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NOMENCLATURE 

E Modulus of elasticity. 

I 
z 

Moment of inertia of a plane area with respect to z axis. 

1 Length, span. 

qo.q Intensity of distributed load. 

M Bending moment in the beam. 

x,C Abscissas along the span of beam. 

y, Coordinates of the buckling mode. 

P Modulus of elastic foundation. 

n Number of divisions of the beam. 

k Spring constant. 

K 
, 

A dimensionless quantity of (q 
o 
1 
3 
/EI 

z 
) 

A dimensionless quantity of (p14 /EI 
z 

) 



INTRODUCTION 

There are many buckling problems in Elastic Stability for which 

"exact" solutions are either impossible or impractical to obtain, using 

existing methods. With the development of high-speed digital computers, 

attempts have been made to solve such difficult problems by approximate 

techniques to obtain a better result. 

In this report, the method using the theory of difference equations 

will be applied to solve the buckling problem of a beam on an elastic foun- 

dation under distributed axial loads. With the same procedure used for the 

beam, the problem of the stability of the upper chord of a low-truss bridge, 

or pony truss, can be solved. In the absence of upper chord bracing, the 

lateral buckling of the top chord is resisted by the elastic reactions of 

the vertical and diagonal members of the truss. At the supports, there are 

usually frames or bracing members of considerable rigidity, so that the 

ends of the chord can be considered as immovable in the lateral direction. 

Thus, the upper chord can be treated as a beam with hinged ends compressed 

by forces distributed along its length and elastically supported at inter- 

mediate points. 

This problem has been solved by energy methods by Timoshenko(1), but 

no direct solution of the differential equation is known. Since the result 

obtained by the differential equation method would be better than the energy 

solution, it is worthwhile to try to solve the differential equation directly. 



2 

THEORY AND DERIVATION 

As shown in Figure A, the beam is subjected to a distributed axial 

load q and supported by a continuous elastic foundation. The axial load 

q will be assumed to have the distribution shown in Figure B, that is, the 

intensity of distributed load at the ends is go and the load is directed 

toward the center of the beam. The load q decreases linearly to the center, 

where it has zero value. The modulus of the elastic foundation P can be 

defined as follows: If k is the spring constant of the individual supports 

and a is the distance. between them, the rigidity of the equivalent elastic 

medium is expressed by the quantity P = 
a 

It has the dimensions of a force 

divided by the square of a length and, when multiplied by the deflection y, 

gives the reaction of the foundation per unit length of beam. 

In calculating the bending moment at section mn produced by the dis- 

tributed compressive load during bending, we note that the intensity of this 

load at any cross section, distance x from the center is 

2qox 

q = 1 

where qo is the intensity of load at the ends. Then the bending moment at 

section mn produced by the axial loading is, 

1/2 r 

+ L (1(0a (y-n) 

is, 

x 

The bending moment at section mn produced by the elastic foundation 

1/2 

+5 (prid0 ( -k) 



FIGURE A 

FIGURE B 



and the bending moment at section mn produced by the reactions of the end 

supports is, 

1/2 

- F pydx 
j 2 

- x) 

Therefore, the total bending moment at section mn is, 

m 

1/2 2q0 j 1/2 
1/2 

) (y - 1) + r 
1 

(i91) - x) - (7f - x) f pydx 

X 
X 

Substituting M into the formula EIzy' = -M, we obtain 

1/2 

°- 

1/2 . 

1/2 

EI 
z 

j y°= - (--) (y - n) g - r ,TI( _ x) g + (I - 5 pydx (1) 
1 2 

x x 0 

In order to solve such an integro-differential equation, it is conveni- 

ent to eliminate the integrals by differentiation:thus reducing the equation 

to an ordinary differential equation with variable coefficients for which a 

solution may be easier to obtain. Differentiation of Equation 1 with respect 

to x, yields, 

and 

1/2 2a 
d f.1/2 

EI 
z 
y" = - 

dx 
(y - - 

dx 
(-g7x)fiki 

j 
1 

0 

From the differentiation under integral sign 
(2) 

, 

1/2 
( 

2q 
0 

17i7c I 
x 

(In 2 

(Y - 71) (1z._ 
x2) 

1/2 1/2 

131 ( 
- x) d =-I prig 

1/2 
- Pydx ( 2 ) 

0 

we obtain, 

(3) 

( 4 ) 



5 

Substituting Equations (3) and (4) into Equation 2, we obtain, 

q0 
1/2 1/2 

1 
EI 

z 
y"= - 42 

4 
- - x 

2 
) y'+ I pig - pydx 

x 0 

Differentiating with respect to x again, Equation (5) takes the form 

q0 
1/2 

EIzyw-= - y" 12 - x2) + y' (-2x) ] + p ng 
dx 

4 
1 

But, 

(d-1-7c. 

1/2 

= -y 

Hence, 

Or, 

x 

c10 14 
2 

2 
EIz y"r= - [ y" (-- x2) -zxy'l - Py 

1 

q 0 12 

EI 

2q0 

I EI 
131, iv+ 

- x 
2 

) y"- xy'+ = 0 
4 

z z Eli 

Using the notations, 
3 

K 

q0 
4 

1 

EI EI . 

Equation (6) becomes, 

,(6) 

2 

14y"+ K (IT - x 
2 

) yn - 2Kxyl+ yy = 0 (7) 

Equation (7) can be integrated by the use of infinite power series, but 

the series obtained is intractable and converges very slowly. The same re- 

sult, however, can be obtained more easily by transforming the differential 

equation into a difference equation and then solving the difference equation 

numerically. 
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From the theory of central differences 
(3) 

, we know the derivative 

operators are, 

hYv v + v 
a 2 "a-1 2 "a+1 

h2y = y 2y + y 
a 0-1 .a 

1,3 -1 1 

" YCE 2 Ya-z Ya-1 a+1 2 Yo+2 

4 ha y = y 
a-2 

- 4y 
a-1 

+ 6y 
a 

- 4y 
a+1 

+ y 
a+2 

where h is the distance between pivotal points in the equally spaced mesh 

in the buckling mode. The symbols ya_z, ya_l, ya, y0+1, and ya+z represent 

the deflection of the buckling mode at points a-Z, a-1, a, a+1, and a +2, 

respectively, as shown in Figure C. 

Dividing the whole span 1 of the beam into n equal divisions and using 

the notations, 

h = 
1 

x = 1 1 (a = 0, 1, 2, 3, 
n ' 

1 2) 

the Equations(8) become 

4 

a = (V (Ya-2 4Y0-1 6Ya - 43'0+1 Ya+2) 

3 1 

Y" 
a 
= (12) Ya-2 Ya-1 Ya+1 Y 0-i2) 

1 

2 

Y a = (1.:Z) (Y0-1 - 2Ya Ya+1) 

ya = (1-) Ya-1 a+1) 

a 

(8) 

(9) 



h h h h 

0-2 a-1 

a-2 

h 

a-1 

h 

0+1 

FIGURE C 
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Substituting Equations (9) into Equation (7), the latter takes the form 

2 2 2 
1 0 

n 
2 

n 
4 

+ 6ya + yat2) + K(-- 
4 

- 12) (i2) 

(ya -1 -2Ya Y0+1) -2K 
(n 

1) 611) (?- ya -1 -1.3ta+1) "a = 

Collecting terms for ya -2, ya, ya+1 and yail, and dividing the whole 

equation by n 
4 

, the general expression of the difference equation of the 

buckling mode takes the form, 

2 2 

ya -2 
+ [-4 + K ( 

1 
+---- )1 y + [6-2K ( 1 [6 -2K ) + 1-4 ya 

4n 
2 

n 
4 0-1 

4n 
2 

n 
4 

2 
+0 + [-4 + - ( 

4n 

1 0 ) 
- 

n 

, ya+l + yertz = 0 o) 

For each division point on the span of the beam, we can establish one 

homogeneous linear equation from Equation (10). Since the buckling mode is 

symmetrical about the origin, we need to set up the equations for one half 

of the beam only. With n/2 divisions in the half span, (n/2 + 1) equations 

can be established. These equations in the (n/2 + 5) unknown y's are homo- 

geneous linear equations. Using the boundary conditions, these equations 

can be reduced to (n/2 + 1) unknowns. Buckling of the beam becomes possible 

only when the deflections of the buckling mode have non-trivial solutions, 

that is, when the determinant A of the coefficients of the y's becomes zero. 

The coefficients of the y s are in terms of K. From A =0, the determinant 

can be expanded to obtain a polynomial equation expressed in the variable 

K where the highest power of K is n/2. Using the trial and error method, the 

lowest positive root is determined. Since K is expressed in terms of the load- 

ing, the lowest critical load is thus determined. 
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The boundary conditions for a symmetrical buckling mode (First mode) 

are: 

(1) At the ends, the deflection of the buckling mode equals zero, that 

is, y = 0 when x.1/2, hence yn/2 = O. 

The bending moment at the ends should be zero, thus the second derivative 

of the y's equals zero. From Euquation (9), we obtain , 

2 
n , 

2 2 "Yn/2 - 1 - 2Yn/2 Yn/2 + 1) = 
0 

2 

11- 0, therefore, / 
- 
v 
n/2 - 1 

- 1 
/2 Yn/2 + 1 = 0 

1 

for 
Yn/2 = 

0 then Equation (11) becomes, 

Yn/2 - 1 -47 Yn/2 + 1 = ° 

Hence, 

Yn/2 - 1 = -Yn/2 +1 

(2) At the center, the slope of the buckling mode is zero, that is, 

-1 1 
ylo = 0 or + -2- yl = 0 

Hence, 

Y-1 = +Yl 

Since the buckling mode is symmetrical about the origin, it is obvious that 

Y-2 = Y2 

The boundary conditions for an anti-symmetrical buckling mode (Second 

mode) are 

(1) At the ends, the deflection of the buckling mode is zero, that is, 

y = 0, when x = 1/2, hence, Y n/2 = 0- 
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The bending moment at the ends should be zero, thus the second de- 

rivative of the y's equals zero. From Euqation (9), we obtain 

Yn/2 - 1 = -Yn/2 1 

(2) At the center, the deflection of the buckling mode is zero, that 

is, yo = 0 when x = 0. The origin is the point of inflection of 

the buckling mode, so, 

y_1 = -y1 and y_2= 
-y2 

For the case where the rigidity of the elastic medium is very small, 

the buckling mode of the beam has only one half-wave and is symmetrical with 

respect to the middle. Therefore, the boundary conditions for the symmetri- 

cal case should be used. When a greater restraint is supplied by the elas- 

tic foundation, the bucklin9 mode of the beam may have two half-waves, and 

there is an inflection point at the middle of the beam. To calculate the 

critical load in this case, the boundary conditions for the anti-symmetrical 

case should be used. 



CALCULATIONS 

(1) Taking an n of 10, y of 0, 80, 160, 240, 364.8, 904, and 1600 

respectively, and a of 0, 1, 2, 3, 4, and 5 respectively, six difference 

equations were established from Equation (10). Using the boundary conditions 

yl 
y_/, y2 = y4 = -y6, and y5 = 0, 

for the symmetrical buckling mode, and 

yo = 0, yl = -yl y2 = -y_2, y4 = -y6, and y5 = 0 

for the anti-symmetrical buckling mode, the six equations were expressed 

in the six unknowns yo, yl, y2, y3, y4, and y7. These corresponding equations 

are shown in Tables 1, 2, 3, 4, 5, 6, 7, 8, and 9. From A = 0, the lowest 

positive roots of K were found, thus the critical compressive buckling loads 

were determined. These results for each case are shown below Tables 2, 4, 5, 

6, 7, 8, and 9. 

(2) Taking an n of 14, a y of 364.8, and a of 0, 1, 2, 3, 4, 5, 6, and 

7 respectively, eight difference equations were set up from Equation (10). 

Using the boundary conditions: 

Yo = 0,.y1 = -Y y2 = -y_2, y6 = -y8, and y7 = 0, 

the eight difference equations for the anit-symmetrical buckling mode were 

reduced to seven equations with unknowns yl, y2, y3, y4, y5, y6, and y9. 

These corresponding equations are shown in Tables 10 and 11. 

From 4 = 0, the lowest positive root of K was found, thus the critical 

buckling load was determined for this anti-symmetrical case. This result 

is shown below Table 11. 



TABLE 1 

General Difference Equations (n = 10, y = 0) 

a 
Y_1 

Y 
o Y1 Y2 Y3 Y4 

Y 
5 

Y 
6 

y 7 
Const. 

0 111 -4 

+2.5x103 

6 

-5x10-3K 

-4 

+2.5x10 3K 

1 

0 

1 1 -4 

+2.5x10 
-3 

K 

6 

-4.8x10 3K 

-4 

+2.3x10 
-3 

K 1 

2 1 -4 

+2.3x10 
-3 

K 

6 

-4.2x10 
-3 

K 

-4 

+1.9x10 
-3 

K 1 0 

3 1 -4 

+1.9x10 
-3 

K 

6 

-3.2x10 
-3 

K 

-4 

+13ix10 
-3 

K 1 0 

4 1 -4 

+1.3x10 
-3 

K 

6 

-1.8x10 
3 
K 

-4 

+.05x10 3 K 1 0 

5 1 -4 

+0.5x10 3K 

6 -4 

-0.5x10 
-3 

1 0 



TABLE 2 

Difference Equations for Symmetrical Mode (n=10, '`''= 0) 

Boundary Conditions: y -1 y1' y -2 y2' y4 =-y6, 
and 

y5 
=0 

a 
Y-2 y 

-1 
Y 
o y1 y2 y3 y4 y5=o y6 y7 

Cont. 

0 6 

-5x10 
-3 

K 

-8 

+5x10 
-3 

K 

2 0 

1 -4 

+2.5x10-3K 

7 

-4.8x10-3K 

-4 

+2.3x10-3K 1 

0 

2 

1 

-4 

+2.3x10 
-3 

K 

6 

-4.2x10 
-3 

K 

-4 

+1.9x10 
-3 

K 1 

0 

3 1 -4 

+1.9x10 
-3 

K 

6 

-3.2x10 
-3 

K 

-4 

+1,3x10 
-3 

K 

0 

4 1 -4 

+1.3x10 
-3 

K 

5 

-1.8x10 
-3 

K 

0 

5 1 10 
-3 

K 1 0 

K = 76.6 z 
(q 

o 
1/4) 

cr. 2 

= 1.99 

1 



TABLE 3 

General Difference Equations (n=10, y=240) 

- Y -1 Y o Y1 Y2 Y 3 Y4 Y 5 Y 
6 

Y 
7 

Const. 

0 1 -4 

+2.5x10 
-3 

K 

6.024 

-5x10 
-3 

K 

-4 

+2.5x10 -3K 1 

0 

1 1 -4 

+2.5x10-3K 

6.024 

-4,8x10 -3K 

-4 

+2.3x10 1 

0 

2 1 -4 

+2.3x10 
- 
3K 

6.024 

-4.2x10 -3K 

-4 

1 

0 

3 1 -4 

-1.9x10 
-3 

1 

6.024 

-3.2x10 
-3 

-4 

+1.3x10 
- 
3K 1 

0 

4 1 -4 

+1.3x10 -3K 

6.024 

-1.01(10 
-3 

K 

-4 

+0.5x10 -3K 1 

0 

5 1 -4 

+0.5x10 -3K 

6.024 -4 

-0.5x10 -3K 1 

0 



TABLE 4 

Difference Equations for Symmetrical mode (n=10, Y=240) 

Boundary Conditions: y2 y -2, y47.y..6, 
and 

y5=0 

Y-2 y -1 Y 
o y1 y2 y3 y4 y5 

o 
y6 y7 

Const. 

0 6.024 

-5x10 -3K 

-8 

+5x10 
-3 

K 

2 
' 

0 

1 -4 

+2.5x10 
-3 

K 

7.024 

-4.8x10 
-3 

K 

-4 

+2.3x10 -3K K 

1 

2 1 -4 

+2.3x10 
-3 

K 

6.024 

-4.2x10 
-3 

K 

-4 

+1.9x10 
-3 

K 1 

0 

3 1 -4 

+1.9x10 
_ 
3K 

6.024 

-3.2x10 
-3 

K 

-4 

+1.3x10 
-3 

K 

0 

4 1 -4 

+1.3x10 
-3 

K 

5.024 

-1.8x10 
-3 

K 

--- 

0 

5 1 10 
-3 

K 1 0 

K = 243.8 
(q01/4)cr. 

= 6.17 
"n 

2 
EI 

z 
, 

1`. 



TABLE 5 

Difference Equations for Symmetrical Mode (n=10, Y=364.8) 

Boundary Conditions: yi=y_i, y2= y...2, y4=-y6, 
and 

y5=0 

a 
Y-2 Y -1 YO y 

1 Y2 Y 3 Y4 .Y5=13 y6 y7 
Const. 

0 6.03648 

-5x10 
-3 

K 

-8 

4.5x10 
-3 

K 

2 0 

1 -4 

+2.5x10 
-3 

K 

7.03648 

-4.8)(10 
-3 

K 

-4 

+2.3x10 
-3 

K 

0 

2 1 -4 

4-2.3x10 
-3 

K 

6.03648 

-4.2x10 
-3 

K 

-4 

4-1.9x10 
-3 

K 1 

0 

3 1 -4 

+1.9x103 

6.03648 

-3.2x10-3K 

-4 

+1.3x10-3K 

0 

4 1 -4 

+1.3x10 
-3 

K 

5.03648 

-1.8x10 
-3 

K 

0 

5 1 10 
-3 

K 1 0 

K = 307.8 
IT 
2 
EI 

(q 1/4) = 7.0 
o cr. 

12 



TABLE 6 

Differe),ce Equations for Symmetrical Mode (n=10,`( =904) 

Boundary Conditions: 
yl= y_1, y2 y -2, y4-y6, 

and 
y5=0 

a 
- Y -1 YO Y1 Y2 Y3 Y 

4 y7 
Const. 

0 6.0904 2 0 

- -5x10 
-3 

K +5x10 
-3 

K 

1 -4 7.0904 -4 0 

+2.5x10 
-3 

K -4.8x10 
-3 

K +2.3x10 
-3 

K 1 

2 1 -4 6.0904 -4 

+2.3x10 
-3 

K -4.2x10- 
3 
K +1.9x10 

-3 
K 1 

3 1 -4 6.0904 -4 0 

+1.9x10 
- 
3K -3.2x10 

-3 
K +1.3x10 

-3 
K 

4 1 -4 5.0904 0 

+1.3x10 
-3 

K --1.8x10 
-3 

K 

5 
1 10 

-3 
K 1 0 

K = 450.5 
71 

2 
FIz 

(q01/4)cr.= 
11.41 

12 :7; 



TABLE 7 

Difference Equations for Anit-Symmetrical Mode (n=10, =240 

Boundary Conditions: 
yo=0, y4=-y6, 

and 
y5=0 

a 
Y-2 y 

o 
=0 

Y1 y, 2 y 3 
y 
4 

y 
5 
=0 

y6 y7 
Const. 

0 0 - 0 0 

5.024 -4 1 

-3 0 

-4.8x10 K +2.3x10-°K 0 

-4 6.024 -4 

2 2.3x10 
-3 

K -4.2x10 -`'K +1.9x10 
- 
3K 1 0 

-4 6.024 -4 

3 
i 

+1.9x10 
-3 

K -3.2x10 -3K +1.3x10 
-3 

K 0 

1 -4 5.024 

4 +1.3x10 < -1.8x10 
-3 

K 0 

1 10 
.. 

3K 1 

K=267 (q01/4)cr.=6.76 EI7 
2 

1 



TABLE 8 

Difference Equations for Anti-Symmetrical Mode (n=10, y'=364.8) 

Boundary Conditions: y0=0, y2 y -2, y4-y6, 
and 

y5=0 

a 
Y-2 y -1 y -o 

o Y1 y2 y3 Y 4 
= 

y 5 
0 

y6 y7 
Const. 

0 0 0 0 0 0 

1 5.03648 -4 1 0 0 

-4.8x10 
-3 

K +2.3<10 
-3 

K 

2 -4 6.03648 -4 1 0 

+2.3x10 
-3 

K -4.2x10 
-3 

K +1.9x10 
-3 

K 

3 -4 6.03648 -4 0 

1 

+L9 x10 
- 
3K -3.2x10 

-3 
K 1.3x10 

-3 
K 

4 1 -4 5.03648 0 

+1.3x10 
-3 

K -1.6)(10 
-3 

K 

5 1 10 -3K 1 0 

K=285.2 
/7 

2 

EIz 
(q 

o 
1/4) 

cr. 
=7.23 0 

1". 



TABLE 9 

Difference Equations for Anti-Symmetrical Mode (n=10, 1=904) 

Boundary Conditions: yo=0, y1-y_1, y2-y_2, y4-y6, 
and 

y5=o 

- Y -1 Yo 
-o 

Y1 y2 y3 Y 4 

_ 

Y5 
-o 

y6 y7 
Const. 

0 0 0 0 0 0 

1 5.0904 -4 1 0 0 

-4.8x10 
-3 

K +2.3x10 
-3 

K 

2 -4 6.0904 -4 1 0 

+2.3x10 
-3 

K -4.2x10 
-3 

1 +1.9x10 
-3 

K 

3 1 -4 6.0904 -4 0 

4-1.9x10 
-3 

K -3.2x10- 
3 

1 +1.3x10 
-3 

K 

4 1 -4 5.0904 0 

+1.3x10 -3K -1.8x10 
-3 

K 

5 1 10 
-3 

K 1 0 

K=362.1 
tt FIz 

(q 
o 
1/4) 

cr. 
=9.18 

1` 
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TABLE 10 

General Difference Equations (n=14, Y=364.8) 

a 
Y-2 Y_1 YO Y1 Y 

2 
Y 
3 

Y 
4 

Y5 Y 
6 

Y 
7 

Y 
6 

Y9 Const. 

0 1 -4 6.009496 -4 0 

+1.2755. -2.5510 +1.2755 1 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 

1 1 -4 6.009496 -4 1 0 

+1.2755 -2.4990 +1.2235 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 

2 1 -4 6.009496 -4 0 

+1.2235 -2.3428 +1.1193 1 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 

3 1 -4 6.009496 -4 
1 

0 

+1.1193 -2.0625 +0.9631 

x10 3k x10-3K x10 
-3 

K 

4 1 -4 6.009496 1 0 

+0.9631 -17,180 +0.7549 

x10 
-3 

K 
3 

x10- K 
1 _3 

x10 -3K 

5 1 -4 6.009496 -4 1 0 

+0.7549 -1.2495 +0.4946 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 

6 1 -4 6.009496 -41 

+0.4946 -0.6768 +0.1622 
1 

x10 
-3 

K 
_o 

x10 "1: x10 
-3 

K 

1 -4 6.009496 -4 

-0.1822 -0.1822 1 

7 x10 
-3 

K x10 -`1K 



TABLE 11 

Difference Equations for Anti-Symmetrical Mode (n=14 Y =364.8) 

Boundary Conditions: 
y0=0, y1=-y_1, y2-y_2, y6-y8, 

and 
y7=0 

- - Y1 Y2 Y 
3 Y6 y[ 

, 

9 
Const. . 

0 0 0 0 0 0 0 0 

1 5.009496 -4 1 

-2.4990 +1.2235 
-3 

x10 K x10 
_ 
3K 

2 -4 6.009496 -4 1 
0 

+1.2235 -2.3428 +1.1193 

x10 '-1( x10 
-3 

K x10 
-3 

K 

3 1 -4 6.009496 -4 1 0 

+1.1193 -2.0825 +0.9631 

x10 
-3 

K x10 -3 K x10 
-3 

K 

4 
1 -4 6.009496 -4 1 0 

+0.9631 -1.7180 +0.7549 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 

5 
1 -4 6.009496 -4. 0 

+0.7549 -1.2495 +0.4946 

x10 
-3 

K x10 
-3 

K x10 
-3 

K 
6 

1 -4 5.009496 

+0.4946 
-0.678 .00.1 1; )(HK 

1 40.D3644 

x10 
-3 

K 

K-4.292.1 TIN2FI 
(q01/4)cl: 
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COMPARISON OF RESULTS 

From the preceeding computations, the results of the compressive 

buckling load at the center of the beam were tabulated in Table 12, and 

compared with the energy solutions derived by Timoshenko(1) in Table 13. 

Column 4 in Table 13 shows the difference between the two results for each 

value of Y/16 expressed in percentage based on the energy solutions. 

These results were also plotted against different values of y/16. 

One curve represents the symmetrical buckling mode, and the other the anti- 

symmetrical buckling mode. As shown in Figure D, the dotted line curve 

represents the energy solutions (See Table 13). Curve 1 shows the results 

for the symmetrical buckling mode, while curve 2 shows the results for 

the anti-symmetrical buckling mode. The point of intersection p of curves 

1 and 2 means that for 

o 
1 IT E 

z 
= 18.8; and (---) = 7 

16 4 cr. 
12 

the buckling mode can either be symmetrical or anti-symmetrical. For any 

value of Y/16 less than 18.8, the critical buckling load will occur in the 

symmetrical mode. For a larger value of y/16, the critical buckling load 

will occur in the anti-symmetrical mode. The heavy line represents the 

lowest critical buckling loads which are significant for the engineering 

design purposes. 
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TABLE 12 . 

Compressive Buckling Load at the Center (n=10) 

q 1 TrEI 
z 

= N 
4 cr, 

1 

2 

Y/16 

N 

(Symmetrical mode) 

N 

(Anti-symmetrical mode) 

0 1.99 5.86 

5 3.53 - -- 

10 4.93 6.46 

15 6.17 6.76 

22.8 7.80 7.23 

56.5 11.41 9.18 

100 13.36 11.52 

TABLE 13 

Critical Compressive Buckling Loads at the Center 

o 
/7 

2 
EI 

z 
N (-) N 

4 cr. 2 
1 

Y /16 N 

Energy 
Solutions 

N 

Difference 
Equation 
Solutions 
(n-10) 

Percentage of 
Difference Between 
Two Results (%) 

N 

Difference 
Equation 
Solutions 
(n=414) 

0 2.06 1.99 3.40 -- 

5 3.63 3.53 2.76 -- 

10 5.09 4.93 3.14 -- 

15 6.38 6.17 3.29 -- 

22.8 7.60 7.23 4.87 7.40 

56.5 9.53 9.18 3.68 -- 

100 11.86 11.52 2.87 -- 
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CONCLUSIONS 

It is well known that the energy method gives an upper bound 

to the exact solution(41516). Comparing the results obtained by the dif- 

ference equation method with the energy solutions, as in Table 13, it is 

seen that the greatest difference is less than five percent. The comparison 

is also shown graphically in Figure D, from which it is apparent that either 

the energy method or the difference equation method will yield satisfac- 

tory values for practical engineering use. 

With a further increase of the modulus of rigidity of the elastic 

foundation, the buckling mode may have three or more half-waves. In general, 

the higher modes can be calssified into two types of buckling modes, that 

is, symmetrical mode for odd number of half-waves and anti-symmetrical 

mode for even number of half-waves so that the corresponding boundary condi- 

tions for each case should be used to obtain the critical buckling load. 

The value of y/16 in the higher modes for which the critical buckl- 

ing load can occur in both types of buckling modes can be determined as men- 

tioned on page 23for the case of one half-wave and two half-waves. 
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There are many buckling problems in Elastic Stability for which 

"exact" solutions are either impossible or impractical to obtain, using 

existing methods. With the development of high-speed digital computers, 

attempts have been made to solve such difficult problems by approximate 

techniques to obtain a better result. In this report, the buckling of 

a beam on an elastic foundation under distributed 'axial loads has been 

solved by the differential equation method. In order to obtain the results 

more easily, the governing differential equation of the buckling mode of 

the beam has been transformed into a difference equation, and the difference 

equation has been solved numerically to obtain the critical buckling loads 

to compare with those results obtained by energy methods by Timoshenko. 


