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Abstract

Automatic rigging is a targeting approach that takes a 3-D character mesh and an

adapted skeleton and automatically embeds it into the mesh. Automating the embedding

step provides a savings over traditional character rigging approaches, which require manual

guidance, at the cost of occasional errors in recognizing parts of the mesh and aligning

bones of the skeleton with it. In this thesis, I examine the problem of reducing such errors

in an auto-rigging system and apply a density-based clustering algorithm to correct errors

in a particular system, Pinocchio (Baran & Popovic, 2007). I show how the density-based

clustering algorithm DBSCAN (Ester et al., 1996) is able to filter out some impossible

vertices to correct errors at character extremities (hair, hands, and feet) and those resulting

from clothing that hides extremities such as legs.
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Chapter 1

Introduction

Animated 3D models are widely used among filming, gaming, commercial industries and

even research programs for the beauty of their natrual, life-like performance. With them,

people can present some fantastic or even impossible scenarios vividly without risking injury

or damage through stunt work. However, with the increasing demand for 3D characters,

the traditional process of hand-made characters are severely challenged by the quality of

the work and efficiency. A more advanced approach is needed to meet this demand.

When a new 3D model is constructed, it is not yet suitable for animation. People who

wants to animate a certain character has to first insert joints into the mesh and connect

them to simulate bones for all living creatures. After the connection of bone stucture, each

bone is dispatched to control certain part of the character so that this portion of the body

will move when the corresponding bone makes a transition. Finally people set up keyframes

and rig the character by transitting and rotating these bones as they planned one frame after

another till the animation ends. These steps are part of the typical procedure associated

with a single second of animation on the screen.

There are some advantages in doing so: people do not have to be limited by those

rules in the real world and can rig the character to perform some twistted or impossible

behaviors (like flying and transformation). Also, by keyframe rigging people can grasp more

precise control over the animation. However,the drawbacks are also significant. First, such

a process requires certain amount of knowledge in computer graphics and people who don’t
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own the knowledge may not be able to perform the process. Second, the manually rigged

characters act more or less inauthentic to real life that even experts need to go back and

forth to check the consistency of the animation. Third, at most of the time, the characters

of their products fall into the category of normal creatures that they share approximate

body skeleton and behave roughly the same. It will be a time consuming task to reiterate

this process if no automatic tools come to help.

Igarashi et al. 12 becomes one of the precursors who involve in developing user-friendly

system that simplify this process. Teddy, which was presented by them in 1999, is a gesture-

based sketching interface for 3D freedom design that people can produce simple shaped

objects with minimum widgets and operations. Teddy did not involve animation processing

but did give a hint on finding the topology of the mesh that it triangulated the polygon to

estimate the spine of the object. Igarashi et al. 12 ’s later work focused on animation control

but these work required input models to be articulated ones and required input models to

be articulated and manipulations to be as rigid as possible, and used space-time constraints

to compute result animations.

Figure 1.1: Teddy: A Sketching Interface for 3D Freeform Design

In this paper we present an improved version of Baran and Popvic 3 , an automatic rig-

ging and animation system called Pinocchio. Comparing to previous approaches, Pinocchio
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focuses on finding joint positions and transferring animations from existing motion data

that reduces the complexity of the conventional process. It takes a 3D mesh and a generic

skeleton (with motion data) as input and outputs the adapted skeleton to the mesh and em-

beds it into the mesh and grants motion to the mesh. Pinocchio differs from those methods

we aforementioned because it concentrates on matching the joint positions using a combi-

nation of weights on models topological structure and uses motion data, a more natural and

precise yet easier way to present the animation. Although Pinocchio gives quite satisfying

results under most cases, we find some issues that can be improved in Pinocchio. Among

16 test cases in their paper, 3 out of them are wrongly rigged. This becomes the objective

of our work. We will introduce an revised Pinocchio pipeline to correct these problems by

adding two new modules to the original process, one to correct some noise vertices using the

concept of density-reachability from data mining and another to correct the inappropriate

limb joint positions.

Figure 1.2: “Test Results for Skeleton Embedding”. Note that character 7, 10 and 13 are
wrongly rigged.

We will introduce the background and summarize the techniques used in Pinocchio and

discover the problems appear in the results in Chapter 2 . In chapter 3 we will describe the

two new modules and how we apply them to Pinocchio.In chapter 4 we will demonstrate the

designed experiments and test results. Then, in chapter 5 we will discuss the performance
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and applicable range after the revision and talks about the balance between generality and

precision in auto-rigging problem.Finally weconclude our work and touch upon the possible

future work in Section 6.
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Chapter 2

Background and Related Work

Before we survey previous work related to this topic, there are some basic and important

concepts that are shared across all the methods: meshes (geometric primitives), skeletons

and animations. This serves as a quick overview over some fundamental concepts for those

who don’t have graphics backgrounds. We summarize concepts from Marc-Guindon 17 , Apo-

daca and Gritz 2 , and Eberly 8 ,for a more completed tutorial the reader are recommanded

to these books.

2.1 Basic Concepts

2.1.1 Points and Vectors

We all know that a point in 3D space can be explained as a tuple (x,y,z) when a coordinate

system is established.By putting a 3D model into this space, we can think of the model as

a collection of vertices. Any point p can be described as p(x,y,z) where x, y, z respectively

represent a real value projected to its corresponding axis. A vector is used to depict the

difference between two points. Given two points p and q, a vector ~V=q-p is used to represent

a directed edge that goes from p to q. The calculations between vectors have different

purpose than that of digits. For example, given two vectors V1 and V2, V1•V1=‖V1‖‖V2‖cos

θ, where θ is the angle between the two vectors.
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2.1.2 Geometric Primitives

All 3D models are composed of basic geometric primitives. Commonly used geometric prim-

itives in 3D include cubes, spheres, columns, tetrahedrons etc. These primitives are consid-

ered basic to any other shapes. Each geometric primitives is composed by some geometric

faces and each face is composed by some vertices - points in the Cartesian coordinate sys-

tem and edges - the line segment between them. Thus, terms such as “3-D character”, “3-D

mesh”, or “3-D models” are typically defined using basic units of vertices and edges rather

than geometric primitives. This is especially the case for computer calculations because

computers can only recognize vertices but not polygons constructed by these vertices.

2.1.3 Joints, Skeleton and Degrees of Freedom(DOF)

Like living creatures, the body of 3D models are also controled by their skeleton. In graphics

we call the location between two bones a joint. Joints are constructed to allow movement

and provide mechanical support for the model.We place joints in the right place to represent

articulations and we connect these joints to get bones. We retrieve a skeletal structure of the

model by connecting all the joints and bones together. Like us, different joints can rotate

within different range. We call the valid displacement of these joints degrees of freedom

(DOFs). Joints are thus classified by their DOFs. For example our wrist articulations are

one-degree joint that they can only swing up and down while the elbow joints are two-degree

joints that they have one more degree of freedom. By placing skeleton in the models, we

are able to control the whole model with designated movements that form animations.

2.1.4 Animation and motion capture

Animation is the display of consecutive images. To be specific in 3D animation, we keyframe

the models, posing them differently in each frame and save all the frames and play them in

sequence. Animating a 3D character reqires constructing a skeletal structure of the model

and embed the skeleton in to the model so that each part of the body mesh will be controled
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Figure 2.1: Skeleton used in modeling. The cone-shaped objects represent bones while the
spheres between them represent joints.

by certain bones. We should differentiate animation from motion capture. “Motion capture

or mocap, are terms used to describe the process of recording movement and translating

that movement on to a digital model. The mocap data simply refers to the data after the

translation.In term of quality and time-effectiveness, mo-cap data outstrips the conventional

ways. These features along with its perfect reusage makes auto-rig technique more superior

to previous work.

2.1.5 Automatic Rigging

Automatic rigging refers to the process of creating articulated figures by embedding com-

puter generated skeletal stucture into the given models and performing animation using pre-

defined animations. Automatic rigging techniques generate a skeleton and an attachment.A

skeleton is a collection of joints and bones that fit inside the model while an attachment

defines how the model is anchored to the control the skeleton. Since computers are not able

to recognize different parts of the body and there’s no information by default to provide

data to infer the body sturcture, plenty of approaches were invented to achieve this goal.
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Figure 2.2: Human walking motion capture data. The points represent the positions of
markers on testing body.

2.2 Density-based approach

The intuition we introduce this approach stems from the observation of the misplaced models

generated by Pinocchio. Baran and Popvic 3 established a general rule in judging whether

a selected vertex is eligible for embedding or not using penalty functions. However, this

rule is inadequate to filter out some similar shaped parts that satisfy this rule, such as

the hair in character 13 that was recognized as the doll’s arm. The situation inspired us

to further modify the exisiting process that will help rule out these problems. Our initial

attempt using z-value as a threshold would not entirely eliminate those parts as we do not

own precise control over the vertices. Then the idea of cluster comes into the picture that

if we are able to group up the vertices into clusters, we will possess the power of excluding

all the violating vertices to get a correct result.

2.2.1 Basic Concepts

Clusters are used in finding group of data in spatial database. Ester et al. 9 published their

algorithm DBSCAN along with the very important concept of density-reachability that gives

us a huge clue on our problem. We summarize their technique here for a comprehensive
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understanding of this idea.

When trying to group large amount of data in database, people found that within a

cluster, the density of data in the cluster was higher than that of the noise data. This

distinction became the intuition for them to invent an algorithm that could automaticly

recognize clusters based on the density of data. A series of concept should be made clear to

help understanding the idea of density-reachable that we used in our approach. We recap

some of the important concepts below.

Eps-neighborhood of a point. We say the Eps-neighborhood of a point P(denoted as

NEps(p)) is defined as NEps(p)={ q ∈D|dist(p,q) ≤ Eps }, that if the distance between two

points is less than Eps we say point q is an Eps-neighborhood of p. However, Eps itself

could not distinguish whether a point belongs to a cluster or not. For instance, a noise point

near the cluster has the same Eps distance as that within the cluster, then we can exclude

this noise point. A requirement on number of points in distance was then added to hold the

case. They called the second definition directly density reachable.

Directly density-reachable. Point p is directly density-reachable from point q if

1) p ∈NEps(q) and

2) |NEps(q) | ≥MinPts

where MinPts refers to the minimum required numbers of points in range. Note that this

definition is symmetric to core points — points that lie inside of a cluster, but asymmetrical

between a core point and a border point.

Density-reachable. A point is density reachable from a point q if there exists a chain of

point q ... p that each two consecutive points are directly density-reachable.

Density-connected. A point p is density-connected to a point q if there is a point o such

that both p and q are density-reachable from o.

Using the above concepts we are able to define cluster and noise. A cluster is a set of

density-connected points that any two points inside it are density-connected. Then a noise

point is defined as one that does not belong to any cluster.
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Figure 2.3: Density reachable (a) and density-connected (b). ( Han and Kamber 11)

2.3 Previous Work

2.3.1 Skeleton Embedding and Skeleton Extraction

There are two ways of generating a skeleton. One is called skeleton extraction and another

called skeleton embedding. Both aim to build up the skeleton based on the infomation

provided by the model itself. In speaking of automatic rigging, Baran and Popvic 3 pointed

out that the advantage skeleton embedding has over skeleton extraction is that the topology

of the extracting result may vary from the target skeleton and this may prevent computer

from matching these two to finish the rigging. A. 1 used an approximate cluster to develop

a hierarchical decomposition of a mesh, and extracted a skeleton out of it. E. et al. 7 ]and C.

et al. 6 both used voxel descriptions to decompose the mesh and fit either ellipsoids or su-

perquadrics to estimate a skeleton. Later S. et al. 20 developed a different segmentation

approach based on feature point extraction. M. et al. 15 also presented a similar decomposi-

tion method based on approximate convex decompositions of shape . J. et al. 14 used feature

points to estimate the skeleton from a static shape while other approaches used various

types of distance functions C. et al. 5 , P. et al. 18 , gaussian curvature M. and e G. 16 and

probability distributions J. and M. 13

.
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2.3.2 Distance Map and Medial Surface

Wade 21 introduced his approach in finding approximate medial surface using distance map.

A distance map is the output of a grid of discrete points with each point marked either a

feature point or a background point. A calculation is involved that iterates from those

background points that are nearest to the feature points and ends till all the background

points are calculated. Figure 2.3 shows the idea. The calculation varies depends on the

desire of the distinction between points. If people want to exaggerate this distinction, they

would use Euclidean Distance. In fact Pinocchio uses this because it exactly depicts the

distance between two vertices in space. Pinocchio computes the distance map on an octree.

It rescales the mesh to unit volume and builds up a kd-tree over the mesh. It then uses top

down method to iteratively split every cell till they fall into the tolerance of the distance.

Figure 2.4: Distance map/field/transform. White grids represent feature points, which are
margin points in this case and the grids with digits represent the background points.

Wade 21 also illustrated how to construct the medial surface. We explained his idea of

finding medial surface as such: for every background point in the distance map, build up

a sphere with its Euclidean Distance in 3D space and see if the sphere will be well inside

the mesh and touch more than three feature points. Then all the satisfying points group

together to form the medial surface. Pinocchio works similarly but it filters out points that

form 120 degrees and greater which are likely to be nosiy parts.
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Pinocchio thus takes two main steps to finish the rigging: skeleton embedding and skin

attaching. Figure 2.4 shows all the modules of the API.

Figure 2.5: Pinocchio API
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2.4 Pinocchio API

Pinocchio takes in two parameters: a 3D mesh and an adapted skeleton. It begins with

the rescaled mesh and computes the distance map and approximate medial surface as we

described in Section 2.3.2.

2.4.1 Packed Spheres

The next procedure involved in Pinocchio is packing spheres. It queues the medial surface

points by their distance to the feature points in ascending order and constructs a sphere

with a point as center and the distance as radius if this point is the largest existing point

that is not in any existing sphere. In this way we diffuse the medial surface points and is

prepared for next step.

2.4.2 Constructed Graph

The next step of discretization constructs a graph by connecting some of the sphere centers.

Pinocchio connects two centers if the two spheres intersect or if it is necessary like the neck

and the shoulder. For a more mathematical and formulated description, take a look at the

paper for detail. After this step, Pinocchio finishes its discretization steps and ready to

embed the skeleton into this graph. We need to illustrate the data structure used here for

future convenience. For every vertex that displayed on the graph, Pinocchio allocates a

vector3 (x,y,z) to store its coordinates and another vector for all the edges that come out of

it. We will be needing this structure when we talk about our new algorithm.

2.4.3 Reduced Skeleton

For the input skeleton, Pinocchio reduces the bone numbers to simplify the embedding.

All the bone chains have been merged to reduce the degrees of freedom. After successfully

embed these joints, Pinocchio will reverse the reduced skeleton to the original unreduced

one by adding those joints back according to the proportion of length in the bone chain.
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Skeleton Joint Unreduced# Reduced#
shoulders 0 0

back 1
hips 2 1
head 3 2

Lthigh 4
Lknee 5
Lankle 6
Lfoot 7 3

Rthigh 8
Rknee 9
Rankle 10
Rfoot 11 4

Lshoulder 12
Lelbow 13
Lhand 14 5

Rshoulder 15
Relbow 16
Rhand 17 6

Table 2.1: Numbers generated in Pinocchio for joints of reduced and unreduced skeleton.

We will primarily talk about human-shaped biped characters because they appear more

frequently than others. Pinocchio can also deal with quadruped characters like horses and

centuars and the techniques are similar. We will give a sequence of numbers that represents

the order of these joints. We can see from figure that the unreduced skeleton has 18 joints

but only 7 in the reduced skeleton. Pinocchio stores them in a vector that we will use in

later chapters. 2.1 shows all the 18 joints appear in the unreduced skeleton and 7 joints

appear in the reduced skeleton.

2.4.4 Penalty Function

The most important contribution Baran and Popvic 4 have made to Pinocchio is the discrete

penalty function. As they mentioned in their paper, this penalty function impacts greatly

on generality and quality of the results. Nine minor penalty functions are combined together

using a studied weight to balance between each other. The nine penalty functions are:
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• It penalizes short bones. It penalizes a bone in the reduced skeleton if the length is

too short comparing to that in the unreduced skeleton.

• It penalizes on the orientation between joints if the direction between two joints are

different from that in the given skeleton.

• It penalizes different length of symmetric bones. This is self-explanatory.

• It penalizes bone chains that sharing vertices. If two or more bone chains share a vertex

with a distance to mesh surface less than 0.2 or a shorter bone chain is overlapped by

a longer one then a penalty will apply to these joints.

• It penalizes feet joints if they are not grounded.

• It penalizes zero length bones.

• It penalizes improperly oriented bone segments.

• It penalizes degree-one joints that should be further from their parent joints but are

not.

• It penalizes joints that are embedded close to each other but are far along the bone

path.

Baran and Popvic 3 studied this penalty function through more than 400 of embeds to

guarantee the generality and correctness of the coefficients appeared in these functions.

Again, for detailed information please read their documentation on this penalty function.

We summarize this function just for a preparation of discrete embedding.

2.4.5 Discretized Embedding

The discrete embedding step involves a branch-and-bound method to return an optimal

solution from the search tree of possible embedments. Pinocchio creates a priority queue

to maintain partial embedding information that ordered by the lower bound estimation.
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Because the joints of the skeleton are in order as in figure ,and the penalty function consists

of 9 weighted subfunctions and a term that incorporates the dependence between different

positions, a lower bound is estimated by calculating the existing penalties and ignoring the

un-embedded joints’ dependence. In this way once all skeleton joints are embedded, it is

guaranteed to be the optimal one.

2.4.6 Refinement

A continuous refinement is given after the initial embedding to adjust the orientation and

length of the bones to make the skeleton more adaptive to the mesh. A new penalty function

is given that combines four minor aspects of penalties:

• Pinocchio penalizes bones that are not near the center of the object.

• It penalizes bones that are too short when projected onto their counterparts in the

given skeleton.

• It penalizes improperly oriented bones.

• It penalizes asymmetry in bones that are marked symmetric.

Note that some of the terms are similar to the penalty function we described earlier but

they use different measurements and factors each time.

To this point Pinocchio has done its job in skeleton embedding. Skin attachment involves

a separate method called Linear Blend Skinning(LBS) to allocate certain part of the mesh

to a designated bone. We skip the introduction to this part since our research does not

involve this section. For detailed information please read their document.

2.5 Problem Definition and Research Objective

I now illustrate the problem discovered in Pinocchio and give a intuitive idea of the solution.

Given all 16 test results, Pinocchio managed to rig 13 of them with 3 of them incorrectly
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embedded. As we can see in Figure 1, characters 7, 10 and 13 are incorrectly rigged.

Character 7 is a female in dress and Pinocchio has no capability in detecting shape in early

steps. Usually when the character is biped, the result of packing sphere will naturally give

a biped shape because the boundary of the mesh constrains the radius of the spheres .

However, in such a case, much wider space will force the system to choose approximate the

center of the dress to pack its first (largest ) sphere. Although Pinocchio places a penalty on

them, it will not save the day under such an extreme case that the parameters set up in the

penalty function are for normal biped characters. Character 10 and 13 illustrate the same

problem: Pinocchio has no capability to eliminate vertices in impossible potions, like the

glove in Character 10 and the hair in Character 13.It is almost certain that none of these

problems can be solved before we can figure out which vertices are to be taken. Fortunately,

we have such information gathered during the process. In fact, before embedding, Pinocchio

computes the possibility for each vertex in the constructed graph and categorizes them into

different groups. This becomes the entry point of our work. Consider character 13, the

question is how Pinocchio confuses the hair with hand. When considering a vertex to

be a candidate of limb vertex or not, Pinocchio checks every neighbour that has an edge

connecting them in the constructed graph and see if (a) the sphere of the two vertices are

relatively same and (b)angle between them is no more than 135 degree. This rules out

most of the vertices that are well inside the mesh and those around big spheres like head,

shoulder and hip. However, things like hair or tentacles or sharp edges such as armours will

not be excluded. If we can further filter out these vertices then the results will perhaps be

satisfiable.

A naive approach will choose the z-value of the vertices to be the threshold. Indeed,

when we first did that, we corrected character 13 with a fast speeded search. However, two

shortcomings are very obvious: (a)the threshold needs to be changed for every character

and will lose the generality, (b) the accuracy of the threshold goes beyond human eye’s

capability. Consider that we set up the z-value threshold to be 0.6 of the body’s height.
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However, if a hair vertex has z-value 0.59, then the system will still give an undesirable

result. to avoid such situations, we introduce the clustering algorithm.
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Chapter 3

Methodology

I now explain my approach to fixing these problems. Figure 3.1 shows the revised API with

two new modules: a filter consisting of a clustering algorithm to further eliminate some

impossible vertices and an adjustment section to correct hands and feet issues.

Figure 3.1: The revised Pinocchio API with two new modules.

3.1 Clustering Algorithm

3.1.1 Possible Vertices

We introduced the Pinocchio API in detail in Chapter 2 and we know that the discrete

embedding is based upon a constructed graph and a reduced skeleton. There is a step
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that was not described in their paper that raised our attention. This step computed a set

of possible vertices that could most probably be the positions for the body joints. They

categorized all the vertices found in the discrete graph into 3 groups: limb vertices, torso

vertices and all vertices.

Limb Vertices. To estimate a vertex (or a sphere center in the graph) for a hand or

foot joint, they set up two conditions:

1) For every vertex, traverse its neighbor and compare the radius of its sphere with that

of itself. If any of the radius is two times larger than another, then this vertex will not

be considered as a possible vertex. This is due to the concerning that typically the shape

around ankle and wrist should stay stable so that the positions like neck and hip can be

eliminated by this condition.

2) Given a vertex p and any two from their neighbors o and q, if it satisfies below equation,

then it should be eliminated:
→

(o− p).normalize() ×
→

(p− q).nomralize() ≥ 0.8

We know that the product of two normal vectors equals to the arccos amount of the angle

between them. Given the arccos graph, we can see that the requirement is more than 1350.

With this condition some similar structure with unsatisfying angles will be excluded.

Torso Vertices. To estimate a vertex on the spine, Pinocchio simply sorts all the

vertices by the radius of the spheres in ascending order and see if the number of vertices

exceeds 50 or not. If so, the first 50 vertices are stored as candidate of the joint positions

and the rest are excluded. Otherwise all the vertices should be included.

All Vertices. In case that the above method did a wrong guess, all the vertices are

still stored once for the worst case. Now we take a look at the results for Character 13.

Two vertices at the end of the doll’s hair were mistaken to be the positions of hand joints.

This is because those two vertices satisfied all the conditions listed above in limb vertices

and when being embedded, as those vertices were queued earlier in the priority queue, the

system picked them up and finished the embedment. If we guess it right, all the hair vertices
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at the similar position should be included in the limb vertices set where there’s no way for

the system to choose the right ones.

3.1.2 Cluster versus Z-value

Our algorithm aims eliminating all these incorrect vertices. We decide to add a filter to the

limb vertices section. The very first idea is to use the height, that is the z-value feature

of these vertices to make the distinguishment. To do so, we establish a threshold for the

z-value of these vertices and exclude those that exceed this threshold. We managed to do

that. However, then we realized that this fixed threshold can not hold for every other models

and a more crucial difficulty is the precision of this threshold. Because Pinocchio rescale the

model to unit height and typically a model consists of 10,000 to 100,000 vertices, each vertex

reaches the order of magnitude up to 1e−7 of unit length, we can not set up a threshold

to guarantee all the impossible vertices to be eliminated. That’s how we come up to the

clustering algorithm.

Figure 3.2: The clustering algorithm. Note that even though some vertices rest below the
threshold, they are eliminated by the clustering process.

As you can see in figure 3.2 ,we manually set up a threshold at a approximate height,

then some of the vertices are eliminated and some are not. However, if we first gather these

vertices as clusters, then eliminate the whole cluster when one of the cluster member is
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eliminated, then we are happy to see that all the impossible vertices are eliminated.

3.1.3 Algorithm

The algorithm works as follow: When the limb vertices section ends, we collect all the

candidate vertices and start clustering:

1) Get the maximum height of all the vertices, the z-value h. We use this value to determine

the Eps distance and the threshold.

2) Traverse the collection of the candidate vertices. If there’s no cluster exists, calculate

the distance from this vertex to all its neighbors and see if any of them satisfies the Eps

distance. If so, put both this vertex and the neighbor to a new cluster and eliminate them

from the collection. If not, mark this vertex as a noise vertex and eliminate it from the

collection.

3) If there are some existing clusters, first try if this vertex is density-connected to any of

them, if so, append this vertex to that cluster and eliminate it from the collection. If not,

iterate the second step and either form a new cluster or mark it as a noise vertex.

The pseudocode of the algorithm is given below:

Clustering Algorithm takes(vector candidateVerts,ConstructedGraph graph) returns vec-

tor

for i = 1→ graph.size() do

zMax←Max(graph[i][2]) {zMax gets highest z-value of the model}

end for

threshold = 0.6 ∗ zMax {set up threshold}

for i = 1→ candidateV erts.size() do

if flag(graph[candidateV erts[i]]) == false then

{false before it is evaluated}

if clusters.size() > 0 then

{and we have already got some clusters before}
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for j = 1→ clusters.size() do

if densityConnected(graph[candidateV erts[i]], graph[clusters[j][0]]) then

clusters[j]← candidateV erts[i]

flag(graph[candidateV erts[i]]) = true

end if

end for

if flag(graph[candidateVerts[i]])==false then

{fit no existing clusters}

for j = 1→ candidateV erts.size() do

if flag(graph[candidateVerts[i]])==false &&

Eps(graph[candidateVerts[i],graph[candidateVerts[j]]]) then

clusters← newCluster(candidateV erts[i], candidateV erts[j])

flag(graph[candidateV erts[i]]) = true

flag(graph[candidateV erts[j]]) = true

end if{see if a new cluster will form}

end for

else

noise← candidateV erts[i]

flag(graph[candidateV erts[i]]) = true {all failed,this is a noise vertex}

end if

else

{no cluster formed yet, try to form one}

for j = 1→ candidateV erts.size() do

if flag(graph[candidateVerts[i]])==false &&

Eps(graph[candidateVerts[i],graph[candidateVerts[j]]]) then

{see if a new cluster will form}

clusters← newCluster(candidateV erts[i], candidateV erts[j])
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flag(graph[candidateV erts[i]]) = true

end if

end for

if flag(graph[candidateV erts[i]]) == false then

noise← candidateV erts[i]

flag(graph[candidateV erts[i]]) = true

end if

end if

end if

{continue if this vertex has been evaluated}

end for{evaluation phase finished, now begin elimination phase} new vector out;

for i = 1→ clusters.size() do

for j = 1→ cluster[i].size() do

if graph[cluster[i][j]][2] > threshold then

{comparing z-values}

break;

end if

end for

if j < cluster[i].size() then

{traversal not finished, some vertices above threshold, put this cluster into candidate

list }

out← cluster[i];

end if

end for

for all noise[i] do

if graph[noise[i]][2] < threshold then

noise.delete[i];
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end if

end forout← noise;

return out;

The inputs of the algorithm are the constructed graph and the collection of all the

candidate vertices from limb vertices function. The output is a subset of the collection that

satisfies our conditions.

There are two parameters that we set up manually after a series of experiments: the

threshold h and the Eps distance d. For the threshold we choose h=0.6∗ Max(z-value)that

holds for most of the cases. It is true that this threshold will malfunction once the impossible

vertices break through the height, but as no algorithm can deal with all the possibilities,

we did find slight improvement to the results. For another parameter, the Eps distance,

we set d=0.01∗ Max(z-value) so that this value would not be too large to include some

weird vertices but too small to leave some of the cluster members as noise points. We will

talk about the expanded test on the range and efficiency of this algorithm in the following

chapters.

3.2 Adjustments

We managed to fix the problem appeared in Character 13, and another observation found

that the rest two cases fell into a similar situation: Pinocchio could not adjust the position

of symmetric joints like hands and feet. In Character 7 the left foot was wrong because the

character was in dress and Pinocchio has no capability in detecting the outline of the mesh.

After the discretization steps, the largest spheres in the center of the dress were first added

but the correct ones were eliminated because they intersected with this large sphere. In

character 10 the slant skeleton stems from the incorrectly embedded left hand. Pinocchio

misplaced the hand joint onto a vertex on the edge of his glove. This vertex survived because

it met all the conditions in limb vertices section and it was low enough that our threshold
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would never eliminate it. We thus separately placed a sequence of adjustment function to

correct these issues.

Figure 3.3: Adjustment for feet. The hip joint is selected to be standard for the alignment
two feet.

We noticed that almost all the cases were correctly recognized and embeded the torso

vertices such as head, neck, spine and hip. We chose the vertex of hip joint to be the

standard of our adjustment because in the reduced skeleton two feet joints were directly

connected to this joint. Here we call the vertex at hip joint hip, the left foot lf and the

right foot rf. So in Cartesian coordinate we have hip(x,y,z), lf(x,y,z) and rf(x,y,z). Under

normal case the x-value from right foot to hip and from hip to left foot should be positive

and relatively equal, i.e., rf(x)-hip(x)≈ hip(x)-lf(x)>0. If such a case like character 7 was

detected violating this measurement, we would input these three vertices together with the

collection of all possible vertices to the function to make adjustment. The algorithm is given

below:

1) If rf(x)-hip(x)<0, then right foot is the one to be adjusted, if hip(x)-lf(x)<0, then left

foot is the one to be adjusted.

2) Assuming the left foot (as in Character 7) is the one to be adjusted, we manually create a

correct position for it using the right foot: new lf(x,y,z) = lf’(hip(x)-[rf(x)-hip(x)],lf(y),lf(z))

3) We traverse all the candidate vertices and find one that lies nearest to this fate vertex

26



and order this vertex to be the new position of the left foot. The opposite situation is

symmetric.

Notice that we don’t have the case that rf(x)-hip(x)<0 and hip(x)-lf(x)<0 ,which means the

two feet lie across each other. This is impossible because Pinocchio embeds these two joints

independently and if there is a possible vertex on the left side, it will never embed the left

foot to the right side.

Figure 3.4: Adjustment for hands. The lower hand is set to be the standard in order to
create a symmetric joint position for another.

We found hip joint to be the measurement of foot position. Unfortunately we were not

able to find such a standard in dealing with hand adjustment. However, we noticed that

all the mistakes that happened on hands were inside the arms, in other words, we did not

run into a situation where Pinocchio embedded a hand correctly in its position while having

another one embedded in the torso or leg. Then we could assert that the lower side of the

embedding would be more trustworthy. Again we suppose the left hand to be lh(x,y,z) and

right hand to be rh(x,y,z).Here’s the algorithm:

1)If lh(y)<rh(y), then we assume the right hand to be adjusted and the left hand if

lh(y)>rh(y).

2)Assuming left hand is the one to be adjusted. then we create a new vertex for it: new

lh(x,y,z) = lh’(lh(x),rh(y),lh(z)).
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3)We traverse all the candidate vertices to find the nearest point p and p will be the new

position for the left hand.

And the pseudocode shows the integrated module we developed for Pinocchio. The inputs

are the set of candidate vertices, the constructed graph and the set of initial embedding

results.

embeddingAdjustment takes(embeddingResults ER, constructedGraph CG, cadidateV-

erts CV)

returns void

vertex3 v1=graph[ER[1]] {skeleton hip}

vertex3 v3=graph[ER[3]] {skeleton left foot}

vertex3 v4=graph[ER[4]] {skeleton right foot}

vertex3 v5=graph[ER[5]] {skeleton left hand}

vertex3 v6=graph[ER[6]] {skeleton right hand} {adjustment of hands}

if v5[2] > v6[2] then

{adjust left hand}

vertex3 vFab(v5[0],v5[1],v6[2]);

{construct a new left hand position}

for i = 1→ CV.size() do

if dist(CG[CV [i]], vFab) < minDist then

{minDist stores shortest distance}

minDist = dist(CG[CV [i]], vFab) ;

vAdj=CV[i];

end if

end for

v5=vAdj;

else

vertex3 vFab(v6[0],v6[1],v5[2]); {right hand}
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for i = 1→ CV.size() do

if dist(CG[CV [i]], vFab) < minDist then

{minDist stores shortest distance}

minDist = dist(CG[CV [i]], vFab) ;

vAdj=CV[i];

end if

end for

v6=vAdj;

end if{feet adjustment}

if (v1[0]− v3[0]) < 0 then

{left foot is misplaced}

vertex3 vFab(v1[0]-(v4[0]-v1[0]),v3[1],v3[2]);

for i = 1→ CV.size() do

if dist(CG[CV [i]], vFab) < minDist then

{minDist stores shortest distance}

minDist = dist(CG[CV [i]], vFab) ;

vAdj=CV[i];

end if

end for

v3=vAdj;

else if (v4[0]− v1[0]) < 0 then

{(}right foot issue)

vertex3 vFab(v1[0]+(v1[0]-v3[0]),v4[1],v4[2]);

for i = 1→ CV.size() do

if dist(CG[CV [i]], vFab) < minDist then

{minDist stores shortest distance}

minDist = dist(CG[CV [i]], vFab) ;
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vAdj=CV[i];

end if

end for

v4=vAdj;

end if

return ;

Vertices v1, v3, v4, v5 and v6 represent the hip,left foot, right foot, left hand and right

hand joint respectively according to the reduced skeletal structrue 2.1. We did not consider

the different in x and y value because normally the model should be presented in T-pose or

standard standing pose and we assumed this is the case. A faster searching strategy involves

storing the clusters we previously calculated and eliminating those with unmatched z-values.

We did not try that since the number of vertices in the constructed graph is usually under

15,000 and the time usage of this module takes less than 1% of total run time.

30



Chapter 4

Experiments and Limitation

We have presented our approach in fixing the problems ouccred in Pinocchio.To test our

method, we observe its performance on the test cases that Pinocchio used. Our minimum

goal is to fix all three incorrectly rigged characters while maintain the correctness on the rest

13 characters. Our ideal goal is to extend the applicable scope of the system that correctly

rig as many characters as possible.

4.1 Applicable Scope

We tested all the 16 cases used for testing Pinocchio. The result was delightful that all 3 cases

were rectified and the new modules did not affect the correctness on rest 13 cases. Figure

shows the result. Character 7, the woman in dress was remedied by the adjustment that the

left foot was placed in an approximate symmetric position to the right foot. Character 10’s

left hand joint was moved down to the hand mesh and then the whole skeleton was adjusted

to fit the mesh. We eliminated the hair vertices in Character 13 and thus the system was

then able to recognize the hand positions of the character.

We also built up a simple model and stretched or squashed it into four different copies, as

shown in figure. We then tried to place the same skeleton into these models. Model(A) was

a x-axis stretched model and although the hip joint was embedded higher than the suggested

place, we found the animation worked out well without obstruction. Model(B)was a y-axis

stretched model that was embedded well. Model(C) in principle violated the precondition
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Figure 4.1: All three wrongly rigged characters are now correct.

of Pinocchio that the model should be proportioned roughly the same to the skeleton. We

found two hand joints were embedded outside the mesh but we suggest that it should be

correct under normal case. Model(D) was squashed with short legs and the skeleton was

placed well inside the mesh.

Figure 4.2: Stretched and squashed characters used for testing the applicable scope of our
method.
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4.2 Testing System Limits

We designed an extend test to discover the boundaries and limitation of our algorithm. We

edited Character 13 and modified it into several cases to test the border of our algorithm.

From figure4.2 we can see that in model(a) the doll’s hair was streched down to the lower

body and the proportion was changed by elongating its legs. Model(b) also stretched the

hair but stayed in the same proportion. We only changed the proportion to the doll in

model(c) by extending its legs to an extreme extent. We did the same to model(d) except

that the proportion was set equal to our threshold in our algorithm, which was 0.6. We

purely stretched the hair down in model(e) to test the limitation of Eps distance we set up

for the clusters.

Figure 4.3: Extend test for our algorithm.

Models(A) and (B) failed because the hair often went below our threshold and all the

clusters at the endpoint were not detected. This case represented the primary aspect of our

limitation that once the unwanted clusters went far below the threshold, there is no way to

eliminate them. We’ve thought about additional checking methods in length and width, but

the fact that each model varied from shape to shape hindered this idea. A more involved

idea was to automaticly test the threshold. For example, we started at threshold=0.1 to

see if the embedding succeeds. If not, we iterated this step by lifting the threshold to 0.2

and so on. This method indeed would eliminate the limitation of the height but we found it

difficult to implement. The reason was because as we mentioned, Pinocchio used a bounded

hueristic search to finish the embedment that could not be a clear sign of success or failure.
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We’ve run into such situations that Pinocchio finished embedding in a few seconds with an

incorrect result, but finished in several minutes with a correct one. We could not terminate

during a embedding iteration with a single judgment of time and traversed vertices. Plus

we found under normal cases, our threshold of 0.6 satisfied most of our test cases. Then we

could deal with those cases as special ones.

Model(C) and(D) failed because they violated the assumption that the model should be

proportioned roughly the same as the skeleton. Model(C) had extremely long legs that we

deliberately made to let the hand vertices went above the threshold. As we expected, the

hand vertices were eliminated as impossible vertices and thus we got the incorrect result.

However, we got all four limbs embedded correctly in model(D) but a incorrect shoulder

joint. The doll had a huge face with almost no neck, this became another limitation for our

algorithm that some fabricated structures of body were not correctly recognized as expected.

Model(E)was a border test case on the limitation of the threshold. With such a propor-

tioned character, we had its hair drooping down to its shoulder that roughly at 0.6 of its

height and we correctly eliminated those hair vertices to embed the joints into the mesh.
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Chapter 5

Performance and Discussion

Baran and Popvic 3 specified the performance for Pinocchio in runtime efficiency, quality

of results and generality. We follow their pattern to assess our revised API.

Figure 5.1 shows the statistics of all 16 test cases including the total number of vertices

after the top down kd-tree split and that after the medial surface algorithm, the size of

priority queue in heuristic search for the embedding, the possible vertices we get after

clustering algorithm and runtime in total. Since our work only affects the possible vertices,

the size of heuristic search and total runtime, we provides a comparison between the original

API and our revised API.

Figure 5.1: Statistic on tested cases.

The number of vertices ranges from 10,241 to 64,937 and the runtime ranges from 13.88s
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to 49.17s. Compared to Pinocchio, the runtime decreases instead of increasing. This is

because our algorithm reduces the size of candidate vertices which in turn reduces the size

of heuristic search, plus in Pinocchio, embedding costs more than 15% of total time usage

on average while an iteration over candidate vertices costs only about 1%. Comparing the

size of candidate vertices to be tested for embedding, our clustering algorithm filters out

35% to 65% of the total vertices which greatly reduces the running runtime. Notice that the

size of heuristic space search doesn’t decrease much because the clusters that include the

possible vertices are not filtered by our algorithm (-in fact there is no way to filter them out).

However, as we did for Character 13, as long as we can eliminate those confusing vertices

and reveal the structure of the mesh correctly before the system, the speed of embedding

will raise apparently.

The quality of the embedding stays equal to the original API because our algorithm

doesn’t involve any technique in finding more detailed resolution of the mesh. Pinocchio

uses LBS method(discussed in chapter 2) to specify the controlling part of a bone that works

well for muscles but often shows its shorthand on presenting armors and and soft materials

such as the dress on Character 7.

The generality slightly extends as discussed in chapter 4. Our new algorithm makes

the API eligible for rigging characters with average length of hairs and dress. For those

fabricated characters, as long as they proportioned similar to the biped skeleton, we can

guarantee to produce a satisfied result.

We are far from satisfied with the revised system because we did not manage to expand

the applicable range of the system greatly. Of course we realized that it would be intractable

for the system to rig a extremely odd character that people set up to break the system.

After all, there is no information provided with the models and we can barely recognize it

using graphics knowledge. However, the purpose of inventing automatic rigging is to help

emancipate model designers from iteratively rigging normal characters rather than work out

a special case. Given this goal, the results are more satisfactory.

36



Chapter 6

Conclusions and Future Work

The problem addressed in this work stems from the observation of incorrectly embedded

characters. The old API failed to detect and rule out those body parts that have similar

shape to the limbs, plus a post checking section was needed to traverse the embedded

skeleton and correct the wrongly placed joints. The objective of our work is to correct these

issues while not to narrowing down the applicable scope of the original API.

We presented our revised Pinocchio API for automatic rigging in this paper and discussed

limitations that we haven not yet solved. We introduced original API process and the

problems occured in their test results. We described DBSCAN, a well-known algorithm

used in data mining, as the foundation of our algorithm. In our promoted API, two new

modules were added to correct the hair, hands and feet issues appeared in Pinocchio. We

used clustering algorithm to eliminate confusing vertices before the discrete embedding and

adjusted the inappropriate hand and foot joint positions after the initial embedding. We

fixed all the 3 wrongly rigged characters among all 16 test cases and did not affect the

correctness on them. We also designed some extra test cases to verify the efficiency and the

border of our methods.

We have some suggestions and a vision plan for future work. First, it would be a worth

while improvement if we can develop a method for eliminating the threshold and is purely

based on the clusters we gathered. This should especially work well for those models that

have detailed resolution on ends of the limbs such as fingers and nails that the density of
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vertices are heavier than the other places.

We have seen some shape recognition methods using databases that worked well. People

depicts the shape using simple geometric primitives and the system will search out corre-

sponding objects. This methods galvanizes us to design a similar interface combining with

such a database that people will find a more appropriate skeletal structure to fit their mesh

rather than our situation where a human skeleton for all biped characters.

Poirier and Paquette 19 provides a multi resolution approach for extracting skeleton with

highly detailed information and we can adapt it to retrieve more precise results. Gleicher 10

provides a method in adjusting the segments of body mesh to adapt same skeleton to scaled

characters that would save the repetitive processing time.

A more practical promotion to our current work maybe is to provide a user-friendly

interface that can reflect the results on screen before finally outputting the animation files.

Meanwhile, people can manually point out the correct joint positions to inform the system

to redo the embedding.

In the end, automatic rigging technique originated due to a growing number of modeling

tools and the corresponding need to reduce the burden of model designers on repetitive

processing of manual riggings. It is worth while to investigate and research on this topic in

order to provide some effective and convenience tools to relegate the problem.
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