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Abstract

Integer programming is an important discipline in operation research that positively

impacts society. Unfortunately, no algorithm currently exists to solve IP’s in polynomial

time. Researchers are constantly developing new techniques, such as cutting planes, to help

solve IPs faster. For example, DeLissa discovered the existence of equality cuts limited to

zero and one coefficients for the multiple knapsack equality problem (MKEP). An equality

cut is an improper cut because every feasible point satisfies the equality. However, such a

cut always reduces the dimension of the linear relaxation space by at least one.

This thesis introduces lifted equality cuts, which can have coefficients greater than or

equal to two. Two main theorems provide the conditions for the existence of lifted equalities.

These theorems provide the foundation for The Algorithm of Lifted Equality Cuts (ALEC),

which finds lifted equality cuts in quadratic time.

The computational study verifies the benefit of lifted equality cuts in random MKEP

instances. ALEC generated millions of lifted equality cuts and reduced the solution time

by an average of 15%. To the best of the author’s knowledge, ALEC is the first algorithm

that has found over 30.7 million cuts on a single problem, while reducing the solving time

by 18%.
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Chapter 1

Introduction

Integer programming (IP) is a discipline in operations research that positively impacts so-

ciety. Integer programs are mathematical optimization problems with integer decision vari-

ables. These decision variables are used to create models that optimize a linear objective

function subject to resources or other limiting linear constraints. Integer programming is

widely used for many real world applications.

Numerous IPs have been applied to sports [1, 2, 3, 4, 5]. One such application helps the

National Collegiate Athletic Association (NCAA) host the national championship basketball

tournament, which involves 68 collegiate basketball teams [6]. The location of the basketball

games are spread throughout the U.S. and the NCAA pays for the teams’ traveling expenses.

In 2010, the NCAA basketball tournament had a significant increase in traveling cost and

decrease in attendance because teams were traveling far from home. As a result, an integer

program was developed to minimize the distance and cost. The decision variables are which

teams should play at which locations while complying with NCAA regulations. The IP
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created a schedule for the NCAA basketball tournament that saves 330,000 dollars a year.

This IP had over 2,300 variables and 150 constraints [7].

There are variety of other IP applications. In manufacturing, IPs are used in inventory

management [8, 9], production scheduling [10, 11], and supply chain networks [12, 13]. IPs

are also often used for humanitarian relief disasters such as facility location [14, 15], supply

distribution [16, 17], and pre-disaster polices [18, 19].

This research focuses on a special case of an IP called the knapsack problem (KP). The

concept of a knapsack problem relates to a hiker who has a knapsack. The hiker must choose

what hiking supplies to include in the knapsack. Each item has an associated non-negative

weight and perceived benefit. The total weight of the items must be less than or equal to

the hiker’s carrying capacity while maximizing benefit. A knapsack problem with multiple

constraints is called the multiple knapsack problem.

Other variants of the knapsack problem exist such as the knapsack equality problem

(KEP) and the knapsack demand problem (KDP). KEP is a knapsack problem with an

equality constraint and KDP has a greater than or equal to inequality. Multiple constraints

in the KEP and KDP are called multiple knapsack equality problem (MKEP) and multiple

knapsack demand problem (MKDP). Variants of the knapsack problem are used in many

applications.

In health care, Wang and Hu [20] created a model for radiotherapy that minimized the

exposure to healthy tissue while killing cancerous cells. Minimizing radiation exposure to

healthy tissues increases a person’s chance to live. Other applications in health care include

diagnosis [21] and client preventive health care [22]. In all of the examples, a variant of
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the knapsack problem exist. KP, KEP, and KDP also appear in scheduling for workforce

[23, 24, 25] and routing networks [26, 27].

Unfortunately, IP, KP, KDP and KEP are all NP-hard problems [28]. In other words,

a polynomial time algorithm does not currently and may never exist. All known algorithms

require an exponential amount of effort to solve an IP. Even a small IP with 100 binary deci-

sion variables has more than 2.5 ∗ 1030 possible combinations. Attempting to enumerate and

evaluate all possible solutions would require millions of years even on the fastest computers.

Because of this, researchers must simplify or use advanced algorithm techniques to obtain a

solution.

One of the most popular methods to solve IPs is branch and bound, which uses linear

relaxations (LR). The linear relaxation of an IP is the IP without integer restriction. An

IP’s linear relaxation is called a linear program (LP), which can be solved in polynomial

time [29, 30, 31, 32].

Branch and bound has an exponential run time. A popular technique to help branch and

bound solve an IP quicker involves cutting planes. Traditionally, cutting planes are viewed

as inequalities that are not originally present in the IP and do not violate any feasible solu-

tions. Cutting planes create smaller linear relaxation spaces, which can be computationally

advantageous.

Today, researchers [33, 34, 35, 38] have developed various classes of cutting planes to

help IPs solve faster. Theoretically, the strongest cutting planes are called facet defining.

If all facet defining valid inequalities are identified, then the IP can be solved as an LP.

However, finding facet defining inequalities is challenging and there can be exponentially
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many of them.

Lifting is a common technique to modify a weak valid inequality into a stronger and

potentially facet defining inequality. There are 12 classes of lifting sorted into three cate-

gories. Lifting can occur sequentially or simultaneously [36], exact or approximate [37], and

up, down or middle [38]. Selecting one from each of these three categories creates a type of

lifting. For instance, there exists a sequential approximate uplifting technique [39].

In 2014, DeLissa [40] developed an entirely different concept of cutting planes. Rather

than use inequalities, he used equalities to reduce the linear relaxation space, which he called

equality cuts. These equality cuts were computationally advantageous in helping to solve

knapsack related random IP instances. Although equality cuts, by definition, cannot be facet

defining, they reduce the dimension of the linear relaxation space.

1.1 Research Motivation and Question

This research focuses on continuing the research of equality cuts. DeLissa’s work required

every coefficient to be zero or one in the equality cut. An obvious question is whether or

not equality cuts exist with coefficients that are greater than or equal to two. Since lifting

increases the coefficients of valid inequalities, this thesis will address the following questions:

Does a lifted valid equality exist and under what conditions? Can lifted valid equalities be

computationally advantageous in helping solve MKEPs?
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1.2 Contribution

This research introduces a new class of equality cuts, called lifted equality cuts for MKEPs.

This thesis discovers two theorems that provide conditions under which lifted equality cuts

exist. These theorems are used to create ALEC (Algorithm of Lifted Equality Cuts). ALEC

is a fast algorithm and requires only quadratic time. An example demonstrates the existence

and usefulness of these lifted equality cuts. A computational study shows that implementing

ALEC on some IPs improves the computational time required to solve these problems by

15% while generating millions of lifted equality cuts.

1.3 Outline

The remainder of this thesis will be covered in four chapters. Chapter 2 will cover back-

ground information needed to understand the contributions of this thesis. Topics discussed

in Chapter 2 include integer programming, knapsack and related problems, cutting planes,

polyhedral theory, lifting, and equality cuts.

Chapter 3 provides the existence of lifted equality cuts including definitions, theorems,

and examples. In addition, Chapter 3 discusses an algorithm to identify lifted equality cuts,

ALEC, and its properties including the theoretical run time. Chapter 3 illustrates how lifted

equality cuts can reduce the dimension of the linear relaxation space through an example.

Chapter 4 discusses ALEC’s impact on solving MKEPs through a computational study.

ALEC’s implementation is discussed as well as instances used. The results illustrate how

often valid lifted equalities appear and the benefit of these equalities in terms of several
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efficiency measures.

Chapter 5 summarizes the results and contributions of this thesis. In addition, Chapter

5 discusses future research in lifted equality cuts such as implementing ALEC on real world

IPs, relationships between multiple equality constraints, and extending lifted equality cuts

to mixed integer programming and nonlinear integer programming.
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Chapter 2

Background Information

This chapter provides relevant background information in order to understand the remainder

of this thesis. Topics such as integer programming, the knapsack and related problems,

polyhedral theory, cutting planes, lifting, and equality cuts are all discussed. Additional

information on these topics can be found in Nemhauser and Wolsey [41].

2.1 Integer Programming

Integer programming (IP) is a mathematical model of the form max cTx subject to Ax ≤ b,

x ∈ Zn+ where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The feasible solution space takes the form

P = {x ∈ Zn+ : Ax ≤ b}. The optimal solution to an IP is z∗ and x∗, where x∗ ∈ P and

z∗ = cTx∗ ≥ cTx for all x ∈ P .

As mentioned in Chapter 1, integer programming has many real world applications.

An IP is an NP-hard problem and all currently known algorithms theoretically require

7



an exponential amount of time to solve. Although IPs are useful in solving real world

applications, some applications can take an unrealistic amount of time to solve. Due to

these reasons, integer programming remains a prolific topic of researchers.

Branch and bound, the most common algorithm used to solve IPs, uses the IP’s linear

relaxation. An IP’s linear relaxation takes the form max cTx subject to Ax ≤ b, x ∈ Rn
+

where A ∈ Rm×n, b ∈ Rm and c ∈ Rn. The linear relaxation’s feasible solution space is

denoted as PLR = {x ∈ Rn
+ : Ax ≤ b}. The optimal solution to a linear relaxation is zLR∗

and xLR∗, where xLR∗ ∈ PLR and zLR∗ = cTxLR∗ ≥ cTx for all x ∈ PLR. Obviously, a

linear relaxation is a linear program. Algorithms exist that solve LPs in polynomial time

[29, 30, 31, 32].

Initially, branch and bound solves the IP’s linear relaxation (zLR∗, xLR∗) and branches

on a non integer variable, xLR∗i . The algorithm then creates two children nodes by adding

a constraint xi ≤ p and xi ≥ p + 1 to the parent’s linear relaxation, where p = bxLR∗i c.

Branch and bound successively resolves linear relaxations and creates nodes until all nodes

are fathomed. Branch and bound has three rules to fathom nodes. Any node can be fathomed

if the solution to the linear relaxation is an integer feasible solution, infeasible, or has a worse

objective function than a known integer feasible solution. Once all nodes are fathomed, the

algorithm terminates and reports the IP solution, if one exists.

The rules for which nodes are evaluated first is arbitrary. The most common rules are

breadth first left, breadth first right, depth first left, depth first right, and best child. Much

research has been done on the selection of variables to branch on and the best search strategy

to evaluate the nodes [42, 43].
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Table 2.1: Hiker’s Items Associated Benefit and Weight

Items 1 2 3 4 5 6 7 8
Benefit 46 3 34 50 22 1 7 16
Weight 30 29 22 16 15 7 6 5

2.1.1 Knapsack and Related Problems

Recall from Chapter 1 the concept of a knapsack problem (KP). The knapsack problem can

be formulated into an IP with the form max cTx subject to
∑n

j=1 ajxj ≤ b, x ∈ {0, 1}n,

where b and aj ∈ R+ for all j = 1, ..., n. The feasible space of a KP is defined by PKP =

{x ∈ {0, 1}n :
∑n

j=1 ajxj ≤ b} and the corresponding linear relaxation is PLR
KP . Without loss

of generality, the remainder of the paper assumes aj−1 ≥ aj for all j = 2, ..., n.

For example, consider a hiker being able to carry up to fifty pounds and the hiker can

select from eight items. The weight and benefit of these eight items is given in Table 2.1.

The classical IP formulation of this knapsack problem is

Maximize 46x1 + 3x2 + 34x3 + 50x4 + 22x5 + 1x6 + 7x7 + 16x8

Subject to 30x1 + 29x2 + 22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 ≤ 50

x1, x2, x3, x4, x5, x6, x7, x8 ∈ {0, 1}.

The branch and bound algorithm reports a solution of x3 = x4 = x7 = x8 = 1 with an

objective function of 107. Thus, the hiker should pack items 3, 4, 7, and 8.

The knapsack problem is a common building block for many IPs. A variant of the knap-

sack problem is the multiple knapsack problem (MKP), which allows the hiker to consider
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other constraints such as volume, budget, and safety restrictions. Thus, MKP has the form

max cTx subject to Ax ≤ b, x ∈ {0, 1}n where A ∈ Rn
+ and b ∈ Rm

+ . Its feasible region is

defined as PMKP= {x ∈ {0, 1}n : Ax ≤ b} and the corresponding linear relaxation is PLR
MKP .

Chapter 1 illustrates many real world applications have been modeled as a KP or MKP.

Another variant of the KP is the knapsack equality problem (KEP), which requires the

hiker to choose an exact knapsack weight for training purposes. The knapsack equality

problem has the form max cTx subject to
∑n

j=1 ajxj = b, x ∈ {0, 1}n, and b and aj ∈ R+

for all j = 1, ..., n. The feasible space of a KEP can defined by PKEP = {x ∈ {0, 1}n :∑n
j=1 ajxj = b} and the corresponding linear relaxation is PLR

KEP .

Similar to the knapsack problem, the knapsack equality problem can be extended to allow

multiple constraints known as the multiple knapsack equality problem (MKEP) allowing the

hiker to consider other constraints such specifying an exact volume and budget. Thus,

MKEP’s formulation is max cTx subject to Ax = b, x ∈ {0, 1}n where A ∈ Rn
+ and b ∈ Rm

+ .

Its feasible region is defined as PMKEP= {x ∈ {0, 1}n : Ax = b} and the corresponding linear

relaxation is PLR
MKEP . KEP and MKEP have many useful applications [44, 45, 46, 47].

Chapter 1 briefly describes the concept of the knapsack demand problem (KDP). Suppose,

the hiker wants to minimize the weight of the knapsack while still meeting the essentials for

survival. The knapsack demand problem has the form min cTx subject to
∑n

j=1 ajxj ≥ b,

x ∈ {0, 1}n, and b and aj ∈ R+ for all j = 1, ..., n. The feasible space of a KDP can defined

by PKDP = {x ∈ {0, 1}n :
∑n

j=1 ajxj ≥ b} and the corresponding linear relaxation is PLR
KDP .

KDP can be extended to allow multiple constraints known as the multiple knapsack

demand problem (MKDP). This allows the hiker to consider other constraints such as volume,
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budget, safety restrictions, and other hikers. Thus, MKDP min cTx subject to Ax ≥ b,

x ∈ {0, 1}n where A ∈ Rn
+ and b ∈ Rm

+ . Its feasible region is defined as PMKDP= {x ∈

{0, 1}n : Ax ≥ b} and the corresponding linear relaxation is PLR
MKDP . MKDP also has useful

applications [48, 49].

2.1.2 Polyhedral Theory

Polyhedral theory is a mathematical research area that helps describe the feasible and opti-

mal solutions to LPs and IPs. By definition, a polyhedron is the intersection of finitely many

half spaces P = {x ∈ R : Ax ≤ b}. A half space is the set of points that satisfy
n∑
j=1

ajxj ≤ bi.

Since PLR has a finite set of linear equalities, which are half spaces, it is obvious to see that

PLR is a polyhedron.

A set S ⊆ Rn is convex if and only if λx + (1− λ)x′ ∈ S for all x, x′ ∈ S and λ ∈ [0, 1].

The convex hull is the intersection of all convex sets containing S and is denoted by SCH . A

fundamental result of integer programming is that PCH is convex and a polyhedron. Thus,

every IP has two critical polyhedrons, PCH and PLR.

2.1.3 Cutting planes

One of the most common techniques to improve the solution time of IPs involves cutting

planes [33, 34, 35, 38]. If every x ∈ P satisfies
∑

j∈N αjxj ≤ β, then this inequality is valid

for PCH . Alternatively, let Q be the set of all points that do not satisfy
∑

j∈N αjxj ≤ β. If

every x ∈ Q is not in P , then the inequality is valid for P which is the contra-positive of

the definition. This concept will be useful and discussed in more detail in Section 3.2. A
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valid inequality is a cutting plane, if there exists an x′ ∈ PLR such that
∑n

j=1 ajx
′
j = b and∑

j∈N αjx
′
j > β. Similar definitions exist for P , PKP , and PKDP .

Every valid inequality invokes a face F = {x ∈ PCH :
∑

j∈N αjxj = β}, of PCH . The

dimension of F theoretically determines the usefulness of the inequality. The dimension of

a convex space can be defined as the number of affinely independent points minus one. The

points v1, ..., vq are affinely independent if and only if the unique solution to
∑q

i=1 λiv0, is

λi = 0 for all i = 1, ..., q.

If a face has dimension one less than the dimension of PCH , then it is a facet defining

inequality. Theoretically, the strongest type of valid inequalities is called facet defining.

Facet defining inequalities are not unique and can take on many forms. If one facet defining

inequality is found for each facet, then PCH = PLR. Thus, the IP can be solved as a linear

program. However, PCH may have an exponential number of facet defining inequalities.

For the knapsack problem, some of the most widely used cutting planes involve cover

cuts [39]. A set C ⊆ N is a cover if
∑

j∈C aj > b. A cover invokes a valid inequality of the

form
∑

j∈C xj ≤ |C| − 1. A cover is a minimum cover if
∑

j∈C aj > b and
∑

j∈C\k aj ≤ b for

each k ∈ C. A minimum cover invokes the same form of the inequality
∑

j∈C xj ≤ |C| − 1.

Recall the knapsack problem with the constraint 30x1 + 29x2 + 22x3 + 16x4 + 15x5 +

7x6 + 6x7 + 5x8 ≤ 50. Two examples of minimum covers for the knapsack constraint are

C = {1, 2} and C = {2, 3}. These two minimum covers invoke valid inequalities of the form

x1 + x2 ≤ 1 and x2 + x3 ≤ 1, respectively. Two examples of non-minimum cover inequalities

are x1 + x2 + x3 ≤ 2 and x2 + x3 + x4 ≤ 3. As illustrated, minimum covers invoke stronger

valid inequalities than non-minimal covers.
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An extension of a cover E(C) uses the idea that swapping out an item in C for a heavier

item results in a knapsack that is still too heavy to carry. Thus, E(C) = C∪{j ∈ N : aj ≥ ak

for all k ∈ C}. A cover’s extension invokes a valid inequality of the form
∑

j∈E(C) xj ≤

|C| − 1. For example, the cover previously found C = {2, 3} has an extended cover of

E(C) = {1, 2, 3}, which invokes the valid inequality x1 + x2 + x3 ≤ 1. This extended cover

inequality clearly dominates the cover inequality x2 + x3 ≤ 1.

2.2 Lifting

Lifting is a common way to strengthen an inequality or make an invalid inequality valid

[50, 51]. Let a valid cut have the form
∑

j∈N αjxj ≤ β. Lifting attempts to increase αj and

the dimension of the cutting plane. Increasing the dimension of the cutting planes can make

the valid inequality facet defining.

Formally, lifting has a set E ⊆ N and K = (k1, k2, ..., k|E|) ∈ Z|E|, which defines a

restricted feasible region, PE,K = {x ∈ P : xi = ki for all i ∈ E}. Given a valid inequality∑
i∈E αixi +

∑
i∈N\E αixi ≤ β of PCH

E,K , a lifted valid inequality for PCH is created with the

form of
∑

i∈E α
′
ixi +

∑
i∈N\E αixi ≤ β′.

Recall from Chapter 1, there are 12 classes of lifting depending on E, K, α, and β.

These twelve classes are divided into three categories: up, middle or down lifting, sequential

or simultaneous; and exact or approximate.

Uplifting is the most common type and occurs when K = {0}. Thus, each fixed variable

is at its lower bound. Uplifting will not change the value of β. In contrast, down lifting
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occurs when each fixed variable is at its upper bound. Down lifting typically changes the

value of β. Middle lifting is a combination of both up and down lifting and may result in

more than one inequality.

Sequential lifting occurs when |E| = 1. In sequential lifting, one variable is added at

a time. To generate a single strong inequality many calls to a sequential lifting algorithm

typically occur. Simultaneous lifting occurs when multiple variables are lifted in one algo-

rithm, |E| ≥ 2. Thus, a simultaneous lifting algorithm may only require one pass to create

a strong inequality. Furthermore, sequentially lifted coefficients are typically integer, but

simultaneous lifting may result in fractional coefficients.

Exact lifting requires the strongest possible coefficients for α and β. Thus, exact lift-

ing typically leads to facet defining inequalities. Exact lifting algorithms require the exact

solution to an optimization problem. Researchers use approximate lifting to avoid solving

an optimization problem. Thus, the values of α and/or β could be strengthened and these

types of inequalities are frequently not facet defining.

An exact sequential uplifting algorithm with binary variables will be explained to show

the reader exact sequential uplifting. Thus, |E| = 1 and K = {0}. The variable selected

for lifting is x1. The algorithm takes a valid inequality,
∑

j∈N\1 αjxj ≤ β, of the restricted

space on x1 = 0. The value of α1 is determined by solving the IP of the following form:
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Maximize
∑

j∈N\{E} αjxj

Subject to
∑

j∈N ajxj ≤ b∑
j∈E xj = 1

x ∈ {0, 1}n

If there is no solution, then x1 = 0 for all x ∈ P and x1 should be removed from the

problem. If not, the IP has an optimal solution value of z∗ and α1 = β − z∗. Report the

strengthened lifted inequality
∑

j∈N αjxj ≤ β and terminate.

An example of this method is shown on the knapsack problem constraint 30x1 + 29x2 +

22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 ≤ 50. Starting with the valid cover inequality x2 +

x3 + x4 + x5 ≤ 3, sequentially uplift x1. Thus, begin by solving the following IP.

Maximize x2 + x3 + x4 + x5

Subject to x1 = 1

30x1 + 29x2 + 22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 ≤ 50

x1, x2, x3, x4, x5, x6, x7, x8 ∈ {0, 1}

The optimal solution z∗ = 1 so α1 = 3 − 1 = 2. Therefore, the new lifted inequality is

2x1 + x2 + x3 + x4 + x5 ≤ 3. To lift x6, one would change the IP’s objective function to

maximize 2x1 +x2 +x3 +x4 +x5 and set x6 = 1. The optimal solution is 2 so α6 = 3−2 = 1

and the new inequality is now 2x1 +x2 +x3 +x4 +x5 +x6 ≤ 3. If the process is repeated, the

results illustrate that the coefficients of x7 and x8 are 0. Therefore, the algorithm terminates
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and reports the final lifted inequality cut of 2x1 + x2 + x3 + x4 + x5 + x6 ≤ 3. In this case,

the inequality is not a facet defining, primarily due to the fact that {2, 3, 4, 5} was not a

minimal cover.

2.3 Equality Cuts

Recently, DeLissa discovered a new paradigm for cutting planes called equality cuts. For-

mally, if every x ∈ P satisfies
∑

j∈N αjxj = β, then this equality is valid for PCH . A valid

equality is a cutting hyperplane if there exists an x′ ∈ PLR such that
∑

j∈N αjx
′
j 6= β.

DeLissa proved the existence of equality cuts using anticovers. Given a constraint from

a KDP of the form
∑

j∈N ajxj ≥ b, a set AC ⊆ N is an anticover of a KP constraint

if
∑

j∈N\AC aj < b. If xj = 0 for all j ∈ AC, then the KDP constraint can never be

satisfied. Thus, anticovers also invoke valid inequalities. If a cover invokes a valid inequality∑
j∈C xj ≤ β and the anticover invokes a valid inequality

∑
j∈C xj ≥ β, then

∑
j∈C xj = β

is a valid equality.

DeLissa showed several interesting and unsurprising facts. Valid equalities exist if and

only if PCH has dimension strictly less than n. Unlike a valid inequality, a valid equality

is improper, because every point in PCH satisfies the equality. Thus, it can never be facet

defining. However, if a valid equality is an equality cut, then including this equality cut to

the linear relaxation space reduces it dimension by at least one.

Surprisingly, DeLissa has found that valid equalities can be computationally advanta-

geous. Furthermore, he demonstrated that over half a million equality cuts were found
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and reduced the solution time by 25% for some classes of IPs. Thus, equality cuts can be

computationally useful.

To help demonstrate equality cuts, consider the knapsack problem from Section 2.2 as

a KEP 30x1 + 29x2 + 22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 = 50. An extended cover is

E(C) = {1, 2, 3}, which invokes a valid inequality x1 + x2 + x3 ≤ 1. According to DeLissa,

the extension’s anticover invokes a valid inequality of the form x1 +x2 +x3 ≥ 1 for the KDP.

The reader can easily confirm x1 + x2 + x3 ≥ 1 is a valid inequality. Since x1 + x2 + x3 ≤ 1

is valid for KP and x1 + x2 + x3 ≥ 1 is valid for the KDP, x1 + x2 + x3 = 1 must be a valid

equality for KEP.

In summary, this chapter has covered fundamental topics in integer programming such

as the knapsack and related problems, polyhedral theory, and cutting planes. In addition,

this chapter briefly discussed advanced topics such as lifting and equality cuts. From the

knowledge presented, the reader knows that lifting strengthens inequalities, DeLissa’s cuts

have binary coefficients, and these cuts are powerful enough to reduce the solving time. This

research shows that lifted equality cuts exists and how easily they can be found. These

advancements are presented in the next chapter.
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Chapter 3

Lifted Equality Cuts

This chapter extends the knowledge of equality cuts by researching the implementation of

lifting to valid equality cuts. On a high level, this chapter provides the existence of lifted

valid equality cuts including definitions, theorems, and examples. In addition, an algorithm

that identifies lifted equality cuts, ALEC, is presented along with its characteristics such

as the theoretical run time. Lastly, this chapter demonstrates how lifted equality cuts can

reduce the dimension of the linear relaxation’s space by at least one.

3.1 Existence of Lifted Equality Cuts

DeLissa illustrated that developing equality cuts not only exist, but can be found using a

O(n log(n)) algorithm. In a small computational study, DeLissa found over half a million

cuts on average for small instances with less than 90 nonzero coefficients. These cuts were

also powerful enough that they reduced the solving time by 25% on average. However,
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DeLissa’s cuts were limited to binary coefficients for αj. An intuitive question is, can these

equality cuts have αj strictly greater than one? Increasing αj is often accomplished with

lifting, which strengthens valid inequalities. Therefore, the research motivation is to obtain

the conditions for which lifted valid equalities exist.

A lifted equality cut has the form
∑n

j=1 αjxj = b where one αj > 1. Recall, a non-

lifted equality cut can be defined using a cover cut from KP and an anticover from KDP.

Specifically, if a valid inequality exists in the form of
∑n

j=1 αjxj ≤ β and its corresponding

valid inequality exists in the form of
∑n

j=1 αjxj ≥ β, then
∑n

j=1 αjxj = β must be valid.

To formally define a lifted equality constraint, a valid inequality for the associated KDP

is introduced. Prior to this result, define ψj as the origin translated one unit in the jth

dimension.

Theorem 3.1.1 Given a sorted knapsack demand constraint,
∑

j∈N ajxj ≥ b, a β, p ∈

{1, ..., n} with β ≤ p and
∑n

j=p+1 aj < b, then
∑p+β−1

j=1 αjxj ≥ β is a valid inequality if and

only if for every E ⊆ {1, ..., p + β − 1} such that
∑

j∈E aj +
∑n

j=p+β aj ≥ b, which implies∑
j∈E αj ≥ β.

Proof : Assume a sorted knapsack demand constraint,
∑

j∈N ajxj ≥ b, a β, p with β ≤ p

and
∑n

j=p+β−1 aj < b. For the first direction, assume
∑p+β−1

j=1 αjxj ≥ β is a valid inequality.

For contradiction, assume that there exists an E ⊆ {1, ..., p + β − 1} such that
∑

j∈E aj +∑n
j=p+β aj ≥ b and

∑
j∈E αj < β. The point x′ =

∑
j∈E ψj +

∑n
j=p+β ψj is feasible. However,∑p+β−1

j=1 αjx
′
j < β, which contradicts the inequality being a valid inequality.

Conversely, assume that every E ⊆ {1, ..., p+β−1} such that
∑

j∈E aj+
∑n

j=p+β−1 aj ≥ b

has
∑

j∈E αj ≥ β. For contradiction, assume
∑p+β−1

j=1 αjxj ≥ β is not a valid inequality. Then
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there exists an x′ ∈ PKDP such that
∑p+β−1

j=1 αjx
′
j < β. Let E = {j ∈ {1, ..., p + β − 1} :

x′j = 1}. Consequently,
∑

j∈E aj +
∑n

j=p+1 ai ≥ b, which contradicts
∑

j∈E αj < β.

�

Theorem 3.1.1 establishes the validity conditions for a lifted inequality in the form of∑n
j=1 αjxj ≥ β. To convert this lifted valid inequality to an equality, its associated inequality,∑n
j=1 αjxj ≤ β, must be valid. These conditions are established in the next theorem.

Theorem 3.1.2 Given a knapsack equality constraint
∑

j∈N ajxj = b, a β, p ∈ {1, ..., n}

with β ≤ p,
∑n

j=p+1 aj < b and an α that satisfies the conditions of Theorem 3.1.1, if for

every S ⊆ {1, ..., p} such that
∑

j∈S αj > β implies
∑

j∈S aj > b, then
∑

j∈N αjxj = β is a

valid equality of PCH
KEP .

Proof : Given a knapsack equality constraint
∑

j∈N ajxj = b, a β, p ∈ {1, ..., n} with β ≤ p,∑n
j=p+1 aj < b and an α that satisfies the conditions of Theorem 3.1.1. Assume that every

S ⊆ {1, ..., p} such that
∑

j∈S αj > β implies
∑

j∈S aj > b. For contradiction, assume that∑
j∈N αjxj = β is not a valid equality of PCH

KEP . Thus, there exists an x′ ∈ PKEP such that∑
j∈N αjx

′
j 6= β. Since α satisfies Theorem 1,

∑
j∈N αjx

′
j > β. Define S = {j ∈ N : x′j = 1

and j ≤ p}. Thus,
∑

j∈S αj > β, which implies
∑

j∈S aj > b, which contradicts x′ being a

feasible point and the result follows.

�

As mentioned, if Theorem 3.1.1 is satisfied, then there exists a valid inequality with

the form
∑n

j=1 αjxj ≥ β. Theorem 3.1.2 checks if this inequality has an associated valid

inequality with the form
∑n

j=1 αjxj ≤ β. If Theorem 3.1.1 and 3.1.2 are satisfied, then a
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lifted valid equality exists with the form
∑n

j=1 αjxj = β. Theorem 3.1.1 and 3.1.2 were used

as a foundation to build an algorithm that can quickly identify valid lifted equalities.

3.2 Algorithm of Lifted Equality Cuts

As stated, Theorems 3.1.1 and 3.1.2 give the conditions for which a valid lifted equality

exists. The reader will see that ALEC has two subroutines, one for each theorem. The first

subroutine satisfies the conditions of Theorem 3.1.1 to produce a valid inequality of the form∑n
j=1 αjxj ≥ β. Given this valid inequality, the second subroutine attempts determines if

the conditions of Theorem 3.1.2 are satisfied. If there exists an associated inequality, then

ALEC reports a lifted valid equality
∑n

j=1 αjxj = β. ALEC uses the parameters in the KEP

constraint to rapidly produce lifted equalities that satisfy the previous two theorems, and

may report multiple valid equalities.

The input to ALEC is a KEP constraint. The Initialization of ALEC starts by sorting

the constraint’s coefficients, aj, in descending order. ALEC then calculates the sorted cu-

mulative sum, csum, starting from the smallest coefficient an. Once csum is calculated, the

starting index of the first candidate equality cut is found, denoted as p. ALEC calculates

p by initially assigning it a value of n and assigns β = 1. ALEC decreases p by one until

the cumulative sum is greater than or equal to the right hand side. ALEC uses p as the last

index with a nonzero coefficient for potential lifted valid equalities.

The main step of ALEC is straightforward. While β ≤ 4 and p is less than n, assign

lifted coefficients αj to create a lifted inequality of the form
∑n

j=1 αjxj ≥ β according to

the subroutine AssignGreaterCoefficients. ALEC uses sequential approximate uplifting
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to avoid solving an IP. Note, AssignGreaterCoefficients always produces valid lifted cuts

by having AssignGreaterCoefficients restrict p ≥ β. This is explained in more detail in

the descriptions of the subroutines.

After the α coefficients have been assigned, ALEC checks validity from the less than

or equal to side in the lifted inequality using the subroutine CheckLessCoefficients. If

the potential valid equality is valid, then the subroutine reports 2 and assigns 2 to valid.

If valid = 2, then ALEC reports a valid lifted equality and increases β by one to keep

searching for more equalities. If CheckLessCoefficients reports valid = 1, then it implies

that
∑n

j=1 αjxj ≥ β does not have an associated valid less than or equal to inequality.

Therefore, p is increased to create a different set of indices in hopes of finding a valid lifted

equality. Increasing p will decrease αj because csump+1 will decrease, which might create

a valid less than or equal to inequality. If valid is any other value, then a lifted cover cut

never existed and therefore β should increase . For demonstration purposes, β’s upper limit

is set at four, but this can easily be modified to larger values of β. This idea is discussed in

more detail at the end of this chapter.

Algorithm of Lifted Equality Cuts (ALEC)

Initialization
a← a sorted in descending order
csumn ← an
For i = 1 to n− 1

csumn−i ← csumn−i+1 + an−i

p← n, β ← 1

While csump < b Do

p← p− 1

firstp← p
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Main Step

While β ≤ 4 and p ≤ n Do

α← AssignGreaterCoefficients(β, p, csum, a)

valid← CheckLessCoefficients(β, p, α)

If valid = 0, Then

β ← β + 1

If valid = 1, Then

p← p+ 1

If valid = 2, Then

Report
∑n

i=1 αixi = β as a valid equality

β ← β + 1

If p < firstp+ β − 1, Then

p← firstp+ β − 1

The subroutine AssignGreaterCoefficients calculates the lifted coefficients αj for the

indices set up by the Initialization and the MainStep. The lifted coefficients primarily

depend on β. If β = 1, then all the coefficients αj in the indices are set to 1. Thus, if

β = 1, DeLissa’s anticover cuts are produced. If β = 2 and if any coefficient aj plus the

cumulative sum outside the indices, csump+1 is greater than or equal to the right hand side,

then αj = β = 2. When β = 3, the previous condition is checked and sets αj = β = 3. In

addition, if two coefficients, aj + aj+1, plus the csump+1 is greater than the right hand side

b, then αj = β − 1 = 2. This same pattern repeats for all β ≤ 4.

The combination of this technique with restricting p ≥ β allowsAssignGreaterCoefficients

to always produced valid lifted inequalities. The idea behind it uses the alternative defini-

tion for a valid inequality. Chapter 2 defines an inequality to be valid if and only if every

x ∈ Q is not in P , where Q is the set of all points that do not satisfy the lifted inequality∑
j∈N αjxj ≥ β. Since Q can have many permutations of x, one would think the algorithm

would be inefficient at finding lifted, valid, and greater than or equal to inequalities.
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However, ALEC does not need to check every element in Q due to the idea of the strongest

index for some integer q. Formally, for a given β and a q ≤ β− 1, define the strongest index

for q to be the maximum r such that
∑r+q−1

j=r aj + csump+1 ≥ b. Due to the sorted nature of

a, once a strongest index is known, q must increase and r will never decrease as q increases.

This fact enables ALEC to efficiently determine the lifting coefficients.

To express the idea of the strongest index, consider the following constraint from the

knapsack demand problem, 30x1 + 29x2 + 22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 ≥ 50.

When p = 6 and β = 4, the subroutine considers an inequality of the form α1x1 + α2x2 +

α3x3 + α4x4 + α5x5 + α6x6 ≥ 4 with αj ≥ 1 for all j = 1, ..., 6. Since β = 4 and p = 6,

csum7 = a7 + a8 = 11 and q can be 1, 2, or 3 = β − 1 and there are three strongest indices

that are calculated.

When q = 1, a1 + csum7 = 30 + 11 < 50. Since aj is sorted, a1 ≥ a2 ≥ a3 ≥ ... ≥ a6.

Therefore, there does not exist a strongest coefficient for q = 1. In other words, setting

exactly one variable from x1 to x6 to a value of one can never result in a feasible point of

the associated demand constraint.

If q = 2, a1 + a2 + csum7 = 30 + 29 + 11 > 50, which implies a strongest index exists.

Observe that a2 +a3 +csump+1 = 29+22+11 ≥ 50 and a3 +a4 +csum7 = 22+16+11 < 50.

Thus, the strongest index for q = 2 is 2. Thus, the coefficients of α1 ≥ 3 = β − q + 1

and α2 ≥ 3 or the inequality is not valid due to (0, 1, 1, 0, 0, 0, 1, 1) being feasible for the

associated demand constraint.

For q = 3, a3 + a4 + a5 + csum7 ≥ 50 and a4 + a5 + a6 + csum7 < 50, so its strongest

index is 3. Thus, the coefficients of α1 ≥ 2 = β − q + 1, α2 ≥ 2 and α3 ≥ 2 or the inequality
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is not valid due to (0, 0, 1, 1, 1, 0, 1, 1) being feasible for the associated demand constraint.

The subroutine AssignGreaterCoefficients incorporates the strongest index to lift αj.

Since this approach is an approximation of uplifting, ALEC will always choose the maximum

αj. For example, the previous paragraphs calculated α1 ≥ 3 and α1 ≥ 2. ALEC assigns

α1 = 3, since it is the maximum. This concept allows ALEC to produce valid greater than

or equal to inequalities quickly.

AssignGreaterCoefficients(β, p, csum, a, b)

For i = p+ 1 to n

αi ← 0

If β = 1

For j = 1 to p

αj ← 1

If β = 2, Then

For j = 1 to p

If aj + csump ≥ b, Then

αj ← 2

If β = 3, Then

For j = 1 to p

If aj + csump+1 ≥ b, Then

αj ← 3

If aj + aj+1 + csump+1 ≥ b, Then

αj ← 2

If β = 4, Then

For j = 1 to p+ 1

If aj + csump+1 ≥ b, Then

αj ← 4

If aj + aj+1 + csump+1 ≥ b, Then

αj ← 3

If aj + aj+1 + aj+2 + csump+1 ≥ b, Then

αj ← 2

return α
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Since AssignGreaterCoefficients automatically produces valid, lifted, and greater than

or equal to inequalities, the only component left is checking if it has an associated valid, lifted,

and less than or equal to inequality, which is verified in the subroutine CheckLessCoefficients.

To begin, the subroutine first checks if
∑p

j=p−β+1 aj > b, or {p − β + 1, ..., p} is a cover. If

it does not, then valid = 0 implying a lifted equality can never exist with the specified β.

Therefore, β increases by one.

If β = 1, then CheckLessCoefficients checks the strongest index. In this case, the

condition is if ap−1 + ap > b, then the
∑n

j=1 αjxj ≥ β is not valid from the less than or equal

to side and returns valid = 1. When valid = 1, then the
∑n

j=1 αjxj ≥ β still might have an

associated less than or equal to inequality, which is why MainStep will increase p and not

β. As β increases, the number of strongest indexes also increases requiring ALEC to check

more cases for validity. This process is similarly repeated for all β. If
∑n

j=1 αjxj ≥ β does

have an associated inequality
∑n

j=1 αjxj ≤ β, then valid = 2 implying there exists a lifted

valid equality
∑n

j=1 αjxj = β. Therefore, a lifted valid equality is reported.

CheckLessCoefficients(β, p, α, csum, a, b)

sum← 0
For i = 0 to β

sum← sum+ ap−i

If sum ≤ b, Then

return(0)

If β = 1 And ap−1 + ap > b, Then

return(2)

If β = 2, Then

For j = 1 to p

If αj = 2 And ap + aj ≤ b, Then

return(1)
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If β = 3, Then

For j = 1 to p

If αj = 3 And ap + aj ≤ b, Then

return(1)

If αj = 2 And αj+1 = 1 And aj + ap−1 + ap ≤ b, Then

return(1)

If αj = 2 And αj+1 = 2 And aj + aj+1 ≤ b, Then

return(1)

If β = 4, Then

For j = 1 to p

If αj = 4 And ap + aj ≤ b, Then

return(1)

If αj = 3 And αj+1 = 2 And aj + aj+1 ≤ b, Then

return(1)

If αj = 3 And αp = 1 And αp−1 = 1, Then

If aj + ap + ap−1 ≤ b

return(1)

If αj = 2 And αj+1 = 2 And αp = 1 And aj + aj+1 + ap ≤ b, Then

return(1)

If αj = 2 And αp = 1 And αp−1 = 1 And αp−2 = 1

And aj + ap + ap−1 + ap−2 ≤ b, Then

return(1)

return(2)

The argument that ALEC produces a valid equality is straightforward. Due to the sorted

order of the coefficients, the reader can easily verify that the subroutineAssignGreaterCoefficients

is an application of Theorem 3.1.1 and CheckLessCoefficients is an application of Theorem

3.1.2. Thus, any equality returned from ALEC is a valid lifted equality for KEP model.

To show that ALEC is a polynomial time algorithm when β ≤ 4, the Initialization sorts

a, which requires O(nlog(n)) by merge sort. ALEC calculates csum from {an, an−1, ..., a1}

to find p, which requires O(n) effort. Thus, the Initialization requires O(nlog(n)) effort.
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The Main Step repeatedly calls two subroutines. AssignGreaterCoefficients subroutine

is called and its steps are dependent upon β. The initial assignments of α require O(n). The

number of conditions checked is β − 1 and each of these conditions is verifiable in O(1),

because β ≤ 4. Thus, this subroutine requires O(n) effort.

Next, the subroutine CheckLessCoefficients, with the given α, is applied to a1, a2, .., ap

where it checks conditions to find an associated less than or equal to inequality. The number

of cases to check depends on β and since β ≤ 4, the checks are accomplished in O(1). Since

p is bounded by O(n), CheckLessCoefficients requires O(n) effort.

In each iteration, the MainStep increases either β or p. Since β is bounded by 4 and

p is bounded by n, there are at most O(n) iterations within Main Step. From the above

arguments, each iteration requires at most O(n) effort. Thus, the Main Step requires O(n2)

effort. Combining this fact with the analysis of the Initialization results in ALEC being a

polynomial time algorithm that runs in quadratic time.

One may question the impact of increasing β. Fundamentally, as β increases, the cases

increase and the time to check a condition may also increase. In addition, the contribution

of additional equality cuts may be unnecessary due to generating non-independent equality

cuts. More discussions of this are included in the remainder of this thesis and it is left as a

future research topic.

Additionally, one may question why ALEC increases p. Let p′ be the initial p in β = 1 and

p′′ be the p in β = 2. This implies that p′′ ≥ p′+1. This phenomenon happens because of two

properties of ALEC where
∑n

j=p′ aj ≥ b and
∑n

j=p′+1 aj < b. Therefore, ap′′ +
∑n

j=p′′+1 aj < b

implying ap′′ will never be lifted. Since aj is sorted for all j then a′′p ≥ ap′′+1. Thus, only
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(α1, α2.., αp′) will be lifted. As β increases so does p illustrating that for any β ≥ 2, lifting

will only occur in (α1, α2.., αp′ ). This is a unique and useful property of ALEC especially if

used in practical applications. Lifting only through p′ may decrease the practical run time

of ALEC.

To further help the reader’s understanding of lifted equalities and ALEC, consider ap-

plying this algorithm to the following sorted KEP constraint from Chapter 2.

30x1 + 29x2 + 22x3 + 16x4 + 15x5 + 7x6 + 6x7 + 5x8 = 50

ALEC’s first step finds the cumulative sum of the coefficients starting from the variable

with the least coefficient. The result produces csum = [130, 100, 71, 49, 33, 18, 11, 5]. The

sorted cumulative sum first exceeds the right hand side 50 at csum3 because csum4 = 49

and csum3 = 71. Therefore, p = 3. Next, ALEC assigns β = 1 and enters the MainStep.

The subroutine AssignGreaterCoefficients is then called which assigns αj = 1 for all

j = 1, ..., p. Therefore, x1 + x2 + x3 ≥ 1 is a valid inequality. This valid inequality is

used as input to the next subroutine CheckLessCoefficients. In this case, conditions for

β = 1 are checked. According to the subroutine, if ap−1 + ap > b, then return 2. Since

a2 + a3 = 51 > 50, CheckLessCoefficients returns 2. In the MainStep, 2 is assigned to

valid so ALEC reports the valid equality x1 + x2 + x3 = 1. Additionally, β increases by

one and becomes 2. Furthermore, since p = 3, firstp = 3, and β = 2, the if condition is

satisfied. So p increases to firstp+ β − 1 = 4.

The process repeats and enters AssignGreaterCoefficients subroutine. Because β > 1,

the algorithm has to adjust the coefficients for validity. AssignGreaterCoefficients checks
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a1 + csum5 for α1, which sums to 63, which is greater than the right hand side 50. Similarly,

ALEC checks a2 + csum5 for α2 which sums to 62, which is also greater than 50. ALEC

then checks a3 + csum5 for α3. This sums to 56, which is still greater than 50. Thus,

α1 = α2 = α3 = 2. Since a4 + csum5 is less than 50, ALEC assigns α4 = 1. The remaining

coefficients (αp+1, αp+2, ..., αn) are set to 0. The first subroutine produces a valid lifted

inequality 2x1 + 2x2 + 2x3 + x4 ≥ 2.

ALEC then attempts to find an associated valid inequality 2x1 + 2x2 + 2x3 + x4 ≤ 2

using CheckLessCoefficients. Since a3 + a4 = 48 ≤ 50, and α3 + α4 = 3 > 2, S =

{3, 4} violates Theorem 3.1.2. Thus, there is not an associated equality cut. Therefore,

CheckLessCoefficients reports 1 which is assigned to valid. In the MainStep, ALEC

increases p to 5 and repeats the process.

Since β = 2, AssignGreaterCoefficients checks aj + csum6 for all j = 1, ..., p. For

j = 1, the subroutine checks a1 + csum6, which sums to 48. Thus, α1 = 1. Since aj is sorted,

α2, α3, .., αp will also equal 1. Thus, ALEC generates x1 + x2 + x3 + x4 + x5 ≥ 2 as a valid

inequality. This inequality passes through the next subroutine CheckLessCoefficients

where it checks if a cover exists. Because a3 + a4 + a5 > 50, a cover does exist so x1 + x2 +

x3 + x4 + x5 = 2 is a valid lifted equality.

Next, ALEC increases β = 3. In this case, AssignGreaterCoefficients checks whether

or not aj + csum6 ≥ 50 for all j = 1, ..., p. This is not true for any j and thus, no αj = β.

To test whether or not an αj = β−1, examine aj +aj+1 + csum6 ≥ 50 for all j = 1, ..., p−1.

This statement is true when j = 1, 2, and 3. Thus, 2x1 + 2x2 + 2x3 + x4 + x5 ≥ 3 is a valid

lifted inequality.
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Since β = 3, three subsets are evaluated in CheckLessCoefficients. The first is the

existence of the cover {2, 3, 4, 5}, the second and third occur when S = {2, 3} and S =

{3, 4, 5}. Since
∑

j∈S aj equals 82, 51 and 53, respectively, CheckLessCoefficients reports

2. Thus, valid = 2 and ALEC reports 2x1 + 2x2 + 2x3 +x4 +x5 = 3 as a valid lifted equality.

Both β and p increase to 4 and 6, respectively. Due to the conditions of the previous

paragraph, no α has a coefficient of β. To test αj = β−1, check aj+aj+1+csum7 ≥ 50 for all

j = 1, ..., p− 1. This is true for j = 1 and 2 so α1 = α2 = 3. Now aj +aj+1 +aj+2 + csum7 ≥

50 for all j = 1, ..., p − 2. This is true when j = 3 and so α3 = β − 2 = 2. Thus,

3x1 + 3x2 + 2x3 + x4 + x5 + x6 ≥ 4 is a valid lifted inequality.

To test for an equality constraint, five subsets must be evaluated. The necessary cover is

satisfied from the previous case. The remaining sets are {1, 2}, {2, 3}, {2, 5, 6} and {3, 4, 5, 6}.

Since
∑

j∈S aj equals 59, 51, 51, and 60, respectively. Thus 3x1 +3x2 +2x3 +x4 +x5 +x6 = 4

is a valid equality. Next β increases to 5 and ALEC terminates. Recall, ALEC can easily be

modified for additional values of β.

To prove x1 + x2 + x3 = 1 is an equality cut, consider the following two feasible linear

relaxation points (0, 0.1, 0.8, 1, 1, 0, .15, 1) and (0, 0.1, 1, 0, 0.9, 0.8, 0.167, 1). Both feasible

linear relaxation points are removed from the linear relaxation space because 0.9 < 1 and

1.1 > 1. Since one point is strictly less than and the other is strictly greater than β, the

equality cut passes through the center of the linear relaxation space.

Since there exists at least one linear relaxation point that violates x1+x2+x3 = 1, adding

this equality cut reduces the dimension of the linear relaxation space by at least one. To see

this, observe that PLR
KEP contains the linear relaxation point. Once the equality cut is added
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to PLR
KEP , every point satisfies this equality and thus no affine combination of points could

ever attain the linear relaxation point. Thus, the number of affinely independent points has

decreased by at least one. This is the same argument as formalized in a theorem by DeLissa.

The same conclusion can be made for x1 + x2 + x3 + x4 + x5 = 2, which cuts the linear

relaxation points (0, 0.625, 0.375, 0, 0.375, 1, 1, 1) and (0, 0, 1, 0.5, 1, 0.5, 0, 0.3). Both feasible

linear relaxation points are removed from the linear relaxation space because 1.375 < 2 and

2.5 > 2. Another lifted valid equality cut is 3x1 +3x2 +2x3 +x4 +x5 +x6 = 4, which cuts the

linear relaxation points (0.2, 0.2, 0.6, 0.1, 0.9, 0, 0.9, 0.9) and (0.5, 0.2, 0.3, 0.5, 0.5, 1, 0, 0.02).

Both feasible linear relaxation points are removed from the linear relaxation space because

3.4 < 4 and 4.7 > 4.

There is a key difference between lifted valid equality cuts and cutting planes. Cutting

planes in general are inequalities that eliminate a linear relaxation point. With inequalities,

only a portion of PLR
KEP is eliminated from one side. However, lifted valid equality cuts

eliminate portions of PLR
KEP from both sides. Thus, PLR

KEP with the equality cut is much

smaller than applying a general cutting plane.

ALEC may produce linearly dependent cuts, which is additional work for no benefit.

For instance the sum of the first and second equality cuts equals the third. Thus, any two

of these cuts is sufficient to represent the other cut and any one of them can be removed

from the model. This is one contributing reason why β ≤ 4. However, the fourth cut is

not linearly dependent of the first and second equality. Consequently, lifted equality cuts do

exist and are not always combinations of other existing equality cuts.

The computational results will demonstrate how fast ALEC is and it is believed that
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checking for linear independence would slow ALEC sufficiently as little improvement would

be gained by knowing whether or not the equalities are linearly independent. If ALEC was

modified to always increase p and β simultaneously, then it is believed that fewer linearly

dependent constraints would be generated. Since ALEC runs in quadratic time, the cost

of losing potential lifted equalities exceeds the benefit of guaranteeing linearly independent

cuts.

To further examine the effects of ALEC’s lifted and non-lifted equality cuts, the KP model

from Chapter 2 was converted into a KEP model with an objective function of z =
∑n

j=1 xj.

This objective function is common in IP formulations. The model was solved using branch

and bound with depth first left as a branching rule. The branch and bound tree required 61

nodes to solve. When including the four equality cuts, the branch and bound tree required

three nodes to solve. Thus, equality cuts are anecdotally beneficial.

The results provide motivation to test the effects of valid lifted equalities on larger MKEP

instances. Thus, the next chapter conducts a small computational study to see the impact

of lifted equality cuts in a branch and bound environment on larger size MKEPs.
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Chapter 4

Computational Studies

This chapter provides a computational study on valid lifted equalities. Specifically, ALEC

is implemented into random MKEP instances that vary in size of variables and constraints.

For each instance, the associated IP was solved in CPLEX [52], a commercial optimization

software, with and without ALEC. The results show ALEC’s capability to quickly find an

enormous number of valid lifted equalities while still reducing the solution time.

4.1 Instances and Implementation

Although there exists many classes of benchmark problems, no MKEP instances exist on

the OR Library [53]. However, the OR Library does have MKP benchmark instances. If one

converted these MKP instances to MKEP instances, the problems become computationally

intractable. Consequently, the first step was to determine MKEP random instances that

were neither too difficult nor too easy to solve.
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To create random MKEP instances, the format for the benchmark MKP instances was

followed. Thus, ai,j are uniformly random distributed integers between 1 and 1,000, bi =

1
2

∑
j∈N ai,j and cj = u+

∑
i∈M ai,j
|M | where u is a uniformly distributed random integer between

1 and 500 and M is the set of rows.

Recall, that MKEP is a NP-hard problem. In practice, MKEP instances are either

practically fast to solve or have an exponential number of nodes in the branch and bound

tree that can require an unrealistic time to solve. This is because MKEP instances have a

high chance of being infeasible due to their equality constraints. If an IP is infeasible, then

branch and bound can never perform a bound or integer fathom and the only fathoming rule

is an infeasible linear relaxation. Through computational experiments, not presented here, it

was determined that problems ranging from 30 to 100 variables and 2 to 4 constraints were

neither trivial nor too computationally challenging to solve. Note, two random instances

were removed from the results because CPLEX could not solve them without running out

of memory, which occurred with a branch and bound tree of approximately 16 gigabytes.

Overall, the computational study solved six classes of MKEP instances. The size of

problems solved are in the first two columns of Table 1-3. To avoid anomalies, fifteen

randomly generated MKEP instances of the same size are solved. This study solved 88 IPs.

The data reported in the tables represent the average of the fifteen instances.

The primary goal of this computational study is to solve these instances and compare

ALEC’s impact on the solution time. The study was performed on an Intel(R) Core(TM)

i7-6700 3.4 GHz processor with 16.0 GB of RAM. The code was written in C, which called

CPLEX 12.6.2. CPLEX’s parameters are identical with and without ALEC and are set at
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the default settings with two exceptions, which are explained in the following paragraphs.

In some instances for 40 variables and 3 constraints, CPLEX could not solve the IP before

running out of RAM memory. To keep consistency, the node file for the branch and bound

tree was always stored in the hard drive after 8GB of RAM were used. CPLEX’s variable

selection rule for branching appears to change depending on whether or not the node files

are stored in RAM.

CPLEX’s callback functions enable the user to interface with CPLEX’s branching tree.

ALEC was implemented into these callback functions in CPLEX’s branch and bound envi-

ronment. Due to ALEC’s location of implementation, the time to find and add the equality

cuts is contained in the total solving time. Since CPLEX’s branching rules are a black box,

the instances solved by CPLEX were also solved with callback routines. These callback rou-

tines did nothing and exited immediately. Consequently, it is believed that CPLEX made

the same variable selection when branching. The only impact is from ALEC’s equality cuts

and its processing time.

One other aspect occurred when implementing ALEC. At the root node, ALEC never

found a single equality cut. This result is expected as finding valid equalities with a large

number of indices is challenging in nature. Recall, ALEC limits β ≤ 4, which helps control

the size of the indices with the equality cuts. Increasing β will have diminishing returns on

lifted equalities since the indices will increase. Thus, ALEC should not be implemented at

every node in the branch and bound tree.
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To help the reader see this, consider the following MKEP constraint.

40x1 + 30x2 + 29x3 + 22x4 + 20x5 + 16x6 + 15x7 + 7x8 + 6x9 + 5x10 + 2x11 = 70

ALEC cannot find any valid equalities with this MKEP constraint. Observe that ALEC

begins by assigning p = 5 and β = 1. Since a4 + a5 < 70, then no equality exist when β = 1.

When β = 2 and p = 6, a4 + a5 + a6 < 70 so no equality exists and p increases to 7. Since

aj is sorted, increasing p will never result in a lifted equality. Therefore, ALEC reports no

lifted equalities.

Now assume that a node at depth 4 in the branching tree has branches of x1 = 0,

x5 = 1 and x11 = 0. Replacing x5 with 1 results in a new knapsack equality constraint with

b = 70 − 20 = 50. Since x1 and x11 both equal 0, they can be removed from the problem.

The resulting MKEP constraint is the exact same as the primary example used throughout

this thesis. Consequently, ALEC finds multiple useful lifted equalities at this node in the

branching tree.

Due to this fact, ALEC is only called after 50% of the variables have been branched.

Examining nodes with 50% of the variables branched results in smaller MKEP instances

where equality cuts are more likely to exist. An interesting phenomenon occurred when

solving the 100 variable problems with two constraints. ALEC initially did not perform well

because the reduced problems may have 50 unbranched variables. Therefore, ALEC spent

time at nodes where there are no lifted equalities. This concept is confirmed by changing

ALEC to be called after 75% of the variables were fixed, which is shown in Tables 1-3. As

a result, ALEC reduced the solving time for the 100 variable problems with two constraints
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by 3%. Thus, individuals should primarily implement ALEC only when there are a limited

number of unbranched variables. Fortunately, in every binary branch and bound tree, the

number of fathomed nodes is equal to half of the total number of nodes plus one. Because

of this fact, the majority of all time spent in every branch and bound is consumed near the

fathomed nodes.

4.2 Computational Results and Discussions

The computational results are in Tables 1-3 where each row represents the average of 15

randomly generated instances. Table 1 shows the average solving time with and without

ALEC in CPLEX, the number of equality cuts, the number of lifted equality cuts, and

the percent improvement for different types of random problems. Since the magnitude of

equalities was so high, the averages provided in the tables are floored to the nearest thousand.

Here, the term equality cuts refers to when αj = 1 for all j = 1, 2, ..., p. These are important

because DeLissa’s research would have already created these inequalities. Thus, the number

of lifted equalities describes the number of cuts introduced by this research.
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Table 4.1: CPLEX and CPLEX with ALEC Solution Times

CPLEX CPLEX+ALEC

#Var #Cts
Avg Time

(sec)

Avg Time

(sec)

Avg # Eq Cuts Avg # Lifted Cuts Time %Imprv

30 3 74 59 161,000 346,000 20%

35 3 1,605 1,356 3,000,000 6,200,000 16%

40 3 8,440 7,317 6,200,000 11,900,000 13%

50 2 28 24 54,000 59,000 17%

75 2 47 38 48,000 51,000 18%

100 2 60 58 51,000 62,000 3%

Average 1700 1500 1,585,000 3,103,000 15%

Table 1 illustrates the solution time with and without ALEC. Observe the magnitude of

lifted equality cuts found in the study. In the 40 variable problem with 3 constraints, ALEC

found over 18 million cuts on average while reducing the solution time by 13%. ALEC also

solved them with an average time of 7,317 seconds. Therefore, ALEC found an equality cut

on average every 0.46 millisecond.

In one particular random instance, ALEC identified over 30.7 million equality cuts. ALEC

found an equality cut every 0.17 millisecond. Even with the time to generate 30.7 million

cuts, ALEC still reduced the solution time by 18% in this instance. The results verify that

ALEC quickly identifies useful valid equality cuts.

39



Table 4.2: CPLEX and CPLEX with ALEC # of Nodes

CPLEX CPLEX +ALEC

# Var #Cts Avg # Nodes Avg # Nodes %Imprv Avg Node/Cut

30 3 1,800,000 1,400,000 26% 3

35 3 38,600,000 29,500,000 24% 3

40 3 79,800,000 70,400,000 12% 4

50 2 840,000 590,000 30% 5

75 2 980,000 800,000 18% 8

100 2 1,100,000 1,000,000 4% 8

Average 20,500,000 17,300,000 19% 5

Table 2 demonstrates ALEC’s impact on the number of nodes CPLEX solved. Since the

solution time decreased on average, the number of nodes solved should also decrease. In the

35 variables with 3 constraints, ALEC reduced the number of solved nodes by over 9 million.

Overall, ALEC reduced the number of nodes by 19%. In addition, the results show that on

average, one in every 5 nodes in the branching tree, ALEC identifies an equality cut.

In a particular instance for the 50 variable and 2 constraint problem, ALEC decreased the

number of solved nodes by 130,000. ALEC also found 10,000 equality cuts. Every equality

created reduced the number of solved nodes by 13, reiterating that equality cuts reduce the

linear relaxation space and are computationally strong.
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Table 4.3: CPLEX and CPLEX with ALEC Avg Ticks

CPLEX CPLEX +ALEC

# Var #Cts Avg # Ticks Avg # Ticks %Imprv

30 3 44,400 24,300 45%

35 3 910,000 540,000 40%

40 3 2,100,000 1,500,000 31%

50 2 14,000 8,000 42%

75 2 19,800 14,000 32%

100 2 26,500 19,000 30%

Average 520,000 350,000 36%

In each type of instance, the ticks are recorded in Table 3. Ticks refer to the main system

clock on a personal computer, which generally run at 66MHz. The ticks allow a standard

measure of time across different computers regardless of the computer’s capability. ALEC

reduced the average number of ticks by 170,000.

Although the average time, ticks and nodes were reduced, 35% of instances run with

ALEC had a higher solution time. ALEC’s cutting planes can potentially change the order

in which nodes are evaluated. Even though ALEC theoretically reduces the dimension of

PLR
KEP by one, ALEC can negatively affect CPLEX’s performance due to a different variable

selection for branching. On average, ALEC is worth implementing.

The most surprising result of this study is the number of equality and lifted equality cuts

found. Over the 88 instances solved, ALEC found over 380 million cuts. For the problems

with 3 constraints and 40 variables, ALEC found on average over 11 million such cuts. The
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branching tree was also large and on average, a cut was found in one out of four nodes.

In every scenario, there are more lifted equalities being found than non-lifted equality cuts.

Thus, lifted equality cuts are exceptionally plentiful in these MKEP instances.

Even though hundreds of millions of cuts were found, the total computational time de-

creased by an average of 15%. This result illustrates that ALEC is extremely fast at creating

lifted valid equalities. In addition, it shows that ALEC produces extremely powerful cuts.

Therefore, lifted equality cuts are computationally advantageous for the random knapsack

equality instances studied in this research.
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Chapter 5

Conclusions and Future Work

The goal of this thesis is to determine if valid equalities exist with coefficients greater than

one. This thesis affirmatively answers this question by extending lifting to valid equalities.

This section reiterates the major contributions of this work and provides a direction for

future research.

5.1 Conclusions

This thesis is the first to introduce the concept of lifted equality cuts for the knapsack equality

polytope. Two main theorems provide the conditions for which a lifted equality cut can

exist. Theoretically, lifted equality cuts reduce the dimension of the linear relaxation’s space

by at least one. In addition, the algorithm of lifted equality cuts (ALEC) finds equalities

that satisfy the conditions of the two theorems. ALEC’s run time is O(n2). An example

demonstrates how ALEC is implemented on a small KEP constraint and proves that lifted

43



equality cuts exist.

A computational study verifies that valid lifted equalities are computationally advanta-

geous by implementing ALEC in a branch and bound tree. The results illustrate that not

only do lifted equalities exist, but they are plentiful. In small instances with only three con-

straints and 40 non-zero coefficients, over 18 million equality cuts were found on average. In

the same instances, the results show an approximate average reduction in the solving time of

20 minutes. In another type of instance, ALEC reduced the branch and bound tree by 30%,

on average. The results also demonstrate that varying ALEC’s implementation depth in the

branching tree can change CPLEX’s solution time. To the best of the author’s knowledge,

ALEC is the first algorithm that has found over 30.7 million equality cuts in a single instance

while still reducing the solving time by 18%, which provides substantial optimism for future

research.

5.2 Future Work

The research primarily focuses on the theory behind valid lifted equalities. A future research

topic is to implement ALEC on benchmark and real world IPs. The expansion to real world

IPs will provide insight if valid equalities are useful in practice. Implementing valid lifted

equalities to real world IPs also goes hand in hand in expanding lifted equalities beyond

MKEPs. For example, relaxing the knapsack condition and allowing negative coefficients is

an important research topic.

ALEC finds lifted equalities by examining each constraint individually. A future research

topic should study the relationships between equality constraints and their relative tightness.
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Can ALEC be modified to include information from multiple constraints? Or can ALEC

combine lifted equality constraints using a mod or floor function to produce stronger lifted

equality cuts?

Lastly, integer programming is a subset of optimization problems. A general idea of

interest is how lifted equality cuts can be expanded to optimization problems including

mixed integer programming and nonlinear integer programming.
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