428 

20% 362.28 56.754 

30% 314.77 55.792 

40% 269.33 54.712 

50% 223.08 52.545 

60% 178.47 49.341 

70% 131.23 44.06 

80% 84.821 37.24 

 

Table 5.8 Normal Distribution Parameters for Lawrence 

Outage Reduction (%) Mean Sigma 

0% 206.73 29.377 

10% 184.45 29.533 

20% 165.07 29.407 

30% 143.15 29.203 

40% 122.04 27.828 
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50% 101.59 26.731 

60% 79.864 24.254 

70% 59.581 21.782 

80% 37.939 18.113 

 

Table 5.9 Normal Distribution Parameters for Manhattan 

Outage Reduction (%) Mean Sigma 

0% 115.3 16.319 

10% 104.19 16.326 

20% 91.916 16.177 

30% 80.52 15.813 

40% 68.519 15.249 

50% 56.886 14.756 

60% 45.049 13.178 

70% 33.477 11.868 

80% 21.424 10.009 

 

Similar to Wichita, the mean of outage value decreases for every 10% increase in outage 

reduction for Topeka, Lawrence, and Manhattan as seen in Table 5.14 to 5.16. 

 Calculation of Savings 

The two primary savings through which utilities are effectively benefitted with decreased 

squirrel outages on overhead distribution system are: 

1. Crew Cost 

2. Customer Minutes of Interruption (CMI) Cost 

As outages decrease, the requirement of crew to respond to an outage also decreases and 

comparatively less usage of company vehicles is required for transportation to fix outages. When 

an outage occurs, the utility loses revenues related to consumption that would have taken place 

and the utility bears the cost to fix the outage [22]. According to a comprehensive study carried 

out by Duke Power Company in cooperation with Electric Power Research Institute, residential 

customer interruption costs for utilities range from $0 to $64 per customer hour of outage [23]. 

In this thesis, the cost of customer interruption is considered to be $30 per customer hour. 
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The total cost which utility spends on outages is calculated as the summation of crew cost 

and CMI cost. These values are calculated on a per outage basis using outage data provided by 

the utility. Crew cost is calculated using Equation 5.3 

Crew cost = (Duration of Outage + Crew travel time) × Crew Wage              5.3 

  In the above equation, the values of duration of every outage are provided by the utility 

with outage data. Crew travel time is the average time taken by a crew to respond to the outage, 

which is 30mins per outage. It is assumed that the difference between the time when the utility 

knows that an outage has occurred and the time of outage occurrence is very small. Crew cost is 

for crew wages, which is $95/hr for weekdays from 6 am-6 pm and $143/hr for 6 pm to 6 am on 

weekdays and weekend.  

Similarly, CMI cost is computed based on the total CMI for each interruption.  

CMI cost=CMI × Cost of customer interruption                 5.4 

Thus, the total cost is calculated in $/outage and the plots for all four cities are shown in 

Figures 5.9 to 5.12. Log-normal distribution seems to fit well for these plots. Table 5.10 shows 

the parameters of the log-normal distribution for all cities. 

     

 

Figure 5.17 Histogram of Total Cost of Outages for Wichita 
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Figure 5.18 Histogram of Total Cost of Outages for Topeka 

 

 

Figure 5.19 Histogram of Total Cost of Outages for Lawrence 
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Figure 5.20 Histogram of Total Cost of Outages for Manhattan 

 

Table 5.10 Log-normal Distribution Parameters for Four Cities 

Parameters Wichita Topeka Lawrence Manhattan 

Scale Parameter (σ) 6.4246 6.0950 6.2423 6.0854 

Location Parameter (µ) 1.0163 0.8584 0.9432 0.9312 

 

 Savings from Outage Reduction 

Savings can be calculated by multiplying the number of reduced outages per year and the total 

cost per outage. The reduction in outages is obtained by the difference of two normally 

distributed variables, “Outage data predicted with no reduction (µ1, σ1)” and “Outage data 

predicted with X% reduction (µ2, σ2)” where X=10, 20, 30...80. Therefore, the new parameters 

are µ1-2=µ1-µ2 and σ
2
1-2=σ

2
1+σ

2
2 [24]. Parameters of normal distribution curves for eight 

cases of reduced outages of four cities are shown in Tables 5.11-5.14. 
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Table 5.11 Normal Distribution Parameters for Wichita 

Outage Reduction (%) Mean Sigma 

10% 58.35 101.015 

20% 113.27 101.878 

30% 170.05 101.009 

40% 227.47 100.322 

50% 284.61 98.022 

60% 342.06 94.769 

70% 399.58 90.782 

80% 457.63 85.396 

 

Table 5.12 Normal Distribution Parameters for Topeka 

Outage Reduction (%) Mean Sigma 

10% 46.03 75.973 

20% 91.82 77.656 

30% 139.33 76.956 

40% 184.77 76.176 

50% 231.02 74.635 

60% 275.63 72.415 

70% 322.87 68.925 

80% 369.279 64.778 

 

Table 5.13 Normal Distribution Parameters for Lawrence 

Outage Reduction (%) Mean Sigma 

10% 22.28 41.656 

20% 41.66 41.567 

30% 63.58 41.422 

40% 84.69 40.465 

50% 105.14 39.718 

60% 126.866 38.095 

70% 147.149 36.571 

80% 168.791 34.512 

 

Table 5.14 Normal Distribution Parameters for Manhattan 

Outage Reduction (%) Mean Sigma 

10% 11.11 23.084 

20% 23.384 22.978 
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30% 34.78 22.724 

40% 46.781 22.335 

50% 58.414 22.001 

60% 70.251 20.975 

70% 81.823 20.178 

80% 93.876 19.144 

 

 

Figure 5.21 Normal Distribution Curve of 50% reduced outages for Wichita with normal 

parameters Mean µ = 284.61 and Standard Deviation σ = 98.022 

 

The double numerical integration of product of probability density functions (PDFs) of 

reduction in outages and total outage cost gives cumulative density function (CDF) of savings. 

Using the CDF of savings, the probability values of savings greater than the cost of installation 

of animal guards are obtained. These probability values will help utilities decide on percentage 

of vulnerable points for installation of animal guards. 

Initial attempts were made to find a closed form for double integration of product of log-

normal and normal distribution mathematically, rather than using MATLAB. Applying the 

fundamental ideas found in [25], a step-by-step procedure is explained below. 
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For mathematical convenience, let parameters of log-normal be referred to as (µLN, σLN) 

and normal as (µN, σN). 

Let Z=XY, where Z represents the savings, given in $/yr. 

       X represents the total cost per outage, given in $/outage. 

       Y represents the number of reduced outages per year, given in outage/yr. 

Therefore, F(x) represents log-normal distribution where x ϵ (0, +∞) 

                 F(y) represents normal distribution where y ϵ (-∞, +∞) 

To obtain P(Z ≥ Cost of installing squirrel guards) = Probability of having benefit. 

The cumulative distribution function (CDF) of a random variable Z is defined by [25], 

                        FZ(z) = P(Z ≤ z)                                                               5.2 

In this research, “z” represents the cost of installing squirrel guards and P(Z > z) =1- P(Z ≤ z). 

Using Equation 5.5,   

FZ(z) = P(Z ≤ z) = P(XY ≤ z) = P((X,Y) ϵ Az), 

 where Az :={( x, y): xy ≤ z} is partitioned into two disjoint regions, Az = Az
+
 U Az

-
,  

          Az
+
:= {( x, y): y ≤ z/x and x > 0} and Az

-
 := {( x, y): y ≥ z/x and x < 0} 

Therefore, FZ(z) = P((X,Y) ϵ Az
+
) + P((X,Y) ϵ Az

-
) 

 

Figure 5.22 The curve is y=z/x and Shaded Regions Represent Az
+
 and Az

-
,
 
Respectively 

[25]. 

 

In this research, x ϵ (0, +∞) and y ϵ (-∞, +∞); therefore, the final expression to find 

probability for Z is  FZ(z) = P((X,Y) ϵ Az
+
) 
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Since F(x) and F(y) are independent, f(x,y)=f(x).f(y) 
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After several substitutions, the final equation obtained for CDF of Net Savings is: 

 

FZ(z)=P(Z ≤ z)= 0.5+ 
 

√      
 ∫      

 (     ) 

(      )

 

  
     (

       

√    
)                               

 

At this point, finding closed form solution for FZ(z) becomes difficult because of the error 

function in Equation 5.7. Hence, MATLAB was used at this step to perform numerical 

integration of function FZ(z) by substituting values of z. Results are shown in Figures 5.23 and 

5.24. 
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Figure 5.23 FZ(z) Plot for X% Reduced Outages for Wichita  

 

 

Figure 5.24 FZ(z) Plot for 50% Reduced Outages for Wichita 
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After obtaining the CDFs of FZ(z) for all eight cases of reduced outages, the probability 

values of savings greater than the cost of installing guards can easily be determined. Considering 

Wichita as an example, the cost of protecting 20% of all devices is $20,964.70/yr. and the cost to 

protect all devices is $104,823.48 /yr. As shown in Figure 5.16, P(Z ≤ z) at z =20,964.70 and z 

=104,823.48 are 0.03491 and 0.3415, respectively. 

Therefore, 

P(savings > 20,964.70) = 1-0.03491=0.96509  

P(savings > 104,823.48) =1-0.3415= 0.6585 

This implies that a 96.509% probability exists of benefit greater than zero if 20% of the 

vulnerable points are protected, which results in outage reduction of 50%. Similarly, there is 

65.85% probability of benefit greater than zero if all locations are protected with 50% outage 

reduction.  

Figure 5.25 shows probability values for all eight cases of outage reduction at nine levels 

of animal guard installations for Wichita, where mitigation level 1 represents cost for 20% of 

devices and mitigation level 9 represents cost for 100%, or all devices. The figure demonstrates 

that as the cost increases probability values decrease and as the outage reduction increases 

probability value increase. Hence, higher probability values are obtained when the cost is less 

and outage reduction is high. 

 

Figure 5.25 Probability Graph for Wichita at Different Mitigation Levels 
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The probability results for Manhattan are shown in Figures 5.26-5.28, demonstrating 

identical behavior except that probability values decrease more rapidly for higher costs, as shown 

in Figure 5.28.  

 

Figure 5.26 FZ(z) Plot for X% Reduced Outages for Manhattan 

 

Using Figure 5.27, for Manhattan, it is found that the probability of benefit greater than 

zero profit is 81.36% when 20% of the locations are protected and 25.45% when all the locations 

are protected for 50% reduction in outages 

Table 5.15 Comparison of Probabilities of Benefit >0 with 50% Outage Reduction 

City Mitigation Level 1 Mitigation Level 9 

Wichita 96.51% 81.36% 

Manhattan 65.85% 25.45% 

 

From Table 5.15, it is observed that Manhattan has lower probabilities compared to 

Wichita for 50% outage reduction in both cities. This is because the total vulnerable points are 

high in proportion to the city size for Manhattan. Therefore, higher investment in animal guards 
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is needed, which decreases the probability of getting positive benefit. However, detailed study 

based on these probability plots provides the best mitigation level as discussed in next section. 

The probability plots for Topeka and Lawrence are shown in Figure 5.29-5.32. 

 

 

Figure 5.27 FZ(z) Plot for 50% Reduced Outages for Manhattan 
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Figure 5.28 Probability Graph for Manhattan at Different Mitigation Level 

 

Figure 5.29 FZ(z) Plot for X% Reduced Outages for Topeka 
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Figure 5.30 Probability Graph for Topeka at Different Mitigation Level 

 

Figure 5.31 FZ(z) Plot for X% Reduced Outages for Lawrence 
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Figure 5.32 Probability Graph for Lawrence at Different Mitigation Level 

 Outage Mitigation Strategy 

In this section, a detailed study of probability plots is carried out to decide which 

combination of protecting devices and outage reduction results in greater benefit. 

 Wichita 

The probability values of Wichita, obtained from Figure 5.17, for all cases are tabulated 

in Table 5.22, thus forming an 8-by-9 matrix in which the rows represent various cases of outage 

reduction (OR) and the columns represent different levels of mitigation from protecting 20% of 

total vulnerable points (TVP) to protecting 100%, or all locations. 
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Table 5.16 Probability Values of Wichita for Different Levels of Mitigation 

 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 53.09 46.01 40.27 35.54 31.61 28.29 25.47 23.05 20.95 

20 70.85 63.46 57.04 51.48 46.66 42.48 38.82 35.6 32.75 

30 84.51 78 71.87 66.25 61.16 56.58 52.45 48.73 45.37 

40 92.54 87.58 82.45 77.46 72.72 68.28 64.16 60.35 56.82 

50 96.51 93.03 89.09 84.99 80.91 76.94 73.14 69.52 66.11 

60 98.23 95.87 92.95 89.72 86.36 82.98 79.64 76.39 73.24 

70 98.98 97.36 95.19 92.67 89.95 87.11 84.24 81.39 78.58 

80 99.36 98.21 96.58 94.61 92.39 90.03 87.59 85.11 82.63 

 

The probabilities of benefit greater than zero ranges from a minimum value of 20.95% to 

a maximum value of 99.36%. To propose the best mitigation level, probability values greater 

than 90% are considered as acceptable. Further, a pre-defined set of combinations of vulnerable 

points and outages are considered for all cities to derive the optimal combination which promises 

higher benefits from outage reduction. Table 5.17 shows these values. This is an example but in 

real-life situation utilities can obtain this information from detailed examination of the outage 

data. 

Table 5.17 Pre-defined Combinations of Vulnerable Points and Outages 

Vulnerable Points (%) Outages (%)  

20 50 

40 60 

60 70 

80 80 

 

It is assumed that installation of animal guards at the number of points shown in Table 

5.17 will result in respective outage reduction. Hence, the probability for different mitigation 

levels can be obtained as shown in Table 5.18. 

Table 5.18 Outage Mitigation Strategy for Wichita 

Mitigation 

Level 

Vulnerable Points Protected 

(%) 

Outage Reduction 

(%)  

Probability of Benefit>0 

(%) 

1 20 50 96.51 

3 40 60 92.95 

5 60 70 89.95 

7 80 80 87.59 
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From Table 5.18, it is clear that by installing animal guards on 20% most vulnerable 

devices of all locations will result in 96.51% probability of benefit greater than zero with 50% 

outage reduction. This combination seems more attractive to utility by considering the fact that it 

has highest probability compared to others. However, if the utility desires for more reduction in 

outages then they shouldn’t be having any concerns for implementing mitigation level 3 or 

mitigation level 5 as the probabilities are also greater than or equal to 90%. Mitigation level 7 is 

not desirable because it has probability less than 90%. To determine exact optimal combination 

the expected values of benefit are computed. 

The expected benefit is found using mean values of reduced outages, total cost, and cost 

of installation of squirrel guards. 

            Expected Benefit ($/yr.) = E[XY-z]                                                                          5.5 

   = E[XY] - E[z] 

   = E[X] ×E[Y] – z  

E[z] = z = Cost of installation of squirrel guards 

E[X] = Expected value (mean) of log-normal distribution=   
  

  [26] 

E[Y] = Expected value (mean) of normal distribution which varies with outage reduction 

case, as given in Table 5.11 for Wichita. 

Expected benefit values are calculated using Equation 5.8 and tabulated in Table 5.19 for 

various combinations forming an 8-by-9 matrix. 

Table 5.19 Expected Benefit of Wichita for Different Levels of Mitigation 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 39359.69 28877.35 18395 7912.649 -2569.7 -13052 -23534.4 -34016.7 -44499.1 

20 96138.02 85655.68 75173.33 64690.98 54208.63 43726.29 33243.94 22761.59 12279.22 

30 154839.3 144356.9 133874.6 123392.2 112909.9 102427.6 91945.2 81462.85 70980.48 

40 214202.2 203719.9 193237.5 182755.2 172272.8 161790.5 151308.1 140825.8 130343.4 

50 273275.6 262793.3 252311 241828.6 231346.3 220863.9 210381.6 199899.2 189416.8 

60 332669.6 322187.2 311704.9 301222.5 290740.2 280257.9 269775.5 259293.2 248810.8 

70 392135.9 381653.5 371171.2 360688.8 350206.5 339724.2 329241.8 318759.5 308277.1 

80 452150.1 441667.8 431185.4 420703.1 410220.7 399738.4 389256 378773.7 368291.3 
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          Table 5.16 and Table 5.19 show that there is 96.51% probability of obtaining 

$273275.6/yr. as benefit with 50% outage reduction by protecting 20% of all locations in 

Wichita. The expected values of benefit for other mitigation levels are given in Table 5.20. 

Table 5.20 Expected Values of Benefit for Wichita  

Mitigation 

Level 

Vulnerable Points Protected 

(%) 

Outage Reduction 

(%)  

Expected Benefit 

($/yr.) 

1 20 50 273275.6 

3 40 60 311704.9 

5 60 70 350206.5 

7 80 80 389256.0 

 

By observing Table 5.18 and Table 5.20, mitigation level 5 implies there is 89.95% 

probability of expected benefit 350206.5$/yr with 70% outage reduction, if 60% of all vulnerable 

points are protected.  So, this is the optimal combination as the other combinations either has 

lower expected benefit or lower probability values comparatively. By implementing this 

mitigation level, the utility can expect a vast improvement in reliability of electricity to 

customers. A similar study is performed for other cities and the results are discussed in following 

sections. 

 Topeka 

The probability values of Topeka for all cases are given in Table 5.21 and the computed 

expected benefit values are given in Table 5.22. In case of Topeka, the probabilities of having 

benefit greater than zero ranges from a minimum value 22.45% to maximum value 99.91%. 

Again, 90% is considered as the acceptable probability to propose the best mitigation level. 

 

Table 5.21 Probability Values of Topeka for Different Levels of Mitigation 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 57.07 50.14 44.17 39.06 34.68 30.93 27.69 24.89 22.45 

20 76.38 69.84 63.64 57.95 52.81 48.19 44.05 40.35 37.02 

30 89.86 84.93 79.71 74.51 69.50 64.77 60.34 56.23 52.43 

40 96.24 93.13 89.39 85.32 81.13 76.94 72.86 68.93 65.17 

50 98.77 97.06 94.67 91.81 88.64 85.30 81.89 78.47 75.10 

60 99.56 98.63 97.14 95.19 92.89 90.33 87.61 84.79 81.93 

70 99.82 99.31 98.41 97.11 95.49 93.60 91.51 89.27 86.93 

80 99.91 99.61 99.03 98.15 96.99 95.58 93.97 92.20 90.30 
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Table 5.22 Expected Benefit of Topeka for Different Levels of Protection 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 19211.58 14058.91 8906.242 3753.572 -1399.1 -6551.76 -11704.4 -16857.1 -22009.8 

20 48574.6 43421.93 38269.26 33116.59 27963.92 22811.26 17658.59 12505.92 7353.252 

30 79040.58 73887.91 68735.24 63582.57 58429.9 53277.24 48124.57 42971.9 37819.23 

40 108179.2 103026.5 97873.82 92721.15 87568.48 82415.82 77263.15 72110.48 66957.81 

50 137837.2 132684.5 127531.8 122379.1 117226.5 112073.8 106921.1 101768.5 96615.81 

60 166443.5 161290.8 156138.2 150985.5 145832.8 140680.2 135527.5 130374.8 125222.2 

70 196736.3 191583.7 186431 181278.3 176125.7 170973 165820.3 160667.7 155515 

80 226496.3 221343.6 216191 211038.3 205885.6 200733 195580.3 190427.6 185274.9 

 

Table 5.23 Probability Values and Expected Benefit for Defined Outage Mitigation 

Strategy 

Mitigation 

Level 

Vulnerable Points 

Protected (%) 

Outage 

Reduction (%)  

Probability of 

benefit >0 (%) 

Expected 

Benefit ($/yr.) 

1 20 50 98.77 137837.2 

3 40 60 97.14 156138.2 

5 60 70 95.49 176125.7 

7 80 80 93.97 195580.3 

 

From Table 5.23, the optimal combination is mitigation level 7 as there is 93.97% 

probability for obtaining highest expected benefit 195580.3$/yr with 80% outage reduction if the 

utility protects 80% of all vulnerable points. There is also possibility for opting mitigation level 5 

as optimal combination as it gives second highest expected benefit 176125.7$/yr with a high 

probability value 95.49% , if the utility decides to compromise with outage reduction. 

 

 Lawrence 

The probability values and the computed expected benefit values of Lawrence are given 

in Table 5.24 and Table 5.25 respectively. For Lawrence, the probabilities of benefit greater than 

zero ranges from a minimum value 14.79% to maximum value 98.86%. Again 90% probability 

is considered as acceptable value to propose the best mitigation level. 
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Table 5.24 Probability Values of Lawrence for Different Levels of Protection 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 47.90 39.93 33.71 28.78 24.81 21.58 18.91 16.68 14.79 

20 63.75 54.94 47.63 41.57 36.52 32.27 28.69 25.63 23.00 

30 78.47 70.07 62.52 55.90 50.13 45.12 40.75 36.94 33.58 

40 88.34 81.27 74.34 67.90 62.03 56.74 51.99 47.74 43.92 

50 93.80 88.36 82.53 76.77 71.29 66.17 61.43 57.08 53.10 

60 96.82 92.94 88.37 83.55 78.73 74.06 69.61 65.41 61.47 

70 98.14 95.34 91.78 87.81 83.67 79.53 75.48 71.57 67.84 

80 98.86 96.86 94.13 90.92 87.46 83.88 80.29 76.75 73.30 

 

Table 5.25 Expected Benefit of Lawrence for Different Levels of Protection 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 8564.727 3912.777 -739.173 -5391.13 -10043.1 -14695 -19347 -23998.9 -28650.9 

20 24107.54 19455.59 14803.64 10151.68 5499.735 847.785 -3804.17 -8456.12 -13108.1 

30 41687.45 37035.5 32383.55 27731.59 23079.64 18427.69 13775.74 9123.791 4471.841 

40 58617.73 53965.78 49313.83 44661.87 40009.92 35357.97 30706.02 26054.07 21402.12 

50 75018.7 70366.75 65714.8 61062.84 56410.89 51758.94 47106.99 42455.04 37803.09 

60 92443.01 87791.06 83139.11 78487.15 73835.2 69183.25 64531.3 59879.35 55227.4 

70 108710 104058.1 99406.14 94754.18 90102.23 85450.28 80798.33 76146.38 71494.43 

80 126067 121415 116763.1 112111.1 107459.2 102807.2 98155.28 93503.33 88851.38 

 

Table 5.26 Probability Values and Expected Benefit for Defined Outage Mitigation 

Strategy 

Mitigation 

Level 

Vulnerable Points 

Protected (%) 

Outage 

Reduction (%)  

Probability of 

benefit >0 (%) 

Expected 

Benefit ($/yr.) 

1 20 50 93.80 75018.70 

3 40 60 88.37 83139.11 

5 60 70 83.67 90102.23 

7 80 80 80.29 98155.28 

 

From Table 5.26, mitigation level 1 is the only option with probability higher than 90% 

giving expected benefit 75018.70$/yr with 50% outage reduction, if the utility protects 20% of 

the vulnerable points.  
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 Manhattan 

The probability values and the computed expected benefit values of Manhattan are given 

in Table 5.27 and Table 5.28 respectively. For Manhattan, the probabilities of benefit greater 

than zero ranges from a minimum value of 4.57% to a maximum value of 93.62%. To propose 

the best mitigation level, probability values greater than 90% are considered as acceptable. As 

observed in Table 5.27, the probabilities are very low compared to other cities, since the total 

number of vulnerable points is not in proportion to the size of the city. This suggests that 

investment in installing animal guards is high, which leads to decrease in probability of getting 

benefit.  

Table 5.27 Probability Values of Manhattan for Different Levels of Protection 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 30.81 22.21 16.63 12.82 10.10 8.12 6.62 5.47 4.57 

20 46.39 35.07 27.21 21.58 17.42 14.27 11.85 9.94 8.42 

30 60.44 47.70 38.23 31.12 25.67 21.43 18.07 15.38 13.20 

40 72.74 59.92 49.64 41.49 35.00 29.78 25.54 22.06 19.18 

50 81.36 69.56 59.35 50.83 43.76 37.90 33.02 28.92 25.46 

60 87.41 77.16 67.59 59.17 51.91 45.69 40.38 35.82 31.91 

70 91.11 82.46 73.82 65.85 58.72 52.45 46.95 42.15 37.94 

80 93.62 86.45 78.84 71.49 64.70 58.56 53.05 48.13 43.76 

 

Table 5.28 Expected Benefit of Manhattan for Different Levels of Protection 

TVP% 

 OR% 

20 30 40 50 60 70 80 90 100  

10 -1854.87 -6548.05 -11241.2 -15934.4 -20627.6 -25320.7 -30013.9 -34707.1 -39400.3 

20 6465.674 1772.494 -2920.68 -7613.85 -12307 -17000.2 -21693.4 -26386.5 -31079.7 

30 14191.02 9497.842 4804.672 111.502 -4581.67 -9274.85 -13968 -18661.2 -23354.4 

40 22326.5 17633.32 12940.15 8246.98 3553.81 -1139.37 -5832.54 -10525.7 -15218.9 

50 30212.51 25519.33 20826.16 16132.99 11439.82 6746.641 2053.471 -2639.7 -7332.87 

60 38236.81 33543.63 28850.46 24157.29 19464.12 14770.94 10077.77 5384.603 691.4329 

70 46081.47 41388.29 36695.12 32001.95 27308.78 22615.6 17922.43 13229.26 8536.092 

80 54252.2 49559.02 44865.85 40172.68 35479.51 30786.33 26093.16 21399.99 16706.82 

  

The first negative element in Table 5.28 implies that there is 30.81% probability of 

obtaining benefit, but the expected value of benefit is -$1854.87, which implies a loss. Other 
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negative values also imply the same. Therefore, these cases must be avoided while making 

decisions regarding outage mitigation. 

Table 5.29 Probability Values and Expected Benefit for Outage Mitigation Strategy 

Mitigation 

Level 

Vulnerable Points 

Protected (%) 

Outage 

Reduction (%)  

Probability of 

benefit >0 (%) 

Expected 

Benefit ($/yr.) 

1 20 50 81.36 30212.51 

3 40 60 67.59 28850.46 

5 60 70 58.72 27308.78 

7 80 80 53.05 26093.16 

 

From Table 5.29, it is observed that none of the strategies have probability higher than 

90%. Therefore, installation of animal guards is not recommended. However, if utility desires, 

mitigation level 1 can be implemented which promises 81.36% probability to get expected 

benefit of 30212.51$/yr with 50% outage reduction, if 20% of the vulnerable points are 

protected.    

Analyzing different strategies will give different solutions to utilities. However, 

additional information about number of outages at each vulnerable point would help utility to 

obtain more appropriate combination. 
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Chapter 6 - Conclusions and Future Work 

Conclusions 

Study of future weather and corresponding squirrel-outages will help utilities face 

unpredictable events more effectively. A Bayesian model combined with Monte Carlo 

Simulation was used in this research to predict outages in the future based on weather and outage 

history. The results were used in a probabilistic cost-benefit analysis to evaluate outage 

mitigation strategies, which is a significant and novel contribution of this research.  

By predicting future outage, utilities have an opportunity to prevent overhead distribution 

system outages due to squirrels by taking appropriate corrective measures. Corrective measures 

include regular tree trimming, use of repellants, and installations of animal guards, etc. However, 

in this research, only installing animal guards on vulnerable points is considered. The model 

performance is judged by testing data of four cities in Kansas: Wichita, Topeka, Lawrence, and 

Manhattan. Wichita and Topeka are large cities in terms of population and area, and Lawrence 

and Manhattan are comparatively smaller. Outage data was aggregated on a weekly basis to even 

out randomness in the daily data. Thus, simulations of all cities were able to retain patterns in the 

time series of weekly data. 

Various combinations of input states and outage levels in the Bayesian model 

successfully captured probabilistic relationships between them in the CPT. Confidence intervals 

of the estimates were found by running Monte Carlo simulations 10,000 times. The weekly 

estimated results indicated that most observed values are within the upper limits of 95% 

confidence of the predicted values for every city, confirming that the model is reliable. 

The future weather must be predicted first to predict future outages. To accomplish that a 

probability table is constructed using past 14 years of weather data from 1998-2011 for each city, 

which is combined with Monte Carlo Simulations to predict future weather. This predicted future 

weather is used to predict future outages and the outage prediction is carried out on weekly, 

monthly and yearly basis for each city. The CPT used in prediction of future outages is 

constructed using 2005-2011 outage data, which is later used in cost-benefit analysis to generate 

outage reduction cases. 

Cost-benefit analysis considers cost of installing animal guards and benefit due to 

reduction in outages. They can be used for implementing the best outage mitigation strategy. In 
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this research, probability values of benefit greater than zero are determined for all four cities 

using a statistical approach. Different combinations of outage reduction cases and mitigation 

levels are studied in detail to propose optimal mitigation plan. It is found that Wichita has the 

highest probability of getting expected benefit greater than zero with 70% reduction in outages. 

Topeka, the second the largest city considered in this research, promises 93.97% probability of   

benefit greater than zero with 80% outage reduction. For Lawrence, the analysis shows that there 

is 93.80% probability of benefit greater than zero with 50% reduction in outages. As the total 

vulnerable points are not in proportion with size of Manhattan, the methodology used in this 

research didn’t recommend installation of animal guards. However, the utility can still choose an 

outage mitigation level with acceptable probability value, but may face risk of having a loss.  

Utilities spend large amounts of money to improve system reliability and diligently strive 

to maintain an excellent relationship with customers with the goal of providing uninterrupted 

power supply. However, due to lack of proper analysis or inevitable natural disasters, there is 

always a risk of harming their system’s credibility. The novel approach proposed in this research 

will assist utilities to keep themselves ahead in order to significantly reduce the number of 

outages and in providing continuous electricity to their customers. Because this analysis was 

performed using real-life cost values and with consideration of different cases of outage 

reduction and mitigation levels, a high possibility exists to rapidly and effectively improve 

system reliability.  

 Future Work 

The data used in outage mitigation strategies provided only general information on the 

total outages for a complete distribution network and weather conditions for an entire city. In 

order to select the best outage mitigation strategy, analysis based on detailed data indicating the 

exact location of vulnerable points with high occurrence of outages is required.  
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Appendix A - Weekly and Monthly Outage Predictions for Other 

Cities 

(a) 

 

(b) 
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(c) 

 

Figure 6.1 (a)-(c) Manhattan Weekly Predictions by MCS  

(a) 
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(b) 

 

(c) 

 

Figure 6.2 (a)-(c) Manhattan Monthly Predictions by MCS  
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(c) 

 

Figure 6.3 (a)-(c) Lawrence Weekly Predictions by MCS  
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(b) 

 

(c) 

 

Figure 6.4 (a)-(c) Lawrence Monthly Predictions by MCS  
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(c) 

 

Figure 6.5 (a)-(c) Topeka Weekly Predictions by MCS  
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Figure 6.6 (a)-(c) Topeka Monthly Predictions by MCS  
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Appendix B - CPT of Wichita for Other Cases of Outage Reduction 

Table 6.1 Conditional Probability Table of Wichita for 20% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.426 0.226 0.151 0.121 0.060 0.000 0.000 0.015 0.000 

Input State 2 0.314 0.102 0.178 0.127 0.140 0.089 0.025 0.025 0.000 

Input State 3 0.200 0.055 0.000 0.110 0.138 0.166 0.110 0.110 0.110 

Input State 4 0.446 0.092 0.215 0.123 0.092 0.031 0.000 0.000 0.000 

Input State 5 0.253 0.133 0.080 0.187 0.187 0.080 0.053 0.027 0.000 

Input State 6 0.216 0.047 0.063 0.016 0.094 0.188 0.204 0.094 0.078 

Input State 7 0.200 0.000 0.480 0.160 0.000 0.160 0.000 0.000 0.000 

Input State 8 0.242 0.000 0.126 0.168 0.253 0.168 0.042 0.000 0.000 

Input State 9 0.200 0.000 0.027 0.080 0.120 0.093 0.080 0.173 0.227 

 

Table 6.2 Conditional Probability Table of Wichita for 30% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.498 0.198 0.132 0.106 0.053 0.000 0.000 0.013 0.000 

Input State 2 0.400 0.089 0.156 0.111 0.122 0.078 0.022 0.022 0.000 

Input State 3 0.300 0.048 0.000 0.097 0.121 0.145 0.097 0.097 0.097 

Input State 4 0.515 0.081 0.188 0.108 0.081 0.027 0.000 0.000 0.000 

Input State 5 0.347 0.117 0.070 0.163 0.163 0.070 0.047 0.023 0.000 

Input State 6 0.314 0.041 0.055 0.014 0.082 0.165 0.178 0.082 0.069 

Input State 7 0.300 0.000 0.420 0.140 0.000 0.140 0.000 0.000 0.000 

Input State 8 0.337 0.000 0.111 0.147 0.221 0.147 0.037 0.000 0.000 

Input State 9 0.300 0.000 0.023 0.070 0.105 0.082 0.070 0.152 0.198 

 

Table 6.3 Conditional Probability Table of Wichita for 40% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.570 0.170 0.113 0.091 0.045 0.000 0.000 0.011 0.000 

Input State 2 0.486 0.076 0.133 0.095 0.105 0.067 0.019 0.019 0.000 
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Input State 3 0.400 0.041 0.000 0.083 0.103 0.124 0.083 0.083 0.083 

Input State 4 0.585 0.069 0.162 0.092 0.069 0.023 0.000 0.000 0.000 

Input State 5 0.440 0.100 0.060 0.140 0.140 0.060 0.040 0.020 0.000 

Input State 6 0.412 0.035 0.047 0.012 0.071 0.141 0.153 0.071 0.059 

Input State 7 0.400 0.000 0.360 0.120 0.000 0.120 0.000 0.000 0.000 

Input State 8 0.432 0.000 0.095 0.126 0.189 0.126 0.032 0.000 0.000 

Input State 9 0.400 0.000 0.020 0.060 0.090 0.070 0.060 0.130 0.170 

 

Table 6.4 Conditional Probability Table of Wichita for 50% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.642 0.142 0.094 0.075 0.038 0.000 0.000 0.009 0.000 

Input State 2 0.571 0.063 0.111 0.079 0.087 0.056 0.016 0.016 0.000 

Input State 3 0.500 0.034 0.000 0.069 0.086 0.103 0.069 0.069 0.069 

Input State 4 0.654 0.058 0.135 0.077 0.058 0.019 0.000 0.000 0.000 

Input State 5 0.533 0.083 0.050 0.117 0.117 0.050 0.033 0.017 0.000 

Input State 6 0.510 0.029 0.039 0.010 0.059 0.118 0.127 0.059 0.049 

Input State 7 0.500 0.000 0.300 0.100 0.000 0.100 0.000 0.000 0.000 

Input State 8 0.526 0.000 0.079 0.105 0.158 0.105 0.026 0.000 0.000 

Input State 9 0.500 0.000 0.017 0.050 0.075 0.058 0.050 0.108 0.142 

 

Table 6.5 Conditional Probability Table of Wichita for 60% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.713 0.113 0.075 0.060 0.030 0.000 0.000 0.008 0.000 

Input State 2 0.657 0.051 0.089 0.063 0.070 0.044 0.013 0.013 0.000 

Input State 3 0.600 0.028 0.000 0.055 0.069 0.083 0.055 0.055 0.055 

Input State 4 0.723 0.046 0.108 0.062 0.046 0.015 0.000 0.000 0.000 

Input State 5 0.627 0.067 0.040 0.093 0.093 0.040 0.027 0.013 0.000 

Input State 6 0.608 0.024 0.031 0.008 0.047 0.094 0.102 0.047 0.039 

Input State 7 0.600 0.000 0.240 0.080 0.000 0.080 0.000 0.000 0.000 

Input State 8 0.621 0.000 0.063 0.084 0.126 0.084 0.021 0.000 0.000 
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Input State 9 0.600 0.000 0.013 0.040 0.060 0.047 0.040 0.087 0.113 

 

 

Table 6.6 Conditional Probability Table of Wichita for 70% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.785 0.085 0.057 0.045 0.023 0.000 0.000 0.006 0.000 

Input State 2 0.743 0.038 0.067 0.048 0.052 0.033 0.010 0.010 0.000 

Input State 3 0.700 0.021 0.000 0.041 0.052 0.062 0.041 0.041 0.041 

Input State 4 0.792 0.035 0.081 0.046 0.035 0.012 0.000 0.000 0.000 

Input State 5 0.720 0.050 0.030 0.070 0.070 0.030 0.020 0.010 0.000 

Input State 6 0.706 0.018 0.024 0.006 0.035 0.071 0.076 0.035 0.029 

Input State 7 0.700 0.000 0.180 0.060 0.000 0.060 0.000 0.000 0.000 

Input State 8 0.716 0.000 0.047 0.063 0.095 0.063 0.016 0.000 0.000 

Input State 9 0.700 0.000 0.010 0.030 0.045 0.035 0.030 0.065 0.085 

 

Table 6.7 Conditional Probability Table of Wichita for 80% outage reduction case 

Outage Level 1 2 3 4 5 6 7 8 9 

Input State 1 0.857 0.057 0.038 0.030 0.015 0.000 0.000 0.004 0.000 

Input State 2 0.829 0.025 0.044 0.032 0.035 0.022 0.006 0.006 0.000 

Input State 3 0.800 0.014 0.000 0.028 0.034 0.041 0.028 0.028 0.028 

Input State 4 0.862 0.023 0.054 0.031 0.023 0.008 0.000 0.000 0.000 

Input State 5 0.813 0.033 0.020 0.047 0.047 0.020 0.013 0.007 0.000 

Input State 6 0.804 0.012 0.016 0.004 0.024 0.047 0.051 0.024 0.020 

Input State 7 0.800 0.000 0.120 0.040 0.000 0.040 0.000 0.000 0.000 

Input State 8 0.811 0.000 0.032 0.042 0.063 0.042 0.011 0.000 0.000 

Input State 9 0.800 0.000 0.007 0.020 0.030 0.023 0.020 0.043 0.057 
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Appendix C - Predictions of Yearly Outages for Topeka and 

Lawrence with Outage Reduction 

 

Figure 6.7 Topeka Yearly Outages with 10% Outage Reduction 

 

Figure 6.8 Topeka Yearly Outages with 20% Outage Reduction 
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Figure 6.9 Topeka Yearly Outages with 30% Outage Reduction  

 

 

Figure 6.10 Topeka Yearly Outages with 40% Outage Reduction 
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Figure 6.11 Topeka Yearly Outages with 50% Outage Reduction 

 

 

Figure 6.12 Topeka Yearly Outages with 60% Outage Reduction 
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Figure 6.13 Topeka Yearly Outages with 70% Outage Reduction 

 

 

Figure 6.14 Topeka Yearly Outages with 80% Outage Reduction 
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Figure 6.15 Lawrence Yearly Outages with 10% Outage Reduction 

 

 

Figure 6.16 Lawrence Yearly Outages with 20% Outage Reduction 
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Figure 6.17 Lawrence Yearly Outages with 30% Outage Reduction 

 

 

 
Figure 6.18 Lawrence Yearly Outages with 40% Outage Reduction 
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Figure 6.19 Lawrence Yearly Outages with 50% Outage Reduction 

 

 
Figure 6.20 Lawrence Yearly Outages with 60% Outage Reduction 
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Figure 6.21 Lawrence Yearly Outages with 70% Outage Reduction 

 

 
Figure 6.22 Lawrence Yearly Outages with 80% Outage Reduction 
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