/Classification of wheat kernels by machine-vision measurement/
by
TERRY EUGENE SCHMALZRIED
B. S., Kansas State University, 1983

A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1985

Approved by:

ACKNOWLEDGEMENTS

The Electrical and Computer Engineering and the Grain Science and Industry departments financially supported this research. Julie Liska-Mason patiently positioned and took pictures of hundreds of kernels of wheat. Gerald schmalzried proofread and made gramatical corrections on the rough draft of this report. Dr. Arthur Davis, Dr. Jon Faubion, Dr. Carl Hoseney, and Dr. Stephen Dyer took care of the politics and offered technical advice. To each of them, I would like to express my sincerest thanks.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS $i i$
LIST OF FIGURES iv
Chapter

1. INTRODUCTION 1
HISTORICAL KERNEL CHARACTERISTICS 2
SELECTION OF DISCRIMINATORS 5
AN EXPLANATION OF THE PROCEDURE 6
2. VISION SYSTEM INTERNALS 8
OBTAINING THE DATA 8
KERNEL MEASUREMENT 18
CLASSIFIERS 21
3. PROBLEMS AND SOLUTIONS 24
4. RESULTS 28
KERNEL MEASUREMENT STATISTICS 28
CLASSIFIERS 29
5. CONCLUSIONS 34
REFERENCES 37
APPENDIXES
A. STATISTICAL PLOTS 38
B. CLASSIFIER RESULTS (TABLES AND PLOTS) 69
C. COMPUTER PROGRAMS 81

LIST OF FIGURES

Figure Page

1. Parts of a Wheat Kernel 3
2. Image Array 9
3. Image Histogram 11
4. Automatic Threshold Detection with a Bimodal Histogram 13
5. Initial Turtle Position in Edge Tracking 15
6. Edge Tracking around a Hole 17.
7. Camera Orientations for Top and Side Views 27
8. Hyperplane Intersection with Line, 2-D Case 32

Chapter 1

INTRODUCTION

"The [U.S.] Grain Standards Act provides in part that all grain shipped in interstate or foreign commerce to or from a point at which an inspector licensed under the act is located must be officially inspected and graded if the grain be merchandised by grade."[6] The inspector uses mechanical measurements as much as possible to grade the wheat, but "there is no mechanical test for determining the class to which any particular lot of grain belongs. Identification of the different classes of grain depends almost entirely upon the grader's knowledge of and familiarity with the different kinds of grain that come under his observation."[6] A device that could recognize and itemize the representative varieties or classes present in a sample of wheat would be of great use to the grain inspector.

This paper describes the computer programs that were written by the author for a machine-vision system that classified kernels of wheat by variety. The computer programs gathered and analyzed data on four varieties of wheat and then used that information to choose a minimal set of features to be used to differentiate between the varieties. The results and some suggestions for further research are included at the end of this report.

Historical Kernel Characteristics

The Grain Grading Primer[6], published by the Department of Agriculture, gives an indication of the kernel characteristics used by experienced grain inspectors to grade wheat. "Color, kernel texture, and variety characters are helpful indexes in determining the class or subclass." [6] The "relative size and shape of the germs, the appearance of the crease -- whether open or tightly closed -- and the outline of the kernel from both the side and top views" [6] are also helpful. The indexes of color, texture, kernel shape, and variety characters are discussed in the following paragraphs.

Color. The first of these indexes, color of the wheat kernel, is due to the amount of pigment in the bran layer (see Figure 1) and can vary with variety, texture, and environment. Wheat can be found throughout the world in varying shades and mixtures of white, red, yellow, and purple.[5]

Texture. The second index, kernel texture, refers to the hardness of the endosperm (see Figure, 1) and is usually tested by cutting or biting the kernel and examining the inside. "A soft wheat is one which, when normally developed, has an endosperm entirely soft, mealy, or starchy. A hard kernel, when normally developed, has a corneous, horny, or vitreous endosperm throughout." [5]

Bottom VIew

Top V1ew

Figure 1. Parts of a Wheat Kernel.

Shape. Some fairly constant kernel shapes for all of the wheat classes, except the mixed class, are described in the following excerpt from the Grain Grading Primer:
... fully developed Durums are pointed sharply at the germ end and are widest back of the center of the kernel; most other wheats are widest near the germ. The crease in Durums is tightly closed and the seed coat over the germ is not as wrinkled as in other classes. The White class ... is always yellowish white or tannish in color, the germs are large and the creases are wide open. The Soft Red Winter class ... is generally characterized by soft texture, large germs, open creases with rounded cheeks, and a red or yellowish red color.

The Hard Red Winter class is represented by slender elliptical kernels, with a small germ, and tightly closed crease. When viewed from the side the bottom line of the kernel is relatively straight or slightly rocker in outline. The Hard Red Spring class is represented by short kernels, usually hard and vitreous, and dark red in color. The germ is midsized, the crease deep and open, and the kernels have a prominent hump near the germ at one side of the center line of the back. [6]

The primer then goes on to say that class descriptions are not always sufficient, especially in "some of the more recent wheat varieties, resulting from crossing varieties of different classes." Inspectors must recognize varietal traits as well. Some varieties are so similiar to others that they are virtually indistinguishable; classifying them "requires experience and study." [6]

Variety charasters. John H. Martin [5], in 1922, investigated the use of kernel characteristics in classifying wheat by variety. He designates the major distinctions between kernels to be color, length, and texture. of minor importance, but also useful, are kernel shape and "differences of the germ, crease, cheeks, and brush."[5] He recommends that length measurements be taken only from the normal kernels, and not from
kernels taken "from the top spikelets on a spike and from the upper florets in the spikelet" because they are "below normal in length. ${ }^{\text {" }}$ [5]

Selection of Discriminators

Noting that, unlike thumbtacks, the kernels of a single variety of wheat are not mass produced from the same mold, characteristics chosen to identify wheat varieties must be tolerant of the differences that occur among the kernels of the same variety. One such difference is in overall kernel size, and can be attributed to the growing region, weather, and position in the wheat head. A normalization technique, in which ratios of measurements from a kernel are compared rather than absolute measurements, might be useful in getting around the size differences. But which measurements should the vision system use as discriminators?

The first ideas for discriminators were simple measurements such as height, width, and length. To these were added radial measurements from the centroid in both top and side views. Then, the possibility of trying to measure some of the more abstract shape features such as pointedness, degree of curvature, surface texture, relative germ size, and germ angle could be considered if time permitted. Three-dimensional mapping for crease, cheek, and back-peaking measurements had to be shelved due to their complexity. Kernel color was dismissed because of its variability with environment. Kernel texture was discarded
because the testing procedure involved destroying the kernel by cutting it before examination.

The method chosen for classification of the four varieties of wheat was to take radial measurements from the centroid at half degree increments in two views (top and side); to normalize the measurements with respect to the kernel's length and width (height for side $v i e w$); and then to find a small number of measurements that, in combination, would give good classification results for the four variety test case. The total number of measurements taken for each kernel was 1440 , which was more than enough data to analyze for one project.

An Explanation of the Procedure

Program steps. The following three steps are used to find which measurements will be the best discriminators and give the best classification results: 1) collection of edge contours for the wheat sample set, 2) measurement of the kernel contours, and 3) exhaustive search for optimal discriminators. The inner workings of the programs that accomplish each of these three steps are detailed in the following chapter entitled "Vision System Internals."

Operator intervention. In the final classification system, no operator intervention should be required. But, for this research system, the operator is required to do several tasks. First, the operator must enter the commands that run the programs. Second, he must orient the kernels crease side down before taking pictures of them and must keep them in the same
order for both views. Third, computer chosen perimeters are shown to him on a video monitor and he selects or rejects them so that boundaries of touching or broken kernels are not processed. And fourth, he indicates the germ end of the kernel using a joystick so that the measurements will be taken starting from the same end for of all of the kernels.

Chapter 2

VISION SYSTEM INTERNALS

Obtaining the Data

Hardware. The vision system hardware consists of a digitizing camera, a general-purpose computer, and a video display terminal. The camera passes the image to the computer as a 512 by 512 array of integers as shown in Figure 2. Each integer represents the average gray level (light intensity) at the corresponding point in the picture and can range in value from 0 (black) to 255 (white). An element of the image array is called a pixel, which comes from the words picture and element. Although looking at a picture and picking out the outline of an individual grain of wheat from it is a simple task for a human, it is not nearly so simple for a computer. Computers do not posess the abstract concept of objects that humans do. The computer must find the outline mathematically, using that array of integers.

Object silhouette. One method of showing an object to a computer that is easy for it to understand is to show the object in silhouette. The object is placed on a light table with the camera above, and looking down on, the object. The object will appear dark on a bright background to the camera. The image array passed to the computer will hold large integers for the

Figure 2. Image Array.
background pixels and small integers for the object pixels. A small value next to a large value indicates an edge. But what is a small value, and what is a large value? In order to determine what these relative values are for a specific image, a histogram is used.

Image histogram. An image histogram is a function consisting of the number of times that a pixel intensity occurs in an image versus the pixel intensity value (see Figure 3). It is created by scanning through the image array and tallying up the number of occurrences of each intensity present. The tallies are kept in a histogram array. When the number of occurrences is plotted versus the intensity values, the resulting function will have two humps for a back-lit image. Such a function is called bimodal.[2] The two humps occur in the function because most of the points in the picture are either object (dark) or background (light) points and only a few of the points occur in the transition between object and background. Therefore, in order to separate the object regions of the image from the background regions, the intensity value in the center of the valley can be chosen as a threshold between small and large pixel intensities.[2]

Automatis thresholding. Locating the valley intensity in the histogram is begun by smoothing the histogram by averaging each value with its four neighbors (two on either side). Then, the smoothed function is scanned from intensity 255 to intensity 0 , comparing the occurrence tallies against a minimum peak

Histogram

Figure 3. Image Histogram.
constant until a tally is found to be large enough to be considered on a peak (see Figure 4). From there, scanned tallies are compared with a maximum valley constant until a tally is found to be small enough to be considered in a valley. Scanning continues from this valley edge point as long as the next tally is smaller than its predecessor. When a low spot is encountered, the intensity at which it occurs is saved. The computer resumes scanning and searches for another peak tally. When a peak is found, the scanning direction is reversed and a second valley edge and low spot are found in succession. The midpoint between the two low spots is declared to be the threshold.

Object detection. Once the threshold has been selected, edge determination can begin. Recall that an edge pixel is a dark object pixel which neighbors a light background pixel. The edge contour is found by grouping neighboring edge pixels together. This grouping is done by the edge-tracking algorithm described in the following paragraph. But, in order to begin tracking an edge, the edge-tracking algorithm must be given a root edge pixel to grow from. The root could be found by scanning through the array pixel by pixel, searching for an edge pixel, but that would be very slow because of the large number of comparisons involved. A pattern-bombing, scanning procedure works much faster. Image array pixels whose indexes are multiples of 25 are tested sequentially until a dark object pixel is found. Then, the scanning direction is reversed and done pixel by pixel until a background pixel is found. The previous

Histogram

Figure 4. Automatic Threshold Detection with a Bimodal Histogram.
object pixel is passed to the edge-tracking algorithm to be used as the root edge pixel.

Edge tracking. The edge-tracking algorithm connects edge pixels together as if a turtle were traversing the image array, First, the far outside edge pixels of the image array are set to background values so the turtle cannot wander off of the image. The turtle begins its journey on the known object edge pixel with its tail to the neighboring background pixel as in Figure 5. It looks back over its left shoulder and scans from left to right looking for an adjoining object pixel. When it finds one, it turns toward it and steps forward to the new edge pixel. The turtle then repeats the scan from its new orientation and location until its movement returns it to the original, root pixel. The edge contour is stored in a one-dimensional array as a list of the directions that the turtle moves when it advances from one pixel to the next. This list is called a boundary chain code and is a very compact method of storing edge contours.[2]

Determining and marking interior pixel.s. Now that an edge has been found, it is important for later processing to determine which of the image array pixels are interior to this particular edge. To do this, a logical array of the same dimensions as the image array is used. This array indicates interior membership. A rectangular portion of this array, extending from the minimum to the maximum x and y indexes of the edge contour traced by the turtle, is initialized to values of false, meaning not interior. Next, the edge contour is traversed and, with some methodological

Figure 5. Initial Turtle Position in Edge Tracking.
toggling, the elements of the logical array corresponding to interior pixels of the edge contour are set to true while those corresponding to exterior pixels are left in a resultant state of false. The toggling rules used during traversal are as follows:

1. If the direction of motion to the next pixel is a downward motion, then all of the elements to the right of and in the row of the pixel being moved fromare toggled.
2. If the direction of motion to the next pixel is an upward motion, then all of the elements to the right of and in the row of the pixel being moved to are toggled.
3. Otherwise, no toggling is performed for this motion.

Once the contour has been entirely traversed and all toggling is complete, the edge is traversed once more and all of the edge pixels are set true to indicate that they are also a part of the object. Note that only the pixels interior to this specific edge contour have values of true in the interior-membership array; pixels interior to other objects have values of false along with the background pixels.

Ensuring externality of the contour. It is possible that the edge-tracking procedure could have traced around a light area (due to a hole in the kernel or noise in the image) inside the wheat kernel, which would result in the light area being enclosed by the edge contour rather than the wheat kernel (see Figure 6). This is easily tested by checking to see if the background pixel adjacent to the root edge pixel is interior or exterior to the edge by using the interior-membership array. If the background pixel is interior to the edge, then the contour encloses a hole,

Figure 6. Edge Tracking around a Hole.
not a kernel. To correct this, searching is continued from the leftmost pixel of the edge contour back to the left for another root edge pixel to send to the edge-tracking algorithm for another try.
contour rejection. If an edge contour touches the edge of the image, is longer than the boundary chain code array, or is shorter than 175 pixels, it is discarded. Otherwise, the centroid is calculated. (If the centroid turns out to be exterior to the edge, then the contour is also discarded. This sometimes happens when two or more kernels touch and overlap each other on the light table and all of themaretraced around as one edge.) The outline of the kernel that has been found by the computer is traced in green on the display screen and crosshairs are centered over the kernel's centroid. Then, the operator decides whether or not the boundary will be stored. If so, the boundary chain code is written to disk. Next, the points interior to this edge that would be hit by the pattern-bombing procedure are set to background values in the image array so that this kernel will not be considered again. Searching continues for other kernels in the image from the point where the patternbombing procedure left off when it found this latest kernel. When all of the kernels in an image have been found and shown to the operator, the operator may take another image.

Kernel Measurement

Now that the edge contours have been found, the kernels can be measured. Recall that it was decided that radial measurements
would be taken of both top and side views, in half-degree angular increments, from the centroid to the kernel's edge. This section describes how these measurements are taken.

Centroid calculation. The centroid, or center of gravity, of the wheat kernel is found using moments. The density function, $f(x, y)$, of the silhouette is considered to have a value of one inside the edge and zero outside. The centroid is located at the point

$$
\begin{equation*}
\bar{x}=\frac{M_{10}}{M_{00}}, \quad \bar{y}=\frac{M_{01}}{M_{00}} \tag{I}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{j k}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x^{j} y^{k} f(x, y) d x d y \tag{2}
\end{equation*}
$$

is the moment of order $j+k$. The zero-order moment is the area of the silhouette. [2]

Determination of the principal axes. The principal axes of the wheat kernel are found using central moments. Central moments are found in the same manner as regular moments, except the centroid is used as the origin. The expression for a central moment is

$$
\begin{equation*}
u_{j k}=\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty}(x-\bar{x})^{j}(y-\bar{y})^{k} f(x, y) d x d y \tag{3}
\end{equation*}
$$

The angle, w, that the principal axes differ in rotation from the present axes may be solved for from equation 4.[2]

$$
\begin{equation*}
\tan 2 w=\frac{2 u_{11}}{u_{20}-u_{02}} \tag{4}
\end{equation*}
$$

Indicgtion of germ end of kernel. Before the radial measurements are begun, the operator is asked to indicate the germ end of the kernel with a joystick. Crosshairs are positioned over the centroid of an image of the kernel on the display screen. The operator then moves the crosshairs toward the germ end of the kernel. (Although the major axis of the kernel has already been calculated, the computer does not know which end of the kernel is the brush end and which is the germ end.)

Taking radial measurements. The radial measurements are begun at the germ end of the kernel. A vector is followed outward from the centroid in the internal-membership array until a background pixel is found. Then, the length of the vector is calculated and saved. This is repeated for all 720 measurements in the view.

Normalization methods. Absolute as well as normalized measurements are used in the statistic and classifier programs. The normalization techniques used are length- and widthnormalization. For length-normalization, the radial measurements are divided by the sum of the 0 degree and the 180 degree angular measurements; for width-normalization, the radial measurements are divided by the sum of the 90 degree and the 270 degree angular radii. The absolute radial measurements are in units of
pixels while the normalized measurements are, of course, simple ratios.

Classifiers

Minimum-distance and nearest=neighbor classifiers. Two types of classifiers are used on the wheat data: a minimumdistance classifier[1] and a nearest-neighbor classifier. The minimum-distance classifier compares a measurement from the unknown kernel against the corresponding mean measurement for each of the varieties known to it. The unknown kernel is assumed to be of the same variety as the variety with the closest mean measurement. The nearest-neighbor classifier keeps, on disk, a set of measurements of sample kernels of known varieties. It then compares a measurement of the unknown kernel against the corresponding measurement of each of the sample kernels in its known set. It assigns the unknown kernel to the variety of the sample kernel whose corresponding measurement is closest.

Elective classifier. A third, elective, classifier is also used, but it can be considered a modification of the minimumdistance classifier. It is run six times for each unknown kernel with the results being put to a vote. The six times are for each of the possible combinations of two varieties out of the four. If a single variety wins each of its comparisons against each of the other three varieties, then the voting will come out with a perfect threefor that variety. If there is not a unanimous decision, then there will at least be one variety that gets fewer
votes than the others and a choice can be made among the leaders in the voting. The unknown kernel is considered to belong to the variety that wins the voting.

Training and testing sets. All classifiers are trained using 100 kernels of each of the four varieties: measurements are written to disk for the nearest-neighbor classifier and mean measurements are calculated for the minimum-distance classifier. The classifiers are also tested using these same kernels. During the testing of the nearest-neighbor classifier, the unknown kernel is taken out of its known set in an oddman out fashion so that there will not be an exact match.

Use of mutiple dimensions. More than one measurement is of ten required to distinguish one variety of wheat from another. Each of these discriminating measurements is used as a coordinate in an n-dimensional space. To determine the distance between two points in the n-space, the normal Euclidean definition of distance is used: the square root of the sum of the squares of each coordinate difference.

Exhaustive discriminator selection. Selection of the measurements to be used as discriminators in the final classifiers is done exhaustively. Each possible measurement (all angles and all normalization methods) is added, in turn, to the current set of classifier dimensions and all of the training kernels classified using the resulting set of dimensions. The additional measurement that gives the best classification rate is then added to the list of discriminators that make up the
classifier dimension set. In this way, the classifier dimension is incremented from zero (searching for the best first dimension) until the addition of a new dimension does not increase the rate of classification.

PROBLEMS AND SOLUTIONS

Several problems came about during the course of this research. They, and their solutions, are described below,

The first group of problems involved the image arrays produced by the digitizing camera. The camera filled the rightmost elements of the image array with erroneous values and scattered salt-and-pepper noise (white and black pixels scattered over the image) throughout the image array. Simply having the programs ignore the rightmost columns of pixels turned out to be easier than getting the camera fixed and was quicker too. The salt-and-pepper noise occurred in a regular pattern throughout the image array and was attributed to poor shielding. Mean and approximate-mean filters were programed and applied to the image array to rid it of the noise before other processing, but this preprocessing slowed down the whole procedure unbearably. It ended up that the noise was easily removed by coiling the extra cable between the camera and the digitizing circuitry so that the preprocessing filter was not necessary.

Another problem had to do with obtaining the side view of each kernel. The camera is positioned over the light table in a rigid frame and is not easily moved to a side position. Changing the camera position for each kernel was unthinkable. The solution was to tape down the loose glass on the light table and then to tip the entire camera and light table assembly on its
side. A small piece of plexiglass was taped to the glass of the light table and its unpolished edge served as a nonreflective shelf for the wheat kernel. The plexiglass also allowed light to pass through it so that another edge-tracking program was not required that would ignore the support. Small wooden rockers were screwed to the side of two of the legs of the assembly to facilitate easy movement between orientations (shown in Figure 7). Also, the data-gathering programs were written so that top views of several kernels could be taken before their side views were taken. This allowed the operator to line the kernels up on a table rather than madly see-sawing the apparatus for each kernel.

The third set of problems had to do with spurious program crashing and loss of data. The first of these was with the input routines of FORTRAN -- they abort if the operator's input does not match the data type of the input variable. This was compounded by bad keyboards that unpredictably inserted extraneous control characters and occasionally misinterpreted some keys, causing total garbage to be input in some cases. This problem was tolerated by copying special input routines from another program that are tolerant of data mismatches and by error-checking all input. (In this case, the dumm-proofing is for dumb equipment and not for untrained operators.) The second of these problems was that an occasional zap of static charge would kill executing programs. So that the amount of data lost in such an instance would be minimal, the operator stopped and resumed the input program at regular intervals so that all of the

I/O memory buffers would be written out to disk. The operator was also careful not to touch the display screen because of the static charge on it.

FIgure 7. Camera Orientations for Top and Side Views.

Chapter 4

RESULTS

Kernel Measurement Statistics

Statistics for the radial measurements were calculated and plotted. These plots appear in Appendix A. These include mean, variance, minimum and maximum, mean plus-and-minus one standard deviation, and sorted variance plots for each variety. All of these are plotted versus measurement angle, except for sorted variance. The mean curve shows what the measurements are for an average kernel of each variety. The variance plot shows which measurements are the most reliable, or constant, for each variety sample. The minimum and maximum as well as the mean plus-andminus one standard deviation plots give a general impression of what the distribution of the measurements are for the sample. True distributions of specific measurements were also plotted as necessary.

These statistical plots give an idea of which measurements and normalization techniques are good discriminators for classifying the varieties: ones which show high separation between mean measurements of different varieties while having small variance among the same variety. The best multipledimension discriminators, however, are chosen by the exhaustive classifier programs.

Classifiers

Selected single-dimension classification plots are included in Appendix B for the minimum-distance classifier. These plots show the classification rates for each of the normalization methods and each of the angles of measurement for varietal as well as textural classification. Also included in Appendix B are tables showing the best dimensions and their rates of classification for the minimum-distance and the nearest-neighbor classifiers of increasing dimensions.

Minimum-distance. The minimum-distance classifier classified with rates varying from 68.50 for one dimension to 80.75\% for nine dimensions when classifying kernels by variety. Classification by texture varied from 84.50% for one dimension to 94.75% for eight dimensions.

Nearest-neighbor. The nearest-neighbor classification program was halted after several days of calculation when its classification rates began to level off. Its classification rates varied from 64.75% for a single dimension to 82.00% for three dimensions when classifying by variety. Classification by texture was not attempted due to the length of program execution time.

Single-dimension electipe. Several modifications of the minimum-distance classifier were tried that used only a single dimension. Each of these compared a measurement against two of the mean measurements out of the four. The first method cast a whole vote for the nearest mean in each of the six cases and
selected the variety with three votes as the winner. If none of the varieties got three votes, then the first of the varieties with two votes was selected. This method resulted in an 86.00 \% classification rate, compared with the 68.50% rate given above. 4.25% was due to guesses among the two-vote varieties. The second method gave percentage votes equal to the fraction of the distance away from each of the means. Therefore, if a measurement was one-quarter of the distance from mean 1 to mean 2 , then mean 2 would get a vote of 0.25 and mean 1 would get a vote of 0.75 . If the measurement was greater than or less than both of the means, then the closest mean would get a whole vote. This method produced a classification rate of 84.00%. A third method, similiar to the second, gave a classification rate of 83.00\%. This method gave a percentage vote only to the nearest mean and was based on the distance from the midpoint between the means. A measurement that occurred at the midpoint gave a vote of zero, while one that occurred 90% of the way from the midpoint to the mean gave a vote of 0.90 . These methods improved on the single dimension classification rate, so similiar modifications were tried for multiple dimensions.

Multiple-dimension elective. In this third, multipledimension classifier, the best set of minimum-distance discriminators between two varieties were used, with the maximum number of dimensions. For example, when testing a kernel between the Arkan and the Arthur means, a four-dimensional space was used that gave a 97.5 classification rate when tested with the 100

Arkan and 100 Arthur sample kernels. (These dimensions are given in the tables in Appendix B.) The three schemes varied in their method of voting.

The first method connects the two mean points in the n dimensional space with a line. A hyperplane, perpendicular to this line and passing through the unknown kernel's point in the n-space is set up. The percentage of the distance along this line that the hyperplane cuts it determines the vote that each variety gets in the same manner as in the second, singledimension voting classifier above. A two-dimensional case is shown in Figure 8. (Figuring this proportion is not nearly as difficult as it sounds since it only involves calculating an $n-$ dimensional dot product between a vector from mean 1 to mean 2 and a vector from mean 1 to the unknown kernel's point.) The classification rate for this method was 92.00%.

The second method uses equipotential curves to give partial votes to both varieties. This involves calculating the distances between mean 1 and the unknown point and mean 2 and the unknown point. The fraction described by the distance from mean 1 to the unknown point divided by the sum of the two distances is given to variety 2 while the distance from mean 2 to the unknown point divided by the same sum is given as a vote to variety 1 . This method resulted in a classification rate of 86.00%.

The third method involves giving the whole vote to the nearest of the two means. If classification occurs only when there are three votes, the classification rate is 92.75%. If, however, an educated guess is made among the varieties based on

Figure 8. Hyperplane Intersection with Line, 2-D Case.
the number of times that that sequence of votes has come up for each variety, the classification rate increases to 94.00%. If classification is done by texture rather than variety, then the rate is 96.25% with educated guessing. This method gives the best classification rates of all the methods for this fourvariety test case.

As noted before, the test case for all of these classifiers was the same set of measurements used to train them. Therefore, if a different sample of wheat were to be classified with one of these classifiers, the classification rate is expected to decrease.

Chapter 5
 CONCLUSIONS

This paper has described a machine-vision system designed to classify wheat on a kernel-by-kernel basis. The system measures a set of known kernels and tries to find a set of those measurements that can be used to discriminate between the varieties.

Several classification schemes were used: a minimumdistance, a nearest-neighbor, and an elective classifier. The elective classifier did not attempt to find a single set of measurements to discriminate between all varieties as the others did, but chose sets of features to discriminate between each of the possible pairs of varieties. A tally was kept of the winners of each pair's comparison and the kernel was classified as the variety that won the most comparisons. This classifier gave the best results of any of them with a varietal classification rate of 94% correct. But, this percentage was for a single test set which was the same set that the classifier was trained with, so the percentage is not representative of what could be expected in all cases.

Regardless of the accuracy of the classification rate, it would seem that the machine-vision system is promising as a classification tool for use in wheat grading. Therefore, a few suggestions are given below for possible directions in future research.

Additional Features

There are many additional features that can be measured from a wheat kernel. First, additional measurements that could be made from the silhouette images include a series of vertical and horizontal measurements; area; fit of the contour to a rectangle, circle, ellipse or mean contour $[3,4]$; and comparison of abstract features that humans use, like pointedness or angle of germ, roundedness of the kernel's back, and so on. Second, different methods of analyzing edge data could be used, such as taking the Cosine or Fourier transforms of the boundary chain code as described by Castleman.[2] Third, three-dimensional comparisons of crease width, crease depth, cheek curvature, slope of the kernel's back, and wrinkling of the outsize layer could be done by building up a representation of a kernel from multiple silhouette views, stereoscopic views, or by analyzing the reflection from the kernel's surface when in the presence of a point light source. $[2,3]$

More Efficient Methods of

Discriminator selection
More efficient means of discriminator selection should be used. Exhaustive methods require huge amounts of calculation. Castleman talks about feature variance and correlation and how these can be used to determine class separation and for dimension reduction. Features with high variance within a, variety should not be considered as possible discriminators. Features that are correlated with other features are redundant and only one of them
should be kept. Castleman gives equations for measuring these parameters. [2]

More Representative Test Sets
Rather than testing a classifier on the sample that was used to train it, a classifier should be tested with a different sample. Classifier training should also be done with samples of the same variety of wheat from different portions of the state or country and, if possible, grown in different climates or years.

1. Ahmed, Nasir, and Kamisetty Ramamohan Rao. Orthogonal Transforms for Digital Signal Processing. New York, New York: Springer-Verlag, 1975, pp. 225-232.
2. Castleman, Kenneth R. Digital Image Processing. Signal Processing Series, Englewood Cliffs, New Jersey: Prentice-Hal1, Inc., 1979, pp. 305, 316-317, 327, 329, 332-333, 347-377.
3. Cohen, Paul R., and Edward A. Feigenbaum, ed. The Handbook of Artificial Intelligence. vol 3. Los Altos, California: William Kaufmann, Inc., 1982, pp. 220-224, 230-237. 260-278.
4. Hall, Ernest L. Computer Image Processing and Recognition. Computer Science and Applied Mathematics, New York, New York: Academic press, 1979, p. 414.
5. Martin, John H. "Kernel Classification of United States Wheat Varieties," Thesis, 1922, pp. 2-4.
6. U.S. Department of Agriculture. Grain Grading Primer. Washington, D.C.: Govermment Printing office, 1957, pp. 3, 10, 14-15.

APPENDIX A

STATISTICAL PLOTS

Variance of Radial Measurements

Minimum and Maximum Radial Measurements

ARKAN
ARTHUR
NUGAINE
SAGE
中水中
（staxtd）yұбuaา retpey

Mean Radial Measurements

Variance of Radial Measurements

Minimum and Maximum Radial Measurements

Sorted Variance

Side View
No Normalization
Component
.
Mean Radial Measurements

Mean +/- One Standard Deviation como
Sorted Variance

Mean Radial Measurements

5
Variance of Radial Measurements

Minimum and Maximum Radial Measurements

Angle（Degrees）
Length－Normalized

 ARKAN
ARTHUR
NUGAINES
SAGE中喽中
（ع－0ஏ）47бuəา โeṭpey

Sorted Variance
Mean Radial Measurements

Variance of Radial Measurements

Minimum and Maximum Radial Measurements

$-\mathrm{B}-$ ARKAN
$-0-$ ARTHUR
$-\times$ NUGAINES
$-\square-$ SAGE
Mean +/- One Standard Deviation

$-\mathrm{B}-$ ARKAN
$-\mathrm{O}-$ ARTHUR
$-X-$ NUGAINES
$-\square-$ SAGE

Mean Radial Measurements

Variance of Radial Measurements

Minimum and Maximum Radial Measurements

Mean +/- One Standard Deviation

D- ARKAN
$0-$ ARTHUR
$x-$ NUGAINES
$-B-$ SAGE
Sorted Variance

APPENDIX B

FOUR-VARIETY MINIMUM-DISTANCE CLASSIFIER

Arkan vs. Arthur vs. Nugaines vs. Sage

1	side	Width	337	68.50
2	Top	Width	6	76.25
3	Side	Width	350	77.25
4	Side	Width	429	78.00
5	Side	Width	426	78.75
6	Side	Width	432	79.25
7	Side	Width	437	79.75
8	Side	Width	497	80.50
9	Side	Width	436	80.75

Hard vs. Soft
Dimension View Normalization Index Percentage

1	Top	Length	661	84.50
2	Side	Width	500	89.00
3	Side	Width	577	92.25
4	Side	Length	568	93.25
5	Top	Width	460	93.75
6	Side	Length	3	94.00
7	Top	Length	378	94.50
8	Top	Width	234	94.75

TWO-VARIETY NEAREST-NEIGHBOR CLASSIFIER

Arkan vs. Arthur vs. Nugaines vs. Sage Dimension Yiew Normalization Index Percentage

1	Side	Width	339	64.75
2	Side	None	536	79.50
3	Top	Length	352	82.00

TWO-VARIETY MINIMUM-DISTANCE CLASSIFIER

Arkan vs. Arthur
Dimension View Normalization Index Percentage

1	Top	Length	144	95.5
2	Side	Width	65	96.5
3	Top	Width	111	97.0
4	Top	Length	380	97.5

Arkan vs. Nugaines
Dimension View Normalization Index Percentage

1	Side	Length	720	87.0
2	Side	Length	276	91.0
3	Top	Length	695	97.0.
4	Top	Width	434	98.0
5	Side	Width	199	98.5

Arkan vs. Sage
Dimension View Normalization Index Percentage

1	Side	Width	344	89.5
2	Side	None	474	93.0
3	Side	Length	154	93.5
4	Side	Length	650	94.0

Arthur vs. Nugaines
Dimension Yiew Normallzation Index Percentage

1	Side	Width	697	97.0
2	Top	Width	401	99.0

Arthur VS. Sage
Dimension View Normalization Index Percentage
1 Side Width $713 \quad 100.0$

Nugaines vs. Sage				
Dimension	View	Normalization	Index Percentage	
1	Side	Length	379	90.0
2	Side	Width	235	93.0
3	Side	Width	193	94.5
4	Top	Width	95	95.0

FOUR-VARIETY ELECTIVE CLASSIFIER

Single Dimension Comparisons

Method No. Measurements	Percentage	
1	6	86.00
2	6	84.00
3	6	83.00

Multiple Dimension Comparisons		
Method	No.	Measurements

Multiple Dimension Method 4 used for Hard vs. Soft: 96.25%
Minimum Distance Classifier
Arkan vs. Arthur vs. Nugaines vs.

Minimum Distance Classifier
Arkan vs. Arthur vs. Nugaines vs.

Minimum Distance Classifier

No Normalization
Length－Normalized
Width－Normalized
中中＊
（\％）ə7ey uotqeottftsseto 7ココ」」ロコ
Minimum Distance classifier

（\％）a7ey uoţfeวțftsseto 7コau」oう
－No Normalization
－Length－Normalized
－Width－Normalized

Minimum Distance Classifier
Arkan vs. Arthur

- B-No Normalization
- O- Length-Normalized
- Widt-Normalized

APPENDIX C

COMPOTER PROGRAMS

IMPLICIT NONE
INTEGER*2 BLACK, WHITE, THRESH
PARAMETER (BLACK=0, WHITE=255)
INTEGER AREA, CHAINX, CHAINY, CTHRSH, DELTA/25/, DIRECT, EDGCNT, EDGMAX, EDGMIN, ENTER, FUN1, FUN2, HIST(BLACK: WHITE), HRANGE, I, ICKX, ICKY, ICOLOR, ICUR, IERR, ISTAT, ITEMP, ITMP1, ITMP2, ITMP3, ITMP4, ITMP5, J, JCUR, K, KB, KL, L, LRANGE, LSUM, MAXLX, MAXLY, MINLX, MINLY, NANGLS, NBIN, NELEM, NKERN1, NKERN3, NLINE, OFSTX, OFSTY, RM, ROOTX, ROOTY, SCANX, SCANY, SUM, TESTX, THR1, THR2, UN1, UN3, XCENT, XLOC, XSPAN, XSUM, YCENT, YLOC, YSPAN, Y SUM,
XDELT($0: 7$)/1, 1, $0,-1,-1,-1,0,1 /$,
$\operatorname{YDELT}(0: 7) / 0,-1,-1,-1,0,1,1,1 /$
PARAMETER (EDGMAX=2000, EDGM1 $\mathrm{N}=175$, $\mathrm{NELEM}=512$, NL INE $=512$,
$\&$
REAL ANG, IX, IXY, IY, MAJANG, MINANG, PI, RADIAL(NANGLS), TIX, TIXY, TIY, X, Y, Y2
PARAMETER ($\mathrm{PI}=3.141592654$)
INTEGER*2 EDGCHN(EDGMAX), IMAGE(NELEM,NLINE), TIMAGE (NELEM, NLINE)
LOGICAL*1 LIMAGE(NELEM,NLINE), SAVEDG, SAVSID, TPVIEW
CHARACTER* 1 DUMMY
CHARACTER* 24 AC1, FN1, FN3, STAT1
C Set up the peak-detection thresholds
NBIN $=5$
THR1 $=$ NBIN ${ }^{*} 650$
THR2 $=$ NBI $N * 550$
C *** Open the data flles Cone for edge data, the other for
measurement data)
$\mathrm{UN1}=54$
UNB $=56$
SAVEDG $=$. $F A L S E$.
SAVSID $=$. FALSE.
TYPE 1,' Welcome'
CALL TTYINC('Enter flle name for TOP edge data: ', FN1, IERR, 0,1 ')
IF (IERR.NE.0) FN1 $=1$ '
IF (FN1.NE,' ') SAVEDG = .TRUE.
CALL TTYINCC'Enter file name for SIDE edge data: ', FN3, IERR, 0,1 ' 1)
IF (IERR.NE.0) FN3 $=1$ '
IF (FN3.NE, ' ') SAVSID = .TRUE.
IF (SAVEDG .OR. SAVSID) THEN CALL TTYINY('Append data? ($Y /<\mathrm{N}\rangle$): ',

ITMP1, IERR,0, 'NO')

```
        DUMMY = 'N'
        IF (IERR.EQ.O .AND. ITMP1.EQ.1) DUMMY = 'Y'
        AC1 = 'SEQUENTIAL'
        IF (DUMMY.EQ.'Y' .OR. DUMMY.EQ.'Y') THEN
            STATI = 'UNKNOWN'
        ELSE
        STAT1 = 'NEW'
        ENDIF
    ENDIF
    IF (SAVEDG) OPEN(UN1,FILE=FN1,ERR=9999,STATUS=STAT1,ACCESS=AC1,
                            FORM= 'UNFORMATTED')
    IF (SAVSID) OPEN(UN3,FILE=FN3,ERR=9999,STATUS=STAT1,ACCESS=AC1,
                        FORM= 'UNFORMATTED')
    NKERN1 = 0
    NKERN3 = 0
    IF (SAVEDG ,OR. SAVSID) THEN
        IF (DUMMY.EQ,'Y' ,OR. DUMMY.EQ.'Y') THEN
C --- Count the number of kernels stored already
        IF (SAVEDG) THEN
5 0 4 9
    &
5 0 5 0 ~ C O N T I N U E
        ENDIF
5053 READ (UN3,END=5054) ITMP1, ITMP2,1TMP3,ITMP4,
NKERN1 \(=0\)
            NKERN1 = NKERN1 + 1
                    GOTO }504
        CONTINUE
            IF (SAVSID) THEN
                                    ITMP5,(EDGCHN(I),1=1, ITMP5)
            NKERN3 = NKERN3 + 1
            GOTO 5053
        ENDIF
        CONTINUE
            IF (SAVEDG) WRITE (*,*) NKERN1,' kernels In ',FN1
            IF (SAVSID) WRITE (*,*) NKERNS,' kernels in ',FN3
            ITMP1 = 0
            IF (SAVEDG) ITMP1 = NKERN1
            IF (SAYSID) ITMP1 = NKERN3
            IF ((SAVEDG .AND. NKERN1.NE.ITMP1) .OR.
                (SAYSID .AND. NKERNB.NE.ITMP1)) THEN
            WRITE (*,*) ' '
            WRITE (*,*) 'WarnIng. Number of kernels In these '//
                                    'flles do not match'
            WRITE (*,*) ' '
            ENDIF
        ENDIF
    ENDIF
```

C *** Initlalize the Grinnell
1010 CALL IMINIT ('ERASE')
CALL $\operatorname{GRDOP}(1,0)$
CALL $\operatorname{GRDSH}(1,0)$
CALL $\operatorname{GRDTH}(1,0,0)$
CALL GRDDG $(1,2,6)$
CALL GRSBFD
CALL TTYINC('Strlke RETURN to take a plcture: ', DUMMY, IERR, 0,1 ' ${ }^{\prime}$

C Display all image color planes of the plcture
$\operatorname{CALL} \operatorname{GRDDG}(1,1,0,7)$
CALL GRSBFD
C Ask the operator whlch view we're lookIng at
88 CALL TTYINC('What kernel view is thls? (Top/ Side): ', 8 DUMMY, IERR, 0, ' ${ }^{\prime}$ ')

IF (IERR.NE,0) DUMMY $=$ '? ${ }^{\prime}$
 TPVIEW $=$. TRUE.
ELSE IF (DUMMY.EQ.'S' .OR. DUMMY.EQ.'s') THEN TPV|EW = .FALSE.
ELSE
TYPE 1, ${ }^{\prime}$
TYPE 1," Invalid view. Only Top and SIde views allowed." GOTO 88
END IF
C Tell op to hold his horses. That we're worklng on $1+$. TYPE 1," Copying Image Into memory....

C Copy the Image from the Grinnell Into our IMAGE array
CALL IMDISP ' ${ }^{\prime}$ READ', 'INTEGER* $\mathbf{2}^{\prime \prime}$,
X IMAGE, NELEM,NELEM, NLINE, 0,0, 'WHITE')
TYPE 1,' Calculating histogram..."
C *** Set the outside edges to white
C Top row
DO $1=1$,NELEM
$\operatorname{IMAGE}(1,1)=$ WHITE
ENDDO
C Botton row
DO $1=1$, NELEM
\mid MAGE $(1$, NLINE $)=$ WHITE
ENDDO
C Left and right edges
DO $J=2$, NLINE-1
$\operatorname{IMAGE}(1, J)=$ WHITE
DO $1=$ NELEM $+1-$ RM, NELEM
$\mid \operatorname{MAGE}(1, \mathrm{~J})=\mathrm{MHITE}$

ENDDO
ENDDO
C *** Copy the portions of the Image that we're llkely to destroy DO J = DELTA, NLINE, DELTA

DO $1=$ DELTA, NELEM, DELTA
$\operatorname{TIMAGE}(1, J)=\operatorname{IMAGE}(1, J)$
ENDDD
ENDDO
C *** Calculate the histogram
C Clear the histogram array DO I = BLACK, WHITE $\operatorname{HIST}(1)=0$ ENDDO

C Count the number of each Intensity present In the Image DO $\mathrm{J}=2$, NLINE-1 DO $1=2$, NELEM-RM
$\operatorname{HIST}(\operatorname{IMAGE}(1, \mathrm{~J}))=\operatorname{HIST}(\operatorname{IMAGE}(1, \mathrm{~J}))+1$ ENDDO
ENDDO
C *** Find a good threshold value below first white peak
THRESH $=0$
c $\quad \begin{aligned} & \text { Running sum of bins } \\ & S U M=0\end{aligned}$
DD I = WHITE, WHITE-NBIN+1, -1 SUM $=$ SUM + HIST(I)
ENDDD
C Detect right peak
DO WHILE (SUM.LE.THRI .AND. I.GE,0) SUM $=$ SUM $+\operatorname{HIST}(I)-\operatorname{HIST}(I+$ NBIN $)$ $1=1-1$
ENDDO
C Detect right side of valley
DD WHILE (SUM.GE.THR2 .AND. I.GE.0) SUM $=$ SUM $+\operatorname{HIST}(1)-\operatorname{HIST}(1+$ NBIN $)$

ENDDD
C Find the first place that would catch water (1.e., low spot)
IF (I.GE.O) THEN LSUM $=$ SUM SUM $=$ SUM + HIST(I) - HIST(I + NBIN $)$ $1=1-1$
ENDIF
DO WHILE (SUM.LE.LSUM ,AND. I.GE.0)
LSUM $=$ SUM SUM $=\operatorname{SUM}+\operatorname{HIST}(1)-\operatorname{HIST}(I+N B I N)$

```
        I=1-1
    ENDDO
C Remember this spot
    CTHRSH=1+NBIN
C Detect next peak to left
    DO WHILE (SUM,LE,THR1 .AND. I,GE,O)
        SUM = SUM + HIST(I) - HIST(I +NBIN)
        I = |-1
    ENDDO
C If we couldn't find two peaks, tell him to adjust things
    IF (I,LE,0) THEN
        TYPE 1,1 1
    TYPE 1,' Threshold could not be automatlcally determined.'
    TYPE 1,' Better results may be obtalned by adjustIng the 1//
                'camera'
        TYPE 1,' f-stop so that the plcture is not washed out or 1//
                'dark,"
    TYPE 1,' or by chang!ng the camera helght so that the 1//
                'kernel and'
        TYPE 1,' background areas are more the same slze.'
        TYPE 1,' *
        CTHRSH =0
        GOTO 501
        ENDIF
C Turn back ...
C Detect left slde of valley
    DO WHILE (SUM.GE.THR2 .AND. I+1+NBIN.LE.255)
        l= 1+1
        SUM = SUM - HIST(1) + HIST(I+NBIN)
    ENDDO
C Find the first place that would catch water (1.e., low spot)
    IF (1+1+NBIN.LE, 255) THEN
        LSUM = SUM
        I= 1+1
        SUM = SUM - HIST(1) + HIST(I+NBIN)
    ENDIF
    DO WHILE (SUM.LE.LSUM .AND. 1+1+NBIN.LE.255)
        LSUM = SUM
        1=1+1
        SUM = SUM - HIST(I) + HIST(I+NBIN)
    ENDDO
C Set thresh to center of valley
CTHRSH \(=(\) CTHRSH \(+1+1) / 2\)
C *** Let the user choose the threshold
501 TYPE 3,' Computed threshold: ',CTHRSH
TYPE 3,' Prevlous threshold: ', THRESH
TYPE 1,' Enter deslred threshold value,'
```

```
    TYPE 1,' or 1 to plot histogram,'
    CALL TTYINI(' or RETURN to use computed threshold: ',
    8
    IF (IERR.NE,O) I=0
IF (1.EQ.0) THEN
C For RETURN, use the computed threshold THRESH \(=\) CTHRSH
ELSE IF (1.EQ.1) THEN
C Other response is his idea of a good threshold THRESH \(=1\)
ENDIF
TYPE 3,' THRESH is ',THRESH
C *** Search out the wheat kernels
C Punch holes every DELTA pixels DO ICKY = DELTA, NLINE, DELTA DO ICKX = DELTA, NELEM, DELTA
C Search in a different order for slde vlews IF (TPVIEW) THEN
SCANX \(=1\) CKX
SCANY \(=\) ICKY
ELSE
SCANX \(=1\) ICKY
SCANY \(=\) ICKX
ENDIF
C Test the punched plxels agalnst our threshold IF (IMAGE(SCANX, SCANY).LE.THRESH) THEN
C =-- Found a good plxel, so zoom left untll find an edge ROOTY = SCANY ROOTX \(=\) SCANX -1
DO WHILE (ROOTX.GE. 1 .AND. IMAGE(ROOTX, ROOTY).LE.THRESH)
            ROOTX = ROOTX - 1
            ENDDO
            ROOTX = ROOTX + 1
C --- Follow the edge, putting directions in the EDGCHN array DIRECT \(=0\)
CHAINX \(=\) ROOTX
CHAINY \(=\) ROOTY
```

EDGCNT $=1$
ITEMP $=$ DIRECT +5
DO $1=1$ TEMP, \mid TEMP $+8-1$
DIRECT $=\operatorname{MDD}(1,8)$
IF (IMAGE (CHAINX+XDELT(DIRECT), CHAINY+YDELT(DIRECT))
.LE. THRESH) THEN
EDGCHN(EDGCNT) $=$ DIRECT
CHAINX = CHAINX + XDELT(DIRECT)
CHAINY $=$ CHAINY + YDELT(DIRECT)
EDGCNT $=$ EDGCNT +1
IF (EDGCNT.LE. EDGMAX) THEN
IF (CHAINX.EQ.ROOTX .AND. CHAINY.EQ.ROOTY) GOTD 200
GOTO 100
ELSE
TYPE 1,' CHAIN TOD LDNG. TRACING ABORTED. ${ }^{\prime}$ GDTO 300 ENDIF
ENDIF
ENDDO
200
CONT INUE
EDGCNT $=$ EDGCNT -1
CALL GRSBFD
C -- \quad Find the bounds of the edge
MAXLX $=$ ROOTX
MINLX $=$ ROOTX
MAXLY $=$ ROOTY
MINLY $=$ RODTY
ICUR $=$ ROOTX
JCUR $=$ ROOTY
DO $1=1$, EDGCNT
MINLX $=$ MIN(MINLX, ICUR)
MAXLX $=$ MAX(MAXLX, ICUR)
MINLY $=$ MIN(MINLY, JCUR)
MAXLY $=\operatorname{MAX}($ MAXLY, JCUR)
DIRECT $=\operatorname{EDGCHN}(1)$
ICUR $=$ ICUR + XDELT (DIRECT)
JCUR $=$ JCUR + YDELT(DIRECT)
ENDOD
C -- Set up the LIMAGE array so that interior elements are
.TRUE.
C
Clear subset of interlor membershlp array
DD $\mathrm{J}=\mathrm{MINLY}$, MAXLY
DO $1=$ MINLX, MAXLX
$\operatorname{LIMAGE}(1, J)=. F A L S E$.
ENDDD
ENDDO
C
Toggle membershlp untl| correct
DD | = 1, EDGCNT
DIRECT $=\operatorname{EDGCHN}(1)$

```
    IF (DIRECT.GE.1 .AND. DIRECT.LE.3) THEN
    DO J = ICUR, MAXLX
        LIMAGE (J,JCUR) = .NDT. LIMAGE (J, JCUR)
    ENDDO
    ICUR = ICUR + XDELT(DIRECT)
    JCUR = JCUR + YDELT(DIRECT)
ELSE IF (DIRECT.GE.5 .AND. DIRECT.LE.7) THEN
        ICUR = ICUR + XDELT (DIRECT)
        JCUR = JCUR + YDELT(DIRECT)
        DO J = ICUR, MAXLX
            LIMAGE (J,JCUR) = .NDT. LIMAGE (J, JCUR)
        ENDDD
        ELSE
        ICUR = ICUR + XDELT(DIRECT)
        JCUR = JCUR + YDELT(DIRECT)
        ENDIF
ENDDO
```

C Include the border elements as members
DO $1=1$, EDGCNT
LIMAGE (ICUR, JCUR) $=$.TRUE.
DIRECT = EDGCHN(|)
ICUR $=$ ICUR + XDELT (DIRECT)
$J C U R=J C U R+$ YDELT (DIRECT $)$
ENDDO
C-- Test the contour direction
TESTX = ROOTX -1
IF (TESTX.GE.MINLX .AND. LIMAGE(TESTX, ROOTY)) THEN

The polnt we considered to be outside ended up on the Inslde, so wetve been decelved by scme nolse. Therefore, we must resume searching for the outside edge of this region on the other side of this nolse blotch.

ROOTX $=$ MINLX
RDOTY $=$ MINLY
DO WHILE (.NDT. LIMAGE (RODTX, ROOTY))

```
        RODTY = RODTY + 1
```

 ENDDO
 GOTO 101
 END IF
C -- If the chain is long enough and doesn't touch the edges,
C then process it
\&
IF (EDGCNT.GE.EDGMIN .AND. MINLX.GT. 2 .AND. MINLY.GT. 2
.AND. MAXLX.LT.NELEM-RM .AND. MAXLY.LT.NLINE-1) THEN
C - Calculate the centrold and area
XSUM $=D$
Y SUM $=0$
AREA $=0$
DD $J=$ MINLY, MAXLY
DD $1=$ MINLX, MAXLX

	```IF (LIMAGE(I,J)) THEN XSUM = XSUM + 1 YSUM = YSUM + J AREA = AREA + 1 ENOIF ENDOO ENOOO XCENT = IFIX( FLOAT(XSUM)/FLOAT(AREA) ) YCENT = IFIX( FLOAT(YSUM)/FLOAT(AREA) )```
$\begin{aligned} & \mathrm{C}=- \\ & \mathrm{C} \end{aligned}$	If the centrold is not Internal, automatically reject this edge   IF (.NOT. LIMAGE(XCENT, YCENT)) GOTO 2020
C -	Show the op the boundary that we've found $001=1$, EOGCNT
C	```Turn this plxel green CALL GRFAR(7, 0,0,1, ICUR-1,NLINE-JCUR,1,1) CALL GRFAR (2, 255,0,1, ICUR-1,NLINE-JCUR,1,1) DIRECT = EOGCHN(1) ICUR = ICUR + XOELT(DIRECT) JCUR = JCUR + YOELT(OIRECT) ENODO CALL GRSBFD```
$\begin{aligned} & C-- \\ & C \\ & 2021 \end{aligned}$	```Ask hlm what he wants to do with this one (polnt with crosshalrs) CALL GRZCL (1,XCENT-1,NLINE-YCENT) CALL GRZCB (1,0) CALL GRZCO(1,1) CALL GRSBFO CALL TTYINC('Enter Accept, Reject, Change: ', OUMMY, IERR,O,'?') IF (IERR.NE.O) OUMMY = '?'' CALL GRZCO(1,0) CALL GRSBFD```
	IF (OUMMY.EQ.'A' .OR. OUMMY.EQ. 'a') THEN
C...	The operator has accepted this edge
	```IF (SAVEOG .OR. SAVSIO) THEN XSPAN = MAXLX - MINLX + 1 YSPAN = MAXLY - MINLY + 1 OFSTX = ROOTX - MINLX + 1 OFSTY = ROOTY - MINLY + 1 IF (TPYIEW) THEN```
8	WRITE (UN1) XSPAN, YSPAN, OFSTX, OFSTY, EOGCNT, (EOGCAN(1), $1=1$, EOGCNT)
	```NKERN1 = NKERN1 + 1 ELSE WRITE (UN3) XSPAN, YSPAN,OFSTX,OFSTY, EOGCNT, (EOGCHN(1), l=1,EOGCNT)```
8	NKERN3 $=$ NKERN $3+1$   ENOIF

ENDIF
CALL GRSBFD

```
ELSE IF (DUMMY.EQ.'R' .OR. DUMMY.EQ.'r') THEN
```

C... The operator has rejected the edge DO $1=1$, EDGCNT

C

The op wants to change something GOTO 1012

## ELSE

C...

C -
C
2020

300

C *** Restore the parts of the image that we messed up DO $\mathrm{J}=$ DELTA, NLINE, DELTA

DO $1=$ DELTA, NELEM, DELTA

```
 IMAGE (I,J) = TIMAGE (I,J)
 ENDDD
 ENODO
```

    C *** Upper command level. What does the op want to do?
    1012 CALL TTYINCC
    \& 'Enter Thresh, Value, Camera, Number, Range, or Exit: ',
        IF (IERR.NE.D) DUMMY = '?'
        IF (DUMMY.EQ.'T' .OR. DUMMY.EQ.' + ') THEN
    C =- The op wants to change the threshold values
        CALL TTYINY('Redraw screen? (Y/<N>): ',
            ITMP1, IERR,D, 'ND')
        DUMMY \(={ }^{\prime} N^{\prime}\) I
        IF (IERR.EQ. 0 .AND. ITMPI.EQ. 1 ) DUMMY \(=T Y\)
        IF (DUMMY.EQ.'Y' .OR. DUMMY.EQ.'y') THEN
    C Restore any damage we may have done
        DD \(J=\) DELTA, NLINE, DELTA
                        DD \(1=\) DELTA, NELEM, DELTA
                        \(\operatorname{IMAGE}(1, J)=\operatorname{TIMAGE}(1, J)\)
                ENDDO
            ENDDD
    C Redisplay the Image
        X
            CALL IMDISP('WRITE', 'INTEGER*2',
                            IMAGE, NELEM, NELEM, NLI INE, D, O, 'WHITE')
        ENDIF
        GOTO 501
            ELSE IF (DUMMY.EQ.'V' .OR. DUMMY.EQ.'V') THEN
            C =- The op wants to vlew the Intensitles of selected pixels
        CALL \(\operatorname{GRZCB}(1,0)\)
        CALL GRZCD \((1,1)\)
        CALL GRSBFD
        TYPE 1,' Turn cursor select knob to ZOOM and swltch'
        TYPE 1,' cursor 1 and FUNA on.'
        TYPE 1,' '
        TYPE 1,' Move cursor to deslred locatlon and press ENTER.'
        TYPE 1,' To exit, turn FUNA off and press ENTER.'
    1 101 1
    CALL GRZCR( \(1, \times\) LOC, YLDC, ENTER, FUN1, FUN2)
    ENTER = D
    DD WHILE (ENTER.EQ.O)
        CALL GRZCW (1, ISTAT)
        CALL GRZCR(1,XLOC, YLDC, ENTER, FUN1, FUN2)
    ENDDD
    IF (FUNI, EQ.1) THEN
        TYPE 3,' Plxel value \(1 \mathrm{~s}^{\prime}\), IMAGE (XLDC+1, NLINE-YLDC)
        GOTO 1011
    ENDIF
    CALL \(\operatorname{GRZCO}(1,0)\)
    CALL GRSBFD
GOTO 1012
ELSE IF (DUMMY.EQ. 'C' .OR. DUMMY.EQ. 'C') THEN
C -- The op selected 'camera', so start agaln from the top IF (SAVEDG) WRITE (*,*) NKERN1, ${ }^{*}$ kernels in ${ }^{\text {, }}$,FN1 IF (SAVSID) WRITE (*,*) NKERN3, ' kernels in ',FN3 GOTO 1010

ELSE IF (DUMMY.EQ, 'E' .OR. DUMMY.EQ.' ${ }^{\prime}$ ') THEN
C =- The op wants to exit, so close the files and the Grinnell and exlt

ELSE IF (DUMMY.EQ. 'N' .OR. DUMMY.EQ. 'n') THEN
C =- The op wants to know how many we have IF (SAVEDG) WRITE (*,*) NKERN1, kernels in i,FN1 IF (SAVSID) WRITE (*,*) NKERN3,' kernels In ',FN3 GOTO 1012

ELSE IF (DUMMY.EQ. 'R' .OR. DUMMY.EQ. 'r') THEN
C $=$ The op wants to color threshold a range of the plcture
CALL TTYINI('Enter low end of range: ',
LRANGE, IERR, $0,-1$ )
IF (IERR.NE. O) LRANGE $=-1$
IF (LRANGE.LT. 0 .OR. LRANGE.GT.255) THEN
TYPE 1,' Invalid pixel Intensity' GOTO 907
ENDIF
CALL TTYINI ('Enter high end of range: ' HRANGE, IERR, $0,-1$ )
IF (IERR. NE. O) HRANGE $=-1$
IF (HRANGE.LT. O .OR. HRANGE.GT, 255) THEN TYPE 1,' Invalid pixel Intensity' GOTO 908
ENDIF
IF (HRANGE.LT.LRANGE) THEN
TYPE 1,' Ranges specifled In wrong order. Range aborted.' GOTO 1012
ENDIF
CALL TYINI ('Enter color planes $1=$ Red, $2=$ Green, $4=$ Blue: $\quad$, I COLOR, IERR, $0,-1$ )
IF (IERR, NE. O) ICOLOR $=-1$
IF (ICOLOR.LT.O .OR. ICOLOR.GT. 7) THEN TYPE 1," Invalid color plane comblnation' GOTO 909
ENDIF
C
Set pixels in the range to the specifled color DO $\mathrm{J}=1$, NLINE

```
 DO i= 1, NELEM
 ITEMP = IMAGE (1,J)
 IF (MOD(I,DELTA),EQ.O .AND. MOD(J,DELTA).EQ.O)
 ITEMP = TIMAGE(T, J)
 IF (ITEMP.GE.LRANGE .AND. ITEMP.LE.HRANGE) THEN
 CALL GRFAR(7, 0,0,1,1-1,NLI INE-J,1,1)
 CALL GRFAR(ICOLOR,255,0,1,1-1,NLINE-J,1,1)
 ENDIF
 ENDDO
 ENDDO
 CALL GRSBFD
 GOTO }101
 ELSE
C -- Any other response is Invalid
 TYPE 1,' Invalld response'
 GOTO 1012
 ENDIF
 WRITE (*,*) ' '
 IF (SAVEDG) THEN
 CLOSE(UN1)
 WRITE (*,*) NKERN1,' kernels in ',FN1
 ENDIF
 IF (SAVSID) THEN
 CLOSE(UNB)
 WRITE (*,*) NKERN3,' kernets in ',FN3
 ENDIF
CALL GRSEND
WRITE (*, *) 'Have a nice day'
FORMAT(A)
FORMAT(A, 17)
END
```

```
C
C PLANT
c
C
C
c DEPARTMENT OF ELECTRICAL ENGINEERING
C
c
C
C 1.0
C 2.0
C
C
C
C
C
C CALLING SEQUENCE
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C**
C
SUBROUTINE PLANT(IARRAY,TITLE)
IMPLICIT NONE
INTEGER IARRAY(0:255), IGOT, I
REAL RARRAY (\(0: 255\))/256*0./,FIRSTX,DELTAX,XARRAY(0:255)
```

REAL FIRSTY, DELTAY,FIROEL (4), OIVLNX, OIVLNY
EQUIVALENCE (F|ROEL (1), FIRSTX), (F|RDEL (2), OELTAX),
X
(FIROEL (3), FIRSTY), (FIRDEL (4), DELTAY)
CHARACTER* (*) TITLE CHARACTER*1 ACHAR

C Plot on the Tektronlx CALL PINIT (4014,' , 1., 'A')
CALL PSCALE (XARRAY, 256, 30., FIRSTX, OELTAX, DIVLNX)
CALL PSCALE (RARRAY, 256, 20. ,FIRSTY, OELTAY, OIVLNY)
CALL PORIG(4.,4.)
CALL PAXIS (0., 0., TITLE, $1,220,2201,30,0, ~, F I R S T X, O E L T A X$, 3

CALL PAXIS(0.,0., ' ${ }^{\prime},{ }^{\prime} \quad 1,120,1201,20 ., 90 .$, FIRSTY, OELTAY, OIVLNY)
CALL PLINE (XARRAY, RARRAY, 256 , FIROEL, 0,1 , 0 IVLNX, 0 IVLNY)
Walt for carrlage return before continulng
CALL BELL
CALL GETUTX ( $1,{ }^{\prime}, 1$, ACHAR, IGOT)
CALL PCLRSC
CALL PCLOSP
WRITE (*,*) CHAR (27)//'2 '
RETURN
END


PARAMETER
REAL
$\$$
PARAMETER
LOGICAL*1
CHARACTER DUMMY*1,FN1*24,FN2*24,FN3*24,SWDRK*80

C Ask him which flie we're examining
CALL TTYINC('Enter fllename of contour data flle: ',
FNT, IERR, 0, ' '
IF (IERR.NE. O .OR. FN1.EQ.' ') GOTO 9999
UN1 $=15$
OPEN(UN1, FILE=FN1, ERR=9999, STATUS='DLD' $\mathrm{FDRM}=$ 'UNFDRMATTED' $)$
C Ask him where to put the archive data
CALL TTYINC('Enter fllename of archlve flle to be created: ', FN2, IERR, 0,1 1)
IF (IERR.NE.O .OR. FNI.EQ.' ' ') GOTD 9999
UN2 $=16$
OPEN(UN2,FILE=FN2,ERR=9999,STATUS = 'NEW' ${ }^{\prime}$,FDRM= 'UNFDRMATTED')
C Set up the Grinnell the way we like it
CALL IMINIT('ERASE')
CALL $\operatorname{GRZCB}(1,0)$
$C$ Tell the op what the scoop is:
TYPE 1, 1 ,
TYPE 1,' Cursor select ZODM, cursor 1 on, track on'
TYPE 1, ${ }^{1} 1$
TYPE 1,' Move cursor toward germ end for each kernel'
TYPE 1,' 1
TYPE 1,' '
C Keep track of how many we've measured
NMEAS $=0$
C Load In a kernel
$\&$
READ (UN1,END $=9998$ ) XSPAN, YSPAN, RODTX,RDOTY, EDGCNT, (EDGCHN(I), $1=1$,EDGCNT)

C Clear the membership array
$D D J=1, \quad Y S P A N$ DD $I=1$, XSPAN
$\operatorname{LIMAGE}(1, J)=$. FALSE.
ENDDO
ENDDD
C Set up the membership array
ICUR $=$ RODTX
$J C U R=$ RDDTY
$D D 1=1, E D G C N T$

```
DIRECT = EDGCHN(1)
```

C Color as we go
CALL GRFAR (3, 255, 0, 1, ICUR-1, MLINE-JCUR, 1, 1)
$C \quad$ This is the fancy togglling
IF (DIRECT.GE. 1 .AND. DIRECT.LE.3) THEN DO $\mathrm{J}=$ ICUR, XSPAN

LIMAGE (J, JCUR) $=$.NOT. LIMAGE (J, JCUR)
ENDDO
ICUR = ICUR + XDELT(DIRECT)
JCUR $=$ JCUR + YDELT(DIRECT)
ELSE IF (DIRECT.GE. 5 .AND. DIRECT.LE.7) THEN
ICUR = ICUR + XDELT(DIRECT)
JCUR $=$ JCUR + YDELT(DIRECT $)$
DO $\mathrm{J}=$ ICUR, XSPAN
$\operatorname{LIMAGE}(\mathrm{J}, \mathrm{JCUR})=$.NOT. $\operatorname{LIMAGE}(\mathrm{J}, \mathrm{JCUR})$
ENDDO
ELSE
ICUR = ICUR + XDELT(DIRECT)
JCUR $=$ JCUR + YDELT(DIRECT)
ENDIF

```
ENDDO
```

C Make sure that the border elements are members DO $1=1$, EDGCNT

LIMAGE (ICUR, JCUR) $=$.TRUE.
DIRECT $=$ EDGCHN(I)
ICUR = ICUR + XDELT(DIRECT)
JCUR $=$ JCUR + YDELT (DIRECT)
ENDDO
C Find the centrold
XSUM $=0$
$Y S L M=0$
AREA $=0$

$$
D O J=1, Y S P A N
$$

DO $1=1, X S P A N$
IF (LIMAGE (I, J)) THEN
XSUM $=$ XSUM +1
YSUM $=$ YSUM $+J$
AREA $=$ AREA +1
ENDIF
ENDDO
ENDDO
$\mathrm{XCENT}=\mathrm{IFIX}(\mathrm{FLOAT}(X S U M) / F L O A T(A R E A))$
YCENT $=|F| X($ FLOAT (YSUM)/FLOAT (AREA) )
C Calculate the moments of and product of Inertla about C (XCENT, YCENT)

$$
\begin{aligned}
& I X=0 . \\
& Y Y=0 . \\
& 1 X Y=0 . \\
& D O J=1, Y S P A N \\
& Y=J=Y C E N T \\
& Y 2=Y * Y
\end{aligned}
$$

```
 TIX = 0.
 TIY =0.
 TIXY = 0.
 OO I = 1, XSPAN
 IF (LIMAGE (I,J)) THEN
 X = I - XCENT
 TIX = TIX + Y2
 TIY = TIY + X*X
 TIXY = TIXY + X*Y
 ENDIF
 ENDDO
 IX = IX + TIX
 IY = IY + TIY
 IXY = IXY + TIXY
ENDOO
C Calculate the angle of the major princlpal axis
110 MAJANG = ATAN2(-IXY*2., IX-IY)/2. + PI/2.
C Turn on the cross halrs
 CALL GRZCL (1, XCENT-1,NL INE-YCENT)
CALL GRZCO(1,1)
CALL GRSBFO
C Turn off the cross hairs
CALL GRZCO(1,0)
CALL GRSBFO
C Calculate the angle of hls motlon
MOVANG = ATAN2(FLOAT((NLINE-YLOC)-YCENT),FLOAT((XLOC+1)-XCENT))
C Adjust MAJANG if necessary
 DIFANG = MOO(ABS(MOVANG-MAJANG), 2.*PI)
 IF (DIFANG .GT. PI) OIFANG = 2.*PI - OIFANG
 IF (DIFANG .GT. PI/2.) MAJANG = MAJANG + PI
 OO WHILE (MAJANG.LT.0.0)
 MAJANG = MAJANG + 2.*PI
 ENOOO
 MAJANG = MOO(MAJANG, 2.*PI)
C Color the positive princlpal axis red for verlfication purposes
 CALL SERCH2(LIMAGE,NELEM,NLINE,MAJANG,XCENT,YCENT,I,J,XSPAN,
CALL GRFVC(\(1,255,0,1\), XCENT-1, NL INE-YCENT, \(1-1\), NLI INE-J)
CALL GRSBFD
C Make sure he didn't make a mistake
WRITE (SWORK, '(15, A) ') NMEAS +1 , \({ }^{\text {I }}\) <Accept>, Re-orlent: \$1
```

```
 J = INDEX(SWORK, '$'') - 1
 CALL TTYINC(SWORK(1:J),DUMMY, IERR,0, 'A')
 CALL GRFAR(7,0,0,1,0,NLINE-YSPAN, XSPAN,YSPAN)
 CALL GRSBFD
 IF (DUMMY.EQ., 'R' .OR. DUMMY.EQ, 'r'') THEN
C He wants us to re-display thls kernel
 DO | = 1, EDGCNT
 DIRECT = EDGCHN(1)
 GALL GRFAR(3,255,0,1, ICUR-1,NL INE-JCUR, 1, 1)
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 ENDDO
 GOTO 110
 ENDIF
C Chalk up one more
NMEAS = NMEAS + 1
WRITE (UN2) EDGCNT,(EDGCHN(}1),1=1,EDGCNT),MAJANG
C Go back for another kernel.
GOTO }10
```



```
C Come here when no more to be read
9998 CLOSE(UN1) CLOSE (UN2)
9999 CALL GRSEND
1 FORMAT(A)
\(2 \operatorname{FORMAT}(A, 14, A)\)
END
```



SUBROUT INE SERCH2 (LIMAGE, NELEM, NL INE, THETA, I START, JSTART, IEND,
\&
JEND, XSPAN, YSPAN )
IMPLICIT NONE
INTEGER ISTART, JSTART, IEND, JEND, I, J,XSPAN, YSPAN, NELEM, NL INE LOGICAL* 1 LIMAGE (NELEM,NLINE)
REAL THETA, $X, Y, D X, D Y$
C Figure an Increment and set up the $|n| t|a|$ point
$D X=0.5 * \cos (T H E T A)$
DY $=0.5 * \operatorname{SIN}(T H E T A)$
$\mathrm{X}=$ FLOAT(ISTART)
$Y=$ FLOAT (JSTART)
$\operatorname{IEND}=\operatorname{NINT}(X)$
$\operatorname{JEND}=\operatorname{NINT}(Y)$
$1=\operatorname{NINT}(X)$
$\mathrm{J} \quad=\operatorname{NINT}(Y)$
C Find and return the edge of the contour
DO WHILE (I.GE. 1 .AND. J.GE. 1 .AND. I.LE.XSPAN .AND. J.LE.YSPAN
\& .AND. LIMAGE (I, J))
$I E N D=1$
JEND $=\mathrm{J}$
$X=X+D X$
$Y=Y+D Y$
$1=\operatorname{NINT}(X)$
$J=\operatorname{NINT}(Y)$
ENDDO
RETURN
END


```
C Ask him whlch flle we're examining
 TYPE 1,'$Enter fllename of archlve flle: '
 ACCEPT 1,FN1
 UN1 = 15
 OPEN(UN1,FILE=FN1,ERR=9999,STATUS='OLD',FORM= 'UNFORMATTED')
C Ask hlm where to put the measurements
 TYPE 1,'SEnter name of measurement flle to be created: '
 ACCEPT 1,FN2
 UN2 = 16
 OPEN(UN2,FILE=FN2,ERR=9999,STATUS='NEW',FORM='UNFORMATTED')
C Keep track of how many we've measured
 NMEAS = 0
C Load In a kernel
C Find the extents of the contour
 ICUR = 0
 JCUR = 0
 XMAX = ICUR
 XMIN = ICUR
 YMAX = JCUR
 YMIN = JCUR
 DO I=1, EDGCNT
 DIRECT = EDGCHN(I)
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 XMAX = MAX(XMAX, ICUR)
 XMIN = MIN(XMIN, ICUR)
 YMAX = MAX(YMAX, JCUR)
 YMIN = MIN(YMIN,JCUR)
 ENDDO
 XSPAN = XMAX - XMIN + 1
 YSPAN = YMAX - YMIN + 1
 ROOTX = 1 - XMIN
 ROOTY = 1 - YMIN
C Clear the membershlp array
 DO J = 1, YSPAN
 DO I = 1, XSPAN
 LIMAGE (I,J) = .FALSE.
 ENDDO
 ENDDO
C Set up the membershlp array
 ICUR = ROOTX
 JCUR = ROOTY
 DO I = 1, EDGCNT
 DIRECT = EDGCHN(I)
C Thls is the fancy toggling
 IF (DIRECT.GE. 1 .AND. DIRECT.LE.3) THEN
 DO J = ICUR, XSPAN
 LIMAGE (J,JCUR) = .NOT. LIMAGE (J, JCUR)
```

```
 ENDDO
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 ELSE IF (DIRECT.GE.5 .AND. DIRECT.LE.7) THEN
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 DO J = ICUR, XSPAN
 LIMAGE(J,JCUR) = .NOT. LIMAGE(J,JCUR)
 ENDDO
 ELSE
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 ENDIF
 ENDDO
C Make sure that the border elements are members
 DO I = 1, EDGCNT
 LIMAGE(ICUR, JCUR) = .TRUE.
 DIRECT = EDGCHN(I)
 ICUR = ICUR + XDELT(DIRECT)
 JCUR = JCUR + YDELT(DIRECT)
 ENDDO
C Find the centrold
 XSUM = 0
 YSUM =0
 AREA = 0
 DO J = 1, YSPAN
 DO I = 1, XSPAN
 IF (LIMAGE (I,J)) THEN
 XSUM = XSUM + I
 YSUM = YSUM + J
 AREA = AREA + 1
 ENDIF
 ENDDO
 ENDDO
 XCENT = IFIX(FLOAT(XSUM)/FLOAT(AREA))
 YCENT = IFIX(FLOAT(YSUM)/FLOAT(AREA))
C Chalk up one more
 NMEAS = NMEAS + 1
 WRITE (*,*) NMEAS
C Measure the kernel and stash the Info In a measurement flle
 DO K=1, NANGLS
 ANG = FLOAT(K-1)/FLOAT(NANGLS) * 2.0*P1 + MAJANG
 CALL SERCH2(LIMAGE,NELEM,NLINE,ANG, XCENT,YCENT,1,J,XSPAN,
 YSPAN)
 X = FLOAT(I-XCENT)
 Y = FLOAT(J-YCENT)
 RADIAL(K) = S@RT(X*X + Y*Y)
 ENDDO
 WRITE (UN2) XCENT, YCENT, AREA, MAJANG,
 NANGLS, (RADIAL(I),1=1,NANGLS)
```

C Go back for another kernel.
GOTO 100

C Come here when no more to be read
9998 CLOSE(UN1)
CLOSE(UN2)
9999 CONTINUE
1 FORMAT (A)
$2 \operatorname{FORMAT}(A, 14, A)$
END

```
C
C MEASSV
```

INTEGER NANGMX, VARMX, METHMX, VIEMMX
PARAMETER ( NANGMX $=720$, VARMX $=4$, METHMX $=3$, $V$ IEWMX $=2$ )
CHARACTER VARIETY(VARMX)*10, VIEW(VIEWMX)*3, METH (3)*1, FN* 40 INTEGER IANG, I VAR, IMETH, I YIEW, NANGLS, XCENT, YCENT, AREA, I, UN(3)
REAL NORM (METHMX), MAJANG, RADIAL (NANGMX, 2)
These are the $1 / 0$ channels we'll use
DO $\operatorname{IMETH}=1$, METHMX
$\operatorname{UN}(I M E T H)=14+I$ METH
ENDDO

```
Normallzed measurements and writes results to disk. Pre-normallzed measurements speed up the classifler programs.
ROUTINE(S) ACCESSED OR CALLED BY THIS ROUTINE None
ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE None
ARGUMENT(S) SUPPLIED TO THE CALLING ROUTINE
None
```

```
The fllenames of the contour data
```

```
The fllenames of the contour data
```

```
VARIETY(1) = 'ARKAN'
VARIETY(2) = 'ARTHUR'
VARIETY(3) = 'NUGAINES'
VARIETY(4) = 'SAGE'
```

C The flletypes of the contour data (top and side views)
$\operatorname{VIEW}(1)=$ 'TM'
$\operatorname{VIEW}(2)=1$ SM'

C Give the method identifiers
$\operatorname{METH}(1)=1$ '
$\operatorname{METH}(2)=' \mathrm{~L}$ '
$\operatorname{METH}(3)=' W '$
C Process all of the varletles DO $\operatorname{IVAR}=1$, VARMX

WRITE (***) ' '
WRITE (*,*) 'Processing varlety ', VARIETY(IVAR)
DO IVTEW $=1$, VIEWMX
Figure out the flle names for all views of the same variety FN = VARIETY(IVAR) // '.' // VIEW(IVIEW)
OPEN(UN(1), FILE=FN, ERR=9000, STATUS= ${ }^{\circ}$ OLD $^{\prime}$, SHARED, FORM $=$ ' UNFORMATTED' )

DO $\operatorname{IMETH}=2$, METHMX
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW) // METH(IMETH) OPEN(UN (IMETH) , FILE=FN, ERR=9000, STATUS=' ${ }^{\prime}$ NEW', SHARED, FORM = 'UNFORMATTED')
ENDDO
C Do the whole file, one kernel at a tlme DO WHILE (.TRUE.)

Get the data for the next kernel READ (UN(1), END=200) XCENT, YCENT, AREA,MAJANG, NANGLS, (RADIAL $(1,1), 1=1$, NANGLS)

Figure the norms
$\operatorname{NORM}(2)=1 . /($ RADIAL $(1,1)+$
RADIAL(NANGLS $/ 2+1,1)$ )
$\operatorname{NORM}(3)=1 . /(\operatorname{RAD} \mid \operatorname{AL}(\operatorname{NANGLS} / 4+1,1)+$
RAD|AL(NANGLS*3/4+1,1))
Calculate the normalized coordinate along this axis DO $I M E T H=2$, METHMX DO |ANG $=1$, NANGLS

RAD|AL(IANG,2) $=$ RADIAL(|ANG, 1) * NORM(IMETH) ENDDO
WRITE (UN(IMETH)) XCENT, YCENT, AREA, MAJANG,
NANGLS, (RADIAL(|ANG,2), |ANG=1,NANGLS)
ENDDO
ENDDO

C	Close the flles
200	DO IMETH $=2$, METHMX
	CLOSE (UN (IMETH))
	ENDDO

ENDDO
ENDDO
9000 CONTINUE
END


```
C
C PUTMEAN
C
C
C
C
C
C
C
C
C
 COPYRIGHT 1985 TERRY E. SCHMALZRIED
C
C
C
CALLING SEQUENCE
```RUN PUTMEAN
```

PURPOSE

```Calculates mean curves for each varlety and writes themto dlsk to speed up the classlfler programs.
IMPLICIT ..... NONE
INTEGER NANGMX, VARMX, METHMX, VIEWMX
```PARAMETER ( NANGMX \(=720\), YARMX \(=4\), METHMX \(=3\), \(V\) IEMMX \(=2\) )
```

CHARACTER VARIETY(VARMX)*10,VIEW(YIEWMX)*3,FN*40

```INTEGER UN, IANG, IYAR, IMETH, IVIEW, ICNT,NANGLS, XCENT, YCENT, AREA, I
 REAL NORM(METHMX), RCNT,MEAN(NANGMX, VARMX,METHMX, VIEWMX),MAJANG, RADIAL(NANGMX)
C The unlt number we'll use for disk \(1 / 0\)
\(\mathrm{UN}=15\)
C These are the filenames of the contour data \(\operatorname{VARJETY}(1)=\) 'ARKAN'
```

```
VARIETY(2) = 'ARTHUR'
VARIETY(3) = 'NUGAINES'
VARIETY(4) = 'SAGE'
```

C The flletypes of the contour data (top and slde vlews) $\operatorname{VIEW}(1)=17 M^{\prime}$ $\operatorname{VIEW}(2)=$ 'SM'
Clear all of the mean contours
OO IVIEW = 1, VIEMMX
00 IMETH $=1$, METHMX
00 IVAR $=1$, VARMX
00 IANG $=1$, NANGMX
$\operatorname{MEAN}(\operatorname{IANG}$, IVAR, IMETH, IVIEW) $=0$.
ENOOO
ENODO
ENOOO
ENOOO
C Calculate a mean contour for each data flle
$\operatorname{NORM}(1)=1$.
C For all vlews...
00 $\operatorname{VIIEW}=1$, VIEMMX
And for all varletles...
DO IVAR $=1$, VARMX
Construct the fllename
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW)
Open the data flle
OPEN $\left(U N, F I L E=F N, E R R=9000\right.$, STATUS $={ }^{\prime} O L O^{\prime}$, SHAREO,
8
FORM ${ }^{\prime}$ UNFORMATTEO')
Count the number of kernel samples in the data flle
ICNT $=0$
Now, for all of the data in the flle...
00 WHILE (.TRUE.)
Get the data for one sample
REAO ( $\mathrm{UN}, \mathrm{ENO}=100$ ) XCENT, YCENT, AREA, MAJANG,
NANGLS, (RAO|AL( 1 ) , $1=1$, NANGLS)
Increment count of samples in file
$I C N T=I C N T+1$
Some of the measurement methods require normallzation
$\operatorname{NORM}(2)=1 . /($ RAOIAL $(1)+$ RAOIAL(NANGLS/2 +1$)$ )
$\operatorname{NORM}(3)=1 . /($ RADIAL (NANGLS/4+1)+RAOIAL(NANGLS*3/4+1))
Sum all measurements in the MEAN contour array
00 IMETH $=1$, METHMX
00 IANG $=1$, NANGLS
MEAN (IANG, IVAR, IMETH, IVIEW) $=$

Now, divide by number of samples In flle for true means

C

9000
MEAN(IANG, IVAR, IMETH, IVIEW) + RAD|AL (|ANG)*NORM (IMETH)
ENDDO
ENDDO
ENDDO

C Close the data flle CLOSE(UN)

C Write the mean curves out to a flle $\mathrm{FN}=$ VARIETY (IVAR) // i.' // VIEW (IVIEW) // 'M' OPEN $\left(U N, F I L E=F N, E R R=9000, S T A T U S={ }^{\prime}{ }^{\prime}\right.$ NEW 1, SHARED, FORM = ' UNFORMATTED')
DO IMETH $=1$, METHMX
WRITE (UN) (MEAN(IANG, IVAR, IMETH, IVIEW), IANG=1, NANGMX)
ENDDO
CLOSE (UN)
ENDDO
ENDDO
RCNT = FLOAT (ICNT)
DO IMETH $=1$, METHMX
DO $\mid$ ANG $=1$, NANGLS
MEAN( IANG, IVAR, IMETH, IVIEW) $=$ MEAN (IANG, IVAR, IMETH, IVIEW) / RCNT
ENDDO
ENDDO

At this time, we have mean contours for each data flle.
CONTINUE
END

```
C**
C
C EXCLASS
C
C VAX-11 FORTRAN SOURCE FILENAME:
C
C DEPARTMENT OF ELECTRICAL ENGINEERING
C
C
C
C
C
C
C
C
C***********************************&************************************
C
C CALLING SEQUENCE
C
C
C
C PURPOSE
```

C
IMPLICIT NONE
INTEGER NANGMX, VARMX,METHMX, VIEWMX,DIMMX
PARAMETER (NANGMX =720,VARMX =4,METHMX =3,VIEMMX =2,DIMMX=10)
CHARACTER VARIETY(VARMX)*10,VIEW(VIEWMX)*3,FN*40,
VSTR*4,MSTR*8,STRING*80,DUMMY*1,METH(METHMX)*1
INTEGER UN(METHMX, VIEMMX, VARMX), IANG, IVAR, IMETH, IVIEW,
NANGLS, XCENT, YCENT, AREA,
CORRECT (METHMX, VIEMMX, NANGMX), TOTPOS,
WINNER,CLASSV (DIMMX),CLASSA(DIMMX),CLASSM(DIMMX),
IDIM, IKERN, IMEAN, I, IERR, IVARPT,
VARX,METHX, VIEWX,DIMX,
BEST,BESTA,BESTV,BESTM,J

```
```

        REAL MEAN(NANGMX, VARMX,METHMX, VIEWMX),
    &
    &
        MAJANG, RADIAL (NANGMX,METHMX, VIEMMX), THEME,
        DTEMP,ODI STSQ(VARMX, VARMX, 100),DI STSQ(VARMX, NANGMX)
    C These need to be set sooner or later
VARX = VARMX
METHX = METHMX
VIEWX = VIEWMX
DIMX = DIMMX
C Find out what our dimenslons wlll be
79 CALL TTYINI('Enter number of varletles <4>: ',VARX, IERR,0,4)
IF (IERR,NE,O) VARX = VARMX
IF (VARX.GT. VARMX .OR. YARX.LT. 2) THEN
WRITE (*,*) "Number of varletles must be between 2 and",VARMX
GOTO }7
ENDIF
WRITE (***) * '
C These are the fllenames of the contour data
IF (VARX,EQ.4) THEN
VARIETY(1) = 'ARKAN'
VARIETY(2) = 'ARTHUR'
YARIETY(3) = 'NUGAINES'
VARIETY(4) = 'SAGE'
ELSE
DD IVAR = 1, YARX
WRITE (STRING,'(A, I|,A)'') 'Enter varlety name ',IVAR,': %'
I=INDEX(STRING, '%') - -
CALL TTYINC(STRING(1:1),VARIETY(IVAR),IERR,0,'1?')
ENDDO
WRITE (*;*) ' '
ENDIF
C Here, we speclify what measurements are to be used for each
C dimension
89 CALL TTYINT'('Enter number of dimenslons: ',DIMX, IERR, 0,2 )
IF (IERR.NE, O) DIMX $=2$
IF (DIMX.GT.DIMMX .OR, DIMX.LT.1) THEN
WRITE (*,*)'Number of dimensions must be between 1 and', DIMMX $60 T 089$
ENDIF
WRITE (*,*) ' '
DD IDIM = 1, DIMX
CALL TTYINC('Enter view (Top, SIde): ',DUMMY,
IERR,0,'?')
IF (IERR.NE.0) DUMMY = ' $?$
IF (DUMMY.EQ. 'T' .OR. DUMMYY.EQ. ${ }^{1}+1$ ') THEN CLASSV (ID|M) $=1$
ELSE IF (DUMMY.EQ.'S' .OR. DUMMY.EQ.'s') THEN C.ASSV(IDIM) $=2$

```

ELSE
```

WRITE (*,*) 'Invalld vlew'

```
GOTO 67

ENDIF

CALL TTYINC(
'Enter norm method (Absolute, Length, WIdth): ', DUMMY, IERR, 0, '?'')
IF (IERR, NE,O) DUMMY \(=\) ' \(?\) '
IF (DUMMY.EQ. ' \(A^{\prime}\).OR. DUMMY.EQ. 'a') THEN CLASSM (IDIM) \(=1\)
ELSE IF (DUMMY.EQ.'L' .OR. DUMMY.EQ.'I') THEN CLASSM (IDIM) \(=2\)
ELSE IF (DUMMY.EQ. 'W' .OR. DUMMY.EQ. 'W') THEN CLASSM (ID|M) \(=3\)
ELSE
WRITE (*, *) 'Invalld method" GOTO 77
ENDIF
```

WRITE (STRING,'(A,I3,A)'')

```
 'Enter measurement Index (1-',NANGMX, '): \$1
\(1=\operatorname{INDEX}\left(S T R I N G,{ }^{\prime} \$ 1\right)-1\)
CALL TTYINI (STRING(1:1),CLASSA(IDIM), IERR,0,0)
IF (IERR.NE,0) CLASSA (IDIM) \(=0\)
IF (CLASSA(IDIM).LT. 1 .OR. CLASSM(IDIM).GT.NANGMX) THEN
 WRITE (*,*) 'Index must be between 1 and',NANGMX
 GOTO 87
ENDIF
WRITE (**) '

ENDDO

C Document the dimensions used WRITE (*,*) DIMX,' dimenslons used as classlflers:' \(D O\) IDIM \(\cong 1\), DIMX

IF (CLASSV (IDIM).EQ.1) THEN
\(V\) STR \(={ }^{\prime}\) top \({ }^{\prime}\)
ELSE
YSTR = 'slde'
ENDIF
IF (CLASSM(IDIM).EQ.1) THEN
MSTR = 'absolute'
ELSE IF (CLASSM(IDIM).EQ.2) THEN
MSTR \(=\) "length"
ELSE
MSTR a "wldth'
ENDIF
```

WRITE (*,102) VSTR,MSTR,CLASSA(IDIM)
FORMAT(' vlew = ',A,', normallza+lon = ', A,', Index = ', 13)

```

ENDDO

WRITE (***) '

C The flletypes of the contour data (top and side vlews)
\(\operatorname{VIEW}(1)=\) 'TM'
\(\operatorname{VIEW}(2)=\) 'SM'
C The methods that we use
\(\operatorname{METH}(1)=1\) '
\(\operatorname{METH}(2)=' \mathrm{~L}\) '
\(\operatorname{METH}(3)=' W '\)
C The unlt numbers we'll use for disk \(1 / 0\)
\(1=15\)
DO IVAR \(=1\), VARX
DO \(\operatorname{IVIEW}=1\), VIEWX
DO \(\operatorname{IMETH}=1\), METHX
UN(IMETH, IVIEW, IVAR) \(=1\)
\(1=1+1\)
ENDDO
ENDDO
ENDDO
C Fill all of the mean contours
DO IVIEW = 1, VIEWX
DO IVAR \(=1\), VARX
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW) // 'M' \(\operatorname{OPEN}\left(\operatorname{UN}(1,1,1), F I L E=F N, E R R=9000\right.\), STATUS \(=10^{\prime} D^{\prime}\), SHARED,
8
FORM = 'UNFORMATTED')
DO IMETH \(=1\), METHX
READ \(\operatorname{(UN}(1,1,1))\)
8
(MEAN (IANG, IVAR, IMETH, IVIEW), IANG=1, NANGMX)
ENDDO
\(\operatorname{CLOSE}(\operatorname{UN}(1,1,1))\)
ENDDO
ENDDO
C At this time, we have mean contours for each data file

C Now, let's try the classifler:
C The number of kernels we have to classlify TOTPOS \(=\) VARX * 100

C Open the data flles
DO \(\operatorname{IVAR}=1\), VARX
DO IVIEW = 1, VIEWX
DO \(\operatorname{IMETH}=1\), METHX
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW)//METH(IMETH)
OPEN (UN (IMETH, IVIEW, IVAR), \(F I L E=F N, E R R=9000, S T A T U S={ }^{\prime} O^{\prime} D^{\prime}\),
\(\&\) SHARED, FORM= 'UNFORMATTED')
ENDDO ENDDO

ENDDO
C
```

Clear all of the sum of distance-squared values
DO TKERN = 1, 100
DO IVAR = 1, VARX
DO IVARPT = 1, VARX
ODISTSQ(IVARPT, IVAR, IKERN) = 0.
ENDDO
ENDDO
ENDDO

```
C Keep track of our \(|n|+|a|\) correctness
\(\operatorname{CORRECT}(1,1,1)=0\)
C Calculate the sum of distance-squared values to date
 DO IVAR \(=1\), VARX
 DO IKERN \(=1,100\)
 DO IVIEW = 1, VIEWX
 DO IMETH \(=1\), METHX
 READ (UN(IMETH, IVIEW, IVAR)) XCENT, YCENT, AREA, MAJANG,
 Choose closest mean pt as winner and check Its
 correctness
 WINNER \(=1\)
 DO IVARPT \(=2\), VARX
 IF (ODISTSQ(IVARPT, IVAR, IKERN) .LT.
 ODISTSQ(WINNER, IVAR, IKERN)) WINNER = IVARPT
 ENDDO
 IF (WINNER.EQ.IVAR) \(\operatorname{CORRECT}(1,1,1)=\operatorname{CORRECT}(1,1,1)+1\)
 ENDDO
C Rewind the data flles
 DO IVIEW = 1, VIEWX
 DO IMETH \(=1\), METHX
 REW IND (UN (IMETH, IVIEW, I VAR))
 ENDDO
 ENDDO

ENDOO
WRITE (*,*) 'Initlal', \(\operatorname{CORRECT}(1,1,1)\),' out of', TOTPOS,' for',

8 FLDAT (CORRECT \((1,1,1)) / F L D A T(T O T P D S) * 100, ~ i \% 1\) WRITE (***) '

C

BEST \(=\operatorname{CORRECT}(1,1,1)\)
DIMX = DIMX + 1
DO WHILE (DIMX.LE.DIMMX)
\(B E S T A=D\)
C Keep track of the number correctly classifled DO IANG \(=1\), NANGMX DO IVIEW = 1, VIEWX DO IMETH \(=1\), METHX CDRRECT (IMETH, IVIEW, IANG) \(=\mathrm{D}\) ENDDO ENDDD ENDDO

C Process all of the varletles DO IVAR \(=1\), VARX

DO IVIEW \(=1\), VIEWX DD \(\operatorname{IMETH}=1\), METHX

C Do the whole file, one kernel at a time DO \(\mid \operatorname{KERN}=1,100\)

C

Get the data for all vlews of the same kernel READ (UN(IMETH, IVIEW, IVAR)) XCENT, YCENT, AREA, MAJANG, NANGLS, (RADIAL (I, IMETH, IVIEW), I=1, NANGLS) DO \(\operatorname{IANG}=1\), NANGMX

Now, finlsh the summations DO IVARPT \(=1\), VARX DTEMP = RADIAL(IANG, IMETH, IVIEW) - MEAN (IANG, I YARPT, IMETH, IVIEW) DISTSQ(IVARPT, I ANG) = DDISTSQ(IVARPT, IVAR, IKERN) + DTEMP*DTEMP

\section*{ENDDD}

Choose closest mean pt as winner and check Its correctness
WINNER \(=1\)
DO \(\operatorname{IVARPT}=2, \operatorname{VARX}\) IF (DISTSQ(IVARPT, IANG) .LT. DISTSQ(WINNER, IANG))
WI NNER = I VARPT
ENDDD
IF (WINNER.EQ.IVAR) CDRRECT (IMETH, IVIEW, IANG) \(=\) CORRECT (IMETH, IVIEW, IANG) +1

\section*{ENDDO}

ENDDO
C

C WRITE (*,*) 'Angle', IANG,' gives ', C \& FLOAT(CORRECT (I, J, IANG))/FLOAT(TOTPOS)*100., is for', J, 1

IF (CORRECT(I,J,IANG) .GT. BEST) THEN
BESTY \(=\mathrm{J}\)
BESTM = 1
BESTA \(=1\) ANG
BEST \(=\operatorname{CORRECT}(1, J, \mid A N G)\)
ENDIF
ENDDO
IF (BESTA. NE.0) THEN
\(\operatorname{CLASSV}(D I M X)=\) BESTV
CLASSM \((D I M X)=\) BESTM
\(\operatorname{CLASSA}(D \mid M X)=\) BESTA
Update the ODISTSQ array
DO IVAR \(=1\), VARX
Do the whole flle, one kernel at a tlme DO \(\operatorname{IKERN}=1,100\)

Get the data for all views of the same kernel READ (UN(BESTM, BESTV, IVAR)) XCENT, YCENT, AREA, MAJANG, NANGLS, (RADIAL (\(1, B E S T M, B E S T V), 1=1\), NANGLS)

Now, finlsh the summations DO \(\operatorname{IVARPT}=1\), VARX

\section*{ENDDO}

Rewlnd the flle REWIND (UN(BESTM, BESTV, IVAR))

ENDDO
WRITE (*,*) 'DImensIon',DIMX,' Is:',BESTV,BESTM,BESTA WRITE (*,*) 'for', FLOAT(BEST)/FLOAT(TOTPOS)*100., ' 's'

WRITE (FN, '(A,II,A)') 'DIM',DIMX,'.LOG'
OPEN (2, FILE \(=F \mathrm{FN}, E R R=9000\), STATUS \(=\) ' NEW ')
WRITE (2,*) 'DImension', DIMX,' Is:',BESTV,BESTM,BESTA
WRITE (\(2, *\)) ' for \(^{\prime}\), FLOAT(BEST)/FLOAT(TOTPOS)*100., ' 1 '
CLOSE (2)
DIMX \(=\) DIMX +1
ELSE
DIMX \(=\) DIMMX +1
WRITE (*,*) 'Stop due to no Increase in accuracy' ENDIF

ENDDO
```

DO IVAR = 1, VARX
DO IVIEW = 1, VIEWX
DO IMETH = 1, METHX
CLOSE(UN(IMETH, IVIEW, I YAR))
ENDDO
ENDDO
ENDDO

```

CONTINUE
END

```

C
C MINCLASS
C
C
C
C
C
C
C
C
C
C

```

```

C
C CALLING SEQUENCE
C RUN MINCLASS
C
C PURPOSE
C
C
C
C
C ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE
C
C
C
C
C
C
C
C
IMPLICIT NONE
INTEGER NANGMX, VARMX,METHMX, VI EWMX,TOTPOS
PARAMEIER (NANGMX=720, VARMX =4,METHMX =3, VIEMMX =2,}\mathrm{ ,TOTPOS = 400)
INTEGER IVAR, IVIEW, IMETH, IANG, IKERN, I , CMPKRN, SELKRN, IFAVX,
REAL MIND,DIST(TOTPOS),DTEMP,FAV(10,TOTPOS),MAJANG,
RADIAL(TOTPOS,NANGMX),BUFFER(NANGMX)
CHARACTER VARIETY(VARMX)*10,YIEW(VIEWMX)*3,METH(METHMX)*1,FN*40
IKE = 100
C Write a permanent record of it
WRITE (FN,'(A, 13,A)') 'PART',IKE,'.LOG'

```
```

IKE = IKE + 1
OPEN (3,FILE=FN,STATUS='NEW')
C These are the fllenames of the contour data
VARIETY(1) = 'ARKAN'
VARIETY(2) = 'ARTHUR'
VARIETY(3) = 'NUGAINES'
VARIETY(4) = 'SAGE'
C The flletypes of the contour data (top and side views)
VIEW(1) = 'TM'
VIEW(2) = 'SM'
C The methods that we use
METH(1) = 1 1
METH(2) = 'L'
METH(3) = 'W'
C Open all of the flles
I=15
DO IVAR = 1, VARMX
DO IVIEW,= 1, VIEWMX
DO IMETH = 1, METHMX
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW) // METH(IMETH)
UN(IMETH, IVIEW, IVAR) = I
OPEN(UN(IMETH, IVIEM, IVAR), FILE=FN, STATUS='OLD', SHARED,
FORM= 'UNFORMATTED')
l= l + 1
ENDDO
ENDDO
ENDDO
Thls program takes a very long time to run. Therefore, it was
necessary to run it in several chunks. These varlables that
start with ICK are Initlallzed with historical data from
prevlous chunks.
ICK = 2
ICKF(1,1)=2
ICKF(2,1)=3
ICKF(3,1) = 339
ICKF(4,1) = 259
ICKF(1,2) = 2
ICKF(2,2)=1
TCKF(3,2)=536
ICKF(4,2)=318
C The largest number of kernels classifler correctly so far is 0
C (unless data from a prevlous chunk says otherwlse)
BESTCOR = 0

```
```

IF (ICK.GT.0) THEN

```
IF (ICK.GT.0) THEN
 DO ICKY = 1, ICK
 DO ICKY = 1, ICK
 DO IVAR = 1, VARMX
 DO IVAR = 1, VARMX
 ITMP1 = (|VAR-1)*100+1
```

            ITMP1 = (|VAR-1)*100+1
    ```
```

            ITMP2 = ITMP1 + 99
            DO IKERN = ITMP1, ITMP2
            READ (UN(ICKF (2,ICKY), ICKF(1, ICKY), IVAR))
                XCENT, YCENT, AREA,MAJANG,
                NANGLS, (BLFFER (IANG), IANG=1, NANGLS)
            FAV (ICKY, IKERN) = BUFFER(ICKF (3,ICKY))
            ENDDO
            REWIND(UNN(ICKF (2,ICKY), ICKF (1, ICKY), IVAR))
                ENDDO
            ENDDO
            BESTCOR = ICKF (4,ICK)
    ENDIF
C Start up where we left off
DO IFAVX = ICK, }
MAXCOR = 0
DO IVIEW = 1, YIEWMX
DO IMETH = 1, METHMNX
Fll| a large array with statistics
WRITE (3,*) 'Readling another flle'
DO IVAR = 1, VARMX
ITMP1 = (IVAR-1)*100+1
ITMP2 = ITMP1 + 99
DO IKERN = ITMP1, ITMP2
READ (UN(IMETH, I YIEW, IVAR)) XCENT, YCENT, AREA, MAJANG,
NANGLS, (RAD|AL(IKERN, |ANG), IANG=1, NANGLS)
ENDDO
REWIND (UN(IMETH, IVIEW, IVAR))
ENDDO
DO IANG = 1, NANGMX
CORRECT (IANG) =0
ENDDO
Enter a tight loop of comparlsons and calculations
WRITE (3,*) 'Enterlng the meat grlnder'
DO IANG = 1, NANGMX
DO SELKRNN = 1, TOTPOS
MIND = 1.E3O
DO CMPKRN = 1, TOTPOS
DIST(CMPKRN) = 0.
ENDDO
IF (IFAVX.GT.O) THEN
DO CMPKRN = 1, TOTPOS
DO IFAV = 1, IFAVX
DTEMP = FAV (IFAV,SELKRN) - FAV (IFAV,CMPKRN)
DIST(CMPKRN) = DIST(CMPKRN) + DTEMP*DTEMP
ENDDO
ENDDO
ENDIF
DO CMPKRN = 1, TOTPOS
DTEMP = RADIAL(SELKRN, IANG) - RADIAL(CMPKRN, IANG)
DTEMP = DIST(CMPKRN) + DTEMPNDTEMP

```
```

            IF (DTEMP.LT.MIND .AND. CMPKRN.NE.SELKRN) THEN
                MIND = DTEMP
                MATCH = CMPKRN
            ENDIF
                ENDDO
                    Check here for match of varlety (match & selkrn)
    ```
```

                                    and update correct vector (all lang)
                                    IF ((MATCH-1)/100 .EQ. (SELKRN-1)/100)
                        CORRECT(|ANG) = CORRECT(IANG) + 1
        ENDDO
        WRITE (3,*) IANG,CORRECT(IANG)
    ENDDO

```
```

    FInd max of correct vector and if .gt. maxcor, then
    ```
 FInd max of correct vector and if .gt. maxcor, then
 update maxcor & remember vlew & meth & angle
 update maxcor & remember vlew & meth & angle
 |ANG = 1
 |ANG = 1
 DO I = 2, NANGMX
 DO I = 2, NANGMX
 IF (CORRECT(I).GT.CORRECT(IANG)) IANG = I
 IF (CORRECT(I).GT.CORRECT(IANG)) IANG = I
 ENDDO
 ENDDO
 IF (CORRECT(IANG).GT.MAXCOR) THEN
 IF (CORRECT(IANG).GT.MAXCOR) THEN
 MAXCOR = CORRECT (IANG)
 MAXCOR = CORRECT (IANG)
 DO IKERN = 1, TOTPOS
 DO IKERN = 1, TOTPOS
 FAV(IFAVX+1, IKERN) = RAD IAL(IKERN, |ANG)
 FAV(IFAVX+1, IKERN) = RAD IAL(IKERN, |ANG)
 ENDDO
 ENDDO
 FAVLOG(1, IFAVX+1) = IVIEW
 FAVLOG(1, IFAVX+1) = IVIEW
 FAVLOG(2, IFAVX+1) = IMETH
 FAVLOG(2, IFAVX+1) = IMETH
 FAVLOG(3, IFAVX+1) = IANG
 FAVLOG(3, IFAVX+1) = IANG
 ENDIF
 ENDIF
Wrlte a permanent record of it
 CLOSE (3)
 WRITE (FN,'(A, 13,A)') 'PART',IKE,'.LOG'
 |KE = IKE + 1
 OPEN (3,FILE=FN,STATUS='NEW')
 ENDDO
 ENDDO
 IF (MAXCOR.LT.BESTCOR) THEN
 WRITE (3,*) 'Stop due to no Increase in accuracy'
 GOTO 9080
 ELSE
 BESTCOR = MAXCOR
C Print what we're updating our favorltes array wIth
 WRITE (3,*) 'FavorIte update: ', (FAVLOG(I, IFAVX+1), 1=1,3),
 BESTCOR
 Wrlte a permanent record of it
 WRITE (FN,'(A, 11, A)') 'FAV', IFAVX+1,'.LOG'
 OPEN (2,FILE=FN,STATUS='NEW')
 WRITE (2,*) 'Favor'te update: ', (FAVLOG(I, IFAVX+1), 1=1,3),
 BESTCOR, FLOAT(BESTCOR)/FLOAT(TOTPOS)*100.
 CLOSE (2)
```

```
 ENDIF
 ENDDO
9080 00 IVAR = 1, VARMX
 OO IVIEW = 1, YIEWMMX
 DO IMETH = 1, METHMX
 CLOSE(UN(IMETH, IVIEW, IVAR))
 ENDDO
 ENDDO
 ENDDO
 CLOSE (3)
 END
```

```
C
C SCLASS
C
PURPOSE
This is a hybrid, elective minimum distance classifler. A whole vote is given to the winner of each pair-off.
ROUTINE(S) ACCESSED OR CALLED BY THIS ROUTINE None
ARGUMENT(S) REQUIRED FROM THE CALLING ROUTINE None

IMPLICIT NONE
INTEGER NANGMX, YARMX, METHMX, VIEWMX
PARAMETER (NANGMX \(=720\), VARMX \(=4\), METHMX \(=3\), \(V\) I EMMX \(=2\))
CHARACTER VARIETY(VARMX)*10,VIEW(VIEMMX)*3,HARD(VARMX)*1, METH (MET-MX) * 1 , FN* 40
INTEGER UN(METHMX, VIEWMX, VARMX), IMETH, IVIEW, IVAR, I ANG, NANGLS, XCENT, YCENT, AREA, CORRECT, TOTPOS, IDIM, WINNER, \(\operatorname{CLASSN}(6), \operatorname{CLASSV}(5,6), \operatorname{CLASSA}(5,6), \operatorname{CLASSM}(5,6)\), I SEL , IKERN, \(1, J, K, L, M, N, C 3, W 3\)
INTEGER*2 TALLY (4), \(\operatorname{TSOLN}(4,4,4,4,4)\)
REAL MEAN(NANGMX, VARMX,METHMX, VIEWMX), DISTSQ(2),DTEMP, MAJANG, RADIAL (NANGMX, METHMX, VIEWMX)

A couple of unlt numbers we'll use for disk \(1 / 0\)
```

I= 15
C These are the fllenames of the contour data
YARIETY(1) = 'ARKAN'
VARIETY(2) = 'ARTHUR'
YARIETY(3) = 'NUGAINES'
VARIETY(4) = 'SAGE'
C The flletypes of the contour data (top and slde vlews)
VIEW(1) = 'TM'
VIEW(2) = 'SM'
C The methods that we use
METH(1) = ' '
METH(2) = 'L'
METH(3) = 'W'
C Descriptlon of the hardness of each of the varletles
HARD(1) = 'H'
HARD(2) = 'S'
HARD(3) = 'S'
HARD(4) = 'H'
C FIII all of the mean contours
DO IVIEN = 1, VIEMMX
DO IVAR = 1, VARMX
FN = VARIETY(IVAR) // '.' // VIEW(IVIEW) // 'M'
OPEN(UN(1,1,1),FILE=FN,ERR=9000,STATUS = 'OLD', SHARED,
FORM= 'UNFORMATTED')
DO IMETH = 1, METHMX
.READ (UN(1,1,1))
(MEAN(IANG, IVAR, IMETH, IVIEW), I ANG=1,NANGMX)
ENDDO
CLOSE(UN(1,1,1))
ENDDO
ENDDO
C At this time, we have mean contours for each data flle
C The next step is to do amlnlmum distance classlfler for each
C comblnation of 2 varletles. A classlfler wlll be run for all
C normallzatlons and vlews of each combinatlon and the single
C best measurement method w/ll be remembered for later use.
C The comparison matrix ls:

```
\begin{tabular}{|c|c|c|}
\hline C & & VARIETY \\
\hline C & I NDEX & 1234 \\
\hline c & 1 & * \\
\hline C & 2 & * \\
\hline C & 3 & * \\
\hline C & 4 & * * \\
\hline C & 5 & * * \\
\hline C & 6 & * \\
\hline
\end{tabular}

C 888
C

C The number of dimensions for each comparison
\(\operatorname{CLASSN}(1)=4\)
\(\operatorname{CLASSN}(2)=5\)
\(\operatorname{CLASSN}(3)=4\)
\(\operatorname{CLASSN}(4)=2\)
\(\operatorname{CLASSN}(5)=1\)
\(\operatorname{CLASSN}(6)=4\)
C The best vlew for each comparison
\(\operatorname{CLASSV}(1,1)=1\)
\(\operatorname{CLASSV}(2,1)=2\)
\(\operatorname{CLASSV}(3,1)=1\)
\(\operatorname{CLASSV}(4,1)=1\)
\(\operatorname{CLASSV}(1,2)=2\)
\(\operatorname{CLASSV}(2,2)=2\)
\(\operatorname{CLASSV}(3,2)=1\)
\(\operatorname{CLASSV}(4,2)=1\)
\(\operatorname{CLASSV}(5,2)=2\)
\(\operatorname{CLASSV}(1,3)=2\)
\(\operatorname{CLASSV}(2,3)=2\)
\(\operatorname{CLASSV}(3,3)=2\)
\(\operatorname{CLASSV}(4,3)=2\)
\(\operatorname{CLASSV}(1,4)=2\)
\(\operatorname{CLASSV}(2,4)=1\)
\(\operatorname{CLASSV}(1,5)=2\)
\(\operatorname{CLASSV}(1,6)=2\)
\(\operatorname{CLASSV}(2,6)=2\)
\(\operatorname{CLASSV}(3,6)=2\)
\(\operatorname{CLASSV}(4,6)=1\)
C The best normalization method for each comparison is
\(\operatorname{CLASSM}(1,1)=2\)
\(\operatorname{CLASSM}(2,1)=3\)
\(\operatorname{CLASSM}(3,1)=3\)
\(\operatorname{CLASSM}(4,1)=2\)
\(\operatorname{CLASSM}(1,2)=2\)
\(\operatorname{CLASSM}(2,2)=2\)
```

CLASSM(3,2)=2
CLASSM(4,2) =3
CLASSM(5,2)=3
CLASSM(1,3)=3
CLASSM(2,3)=1
CLASSM(3,3) =2
CLASSM(4,3)=2
CLASSM(1,4)=3
CLASSM(2,4) = = 3
CLASSM(1,5) = 3
CLASSM(1,6) =2
CLASSM(2,6) = 3
CLASSM(3,6) = 3
CLASSM (4,6) = 3

```

C The measurement Index to do each comparison at Is
\(\operatorname{CLASSA}(1,1)=144\)
\(\operatorname{CLASSA}(2,1)=65\)
\(\operatorname{CLASSA}(3,1)=111\)
\(\operatorname{CLASSA}(4,1)=380\)
\(\operatorname{CLASSA}(1,2)=720\)
\(\operatorname{CLASSA}(2,2)=276\)
\(\operatorname{CLASSA}(3,2)=695\)
\(\operatorname{CLASSA}(4,2)=434\)
\(\operatorname{CLASSA}(5,2)=199\)
\(\operatorname{CLASSA}(1,3)=344\)
\(\operatorname{CLASSA}(2,3)=474\)
\(\operatorname{CLASSA}(3,3)=154\)
\(\operatorname{CLASSA}(4,3)=650\)
\(\operatorname{CLASSA}(1,4)=697\)
\(\operatorname{CLASSA}(2,4)=401\)
\(\operatorname{CLASSA}(1,5)=713\)
\(\operatorname{CLASSA}(1,6)=379\)
\(\operatorname{CLASSA}(2,6)=235\)
\(\operatorname{CLASSA}(3,6)=193\)
\(\operatorname{CLASSA}(4,6)=95\)

C Now that we have the knowledge that we thlnk we need, let's
C try the overall classiflcation and see how smart we really are.
C Inttlalize this array
DO \(1=1,4\)
DO \(J=1,4\)
DO \(K=1,4\)
DO \(L=1,4\)
```

            DO M=1,4
                    TSOLN(M,L,K,J,I) =0
                ENDDO
            ENDDO
        ENDDO
        ENDDO
    ENDDO

```

C Keep track of how many we trled to classlfy TOTPOS \(=0\)

C Open the data files DO \(\mid\) VAR \(=1\), \(\operatorname{VARMX}\) DO \(I V I E W=1\), VIEWMX

DO IMETH \(=1\), METHMX
\(F N=\) VARIETY(IVAR) // '.' // VIEW(IVIEW) // METH(IMETH)
OPEN(UN(IMETH, IVIEW, IVAR), FILE \(=F N, E R R=9000\), STATUS \(={ }^{\prime}\) OLD', SHARED, FORM= 'UNF ORMATTED')
ENDDO
ENDDO
ENDDO
C Keep track of the number correctly classlfled CORRECT \(=0\)
\(C 3=0\)
\(W 3=0\)

Get all of the data avallable for this kernel DO \(\mid V I E W=1\), VIEWMX DO IMETH \(=1\), METHMX

READ (UN (IMETH, I I IEW, I VAR)) XCENT, YCENT, AREA, MAJANG, NANGLS, (RAD|AL(\(\mid\), IMETH, \(\mid\) VIEW), \(\mid=1\),NANGLS)
ENDDO
ENDDO

Keep an array that tells us how many times each is selected DO \(\mid=1,4\)

TALLY(I) \(=0\)
ENDDO
This is the number of varletles we're dealling with \(N=4\)

This is our Index Into the selection (or testing) matrix 1SEL \(=0\)

For all possible combinations of two varletles...
```

DO I = 1,N-1
DO J = I +1, N

```

C

Plck the largest as the winner WINNER \(=1\)
DO \(1=2,4\)
IF (TALLY(I).GT.TALLY(WINNER)) WINNER \(=1\) ENDDO

See If we chose the right varlety by checklng it against the fllename
IF (WINNER.EQ. IVAR) THEN
CORRECT \(=\) CORRECT +1
IF (TALLY(W|NNER).EQ.3) C3 \(=\mathbf{C 3}+1\)
ELSE
WRITE (*,1081) IKERN, (TALLY(1), \(1=1,4\))
FORMAT (' ' \(, 13,5 \mathrm{X}, 415\))
IF (TALLY(WTNNER).EQ.3) \(W 3=W 3+1\)
ENDIF

C Keep track of this stuff
\(\operatorname{TSOLN}(\operatorname{IVAR}, \operatorname{TALLY}(1)+1, \operatorname{TALLY}(2)+1, \operatorname{TALLY}(3)+1, \operatorname{TALLY}(4)+1)=\)
8 \(\operatorname{TSOLN}(1 \operatorname{VAR}, \operatorname{TALLY}(1)+1, \operatorname{TALLY}(2)+1, \operatorname{TALLY}(3)+1, \operatorname{TALLY}(4)+1)+1\)

C

200

ENDDO
C Tell us our stats WRITE (*,*) ' 1
DO \(1=1,4\)
DO \(J=1,4\) DO K \(=1,4\) DOL \(=1,4\) 1F (\((1+J+K+L-4)\).EQ 6\()\) THEN

WRITE (*, 1090) \(1-1, \mathrm{~J}-1, \mathrm{~K}-1, \mathrm{~L}-1\),
8
Keep track of the number that we tried to classify TOTPOS \(=\) TOTPOS +1

ENDDO
```

DO IVIEW = 1, VIEWMX

```
DO IVIEW = 1, VIEWMX
 DO IMETH = 1, METHMX
 DO IMETH = 1, METHMX
 CLOSE(UN(IMETH, IVIEN, IVAR))
 CLOSE(UN(IMETH, IVIEN, IVAR))
 ENDDO
 ENDDO
ENDDO
```

ENDDO

```
 ENDDO
C Tell us our stats
 DO \(J=1,4\)
 \(D O L=1,4\)
 WRITE (*, 1090) \(1-1, \mathrm{~J}-1, \mathrm{~K}-1, \mathrm{~L}-1\),
 FORMAT(' ',4|2,2X,4|4)
 ENDIF
 ENDDO
 ENDDO
 ENDDO
 ENDDO
 WRITE (*,*) 1 '
 WRITE (*,*) CORRECT,' correct of',TOTPOS,' possible'
 WR1TE (*,*) 'Percent correct Is:',FLOAT(CORRECT)/FLOAT(TOTPOS)
 WRITE (*,*) 'Perfect 3.0s were: ',C3,' right', W3,' wrong'
 CONTINUE
 - END

\section*{CLASSIFICATION OF WHEAT KERNELS} BY MACHINE-VISION MEASUREMENT

\section*{by}

\title{
TERRY EUGENE SCHMALZRIED \\ B. S., Kansas State University, 1983
}

AN ABSTRACT OF A MASTER'S THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Electrical and Computer Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

It is not always possible for a grain inspector to correctly grade a shipment of wheat because many varieties are virtually indistinguishable from one another. But, it is important to the consumer that the wheat be classified correctly because of the vastly different milling and baking characteristics of some of these varieties. This paper describes a machine-vision system that was designed to analyze wheat and find ways to classify it on the kernel level.

The paper is divided into several sections. First, kernel characteristics used by grain inspectors to identify wheat varieties are discussed. Second, algorithms are explained for obtaining measurements of the wheat kernels, using those measurements to classify other wheat kernels, and selecting a minimal set of them to use as discriminators between varieties. Methods described include thresholding, object detection, edge tracking, internal region determination, insuring externality of the edge contour, centroids, and principal axes. Classification methods include minimam-distance, nearest-neighbor, and an elective variant of the minimum-distance classifier. The discriminator set was chosen through exhaustive comparison of each measurement's classification results. Finally, results and conclusions are given.

Four varieties of wheat were used to test the machine-vision system. Two of them, Arkan and Arthur, are often confused by grain inspectors because of their similiar appearance, although one is a hard wheat and the other is a soft wheat. Using a 400-
kernel sample set (100 kernels of each variety) and a multipledimensional classifier, \(94 \%\) of the set was correctly classified by variety and 96.25 by hardness. A four-dimensional classifier properly classified 97.5 of a mixture of only Arkan and Arthur kernels. These percentages were determined using the same sample set to train the classifier and to test it, so the results are probably higher than they would be if a different test set were used. But, if additional features are considered, high classification rates could probably be achieved for even larger numbers of varieties. Additional features to consider are discussed at the end of the report.```

