FILE SHARING:
AN IMPLEMENTATION OF THE MULTIPLE WRITERS FEATURE

by

MARY KENNEY
B,A., Wichita State University, 1974

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree
M.ASTER; OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

ApprWed b

/ ;
ST

Id/d;/gréfessor s

SPEC
Coll

v,

bl
RY
[7E&}
K96

c.R

TABLE OF CONTENTS

1.0 Introduction

1.1

1.2

Overview

1.1.1 Purpose

1.1.2 Direction of Research
1.1.3 The Implementation
Definitions

1.2.1 Operating Systen
1.2.,2 Disk Logical I/0
1.2.3 Application Progreams
1.2.4 File Sharing

1.2.5 IMultiple Writers
1.2,6 Locking lMechanisms

2.0 Review of Literature

2.1

2,2

General File Sharing Concepts
2.1.1 Motives for Sharing
2.1.1.1 Eliminate Duplication
2.1.1.2 Synchronize Operations
2,1+1.3 Cost and Efficilency
2,1.2 Access Control and Protection
Related Concepts and Implementations
2.2.,1 Distributed Systems
2.2.,2 Data Base lianagement Systens

2.2.,3 Concurrent Programming

© ® N W\ F o xR

10
10
10
10
1i
il
12
15
15
17
18

2.3 Problems

2.3.1 Controlling Access

2.3.2 Locking Parts of Flles

2.3.3 Ensuring Rellability

Description of the System
3.1.1 Hardware
3s1.2 Software
3.1.2,1 Operating
3.1.2.2 Filles
Fele2.241
3.1.2.2.2
Bl v R ey
3.1.2.2.4

3.0 Implementation of Multiple Writers Feature

System

Organizations
Access Methods
Open HModes

FPunctions

3.1.2.3 Data Structures

3.,1.3 Compatibillty Issues

3.2 Description of Implementation

3.2.1 Sector Lock and Unlock

3.2.2 Impact on Functions

3.2.2.1 Sequential Files

3.2.2.1.1
TulyZ il B
32424148
FaZ2 24l o
3.2.2.1.5

Open
Write
Read
Rewrite

Close

o
21
2L
22

23
23
23
23
23
24
24
27
28
29
29
34
36
36
39
39

39
b2

Ll
hé
kg

3.2.2.2 Relative Flles

3.2.2.3

3.2.2.2.1
3.2.2.2.2
3.2.2.2.3
3.2.2.,2.4
31224255
3.2.2.2.,6
JiBu2a2:7

~Open

Write
Read
Rewrite
Delste
Start

Close

Indexed Files

3.2.2,3.1
3.2,2.3.2
3.2.2:3.3
3.2.2.3.4
3.2.2.3.5

Write
Read
Rewrite
Delete
Start

3.2.3 File Sharing Problem Resolution

3.2.3.1
3.2.3.2
3.2.3.3
3.2.4 Testing

L.,0 Conclusion

File-Aceess Control

Sector Locking

Data Integrity

4,1 Advantages and Disadvantages

L.,2 Alternatives

Bibliography

50
50
51
57
59
61
63
63
64
64
65
66
67
68
69
69
70
71
7h

74
74
75

77

Figure 1.2.2-1

Flgure 3.1.2.1-1
Figure 3.1.2.2.4-1
Fig'l.ll‘e 3-1 .2.2 .2"'-2

Figure 3.1.2.3-1

Figure 3.2.3.2~1

LIST OF FIGURES

The Relationship Among the
Disk Logical I/0 Submodules

Processes In the System

Legal I/0 Functions

List of Statuses

Relationship Among Logical
I/0 Data Structures

Summary of Sector Lock Impact

25

30

31

33

72

ACKNOWLEDGEMENT

This report is based largely on work-related ex-
perience at NCR Corporation, Terry Johnson and Linda
Lallement Rehme provided encouragement and thoughtfully
reviewed the report. My advisor at KSU, Rod Bates,
assisted me in my pursult of a master®s degree at KSU
and was especlally helpful with the master's report re-
quirement. Alan, my husband, encouraged me throughout
my master's program. My thanks to all of these people,
to NCR and to the Department of Computer Science at
Kansas State University for thelr support during this

work.

1.0 Introduction
1.1 Overview
1.1.1 Purpose

Flile sharing capablilities have been included in a
variety of computer systems, from large time sharing com-
puters to small microprocessors. The purpose of the report
is to discuss file sharing and in particular to describe the
incorporation of file sharing into the operating system of

a speclfic microprocessor.
1.1.2 Direction of Research

An attempt was made to find documentatlion on the way
file sharing has been implemented in systems other than those
bullt by NCR., However, except for some general descriptions
found in sales brochures, 1t was not possible to do so since
such documentatlion is licensed by the conpanies.

Research for the report was pursued in the direction
of uncovering both descriptions of file sharing and related
concepts and also discussions of problems that must be re-
solved when more than one user is allowed to access a file

at a given time,
1.1.3 The Implementation

A major portion of the report deals with a programming

effort that was carried out for NCR Corporation. The

feature of allowing more than one writer to..a file at one
time was added to an operating sysﬁem of a mlcroprocessor.

The author worked as part of a team of four to design,
code and test the new feature. Writing the report and doing
the associated research, however, was not part of the re-
quirements of the work done at NCR., Low=-level design of
the feature was begun in February, 1980, and unit testing
was completed the following July, The work assoclated with
implementing the file sharing feature was done at NCR
Engineering and Manufacturing in Wichita, Kansas,

The operating system that was modified first came into
existence 1in early 1979. It evolved from an earlier operating
system which was written for the same microprocessor. The
earlier system supported a single workstation machine, where=-
as the later one supported a multi-workstation system, allow-
ing up to four keyboard-CRT workstations. Initially, the
logical I/0 portion of the later system allowed applications
running on different work-stations to access the same file
as readers. Only one writer was allowed to access the file -
at a given time, Allowing multiple writers to a file was
a new feature added to the already existing operating system,
and the addition of the feature caused a number of changes
To be made to the disk logical I/0 part of the operating
system,

One of NCR's goals in developing software is to have a

certain amount of compatibility among systems of the same

3

family. Therefore, some of the declsions made about imple-
mentation were resolved in the direction of being compatible.
with two other operatling systems. Basically, being com-
patible means that an application program written for one

operating system will run on another and vice versa.

1.2 Definitions

Some of the terms used in the report are defined

below.
1.2.1 Operating System

An operating system is a computer program, usually
large and composed of many subprograms or modules, that
provides a number of services for the users of the computer
system, OSome of the services provided by the operating
system are: scheduling jobs, allocating resources, dis-
patching programs, communicating with the operator, re-
covering from incidents, recording statistics, and storing

and retrieving data [4].
1.2.2 Disk Logical I/0

A major component of an operating system is the input/
output (I/0) subprogram. The prominent I/0 activities are:
allocating I/0 devices, processing user control statements,
opening and closing files, file cataloging, allocating direct
access storage device (DASD) space to files, maintalning de-
vice directory labels, storing and retrieving data, organ-
lzing flles, data staging, and overall I/0 supervision[#].

For convenience, the I/0 subsystem can be divided into
two parts: physical I/0 and logical I/0., Physical I/0O com-
prises the I/0 device drivers and device support routines.

Logical 1/0 is at a higher level and makes use of a number

5
of data structures to provide application programs with the
ability to read and/or write to files or devices.

Disk is the DASD on the operating system that was
modified. A large portion of the logical I/0 system exists
to provide support for the disk device. Disk logical I1/0
includes the following sub-modules:

1) Disk Directory = routines that allow control and
maintenance of the disk directory,

2) Disk Common - a set of common routines used by the
other sub-modules,

3) Indexed File Support - loglcal I/0 support for indexed
files,

4) Relative File Support - logical I/0 support for
relative files,

5) Sequentilal File Support - logical I/0O support for
sequential files,

6) Lock Routines - sector lock and unlock routines
used by the other sub-modules, and

7) Spooler - routines that allow print files to be spooled
to disk for later de-spooling to printer.

Figure 1.2.2-1 shows the relationship among the disk
logical I/0 sub-modules.

1.2.3 Application Programs

The terms user, application program, and application

user will be used interchangeably. The means of accessing

THIS BOOK
CONTAINS
NUMEROUS PAGES
WITH DIAGRAMS
THAT ARE CROOKED
COMPARED TO THE
REST OF THE
INFORMATION ON
THE PAGE.

THIS IS AS
RECEIVED FROM
CUSTOMER.

Figure 1.2.2=1 The Reletionship Among the Disk Logilcal
I/0 Submodules,

Directory Common
Maintenance Routines
Spooler
\j
Sequential Relative Indexed
File File File
Support Support Support
lé/
Lock
Routines

7
files or I/0 devices is through application programs. User
programs are executed under control of that part of the op=-
erating system that provides the environment and exercises the
controls required to fulfill the user'®s requests [4].
Application programs written in COBOL, BASIC, and 8080
assembly programming languages may be executed in the

operating system environment to be described in the report.
1.2.4 File Sharing

The term file sharing as used in the report means the
capabllity of a computer system to allow more than one user
to access the same flle at the same time. Users are appli~
cation programs running at different workstations or
terminals comnected to the system. The users may be readers
of the file or writers to the file,

It may be helpful to distinguish file sharing from
several similar concepts. MNultiprogramming is a general
term which refers to the executing of two or more programs
concurrently using a single CPU [4]. The operating system
interleaves the processing of the programs. File sharing
takes place in a multiprogramming environment and is the
special case in which the concurrent programs access the
same data files.

Concurrent programming must resolve many of the same
problems that should be addressed by.a .system that has file

sharing. A concurrent program is a program that has several

8
parts in execution at a given time [6]; The mechanisms that
allow concurrent programming are ususlly structures that are
features of partlcular programming languages. As in multi-
progremming, the main concern ln concurrent programming is
scheduling access to resources, The emphasis in file sharing
is similar, allowing data flles to be accessed by multiple
users while preserving the integrity of the files.

Preserving the integrity of data 1s also a major concern
of a data base management system. A data base management
system can be thought of as a large file sharing systemn.

The same protectlon of data while it 1s accessed by many
users must be provided by both types of systems.

1.2.5 Multiple Writers

Speclal problems can occur when more than one writer
accessed a file at a given time., Measures must be taken
to ensure that the data in a file remeins in a conslstent,
useable state. These special problems and their methods
of resolution are the subjects of the report and will be

addressed throughout.
1.2,6 Locking Mechanisms

Specifically, the way data is protected in a multiple
writer environment is with the use of locking mechanisms,
There are many different implementations of data locking/

unlocking, but the primary goal is to provide a means of

shared or exclusive access to the data [6].‘ One locking
mechanism will be described in the report.

10

2,0 Review of Literature
2.1 General File Sharing Concepts
2.1i1 Motives for Sharing

Sharing of resources including data fliles has a number
of advantages. The following three categories summarize
most of the reasons for sharing resources:

1) eliminate duplication, yet provide accessibility;
2) allow the synchronlzation of operations; and

3} reduce cost and improve performance of system usé [9].
2.1.1.1 Eliminate Duplication

File sharing capabllity is not required in a batch
environment, but would be helpful in an interactive environ-
ment that supports multiple users. The requirements of an
Interactive system are such that files should be able to be
updated immediately.

If two users need to access or update the information
contained in a file and file sharing is not allowed in the
computer system, then one of two alternatives exist. ILither
the users must walt for each other to finish accessing the
file [8], or the fille must be duplicated giving each user
a copy [12]. Both alternatives create problems for the
user. In the first, valuable time is wasted while onée
user waits for the other. 1In some application environments

such inaccessibllity of the data could cause serious problems

11
and therefore would not be acceptable.

The second case elimlnates the problem of inaccessie
bility, but if both users are making changes to the date,
then neither user has access to the most up-to-date infor-
mation all the time. The problem of periodically updating
all coples of the file must also be resolved., Once again,
there are environments in which users depend upon the
information supplied by other users. Therefore, the second

alternative would not be acceptable,.
2.1.,1.2 Synchronize Operations

Sharing of files allows synchronization of data oper-
ations. For example, all modifications of an individual's
bank balance, whether by human or automatic tellers, should
be made to the same file even if the updates coincide in
time [9]. The computer system will have to provide the
hecessary synchronization controls so that one update does
not des.troy the other updates that may occur at the same
time. In addition, the file will always be current if the

operations are synchronized in a file sharing environment.,
2+:1:1.3 Cost and Efficiency

Duplication of files is costly in terms of secondary
storage and in terms of the overhead involved in preriodi-
cally updating all the copies. If the files can be shared
with all operations for the same information being carried

out on one copy of the file, the cost of duplication can

12
be eliminated [9].
The computer system is more efficiently utilized if
files can be shared by users than if the users must wait
for each other to f;nish before being able to access the

files.
2.1.2 Access Control and Protection

In a system that allows file sharing, access to files
must be controlled so that the data can be protected.
Several modes of access control are sometimes found within
the same computer system [12].

The most basle kind of access control is the "all or
nothing” mode. 1In this case the user can either perform
eny operation on the data (read, write, etec.,) or the user
is not allowed to access the data at all., Certain files
may be able to be designated as private, meaning that only
one user can have access to the file at any given time.

In addition, when a file is being created the user setting
up the file 1nitially may be provided with exclusive use of
the file at least until the file's characteristics can be
established.

Some systems provide elaborate modes of protection.
Certain information can be accessed by certain users in a
"read-only" mode while other users may be able to write to
the data. MNULTICS [10] differentiates the following access

attributes: read, write, execute, append, and trap, These

13
attributes are stored in the directory and are a means of
controlling access to the files., MULTICS also makes use of
a loglcal control structure called "Rings of Protection",
Location within a particular ring dictates the information
that may be accessed and the mode of access for a progranm
or system module.

Protection keys specifying access permissions are used
in the UNIX Time-Sharing System [?]. The keys are part of
the file directory. Usually, data files have general read/
write permissions making thelr contents sharable between pro-
cesses,

If two users are allowed to access the same data in
"write" mode, there must be a way of controlling access to
portions of the file at critical times., Sections of the file
must be able to be protected temporarily so that only one
user at a time may be allowed access while updating is taking
place, Usually, some type of locking controls are used for
shared data [1@]. Locking mechanisms vary from simple to
quite complex. A process or program may be allowed to have
only one portion of a file locked at a time or may be allowed
to place multiple locks, The locks may be exclusive access
locks, allowing no other process to read or write to the data,
or they may be a combination of types of locks, including ex-
clusive locks as well as locks that allow other readers but
not other writers to access the data.

Access control and ensuring the integrity of data are

14
major concerns of any system that allows the sharing of data.
The value of a concurrent file system to be used in a busi-
ness environment is determined by how well the system pro-

tects the data and ensures 1ts lntegrity.

15
2.2 Related Concepts and Implementations

2.2,1 Distributed Systems

Woodstock File System (WFS) [13] is a shared file system
which operates in a distributed network, The user 1s pro-
vided with a limited repertoire of atomic operations which
may be used to create files or modify pages of a file. The
file directory contains access control information speci-
fying whether or not the file may be shared. Each page also
contains certain status information such as a "dirty bit"
which indicates that a change has been made to the page if
the bit is set.

In WFS "a cllent may lock a flle, preventing access by
anyone without the proper key. The lock operation returns a
key that must be supplied with all subsequent operations on
the file, until either the client issues an unlock operation
or the lock breaks., WFS will break a file's lock if no op-
eration has been performed on the file for a minute or so.

A system restart breaks all locks, A key of zero fits an

unlocked file. A client can detect a broken lock because

the non-zero key will not fit the lock on an unlocked file.

key lock access

0 0 allowed unlocked

0 X denied locked

X X allowed locked
0

e denied locked
denied unlocked

xr
Fis

These locking operations provide primitives that are adequate

16

to implement completely safe sharing mechanisms" [}3, p.ii].

To support shared access to files in WFS, the following
categories of file system information exist:

1) "long-term information" which includes such things as
the file 1tself, directory information, and system
allocation tables, This information exists throughout
the file's lifetime;

2) "medium~-term information" contains the timeout lock
that enables the sharing of data;

3) ‘"short-term information" contains the information that
must be kept during the executlion of an operation.

The approach to sharing by WFS is very primitive but
has been shown to provide reliable shared access to user files.
Paxton [11] discusses mechanisms for maintaining data
integrity in a distributed transaction processing environ-
ment. He identifies the following important system properties:
"1) The consistency property: although many clients may be
performing transactlions simultaneously, each will get a
consistent view of the shared data as if the transactions
were belng executed one at a time!

2) The atomic property: for each transaction, either all
of The writes will be executed or none of them will,
independent of crashes..." [11. p+18] 4

The lock mechanism described by Paxton is similar to
that of WFS in which a key is used to gain asccess to a file,

The lock status of data files and of intentions files (used

17

for back-up and recovery) are shown to be useful in recover=

ing from crashes,
2.2.2 Data Base lanagement Systems

Shering of data is usually allowed in & Data Base lanage-
ment System (DBNS). A system provided by Texas Instruments
[14], the DBNMS-990, for example, allows users to share data
files, The means by which data 1s protected during critical
updates 1ls provided in the user program languages. Records
can be explicitly locked in both the assembly language that
the system supports and in COBCL,

In a discusslilon of the "concurrent update problem”,
Tsichritzis and Lochovsky [15] l1dentify a number of the issues
that complicate locking of data to prevent access to data that
is being modified, Tradeoffs must be made in the area of how
much of the data base should be locked at one time for one
operation., lMany DBLNS allow various amounts of the data base
to be locked, from a record, to a record type, to a view, to
the entire data base, depending upon the operation to be per-
formed.

What happens when a locking request cannot proceed is
another issue that must be resolved, There are a number of
ways to deal with the request. MNost systems cause the process
to walt until the lock can proceed, however a fake modifi-
cation could be performed in which the changes would be
placed in a temporary file until they could be made to the

18
data base.

Most DBIIS allow more than one lock to be placed on the
data base by e process at one time, This ensures that all
related data can be updated to provide consistency. How-
cver, allowing more than one lock can cause deadlocks. A
deadlock occurs when a process has a resource locked that
another process needs and vice versa. So, both processes
are walting for each other to release a resource,

Another issue involved with locking is the length of
time locks are in place, "To maximize concurrent use of a
data base, it 1s important that items are loclked for the

minimum amount of time possible” [;5; p.260].
2.2.3 Concurrent Programming

As mentioned earlier, many of the concerns of concur-
rent programming are also concerns of implementing file
sharing, Also, many of the problems faced by each are the
same. File sharing could be implemented by writing parts of
an operating system in a programming language that contains
concurrent structures.

Basic to concurrent programming is the concept of
critical sections. Whlle shared data is belng updated by a
process, no other process should be allowed to execute those
same statements, updating the data [6]. A number of synch-
ronization primitives have been described in the literature,

These primitives have to do with causing a process to wait

12
while another process executes a set of program statements.
After the process completes execution, the waiting process
is signaled that it may begln execution of the statements,
The synchronization primitives are primarily used to allow
only one process at a time to execute some set of code, thus
protecting the shared data from simultaneous update.

An example of the similarity of the goals of concurrent
progranming and an implementatlion of operating system support
for file sharing can be found in the discussion of "readers
and wrlters" presented by Courtols, et al [3]. The problem
centers around controlling and providing mutual exclusion for
processes accessing critical sections of code. Using P and V
semaphore operations, the authors demonstrate two ways of
providing the "reader" processes with the abllity of sharing
& resource with other readers, while at the same time pro=-
viding the "writer" processes with exclusive access to the
resource, This is exactly what 1s required of a system that
proposes to allow the sharing of files by both readers of the
files and writers to the files.

Deadlock can occur in concurrent programming as in
DBIS since several processes compete for a limlted number of
resources. To control allocation of resources, the program
structure called a monitor may be.used. A monitor can be
thought of as a scheduling primitive [1,2,5].

There are a few differences between concurrent Pro=-

gramming and the implementation of file sharing discussed in

20
the report. For one thing, concurrent language structures
were not available to help with the implementation, 1In
additlon, concurrent programming is concerned with data in
memory, whereas the data being protected in the file sharing
implementation resides on disk, And fihally, concurrent
programming manlpulates data that may not change in type or
gize at runtime. Neveriheless, protection of critical sec-
tions of code, synchronization of operations, and scheduling
of resources are all part of the underlylng operating system
that supports sharing of filles,

21

2.3 Problenms

Many of the problems that must be addressed when file
sharing capabllities are added to an operating system have
already been mentioned. To summarize, the problems may be
categorized as follows:

1) controlling accesz to files,
2) 1locking portions of files, and

3) ensuring reliablility.
2.3.1 Controlling Access

An operating system that supports file sharing must
not only make it possible for several users to access the
seame file but should also be able to prevent more than one
user from accessing a particular file., Some files should
be allowed to be private, and the user should be able to
"otm" a file, that is, the user should be able to be allowed

exclusive access to a file if necessary.
2,3.2 Locking Parts of Tiles

A whole group of l1ssues must be resolved under the
category of file loclking. Some are'listed belorr:
1) how many locks per process at a given time may be in
place,
2) what anount of data may be locled,
3) how long may locks be in place,

L) how is deadlock prevented/detected,

22
5) how are requests blocked if the data is already locked
by another process, and

6) how long are blocked requests allowed to wait.
2.3.3 Ensuring Reliability

A system should provide the means for ensuring data
integrity. This is especlally crucial and difficult to
achieve when more than one user is allowed to access the
same data file at the same time. If two or more processes,
for example, are allowed to simultaneously update the same
record [4], the results will be unpredictable.

In addition, if a hardware or permanent error occurs
or the system crashes while a file is being used, the oper-
ator should be glven some indication that the file may be
nreliable, At best, recovery procedures could be built
into the system, so that the file could be restored to a

consistent state.

23
3,0 Implementation of MNultiple Wrlters Feature

3.1 Description of the System
3.1.1 Hardware

The system that was modified is an interactive micro-
processor, It has from 64K to 256K bytes (8 bits/byte) of
main memory and secondary storage of four to eight disks,
one of which is removeable. The system includes one to
four keyboard-CRT workstations and one or two printers.
One of the printers may be a ledger printer, In addition,
a data cartridge drive is part of the system and is used
primarlly for system generation and file back-up, Other
peripherals that may be included are up to four flex disk

drives and up to two cassette drives.
3.1.2 Software
3.1.2.1 Operating System

The operating system includes software support for all
of the devices listed in section 3.1.1. The operating system
i1s a virtual memory system, making use of variable demand
pages (VDP) and overlays., Scheduling of processes is accome
plished wlth time slicing in a round-robin fashion,

Processes in the system are resources from which Jobs
may be run. Each workstation has the capability of allowing

Jobs to be initiated from a primary or a secondary mode or

24

to be placed on a batch queue., When secondary mode is entered,
the job running in primary mode is suspended. Therefore, a
system configured with four workstations and batch has nine
processes, five of which may have jobs running concurrently
(figure 3.1.2.1-1).

The operating system is written in 8080 assembly language
and supports the creation and manipulation of various types
of files. Application programs written in COBOL, BASIC and
8080 assembly language may be executed, A number of system
utilities are also provided which allow the user to move
files from one device to another, inspect device directories,
inquire into the contents of files, etc.

The various options avallable are configured into an
operating system through a system generation process. A hew
software optlon provided as a result of the multiple writers
feature 1s a sector lock timer value, This is the length of
time 1n seconds that a process may be delayed while attempting

to lock a sector that another process has locked,
3.1.2.2 Files

Disk logical I/0, which i1s part of the operating systen,
provides support for three types of logical file organizations
and three types of record access methods. The components of

disk logical I/0 were listed in section 1.2.2.

3.1.2.2.1 Organizations

Figure 3.1.2.1=1 Processes in the System

Workstation 1

Workstation 2

Primary -
rd
Fa
rd
Fd
v

“ Secondary

Primery .~
Fd
e
/
rd
e

< Secondary

Workstation 3

Primary .~
/
’”
v
e
e

7 Secondary

Batceh

Workstation 4

Primary .~
=
Fe
rd
Fd
P

7 Secondary

- — — Secondary mode entered vie Break-key Suspend

-~~~ Batch Jjobs placed on queue via Submit Command

26

The file organizations supported are sequential, rel-
ative and indexed.

Sequential filles are characterized by the consecutive
placement of records within the file. Sequential files may
only be accessed sequentially, and the legal open modes for
sequential files are open for input, open for output, open
for input or output (I/0), and open for extension (to be de=-
fined in section 3.1.2.2.3). Records may be fixed or vari-
able in length. If the records are fixed, they may be between
1 and 512 bytes; 1f variable, they may be from 1 to 510 bytes
in length, excluding a 2 byte variable length index (VLI).
Maximum blocksize is 512 bytes and the minimum is the record
size for fixed length records, the maximum record size plus
two for variable length records. There is one block per
sector and records may be blocked (buffered) in memory during
processing if the length of record (plus VLI) times 2 is less
than the blocksize,

In relative files records are identified by their pos-
ition in the file relative to the begimning of the file (rel-
ative record number). Relative files may be accessed by any
of The three access methods, and the legal open modes are
open for input, open for output, and open for I/0. Records
may be fixed in length only. Record size is from 1 to 512
bytes and blocksize is from record size to 512, Records may
be blocked if the blocksize is at least two times the record

size. There is one block per sector.

27

Indexed flles are characterized by the use of keys which
identify the records and are part of the records. Keys are
of fixed size and fixed offset within the records. Any of
the three access methods may be used, and the legal open
modes are open for input, open for output, and open for I/0.
Records may be fixed or variable in length with the same size’
constraints as sequential files. The key size may be from 1
to 246 bytes in length but may not be longer than the record
size, There 1s one block per sector and blocking may occur
as in sequential files,

Indexed flles differ from sequential and relative files
in that a key index directory is contained after the data
portion of the file. The actual data records are placed in
the file in the order of their creation. The index directory
1s bullt at the end of the file, starting with the last sec-
tor, The data part and index part of the file are like two
stacks growing toward each other, The index directory is
crcated and malntained in ascending order according to the

value of the keys.
3.,1.2.,2.2 Access Methods

Disk logical I/0 supporits these access methods: sequen-
tial, random and dynanic,

Sequential, relative and indexed files may all be
accessed sequentially. If sequential and relative files are

accessed sequentially, the records are read/uritten in the

28
order of their occurrance starting at the beginning of the
file. In indexed files, records are read/written in ascending
order by key value.

Random access 1s valld for relative or indexed files.
Records are accessed by relative record number in the case of
relative files and by key in the case of indexed files.

Dynamic access is also valid for relative or indexed
flles and is a combination of sequential access and random
access. Records may be obtained by relative record number/
key or they may be obtained by a "read next" which will re-
turn the next relative record in the file or the record

associated with the next index key.
3.1.2.2.3 Open liodes

Two of the I/0 functions are operations on files., They
are "open" and "close". The other functions are performed
to manipulate records. There are four mutually exclusive
open modes: open for input, open for output, open for input/
output (I/0), and open for extension.

Open for input allows the records in the file to be read.
Records may not be written to the file while i1t is opened for
input, and the file retains the same characteristics through-
out processing.

Records may only be written to a file that is opened for
output. File characteristics may be established or changed
in this open mode, A file that is opened for output is con-

29
sidered empty at the beginning of processing. Any records
that may have been contained in the file are over-written.

In the open for I/0 mode, records may be read or written
(for sequential files, read and rewrilte are allowed, see
figure 3.1.2.2.,4-1). If the file is empty when opened for
I/0, ites characteristics may be changed. However, if the
file is not empty, 1t retains the same characteristics
throughout processing.

Open for extension is legal for sequential files only,
Records may only be written and are added to an existing
file. If the file is empty, it may be reorganized, otherwise

it may not.
3.1.2.2.4 Functions

The I/0 functions that may be performed on records in-
clude read, urite, rewrite, delete, read next, and start.
Figure 3.1.2.2.4=1 shows which functions are allowed within
each access mefhod for each file type and open mode, It
should be noted that in the sequential access method, re-
urite and delete must be preceeded by a read of the record
to be rewritten or deleted. TFigure 3.1.2.2.4-2 is a list
of the statuses that may be returned to applications after

attenpting to perform the various functions.
3.1.2.3 Data Structures

A number of data structures are used by the operating

Figure 3.1.2.2.4-1 Legal I/O Functions

hhrElQ Qe

—t
]

omHaBEE

HEeEHRBEEOOoOHO

og=EE

—
]

OPEN IMODE:

FUNCTION:

READ
READ NEXT
WRITE
REWRITLE
DELETE
START

READ
READ NEXT
WARITE
REWRITE
DELETE
START

READ
READ WEXT
WIITE
REVDITE
DELLTE
START

I'ILE ORGANIZATION

SEQUENTIAL RELATIVE TNDEXED

I 0 I E I 0 I I 0 I

v U /X 1 U/ N U [/

P T O T P T O P T O
U P i U P U P
T U N T U T U
T D T T

% i x x X T
% X 4 i

X X

< -r X >

4 X i %

X X T R

X ¥

30

31

Pigure 3.1.2.2.4-2 List of Statuses

Successful- conpletion/good status

End of data reached

Index file keys out of sequence

Duplicate key

o data record for given key

Record number exceeds actual number of keys
Permanent error

Boundary violation file extent reached

File not avalilable or not assigned

File not closed

'ile not opened

Invalid operation

Invalid open

Invalid device

Record size outside minimum/maximum value
Insufficient memory available to perform function

Time out on sector locl:

32
system to keep track of necessary information. Four are
important to disk logical I/0, They are: Tfile descriptors,
I1/0 function control structures, general file information
structures, and process flle information structures.

File descriptors reslde in the dislt directory and con-
tain such information as file name, locabtion on dislk, type
of file, length of flle, blocksize, and record size.

The application sets up the information in the I/0
function control (IOFC) structures. The operating system
uses this informatlion to carry out the user's requests.

There is one general file information (GFI) structure
in existence for eaclh Tile that any process has assigned.
The information in thils structure is essential for providing
file sharing among processes and is global to all processes.

Dach Tile that a particular process has assignhed has a
corresponding process fille information (PFI) strueture. The
information in this structure is readily availsble to a pro-
cess and 1s necessary for carrying out user's requests.
Pointers to the appropriate IOFC and GFI are contailned in
the BFI,

The pseudocode that follows is written with reference
to these dala structures.. The structure is given first,
followed by a period and the offset within the structure.
flgure 3.1.2.3-1 shous the relationship among the I0TC,

T, and GFI data structures.

Figure 3.1.2.3-1 DRelationship Among Logical I/0 Data Structures

Three processes have file A open:

PI'T for Iore GI'T
Process 1

A 4 M
PI'T for TOFC

Process 2

A

PI'T Tox

Process 3 I0TC
e S
.A. | .A.

34

3.1.3 Compatibility Issues

While the multiple writers feature was belng designed
end throughout 1ts lmplementation, consideration was given
to being compatible with other systems as described in sec-
tion 1.1.3. Some of the requirements of the implementation
that were determined by the goal of compatibility are:

1) Only one sector of a file may be locked by a process
at any glven time, When & process tries to lock a
new sector, the old sector (if any) will be auto-
matically unlocked,

2) A process may have a sector locked for each file it
has .assigned.

3) Processes assigning a file as read-only (used for a
fille that is being executed) or opening the file for
input, willl not lock sectors for that file but will
honor sector locks of other processes. (The actions
of checking for a locked sector and then performing
the read are indivisible, therefore another process
will not be able to lock the sector between the two
actions.)

L) Processes that own a file will not lock sectors for
the owned files. A process that opens a file for
output must have the file assigned as owned,

5) The sector lock routine will issue a timer if a
process attempts to lock a sector that is already

locked by another process. Locks failing due to the

6)

7)

35
timer expiring will return a timeout status to the appli-
cation, In other words, the process attempting to lock
a sector is timed not the process that has the sector
locked.,

How long & process has a sector locked is not timed,
The sector may be kept locked indefinitely.

Any time an error {status other than good) is returned
to the application while processing a file, 1f the
process has a sector of the file locked, 1t will be
automatically unlocked.

36

3.2 Description of Implementation
3.2.,1 BSector Lock and Unlock

The mechanism used to allow excluslve access to records
was provided in a new disk logical I/0 sub-module that con-
tained routines to lock and unlock sectors. The actual re-
source locking/unlocking was done by routines existing in
the supervisory part of the operating system with which disk
logical I/0 interfaced. If the sector was actually locked,
the sector number was put into the PFI, If the sector was
unlocked, zero was put in that field in the PFI. The PFI is
not listed as a parameter because 1t is available to all
disk logical I/O routines and its fields may be modified by
any of the routlnes at any time. The logic involved in the
lock and unlock routines is given below:

ROUTINE: Sector ILock
INCOMING PARAMETERS: Sector number to be locked
RESULT PARAVMETERS: Return status (good or timeout)
PSEUDOCODE :
BEGIN SECTOR=-LOCK
status = good
IF PFIl.shared file = true THEN
IF PFI.read only = triie:OR IOFC.open mode = input THEN
check lock status (sector number, locked statug)
WHILE locked status = locked by another process AND

status = good DO

delay lock (timer,status)
IF status NOT = timeout THEN
check lock status (sector number,locked status)
ENDIF
ENDDO
ELSE
IF sector number NOT = PFI.locked sector THEN
IF PFI.,locked sector NOT = O THEN
unlock resource (PFIl.sector locked)
ENDIF
lock resource (sector number,timer,status)
IF status = good THEN
PFI,locked sector i= sector number
ENDIF
ENDIF
ENDIF
ENDIF
RETURN
END SECTOR-LOCK

ROUTINE: Sector Unlock
INCOMING PARAMETERS: None

RESULT PARAMETERS : None
PSEUDOCODE s

BEGIN SECTOR-UNLOCK

IF PFI.shared file = true AND (PFI.read only = false OR
IOFC.open mode NOT= input) THEN

37

38
IF PFI.locked sector NOT = 0 THEN
unlock resource {PFI,locked sector)
PFI,locked sector 1= 0
ENDIF
ENDIF
RETURN
END SECTOR-UNLOCK

39

3.2,2 Impact on Functions

The incorporation of the multiple writers capability
changed the logic of each file I/0 function., Therefore, &
description of each funetion will be provided, with par-
ticular attention given to the changes made, The functions
will be presented according to file organization.

Critical sections are used to insure that the operator
cannot interrupt the updating of critical control structures
by pressing the break key. Break key is a special function
that allows the operator to interrupt a process to abort a
program, to enter secondary mode, or to perform other similar
operations. The entering and exiting of critilcal sections
will not be explicitly stated in the pseudocode.

As mentioned before, the PFI is available to all of the
following routines and will, therefore, not be listed as a
parameter. Access can be galned to the other data structures
(I6FC and GFI)} through the PFI. The pseudocode is greatly

simplified to provide only the general logic of the functions,
3.2.2.1 Sequential Files
3¢2.2.1.1 Open

The open routine checks organization, blocksize, record
size and record type against the directory information to
ensure that the user is opening the file broperly. To prepare

for the file being opened for extension by this process or a

)
later process, the last data sector of the flle 1s read and
the last record is located so that the system willl know where
to put new records. The loglc for open is as follows:
ROUTINE 3 Sequential Open
INCOMING PARAMETERS: None
RESULT PARAMETERS: Status
PSEUDOCCODE :

BEGIN SEQ=-OPEN
status 1= good
check for legal open (status)
IF status = good THEN
set open flags (status)
GFI.,open count 1= GFI.,open count + 1
IF IOFC.open mode = output, I/0 or extend THEN
GFIl.writer count := GFI.writer count + 1
ENDIF
IF status = good THEN
IF GFI.open count = 1 AND IOFC.open mode NOT = output
THEN
read GFI.end of data sector -~ 1 (status)
IF status = good THEN
find last record in buffer
ENDIF
ENDIF
ENDIF
ENDIF

Lol

IF status = good THEN
IF IOFC,open mode = extend AND
GFI.,end of data sector NOT= PFI,start sector THEN
PFI.current sector 1= GFI.end of data sector - 1
PFI.position in buffer := last record in buffer
LLSE
PFI.current sector 1= PFI.start sector - 1
PFI.position in buffer 1= PFIl.end of buffer
ENDIF
set up funtion table (status)
ENDIF
RETURN (status)
END SEQ=OPEN

The open routine does not lock sectors or honor locked
sectors, The only purpose for the I/0 operation that is per-
formed is to set up pointers, and since the I/0 operation is
only done in the case of the flrst process opening the file,
there should be no contention for the sector. The major im-
pact to open due to bhe multiple writers feature 1s that the
last data sector must be read and pointers set up by the
first open, regardless of whether the open mode is for input,
I/0, or extension, in case a later brocess opens the flle for
extension. (Open for output does not have to do the read
since the file will be owned and therefore no other process
may have access to it.,) ©Prior to the implementation, only

open for extension had to set up the pointers since only one

L2

writer at a time was allowed to have the flle opened.

3.2.2.1.2 Write

Sequential wrlte became two routines: sequentilal write
for owned flilles and sequential write for shared flles. This
was done because the logilc for the two was quite different
and to have comblned them would have affected the performance
of sequential write for owned flles. Only the logic for
sequential write for shared files wlll be presented here,

That for owned flles remained much as it had been. The write
routine places the record which is in the user's area into

the file in the next record position. Records are written
immediately to the disk (whereas, if the file is owned, records
are added to a memory buffer until the buffer becomes full and
then are written to disk., This is known as blocking.).

ROUTINE: Sequential Write for Shared Files
INCOMING PARAMETERS: None

BRESULT PARAMETERS: Status

PSEUDOCODE ;

BEGIN SEQ-WRITE-SHARED
status := good
lock end of data sector (status)
I status = good THEN
determine next sector to write (status) "updates the
PFI,current sector"

IF status = good THEN

43
IF PFI.current sector NOT = GFI.end of data sector THEN
read PFI.current sector (status)
ELSE
PFI.,position in buffer i:= PII.buffer address
ENDIF
IF status = good THEN
move record from IQFC.user's area to buffer
£ill rest of buffer with delete characters
write PFI.current sector (status)
IF status = good THEN
IF PFI.current sector = GFI.end of data sector THEN
PFI.current sector := GFI.end of data sector
GFI.end of data sector := GFI.end of data sector+i
ENDIF
PFI.position in buffer := PFI.position in buffer +
IOFC.record length
ENDIF
ENDIF
ENDIF
ENDIF
unlock sector
RETURN (status)
END SEQ-WREITE~SHARED

Sequential file writes are always performed at the end
of data. Therefore, the end of data sector is the sector that

must be locked. If two or more processes are writing to the

Ll

file, it is very possible that by the time a process gets the
sector locked, it may no longer be the end of data sector.
The logic, then, for the speclial "lock end of data sector”

is as follows:

ROUTINE: Lock End of Data Sector
INCOMING PARAMETERS: None

RESULT PARAMETERS: Status (good or timeout)
PSEUDOCOQDE :

BEGIN LOCK-EQOD
status = good
WHILE PFI,sector locked NOT = GFI.end of data sector AND
status = good DO
sector := GFI.end of data sector
lock sector (sector,status)
ENDDO
RETURN (status)
END LOCK-EQOD

3+2,2:1.3 Read

Sequentlial read also became two routines for the same
reasons as sequentlal write. The logic for sequential read
for shared files will be presented. The read routine locates
the next record in the file and moves it into the user's
area. A sector is read only if i1t is not currently locked
by the process (the sector is in a memory buffer already).

ROUTINE : Sequential Read for Shared Files

b5
INCOMING PARAMETERS: None
RESULT PARAMETERS1 Status
PSEUDOCODE :
BEGIN SEQ-READ=-SHARED

status 1= good

IF PFI.position in buffer = PFI.end -°f buffer THEN
determine next sector to read (status) "updates the
PFI.current sector"
ENDIF
IF status = good THEN
REPEAT
IF PFI,current sector NOT = PFI.locked sector THEN
lock sector (PFI.current sector,status)
IF status = good THEN
read PFI.current sector (status)
ENDIF
IF status &= good THEW
locate next record in block (flag)
IF flag = found THEN
move record into IOFC.,user's area (status)
IF statuvs = good THEW
IF PrI.organization = relative THLI
increment relative record number
ENDIF
PFI.length of last record read i= IOFC.
record length

L6

ENDIF
RETURN (status)
ELSE
determine next sector to read (status)
ENDIF
ENDIF
ENDIF
UNTIL status NOT = good
ENDIF
RETURN (status)
END SEQ-READ-SHARED

This routine is used for the sequential access method
of both sequential and relative files. Therefore, deleted
records could exist within the file and several sectors may
have to be read before the next record in the file is found,
It should be noted that the read function leaves the sector
locked upon return. This 1s important for the implementa-
tion because sequential deletes and rewrites must be pre-
ceeded by a read of the record and the sector must be locked
until the delete or rewrite 1s completed. This could also
cause sector contention problems for users since a process
could read a record and keep the sector locked for any

length of time.

3.2.2.1.4 Rewrite

k7
Sequential rewrite replaces a record Jjust read by the
record in the user's area. The previous I/0 operation must
have been a read. The replacement record must be the same

length as the old record.

ROUTINE: Sequentlal Rewrite
INCOMING PARAMETERS: None

RESULT PARAMETERS: Status

PSEUDOCODE:

BEGIN SEQ-REWRITE
status 1= good
IF PFI.length of last record read = 0 OR PFI.length of
last record read NOT = IOFC.record length THEN
status := invalid operation
ENDIF
IF status = good AND PFI.shared file = true THEN
IF PFI.current sector NOT = PFI.locked sector THEN
status := invalid operation
ENDIF
ENDIF
IF status = good THEN
IF PFl.record length = variable THEN
IOFC,record length := IOFC,record length + 2
ENDIF
PFI.position in buffer := PFI.position in buffer -
IOFC.record length
IF PFl.shared file = true THEN

48
compare record iln IOFC.user's area to record in buffer
IF equal THEN
PFI.length of last record read i= 0
unlock sector
PFI.position in buffer := PFIl.position in buffer +
JOFC.record length
ELSE
move record from IOFC.,user's area to buffer
write PFI.current sector (status)
unlock sector
ENDIF
ELSE
move record from IOFC.,user's area to buffer
PFI,buffer changed 1= true "used for blocking"
ENDIF
ENDIF
RETURN (status)
END SEQ-REWRITE

' This routing is also used for both sequential and
relatlve files in the sequential access method. While the
design of multlple writers was taking place, another com-
patibility issue was brought to our attention. Programs
written for another operating system were doing rewrites
after reads quite often for the sole purpose of unlocking
sectors. No data was being changed, the programs simply

wanted to kmow what & record contained and did not want to

kg
tie up the sector. The other operating system was asked to
make a change to rewrite, to determine if a record had
cthanged before writing it to the disk and thereby avoid
doing unnecessary I1/0 operations, thus improving performance.

We, therefore, made the same change in our operating system.
F3i2s841l+5 Close

The close routine makes sure no I/0 for the file is
outstanding., It releases buffer memory. The appropriate
flags are changed to indicate that the file is closed. The
file descriptor In the directory is updated if needed, The
only change to the close routine was that if the process had
a sector locked for the file, the sector was unlocked. There-

fore, the logic for close will not be included in the report.

50
3.2.2.2 Relative Filles

3.2.2.2.,1 Open

Like sequential open, relative open checks file organi-
zation and record type. BRelative open does not need to do a
read I/0 operation to find the last record in the file because
relative files cannot be opened for extension. The logic
for open is:

ROUTINE: Relative Open
INCOMING PARAMETERS: None
RESULT PARAMETERS: Status
PSEUDOCODE s
BEGIN REL-OPEII
status 1= good
IF IOFC.open mode = extend OR IDFC.record length =
variable THEN
status := invalid open
ENDIF
IF status = good THEN
check for legal open (status)
IF status = good THEN
set open flags (status)
GFI.open count := GFI.open count + 1
IF IOFC.open mode = output, or I/0 THEN
. GFIL.writer count := GFI.,writer count + 1

ENDIF

IF status = good THEN
PFI,current sector 1= PFI.start sector ~ 1
PFI,.positlon in buffer := PFI.end of buffer
PFI,records per block := IOFC.blocksize/IOFC.
record size
set up function table (status)
IF status = good THEN
PFI.,relative key 1= 0
ENDIF
ENDIF
ENDIF
ENDIF
RETURN (status)
END REL-OPEN

The changes to relative open to implement multiple
writers conslisted in removing code to prevent the open if
the file was already opened by a writer, Instead, the
writer flag became a counter., These same changes were
made in sequential and indexed open routines. It should
be noted that if a process has a file opened for output,

no other process will be able to assign (access) the file.

3.2.2.2.2 TWrite

Relative random write locates a record' position by
key number and moves the record from the user's area inte

the buffer. Becords are written immediately to disk. o

51

52
record may already exist at the record's position in the
file prior to the write.

ROUTINE: Relative Bandom (and Dynamic) Write
INCOMING PARAIMETERS: None
RESULT PARAMETERS : Status
PSEUDOCODE :
BEGIN REL~RAN=~WRITE
locate relative record position (status,in memory flag,
sector number)
IF status NOT = invalid key THEN
IF status = beyond EOD THEN
random write to EQOD (status,flag,in memory flag,
sector number)
IF flag = handled as EOD THEN
RETURN {status)
ENDIF
ENDIF
ENDIF
IF' status = good THEN
I in nmemory flag = false THEN
lock sector (sector number,status)
I status = good THEN
read sector number (status)
ENDIF
ENDIF
IF status = good THEN

53
check for deleted record (status)
IF status = good THEN

check for legal record size (status)

I

IF status = good THEN
move record from IOFC.user's area to buffer
write sector number (status)

ENDIF

ENDIF
ENDIF
ENDIF
END REL-RAN=WRITE

The logic of two of the routines called by this routine
should be presented for the sake of clarification. One of
the routines, "locate relative record position", will be
used by the other relative random routines. The other rou-
tine, "random write to EOD", was separated from random write
to make the routines more modular and easier to understand.
ROUTINE Locate Relative Becord PBosition
INCOMING PARAVETERS: None
RESULT PARAMETERS: Status, sector number if found,

in memory flag
PSEUDOCODE 3
BEGIN LOC-REC
status := good
IF PFI.records per block > 1 THEN
IF PFI.records per block < IOFC.relative key THEN

54
quotient 1= IOFC.relative key/PFI.records per block
remainder 1= modulo (IOFC.relative key/PFI.records

per block)
IF remainder = 0 THEN
quotient := quotient - 1
remainder := PFI.records per block
ENDIF
ELSE
quotient := 0
remainder := IOFC.relatlve key
ENDIF
remalnder := remainder - 1
PFI.position in buffer := PFI.buffer address +
(remainder # IOFC.record size)
ELSE
quotient := IOFC.relative key = 1
PFI.,position in buffer := PFI.buffer address
ENDIF
sector number := PFIl.start sector + quotient
PFI.relative key := IOFC.relative key
IF sector number = PFI.current sector THEN
IF PFI.shared file = true THEN
IF PFIl.current sector = PFI.locked sector THEN
in memory flag := true
ENDIF
ELSE

in memory flag i= true

ENDIF

ELSE

IF sector number 2> GFI.end of data sector THEN
status := beyond EOD

ENDIF

IF sector number 2 PFl.end of file sector THEN
status := beyond EOF

ENDIF

I status = good THEN

PFI.current sector := sector number
in memory flag := false
ENDIF
ENDIF

RETURN (status,sector number,in memory flag)

END LOC~-RLC

ROUTINE : Random Write to EOD
INCOMING PARAIETERS: Sector number, status
RESULT PARAINETERS: Status, flag, in memory flag,
sector number

PSEUDOCODE :
BEGIN RAN-WRITE-EOD

flag := not handled as EOD

WHILE status = beyond EOD DO

status = good

PFI.current sector := sector number

55

56
sector number := GFI.end of data sector
IF PFI.shared file = true THEN
lock end of data sector (status)
EWDIP
IF status = good THEN
IF PFI.shared flle = false OR sector number =
PrI.locked sector THEL
£111 from EOD sector (GFI.end of data sector) to
PFI.current sector wilth delete characters
check for legal record size (status)
flag := handled as ECD
IF status = good THEN
move record from IOFC,user's area to buffer
write PFI.current sector (status)
GI'I.end of data sector := PFIl.current sector + 1
unlock sector
ENDIF
ELSE
locate relative record position (status,in memory
flag, sector number)
ENDIF
ENDIF
sector number := PI'I.current sector
ENDDO
RETURN (status,flag,in memory flag,sector number)
END RAN-WRITE-EOD

57

There were two major changes to relative random wrlte as
a result of the implementation of multiple writers., First of
all, if the file was shared, the sector had to be read into
memory 1f it was not already in memory (not a change) or if
it was already in memory but the sector was not locked by
the process (change). Secondly, if the record position was
found to be past the end of data, by the time the process
was able to get the end of data sector locked, the end of
data sector could have been changed by another process and
the record position may or may not be past the new end of
data sector. These conditions were handled in the implemen-

tation and described in the pseudocode.
3.2.2.2.3 Read

Relative random read locates a record by key number and
moves 1t into the user's area. The routine ensures that the
record exlsts.

ROUTINE: Relative Random (and Dynamic) Read
INCOMING PARAMETERS: None
RESULT PARAMETERS : Status
PSEUDOCODE :
BEGIN REL-RAN~-READ
locate relative record position (status,in memory flag,
sector number)
IF status = beyond EOD THEN

status 1= invalid key

58
ENDIF
IF status = good THEN
IF in memory flag = false THEN
lock sector (PFI.current sector,status)
IF status = good THEN
read PFI.current sector (status)
ENDIF
ENDIF
ENDIF
IF status = good THEN
check for deleted record (status)
IF status = good THEN
move record from buffer to IOFC.user's area (status)
ENDIF
ENDIF
RETURN (status)
END REL-RAN=-READ

Read, as mentlioned before, does not unlock the sector
upon return. The only change to the read routine was to
requlire that the sector be locked and read into memory if
the file was shared and the sector was not already locked
and in memory. Note that if the file is read-only or
opened for input, read does not lock sectors but honors
sectors locked by other processes, hence each read will
requlire an I/0 operation if the file 1s shared.

The read next function is the same as sequential read

59
which was described in section 3.2.2.1.3.

3.2.2,2.4 Rewrite

Relative random rewrite locates the record by key number
and replaces 1t with the record ln the user's area. The
record must exlst in the file in order to be rewrltten.
ROUTINE ; Relative Random (and Dynamic) Rewrite
INCOMING PARAMETERS: None
RESULT PARAMETERS: Status
PSEUDOCODE ¢
BEGIN REL~-RAN-REWRITE

locate relative record position (status,in memory flag,
sector number)

IF status = beyond EOD THEN

status = invalid key
ENDIF
IF status = good THEN
IF in memory flag = false THEN
lock sector (PFI,current sector,status)
read PFI.current sector (status)
ENDIF
ENDIF
IF status = good THEN
check for deleted record (status)

IF status = good THEN
IF PFI.shared file = true THEN

compare record in buffer to record in IOFC.user's
area
IF equal THEN
unlock sector
ELSE
check for legal record size (status)
IF' status = good THEN
move record from IOFC,user's area to buffer
write PFI.current sector (status)
unlock sector
ENDIF
ENDIF
ELSE
check for legal record size (status)
I status = good THEN
move record from IOFC.user's area to buffer
write PFI.current sector (status)
ENDIF
ENDIF
ENDIF
ENDIF
RETURN (status)
END REL-RAN-REWRITE

The rewrite routine includes the change requiring

the sector to be locked and also the rewrite compatibility

change discussed in section 3.2.2.1.4, BRandom rewrite,

60

61
unlike sequential rewrite, does not require the previous

function to have been a read of the record.

3.2,2.2.5 Delete

Both relative random delete and relative seguential
delete will be described in this section. The record to
be deleted is located by key number in the case of random
delete. Sequential delete requires that the previous op-
eration be a read of the record to be deleted. In both
routines the record must exist to be deleted.

ROUTINE:: Relative random (and Dynemic) Delete
INCONMING PARAMETERS: None
RESULT PARAMETERS: Status
PSEUDOCODE :
BEGIN REL-RAN-DELETE
locate relative record position (status,in memory flag,
sector number)
IF status = beyond ECD THEN
status 3= invalild key
ENDIF
IF status = good THEN
IF in memory flag = false THEN
lock sector (sector number,status)
IF status = good THEN
read PFI.current sector (status)
ENDIT
ENDIF

ENDIF
IF gtatus = good THEN
check for deleted record (status)
IF status = good THEN
£il1l record in buffer with delete characters
write PFIl.current sector (status)
ENDIF
ENDIF
unlock sector
RETURN (status)
END REL-RAN-DELETE

ROUTINE: Relative Sequential Delate
INCOHMING PARAMETERS: None
RESULT PARAIETERS: Status
PSEUDOCODE ¢
BEGIN REL-SEQ~DELETE
status 1= good
IF PFI.length of last record read = 0 THEN
status := invalid operation
ENDIF
IF PFI.shared file = true THEN
IF PFI.current sector NOT = PFI.locked sector THEN
status := invalid operation
ENDIF
ENDIF
I status = good THEN

62

63
£i111 record in buffer with delete characters
PFI.buffer changed := true "used for blocking"
PFI.length of last record read i= 0
I PFI,shared flle = true THEN

write PFI.current sector (status)
unlock sector
ENDIF
ENDIF
RETURN (status)
END REL-SEQ=-DELETE

Both delete routines require that the sector be
locked if the file is shared and both unlock the sector

upon return.
Fueid.2o8 Btart

Start is valid for a user of a relative file in se~-
guential or dynamic access modes. The file pointer is
positioned to the record specified by the relative key
number. The only change made to relative start was if
the process had a sector locked for the file, it was un-

locked. Therefore, the pseudocode will not be included.
3¢e2.2.2,7 Close

Helative file close is the same routine used for

sequential files. See section 3.2.2.1.5.

64

3.2.2,3 Indexed Files

Many of the implementation considerations for indexed
files have already been encountered in the discussion of
sequential and relative files, For thls reason, and be-
cause much of the code for indexed files involves main-
taining the index (which is not the topic of the report),
the description of indexed file functions will be very
brief and the pseudocode presented will be even more sim-
plified than that given for sequential and relative filles.
Open and close will not be discussed because the changes
are similar to those described in the sections on relative

and sequential files.
3:2.2:3.1 lrite

Wrife is a valid function for indexed files in all
three access methods, Whenever the index is manipulated,
the flle is locked, which means that any other process
wishing to access the file must wait. This was not new,
that 1ls, it was not a result of the implementation of
multiple writers. However, locking the file during
processing did somewhat aid in the implementation of
the new feature. The logic for write, in general, is:

Indexed Sequential Access Write:

no sectors are locked because the file must be

otmed

65
Indexed Random and Dynamic Write:
IF new end of data OF end of data not locked THEN
lock end of data sector
ENDIT
lock Tile
search index
write key
move record from user's area to buffer
write sector
write high level index
unlock file
unlock sector

3.2.2.3.2 Read

Read 1s also a valid funetlon in all access methods,
Indexed Sequential Read and Dynamic Read Next:
lock file
search index
unlock file
IF new sector THEN
lock sector
read sector
ENDIF

move record from buffer to user's area

Indexed Random and Dynamic Read:
lock file

66

search index

unlock file

IF new sector OR sector not locked THEN
locl: sector
read sector

LZNDIT

move record from buffer to user's area

3-2-2-3-3 RE'D‘J'I‘ite

As in the case of seguential rewrite, indexed sequen-
tial access rewrite requires that the previous operation be
a read of the record. In addition, the compatibility issue
described in sections 3.2.2.1.4 and 3.2.2.2.4 also affected
indexed rewrite but 1ill not be specifically depicted in the
brief pseudocode.

Indexed Sequential Access Reuwrite:

move record from user's area to buffer
write sector

thloclt sector

Indexed Random and Dynamic Rewrite:
lock file
search index
IT new sector OR sector not locked THEN
lock sector
read sector

ENDIF

67
move record from user's area to buffer
write sector
unlocl file

unlock sector

3.2.2,3.4 Delete

Delete is similar to rewrite except that the index
key must be deleted as well as the record.
Indexed Sequential Access Delete:
loclkk file
search index
delete key
read sector
delete record in buffer
write sector
unlock file

unlock sector

Indexed Random and Dynamic Delete:

lock file

search index

IF new sector O sector not locked THEL
lock sector

EUDIF

delete ey

read sector

delete record in buffer

write sector
wnlock file
unloeck sector

3:2.2+43.5 8tart

Start is valid only in sequential and dynamic access
methods.
Indexed Start:
unlock sector
lock file
search index

unloecl: file

69

3.2.3 Tile Sharing Problem Resolution
3.2,3.,1 File Access Control

When a new file is created in the operating system en-
vironment, it may be given the characteristic of "private".
This is a permanent characteristic and means that any pro-
cess assigning the file must assign the file as "owmed",
"Ovmed" is an attribute that may be specified when a file
1s assigned and it means that while a process has the file
assigned, no other process may assign the file. A file that
is assigned new (created by the assign) 1s assigned "owned"
unless specified otherwlse. In addition, for the sake of
compatibility with other systems, a process that opens a
file for output must have the file assigned as "owned",

The requirement that a flle opened for output be assigned
"owmed" had not been in existence until the addition of the
multiple writers feature. Therefore, it created an incom-
patibility with previous issues of the operating system.
Previously valid procedure files would not work in the new
systen. (Defaulting the own/share option on the assign was
Interpreted by the system as "shared" originally.) To re-
solve the conflict, if the owm/share option was defaulted
and the flle was opened for output by the process, the de-
Tault would be interpreted by the system as "owned" pro-
viding no other process had the file assigned. If another

process has the file assigned, the process attempting to

70
open for output would receive an "invalid open" status. This
does not entirely solve the problem, of course, To guarantee
that a file may be opened for output, the operator should

assign the file as "owned".
3.2.3.2 Sector Locking

liost of the lmplementation decisions concerning the
locking mechanism were dictated by compatibility issues (see
section 3.1.3). Addressing specifically the questions raised
in section 2.3.2, the implementation required:

1) only one lock per file may be in place for a process
at any given time,

2) the amount of data to be locked is one disk sector
whlch corresponds to one block of data,

3) & process may have a lock in place for any length of
tinme,

L) resource contention is detected by the use of a timer
in the sector locking mechanism, A timeout status is
returned to the application if the process is unable
to lock a sector because another process has the sec-
tor locked and the timer expired. Deadlock, in the
true sense of the word, does not oceur because processes
are limited to only one lock per file and recelving a
timeout status will cause the sector, if any, that the
brocess has locked to be unlocked, However, a con-

dition of "deadly embrace" can occur if an application

vl
stubbornly attempts to perform a function that tries to
lock a sector that another process keeps locked. The
avoldance of deadly embrace is the responsibility of
the user.

5) as mentioned above, regquests to lock sectors are
blocked if the sectors are locked by other processes.
If a timer expires whlle a process is waiting to lock
the sector, then a timeout status is returned to
the application,

6) the value of the timer is established when the user's
operating system is configured and generated,
The impact of sector locking on the functions of shared

files is summarized in figure 3.2.3.2-1,
3.2.3.3 Data Integrity

The method used by the operating system to inform the
user that a flle may be unreliable is very primitive, VWhen
a file 1s opened by any process, a flag is set in the dir-
ectory entry corresponding to the file and remains set until
the last process closes the file., ITf a system falilure
occurs while the fille is open, the flag remains on. INNo
process may assign the file again until the file is CHECKed.,
CHECI is a system utility which allows the open flag to be
reset. In addition, while a file is being processed, if a
permanent or hardware error is encountered, no further func-

tions may be performed by any process on the file except the

Figure 3.2.3:2—1

FUNCTION

open

write

read

retrite

delete

read next

start

close

SLQUENTIAL ACCESS

no sector locking

loelr E0D sector
process

mlock sector

loclz sector

process

Process

unlocel: sector

process

utnlock sector

not valid

unloclk sector

process

uniock sector

process

72

Summary of Sector Lock Impact

RANDOIT/DYNANIC ACCESS

no sector locking

lock sector
process

mnlock sector

lock sector

process

lock sector
process

unlock sector

lock sector
process

unlock sector

lock sector

nrocess

unlock sector

process

unlock sector

process

73
close function. When the file is closed after such an error,
the open flag will remaln set and the file must be CHECKed
before it can be assigned again. Any time access to a file
ls prevented because of the open flag, the file should be
investigated for any possible corruption and rebuilt if

necessary, using system utilities provided for that purpose.

74

3.2.4 Testing

Each of the operations affected by the implementation
were tested after coding 151as completed, Some minor design
errors were found and correccted during testing. The de-
sign presented in the report contains those corrections.
Testing was accomplished primarily with the use of a pro-
gram written in 8080 assembly language and another mritten
in COBOL. These prograns had been designed specifically
to test I/0 functions. In addition, a customer's appli-
cation program was borrowed and used in testing. Perfor-

mance changes due to the new feature were measured.
L,0 Conclusion
L,1 Advantages and Disadvantages

A number of advantages in having file sharing capa-
bilities were given in section 2.1.1. The major disadvan-
tage is that changes that must be made to an operating
systen to allow multiple readers/writers affect perfor-
mance from the viewpoint of a single user. If a user has
exclusive access to a file, then portions of the file do
not have to be locked and operations do not have to be
regulated by the system. However, if a user is allowed
to share a file with other users, then some overhead has
to be added to the system to allow this capability. liore

I/0 operations may have to talke place to insure that the

75
user is working with the latest information, and the user may
have to deal with some resource contention.

The reported implementation of file sharing ls some-
what restrictive. These restrictions meke the system straight-
forward and easily understood but are also limiting. The
major restriction is that a file may not be shared in the
open for output mode. TFor sequential files, the user can get
around the restrictlion by opening files for extension rather
than for output. Ilultiple writers may share a relative or
indexed file by accessing it in random or dynamic access
methods,

The requirement that the read operation honor sectors
locked by other processes in the case of the file belng read-
only or opened for input, may have been unnecessary and
affects performance very much. It was included in the

implementation to be compatible with other operating systems.,
I,2 Alternatives

The trend 1n the computer industry is away from batch
processing and toward multiple-operator, interactive pro-
cessing., Decause of this trend, it is likely that file
sharing in one form or another will be inecluded in many
future systems.

As indicated in the review of literature, the various
aspects ol file sharing may be implementated in a number of

ways. One implementation has been described in the report.

76
It is a rather primitive implementation but does allow the
sharing of files by multiple writers, The Tlle sharing
feature has passed a ninimal amount of testing and is now
being tested for certification by liCR's quallity assurance
staff.

Tiro implementation alternatives that have already hbeen
mentioned are: 1) allowing a process to place rultiple
loclkts on a file, and 2) malring the user responsible for
data integrity by providing record locking/unloclking op-
erations in the uvser language. The first alternative is
useful then the file 1s a larpe dats base but has the dis-
advantage that deadlocks must be handled., The second
alternative simplifies the operating system but maltes
user applications more complex. In addition, the compiller/
assembler yould have to male certain that write commends

were preceeded by lock commands,

(8]

[9]
[10]

[11]

BIBLIOGRAPHY

Brinch Hansen, P,, Operating System Principles,

77

Prentlce-Hall, Inc., Englewood Cliffs, New Jersey,

1973.

Brinch Hansen, P,, The Architecture of Concurrent
Programs, Prentice~Hall, Inc,, Englewood Cliffs,
New Jersey, 1977.

Courtois, P.J., Heymens, f., and Parnas, D.L.,
Concurrent control with “"readers" and "writers".
Communications of the ACM 14,10, October 1971,

7"’ 8-

Freeman, D.E. and Perry, O.R., I/0 Design: Data
lianagement in Operating Systems, Hayden Book
Company, Inc,, Rochelle Park, New Jersey, 1977.

Habermaym, A.N., Introduction to Operating System
Design, Sclence Research Associates, Inc.,
Chicago, Illinois, 1976,

Holt, R.C., Grahem, G.S,, Lazowska, E.D., and Scott,
M,A., Structured Concurrent Programming with

Operating Systems Applications, Addison-Wesley

PubIishing Company, Heading, llassachusetts, 1978,
Lycklama, H, and Bayer, D,L., UNIX Time-Sharling

System: The MERT operating system. The Bell

System Technical Journal 57,6, July 1978,
2049-2086,

Lorin, H., Parallelism in Hardware and Software:

Real and Apparent Concurrency, Prentlce~Hall, Inc.,

Englewood Cliffs, New Jersgy, 1972.

lMadnick, S.E. and Donovan, J.J., Operating Systems,

HeGraw-H11l Book Company, New York, New York, 1974,

Organick, E.I., The Multics System: An Examination
of its Structure, The [IT Pregs, Cambridge,
Massachusetts, 1972,

Paxton, W.H., A client-based transaction system to
maintaln data integrity. Proceedings of the

Seventh S osium on Operati Systems Frinciples,

The Association for Computing HMachinery, Inc.,
December 1979, 18-23.

12| Shaw, A.C., The Loglical Design of Operatl Systems,
[] Prentice-Hall, 1nc., Englewood CEITTE; ew Jersey,

1974,

[13] Swinehart, D,, McDaniel, G., and Boggs, D., WFS: A
simple shared file system for a distributed environ-
ment. Proceedings of the Seventh Symposium on
Operating Systems Principles, The Association for
Computing NMachinery, Inec., December 1979, 9-17.

[14] s Texas Inxtruments DS990 Commercial Computer
: e sy Texas Instruments,

Inc., Houston, Texas, 1978.

[15] Tsichritzis, D.C. and Lochovsky, F.H., Data Bage
Hanagement Systems, Academic Press, New Yorlk,
New York, 1977.

FILE SHARING:
AN IMPLEMENTATION OF THE MULTIPLE WRITERS FEATURE

by

MARY KENNEY
B.,A., Wichita State University, 1974

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1981

ABSTRACT

Aspects of file sharing are discussed, particularly
the aspect of allowlng more than one writer access to
a file concurrently, File sharing has been implemented
in various degrees and in a varliety of environments,
however certain problems are common to file sharing
implementations and must be resolved in one way or another,
Some implementations and file sharing problems and problen
resolutions are described., In addition, the incorpora-
tion of the multiple writers feature into an existing
operating system for a multiple workstation microprocessor
is presented in detall. The deslign changes made to each
functlon are included. How typical file sharing problems
were resolved is addressed as well as the resolution of
problems encountered during design and implementation

of file sharing in this particular system,

