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INTRODUCTION 

The design of distillation columns, based on the concept of 
the "theoretical plate" Is a relatively well-developed art. A 
"theoretical plate" is a plate on which the contact between vapor 
and liquid is sufficiently good so that the vapor leaving the 
plate has the same composition as the vapor in equilibrium with 
the overflow from the plate (1). 

Unfortunately actual plates do not perform as do theoretical 
plates, and It is desirable that expressions be available to rep-
resent the deviation from Ideality. The relationship generally 
used Is expressed as plate efficiency. Many different forms of 
the plate efficiency have been proposed, but the most commonly 
used is the "point" efficiency suggested by Murphree (2). 

As the name Implies, the "point" efficiency can be computed 
only for a region of the plate on which the liquid and the vapor 
phases are both of uniform composition, and then only when suffi-
ciently reliable methods are available for predicting mass trans-
fer rates. To date, the only cases In which plate (or overall) 
efficiency can be precisely related to point efficiency is when 
the Liquid on the plate Is completely mixed or when the liquid 
flows across the plate In plug flow. It has been shown by vari-
ous Investigators (3), (1+), (5) that neither of these extreme 
flow regimes actually exist on distillation plates; the actual 
case lies somewhere between. 

The magnitude of the plate efficiency, under conditions when 
entrainment is negligible, is therefore, affected not only by the 



rate of mass transfer in the liquid and gas phases, but also by 
the degree of fluid mixing on the plate. As will be pointed out, 
the analysis of fluid Interaction on a tray Is well beyond exact 
mathematical and fluid-dynamical treatment. Por this reason 
experimental measurement and modeling techniques have been exclu-
sively employed to describe mixing on distillation plates and its 
effect on plate efficiency. 

Various models, physical as well as mathematical, have been 
proposed to describe the liquid mixing on distillation plates. 
The pool model, which was originally proposed by Kirchbaum (6) 
and later revived by Nord (7) and Gatreaux and O'Connell (8), 
postulates that the tray may be considered as a series of com-
pletely mixed pools along the length of the tray. While It Is 
assumed that there Is complete mixing within each pool, there Is 
no mixing between pools. A plate with a single pool corresponds 
to a perfectly mixed plate and one with an Infinite number of 
pools to an unmixed or plug flow plate. 

The recycle models of Oliver and Watson (9) and Warzel (10) 
assume that liquid mixing Is effected by a recycle of liquid 
which moves from the tray exit to the tray Inlet. The parameter 
which characterizes mixing is the concentration jump at the inlet 
weir. 

Splashing models have been proposed by Johnson and Marangozis 
(ll) and Crozier (12). In these models, splashing of the liquid 
is considered to be the major mixing process. 

The axial dispersed plug flow model has been applied to 
distillation trays or other flow systems by Anderson (13), Wehner 
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and Wilhelm (ll+), Gerster et. al. (15) and others (16), (17), 
(5). This model assumes that the rate of mixing or dispersion of 
a component Is proportional to the concentration gradient of that 
component. 

Foss (18) has used the residence-time concept to character-
ize the degree of liquid mixing on distillation trays. He has 
shown how the residence time distribution function may be used to 
Include liquid mixing effects In the calculation of plate effi-
ciencies . 

Strand (19) has proposed a model which considers the distil-
lation plate to be an axial dispersed plug flow vessel around 
which a fraction of the entering liquid stream Is effectively by-
passed. He has shown that the bubble tray design method proposed 
by the American Institute of Chemical Engineers (20) could be 
substantially Improved by Including a liquid bypassing effect. 
Strand also suggests other possible changes In the A.I.Ch.E. 
method. One possible change would be to consider the tray to be 
non-uniform, both In the contacting achieved on various parts of 
the tray and In the degree of liquid mixing. He points out that 
the dispersion coefficient data used in the development of the 
A.I.Ch.E. method were obtained in a long narrow tray section so 
that variations transverse to the liquid path were negligible. 

This report is not concerned with plate efficiencies as 
such. It is concerned with the fluid flow behavior in general 
and the liquid mixing and dispersion In particular, which takes 
place on a distillation plate. It would be expected that the 
flow behavior would be affected by such factors as liquid and 
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vapor flow rates, tray design, and the physical properties of the 
fluids. 

Various models which may be used to describe flow behavior 
are discussed, among them, the dispersion model, the perfectly 
mixed tanks In series model, mixed models, and the f-distribution 
model. Experimental methods for determining the parameters of 
these models are given. One such method Is the pulse testing 
technique which has been discussed by several authors (21), (22), 
but never actually used for studies of distillation trays. 

A proposed Investigation of liquid mixing and dispersion on 
distillation plates Is outlined. It Is suggested that point age 
distributions as well as residence time distributions be experi-
mentally determined, the latter by the use of pulse testing 
techniques. 

Many authors have pointed out the need for an Investigation 
of the type proposed In this report (3), (£), (19), (23), (4). 
In the recent report of the Workshop on Automatic Control 
Research to the Control Advisory Committee of the American Auto-
matic Control Council and the National Science Foundation (2ij.) 
the following statements were made concerning the formulation 
and use of theoretical mathematical models of chemical processes. 

Automatic data reduction techniques with computers 
have made It relatively easy to develop overall trans-
fer function or performance function models relating a 
particular process output variable to a particular In-
put variable change. This is especially true for pulse 
type Inputs. Because of the special data reduction 
problems involved, higher-order effects may be lost or 
at best very difficult to obtain. The following ques-
tions regarding these studies remain relatively unan-
swered as of this time: 
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1. What are the Indispensable dependent variables of 
any particular process? That Is, just how many sepa-
rate transfer functions are necessary to describe the 
system adequately? What are the best data presentation 
methods for expressing this data? 
2. Just as In the case of linearized small-perturbation 
type simulations what are the limits of Input variable 
manipulation for which the linear transfer function 
representation Is adequate? 

3. What are the criteria to be followed In deciding 
whether higher-order effects may or may not be Impor-
tant In any specific case? 
Concerning the area of process dynamics, the report 

continues: 
Some general observations regarding the problem 

areas In process dynamics can also be made at this 
time. These are: 
1. Most difficulties In mathematical model making 
resolve themselves directly to the characterization of 
fluid flow phenomena occurring In the process such as 
turbulence, liquid mixing, etc. 
2. Control In chemical processing almost always 
Involves the manipulation of the flow of a fluid 
stream (here fluid may mean gas, liquid, or fluidized 
solid.) 
Hence fluid flow problems are at the heart of all our 
control Investigations, while at the same time being 
the process dynamic phenomena which we least under-
stand. 
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BASIC NOTIONS OP FLUID DISPERSION 
6 

The degree to which the aerated liquid mass flowing across 
a distillation plate Is mixed or dispersed may be characterized 
by either the distribution of residence times of the liquid ele-
ments flowing across the plate or the concentration profile of 
the liquid on the plate (15). From a theoretical viewpoint, both 
of these relationships may be obtained analytically. 

Consider a single phase, multicomponent fluid system. A 
full description of this system Is given by the following rela-
tionships : 

Equation (1) Is the equation of continuity, a mass balance. 
Equation (2) is a momentum balance, variously called the equation 
of motion or the Navier-Stokes equation. 
Equation (3) Is an energy balance. These Equations describe the 
behavior of a fluid system In general within the framework of 
mechanics of continuous media (25). They are seldom used In the 
complete form given here since the exact solution of these 
coupled equations Is beyond the scope of present day mathematics. 
The normal procedure Is to disregard terms that are physically 



negligible or identically zero, thereby obtaining simpler 
equations for a given situation. Por example, consider an 
Isothermal, Newtonian, incompressible fluid of constant mass 
density and viscosity. Equation (3) is no longer needed and 
equations (1) and (2) become 

( 6 ) 

(7) 

The superscripts (1) and (t) refer to laminar and turbulent 
contributions respectively. The y^"1"^ and can be given by 
the same expressions as for purely laminar flow. The difficulty 
here is that only semiempirical expressions are available for 

and f t ' . 
If the geometry of the physical system becomes complicated 

even the laminar flow situation Is impossible, or at best, very 
difficult to solve. 

For a given physical situation of simple geometry (e.g. flow in a 
circular tube) equations (4) and (5) are more readily solved for 
laminar flow. This is because in laminar flow the molar flux 
and the stress tensor are expressed In terms of Pick's law of 
diffusion and Newton's law of viscosity. When considering tur-
bulent flow and T are given by (26) 

(4) 

(5) 
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It Is therefore convenient to treat fluid mixing from semi-
empirical and/or mathematical or physical modeling techniques. 
Furthermore, it is essential to confirm results from such a 
treatment experimentally. 

Types of Flow 

Two distinct types of mixing can be considered in continuous 
flow systems (27). One is macromixing, I.e., the primary mixing 
causing the non-uniform residence time distribution of elements 
of a fluid passing through the system. The other is micromixing, 
I.e., mixing on a molecular scale. This distinction becomes 
important when considering systems where non-linear rate proc-
esses are taking place. Since most of the mass transfer proc-
esses are of first order, or can be approximately considered to 
be first order, mixing on a distillation plate may be treated 
from either point of view. 

Two ideal flow patterns which are often used to approximate 
real systems are plug flow and complete mixing (21). Patterns of 
flow other than plug or complete mixing flow may be called non-
ideal flow patterns (21). Terms such as channelling, eddying, 
recycling, and flow with dead space or stagnant pockets are used 
to describe non-ideal flow. These descriptive terms are not 
completely mutually exclusive. 

Most of the flow systems encountered are either single or 
two phase systems. According to Leonard (3), the two phase sys-
tem may be viewed as a complication of the one phase system. 
The kinetic energy of the second phase offers an additional 
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source of mixing energy as well as an additional Impediment to 
flow, of the first phase. When describing the flow behavior of a 
two phase system in which there Is a first order or linear rate 
process taking place, it is possible to treat each phase inde-
pendently. If a non-linear rate process is taking place, Inde-
pendent treatment of the phases may no longer be possible (27). 

Open and Closed Vessels 

As discussed by Levenspiel (21) a closed vessel Is defined 
as one for which fluid enters and leaves by bulk flow alone. 
Plug flow exists in the entrance and exit streams, i.e., diffu-
sion and dispersion are absent at entrance and exit. 

An open vessel is one where neither the entrance or exit 
streams satisfy the plug flow requirements of the closed vessel. 
When either the entrance or exit stream along satisfies the 
closed vessel requirements, the vessel Is said to be closed-open 
or open-closed. 

Age Distributions 

To be able to account exactly for non-Ideal flow requires 
knowledge of the complete flow pattern of the fluid In the ves-
sel. Due to the difficulties associated with obtaining and 
interpreting such information, an alternate approach is used 
which requires knowledge only of how long different elements of 
fluid reside in the vessel. This partial information is 
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relatively simple to obtain experimentally, can be easily 
Interpreted, and either with or without flow models, yields In-
formation which In many cases allows a satisfactory accounting 
of the non-Ideal flow. 

The experimental technique used for finding this desired 
distribution of residence times of fluid elements In the vessel 
Is a stimulus-response technique using tracer In the flowing 
fluid. The Input signal Is a tracer Introduced In a known man-
ner Into the fluid stream entering the vessel. This Input signal 
may be of any type. The response or output signal Is then the 
recording of tracer concentration at a point within the vessel 
or In the outlet stream. 

Before discussing age distributions, It Is desirable to 
define the mean residence time and reduced time. The mean resi-
dence time, of fluid in a vessel is defined as 

T = — = Volume of the vessel available for flow 
v Volumetric flow rate of fluid through the vessel (8) 

Reduced time, 9, is defined as 

9 = i (9) 
Tf 

The discussion which follows Is based in part on the work of 
Levenspiel (21) and De Maria and Longfield (28). 

Internal age distribution. The vessel contains, in general, 
fluid elements of varying ages; ages being the times the fluid 
elements have spent in the vessel. Let (9) be the internal 
age distribution function, which is defined so that Î (9)d9 Is 
the fraction of fluid elements with ages between 9 and 9 + d9. 
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A t y p i c a l p l o t of I (Q) v e r s u s 9 i s g i v e n i n F i g . 1. I t f o l l o w s 

t h a t t h e a r e a u n d e r t h e c u r v e i s o n e . 

(10) 

The f r a c t i o n t h e f l u i d w i t h ages l e s s t h a n i s shown In F i g . 1 

a s t h e shaded a r e a and i s g i v e n by 

t h e f r a c t i o n of f l u i d w i t h ages g r e a t e r t h a n i s 

(ll) 

( 1 2 ) 

The i n t e r n a l age d i s t r i b u t i o n I / t ) based on t ime r a t h e r t h a n 

r e d u c e d t ime I s r e l a t e d t o ifc) a s 

(13) 

E x i t age d i s t r i b u t i o n . I n a manner s i m i l a r t o I_(9) , l e t 

E (9 ) d e n o t e t h e d i s t r i b u t i o n of ages of a l l f l u i d e l e m e n t s l e a v -

ing t h e v e s s e l . E ( 9 ) i s d e f i n e d so t h a t E ( 9 ) d 9 I s t h e f r a c t i o n 

of m a t e r i a l i n t h e e x i t s t r e a m be tween t h e ages o f 9 and 9 = d 9 . 

I t f o l l o w s t h a t 

(l4) 

ll 



o e, 
DlMENSIONLESS TIME, 0 

FIG. I. TYPICAL INTERNAL AGE DISTRIBUTION CURVE 

FIG. 2. TYPICAL EXIT AGE DISTRIBUTION CURVE 
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a t y p i c a l E ( 9 ) c u r v e i s g i v e n i n P i g . 2 . The f r a c t i o n of 

m a t e r i a l i n t h e e x i t s t r e a m y o u n g e r t h a n age &2> t*16 shaded a r e a 

of F i g . 2 i s 

(15) 

(16) 

and the f r a c t i o n o l d e r t h a n ©2 

E(Q) i s v a r i o u s l y r e f e r r e d t o as t h e e x i t age d i s t r i b u t i o n f u n c -

t i o n , t h e e x i t r e s i d e n c e t ime d i s t r i b u t i o n or s i m p l y t h e r e s i -

dence t ime d i s t r i b u t i o n f u n c t i o n ( r . t . d . f . ) . I f t i m e , t , I s used 

i n s t e a d of 9 , 

The F - c u r v e . With no t r a c e r i n i t i a l l y p r e s e n t , l e t a s t e p 

f u n c t i o n i n t ime of t r a c e r be i n t r o d u c e d i n t o t h e f l u i d e n t e r i n g 

t h e v e s s e l In s u c h a manner t h a t t h e v o l u m e t r i c f l o w r a t e t o t h e 

v e s s e l r e m a i n s c o n s t a n t . Then t h e c o n c e n t r a t i o n - t i m e c u r v e f o r 

t r a c e r i n t h e e x i t f l u i d s t r e a m , measured i n t e r m s of t r a c e r 

c o n c e n t r a t i o n i n t h e e n t e r i n g s t r e a m , C0, and r educed t i m e © I s 

c a l l e d t h e F - c u r v e . As shown i n F i g . 3 , t h e r a n g e of F i s 

0£F£1. 

The C,-curve. The c u r v e which d e s c r i b e s t h e c o n c e n t r a t i o n -

t ime f u n c t i o n of t r a c e r i n t h e e x i t s t r e a m of a v e s s e l i n 
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Fig.3. Typical F - c u r v e 

Fig-4. Typical C - curve 
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15 
r e s p o n s e t o a d e l t a f u n c t i o n or u n i t Impul se i n p u t i s c a l l e d t h e 

C_-curve. As w i t h t h e F - c u r v e , t h e r a n g e and domain a r e d i m e n -

s i o n l e s s . C o n c e n t r a t i o n s a r e measured i n t e rms of t h e i n i t i a l 

c o n c e n t r a t i o n , C°, a s i f i t were e v e n l y d i s t r i b u t e d t h r o u g h o u t 

t h e v e s s e l . 

Time i s measured i n r e d u c e d u n i t s . With t h i s c h o i c e of u n i t s 

F i g . LL shows a t y p i c a l £ - c u r v e . The t e r m s F , £ , I , and E were 

i n t r o d u c e d by Danckwer t s ( 2 9 ) . 

C o r r e s p o n d e n c e b e t w e e n F , C!, I , E . I t may be shown by 

m a t e r i a l b a l a n c e c o n s i d e r a t i o n t h a t : 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

The p o i n t age d i s t r i b u t i o n . L e t t h e c o n c e n t r a t i o n of a p a r -

t i c u l a r s p e c i e s a t t h e e n t r a n c e of a f l o w s y s t e m be changed and 



the resulting change with time at some point within the system be 
observed. Spalding (30) and Danckwerts (31) have shown that It 
Is possible to deduce the age distribution of the fluid flowing 
through a volume element around that point from the variation of 
the point concentration with time. 

In particular, let a step input of tracer be introduced at 
the Inlet of the vessel, changing the concentration of tracer in 
the inlet stream from 0 to C0. At the observation point, the 
concentration of tracer, Cp, will increase with time from zero to 
a maximum and steady state value Cp-"-. The plot of Cp/C # versus 
9 can be Interpreted to represent the cumulative age distribution 
(F-curve) at the point. If it is assumed that the fluid at the 
observation point is completely mixed within the sampling volume, 
the steady state value of the concentration C represents the 

Jr 

total amount of fluid elements in the sampling volume and there-

fore the fraction P is a true cumulative probability function 
v 

such that: 

It follows that P is a density or frequency distribution d9 
function, E (©), which is called the point age distribution after 

Jr 

(24) 
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17 
Zwietering (32). It should be noticed that corresponds to 
the r.t.d.f, for the volume element under consideration 

Prom the definition of E (©) the point age distribution may R 
be related to the Internal age distribution of the entire vessel 
as 

(25) 

where v^ is the volume of the sampling point. As discussed by 
Danckwerts (31), v should be small compared to the system volume 

Jr 

but large enough to contain many molecules or fluid elements. 
Point age distribution has been treated by Zwietering (32) 

in the most general manner by requiring only that the point under 
consideration be defined for a particular instant of time. 

However, Spalding (30) has shown that if the velocity vector 
at a point and the local effective diffusivity do not vary with 
time or concentration then 

(26) 

This means that Cp-"- is equal to C0 everywhere within the system 
for rather general and complex flow conditions within the vessel. 

•'•Zwletering called the point age distribution function, 0 P 
C 

where 0 = J2 It has been denoted by E (9) here for the ^P at —P 
sake of consistency. 



This is equivalent to saying that the structure of flow in the 
vessel remains constant in time. That is, at the sample point, 
which is fixed in both space and time, the elements of fluid 
being sampled are essentially all of the same nature so that 
sampling at a point is synonymous with sampling from a single 
element of fluid over a given period of time (28). Longfield 
and DeMaria (28) have shown that for the fluidized beds they 
treated, the structure of flow in the gas phase could be assumed 
constant in time at a fixed point in space. 

Utilization of age distributions. Consider a flow vessel 
in which a rate process is taking place. If the rate process is 
linear, we can predict the performance of the vessel if we are 
given two pieces of information; the residence time distribution 
function for plain unchanging fluid passing through the vessel, 
and the complete description of the rate process (21). 

If the rate process is non-linear, the performance of the 
vessel cannot be predicted from these separate pieces of infor-
mation. The actual flow pattern of fluid through the vessel 
must be known before performance predictions can be made. 

Finding the actual detailed flow pattern experimentally and 
then trying to Interpret this information is impractical. There-
fore, the approach taken when the flow pattern Is needed to pre-
dict system performance is to formulate a flow model which 
approximates real flow and then use this model for predictive 
purposes. If the flow model reflects the real situation, the 
r.t.d.f.'s predicted by the model will closely match the 
r.t.d.f.*s obtained from the experimental tracer response curves 
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of the real vessel. Thl3 is one of the requirements in selecting 
a suitable model. 

The requirement that r.t.d.f.'s predicted from the flow 
model match those obtained experimentally is not always suffi-
cient to insure the selection of the most suitable model. Por a 
given situation it may be possible to formulate several models 
for which the predicted r.t.d.f.'s match those obtained experi-
mentally, however, none of these models may describe the actual 
flow behavior with sufficient accuracy. As an example, consider 
the two models shown in Pig. 5 which are to approximate flow 
conditions in a chemical reactor. 

Both of these models predict the same r.t.d.f.'s. If the 
rate process which is to be carried out is represented by a 
linear rate equation, it makes no difference which model is used 
to predict the performance of the actual system; both will pre-
dict the same degree of completion of the process. 

If, on the other hand, the rate process is represented by a 
non-linear rate equation, Model I predicts a different degree of 
completion than does Model II. In this case we must also be 
concerned with the degree of segregation, i.e., does micromixing, 
macromixing, or some combination of the two represent actual 
behavior. 

Por both models, the assumption of no micromixing or com-
plete segregation will lead to higher predicted degree of com-
pletion than will the assumption of complete micromixing or 
complete lack of segregation for the higher order rate processes. 
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MODEL I 

SECTION 

MODEL E 

FIG. 5 . MODELS OF A FLOW V E S S E L 
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Point age distribution may be used In various ways to give a 
better understanding of the flow behavior and transport proper-
ties of a system. Some statistical property of the point age 
distribution such as the median or some moment of the distribu-
tion may be mapped as a function of space on a cross sectional 
drawing of the vessel (28). In the case of the example given 
above, such a treatment would be a valuable aid In determining 
which model more closely approximates the actual flow system. 
Treatments of this type are exemplified by Place, Ridgeway, and 
Danckwerts (33) in the study of air flow patterns in a spray 
drier and by DeMaria and Longfield (28) in the study of gas phase 
flow patterns In fluidized beds. 

Point age distribution may also be used to calculate the 
degree of segregation introduced by Danckwerts (31). Zwietering 
(32) has given a complete discussion of the value that the con-
cept of segregation has in the prediction of the extent of 
conversion in a chemical reactor. 
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FLOW MODELS 
22 

The use of flow models, physical or mathematical, to 
represent actual systems is a very fruitful approach to the pre-
diction of system performance. The parameters of these models 
can be correlated with the physical properties of the fluid, ves-
sel geometry, and flow rates. Once these correlations are found 
performance predictions can be made without resort to experimen-
tation for all types of fluid processing. 

Many types of models can be used to describe non-ideal flow 
patterns within vessels. Those which draw on the analogy between 
mixing in actual flow and a diffusion process are called disper-
sion models (21). Other models, such as the two mentioned in 
the preceding section visualize various flow regions connected 
in series or parallel. If the flow regions are not all of the 
same type, the model is referred to as a mixed model. Models 
which in no way attempt to describe the mixing mechanism other 
than to give the r.t.d.f, are often placed in a class called 
mathematical models. 

Models may vary in complexity depending on the number of 
parameters included. As the number of parameters used increases, 
so does the difficulty in establishing general correlations. In 
general, therefore, it is best to use as few parameters as is 
consistent with adequate description of the system of interest. 



23 

The Dispersion Model 

The assumption that concentration fluctuations are numerous 
and random and also small with respect to the size of the vessel 
leads to a diffusion type equation for representing the mixing 
process. Even though it is known that the concentration fluc-
tuations are not independent for turbulent mixing, it Is found 
that a phenomenological description gives good results for many 
situations (3^). An eddy diffusivity or dispersion coefficient 
is defined so that a diffusion type equation may be used. The 
eddy diffusivity is then found by experiment. 

One of the general forms of the dispersion model is given by 

^ + div(-D grad • C) + dlv(uC) + ̂ (C) = 0 (27) 

where D is the dispersion coefficient, u the fluid velocity 
vector, C the concentration, and t is time. The first term of 
equation (27) represents the change in concentration with respect 
to time. The second term represents net outflow due to disper-
sion. The third terra represents the velocity gradient and the 
fourth term represents the depletion of material caused by the 
progress of a rate process. 

The axial dispersed plug flow model. The most often treated 
dispersion model is the axial dispersed plug flow model which is 
obtained from equation (27) by making the following assumptions: 

1. Only the dispersion in the axial direction is signifi-
cant. 



2. The dispersion coefficient, D, is independent of 
position and concentration gradients. 

3. The fluid flows with an average axial velocity compo-
nent, T F . With these assumptions equation (27) reduces to 

Equation (28) cannot be used for design purposes unless the 
value of the dispersion coefficient is known. The usual way of 
finding the values of D is through unsteady tracer injection 
experiments. The tracer may be injected in the form of a unit 
impulse or delta function, a step function, a periodic function, 
or an arbitrary pulse. Whatever the form of the input, the 
tracer is injected uniformly over a plane normal to the direction 
of flow and the tracer concentration is then measured downstream 
from the injection point. The modification of the input signal 
can thus be related to the dispersion coefficient (21). 

Por pulse type inputs, the functional relationship between 
the variance of the tracer curve and the dispersion coefficient 
is found by solving the partial differential equation for the 
concentration, with D as a parameter, and then finding the vari-
ance from this theoretical expression. The dispersion coeffi-
cient for the system can then be calculated from the theoretical 
expression for the variance and the experimentally found vari-
ance (21). 

Por the experimental determination of the dispersion 
coefficient using a delta function Input of tracer, equation (28) 
becomes in terms of reduced quantities and variables 

(28) 
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(29) 

where 

S I s t h e D i r a c D e l t a f u n c t i o n 

T) = z 
< T 

L = c h a r a c t e r i s t i c l e n g t h of t h e s y s t e m 

The s e l e c t i o n of t h e p r o p e r bounda ry c o n d i t i o n s t o be u s e d 

w i t h e q u a t i o n (29) has b e e n t h e s u b j e c t of a good d e a l of s t u d y . 

The most g e n e r a l s e t of b o u n d a r y c o n d i t i o n s i s o b t a i n e d by c o n s i -

d e r i n g i n t h e manner of Wehner and Wilhe lm (35) t h e s y s t e m t o be 

composed of t h r e e s e c t i o n s i n s e r i e s ; t h e mix ing v e s s e l p r o p e r of 

l e n g t h and a f o r - and a f t - s e c t i o n , a and b , b o t h of s e m i -

i n f i n i t e e x t e n t . 

T h i s a l l o w s f o r a d i f f e r e n t d i s p e r s i o n c o e f f i c i e n t a t t h e 

i n l e t and o u t l e t of t h e s y s t e m ; t h a t i s , i t t a k e s i n t o a c c o u n t 

end e f f e c t s . The s y s t e m as d e s c r i b e d above i s shown i n F i g . 6 . 

F i g . 6. G e n e r a l f l o w s y s t e m of Wehner and Wilhelm (35) 



The plane where the tracer is Injected Is denoted by and 
the plane of measurement is denoted by 77 . As mentioned pre-' m 
viously, the measurement of tracer concentration at 7) in 'm 
response to a unit impulse injection of tracer at yields the 
_C-curve for the section of length 7pm -

If the system is visualized as described above, it is nec-
essary to solve the following set of differential equations 

With initial and boundary conditions 

26 



27 
(31-f) 

(31-6) 

The boundary value problem given by equations (30) and (31) 
may be simplified for various specific cases. Levenspiel and 
Smith (36) treated the simple case of a doubly-infinite or open 
vessel. This Is equivalent to setting D = D = D„ . In this a b 
case only equation (30-b) is needed with the initial condition 
£(^,0) = 0 and the boundary conditions given by equations (31-b) 
and (31-g). The characteristic length, L, is taken as the dis-
tance between the injection and measurement points. 

For the case of a closed vessel, I.e., D & = D = = 0, only 
equation (30-b) is needed with the initial condition £(^,0) = 0 
and boundary conditions 

(32-a) 

(32-b) 

This set of boundary conditions is equivalent to that intro-
duced by Danckwerts (29) for a tubular flow reactor under steady-
state conditions. 

Other approximate boundary conditions have been proposed for 
the case of a closed vessel by Hulburt (37) > Levenspiel (36), 
and Ahn (38). 

If the unit impulse of tracer is injected upstream from 
section a as shown in Fig. 7, equation (30-a) is no longer needed 



and only two Initial conditions and four boundary conditions are 

required. 

Tracer injection 
point 

Pig. 7. General flow system with downstream tracer injection 

Van der Laan (39) obtained a general solution to the 
boundary value problem of equations (30) and (31) in the Laplace 
transform plane and without inversion obtained the mean, <§", and 
the variance, o-* , of the r.t.d.f, using the relations given 
below. 

(33) 

(34) 

(35) 

The results he obtained for the most general and various 
simplified cases are given in Table 1. 

The methods given above for determining the dispersion 
coefficient depend on being able to represent the tracer injec-
tion by a delta function, a mathematical idealization which can 
only be approximated physically. Aris (1+0), Bishoff (L|.l), and 
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TABLE I. EXPRESSIONS FOR THE MEAN AND THE VARIANCE OF C(G), M 



Bischoff and Levenspiel (ij.2) have shown that this approximation 
need not be made if concentration measurements are taken at two 
points rather than one. The means and the variances of the 
experimental concentration curves at the two points are calcu-
lated, and the respective differences between them found. These 
differences can be related to the parameter Pe and thus to the 
dispersion coefficient. The tracer may be injected anywhere 
upstream from the two measurement points and may be any type of 
pulse input. In this case the characteristic length L is taken 
as the distance between the two measurement points. The first 
measurement point is denoted by and the second by 

Aris (l|£>) and Bischoff (1̂ 1) have treated the special case 
shown in Pig. 8 when both measurement points are inside the test 
section. 

Pig. 8. Experimental setup for pulse testing 

They gave the following expressions for the differences between 
the means and variances: 
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Equations (38) and (39) may also be used when the second 
measurement point is located far enough from the end of the 
vessel so that end effects are negligible. Bischoff and 
Levenspiel (1|2) give design charts which permit estimation of 
this distance. Also, equations (36) and (37) can be used to 
estimate the magnitude of the end effects as represented by the 
second term of equation (37). 

As previously mentioned, a step Input or some periodic func-
tion may be used for the tracer injection. However, as pointed 
out by Levenspiel (21), these methods are not as convenient as 
pulse techniques. Por a step Input, there seems to be no conven-
ient method for relating the experimental response to the 
dispersion coefficient as was provided by the variance with the 
pulse input. The use of a periodic function, such as a sine 
wave requires much more experimental data than does the use of a 
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(37) 

Equations (36) and (37) reduce to particularly simple forms 
for the case of an infinite vessel whereJ3 - 1, I.e., D^ = D. 

(38) 

(39) 



pulse technique. Also, the working equations are usually quite 
complicated. 

Determination of the dispersion coefficient by steady state 
tracer injection involves injection of an inert tracer into the 
fluid stream a short distance upstream from the vessel outlet 
and subsequent measurement of the degree of tracer diffusion 
upstream from the injection plane. The tracer is added continu-
ously and the steady state values of tracer concentration as a 
function of position are determined. 

Por this situation equation (28) reduces to 

D d2C dC n 40 

dz 

If the vessel has a sufficient length of fluid travel so 
that none of the tracer reaches the inlet section of the vessel, 
the solution of equation (IlO) is 

C - r Hz 

where 
C = tracer concentration at a distance z upstream of the 

injection point. 
C = concentration of tracer in feed stream 0 
C^ = concentration of tracer at the injection point. 
The value of U/D can be obtained from the slope of experi-

mental data on a plot of ln(C - CQ) vs. z. 
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The dispersed plug flow model. The dispersed plug flow 
model takes into account the dispersion in both the longitudinal 
and lateral directions. The parameters of this model are D , 

Li 

the axial or longitudinal dispersion coefficient and D^, the 
lateral or radial dispersion coefficient. As with the axial 
dispersed plug flow model, the dispersion coefficients are 
assumed to be Independent of position and concentration gradi-
ents, and the fluid is assumed to flow with an average axial 
velocity component, T F . With these assumptions, equation (27) 
becomes in rectangular coordinates 

| | = £ c . tr | | - 1 , ( 0 (42) 
dz dx 

where 
z = longitudinal direction (direction of flow) 
x = lateral direction 

The method of solution is similar to that of the axial dispersed 
plug flow model except for modifications which keep both axial 
and lateral dispersion in the equations. 

Additional comments on dispersion models. Only the axial 
dispersed plug flow model has been discussed here in detail since 
this is the model most frequently employed to describe mixing on 
distillation plates by Byfield (Ij.3), Anderson (13), and 
Ruckenstein (kli), and was used by Gerster (15) In a general 
correlation for determining plate efficiency. Eddy diffusion 
coefficients have been measured experimentally for bubble cap 
and sieve plates by several investigators. 
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Brown (16), Stone (l|5), Wharton (17), Robinson (5), and 
Gerster (15) used steady state tracer Injection techniques for 
bubble cap trays. Olson (Lj.6) and Barker and Self (Lj.7) used the 
delta function input for sieve plates and Leonard (3) and 
Gilbert (lj.8) used a sinusoidal tracer input on bubble cap trays. 
These investigators differ in opinions as to the suitability of 
using a dispersion model to describe mixing on distillation 
plates. It is perhaps significant that no one has yet used the 
experimental technique which requix̂ es the fewest assumptions, 
i.e., the arbitrary pulse technique (or the pulse testing method) 
with two measurement points. 

The reader is referred to Levenspiel (21) for a complete 
discussion of the general dispersion model and the other less 
general models derived from it. 

It should also be noted that for the case of laminar flow, 
analytic solutions equivalent to the solutions obtained from the 
dispersion model can be obtained. Taylor (Ii9) showed for laminar 
flow in round empty tubes that dispersion due to molecular diffu-
sion and radial velocity variation may be represented by flow 
with a flat velocity profile equal to the actual mean velocity, 

U, and with an effective axial dispersion coefficient 
D = ?,02U2-/brB£f. (R0 Is the tube radius and 8 the molecular 
diffusivity). Farrell and Leonard (50) have extended Taylor's 
work and presented a solution for the two dimensional convection-
diffusion equation for laminar flow which makes no assumption 
concerning the relative importance of radial diffusion or axial 
convection as dispersion mechanisms. 
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Perfectly Mixed Tanks in Series Model 
35 

As previously mentioned, the perfectly mixed tanks in series 
model was first applied to distillation plates by Kirchbaum (6), 
who called it the pool model. This is a one parameter model, 
the parameter being, j, the number of tanks in series. 

Only the case where all the tanks have the same volume will 
be considered here. A discussion of the more general case of 
unequal size tanks is given by Mason and Piret (51). 

Determination of the parameter j. The £-curve for a single 
perfectly mixed tank can be found easily by a material balance; 

C°v£(t) = vC + V (i|3) at 

In dimensionless form equation (i|3) becomes 

6( e) = c + (W 

where 

a - £ - t v 
~ Tf ~ V" 

c = £ 
- c° 

Solving equation (ijlj-) by the method of Laplace transform 
gives 

C = (45) 

The proceeding results can be generalized to the case of j 
perfectly mixed tanks in series as discussed by Ham and Coe (52), 



MacMullin and Weber (53), Katz (5k), and others (55), (56). 
Consider j tanks In series, each having the same volume. A mate-
rial balance around the 1 t h tank gives 

Cl_ i = vCL + Vjl (46) 

The C-curve may be found by solving the set of equations (Ij.6) for 
0 = 1, 2, . . ., j with the condition that the input to the first 
tank, 1 = 1 , is a delta function of tracer. Solving equations 
(li.6) by the use of Laplace transforms gives (21) 

Hence, the experimental C-curve data can be used to determine a 
variance and thus j. 

as with the axial dispersed plug flow model, the pulse 
testing technique can be used to determine j if two measurement 
points are used. Consider the experimental setup of Fig. 9. 

where 

(48) 

(49) 

(47) 

The mean and the variance are 
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M + 1 

pulse 
input 

output output 

Pig. 9. Pulse testing-perfectly mixed tanks in series 
th Tracer concentration is measured both entering the M + 1 

tank and leaving the tank. Let j = IT - M be the number of 
tanks between the two measurement points. Por this case (21) 

& 0 — eTj.y — "Sjj — 1 (5o) 

^ O-2 = <5"it2 - <5-, 2 _ 1 M J (51) 
Therefore, if an arbitrary pulse of tracer is injected into 

a system and the mean and variance measured at two locations, the 
parameter, j, of the stirred tanks in series model can be deter-
mined . 

Comparison with the axial dispersed plug flow model. Sev-
eral authors (21), (57), (58) have discussed the similarity 
between the axial dispersed plug flow model and perfectly mixed 
tanks in series model. Various methods of comparison have been 
suggested. Kramers and Alberda (57) used the variance for the 
doubly infinite vessel which from Table 1, VII is 

2 = ? D 
YZ VZ 

(52) 
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Comparing this with equation (1|9) gives 

(53) 

Equation (53) extrapolates properly to j = oo as D-»0, but 
does not extrapolate to j = 1 as Levenspiel (21) has 
shown that the reason for the Incorrect extrapolation of equation 
(53) as is that the doubly infinite vessel is not the pro-
per one to use for the comparison. The closed vessel 
(D = D, = 0) must be used. Then from Table 1, IV, 

This expression extrapolates properly to j = 1 for . For 
small values of l/Pe it reduces to equation (53). 

These comparisons are the basis for the statement that an 
infinite number of stirred tanks in series is equivalent to 
plug flow (21). 

Trambouze (58) has suggested that the models be compared by 
matching either the C-curve maxima for the two models or by 
matching the C-curve at 9 = 1. As pointed out by Levenspiel 
(21), there is no unique way of matching the two models. 

Components of mixed models. Models which suppose the real 
system to consist of interconnected flow regions with various 

(54) 

Mixed Models 



modes of flow between and around these regions are called mixed 
models (21). These models may be constructed from some combina-
tion of the following regions and types of flow: 

plug flow regions 
perfectly mixed regions 
dispersed plug flow regions 
deadwater regions 
bypass flow, where a fraction of the fluid bypasses the 

vessel or a specific flow region 
recycle flow, where a fraction of the fluid leaving the 

vessel or specific flow region is recycled and mixed with the 
fluid entering the vessel or region 

cross flow, where interchange, but no net flow, of fluid 
occurs between various flow regions. 

Deadwater regions account for the fraction of fluid in the 
system which is relatively slow moving and for all practical 
purposes, stagnant (21). These regions may be defined or viewed 
in two ways. The first and most generally used definition is 
given by Levenspiel (59). 

In a vessel the deadwater regions are the relatively 
slow moving portions of the fluid which we chose to consi-
der to be completely stagnant. Deadwater regions contri-
bute to the vessel volume; however we ignore these regions 
in determining the various age distributions. 

The second definition considers that there is a slow interchange 
or cross flow between the deadwater regions and the active fluid 
passing through the vessel. Adler and Hovorka (60), Turner 
(61), (62), and Aris (63), (61).) have illustrated this concept. 

Levenspiel (21) gives the following relationship for deter-
mining the number of parameters in a mixed model 
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Number of _ y /Flow regions in\ /Flow paths in\ 
Parameters ^ \excess of one J ^excess of one/ 

Z /zones of \ y /Flow regions \ 
v cross flow/ \with dispersion/ t-5-5) 

r* / a r b i t r a r y restr ic t ions on\ 
~Z ( flow and volume rat ios / 

General remarks. Many mixed models have been devised to 
describe various systems; for example see Oliver (9), Weber 
(65), Eguchi (27), Gilliland (66), Bartok, Heath, and Weiss 
(67), Cholette and Cloutier (68), Handlos, Kunstman, and 
Schissler (69), Pans ing (70), and Singer, Todd, and Guinn 
(71). Strand (19) has proposed a model for distillation plates 
which considers the plate to be a single dispersed plug flow 
region with a fraction of the liquid by passing the plate. 

A discussion of each of these proposed mixed models and the 
specific methods used for determining their parameters will not be 
given here. Let it suffice to say that the usual method of 
testing the aptness of the model is to compare the experimental 
£-curve to the £-curve predicted by the model. Shepard (72) 
gives a complete discussion of this subject. The predicted 
£-curve is usually obtained by the use of Laplace transforms. 
The closeness of fit of the model to the experimental data is 
not the only criteria which must be used in selecting the proper 
model. The simpliest model which fits the facts and whose vari-
ous regions are suggested by the real vessel should be selected. 
As pointed out by Levenspiel (21), ". . . an unrealistic, many-
parameter model may closely fit all present data after the fact, 

4 0 



41 

but may be quite unreliable for production in a new untried 
situation." 

The models discussed in the preceding sections are physical 
models in that they are based on assumptions which lead to a 
simplified physical picture of the actual dispersion process. 
In this section we consider models which may be used to predict 
the exit age distribution function but which in no way attempt 
to describe the actual mixing mechanism. 

Foss (18) noted that a function of the form 

, and 5C are constants and 

appears to fit reasonably well the r.t.d.f.'s of sieve plate 
distillation trays. Cha (73) noted that a function which has 
the form of equation (56) is the density function of a T-
distribution. 

P-Distribution Model 

(56) 

where 

(57) 

where p and y are parameters 



Thus, the P-dLstr5.buti.on model for the r.t.d.f of a system Is 

E(e) = C(9) = - ~ T ©P-1 e"9/v (58) ~ - Vpf(p) 

Cha (73) has also considered a system with n mixing units. 
He has shown that if 2- (9) of the jtla mixing unit is given by 
equation (50) and if the parameters y. for each E.(9) are equal, J """J 
the exit age distribution for the system as a whole Is given by 

£,<•> = ^ftf 6nP_1 e"9/V 

Since the P-distribution model has not yet been compared to 
actual data, a simplified form of equation (58), i.e., y = 1, 
was compared x̂ ith Olson's (ij.6) data which were obtained by 
injecting a unit impulse of tracer evenly across the inlet weir 
of a sieve plate distillation tray and measuring the concentra-
tion immediately beyond the outlet weir. Sodium chloride was 
used as the tracer and concentration was measured by a conduc-
tivity cell In an unbalanced wheatstone bridge. Even though the 
experimental technique outlined above Is perhaps not the most 
desirable one to use for obtaining the £(0)-curve, data of this 
nature are relatively scarce, and it was felt that the data 
would give some information concerning the suitability of the 
P-distribution model for predicting r.t.d.f.'s or distillation 
plates. 

The model used is given in terms of its exit age distribu-
tion by 
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The parameter p was determined by the method of least 
squares. A computer program for this purpose written for the 
IBM 1620 is given in the Appendix. The value of p which gave 
the best fit was found to be p = 7.650. This indicates consi-
derable deviation from perfect mixing where p is equal to unity. 
A comparison of the model and that data is given In Fig. 10. 

The goodness of fit indicates that it may be possible to 
use the one-parameter P-distribution model as represented by 
equation (60) to predict the r.t.d.f.'s for distillation plates 
and a reliable correlation for the parameter, p, as a function 
of the physical parameters of the system of the model and 
operating conditions may be found. 

While it is true that the two-parameter model as repre-
sented by equation (50) would better fit the data, the use of 
such a model at this stage cannot be justified because of the 
limited amount of the sufficiently accurate data available. 
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DIMENSIONLESS T I M E , 6 s v t / V 
FIG. 10. COMPARISON OF p - DISTRIBUTION MODEL 

WITH EXPERIMENTAL DATA 



PROPOSED INVESTIGATION OP LIQUID MIXING AND 
DISPERSION ON DISTILLATION PLATES 

Introduction 

In order to point out the need for further investigation of 
liquid mixing on distillation plates, we need only review the 
conclusions and recommendations of several investigators of this 
phenomenon. Leonard (3) concludes that the r.t.d.f.'s of bubble 
cap trays are roughly those which would be observed for a series 
of n perfect mixing tanks. However, he points out that the fre-
quency response data that he obtained should be reworked to yield 
more accurate r.t.d.f.'s. He also points out the need for direct 
observation of the degree of vertical mixing, examination of the 
froth for stagnant pockets, and a general picture of a multi-
dimensional froth movement on active trays. 

Gerster (l5) and Robinson (5), from their studies of bubble 
cap trays, conclude that the axial dispersed plug flow model 
gives an adequate description of the liquid mixing. Olson (I>.6) 
however, from his study of sieve plates, concludes that this 
model is not adequate. 

Strand (19) has shown that the bubble tray design method 
proposed by the American Institute of Chemical Engineers (20), 
which uses the axial dispersed plug flow model to describe fluid 
mixing, is unsatisfactory for unusual combinations of system 
properties and vapor and liquid flows. One suggested reason for 

deficiencies of the A.I.Ch.E method and of other correlations in 
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the literature is that they do not provide a means for assessing 
the effects of liquid and/or vapor bypassing. It is shown that 
the A.I.Ch.E, method could be substantially Improved by including 
a liquid bypassing effect. Strand also suggests that it may be 
fruitful to consider the tray to be non-uniform, both in the 
contacting achieved on various parts of the tray and in the 
degree of liquid mixing. This supports Leonard's (3) observa-
tion that more information is needed concerning the nature of 
flow on distillation plates. 

The pulse testing technique has not been used for deter-
mining the r.t.d.f.'s of distillation plates or for testing the 
suitability of proposed models. Either the injection of a 
perfect unit impulse or a perfect step input of tracer have been 
assumed in most previous investigations. This presents some 
question as to the reliability of existing data. 

Areas of Investigation and Experimental Techniques 

Any future investigation of liquid mixing on distillation 
plates should have in part the following objectives: 

1. To obtain detailed information concerning the local 
froth and liquid flow behavior. 

2. To assess the suitability of various models for 
predicting the residence time distribution functions. 

The achievement of the first objective would give a better 
understanding of the actual mixing mechanism and thereby serve 
as the basis for the selection of realistic physical models. 
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T h i s o b j e c t i v e can be a t t a i n e d by e x p e r i m e n t a l l y m e a s u r i n g p o i n t 

age d i s t r i b u t i o n s and t h e n mapping some p r o p e r t y of t h e s e d i s -

t r i b u t i o n s such as t h e mean as a f u n c t i o n of p o s i t i o n . A mapping 

of t h i s n a t u r e would d e t e c t t h e existence of v a r i o u s f l o w r e g i o n s 

such as d e a d w a t e r , p l u g f l o w , or p e r f e c t l y mixed r e g i o n s , and 

t h u s p r o v i d e t h e b a s i s f o r model s e l e c t i o n . 

I t i s s u g g e s t e d t h a t a r a d i o a c t i v e m a t e r i a l be u sed as t h e 

t r a c e r f o r b o t h p o i n t age d i s t r i b u t i o n s t u d i e s and r e s i d e n c e 

t ime d i s t r i b u t i o n m e a s u r e m e n t s . Smal l amounts of r a d i o a c t i v e 

m a t e r i a l a r e e a s i l y d e t e c t e d . T h i s means t h a t a v e r y s m a l l 

amount of r a d i o a c t i v e t r a c e r cou ld be added t o t h e l i q u i d s t r e a m 

c a u s i n g l i t t l e f l u c t u a t i o n i n f l o w r a t e . An a d d i t i o n a l a d v a n -

t a g e of u s i n g a r a d i o a c t i v e t r a c e r i s t h a t samples need n o t be 

wi thdrawn f r o m t h e l i q u i d s t r e a m . 

Por point age studies, tracer concentration could be 
monitored at several points on the tray simultaneously by using 

several scintillation probes and a multichannel recorder. Part 
of the instrumentation used by King (74) "the study of a par-
ticale mixing in a liquid-solid fluidized system would be ideally 
suited for this purpose. The scintillation probe he used was a 
Nuclear-Chicago Model DS8 scintillation detector. This unit 
consists of a transistorized preamplifier and a 10-stage photo-
multiplier with cesium dynodes and Is housed in an aluminum 
container 9.25' inches long and 1 inch in diameter. A 3 mm. 
diameter by a 10 cm. long needle probe is used with the basic 
detector. This beta-gamma sensitive needle probe is sensitive 
only at the tip. 
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The second objective can be attained by experimentally 
measuring the r.t.d.f.'s and comparing this data with the 
r.t.d.f.'s predicted by the various models. It is suggested 
that the pulse testing technique with two measurement points be 
mainly used for experimentally determining the r.t.d.f.'s. 
Methods for converting pulse data to unit impulse data are out-
lined in the following section. 

Initial studies should be made using the air water system. 
These materials are relatively cheap and need not be recovered. 
Other systems should be used as experimental techniques are per-
fected. 

The investigation outlined above should be carried out using 
trays of various designs and covering a wide range of operating 
conditions. The majority of the work should be done with sieve 
and valve trays. In recent years these types of trays have been 
superseding conventional bubble cap trays as the preferred con-
tacting device for many separation processes (75), however, most 
of the data In the published literature are for bubble cap trays. 

One approach to the study of the effect of tray design on 
liquid mixing and dispersion would be to study first a tray with 
only one perforation, valve, or bubble cap and then observe the 
effect of adding additional perforations, valves, or bubble caps. 

Methods of Data Analysis and Presentation 

For many models which might be used to describe a flow sys-
tem, it is most convenient to relate the parameters of the 
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models t o t h e C - c u r v e or t o some p r o p e r t y of t h e _C-curve such a s 

t h e v a r i a n c e . Por e x a m p l e , t h e p a r a m e t e r , p , of t h e f-distribution 

model was found by f i t t i n g t h e e x p e r i m e n t a l C - c u r v e 

t o t h e p r e d i c t e d C_-curvc. 

I t may a l s o be d e s i r a b l e t o compute t h e t r a n s f e r f u n c t i o n of 

t h e s y s t e m ; t h e t r a n s f e r f u n c t i o n b e i n g d e f i n e d as t h e r a t i o of 

t h e o u t p u t s i g n a l t o t h e i n p u t s i g n a l i n t h e L a p l a c e t r a n s f o r m 

p l a n e . The t r a n s f e r f u n c t i o n may be o b t a i n e d f r o m t h e f l o w 

model of t h e s y s t e m . As d i s c u s s e d by Law and B a i l e y (76) and 
Hougen and Walsh (77), i t may a l s o be f o u n d f r o m f r e q u e n c y 

r e s p o n s e and p u l s e r e s p o n s e d a t a a p p r o x i m a t e l y and e m p i r i c a l l y . 

S i n c e I t has b e e n s u g g e s t e d i n t h e p r e v i o u s s e c t i o n t h a t 

t h e p u l s e t e s t i n g t e c h n i q u e be u s e d t o o b t a i n e x p e r i m e n t a l d a t a , 

i t i s a p p r o p r i a t e t h a t methods of o b t a i n i n g t h e u n i t impu l se 

r e s p o n s e and t h e frequency r e s p o n s e of a s y s t e m f r o m p u l s e t e s t -

ing d a t a be d i s c u s s e d h e r e . 

The c o n v e r s i o n of p u l s e t e s t i n g d a t a t o f r e q u e n c y r e s p o n s e 

i s b a s e d on the f a c t t h a t t h e t r a n s f e r f u n c t i o n can be e x p r e s s e d 

p[c0(t)] 
= (61) 

where 

F i s t h e F o u r i e r t r a n s f o r m o p e r a t o r 

3 = r-t 
CO - f r e q u e n c y , r a d . / u n i t t ime 
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C^(t) = Input signal; In tills case, concentration at first 
measurement point 

C0(t) = output signal; in this case, concentration at second 
measurement point 

t = time. 
The Fourier transform of a function of time is defined as 

The integral of equation (62) can be divided into a real and an 
imaginary part, where the real part is 

R[p(jw)] = /f(t) cos cot dt (63) 
JO 

and the imaginary part is 

f(t) sin cat dt (64) 
0 

Therefore the transfer function can be expressed as 

(65) 

Huss and Donegan (78) have presented tables for the evalua-
tion of the integrals appearing in equation (65). The desired 

50 



51 
information is then given by 

amplitude ratio = |c-(jw)| (66) 

phase lag = argument of G(jw) (67) 

As indicated by Huss and Donegan (79), the time response to 
a unit impulse, £(t), can be related to the frequency response by 

C(t) = n[G(ja?)] cos M t CW (68) 
J o 

Huss and Donegan (79) have given a complete discussion of the 
evaluation of the Integral of equation (68). The method they 
suggest involves the approximation of R[G(j&>)] by a staircase 
type of function having equal frequency intervals and of such 
height that the area under each step of the staircase function 
equals the area under that portion of the r[g (j A/)] curve within 
the interval. 
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NOTATION 
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•3 C - concentration, m/l 
C. = molar concentration of component i, 

£ = dimensionless concentration 
£(9) = dimensionless response curve to a unit impulse input, 

a function of 9 
C® = mean concentration of pulse of tracer if uniformly 

distributed in experimental section of vessel, m/lJ 

CQ = concentration of tracer in inlet stream, m/l-5 
3 

C = concentration of tracer at a point, m/l 
3 

C = steady state concentration at a point, m/l 
2 

D = dispersion coefficient, 1 /t 
D^ = axial dispersion coefficient, dispersed plug flow 

model, 1 /t 
D„ = radial dispersion coefficient, dispersed plug flow 2 

model, 1 /t 
E(9) = exit age distribution function, a function of 9 
E(t) = exit age distribution function, a function of t 
F = Fourier transform 
F = Fourier transform operator 
F(9) = dimensionless response curve to a step input of tracer, 

a function of 9 
F(t) = dimensionless response curve to a step Input of tracer, 

a function of t _ 2 g = gravitational acceleration, 1/t 



—- 2 
gj_ = total body force per unit mass of component i, l/t 

= transfer function, a function of jw 
1.(9) = internal age distribution function, a function of 9 
I_(t) = internal age distribution function, a function of t 
j = parameter in the perfectly mixed tanks in series model, p or the number defined by j = -1 
T. = molar flux of component i, BSijLi 

tl2 

J ^ ^ = laminar contribution to molar flux of component i, 
mo Is. 
tl3 

—(t) 
J = turbulent contribution to molar flux of component i, 

mo Is. 

L = characteristic length of system, 1 
£ = Laplace transform operator 
n = parameter of the P-distribution model of equation (59) 
p = a complex variable 
p = parameter of the f1 -distribution model 

2 
p = pressure in equation (5), m/l 
Fe = Pec let number, (^t) — o 
q = energy flux, m/t^ 
R. = molar rate of production of component i, ^ols 

tl3 

t = time, t 
If = mean residence time, t 
u = velocity, l/t 
U = mean velocity in axial direction, l/t 
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A p 2 U = Internal energy per unit mass, l/t 
v = volumetric flow rate. l3/t 
v = volume of point, 

sr 

V = vessel volume, I3 

x = lateral distance, 1 
z = axial distance, 1 

G-reek letters 

ex. 
= dimensionless constant 

/ = dimensionless constant 
if = dimensionless constant 

= Dirac delta function, a function of 9 
= Dirac.delta function, a function of 

n. = dimensionless distance 

% = tracer injection point or first measurement point 
= measurement point or second measurement point 

h = outlet of test section 
9 = dimensionless time 
9 — mean of the residence time distribution function 

A = viscosity, m/lt 
V = parameter of the P-distribution model 

? — dimensionless constant 
Tr = 3. Ut 16 
W = 

2 pressure tensor, m/t 1 

r = fluid density, xn/l? 

A 
= mass concentration of component 1, m/l3 
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2 er" = variance of residence time distribution function 
"Z" = shear stress tensor, m/t2l 
_ / 2 "£"(1) = laminar contribution to shear stress tensor, m/t 1 
y(t) = turbulent contribution to shear stress tensor, m/t 1 
/ = dimensionless constant 
tf/(C) = rate of production, a function of concentration 
^ = frequency, rad./t 
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APPENDIX 



The FORTRAN program given below can be used bo determine the 
parameter, p, of the P-distribution model as represented by 

equation (60) from experimental values of 0(9). 

E CURVE FITTING BY LEAST SQUARE 
DIMENSION X(40) » E(40 ) >DES(4),P(4),EX(4),GE(1) ,GMP<4) 

1 FORMAT <E10.4,E10.4»E10.4,E10.4,E10.4,E10.4) 
2 FORMAT (13) 
READ 2 » NO 
DO 20 < = 1»NO 

2 0 READ 1, X(K)»E(K) 
Bl = -. 57.669867 
B2=-l.6955437 
B3=-.84224555 
B4=~.81838432 
B5 = -.48706792 
B6=-.23374017 

8 READ 1, P( 1) ,P(2)»P(3) »P(4) 
DO 100 1=1,4 
M = P(I) 
U=M 
Y=P(I)-U 
GME=1•+B1*(1•+B2*(1•+B3*(1 . + B4*(1•+B5*(1»+B6*Y)*Y)*Y)*Y)*Y)*Y 
P M = 1 • 
PU=P(I) 
L = M-1 
DO 10 J = 1» L 
PU=PU-1. 

10 PM=PM*PU 
100 GMP(I)=PM*GME 

DES(1)=0. 
DES(2)= 0. 
DES(3)=0, 
DES(4)=0. 
DO 30 K=1,NO 
DO 40 1=1,4 
EX ( I ) = ( P ( I ) / GMP ( I ) )*< <P ( I )*X(K) )** (P( I )-l. ) )*EXP(-P( I )*X(K.) ) 
PUNCH 1, X(K)» EX(I) >E(K) 

4 0 DES(I)=DES(I) + {E(K5-EX(I))*(E(K)-EX(I)) 
30 CONTINUE 

PRINT 1, DES(l) >DES(2)»DES(3)»DES(4) 
150 PAUSE 

GO TO 8 
END 
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P h y s i c a l and m a t h e m a t i c a l models which have b e e n or migh t be 

used t o d e s c r i b e l i q u i d mix ing and d i s p e r s i o n i n f l o w s y s t e m s i n 

g e n e r a l , and on d i s t i l l a t i o n p l a t e s i n p a r t i c u l a r , a r e p r e s e n t e d . 

Experimental methods f o r d e t e r m i n i n g t h e p a r a m e t e r s of t h e s e f l o w 

models a r e a l s o d i s c u s s e d . 

A m a t h e m a t i c a l model which has n o t p r e v i o u s l y a p p e a r e d i n 

t h e l i t e r a t u r e , t h e P - d i s t r i b u t i o n m o d e l , i s p r e s e n t e d . The 

r e s i d e n c e t ime d i s t r i b u t i o n p r e d i c t e d by t h e P - d i s t r i b u t i o n 

model i s g i v e n as 

p - 1 - 9 / v 
3 ( 9 ) = 

V P(p) 

A f t e r s e t t i n g t h e p a r a m e t e r , ) / , e q u a l t o u n i t y , t h e r e s i -

dence t ime d i s t r i b u t i o n of t h e T - d i s t r i b u t i o n model i s compared 

t o an e x p e r i m e n t a l l y d e t e r m i n e d r e s i d e n c e t ime d i s t r i b u t i o n of 

a s i e v e p l a t e d i s t i l l a t i o n t r a y . The p r e d i c t e d d i s t r i b u t i o n i s 

found t o compare r e a s o n a b l y w e l l w i t h t h e e x p e r i m e n t a l l y d e t e r -

mined d i s t r i b u t i o n f o r the p a r a m e t e r , p , e q u a l t o 7 . 6 5 . 

A p roposed i n v e s t i g a t i o n of l i q u i d mix ing and d i s p e r s i o n 

on d i s t i l l a t i o n p l a t e s i s g i v e n . I t i s s u g g e s t e d t h a t p o i n t 

age d i s t r i b u t i o n s and r e s i d e n c e t ime d i s t r i b u t i o n s be e x p e r i -

m e n t a l l y d e t e r m i n e d t h r o u g h t h e u s e of r a d i o a c t i v e t r a c e r 

t e c h n i q u e s . 


