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PREFACE

An oft used purpose of experimental methods and

experimental analyses is to verify whether the theory

based calculations, along with any assumptions made,

can be substantiated experimentally. It was with this

intention that this project was undertaken. Although

the methods of analyzing stress and strain in isotropic

materials are well documented, the analysis of noniso-

tropic materials is not so well established.

This work examines the theoretically predicted

stress in a thin-wall box beam which was fabricated

from a nonisotropic composite material. The elastic

constants of this composite material were unknown, and

so had to be determined using experimental methods.

From these and other intermediate steps, the stress and

corresponding strain were predicted in the box beam due

to a known loading condition. These were then compared

to the results found by experimental methods

.

One difficulty which was encountered involved

finding the modulus of elasticity of the composite

material in compression. The experimentally determined

value was deemed invalid and so another method had to

be used to find its value.
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Chapter I

INTRODUCTION

A composite material is one which, by most

definitions, consists of two (or possibly more) dis-

tinct phases or materials on a macroscopic scale.

Although other types and varieties exist, the most

commonly used composites consist of a high modulus

constituent for strength enhancement and a low modulus

binding material known as the matrix. The high modulus

material may be in the form of long directionally

oriented fibers, short randomly oriented fibers, whis-

kers, flakes, particles, spheres, foams, etc. For

those composites which use long fibers for reinforce-

ment, multiple layers of the fibrous material are

generally reguired to obtain the necessary laminate

thickness.

The matrix is usually some type of resin,

although many of the conventional engineering materials

can also be used. Its primary functions are to provide

binding strength, support the high modulus material,

act as a filler, transfer the stresses, protect the

high modulus material from abrasion and environmental

agents, and provide fracture toughness.



Although much of the attention and development

work today centers on those composite materials known

as "advanced composites" or "high performance com-

posites" because of the very high specific strengths

available from these generally unidirectional (UD)

fibrous composites, over 80% of the composite materials

produced today still utilize fiberglass as the re-

inforcing material. FRP (fiberglass reinforced

plastic) offers many advantages over steel and most of

the other metals. These include a specific gravity

roughly 1/5 that of steel, a strong resistance to

chemical attack and corrosion, low electrical and ther-

mal conductivity rates, and an ability to obtain

physical properties which are directionally sensitive.

Moreover, fiberglass is relatively inexpensive and

readily available in many forms. One noteworthy

characteristic of FRP is that it, like most composites,

is nonisotropic. This property can mean significant

weight savings in many applications, since fiber-

reinforced composites can be utilized which have their

maximum strength oriented in the same direction as the

principal stress. However, this characteristic of

being nonisotropic necessitates a more thorough under-

standing of the stress-strain relations and how the
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composite's properties vary depending upon the type and

orientation of the reinforcement. Thus composite

materials can offer significant advantages in many

applications, particularly the aerospace industry, but

also reguire a careful analysis of their unigue phy-

sical characteristics.

Because box beams are important structural

elements and FRP is used in many industries, combining

these two into the object of this research was done to

provide some insight into the problems associated with

using FRP for structural applications. This objective

was accomplished by investigating and comparing the

results of and problems associated with finding the

elastic constants of a particular FRP composite, fabri-

cating a thin-wall box beam using this FRP composite

(with the primary axes of the fiberglass reinforcement

rotated relative to the beam longitudinal axis), and

then comparing experimentally measured strains with

the theoretically calculated strains on the upper and

lower surfaces of the box beam subjected to a simple

load.



Chapter II

METHODS AND PROCEDURES

DESCRIPTION OF FRP COMPOSITE

The fiberglass reinforcement used in this

study consisted of a plain weave fiberglass material

which originally contained 16 yarns per inch in the X

(warp) direction and 14 yarns per inch in the Y (fill)

direction (see Figures 1 and 2). The material was

modified by removing every third yarn in the Y direc-

tion, leaving 9 1/3 yarns per inch in this direction.

The purpose of this modification was to increase the

differential strength between the two principal direc-

tions.

Each individual yarn consisted of approximately

200 individual, twisted together, glass filaments (or

fibers), each one being approximately 0.0005 inches in

diameter. The overall outside diameter of the entire

yarn was approximately 0.020 inches.

The matrix was a thermoset type polyester resin

which is manufactured for the automotive company

Balkamp, Inc. It utilizes a MEK (methyl ethyl ketone)

peroxide catalyst to initiate the curing process.

4



Figure 1 Detail of Plain Weave

Figure 2 Original Fiberglass Reinforcing Cloth



The hand layup process consisted of manually-

working the catalyzed resin into the fiberglass

material, one piece at a time. After each piece of

fiberglass cloth was completely impregnated with resin,

it was laid into the desired position. After all of

the reguired number of pieces were properly stacked or

wrapped over each other, the entire fabrication was

covered with a nylon peel ply, a perforated nylon

release film, an absorbent bleeder material, and an

outer nylon bagging film used to provide an airtight

enclosure so that a vacuum could be applied to the

entire fabrication. The vacuum bagging process is

intended to compress the resin-impregnated fiberglass

cloth layers together, eliminating voids and air

spaces; draw out the excess resin; and provide a rela-

tively smooth surface finish.

The flat FRP composite plate from which all of

the test specimens were cut was made with each layer

of the fiberglass material aligned the same, ie. each

layers' X and Y axes were collinear. This was done

so that the physical properties of the composite could

be determined in each of the two principal inplane

directions. Obtaining the properties in each of the

principal axis directions is essential in evaluating

composite material properties since a characteristic

6



of directionally oriented fibrous composites is that a

uniaxial normal stress may produce a shear strain and a

pure shear stress may produce a normal strain [1].

These correlations are called coefficients of mutual

influence by Lekhnitski [2].

The thin-wall box beam was fabricated by

wrapping two pre-cut pieces of resin-impregnated fiber-

glass cloth around a wood core. Each piece of fiber-

glass cloth was of a predetermined size necessary to

make four complete layers around the core, with the

first piece having its X axis offset from the beam's

longitudinal axis by +10 . The second piece was of

the proper dimensions to make four layers over the

first four, except that the X axis of these layers was

offset from the longitudinal beam axis by -10 . See

Figure 3 for details.

This procedure produced a box beam wall which

would be classified as a balanced, antisymmetric angle

ply laminate. Being antisymmetric will produce a coup-

ling effect between bending and extension, which causes

warping. This effect will be minimal in this analysis

however, since the box beam dimensions are large com-

pared to the beam wall thickness and the amount of

bending which occurred was small.
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One drawback of the manual layup procedure was

the inability to ensure uniformity in the beam wall

thickness. The side of the beam where the outer layer

of bagging film was overlapped had a smaller amount of

the resin squeezed out during the vacuum bagging and

curing phase. This resulted in one side of the box

beam having a thicker wall than the other side. Such

occurrences are difficult to avoid, however, in a con-

tinuous wall structure fabricated manually.

After a vacuum was applied and the resin had

cured overnight, all of the nylon covering and bleeder

material was removed. The ends of the beam were cut

off to the dimensions indicated in Figure 3, and the

wood core, which was split and dowelled in the middle,

was removed. The cut ends of the beam and all of the

test specimen edges, except for the compression test

specimens, were sealed with resin to eliminate the

existence of free glass fibers which inevitably result

from the cutting process. The teeth on the sawblade

caused those fibers near the surface on the downside of

the cut to become disengaged from the matrix as they

were cut by the moving sawblade teeth.

The 16 layer flat plate previously described

and the 8 layers of the box beam wall just described

can be classified as orthogonal laminates, as long as

9



they are restricted to plane stress conditions. This

property allows their elastic properties, as determined

along the two inplane principal axes, to be trans-

formed to yield the desired elastic properties at some

angle to the principal axes. This transformation

will be discussed later.

Another property of nonisotropic materials

which is an important part of an experimental analysis

is the fact that they have more than two independent

elastic constants (for isotropic materials, E, G, and

V are related) . For an orthotropic material subjected

to plane stress, there are five independent elastic

constants (any 3 of Exy , Eyx , 1/ , 1/ , and either Gxy

or Gyx ).

EXPERIMENTAL DETERMINATION OF FRP
COMPOSITE PROPERTIES

The first step necessary for both the theor-

etical approach and the experimental analysis was to

determine the independent elastic constants of this

particular FRP composite. Those which were determined

experimentally included E , E , l/m , 1/. , and G . .v x xy' yx' xy' ^yx' xy

The ASTM Standards were used as guides for all of the

experimental analyses.

10



Determination of E and Z^xy xy

Since a characteristic of most fiber-reinforced

composites is that their modulus of elasticity in

tension is greater than their modulus of elasticity in

compression, a different set of experimental tests were

performed to determine each value. The guide used for

determining the modulus of elasticity in tension and

poisson's ratio was ASTM Standard D3039 [3]. Figure 4

illustrates the approximate dimensions of the test

specimens.

^_ y A CN
in

I7~ x.

Tabs
(typ. of 4)

Specimen

Figure 4 X Axis Tensile Test Specimen Dimensions
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All tests on the test specimens and the box

beam were performed utilizing a 20,000 lb. Riehle test

machine. Where tabs were required on the tensile

specimens, they were fabricated from the same fiber-

glass material and resin as the test specimens and box

beam, except that no yarns were removed from the fiber-

glass cloth. They were cut from a larger piece and

glued onto the test specimens using Measurements Group,

Inc. M-Bond 200 adhesive. All strain gages used in

this and successive applications were manufactured by

Micro-Measurements Division, and were Type EA-06-

120LZ-120 gages, with a gage length of 1/8". All

strain readings were taken using a Measurements Group

Strain Indicator, Model P-3500 (S/N 50798), and a

Measurement Group Switch and Balance Unit, Model SB-1

(S/N 033433)

.

The graphs of the load versus strain are shown

in Figures 5-10. For each specimen, the modulus of

elasticity in tension was found by use of the formula

E, = WA (1)

where E. = modulus of elasticity in tension (psi)

P = applied tensile load (lbs)

2
A = test specimen cross-sectional area (in )

€ = measured strain (in/in)

12
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Specimen No. 1, on Figure 5, utilized three

longitudinal strain gages rather than one or two, as

did the other specimens. The purpose of the addi-

tional strain gage was to see if any bending of the

specimen was occurring during the test due to mis-

alignment of either the specimen or the test fixture.

Since no bending problem was observed, one less longi-

tudinal gage was used on subsequent tensile specimens.

It will also be noted from the referenced

figure and later figures that some of the load/ strain

curves contain a knee joint where the line abruptly

changes slope. In some cases the slope decreases, and

in others the slope increases. The first case is most

likely caused by the breaking of some of the individual

glass fibers (filaments), leaving fewer to carry the

load. The second case is probably caused by the takeup

of slack by some of the load carrying yarns. With the

lack of a feasible method to ensure that each layer of

the reinforcing fiberglass cloth, in addition to the

individual yarns, remains straight and free of any

inplane curvature, it was very likely that some of the

individual glass yarns incurred some curvature during

layup. With such a loose weave material as that used

for this project, a problem like this is difficult to

completely avoid. The result was a load/ strain curve

19



which had a sudden increase in slope after this initial

slackness was taken up.

After determining a tensile modulus of elasti-

city for each specimen and then averaging these values,
c

the result was E . = 2.513 x 10 psi. From the
x, t

strain gage mounted transverse to the specimen's longi-

tudinal axis, the contraction in the Y direction was

also measured as a function of the applied load. The

poisson's ratio for each specimen was found by appli-

cation of the formula

^xy - -
'J"

(2)

The resulting average value for all of the specimens

was TS = 0.165xy

Determination of E and Z/.„y —— —yx

These two properties were found in the same

manner as E and "J/ , again using ASTM Standard

D3039. The test specimen was different dimensionally,

however. Figure 11 has approximate dimensions for

these test specimens.

The graphs of the load versus strain for these

test specimens are shown in Figures 12-17. The average

value for the Y axis modulus of elasticity in tension

was E .
= 1.586 x 10 psi. The average value for the

y * ^

transverse poisson's ratio was found to be 2/..„ = 0.134,
yx

20
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There is another method which can used for

determining the modulus of elasticity of reinforced

composites. Since this method generally produces

slightly different values, it was also employed to see

what difference in values would be observed and if

these would be greater or less than those found by

using the tension test. This second method utilizes a

flexure test. ASTM Standard D790-86 [4] was used as a

guide in performing this test. Figure 18 gives the

test specimen dimensions.
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Figure 18 Flexure Test Specimen Dimensions

A four point bend test was performed on each of

these specimens (ASTM Method II), with the center

deflection being measured with an Enco model #340 dial

indicator. Figure 19 gives the details of the loading

and support arrangement.

For the curves which reflect the load versus

deflection for the E . test specimens, see Figures 20-

24. The equation used to calculate the modulus of

elasticity in bending was

E. = ' 17
\

m
(3)

b bd 3

where E, = modulus of elasticity in bending mode (psi)

L = support span distance (in)

m = slope of the tangent to the initial straight-

line portion of the load-deflection curve

b = width of specimen (in)

28



Load

Test
Specimen

Steel Block

Dial
Indicator

Figure 19 Flexure Test Fixture Details

The values found for E, on the X axis test specimens

were averaged, yielding a bending modulus of elasticity

of E . = 2.368 x 10 psi. This value is 94.2% of the

value found for the modulus of elasticity in tension

(Ev . = 2.513 x 10
6

psi)

.

X , L.

The same test was performed on three test

specimens to find a value for the modulus in the Y

direction. These specimens were generally of the same

dimensions as those for testing E in the X direction.
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The plots of the load versus deflection for these

specimens are indicated in Figures 25-27. Again using

Eguation (3) to find the modulus of elasticity of each

specimen and then finding the average, the resulting

g
value was calculated to be E . = 1.496 x 10 psi.

This value is 94.3% of the value found by the tension

test method (E
fc

= 1.586 x 10
6

psi).

Since the values found by using the flexure

test method were very close to being the same

percentage of the values found by the tension test

method, it was deduced that the slightly higher value

found by the tension test must be reasonably accurate

for stress which doesn't involve significant bending.

An interesting sidenote is that Whitney, et al,

[5] indicated that the modulus of elasticity in bending

is generally greater in composites. However, it would

seem that a lower value in bending could be explained

on the basis that bending produces both tension and

compression in the test specimen. If the modulus of

elasticity of the composite material in compression is

less than the modulus of elasticity in tension, then it

would seem reasonable to assume that a flexure test

which creates both tension and compression in a speci-

men beam will result in a modulus of elasticity which

is less than the modulus of elasticity in tension and
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more than the modulus of elasticity in compression.

Moreover, bending induced interlaminar shear stresses

will tend to reduce the strength and modulus of elasti-

city of a laminate-type composite.

In summarizing, the higher modulus of elasti-

city as determined by the uniaxial tension test method

was deemed to be an accurate representation of the true

modulus of elasticity of this FRP, particularly since

the amount of bending in the box beam was small.

Determination of E , E in Compression

The guide used for determining the modulus of

elasticity in compression in both the X and Y

directions was ASTM Standard D695-85 [6]. All of the

test specimens were approximately the same dimen-

sionally. Figure 28 gives the dimensions of these test

specimens.

1
Load

- 0.50" —

H

0.156"

Figure 28 Compression Test Specimen Dimensions
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Since the specimen length was so small, the

loading crosshead movement was measured to determine

the change in specimen length, instead of the actual

specimen. The modulus of elasticity in compression was

calculated for each specimen by use of the equation

where E = modulus of elasticity in compression (psi)

P = load (lbs)

2
A = specimen cross-sectional area (in )

AL/L = change in specimen length divided by

original length (in/in)

The resulting load versus strain plots for each

of the ten specimens used in this test are shown in

Figures 29-38. The average modulus of elasticity in

compression values for each of the two principal axis

directions were found to be

E = 3.68 x 10
5

psi, and E = 4.55 x 10 psi.
x , c y , c

These values appeared to be abnormally low, and were

later determined to be substantially below the empiri-

cally determined values.

One obvious reason for these values to be

suspiciously below their actual values is the damage

which occurred to the edges of the test specimens by

the sawblade teeth during the process of cutting the
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test specimens to the proper size. This separation of

the glass filaments from the matrix, as mentioned

earlier, and the concurrent loss of some of the matrix

near the edges, resulted in a reduction of the actual

test specimen thickness near the specimen edges. This

thickness reduction would not be significant for most

tests; however, it would have a substantial effect in a

case where the compressive forces on each end of a test

specimen are acting against a relatively small area

which had been further reduced by this cutting damage.

As a result, this test data was considered inconse-

quential.

Determination of G and G

The guide used in determining the inplane shear

modulus was ASTM Standard D 4255-83 [7]. Of the two

methods available in this standard, Method A was

chosen. It utilizes two pairs of rails, with the test

specimen bolted between them. The rails are subjected

to a tensile force. See Figure 39 for details of the

test specimen dimensions and Figure 40 for a view of

the test fixture apparatus.

It should be noted that the referenced ASTM

Standard contains a statement regarding the fact that

it is to be considered a standard guide, not a standard

method. The reason for this is that inplane shear test
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O.I5 3

Figure 39 Shear Test Specimen Dimensions
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Tensi le Fixture

Figure 40 Shear Test Fixture
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specimens normally fail by buckling out of plane. The

specimen size and constraints placed on it by the

clamping mechanism can affect the test results. More-

over, no single shear test seems to have gained

universal acceptance for determining the shear modulus

of laminated composites. A number of other shear test

methods are available, but this one was selected

because of the simplicity of the test apparatus and so

that only the ASTM Standards were used.

On each specimen, a three element rectangular

rosette strain gage was used to measure the strain, as

indicated on Figure 39. See Figures 41 and 42 for

plots of the load versus strain for the on-axis (G

)

xy

test and Figures 43 and 44 for the results of the off-

axis (G-_J shear test.

Since both tests produced results which indi-

cate that the principal shear stress axis was not

coincident with the longitudinal axis of the test

specimen, separate calculations were necessary to find

the maximum shear strain. This maximum shear strain

was found from the eguation

ymax - v(e,-^^^. - t)
)

2
( s i

which is the diameter of Mohr's circle [8]. After

application of this eguation for calculating each of
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the principal strains, the following results were

obtained:

On-axis specimen: X = 3615/4 fc w/1000 lb loadw max

Off -axis specimen: V = 1654yU£ w/900 lb load
iuttX

The shear modulus was then calculated from the

equations

G = ^ , and . "£r = JL ( 6 ) , ( 7

)

where 7JT = shear stress (psi)

P = load (lbs)

t = specimen thickness (in.)

L = length of specimen (in.)

After substituting in the proper values, the following

results were obtained:

G = 2.96 x 10
5 psi

G = 5.81 x 10 psiyx *

The larger value for G could be expected since a

greater force is required to cause a transverse

shearing of the glass fibers in the X-X direction than

would be required to produce shear between the matrix

and the fibers in this direction.

TRANSFORMATION OF PROPERTIES

Now that all of the on-axis elastic properties

have been found for each of the two principal fiber
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directions, the off -axis elastic properties must be

found for the angle at which the fiber reinforcement

was rotated in the box beam (±10 ). To do this, the

method of compliance transformation developed by Tsai

and Hahn [9] was used. This method uses the power

functions of sine© and cosine B , being the angle of

rotation from the principal (X) axis direction. The

process is representated in matrix form as

11

22,

'12'

66

16

Vs

" m4

n

2 2m n

n

m

2 2m n

26-

. 2 2
2m n

2m
2
n
2

4^ 4m + n

4m
2
n
2

4m
2
n
2 -8m 2

n
2

2 2-|
m n

2 2m n

2 2
-m n

( m 2
r,
2

\
2

(m -n )

3 3 3 3 3 3
2m n -2mn 2(mn -m n) mn -m n

n 3 n 3 ., 3 3, 3 32mn -2m n 2(m n-mn ) m n-mn

xx

YY

xy

ss

(8)

where
11

'12

'66

= X
El

b
22 E 2

= - H
E
2

_ 1

'12

S 16' S 26
= norma l coupling coefficients

m = cos 9 (8 =±10, depending on layer)

n = sin 9 (8 = ± 10, depending on layer)

xx Jx 2.513 x 10°

60

= 3.979 x 10
-7



yy

xy

ss

1_

E
y

E.

1.586 x 10'

0.165

= 6.305 x 10
-7

x 2.513 x 10 b
= -6.566 x 10

-8

_ 1 = 3.378 x 10
-6

uxy 2.96 x 10
J

Figure 45 illustrates the axes orientations of the fiber-

glass reinforcement and the box beam.

X

Y
2

^ 1

Box Beam, top view (not to scale)

Figure 45 Fiberglass Reinforcement and Axes Orientations

After substituting in the proper values and

performing the necessary operations, the following

values were found:

Sn = 4.6978 x 10~ 7
, or E

1
= 2.129 x 10

6 psi

S
22

= 6.8835 x 10~ 7
, or E

2
= 1.453 x 10

6
psi

S
12

= -1.3053 x 10
-7
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S
66

= 3.1185 x 10~ 6
, or G

12
= 3.207 x 10

5
psi

S
16

= .-3.963 x 10" 7
(+3.963 x 10" 7

for -10° rotation)

S
26

= 3.167 x 10" 7 (-3.667 x 10" 7
for -10° rotation)

In the box beam analysis, the transverse shear modulus

G-- was also calculated. It was determined by trans-

posing the values of S and S , substituting G forxx yy yx

G in S , and leaving S unchanged since S mustxy s s xy yx

egual S for symmetry. The fourth order transformation

matrix is unchanged, with the resulting operation

yielding the following value:

S ' = 1.655 x 10" 6
or G 91

= 6.041 x 10
5

psi

This transverse shear modulus is the one which would

determine the beam deflection due to shear in the

vertical web or sides of the beam, as the resistance of

the horizontal top and bottom would be negligible.

EXPERIMENTAL DETERMINATION OF BEAM DEFLECTIONS

The next step in the analysis was to find the

deflection of the composite box beam due to a known

load, and to plot this deflection versus load to deter-

mine whether the beam behaved in a linear elastic

manner. If found to be true, then the principle of

superposition could have been utilized in the analysis.

The beam was loaded with the Riehle test machine as

indicated in Figure 46. The beam's center deflection
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was measured to the nearest .001" with the Enco dial

indicator mentioned previously. A plot of the load

versus deflection is given in Figure 47 for the beam in

Position "A". As this plot indicates, the beam did

behave in a linear elastic manner within the applied

load region. However, several minutes were required for

the beam to recover the imposed deflecton after the load

was removed.

Since the beam was unsymmetric, it was loaded in

both directions as indicated by positions "A" and "B" in

Figure 46. The load versus deflection plot for loading

in Position "B" is shown in Figure 48.

To simplify the solutions to this problem,

this simply supported center loaded beam was modelled

as an end loaded cantilever beam, as shown in Figure

46. In all computations, the center deflection for a

150 lb load is used, although for the cantilever model

the equivalent end load would be 7 5 lbs to produce the

same deflection. Although always behaving in Hookean

fashion (linear elastic), the deflections varied too

much from one test to another to be of any use. In six

bending tests in each position, the measured deflec-

tions ranged from 0.163" to 0.176".
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THEORETICAL DETERMINATION OF COMPRESSIVE
MODULUS OF ELASTICITY

The original plan involved the use of beam

deflections and strain energy equations to find the

compressive modulus of elasticity. However, since the

measured deflections varied excessively from one test to

another, a different approach had to be employed. The

method which was used employs the principle that the sum

of the first moments multiplied by their respective

modulii of elasticity for the tension and compression

portions of the beam must equal zero [10]. This can be

written as

E
t /y dA + E

cyy dA = ( 9

)

By using the appropriate known values, this equation

becomes

2.129 x 10
6

[ .085( .965 - h)
2

+ 2.750(.965 - h - t
1
/2)] +

E [.085 h
2

+ 2.750 t
2
(h - t

2
/2)] = (10)

The unknown h is the distance from the bottom surface,

in compression, to the neutral axis; t- is the upper

wall thickness while t- is the lower wall thickness.

By rearranging this equation, the value of E was

obtained in terms of h. The value of h, and the

location of the neutral axis, will be different for

each of the two bending modes. However, the value of
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E should be the same in each case. It's value can
c

then be found by using an iterative process for each

bending mode and varying the value of h. When the two

values of E are very close to being equal, then the

correct value can be assumed to have been found. The

values of E and h which were found in this manner
c

were:

Position "A": h = 0.526"

E = 2.057 x 10
6 psi

c

Position "B": h = 0.452"

E = 2.060 x 10
6 psi

c

Each of these two positions represents one of the

bending configurations of the box beam. Figure 46

illustrated the two positions. The difference in E
c

between these two values is only 0.15%. In addition,

this value is 96.7% of the experimentally determined

value for the tensile modulus of elasticity, which is a

reasonable proportion for a fiber-reinforced composite.

This value also indicates that the previous assumption

was correct regarding the abnormally low value of the

modulus of elasticity in compression found by experi-

mental methods.
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THEORETICAL BEAM STRESSES AND STRAINS

From the previously determined values of E. ,

E , and h, the theoretical strains can be readily

calculated by using the appropriate formulas. The

strains to be determined will be those maximum

compressive and tensile strains on the lower and upper

surfaces at the support of the cantilever beam, where

their values will be maximized.

Prior to performing any strain calculations,

the stresses must first be calculated. These are

determined by the following two formulas for composite

beams:

or = My \r
v , or =

M/ Ec-
T

(11), (12)
t E t I t + E C I C <^ E

t I
t

+ E C I C

where M = moment (lb- in)

y = distance from neutral axis (in)

4
I = moment of inertia ( in )

By using the values of h, E , and E. previously deter-

mined, the stresses can be calculated at the upper and

lower surfaces of the beam. The results are listed in

Table 1.

Table 1. Theoretical Beam Stresses

Compression Tension

Position "A" 3743 psi 3233 psi

Position "B" 3209 psi 3764 psi

69



From these stresses, the strains could be easily calcu-

lated since uniaxial stress were assumed. The strains

are found by using the equation 6 = —2-— . By using
E

this equation and the stresses just calculated, the

strains were found and are listed in Table 2.

Table 2. Theoretical Beam Strains

Compression Tension
(M £ ) IM e )

Position "A" 1819 1519

Position "B" 1558 1768

EXPERIMENTAL BEAM STRAIN

The next step involved evaluating the actual

strain on the beam's surfaces by the use of strain

gages. The gages are of the same type, length, etc. as

those used previously on the test specimens. Since

the beam was loaded in both positions, none of the

gages could be located in the center of the actual

beam, where the stresses and strains would be

maximized. Their actual locations are depicted in

Figure 49, although they weren't necessarily all on the

same side of the beam's centerline, as shown in this

figure.

Since the strain at the center of the beam is

desired, the measured strain values must be multiplied
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by an appropriate correction factor to get the extrap-

olated strain value on the beam centerline. Since the

stress and strain vary linearly from zero at the outer

end to a maximum value in the center, the factors were

determined solely on the distances shown in Figure 49.

The factors were determined according to the eguation

R = 10.75
10.75 - a

(13)

where R = multiplying factor (dimensionless)

a = gage distance from centerline (in)

Each of the factors which were determined from this

formula are listed in Table 3 below.

Table 3

Gage No

1

3

4

5

6

7

8

Strain Gage Multiplying Factors

a R

0.53" 1.052
0.34" 1.033
0.32" 1.031
0.475" 1.046
1.38" 1.147
1.435" 1.154
1.21" 1.127

Strain Gage No. 2 produced erroneous readings, so they

were discarded. Plots of the load versus strain for

each strain gage and for each bending mode are given in

Figures 50-5 5. The actual strain values and the

centerline converted strain values for each strain gage

are given in Table 4 for bending in Position "A" and in

Table 5 for bending in Position "B"

.
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Table 4. Strains for Position "A"

Gage Actual R Centerline
No. Strain Strain

(MO (tf£)

1 -1781 1.052 -1874
3 -2375 1.033 -2453
4 -1913 1.031 -1972
5 -1875 1.046 1961
6 1355 1.147 1554
7 1333 1.154 1538
8 1026 1.127 1156

Table 5i. Strains for Position "B"

Gage Actual R Centerline
No. Strain Strain

(A"0 (/it)

1 1903 1.052 2002
3 2160 1.033 2231
4 2019 1.031 2082
5 -1760 1.046 -1841
6 -1364 1.147 -1565
7 -1368 1.154 -1578
8 -1011 1.127 -1139

These strains are plotted in Figures 56 and 57. Due to

symmetry, only one side of the beam's longitudinal axis

needs to be shown.

SHEAR LAG EFFECT ON BEAM STRAIN MEASUREMENTS

In the ideal case, and the one which is

presumed by the elementary beam theory, the normal

stresses and strains across the width of a rec-

tangular beam subjected to a load such as the one in

this analysis would not vary across the width of the
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beam. In reality, however, the stresses (and strains)

will vary from a maximum on each side to a minimum in

the middle of the beam, as shown in Figure 58. This

phenomenon is known as shear lag. Shear lag is caused

by the fact that the normal stresses in both the upper

and lower wall sections are transmitted to them by the

shear stress in the vertical side walls of the box

beam.

Figure 58 Shear Lag

Since the middle of a center loaded, simply

supported beam and the area where a cantilevered beam

is fixed cannot experience this shear deformation, the

shear lag phenomenon will be non-existent in this area

but will gradually increase as the distance from this

area increases. This can be seen on Figures 59 and 60.

To verify the presence of shear lag and its

effect on the strain gage readings, a brittle coating
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analysis was employed to get a qualitative look at its

effect. This was done after all of the other testing

had been completed. The first step consisted of

applying an aluminum undercoating, Tens-lac Type UN-10-

A, and then applying the brittle coating, which was

Tens-lac Type TL-500-75A lacquer, both of which are

products of Measurements Group, Inc. After allowed to

dry, the beam was loaded in the same manner as before,

except that no quantitative data was recorded. Figure

59 shows side 1 of the beam and Figure 60 shows side 2.

Since the cracks were too small to be easily visible, a

felt tip pen was used to mark some of the stress crack

lines. The curves shown represent isostatic lines,

which are lines of constant stress. As already men-

tioned, these lines are generally straight in the

middle of the actual beam, where shear lag would not be

present. As the distance from the center of the beam

increases, this phenomenon gradually increases until

the isostatic lines look like arcs of a circle at some

distance from the middle of the beam.
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Chapter III

RESULTS AND CONCLUSIONS

RESULTS

Upon looking again at Figures 56 and 57, it can

be seen that lines have been drawn which represent an

approximation to the average strain gage readings which

were recorded during beam loading. However, the lines

were adjusted based upon whether the gage readings

appeared to be somewhat low or high based on the

brittle coating analysis. These lines can't be

considered accurate representations of the true

average strain across the width of the beam, but do

provide some idea of the approximate average value.

The resulting values are summarized in Table 6 below.

Table 6. Comparison of Strain Values

Average of
Loading Theoretical Strain Gage Difference
Position Strain Measurements (% of Theoretical)

{JUL € ) (yU £ )

A (Tens. ) 1519 1600 5.3%
A (Comp. ) 1819 1900 4.5%

B (Tens.) 1768 2050 16.0%
B (Comp.) 1558 1600 2.7%
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As can be seen from the data in this table, there is

generally good agreement, except in Loading Position

"B" on the tension side of the beam.

The dispersion of the strain gage readings can

most likely be attributed to imperfections in the

beam's wall due to the hand layup process. As men-

tioned in the Introduction, these are very difficult to

avoid in a hand layup procedure where the wet resin-

impregnated cloth must be handled. These problems can

be avoided by using a form of fibers in which the

fibers have been impregnated with resin by the

manufacturer. The resin has also been partially cured

(B-staged) by the manufacturer, so many of the problems

associated with handling a sticky material are

eliminated. These materials are known as pre-pregs.

Another problem which was encountered in this

project was the difficulty in obtaining reliable

experimental values for use in determining the

compressive modulus of elasticity. Other methods would

need to be utilized, as the ASTM Standard used in this

analysis certainly did not produce satisfactory

results

.

CONCLUSIONS

Finally, the results of this research indicate

the necessity of using experimental techniques when
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using a composite material which has been fabricated by

hand or one for which the physical properties aren't

known. The problems with using a material which was

manually fabricated were readily observed in this

project. Since the walls of this box beam were thin

and imperfections in them were present, the brittle

coating analysis proved to be very helpful in locating

anomalies in the walls, which adversley affected the

accuracy of the strain gage readings.

This research also suggests that reasonably

good comparisons can be obtained between experimental

technigues and theoretical analyses of composite

materials. Since the properties of FRP are dependent

upon a number of factors, it is important to use what-

ever techniques are available to obtain the elastic

properties in the directions of the stresses in a

structure which contains composite materials. Any

additional measures which can provide information

critical to the analysis should also be utilized.
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Chapter V

APPENDIX

Table 7 . X Axis Tension Test , Specimen No. 1

Load Strain (M 6)
(lbs) Gage #1 Gage #2 Gage #3 Gage #

100 -65 360 418 260
200 -128 716 778 548
300 -200 1087 1180 834
400 -251 1500 1600 1089
500 -300 1860 2004 1412
600 -368 2260 2340 1736
700 -407 2637 2890 2090
800 -472 3020 3285 2448
900 -513 3415 3693 2800

1000 -562 3720 4144 3160
1100 -602 4450 4630 3590
1200 -668 4514 5010 3940
1300 -714 4820 5382 4300

Table 8.

Load
(lbs)

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300

X Axis Tension Test, Specimen No. 2

Gage
Strain (,u e

)

e #1 Gage #2 Gage #

-54 454 285
119 814 654
187 1154 1023
255 1495 1424
324 1830 1848
404 2208 2242
442 2598 2608
530 3000 3008
568 3368 3402
652 3770 3798
688 4152 4190
771 4554 4620
820 4932 5028
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Table 9.

Load
(lbs)

100
200
300
400
500
600
700
800

X Axis Tension Test, Specimen No. 3

Strain (/x t )

Gage #1 Gage #3 Gage #4

316 -65 310
632 -122 644
930 -176 1022

1272 -227 1410
1600 -278 1800
1943 -346 2172
2268 -378 2574
2610 -452 2940

Table 10. Y Axis Tension Test, Spe

Load Strain iM € )

(lbs) Gage #1 Gage #2

100 257 -43
200 502 -83
300 756 -117
400 1054 -167
500 1362 -204
600 1687 -239
700 2069 -273
800 2417 -304
900 2804 -347

1000 3163 -381
1100 3534 -420
1200 3950 -458
1300 4326 -492
1400 4733 -533
1500 5117 -562
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Table 11. Y Axis Tension Test, Specimen No. 5

Load Strain IMZ )

(lbs) Gage #1 Gage #2

100 244 -26
200 562 -53
300 941 -85
400 1340 -126
500 1747 -158
600 2164 -188
700 2581 -213
800 2964 -241
900 3318 -263

1000 3598 -282
1100 4112 -302
1200 4498 -323
1300 4934 -337
1400 5302 -354
1500 5728 -369

Table 12. Y Axis Tension Test, Specimen No. 6

Load Strain (yU€ )

(lbs) Gage #1 Gage #2

100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

348
652
976

1290
1624
2018
2390
2742
3141
3558
3950
4351
4792
5176
5626

-41
-93

-130
-164
-208
-248
-278
-321
-368
-411
-458
-500
-558
-593
-646
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Table 13. X Axis Flexure Test, Specimen No. 7

Load Deflection
(lbs) (in)

20 0.042
40 .089
60 .135
80 .182

100 .239
120 .274
140 .330
160 .395
180 0.463

Table 14. X Axis Flexure Test, Specimen No. 8

Load Deflection
(lbs) (in)

20 0.046
40 .096
60 .145
80 .191

100 .237
120 .283
140 .338
160 .395
180 0.488

Table 15. X Axis Flexure Test, Specimen No. 9

Load Deflection
(lbs) (in)

20 0.047
40 .096
60 .144
80 .190

100 .235
120 .280
140 .334
160 .393
180 0.455
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Table 16. X Axis Flexure Test, Specimen No. 10

Load
(lbs)

Deflection
(in)

20
40
60
80

100
120
140
160
180

0.046
.095
.143
.187
.231
.278
.333
.391

0.464

Table 17. X Axis Flexure Test,

Load Deflection
(lbs) (in)

20 0.047
40 .098
60 .147
80 .192

100 .238
120 .282
140 .331
160 .386
180 0.456

Table 18. Y Axis Flexure Test,

Load Deflection
(lbs) (in)

20 0.056
40 .121
60 .179
80 .237

100 .298
120 .363
140 .434
160 .514
180 0.592
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Table 19. Y Axis Flexure Test,

Load Deflection
(lbs) (in)

20 0.060
40 .125
60 .190
80 .256

100 .320
120 .400
140 .476
160 .565
180 0.654

Table 20. Y Axis Flexure Test,

Load Deflection
(lbs) (in)

20 0.062
40 .129
60 .193
80 .256

100 .320
120 .396
140 .472
160 0.572

Table 21. X Axis Compression Test, Specimen No. 15

Load Deflection Strain
(lbs) (in) (AL/L)

100 0.016 0.026
200 .019 .031
300 .020 .033
400 .021 .034
500 0.022 0.036

95



Table 22. X Axis Compression Test, Specime:

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.004 0.0066
100 .006 .0099
150 .007 .0115
200 .008 .0134
250 .009 .0148
300 .010 .0165
350 .011 .0180
400 .011 .0183
500 0.012 0.0198

Table 23. X Axis Compression Test, Specimen No. 17

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.006 0.0094
100 .007 .0120
150 .009 .0145
200 .010 .0162
250 .011 .0179
300 .011 .0188
350 .012 .0205
400 .012 .0209
450 .013 .0222
500 .014 .0239
600 0.015 0.0256

Table 24. X Axis Compression Test, Specimen No. 18

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.002 0.0024
100 .003 .0047
150 .004 .0067
200 .005 .0081
250 .006 .0097
300 .007 .0126
350 .009 .0138
400 .010 .0149
450 .011 .0165
500 .012 .0189
600 0.013 0.0204
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Table 25. X Axis Compression Test, Specimen No. 19

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.004 0.0058
100 .005 .0075
150 .005 .0087
200 .006 .0099
250 .007 .0116
300 .007 .0119
350 .008 .0131
400 .008 .0135
450 .009 .0147
500 .009 .0153
600 0.010 0.0162

Table 26. Y Axis Compression Test, Specimen No. 20

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.003 0.0049
100 .005 .0082
150 .007 .0101
200 .008 .0118
250 .009 .0134
300 .011 .0162
350 .012 .0177
400 .013 .0201
450 .014 .0216
500 .015 .0226
600 0.019 0.0284
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Table 27. Y Axis Compression Test, Specimen No. 21

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.003 0.0038
100 .005 .0075
150 .006 .0096
200 .007 .0110
250 .008 .0126
300 .009 .0137
350 .010 .0156
400 .011 .0169
450 .012 .0183
500 .012 .0189
600 0.014 0.0213

Table 28. Y Axis Compression Test, Specimen No. 22

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.002 0.0031
100 .004 .0054
150 .005 .0069
200 .006 .0084
250 .006 .0096
300 .007 .0110
350 .008 .0123
400 .009 --

450 .010 .0138
500 0.012 0.0177
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Table 29. Y Axis Compression Test, Specimen No. 23

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.001 0.0018
100 .002 .0034
150 .003 .0048
200 .004 .0062
250 .005 .0075
300 .006 .0085
350 .006 .0093
400 .007 .0100
450 .007 .0108
500 .008 .0120
600 0.009 0.0137

Table 30. Y Axis Compression Test, Specimen No. 24

Load Deflection Strain
(lbs) (in) (AL/L)

50 0.003 0.0039
100 .004 .0062
150 .005 .0078
200 .006 .0091
250 .007 .0101
300 .007 .0112
350 .008 .0124
400 .009 .0132
450 .009 .0142
500 .010 .0149
600 0.011 0.0163
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Table 31. On-Axis Shear Test

Load Strain (>i €

)

(lbs) Gage #1 Gage #2 Gage #

100 -198 15 172
200 -371 37 317
300 -587 60 466
400 -770 85 633
500 -1010 108 784
600 -1190 135 978
700 -1440 160 1138
800 -1628 184 1329
900 -1904 211 1505

1000 -2078 237 1715
1100 -2396 262 1924
1200 -2586 291 2162
1300 -2922 318 2341
1400 -3142 350 2636
1500 -3514 376 2820

Table 32. Off-Axis Shear Test

Load Strain (ju £ )

(lbs) Gage #1 Gage #2 Gage #

100 83 2 -63
200 179 6 -155
300 278 7 -238
400 378 8 -335
500 480 9 -418
600 584 9 -528
700 692 10 -612
800 798 11 -704
900 911 12 -800

1000 1018 13 -902
1100 1136 14 -1024
1200 1260 15 -1125
1300 1366 16 -1232
1400 1508 17 -1336
1500 1640 20 -1450
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Table 33. Box Beam Load vs. Deflection

Load
(lbs)

20
40
60
80

100
120
140
180

Position "A"
Deflection

(in)

0.025
.048
.071
.092
.114

.157
0.199

Position "B"
Deflection

(in)

0.024
.0495
.0735
.0965
.120
.144

0.167

Load
(lbs)

20
40
60
80

100
140
180

Table 34. Box Beam Strains, Position "A"

Strain (/*. €.)

Gage #1 Gage #3 Gage #4 Gage #5 Gage #6 Gage #8

-250
-480
-710
-950
•1185
•1665
•2140

-334
-664
-975
1278
•1570
•2135
2700

-265
-524
-782

-1042
-1300
-1800
-2290

245
490
738
998

1250
1762
2268

195
370
548
730
915

1280
1640

138
266
400
550
690
970

1250

Load
(lbs)

20
40
60
80

100
120
140
160
180

Table 35. Box Beam Strains, Position "B"

Strain {ju. e

)

Gage #1 Gage #3 Gage #4 Gage #5 Gage #6 Gage #8

272
539
785

1035
1295
1545
1800
2062
2320

320
616
895

1180
1474
1764
2056
2352
2650

278
550
802

1070
1338
1610
1890
2168
2448

-268
-520
-754
-992
•1225
•1460
•1692
•1925
•2154

-178
-362
-538
-718
-900
1080
1270
1455
1638

-150
-290
-420
-552
-690
-825
-962

-1100
-1235
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Table 36. Test Specimen Dimensions

Test Specimen L w t
No. (in) (in) (in)

1 9.0 0.756 0.151
2 9.0 .760 .153
3 9.0 .760 .152
4 6.550 1.237 .159
5 6.542 1.235 .158
6 6.565 1.233 .158
7 6.965 .980 .154
8 6.938 .974 .157
9 6.935 .982 .162

10 6.930 .978 .159
11 6.930 .978 .156
12 7.011 1.222 .156
13 7.070 .982 .166
14 7.065 .978 .166
15 0.610 .519 .154
16 .608 .529 .157
17 .586 .532 .156
18 .636 .512 .157
19 .603 .526 .158
20 .670 .503 .157
21 .649 .475 .154
22 .651 .489 .157
23 .648 .503 .156
24 0.645 0.505 .155

On-axis
Shear 5.946 3.02 .158

Off-axis
Shear 6.000 3.05 0.156
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ABSTRACT

The analysis of stress and strain in box beams

composed of an isotropic material is a relatively

elementary exercise. However, when the box beam is

fabricated from a nonisotropic composite material, the

analysis is not so simple.

In this study, a thin-wall box beam and a test

specimen plate were hand fabricated of a nonisotropic

composite material known as fiberglass reinforced

plastic (FRP). For the box beam, the primary axis of

the fiberglass reinforcing material was rotated +10

for half of the wall thickness, and -10 for the other

half of the wall thickness. The test specimen plate

consisted of 16 layers of fiberglass reinforcing cloth

in which each layer's X and Y axes were collinear.

Both the box beam and the test specimen plate utilized

a modified plain weave fiberglass material as the rein-

forcement and a polyester resin as the matrix.

The elastic constants of the FRP were deter-

mined experimentally utilizing test specimens cut from

the test specimen plate. The elastic constants

determined by tension test methods included the modulii

of elasticity, poisson's ratios, and the shear modulii.



The elastic constants found by compression test

methods were to be determined experimentally also, but

were deemed to be invalid. The modulus of elasticity

in compression was found , however, by using an equi-

librium equation.

The on-axis elastic constants thus found were

then transformed to off-axis constants by using the

compliance method of Tsai and Hahn . These transformed

elastic constants were then used to calculate the

theoretical stresses and strains in the box beam

subjected to a simple load. The actual strains in the

box beam were found by loading the beam, after strain

gages had been installed.

Since the box beam's walls contained some

irreglarities, a brittle coating analysis was used to

provide additional qualitative information in analyzing

the strain gage data. Moreover, the effects of shear

lag were evaluated with the resultant isostatic lines.

There was considerable scatter in the strain

gage data, but the overall average experimentally

determined strain was within 6% of the theoretical

strain in three out of four comparisons (the fourth was

in error by 16%). The brittle coating analysis did

provide useful information for use in evaluating the

experimental strain gage data. Overall, the results



indicate the importance of using experimental methods

when evaluating stress and strain in a material with

unknown physical properties and which may contain

irregularities or other anomalies due to imprecise

fabrication technigues. In spite of the problems

encountered, the theoretical and experimental stress

analyses were found to be in generally good agreement.

Tsai, S.W., and Hahn, H.T., Introduction to
Composite Materials , Westport, Connecticut, 1980, pp.
88-91.
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