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INTRODUCTION

In the transmission of modulated waves and in high speed data trans-

mission systems, it is often desirable to have bandpass filters with arith-

metically symmetrical attenuation and group-delay characteristics.

The possibility of obtaining such a symmetry is practically always

assured when the passband is narrow in comparison with the center fre-

quency. On the other hand, it is lost when the bandwith is an appreciable

fraction of the center frequency. It is well known that the conventional low-

pass to bandpass filters transformation provides a bandpass filter having

geometrical symmetry in attenuation characteristic and exhibiting no sym-

metry at all in the group-delay characteristic.

Problems of designing lumped element bandpass filters having arith-

metically symmetrical characteristics in the case of large bandwith are

investigated in this paper.

Two approaches are considered: the characteristic function approach

and Butterworth criterion approach.

The characteristic function approach deals with periodic bandpass

filter characteristics which have exact arithmetic symmetry; that is, the

filter must have an infinite number of pass bands and is essentially a trans-

mission-line filter. Use of lumped circuit elements induces two approxima-

tions. One of these is approximation of the ideal filter characteristic; the

other is approximation of arithmetic symmetry. Arithmetic symmetry



inside the stop bands is of no consequence, hence, its approximation can be

restricted to pass and transition bands. A method is presented to perform

these approximations. This method is partly graphical and numerical.

In the Butterworth criterion approach, the bandpass transfer func-

tion without zeros other than at zero and infinite frequencies are investigated

in order to obtain the maximum possible arithmetic symmetry of attenuation

and group-delay of any degree Butterworth pass band behavior.

Design procedures according to Butterworth criteron are considered

in this report.

Both approaches are physically realizable by reactive ladder two-

port networks terminated in a resistor.



PERIODIC FREQUENCY TRANSFORMATION

The desirable filter spectrum has exact arithmetic symmetry with

respect to a frequency u j 0, and it exhibits the same type of symmetry

with respect to the frequency u> =0. Since this function has a repeated series

of inversions with respect to these frequencies it must be periodic with per-

iod 2 u> . These structures are characterized in terms of circular or hy-

perbolic, instead of rational, functions and hence are transmission line

filters.

Theorem : Only open-circuited and short-circuited lossless LC transmission

line segments, or their equivalents, may be used in a filter to obtain a spec-

trum having arithmetic symmetry with respect to a frequency w 4 0, and

the spectrum will be periodic.

Proof: If the specified transmission line segments and resistor terminations

are employed, the filter's transfer function will be a rational function of the

delay operator e"p . If p is replaced by ju then arithmetic symmetry and

periodicity are evident.

The most general filter of this type can be obtained from the con-

ventional low-pass filter function with pass band -l<fl <1 by the frequency

transformation

a =

n a)

tan -

—

6 (D

(1)



or

p S j.fl = 2 = ii (i.)

J
tan 2^7 tanh

2u>
o o

where the parameter "h" is related to the band edges of the transformed

filter:

h = tan—i = - tan u
(2)

2u o 2%

where wj and wu are the lower and upper edges of the first pass band re'

spectively.
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CHARACTERISTIC - FUNCTION APPROACH

5

I. Transformation of the Characteristic Function

Let the transfer function of a two port network be:

ea+jb = T(p) = jizL
(3)

where

a is the transducer loss (or attenuation)

b is the phase angle

P =
J

<*>

g(p) is a Hurwicz polynomial

f(p) is an even or odd polynomial with imaginary zeros

degree not greater than that of g(p).

and of

Also,

e
2a= T(p)T(-p) = Sish&l = ! + ${pH (

.p)
(f(p))*

(4)

where

I(P)
(5)

is the characteristic function, h(p) is a real arbitrary

Hurwitz polynomial relatively prime to f(p).

Let us consider a normalized low-pass filter with pass

o <. a <i

,

band



and stop band

1 <_k<_ fi_<<»>

Its attenuation characteristic is shown in Fig. 1. Now we apply the periodic

frequency transformation (1). This transformation yields a filter with an

infinite number of pass bands each arithmetically symmetrical and centered

at

( 2k -i- 1 ) uj k= 0, 1, 2, 3, ••'.

A lumped element realization could be obtained for this transforma-

tion (1) by approximating the hyperbolic tangent function with a rational

function. There are several approximations for this hyperbolic function

which retain the rational form; namely,

1. Partial fraction expansion of tanhx;

2. Partial fraction expansion of coth x;

3. Continued fraction expansion of these functions.

The disadvantages of these methods are that one or more periodic pass bands

are generated and that the number of lumped elements required is excessive.

The problem is to modify extraneous pass bands.

II. Truncation of Characteristic Function

Let us look at the attenuation characteristic of the transformed band-

pass filter in Fig. 2. There exist zeros and poles in the region

<_ a) <_ 2o>

and this constellation repeats infinitely many times in both directions. We

wish to retain the singularities in the fundamental region
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Fig. 1 Normalized low-pass characteristic.
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Fig. 2 Periodic bandpass characteristic.



-2(o„ < w < 2 u>
o — — o
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and discard all others. We recognize that the characteristic function Q(P)

of the low -pass filter cLirectly exhibits these singularities . We can write

*(P) = *(h cotanh -2J2-) = *(p ).

2o>
(6)

If we combine all singularities of "Mp) in the fundamental region into the

function

**(p),

it is observed that half of the poles at Im p = + 2w
o must be discarded.

Consequently <Jr
:< (p) nee d not be rational. Considering the poles of the

function $ t (p) we have

tanh JUB- =

2uj

or

tanh —22- = tanh (
-11-2- + 2*kj ) =

2oj 2%

—!L£_ + 2irkj -

2w

(7)

p + 4kj% = (8)

Similarly, we consider the zeros of the function 4>.(p) and

tanh -JLE_ =
2%

obtain

as a result this reduces i to equation (8). Therefore,
fo.(p) can be written



as (apart from a constant multiplier)

+ "

<J,t (p)
= tt ** ( p+4kja)

o ). (9)

k=-°°

The initial approximation will be <{>*(p) itself.

Discarding all singularities outside of the fundamental range re-

sults in loss of arithmetic symmetry of the bandpass characteristic. As

a result, some correction is needed. As a measure of the deviation from

the ideal case we select the function:

D = + log
* *(p)

+ t (P)

(10)

p=ju

which is a smooth function in the fundamental region and can be evaluated

relatively easily.

The final step is to select a function n(p) with the following proper-

ties:

(1) The function

«p) = 4>*(p)n(p) MeL
f(p)

is a rational realizable characteristic function.

(2) n(p) does not have pure imaginary zeros. This is necessary

in order to avoid spurious pass bands.

(3) The function

D + log n(p)

is approximately constant inside the fundamental region or the
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restricted region consisting of the pass and transition bands.

This last step is best performed numerically or graphically.

In order to expedite this last step, let us take another look at the

deviation function, equation (10). This function is a measure of the devia-

tion of the first approximation from the ideal, symmetrical case and there-

fore is an indirect measure of the asymmetry itself. It is a weighted mea-

sure such that the deviation is weighted considerably heavier for low losses

( pass band ) than for high losses where the weighting is essentially unity.

This weighting is quite convenient since the symmetry is only meaningful

in the pass and transition bands, that is, in the low and intermediate loss

regions.

Let us consider a factor of the form

(p
2 + Qf)- = (Of -oV

in the low-pass function $(p). The corresponding factor in <Mp) will be of

the form

( h (cotan (- )
- cotan ( ) ))

2 Uq 2 u

with

h cotan — - fl^.

2 w

"We write the corresponding factor in <j>*(p) in the form:
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( oi -u). ) ( ai - (2u> -a)
i
)

+

This will lead to a term in the deviation function which is given by (apart

from an uninteresting additive constant):

+D
i
= Z. log

01

( i --—)( i

(
__P_)2

iroi

2
oi .

i

(2 oi - oi )

o i

T>

.2 TToi 2 *"_!_.
( cosec - cosec

'2 u 2w.

. (ID

The limiting case ft^ = corresponds to a double at midband with:

D Q
= 2 log

( tan JLSL-
) ( 1

2 oi„

TT01

2 oi

(12)

The other limiting case of ft
--+- 00 is clearly a double pole at oi = and single

poles at JL2 0>o giving

D,, = -log 1 -
(['-'.ifl (13)

This is a one parameter set of curves whose two limiting cases are shown

in Fig. 3 as a function of w/o>
o

. For more accurate calculation, it is better

to use the modified function

D'. = D. -D n1 1 o i = 0, 1, 2, 3,
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a few of which are shown in Fig. 4 with u/ to as parameter. The value of

Di is in decades.
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Fig. 3 Limiting cases of the deviation function
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CONSTANT GROUP-DELAY BANDPASS FILTER

Group delay is defined to be:

, . d6(w)
T (u) - -

d a)

where 8(w) is the phase of transfer function T(p), p=j u.

Let us apply the periodic frequency transformation method to some

low pass filter to obtain the bandpass filter and investigate the filter's group

delay

(14)
du d» d« v '

where

.d« _ . dR(p)

p=ju.
du dp

Here 3b and 3
1
are the phases of the low pass and bandpass filters respec-

tively and R(p) is the reactive rational approximant to coth(* p/2) or approxi-

mately:

dR ± _d_ Trp

dp dp 2

TT 1

2 2 iin
sinh r

= JL ( i-coth2 -^)
2 2

= JL( 1 - (-P-) 2
) .

2 h
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Consequently one can obtain

•
d6

>
»

h'
( i + (

a
)

2
)

dBl

da) 2 uj h dfl
• (15)

Hence, if d B-, /dfl is constant, the transformed group delay d Bv /do) is not

constant. We are interested in starting with a 1ow-pa ss filter having d g, /dfi

not a constant and end with a band pass filter having C'onstant group delay

Tb (a)) *T •

Let us start with a low-pass filter group delay of the form:

dBj (G)
k

(16)dft

h ( 1 + (fl/hP)

where

Bj(ft) is the phase of the normalized low-pass characteristic

and
2 T u

o o
k-

7T

Integrating thi s expression once, we have

Bi (fl) = k tan'
1 — .

1 h (17)

In a slightly different form, Equation (17) becomes:

j Bj = k tanh" 1 4~- = k tanh" 1

h
P
h '

(18)

Furthermore, we know that tanh j B must be the :ratio of an odd and even



17

polynomial in P; that is

tanh j Si = °tP ^ = tanh ( k tanh" 1 —
) (19)

E(P) h

One can obtain an approximation of the maximally flat type and the

rational form by expanding the right side of Equation (19) into a continued

fraction:

kP
-IP htanh ( k tanh — )

= (20)
h

(k
2 -i)Zi

i + 62

(k
2
-4) P 2

3 + ^~

(k2 -9)JT
h

5 +

7+ ...

Terminating the expansion with the Nth term, we obtain the rational approxi-

mant On(P)/En(P) and the polynomial of degree N:

Qn(P ) = °N(P ) + %(p ) (21)

The polynomial will have Hurwitz character, if the included continued frac-

tion coefficients are all positive, that is, if

1 _ u o „ ,k >. N - 1 (22)

In case of equality, the continued fraction expansion terminates, and the

approximation becomes an exact equality. Equation (22) becomes
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2 T <*>

o o
k - ^ - N-l - n

and we find that

oN(P) , p
EN(P)

= tanh (n ^ n >

d + f )

n -d-f )

n

h h
{d.5)

u +
f)« + u-f)

n

and

Qn(P) =
(

i + y )n
(24)

This leads to the following:

Theorem: If a reference low-pass filter with transfer function

( 1 +—

)

n

T ,p v g(P) _ h
L(P) ~

f(P) " f(P) '

(25)

where f(P) is an even polynomial of degree less than n, is transformed

according to

P = h coth -JI£-
2

"o

into a bandpass transfer function with exactly linear phase

< 1 + coth Z J )

n

1 \^) - e •> (26)

f(h coth _E2_)
2 %
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then the constant group-delay at all frequencies is

Tt>> = ^f1- •
(27)

D ° 2 GO

From foregoing considerations on the design of a constant group-delay band-

pass filter we can employ the following procedures: (a) select a low-pass

function of the form in Equation (25); (b) determine characteristic function

$(P); (c) apply the technique for attenuation characteristic modification.
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BUTTERWORTH CRITERION APPROACH

I. Symmetry Conditions For the Attenuation Function

Consider a bandpass transfer function without zeros other than at zero

and infinite frequencies. Let the transfer function be of the type:

T(p) =
?n

, (28)

g
m

(P )

where g
m

(p) is a polynomial of degree m, and p = j <*> , w is a real frequency.

We see that T(p) has zeros at p=0 and p= ot>, and that l<_n<_m - 1. This trans-

fer function has a zero of degree n at zero frequency and a zero of degree

m-n at infinite frequency.

The square of the modulus of T(p), at real frequencies is:

(t(p)
2 = 2

2n

Q
m

(P
2

)

(29)

vlll;_2. . i . -, r i .2where Qm(p ) is a polynomial of degree m in p . If
j
T(p) I is the maximum

value assumed by |T(p)| at real frequencies, a relative transfer function can

be defined as

T<P,^f<^ (30)

whose modulus is given by the expression:

T(p)
r |

* = -IteLi

l

T <P» lo
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^2n
_E (31)

Qm(P
2
)|T(P )|^

The expression for the relative attenuation a is:

2a
r 1

|t(p)|
2

Qm(p
2
)lT(p)l^

2n

cm 2.

= 1 + H S (P )

2n
P

(32)

In order to obtain maximum uniformity of attenuation in the pass-

band as many zeros as possible should occur at real frequencies. It follows

from Equation (32) that

7* / 2, 2. , 2 2.2 . 2 2 .22a
(
U +u)p (u, -»)... (a) -«

(m _ 1)/2 )

e =1+H- J * ^
V)IL

(33)

oj
2n

when m is odd, and that

2a ,2 2,2/2 2.2 ,22.2
^r (" -id,) (a) -u) ? ) . . . (to -gaz?)

e = i+H = - 22±£ (34)
2n

u

when m is even. In the Equations (33) and (34), u>., w <*>-,, ... are
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positive real. If the zeros of Sm(p) in Equation (32) occur with even order

multiplicity, then a
r
cannot be negative. For each value of m and n, filter

design will require the determination of H and of u)., to to_, ... which

lead to the most satisfactory attenuation characteristics.

Regarding the choice of the values of u., u , u , ... two fundamental

criteria, Chebyshev criterion in Fig. 5, and Butterworth criterion in Fig.

6. are most frequently employed. We will restrict attention to the Butter-

worth criterion. This criterion keeps (^ , to ... coincident in a single

angular frequency to , at which frequency, the maximum number of deriva-

tives of a
r
are set equal to zero. In this case, equations (33) and (34)

become:

2a ,222 2, m-1
r ( w +"i) (<»> -<0

e = 1 + H * —-S
; (35)

to

and

?a / 2 2.

m

(to -to n )

e r = 1 + H J -21—
. (36 )

2n
to

Formulas (35) and (3 6) will be the basis for approximating arithmetic

symmetry conditions.

In the case of m even, we rewrite Equation (3 6) in the form:

2a
e

r
= 1 + H(a>-% )

m
.f

2(
u>) (37)

where



ar *
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m -7\7\v\:
0*1 (jJ2 W3 0)4 (1)5 u>

a
r

..

Fig. 5 Chebyshev attenuation Characteristic.

"m

">o
0)1 0)

Fig. 6 Butterworth attenuation Characteristic.
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( U)+ w_.)

f2'"> =
2°n

(38)

(0

It is clear from expression (37) that the part H( w - u) ) has even symmetry,

2a
therefore, in order that the function e r has even symmetry, then either

i-2(^) must be a constant, or it must have even symmetry relative to w
,

at least in a fairly large interval including the bandpass region. It is ob-

served that for narrow relative pass -band, u> very near u , f.(u)) can be
x o 2

considered as a constant with a value of

r ,,,, _m m-2n /on\
f
2
(«) = 2 u

Q
(39)

ULet the function f
?
(w) be expanded in power series about

, , . m m-2n„ M - "p
, ,

M ' Mo ,2
f
2
(u)) = 2 u)

Q
(1 + a

x
-j— + a

2 ( —j—

)

o « o

+ a
3 ( ^^) 3 +"-) (40)

wherein

a, = _L ( m-4n)
1

2

a, = -L ( 2n( 2n+l ) - 2nm + m(m-l)
)

L
2 4

a = _1_ / m(m-l) (m-2) _ nm(m-l)
3 2 " 24 2

/0 .,» 2n(2n+l) (2n-2) . ....+ mn(2n+l) i *-* -
) . (40)
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From Equation (40) we observe that for narrow relative band width, u - u
,

f
2 ( u ) is equal to 2

m wI*1 ~
, a constant. For large relative band with, the

expression (40), taking into account the values of the coefficients, a^ a_,

a,, suggests choice of

m = 4n (41)

for obtaining the maximum possible symmetry. Introducing this condition

into Equation (40) yields

f
7
(u>) = 2

m
u,
m/2

(l + ^(^^) 2
+

2 K
' o v

8 »„

0) - 01 "3.

i2.( 2-)
3
+...). (41)

8 <*>

In the case of odd m, we proceed in a similar manner. Equation

(35) can be written as

2a
e

r _ t j_ tt / ,,v ,.> \m-lr = i + H(w-W
o )

m_1
-f («•»), (42)

wherein

(U)
2+ u Z.) (U)+ a) \

m_1
f(w) = 3 —-2

. (43)
1

u>
2n

1

This time the part H(w-n>
o ) " has even symmetry and therefore fi(")

must be a constant or have an even symmetry relative to u in order that

2a
the function e is an even function in an interval including the passband.
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As before, expanding f,(u)) into power series about <*> yields the

following expression:

where

, . , _m-l m-l-2n. 2 . 2 o
f, (w) = 2 <*> (<*) +u

.
) ( l + b, +V ' o v o j '

v
1 (i)

b 2 (
£ / + b, (

2_ )*
! +. . .

), (44)
*

«o w o

b
x

= 4-(m-l-4n+ ),
*

2
u •

1 + L_

2

b = J-(2n(2n+l)+ &LJJ (m-2) 2n(m _i)
Z 2 4

+ 2
m '4n

),

2

1+ JL_

2

b _ J_ , (m-1) (m-2) (m-3) 2n(2n+l) (2n+2)
3 '

2 24 3

/o _li\ / i\ n(m-l) (m-2)
+ n(2n+l) (m-1) i <-* '

2

+ L~2~ (

(m-1) (m-2)
+ 4n ( 2n+i)

-

4n+m-l -4n(m-l)))

W
J

2

1 +

.!
(45)
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Setting, as before, b =0, we observed that m-l-4n is an even number, and

therefore

1 + (Uj/u^)
2

must be even. For all possible finite values of oi., the above form ranges

between 4 when u .=0 and 2 when u-= u>
. Between these solutions, the first

J J o

corresponds to lowering by one unit the degree of the denominator in

Equation (28), falling back to the case of m even, as previously examined.

Adopting the second solution, we have

(46)

m + 1 = 2n

Equation (44) becomes:

m+1

f
1

(a,) = 2
m

a)

2
(l + iS±l(Jll^) 2

+
1

V
' O ft M '

8

^1,^1^,3,...,. (47)

O

A summary of what we have developed now follows:

1. The ideal characteristic with maximum attenuation flatness having

arithmetical symmetry, is:

e
r = 1 + M(u>- u>

)

2k
(48)
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where k is any integer and M is a constant H multiplying the constant term

of f (u>) or f
?

(u> ).

2. The Physically realizable characteristics are of the type:

2a
,. .2k

e
r

1 + H(u)-u ) • f(o)) (49)

3. If in Equation (49) k is even, the most favorable f(w), as regards

symmetry, is given by Equation (41), on the basis of m=2k, and n=k/2.

4. If in Equation (49) k is odd, the most favorable f(w), regards symmetry,

is given by (47), on the basis of m = 2k + 1, n=(k+l)/2, and w. = w
.

By introducing into Equation (28) the specified values of m and n,

and because of considerations of 1 and 4, it is possible to write down the

expression of the most symmetrical transfer function corresponding to an

attenuation function of the prescribed order k. Table 1 shows the required

formulas for values of k between 1 and 6.

II. Group-delay Characteristic

The group -delay of the transfer function of the type in Equation

(28) is:

dB d 6, dg d6

*
=
j<
— +— +— + ^r + -"'' (50)

when m is even, and

dg r dg, ds i ds ?x=j(—r- +—L +—L +—

L

+...), (51)
dp dp dp dp
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Table 1. Filter Having Qua si-Symmetrical Characteristics

2a 2a
r r

, e (ideal with maxi- e (effective with „, ,

mum flatness) maximum flatness) r

2 (w +u> ) (u> -a) )

1 1 + M (u-u ) 1+H
° 2 3. ,

u g (P)

/ 2 2x4 ?

2 l + M(u-u) 1 + H -

—

—f-—° 2 4, >

0) g (P)

/ (w 2+o> 2
)

(u) 2 _u) 2
)
° 2

3 l + M(u)-u) 6 1+H- 2L1 °1_ __P_
° 4 7

« g (P)

o (cj
2 -w2

)

8 3

4 l + M(u>-u>) 1 + H — E—
° 4 8, \

w g (p)

5 l + M(u)-u>
)

10 1+H- SLl 21 P.

"
6

g
U

(p)

6 l + M(u>-u>
) 1 + H ^

-
Tf—

u g (p)
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when m is odd.

The conditions considered for the attenuation characteristic are

also applicable for the group -delay.

Attenuation and group-delay curves are shown on the next pages in

Fig. 7, 8, for the transfer functions having order k equal to 3 and 4.

III. Design Procedure

The first step in design is the choice of the order k for the desired

filter. For the physically realizable functions, the two cases of even and

odd are to be considered separately.

1. Even k.

On the basis of Equation (36) and the considerations of the develop-

ment of the conditions for the symmtery, the basic equation can be written

as

2a
r

2am (« -" ?)
e

r = 1 + e (e
m

- 1 ) J °L
, (52)

k
Noj

assuming that the constant N has such a value that the function

(u - u> ) /N u becomes 1 for the angular frequencies w and u limitinj

the pass -band.

The following conditions are derived therefrom:

/ 2 2*2k _ ,
T

k.

U el

, 2 2.2k _ kUb -u> ) - N ajb
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From these conditions, one can deduce that

(

" a ° ) = (_-£-) (53)

2 2 w b
b o

and

,2 2,2/2 2>2

N2 s
(

<"« " O (h) b ' u o' )k
§

(54 )

u a u»b

From Equation (53) we obtain:

u
a

u b " %
(55)

and now „ as a function of u
a
and ub

must be deduced. After some
o

manipulation we have:

-J^= -_£
( 2 - ]

u + w

where the center angular frequency u m = ^ and the relative band-

to - u
width n = b a

. Fig. 9 has been derived from Equation (56). Re>
r um

garding the constant N, its value can be deduced from Equation (54) after

introduction of the correct value of w given by Equation (56). Equation (54)

can also be simplified to
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1 -f
n
2
r

n=(N)'
/k

=2
2

"m"

if

2

4

4

(57)

This gives the values of a more convenient non-dimensional quantity n,

instead of the values of N. Formula (5 7) is graphically shown in Fig. 10.

From Fig. 9 and Fig. 10 it is thus possible to obtain the values of u> and

N to be introduced in (52).

2. Odd k.

In the case of odd k, the following formula can be written on the

basis of Equation (35) and considerations of conditions for arithmetic

symmetry:

2a 2z (u>
2
+u>

2
)

(u>
2
-u>

2
)

2k

e -l + (e - 1) —
(58)

T u

Like the previous case, the constant T should be so selected that the

function

N 2 t u 2 )(o>
2

- %
2

)

2k

m k+1

assumes the value 1 for the angular frequencies o> and u limiting the

pass -band.

Expressions corresponding to Equation (53), Equation (54) can thus

be obtained:
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2 2 2 2

"a +L)o ,

u a " u
o x 2k , "a x k+l

( % " )" (-a-r*. (59)
2 2 2 2 a) b+ w ~ U) u " w,U) k T wb '

w o w b wo

and

2 2 2 2,2 2\2, 2 2,2 „
,2 = (" a + M o )("b +a) o )

(

( ^ ""o } (a) b '"a >

}

"

"a wb "a %

As before, the constant T can be represented by means of a convenient

non-dimensional quantity, given by the expression

(60)

\/ 2 u
t = _V m_

(61)
2

Fig. 9 and Fig. 10 are the expressions of Equations of (59) and (61).
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SUMMARY

Two approaches provide us with means of obtaining arithmetically

symmetrical band-pass filters characteristics function of arbitrary shape.

In the Characteristic Function Approach, the symmetry is charac-

terized by a deviation function which must be reduced by a compensating

function. This involves some numerical or graphical approximation.

The method for filter attenuation has been extended to the design

of band-pass filter with approximating constant group-delay.

In the Butterworth Approach, bandpass transfer functions without

other zeros than at zero and infinite frequencies are analyzed according

to the Butterworth bandpass behavior for obtaining the maximum possible

symmetry of attenuation and group-delay characteristics.

While the Characteristic Function Approach demands a great deal

of time to evaluate the deviation function and to find a compensating func-

tion, the Butterworth Criterion Approach gives a fairly straightforward

technique to obtain arithmetically symmetrical characteristics.
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AN ABSTRACT

The problem of designing wide bandpass filters with arithmetically

symmetrical characteristics is investigated. Two approaches are con-

sidered. In the characteristic function approach it is shown that the

symmetry can only be approximated by a finite, lumped element network,

and a method is given to carry out this approximation. This method is

given to carry out this approximation. This method consists of a periodic

transformation of a suitable lowpass characteristic function, truncation of

the resulting infinite product, and finally correction for the truncation

error. Another approach, that of the Butterworth criterion is also de-

scribed to obtain arithmetically symmetrical characteristics. Conditions

for arithmetical symmetry are analyzed.


