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INTRODUCTION

The design of distillation columns, based on the concept of
the "theoretical plate" is a relatively well-developed art., A
"theoretical plate™ 1s a plate on which the contact between vapor
and liquid is sufficlently good so that the vapor leaving the
plate has the same composition as the vapor in equilibrium with
the overflow from the plate (1).

Unfortunately actual plates do not perform as do theoretical
plates, and 1t is desirable that expressions be avallable to rop-
resent the deviation from 1deality. The relatlionship generally
used 1ls expressed as plate efflclency., Many different forms of
the plate efficlency have been proposed, but the most commonly
used is the "polint" efficiency suggested by Murphree (2).

As the name implies, the "polnt" efficlency can be computed
only for a region of the plate on which the liquld and the vapor
phases are both of uniform compositlion, and then only when suffil-
ciently rellable methods are avallable for predicting mass trans-
fer rates, To date, the only cases in which plate (or overall)
efficlency can be precisely related to point efficiency is when
the liquid on the plate 1s completely mlxed or when the liquld
flows across the plate in plug flow., It has been shown by vari-
ous investigators (3), (L), (5) that nelther of these extreme
flow regimes actually exlst on distillation plates; the actual
case lies somewhere between.

The magnitude of the plate efflclency, under conditions when
entrainment is negligible, is therefore, affected not only by the



rate of mass transfer in the liquld and gas phases, but also by
the degree of fluld mixing on the plate, As will be pointed out,
the analysis of fluld interaction on a tray is well beyond exact
mathematical and fluld-dynamlcal treatment. For this reason
experimental measurement and modelling techniques have been exclu=-
sively employed to describe mixing on distillation plates and its
effect on plate efflclency.

Varlous models, physical as well as mathematical, have been
proposed to descrlbe the llquld mixing on dlstillation plates.
The pool model, which was originally proposed by Kirchbaum (6)
and later revived by Nord (7) and Gatreaux and Ot'Connell (8),
postulates that the tray may be considered as a series of com=-
pletely mixed pools along the length of the tray., While it is
agssumed that there is complete mixlng withln each pool, there is
no mixing between pools. A plate with a single pool corresponds
to a perfectly mixed plate and one with an lnfinite number of
pools to an unmixed or plug flow plate,

The recycle models of Oliver and Watson (9) and Warzel (10)
assume that liquld mixlng 1is effected by a recycle of liquid
which moves from the tray exit to the tray inlet, The parameter
which characterizes mixing 1s the concentration jump at the inlet
welr,

Splashing models have been proposed by Johnson and Marangozls
(11) and Crozier (1l2). In these models, splashing of the liquld
1s considered to be the major mixing process.

The axial dispersed plug flow model has been applled to
distillation trays or other flow systems by Anderson (13), Wehner



and Wilhelm (lL), Gerster et., al, (15) and others (16), (17),
(5)« This model assumes that the rate of mixing or dispersion of
a component ls proportional to the concentration gradient of that
component,

Foss (18) has used the residence-time concept to character=-
fze the degree of 1liquld mixing on distillatlion trays. He has
shown how the residence time dlstribution functlon may be used to
include lliquld mixing effects in the calculation of plate effi-
ciencties,

Strand (19) has proposed a model which considers the distil-
lation plate to be an axial dlspersed plug flow vessel around
which a fractlon of the entering liquld stream 1s effectlvely by~
passed, He has shown that the bubble tray design method proposed
by the American Institute of Chemical Engineers (20) could be
substantially improved by lncluding a liquid bypassling effect.
Strand also suggests other possible changes in the A.I.Ch.E.
method. One possible change would be to conslder the tray to be
non-uniform, both in the contacting achleved on various parts of
the tray and in the degree of liqulid mixlng. He polnts out that
the dispersion coefficient data used in the development of the
A.I.Ch.,E., method were obtalned ln a long narrow tray section so
that variations transverse to the liquid path were negliglble.

This report 1s not concerned with plate efflclencles as
such, It is concerned with the fluid flow behavior in general
and the liquid mixing and dispersion in particular, which takes
place on a distillation plate. It would be expected that the
flow behavior would be affected by such factors as liquid and
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vapor flow rates, tray design, and the physical properties of the
flulds.

Various models which may be used to describe flow behavior
are dlscussed, among them, the disperslon model, the perfectly
mixed tanks in series model, mixed models, and the {*=distribution
model, Experimental methods for determing the parameters of
these models are glven., One such method is the pulse testing
technique which has been discussed by several authors (21), (22),
but never actually used for studles of distillatlon trays.

A proposed investigation of 1llqulid mixing and dispersion on
distillation plates is outlined. It is suggested that polnt age
distributions as well as residence time distributions be experl-
mentally determined, the latter by the use of pulse testing
techniques.,

Many authors have pointed out the need for an investigatlon
of the type proposed In this report (3), (5), (19), (23), (L).

In the recent report of the Workshop on Automatlc Control
Research to the Control Advisory Committee of the American Auto-
matic Control Councll and the National Science Foundation (2l)
the following statements were made concerning the formulation
and use of theoretlcal mathematical models of chemlical processes,
Automatic data reduction techniques with computers

have made 1t relatively easy to develop overall trans-

fer function or performance function models relating a

particular process output varlable to a particular in-

put varlable change, Thls ls especially true for pulse

type lnputs. Because of the speclal data reduction

problems involved, higher-order effects may be lost or

at best very difficult to obtaln, The following ques-

tions regarding these studles remain relatively unan-
swered as of this time:



l. What are the Lndispensable dependent variables of
any partlcular process? That is, just how many sepa=-
rate transfer functlons are necessary to describe the
system adequately? What are the best data presentation
methods for expressing this data?

2. Just as in the case of linearized small-perturbation
type simulations what are the limlts of input variable
manipulation for which the linear transfer functlon
representation is adequate?

3. What are the criteria to be followed in deciding
whether higher-order effects may or may not be impor-
tant in any speciflc case?

Concerning the area of process dynamlcs, the report
continues:

Some general observatlons regarding the problem
areas in process dynamics can also be made at thils
time., These are:

1, Most difficultles 1ln mathematical model making
resolve themselves directly to the characterization of
fluld flow phenomena occurring in the process such as
turbulence, liquid mlxing, etc.

2. Control in chemical processing almost always
involves the manipulation of the flow of a fluld
stream)(here fluld may mean gas, liquld, or fluldlzed
solid.

Hence fluld flow problems are at the heart of all our
control investlgations, while at the same time belng
the process dynamic phenomena which we least under-
stand.



BASIC NOTIONS OF FLUID DISPERSION

The degree to which the aerated liquid mass flowing across
a distillation plate is mixed or dispersed may be characterized
by elther the distribution of residence times of the liquid ele-
ments flowlng across the plate or the concentration profile of
the 1liquid on the plate (15)., From a theoretical viewpoint, both
of these relationships may be obtalned analytically.

Consider a single phase, multicomponent fluld system. A
full description of thils system is glven by the followlng rela-
tionshlps:

:?:"(V'{Clﬁ"'jl})*Rl 1=1,2, .. o0 (1)

- n
BE=-[vfpm ] + 4y piE (2)
L {t+3F=- (Vv-fpf+2 D) T+ T+ [ TP (3)

Equation (1) is the equation of continuity, a mass balance,
Equation (2) is a momentum balance, variously called the equation
of motion or the Navier-Stokes equation.

Equation (3) is an energy balance. These Equations descrlbe the
behavior of a fluld system in general withln the framework of
mechanics of continuous media (25). They are seldom used in the
complete form given here since the exact solution of these
coupled equations is beyond the scope of present day mathematles.

The normal procedure is to disregard terms that are physically



negligible or ldentically zero, thereby obtalning simpler
equations for a given situation. TFor example, consider an
isothermal, Newtonlan, incompressible fluid of constant mass
density and viscosity. ZEquation (3) is no longer needed and

equations (1) and (2) become

900 o
W=-UV' Cl-V' j'i'FRI_ (LL)
/:g_g=-VP -[V'?] +f'g" (=)

For a given physical situation of simple geometry (e.g. flow in a
circuler tube) equations (i) and (5) are more readlily solved Tor
laminar flow, This Is because In laminar flow the molar flux Ti.
and the stress tensor?are expressed in terms of Fick'!s law of
diffusion and Newton!s law of viscosity. When considering tur-

bulent flow J; and -_'?are given by (26)

T=F1 , -T(t) -

The superscripts (1) and (t) refer to laminar and turbulent
contributions respectively. The 'J'i(l) and 7(1) can be glven by
the same expressions as for purely laminar flow. The difficulty
here is that only semlempirical expressions are avallable for
7,(8) ana T,

If the geometry of the physical system becomes complicated
even the laminar flow situation is impossible, or at best, very

difficult to solve,
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It is therefore convenient to treat fluid mixing from semi-
empirical and/or mathematical or physical modeling technlques,
Furthermore, it ls essential to conflrm results from such a

treatment experimentally.
Types of Flow

Two distinct types of mixing can be considered in continuous
flow systems (27). One is macromixing, i.e., the primary mixing
causlng the non-uniform residence time dlstribution of elements
of a fluld passing through the system. The other s mlcromixing,
i.e., mixing on a molecular scale., Thls distinction becomes
Important when considering systems where non-linear rate proc-
esses are taklng place. Since most of the mass transfer proc-
esses are of filrst order, or can be approximately considered to
be first order, mlxing on a distillation plate may be treated
from elther point of view,

Two ldeal flow patterns which are often used to approximate
real systems are plug flow and complete mixing (21). Patterns of
flow other than plug or complete mixing flow may be called non=-
ldeal flow patterns (21). Terms such as channelling, eddylng,
recycling, and flow with dead space or stagnant pockets are used
to describe non-ideal flow. These descriptive terms are not
completely mutually exclusive,

Most of the flow systems encountered are elther single or
two phase systems. According to Leonard (3), the two phase sys-
tem may be viewed as a complication of the one phase system.

The kinetlc energy of the second phase offers an addlitlonal



source of mixing energy as well as an additional impediment to
flow of the first phase., When describing the flow hehavior of a
two phase system in which there is a first order or linear rate
process taklng place, it 1s possible to treat each phase inde-
pendently., If a non-linear rate process is taking place, inde-

pendent treatment of the phases may no longer be possible (27).
Open and Closed Vessels

As discussed by Levensplel (21) a closed vessel ls defined
as one for which fluld enters and leaves by bulk flow alone.
Plug flow exists in the entrance and exlt streams, i.e., diffu-
sion and dispersion are absent at entrance and exit.

An open vessel 1s one where nelther the entrance or exit
streams satisfy the plug flow requlrements of the closed vessel,
When elther the entrance or exit stream along satisfies the
closed vessel requirements, the vessel 1s sald to be closed-open

or open-closed,
Age Distributions

To be able to account exactly for non-ideal flow requires
knowledge of the complete flow pattern of the fluld iIn the ves-
sel, Due to the difficultles associated wlth obtalning and
interpreting such information, an alternate approach is used
which requires knowledge only of how long different elements of
fluld reside in the vessel, This partial information is
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relatively simple to obtaln experimentally, can be easily
interpreted, and either with or without flow models, yields in=-
formation which In many cases allows a satisfactory accounting
of the non-ideal flow,

The experimental technique used for findlng this desired
distribution of residence times of fluld elements in the vessel
is a stimulus-response technique using tracer in the flowing
fluid. The iInput signal is a tracer introduced in a known man-
ner into the fluid stream entering the vessel.' This input signal
may be of any type. The response or output signal is then the
recording of tracer concentration at a point within the vessel
or in the outlet stream,

Before discussing age distributions, it is deslirable to
deflne the mean resildence time and reduced time. The mean resl-

dence time, T, of fluid in a vessel is deflined as

T vV _ Volume of the vessel avallable for flow
v

Volumetric I'low rate ol Ilurd through the vessel (8)
Reduced tlme, 8, 1s defined as

(9)

[ »}
I
o fct

The discussion whlch follows is based Ln part on the work of
Levenspiel (21) and De Maria and Longfield (28).

Internal age dlstribution. The vessel contalns, in general,

fluld elements of varylng ages; ages belng the times the fluid
elements have spent in the vessel., Let I.(G) be the internal
age distribution function, whilch Is defined so that ;(e)de is
the fraction of fluld elements with ages between © and © + de.



11
A typical plot of I(6) versus © ls glven in Filg. 1. It follows

that the area under the curve 1s one.

[g(e) de = 1 (10)
0

The fraction the fluid with ages less than Ol is shown in Fig. 1

as the shaded area and is glven by

°1
I(e) de (11)
0
the fractlon of fluid with ages greater than 91 Ls
oo 'Gl
f_I_(G) de =1 = I(e) de (12)
8, 0

The internal age distribution I(t) based on time rather than

reduced time Ls related to Ip)as

I(e) = TI(t) with I(t)at =1 (13)
0

Exlt age distribution. In a manner similar to I(e), let

E(e) denote the distributlon of ages of all fluld elements leav-
Lng the vessel, E(G) i1s deflned so that‘gﬂg)dg is the fraction
of material in the exlt stream between the ages of © and e = de.

It follows that

oo
[_1;:_(9) de = 1 (1)
0
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10

% 8,
DIMENSIONLESS TIME, ©

FIG. I. TYPICAL INTERNAL AGE DISTRIBUTION CURVE

E(©)

Y.

%) A
DIMENSIONLESS TIME, ©

FIG.2. TYPICAL EXIT AGE DISTRIBUTION CURVE
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a typlcal E(®) curve is given in Fig. 2. The fraction of

material Ln the exit stream younger than age 85, the shaded area

of Fig. 2 1is

°
E-ROLE (15)

and the fraction older than 92 is

f E(6)de = 1 -f E(6)de (16)
92 0

E(8) Ls variously referred to as the exit age distribution func-
tion, the exit residence time distribution or simply the resi-
dence time distribution function (r.t.d.f.). If time, t, is used
instead of 6,

> -4

E(6) = T E(t) with fg_(t)dt =1 (17)
0

The F-curve., With no tracer initlally present, let a step

function in time of tracer be Lntroduced into the fluld entering
the vessel Ln such a manner that the volumetrlc flow rate to the
vessel remalns constant. Then the concentration-time curve for
tracer in the exit fluld stream, measured in terms of tracer
concentration in the entering stream, CO, and reduced time 6 is
called the F-curve. As shown In Fig. 3, the range of F is
0&F<l.

The C-curve, The curve whlch describes the concentratlon-

time function of tracer in the exit stream of a vessel in



F = C/Co

O Dimensionless time, o

Fid.3. Typical F-curve

c= C/C°

O Dimensionless time, e

Fig.4. Typical C-curve

149
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response to a delta functlion or unit impulse input is called the

C-curve. As with the F-curve, the range and domain are dimen-

sionless, Concentrations are measured in terms of the initial

concentration, C°, as if it were evenly dlstributed throughout

(<] oo
c°=[cae=i c dt (18)
0 T Jo

Time is measured in reduced units. With this cholce of units

fgde:l (19)
0

Fig. I shows a typlcal C-curve. The terms F, C, I, and E were

the vessel.

introduced by Danckwerts (29).

Correspondence between F, C, I, E. It may be shown by

=?

material balance consideration that:

F(8) + I(8) =1 (20)

c(e) = E(e) (21)
) e

F=1- I(8) =J E(e)ae =J c(e)de (22)
0 0

g(e) = po) = £ . _ ALB) (23)

The polnt age distribution. Let the concentration of a par-

ticular species at the entrance of a flow system be changed and
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the resulting change with time at some point within the system be
observed. Spalding (30) and Danckwerts (31) have shown that it
is possible to deduce the age distribution of the fluld flowlng
through a volume element around that point from the variation of
the point concentration with time.

In particular, let é step input of tracer be introduced at
the inlet of the vessel, changlng the concentration of tracer iq.
the inlet stream from 0 to Coe At the observation polnt, the
concentration of tracer, Cp, willl increase with time from zero to

a maximum and steady state value C The plot of Cp/Cp% versus

p¥e
© can be interpreted to represent the cumulatlve age distribution
(F=curve) at the point. If 1t is assumed that the fluld at the
observation point is completely mixed within the sampling volume,
the steady state value of the concentration Cp% represents the

total amount of fluid elements in the sampling volume and there-

fore the fraction gE_ Is a true cumulative probablility functlion
p’n‘

o (
d(ﬁﬁ%)
. 5o — de=1 | (2L)

C
a (pi)

W

It follows that .352__ s a density or frequency distribution

such that:

function, gp(e), which is called the point age distribution after
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Zwieteringl (32). It should be noticed that Ep(@) corresponds to
the r.t.d.f, for the volume element under consideration

From the definition of gp(e) the polnt age dlstribution may

be related to the internal age dlistribution of the entire vessel

as

He)=g2 E(O) v (25)
polnts

where vp is the volume of the sampling polint. As discussed by

Danckwerts (31), s

but large enough to contaln many molecules or fluld elements.

should be small compared to the system volume

Point age distribution has been treated by Zwietering (32)
in the most general manner by requlring only that the point under
consideration be deflned for a partlcular instant of time.

However, Spalding (30) has shown that if the velocity vector
at a point and the local effective diffusivity do not vary with

time or concentration then
o y
Jf.c(x,y,t)dt = constant, everywhere (26)
0

This means that Cp* is equal to Co everywhere within the system

for rather general and complex flow conditions withln the vessel.

1Zwietering called the point age distribution function, ¢p
C

Az
where ¢p = —-3%-_. It has been denoted by gp(e) here for the

sake of consistency.
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This 1s equivalent to saylng that the structure of flow Lin the
vessel remains constant in time., That is, at the sawmple polnt,
which 1s fixed in both space and time, the elements of fluild
belng sampled are essentially all of the same nature so that
sampling at a polnt Ls synonymous with sampling from a single
element of fluld over a given period of time (28). TLongfield
and DeMaria (28) have shown that for the fluldized beds they
treated, the structure of flow In the gas phase could be assumed
constant in time at a fixed polnt in space.

Utilization of age distributions. Consider a flow vessel

in which a rate process is taking place, If the rate process is
linear, we can predict the performance of the vessel if we are
given two pleces of information; the residence time distribution
functlon for plain unchanging fluld passing through the vessel,
and the complete description of the rate process (21).

If the rate process is non-linear, the performance of the
vessel cannot be predicted from these separate pleces of infor-
mation. The actual flow pattern of fluld through the vessel
must be known before performance predicﬁions can be made.

Finding the actual detalled flow pattern experimentally and
then trying to interpret thls information iIs impractical. There-
fore, the approach taken when the flow pattern Ls needed to pre-
dict system performance is to formulate a flow model which
approximates real flow and then use thls model for predlictive
purposes. If the flow model reflects the real situation, the
r.t.d.f.'s predicted by the model wlll closely match the

r.t.d.f.'s obtained from the experimental tracer response curves
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of the real vessel., Thls ls one of the requlrements in selecting
a sultable nodel,

The requirement that r.t.d.f.ts predicted from the flow
model match those obtained experimentally is not always suffl-
cient to lnsure the selection of the most sultable model., For a
given situation it may be possible to formulate several models
for which the predicted r.t.d.f.ts match those obtained experi-
mentally, however, none of these models may describe the actual
flow behavior with sufficient accuracy. As an example, conslder
the two models shown in Fig. 5 which are to approximate flow
conditions in a chemical reactor.

Both of these models predict the same r,t.d.f.ts. If the
rate process which 1s to be carried out iIs represented by a
linear rate equation, it makes no difference which model is used
to predict the performance of thé actual system; both will pre-
dict the same degree ofﬁcompletion of the process,

If, on the other hand, the rate process ls represented by a
non-linear rate equation,vModel I predicts a different degree of
completion than does Model II. In this case we must also be
concerned with the degree of segregation, l1.e., does micromixing,
macromixing, or some combination of the two represent actual
behavior.

For both models, the assumption of no micromixing or com-
plete segregation will lead to higher predicted degree of com-
pletion than will the assumption 6f complete micromixing or

complete lack of segregation for the hligher order rate processes.
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PLUG FLOW
SECTION

oo
COMPLETELY MIXED
SECTION
MODEL I
COMPLETELY MIXED
SECTION PLUG FLOW
SECTION
MODEL 1L

FIG. 5. MODELS OF A FLOW VESSEL
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Point age distribution may be used in various ways to give a
better understanding of the flow behavior and transport proper-
ties of a system. Some statistical property of the point age
distribution such as the median or some moment of the distribu-
tion may be mapped as a function of space on a cross sectional
drawing of the vessel (28). 1In the case of the example given
above, such a treatment would be a valuable ald in determining
which model more closely approximates the actual flow.syStem.
Treatments of -this type are exemplified by Place, Ridgeway, and
Danckwerts (33) in the study of alr flow patterns in a spray
drier and by DeMaria and Longfield (28) in the study of gas phase
flow patterns In fluidized beds.

Point age distribution may also be used to calculate the
degree of segregation introduced by Danckwerts (31)., Zwietering
(32) has given a complete discussion of the value that the con-
cept of segregation has 1in the prediction of the extent of

conversion in a2 chemical reactor.
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FLOW MODEILS

The use of flow models, physical or mathmatical, to
represent actual systems is a very frultful approach to the pre=-
diction of system performance., The parameters of these nocels
can ve correlated with the physical properties of the rlulid, ves=-
sel geometry, and flow rates., Once these correlations are found
performance predictions can be made without resort to experimen-
tation Tor all types of fluld processing,

Many types of models can be used to describe non-ideal flow
patterns within vessels. Those which draw on the anslogy between
mixing in actual flow and a diffusion process are called disper-
sion models (21). Other models, such as the two mentioned in
the preceding section visuallze varlious flow reglons connected
in series or parallel, If the flow reglons are not all of the
same type, the model is referred to as a mixed model., Models
which iIn 1o way attempt to describe the mixing mechanism other
than to glve the r.,t.d.f. are often placed in a2 class called
mathemetlcal models,

Models may vary in complexity depending on the number of
peraneters included., As the number of parameters used increases,
so does the dlfficulty in establishing general correlations., 1In
general, therefore, it Ls best to use as few parameters as is

consistent with adequate descriptlon of the system of Lnterest.
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The Disperslon Model

The assumption that concentration fluctuations are numerous
and random and also small with respect to the size of the vessel
leads to a diffusion type equation for representing the mixing
process., Even though it is known that the concentration fluc-
tuations are not independent for turbulent mixing, it 1Is found
that a phenomenological description gives good results for many
situations (3L). An eddy diffusivity or dispersion coefficient
is defined so that a diffusion type equation may be used. The
eddy diffusivity 1s then found by experiment,

One of the general forms of the dispersion model is gilven by

o~
(XS]

-

~

3% + div(-D grad - Q) + aLv(W) + Y (C) = 0

where D Ls the dispersion coefficient, U the fluld velocity
vector, C the concentration, and t i1s time. The flrst term of
equation (27) represents the change in concentration with respect
to time., The second term represents net outflow due to disper-
sion. The third term represents the veloclty gradient and the
fourth term represents the depletion of materlal caused by the
progress of a rate process.

The axial dispersed plug flow model. The most often treated

dispersion model 1s the axial dispersed plug flow model which 1Is
obtained from equation (27) by making the following assumptions:
1. Only the dispersion in the axial direction is signifie-

cant,
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2. The dispersion coefficient, D, is independent of
position and concentration gradients.,
3. The fluid flows with an average axial velocity compo=-

nent, U, With these assumptions equation (27) reduces to

3'5— '3"2 -'U' - y(c) (28)

Equation (28) cannot be used for design purposes unless the
value of the dispersion coefflcient is known., The usual way of
finding the values of D is through unsteady tracer ilnjectlion
experiments., The tracer may be lnjected in the form of a unit
Impulse or delta functlon, a step function, a periodic function,
or an arbitrary pulse, Whatever the form of the Lnput, the
tracer is iInjected uniformly over a plane normal to the direction
of flow and the tracer concentration is then measured downstream
from the injection point, The modification of the input signal
can thus be related to the dispersion coefficient (21).

For pulse type inputs, the functional relationship between
the variance of the tracer curve and the dispersion coefficient
is found by solving the partial differential equatlon for the
concentration, with D as a parameter, and then finding the vari-
ance from this theoretical expression. The dispersion coeffl-
cient for the system can then be calculated from the theoretical
expression for the varlance and the experimentally found vari-
ance (21).

For the experimental determination of the dlspersion
coefficient using a delta functlon input of tracer, equation (28)

becomes in terms of reduced quantities and variables
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2
3¢ , 3¢ _ 1 Fc_

where

$ is the Dirac Delta function
6! 2
T
L = characteristic length of the system

_ UL
Pe-—D-—

The selection of the proper boundary conditions to be used
with equation (29) has been the subject of a good deal of study.
The most general set of boundary condltlons is obtalned by consi-
dering in the manner of Wehner and Wilhelm (35) the system to be
composed of three sectlons in series; the mixing vessel proper of
length 721 and a for- and aft-section, a and b, both of semi-
infinite extent.

This allows for a different dispersion coefficlent at the
inlet and outlet of the system; that 1s, Lt takes into account

end effects. The system as described above is shown in Fig. 6.

r70 r7m
Y ¥

a Test Section b

e e &
Co ¢ ¢
Dy D Dy

7= 0 7%

Fig., 6. General flow system of Wehner and Wilhelm (35)
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The plane where the tracer iIs injected is denoted by’?b and
the plane of measurement ls denoted by ?m' As mentioned pre-
viously, the measurement of tracer concentratlion at ?m in
response to a unit impulse injection of tracer atﬂ?o yields the
C-curve for the section of length ?h - %6.
If the system is visuallized as described above, Lt is nec-

essary to solve the following set of differential equations

ofa ., 9Ca _ 1 329_3 = b 740 ‘ (30=-a)
L) 87 Pe, 3?2 =
2 .
8¢ . oC _ 1 o0¢C _ - .
36 59 Te Yl §(7-79,) 8(e) <KL (30-b)
2
oCh + 0lb _ 1 9¢Cp = 0 ?>l (30=c)

06 892 Peb 6?2

With initial and boundary conditions

o, (7,0) = C,0) = 0, (7,0) = 0 (31-8)
_Q_a(-oa,e) = finite (31=b)
,(07,8) = a(0*,0) (31-c)
- 1 9Ca(07,8) _ ot oy _ L 3C(07,0) }
_ 1 3C(7 1,6 | 1 30n(7 1,0
£(721:9) - ?g%:o(—zz—l——)- = 07 19) - 71,8 (31-e)

Peb a?
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c(71,8) = ¢, (5,8 (31-1)
G, (+e,8) = finite (31-g)

The boundary value problem given by equations (30) and (31)
may be simplified for various specific cases. Levenspiel and
Smith (36) treated the simple case of a doubly=-infinite or open
vessel, This 1s equivalent to setting Da =D = Db' In this
case only equation (30-b) is needed with the initial condition
gj%ho) = 0 and the boundary conditions given by equatlons (31=b)
and (3l-g). The characteristic length, L, is taken as the dis=-
tance between the injection and measurement polnts,

For the case of a closed vessel, i.e., Da =D = Db = 0, only
equation (30-b) is needed with the initial condition C(%Z,0) =0

and boundary conditions

+
¢, (07,8) = g(0",8) - %-e-%—{"-?(-‘-’—’f-)- (32-2)

98(21:8) _ (32-b)

97

This set of boundary conditions is equivalent to that intro-
duced by Danckwerts (29) for a tubular flow reactor under steady-
state conditions,

Other approximate boundary conditlions have been proposed for
the case of a closed vessel by Hulburt (37), Levensplel (36),
and Ahn (38).

If the unit impulse of tracer iIs injected upstream from

section a as shown in Fig. 7, equation (30-a) is no longer needed
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and only two initial condltlions and four boundary conditions are

requlired,

Tracer lnjection
point |?m

B Y
L a Test Section b

?'—" 0 ?=721

Fig. 7. General flow system with downstream tracer injectlon

Van der Laan (39) obtained a general solution to the
boundary value problem of equations (30) and (31) in the Laplace
transform plane and without Lnverslon obtalned the mean, ®, and

the variance,ovz, of the r.t.d.f. using the relations given

below,

T®,p) =LC(%,8) (33)

ac(7,p) _.fw -
lim (- 2222P)) = [ec(p,0) a6 =T (3l)
R
2 oo

in 18Tz - () |2 [ ¢(9,0)80 - T =o* (35)
p—>0 dp© dp o -

The results he obtained for the most general and varlous
simplified cases are glven in Table 1.

The methods glven above for determining the dispersion
coefficlent depend on belng able to represent the tracer injec=-
tion by a delta function, a mathematical idealization which can

only be approximated physically. Aris (40), Bishoff (L1), and
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TABLE |. EXPRESSIONS FOR THE MEAN AND THE VARIANCE OF (C(e), (39)
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Bischotf and Levenspiel (L2) hove shown that this approxiication
need not be mede 1f concentration meesurements are taken at two
points rather than one., The means and the variances of the
experimental concentration curves at the two points are calcu-
lated, and the respective differences between them found. These
differences can be related to the parameter Pe and thus to the
dispersion coefficient. The tracer may be injected anywhere
upstream from the two measurement polnts and may be any type of
pulse input. In thls case the characteristic length L i1s taken
as the distance between the two measurement points. The first
measurement polnt is denoted by 7]0 and the second by 7m'

Aris (L,0) and Bischoff (L11) have treated the special case

shown in Fig. 8 when both measurement points are inside the test

section,
Tracer 770 771:1
| | |
Y i ¥ ,
—_— A Test Sectlon [ Je——

7= 0 7=7;
Fig. 8. Experimental setup for pulse testing

They gave the followlng expressions for the differences between

the means and varilances:

A5 =75, -Ty=1-22£(1 - exp[ -Pg]) expf Pe(y, - 7,)] (36)
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2 2 2 -
b = & -y = g+ ol e, - 2] {10 0
(exp[ -Pe] -1) + L Pe (9, - 7,) + (1=p) (exp[ -2Pe] -1)

exp[ Pe (7, -71)] + U Pe (77 =7,) exp | -Pe]} (37)

Equations (36) and (37) reduce to particularly simple forms
for the case of an infinite vessel where/B =1, L.0., D, = D.

g = §m - 60 =1 (38)
2 _ 2 2 _2
S T9m o0 %5 (39)

Equations (38) and (39) may also be used when the second
measurement point 1s located far enough from the end of the
vessel so that end effects are negligble., Bischoff and
Levenspiel (L2) give design charts which permit estimation of
this distance. Also, equations (36) and (37) can be used to
estimate the magnitude of the end effects as represented by the
second term of equation (37).

As previously mentioned, a step iLnput or some periodic func=-
tion may be used for the tracer injectlion., However, as polnted
out by Levenspiel (21), these methods are not as convenient as
pulse techniques. TFor a step Lnput, there seems to be no conven-
ient method for relating the experimental response to the
Glspersion coefficlent as was provided by the variance with the
pulse input. The use of a periodic function, such as a sine

wave requires much more experimental data than does the use of a
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pulse technique. Also, the working equations are usually quite
complicated.

Determination of the dispersion coefficient by steady state
tr&cer injectlion involves injection of an inert tracer into the
fluid stream a short distance upstream from the vessel outlet
and subsequent measurement of the degree of tracer diffusion
upstream from the injection plane. The tracer is added contlnu-
ously and the steady state values of tracer concentration as a
function of position are determined,

Tor this situation equation (28) reduces to

2
D d°C dc _
'ﬁ"z‘z‘a'z"‘o (10)

If the vessel has a sufficient length of fluld travel so
that none of the tracer reaches the inlet sectlon of the vessel,

the solution of equation (LO) is

C -C Uz

m% = exp,[ - = ] (L1)
where

C = tracer concentration at a distance z upstream of the
injection polint.

CO = concentration of tracer ln feed stream

Ci = concentration of tracer at the injection point.

The value of U/D can be obtained from the slope of experi-

mental data on a plot of 1n(C =- CO) V8. Ze
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The dispersed plug flow model, The dispersed plug flow

model takes into account the dispersion in both the longitudinal
and lateral directlons., The parameters of this model are DL’

the axial or longltudinal dispersion coefficient and D the

R’
lateral or radial dispersion coefficlent. As with the axlial
dispersed plug flow model, the dispersion coefficlents are
assumed to be independent of position and concentration gradi-
ents, and the flulid 1s assumed to flow with an average axial

velocity component, U, With these assumptions, equation (27)

becomes iIn rectangular coordinates

2 2
oC = o C O C - 7T 3C -
9T Pr S‘Z?' +DR_ 'a"?' oz pic) (h2)

where

z = longitudinal direction (direction of flow)

x = lateral direction
The method of solutlon is similar to that of the axial dispersed
plug flow model except for modificatlions which keep both axial
and lateral dispersion in the equatlons,

Additional comments on dispersion models., Only the axial

dispersed plug flow model has been discussed here in detall since
this is the model most frequently employed to describe mixing on
distillation plates by Byfield (43), Anderson (13), and
Ruckenstein (lili), and was used by Gerster (15) in a general
correlation for determing plate efficlency. Eddy diffusion
coefficients have been measured experimentally for bubble cap

and sieve plates by several investigators.



Brown (16), Stone (L5), Wharton (17), Robinson (5), and
Gerster (15) used steady state tracer injection techniques for
bubble cap trays. Olson (L6) and Barker and Self (L7) used the
delta function input for sieve plates and Leonard (3) and
Gilbert (48) used a sinusoidal tracer input on bubble cap trays.
These investigators differ in opinions as to the suitability of
using a cdlspersion mocdel to describe mixing on distillation
plates., It ls perhaps significant that no one has yet used the
experimental technique which requires the fewest assumptions,
i.e., the arbitrary pulse technique (or the pulse testing method)
with two measurement points,

The reader is referred to Levenspiel (21) for a conplete
discussion of the general dlspersion model and the other less
general models derived from Lt.

It should also be noted that for the case of laminar flow,
analytic solutions equivalent to the solutions obtalned from the
dispersion model can be obtained. Taylor (L9) showed for laminar
flow in round empty tubes that dispersion due to molecular diffu-
sion and radial veloclty variation may be represented by flow
with a flat velocity profile equal to the actual mean veloclity,
U, and with an effective axial dispersion coefficient
D = RO2U2/LL8.'D'. (Ro Ls the tube radius and & the molecular
diffusivity). Farrell and Leonard (50) have extended Taylorts
work and presented a solution for the two dimenslonal convection-
diffusion equation for laminar flow which makes no assumption
concerning the relative importance of radlal diffusion or axilal

convection as dispersion mechanisms,
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Perfectly Mixed Tanks in Series Model

As previously mentloned, the perfectly mixed tanks in serles
model was flrst applied to distillation plates by Kirchbaum (6),
who called it the pool model, This is a one parameter model,
the parameter being, j, the number of tanks in series,

Only the case where all the tanks have the same volume will
be considered here, A discussion of the more general case of
unequal size tanks 1s gilven by Mason and Piret (51).

Determination of the parameter j. The C-curve for a single

perfectly mixed tank can be found easily by a material balance;

cOvé(t) = vC + V %% (L43)

In dimensionless form equation (L3) becomes
66) = ¢+ o

where

_ tv

-

Qlja dj+

g =

Solving equation (lflt) by the method of Laplace transform

gives

g =e"® (415)

The preceeding results can be generalized to the case of ]

perfectly mixed tanks in series as discussed by Ham and Coe (52),
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MacMullin and Weber (53), Katz (5l), and others (55), (56).
Consider j tanks in serles, each having the same volume., A mate-
rial balance around the ith tank gives

Ciuyl = vCy + Vi .Cal%i:. (L6)

The C-curve may be found by solving the set of equations (L6) for
0=1, 2, ¢« ¢« o, J with the condition that the ILnput to the first
tank, 1L = 1, iIs a delta function of tracer., Solving equations

(L6) by the use of Laplace transforms gilves (21)

.j . .
C.=ucnd j=1 g=Jo (L7)
C = & e

where
6 = tv
T

The mean and the wvariance are

e=1 (4:8)
of = %, (19)

Hence, the experimental C-curve data can be used to determine a
varianceé-z and thus j.

As with the axial dispersed plug flow model, the pulse
testing technique can be used to determine j 1f two measurement

points are used., Consider the experimental setup of Fig. 9.
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M+ 1 N

S S —

pulse output output
input

FPig. 9. Pulse testing-perfectly mixed tanks in serles

Tracer concentration is measured both entering the M + lth
tank and leaving the NP tank. Let j = N - M be the number of

tanks between the two measurement points. TFor this case (21)

> _ _2 2 _ 1
Aot =oy” -6y =5 (51)

Therefore, if an arbitrary pulse of tracer is Injected into
a system and the mean and variance measured at two locations, the

parameter, j, of the stirred tanks in serles model can be deter-

mined,

Comparison with the axial dispersed plug flow model, Sev=-

eral authors (21), (57), (58) have discussed the similarity
between the axlal dispersed plug flow model and perfectly mixed
tanks Ln series model, Various methods of comparlson have been
suggested. XKramers and Alberda (57) used the variance for the

doubly infinite vessel which from Table 1, VITI is

g = D



Comparing this with equation (49) gives

L=2(2 (53)
J UL

Equation (53) extrapolates properly to j =00 as D =0, but
does not extrapolate to j = 1 as D->o0, ILevensplel (21) has
shown that the reason for the incorrect extrapolation of equation
(53) as D=>o0 is that the doubly infinite vessel is not the pro-
per one to use for the comparison. The closed vessel

(Da =Dy = 0) must be used. Then from Table 1, IV,

==28) - 21 - TP (5%)
This expression extrapolates properly to j = 1 for D-»ce, For
small values of l/Pe it reduces to equation (53).

These comparisons are the basls for the statement that an
infinite number of stlrred tanks in series is equivalent to
plug flow (21).

Trambouze (58) has suggested that the models be compared by
matching either the C-curve maxima for the two'modeis or by
matching the C-curve at 6 = 1. As polnted out by Levenspiel

(21), there is no unique way of matching the two models.
Mixed Models

Components of mixed models. Models which suppose the real

system to consist of lnterconnected flow regions with various
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modes of flow between and around these regilons are called mixed
riodels (21). These models may be constructed from some combina-
tlon of the followlng regions and types of flow:

plvg flow reglons

perfectly mixed reglons

dispersed plug flow reglons

deadwater reglons

bypass flow, where a fraction of the fluld bypasses the
vessel or a specific flow region

recycle flow, where a fraction of the fluid leaving the
vessel or specific flow region is recycled and mixed with the
Tluld entering the vessel or region

cross flow, where interchange, but no net flow, of fluid
occurs between various flow regilons.

Deadwater reglons account for the fractlon of flulid in the
system which i1s relatively slow moving and for all practical
purposes, stagnant (21). These regions may be defined or viewed
in two ways. The first and most generally used definition 1is
given by Levenspiel (59).

In a vessel the deadwater regions are the relatively
slow moving portions of the fluld which we chose to consi-
der to be completely stagnant., Deadwater reglons contri-
bute to the vessel volume; however we ignore these regilons
in determing the various age distributlons.

The second definition considers that there iIs a slow interchange
or cross flow between the deadwater reglons and the active fluid
passing through the vessel., Adler and Hovorka (60), Turner
(1), (62), and Aris (63), (6L) have illustrated this concept.

Levenspiel (21) gives the following relationship for deter=-

mining the number of parameters in a mixed model



Parameters excess of one excess of one

zones of Flow regions
"‘Z (cross flow) "'Z wlth dispersion) (55)

Z: (arbitrary restrictions on)

Number of =Z (Flow reglons 1n) +2‘ (Flow paths in)

flow and volume ratilos

General remarks. Many mixed models have been devised to

describe various systems; for example see Oliver (9), Weber
(65), Tguchi (27), Gilliland (66), Bartok, Heath, and Jeiss
(E7), Cholette and Cloutier (68), Handlos, Kunstman, and
Schisgsler (69), Pansing (70), and Singer, Todd, and Guinn

(71). Strand (19) has proposed a model for distillation plates
which considers the plate to be a single dispersed plug flow
reglon with a fraction of the liquid by passlng the plate.

A discussion of each of these proposed mixed models and the
specific methods used for determing thelr parameters will not be
given here, TLet it suffice to say that the usual method of
testing the aptness of the model is to compare the experimental
C-curve to the C-curve predicted by the model. Shepard (72)
gives a complete discussion of this subject. The predicted
C=curve 1s usually obtalned by the use of Laplace transforms,
The closeness of fit of the model to the experimental data is
not the only criteria which must be used in selecting the proper
model, The simpliest model which fits the facts and whose vari-
ous reglons are suggested by the real vessel should be selected.
As pointed out by Levenspiel (21), ". . . an unrealistic, many-

parameter model may closely fit all present data after the fact,



Ll

but may be quite unreliable for preduction in a new untried
situation,”

[-Distribution Model

Tne models discussed in the preceeding sections are physical
models in that they are based on assumptions which lead to a
simplified physical picture of the actual dispersion process.

In this section we consider models which may be used to predict
the exit age distribution function but which iIn no way attempt
to describe the actual mixing mechanlsm,

Foss (18) noted that a function of the form

£(o) = gof ¥®

(56)
whare
a4, f, and ¥ are constants and
-
=3
appears to fit reasonably well the r,t.d.f.ts of sieve plate
distillation trays. Cha (73) noted that a function which has
the form of equation (56) is the density function of al'-
distribution.
£(%X) = ememiimn xP~1 e~%/V p>l ' (ET7)
vP[(p) y>0

x20

where p and y are parameters.
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Thus, the ['-distribution model for the r.t.d.f of a system 1s

1
E(6) = ¢(8) = ==~ oP"1 e=8/V (58)
- vi[(p)
Cha (73) has also considered a system with n mixing units.
He has shown that if gj(G) of the jth mixing unit is given by
equation (50) and if the parameters vj for each gj(g) are equal,

the exit age distribution for the system as a whole is given by

3]

, _ 1 np-1 _-6/v
(&) = Siprey © (59)

L

Since the ["-distribution model has not yet been compared to
actual data, a simplified form of equation (58), i.e., ¥ = 1,
was compared with Olsonts (L16) data which were obtalned by
injecting a unit impulse of tracer evenly across the inlet welr
of a sieve plate distillation tray and measuring the concentra-
tion immediately beyond the outlet welr, Sodium chloride was
used as the tracer and concentration was measured by a conduc-
tivity cell In an unbalanced wheatstone bridge. Even though the
experimental technique outlined above 1s perhaps not the most
desirable one to use for obtalning the C(®)-curve, data of this
nature are relatively scarce, and it was felt that the data
would glve some information concerning the suitabllity of the
[-distribution model for predicting r.t.d.f.'s or distillation
plates,

The model used is given in termsof its exit age distribu-

tlon by
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£(e) = ¢(e) = 22:%~$:E (60)

= - [P

The parameter p was determined by the method of least
squares., A computer program for this purpose written for the
IBM 1620 is glven in the Appendix. The value of p which gave
the best fit was found to be p = 7.650., This indicates consi=-
derable deviation from perfect mixing where p is equal to unity.
A comparison of the model and that data 1s giver in Fig. 1C.

The goodness of fit indicates that it may be possible to
use the one-parameter ['=distribution model as represented by
equation (60) to predict the r.t.d.f.'s for distillation plates
annd a reliable correlation for the parameter, p, as a function

he physical parameters of the system of the model and

ck

of

£

orerating conditions may be found.

3

Vnile 1t 1s true that the two-parameter model as repre-
sented by equation (50) would better fit the data, the use of
such a mocdel at this stege cannot be justified because of the

limited amount of the sufficilently accurate data avallable,
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PROPOSED INVESTIGATION OF LIQUID MIXING AND
DISPERSION ON DISTILLATION PLATES

Introduction

In order to polnt out the need for further Luvestigetlon of
1lquid mixling on distlllation plates, we necd only review the
concluslons and recommendations of several investigators of this
phenonienon., Leounard {3) concludes that the r,t.d.f.'s of bukble
cap trays are rougaly those which would be observed for a series
of n perfect mixing tanks., However, he points out that the fre-
quency response data that he obtained should be reworked to yileld
more accurate r,t.d.f.'s, HHe also polnts out the need for direct
observation of the degree of vertical mixing, examination of the
froth for stagnant pockets, and a general plcture of a multi-
dimensional froth movement on active trays.

Gerster (15) and Robinson (5), from their studies of bubble
cap trays, conclude that the axial dispersed plug flow model
glves an adequate description of the liguid mixing. Olson (L6)
however, from his study of sieve plates, concludes that this
model 1s not adequate.

Strand (19) has shown that the bubble tray design method
proposed by the American Institute of Chemical Engineers (20),
which uses the axlal dispersed plug flow model to describe fluid
mixing, 1s unsatisfactory for unusual combinations of system
properties and vapor and liquid flows. One suggested reason for .

deficiences of the A.I.Ch.E method and of other correlations in
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the literature is that they do not provide a means for assessling
the effects of liquid and/or vapor bypassing. It is shown that
the A.T.Ch.E. method could be substantially improved by including
a liquid bypassing effect, Strand also suggests that 1t may be
frultful to consider the tray to be non-unliform, both in the
contacting achleved on various parts of the tray and in the
degree of ligquid mixing. Thls supports Leonardts (3) observa-
tion that more information is needed concerning the nature of
flow on distillation plates.

The pulse testing technlque has not been used for deter-
mining the r.t.d.f.'s of distillation plates or for testing the
sultability of proposed models, Either the injection of a
perfect unit impulse or a perfect step Lnput of tracer have been
assumed in most previous investigations. This presents some

question as to the reliability of existing data.

Areas of Investigation and Experimental Techniques

Any future investigation of liquid mixing on distillation
plates should have in part the following objectives:

1. To obtain detailed information concerning the local
froth and liquid flow behavior.,

2. To assess the sultability of various models for
predicting the residence time distribution functions.

The achlevement of the first objective would glve a better
understanding of the actual mixing mechanism and thereby serve

as the basis for the selection of realistic physical models,
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This objective can be attalined by experimentally measuring point
age distributions and then mapping some property of these dis-
tributions such as the mean as a function of position., A mapping
of this nature would detect the existance of various flow regions
such as deadwater, plug flow, or perfectly mixed reglons, and
thus provide the basls for model selection.

It is suggested that a radloactive material be used as the
tracer for both point age distribution studles and residence
time distribution measurements. Small amounts of radioactive
material are easily detected., This means that a very small
amount of radioactive tracer could be added to the liqulid stream
causing little fluctuatlon in flow rate., An additlonal advan-
tage of using a radloactive tracer is that samples need not be
withdrawn from the liquid stream,

For point age studies, tracer concentration could be
monitered at several points on the tray simultaneously by uslng
several scintillation probes and a multichannel recorder. Part
of the instrumentation used by King (7L.) in the study of a par-
tlcale mixing in a liquid-solid fluidized system would be ideally
sulted for this purpose. The scintillation probe he used was a
Nuclear-Chicago Model DS8 scintillatlion detector. This unit
consists of a transistorized preamplifier and a lO-stage photo-
multiplier with cesium dynodes and is housed in an aluminum
container 9.25 inches long and 1 inch in diameter. A 3 mm,
diameter by a 10 cm, long needle probe is used with the vasic
detector. This beta-gamma sensitive needle probe is sensitive

only at the tin.
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The second objective can be attained by experimentally
measuring the r.t.d.f.'s and compering this data with the
r.t.d.r.!'s predicted by the various models, Il is suggested
that the pulse testing technique with two measurement points be
mainly used for experimentaelly determinlng the r.,t.d.T.ts,
lethods for ccnverting pulse data to unlt impulse data are out-
lined in the followlng section,

Initial sbtudies should be made using the alr water cystem.
These materials are relatively cheap and need not be recovered,
Other systems should be used 2s exporlmental techniques are per-
fected,

The investigation outlined above should be carrlied out using
troys of various designs and covering a wide range of operating
conditions. The majority of the work should be done with sileve
and valve trays. In recent years these types of trays have been
superseding conventional bubble cap trays as the preferred con-
tacting device for many separation processes (75), however, most
of the data in the published literature are for bubble cap trays.,

One approach to the study of the effect of tray desigh on
liquid mixing and dispersion would be to study first a tray with
only one perforation, valve, or bubble cap and then observe the

effect of adding additional perforations, valves, or bubble caps.

Methods of Data Analysls and Presentation

For many models which might be used to describe a flow sys-

tem, it is most convenient to relate the parameters of the
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models to the C-curve or to some property of the C-curve such as
the variance. For example, the parameter, p, of the [ -
distribution model was found by fitting the experimental C-curve
to the predicted C-curve.

It may also be desirable to compute the transfer function of
the system; the transfer function being defined as the ratio of
the output signal to the input signal in the Laplace transform
plane, The transfer function may be obtained from the flow
model of the system. As dlscussed by Law and Balley (76) and
Hougen and Walsh (77), it may also be found from frequency
response and pulse response data approximately and empirically.

Since it has been suggested Ln the previous section that
the pulse testing technique be used to obtaln experimental data,
it is appropriate that methods of obtaining the unit Lmpulse
response and the frequency response of a system from pulse test-
ing data be dlscussed here.

The conversion of pulse testing data to frequency response

i1s based on the fact that the transfer function can be expressed

as

| g |
Q
o
P
‘) ooF
[l

(61)

Q2
€
£
Il
S
(@
e
o
—

where

)

Ls the Fourler transform operator
j=4-1

w = frequency, rad./unit time
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Ci(t) = input signhal; in this case, concentration at first
measurement point
Co(t) = output signal; in this case, concentration at second
measurement point

t = time,

The Fourier transform of a function of time is defined as
oD
liw) = ?[f(t)] = [f(t)e'3“La~t £(t) = 0, t£0 (62)
0

The iLntegral of equation (62) can be dlvided iLunto 2 real and an

lmaglnary part, where the real part is

oo

R[P(jw)] = [f(t) cos wit dt (63)
O :

and the Lmaglnary part Ls

oo
I[F(jw)] = - [ £(t) sinwt at (6l)
0

Therefore the transfer function can be expressed as

[ V] o0
Co(t) cos wt dt = j Colt) sinawt dt

c(j0) =" ﬁ” (65)

/Ci(t) cosawt dt - j
o)

Huss anéd Donegan (78) have presented tables for the evalua=-

SN

Ci(t) sinwt dt

tion of the integrals appearing in equation (65). The desired



inforwation is then giveun oy

amplitude ratio = lG(jw)l (66)
phese lag = argument of G(jw) (67)

As indicated by Huss and Donegan (79), the time response to
a unit impulse, C(t), can be related to the frequency response by

o

Bls) = % R[G(jw)} cos.wt cw (68)

S

Huss and Donegan (79) have glven a complete discussion of the
evaluation of the integral of equation (€3). The method they
suggest involves the approximation of R[G(jwﬂ by a stelrcase

type of functlion having equal frequency intervels and of such

*

height that the area under cach step of the staircase function
equals the area under that portion of the R[G(jwﬂ curve within

the interval.
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F(6)

F(t)

iy

NCTATION

concentration, m/l3

molar concentration of commonent i, EB%E;
1

dimensionless coacentration
iimensionless response curve to a unit impulse Lnput,
a function of ©

mean concentration of pulse of tracer 1If uniformly

-~

distributed in experimental section of vessel, m/l)

concentration of tracer in inlet stream, m/l3
concentration of tracer at a polnt, m/l3
steady state concentration at a point, m./l3
dispersion coefficient, 12/t

axlal dispersion coefflclent, dispersed plug flow
model, 12/t

radial dispersion coefficient, dispersed plug flow
model, 12/t

exlt age distributlion function, a function of 6
exit age distribution function, a function of ¢

Fourier transform

Fourler transform operator

3

dimensionless response curve to a step input of tracer,

a function of o

dimensionless response curve to a step input of tracer,

a function of t

2
gravitational acceleration, 1/t
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Hd
(0]
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Il

tobal body force per unlt mass of component i, l/t2

transfer function, a function of jw

internal age distribulion function, a function of &
internal age distribution function, a function of t
parameter in the perfectly mlxed tanks in serles model,

or the number defined by j2 = =1

molar flux of component i, ﬁﬂl%;
tl

laminar contribution to molar flux of component i,

1mols.
tl3

turbulent contribution to molar flux of component i,

mols.

tlE

characteristic length of system, 1

Laplace transform operator

parameter of the [-distribution model of equation (59)
a complex variable

parameter of the ["-distribution model

pressure in equation (5), m/l2

Peclet number, (gﬁ)

energy flux, m/t3

mols,
tl

molar rate of production of component 1L,

time, ©
mean residence time, t
velocity, 1/t

mean velocity in axlal direction, 1/t
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internal energy per unit mass, 12/t2
volumetric flow rate, 15/%

volume of polint, l3

vessel volume, 13

lateral distance, 1

axial distance, 1

Greek letters

5(e)
89-2)

D oYy TR NPT NI N

dimensionless constant

dimensionless constant

dimensionless constant

Dirac delta function, a function of ©

Dirac delta function, a function of
dimensionless distance

tracer injection point or first measurement point
measurement point or second measurement point
outlet of test section

dimensionless time

mean of the residence time distribution functlon
viscosity, m/lt

parameter of the ['-distribution model
dimensionless constant

3.1h16

pressure tensor, m/tal

£luld density, m/1°

nass concentration of component i, m/l3



variance of residence time distribution function
shear stress tensor, m/tzl

laminar contribution to shear stress tensor, m/t2l
turbulent contribution to shear stress tensor, m/tzl
dimensionless constant

rate of production, a function of concentration

frequency, rad./t

56
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The FPORTRAN program given beclow can Le uscd Lo determine the

parametor, p, of the N-distribution model as represented by

equation (60) from expcrimental values of ().

10
100

40
30

150

CURVE FITTING BY LEAST SQUARE

DIMENSICN X(40)sE(40)sDES(4)sP(4)sEX(4)9sGE(1)sGMP(4)
FCRMAT (ElOnQQE1004’E1004’E10049E1004’E1004)

FCRMAT (13)

READ 2s NC

DC 20 K=1,4NC

READ 1, X(K)sE(K)

Bl=—e57669867

B2=—=16955437

B3=—-e84224555

B4=-481838432

B5=-448706792

B6=-¢23374017

READ 1s P(1)sP(2)sP(3)sP(4)

DC 100 I=1s4

M=P (1)

u=M

Y=P(I)=U
GME=1e+B1¥(1e+B2¥(1e+B3%(1le+B4*(1le+B5*(1e+BOXY )XY )RY)HY)*Y) XY
PM=1e

PU=P(I)

L=M=-1

DT 10 J=1sL
PU=PU=1e
PM=PM*PU

GMP (I )=PM*GME
DES(1)=0.
DES(2)=0,
DES(3)=0,
DES(4)=0,

DC 30 K=1sNC

DC 40 I=144
EX(IN=(P(I)/GMP(I))*((P(I)*¥X(K))¥¥(P(I)=1e))*¥EXP(=P(I1)#X(K))
PUNCH 1y X(K)sEX(I)sE(K) A

DES(IN=DES(IN+(E(K)=EX(I))*(E(K)=EX(I))
CCNTINUE

PRINT 1s DES(1)sDES(2)sDES(3)sDES(4)
PAUSE

GC TC 8

END
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Physical and mathematical models which have been or might be
used to describe liquid mixing end dispersion in flow systems in
general, and on distillation plates in particular, are presented.
Experimental methods for determining the parameters of these flow
models are also discussed,

A mathematical model which has not previously appeared Ln
the literature, the [M-distribution model, is presented. The
residence time distribution predicted by the [T=distribution

model 1s given as

gP-1,-6/v

E(8) =
- v ()

After setting the parameter,¥ , equal to unity, the resi-
dence time distribution of the I"'-distribution model is compared
to an experimentally determined residence time distribution of
a sleve plate distlllation tray. The predicted distribution is
found to compare reasonsbly well with the experimentally deter-
rined distribution for the parameter, p, equal to 7.65.

A proposed investigation of ligquld mixing and dispersion
on distlllation plates is given., It is suggested that point
age distributlons and residence time distributions be experi-
nentally determined through the use of radioactive tracer

techniques.,



