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Abstract

Civil structures are susceptible to damages dwr service lives due to aging,
environmental loading, fatigue and excessive resporsuch deterioration significantly affects
the performance and safety of structure. Therefoirg necessary to monitor the structural
performance, detect and assess damages at thestpdssible stage in order to reduce the life-
cycle cost of structure and improve its reliabili@ver the last two decades, extensive research
has been conducted on structural health monit@mhdamage detection.

In this study, a signal-based pattern-recogniti@hod was applied to detect structural
damages with a single or limited number of inpufoti signals. This method is based on the
extraction of sensitive features of the structoeaponse under a known excitation that present a
unique pattern for any particular damage scendfrequency-based features and time-
frequency-based features of the acceleration regpeere extracted from the measured
vibration signals by Fast Fourier Transform (FFigl £ontinuous Wavelet Transform (CWT) to
form one-dimensional or two-dimensional patterespectively. Three pattern recognition
algorithms were investigated when performing patteatching: (1) correlation, (2) least square
distance, and (3) Cosh spectral distance.

To demonstrate the validity and accuracy of thehmeit numerical and experimental
studies were conducted on a simple small-scale#tey steel building. In addition, the
efficiency of the features extracted by Waveletkéad ransform (WPT) was examined in the
experimental study. The results show that thaufeatof the signal for different damage
scenarios can be uniquely identified by these toainmmtions. Suitable correlation algorithm can
then be used to identify the most probable damegeasio. The proposed method is suitable for
structural health monitoring, especially for thdilm& monitoring applications. Meanwhile, the
choice of wavelet function affects the resolutidthe detection process and is discussed in the

“experimental study part” of this report.
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Deterioration of structures due to aging, cumutativack growth or excessive response
decreases their stiffness and integrity, and tbeeedignificantly affects the performance and
safety of structures during their service liferuStural Health Monitoring (SHM) and damage
detection denotes the ability to monitor the perfance of structure, detect and assess any

damage at the earliest stage in order to reduckfeheycle cost of structure and improve its

CHAPTER 1-INTRODUCTI

1.1 Introduction

ON

reliability and safety. Figure 1.1 shows a briefssification of different damage detection

categories, methods and basic algorithms.

Figure 1.1 SHM and Damage Detection Categories
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In this field, Destructive Damage Detection (DDDéor Non-destructive Damage
Detection (NDD) techniques are employed to contirslpmonitor the structure, detect the
possible damage, and evaluate the safety of thetste. Recent advances in computer, sensors
and other electronic technologies make NDD techesdar more convenient and cost effective
than destructive detection techniques which usualbfuate the safety of a structure by testing
samples removed from the structure. NDD technigaesbe classified into two categories: (1)
local methods; and (2) global methods.

Current highly effective localized NDD methods umbé acoustic or ultrasonic methods,
magnetic field methods, radiograph, microwave/gtbpenetrating radar, fiber optics, eddy-
current methods and thermal field methods. Thesthaals are visual or localized experimental
methods that detect damage on or near the surfdabhe structure by measuring light, sound,
electromagnetic field intensity, displacementseonperature. Some of these methods are
particularly effective for a specific applicatiofror example, eddy current is very effective for
crack detection at welded joint (Chang and Liu,30@ut these methods have several
limitations when testing large and complex struesurFirst, the depth of wave penetration is
limited. Second, the vicinity of the damage shdudcknown and the portion of the structure
being inspected should readily be accessible. Mewé¢here is no easy way to determine the
global health condition of a structure. Chang kid(2003) provided detailed information
about “local” methods.

Static-based and vibration-based NDD methods peothid opportunity to detect and
assess damage on a global basis. Static-baseddeetiy on the strain or displacement
measurements from a structure under known statsland the finite-element model updating
to determine changes in deflection, stiffness,laad-carrying capacity of the structure. These
methods are widely used for bridge health monitpand evaluation. Examples of such work
are Barr et al. (2006) and Cardinale and Orlan@942 The drawbacks of static-based NDD
methods are: (1) they require a large amount ofomea data; (2) they require the finite-element
model updating using accurate material proper{®sthey require static-load tests which will
interrupt the structure service. These drawbadksnake static-based NDD methods more
difficult for online damage detection of an in-seevstructure. Vibration-based NDD methods
rely on the change of vibration characteristics sigdals as indication of damage due to the

reason that the damage changes the physical pespefta structure, which in turn will cause



changes to the vibration characteristics and ssgofalhe structure. Over the last two decades,
extensive research has been conducted on Vibratiead detection approach, leading to various
experimental techniques, methodologies, and sigroalessing algorithms. Doebling et al.
(1996) and Sohn et al. (2003) presented compreleht@rature reviews of vibration based
damage detection and health monitoring methodstfactural and mechanical systems. These
methods can be classified into either modal-baseijoal-based categories.

Modal-based methods use changes in measured mardah@ters (resonant frequencies,
modal damping, mode shapes, etc.) or their devieatas a sign of change in physical-dynamic
properties of the structure (stiffness, mass amdpitlag). The basic premise behind the methods
is that a change in stiffness leads to a changatural frequencies and mode shapes. Modal-
based methods have been applied successfullyritifidthe dynamic properties of linearized
and time-invariant equivalent structural systemBe methods include mode shape curvature
method, the change in flexibility method, the chamgstiffness method, modal strain energy,
etc. Examples of such work are Kosmatka and R{d@@89), Ren and Roeck (2002), Shi et al.
(2000) and Kim et al. (2003). Recently, waveletdzhand Hilbert-based approaches have been
developed as enhanced techniques for parametntfidation of non-linear and time-variant
systems. Examples of such work are StaszewskBj18%9ewski and Kareem (2003), Yang et
al. (2004), Huang et al. (2005), Hou et al. (20@)en et al. (2006) and Yan and Miyamoto
(2006). Although modal-based methods are geneaplyicable for the purpose of damage
detection and structural health monitoring, théylshve many problems and challenges: (1)
damage is a local phenomenon and may not significarfluence modal parameters,
particularly for large structures; (2) variationtire mass of the structure or environmental noise
may also introduce uncertainties in the measuredahparameters; (3) the number of sensors,
the types of sensors, and the coordinates of sensay have a crucial effect on the accuracy of
the damage detection procedure (Kim et al. 2003).

Signal-based methods examine changes in the featarazed directly from the
measured time histories or their correspondingtspdierough proper signal processing methods
and algorithms to detect damage. Based on diffeignal processing techniques for feature
extraction, these methods are classified into tilmerain methods, frequency-domain methods,
and time-frequency (or time-scale)-domain methobisme-domain methods use linear and

nonlinear functions of time histories to extract gignal features. Examples of this category are



Auto-Regressive (AR) model, Auto-Regressive Movingrage (ARMA) model, Auto-
Regressive with eXogenous input (ARX) model anceBged Kalman Filter (EKF). Frequency-
domain methods use Fourier analysis and cepsttuir(verse Fourier transform of the
logarithm of the Fourier spectra magnitude squaaed}ysis to extract features in a given time
window. Examples of this category are Frequeneyd@nse Functions (FRFs), frequency
spectra, cross power spectra, power spectra, amer@spectral density. Time-frequency domain
methods employ Wigner-Ville distribution and wavedealysis to extract the signal features.
Examples of this category are spectrogram, contiswavelet transform coefficients, wavelet
packet energies and wavelet entropy. Detailedrggmns of these signal-based features,
feature extraction and successful applicationshalpresented in Chapter Two. As an
enhancement for feature extraction, selection gémskification, pattern recognition techniques
are deeply integrated into signal-based damagettmtie Staszewski (2000) and Farrar et al.
(2001) presented the detailed descriptions of feagutraction, selection and analysis in the
context of statistical pattern recognition. Sorases of successful application of the procedure
for damage detection can be found in Sohn et @0G22001), Trendafilova (2001), Posenato et
al. (2008) and Fang et al. (2005). Detailed dpsions of these mostly used pattern recognition
methods and successful applications for damagetamienill also be presented in Chapter Two.
Compared with modal-based methods, signal-baseldotiehave received considerable
attentions from the civil, aerospace, and mechan@mamunities because they are particularly
more effective for structures with complicated moa&r behavior and the incomplete,
incoherent, and noise-contaminated measuremestsustural response (Adeli and Jiang 2006).

They are also more cost effective and suitabl@fdine structural monitoring.

1.2 Objectives
The overall problem of structural damage detedtwnlves five levels of damage
identification which are categorized according togical sequence: level 1, existence of
damage; level 2, location of damage; level 3, ypdamage; level 4, quantity of the damage;
and level 5, life to failure (Sohn et al. 2003, Dlieg et al. 1996, Rytter 1993). The first four
levels are mostly related to identification and elody of structural systems, signal processing,
feature extraction and statistical pattern recagmit The last level of identification generally



falls into the fields of fatigue life analysis, étare mechanics, design assessment, reliability
analysis and machine learning.

The main goal of any damage detection method detect the damage, assess the level
and type, and spot the location. As detailed énititroduction, there are many methods and
algorithms that can be used depending on the tiyputure, source of possible damage and
the desired accuracy of detection.

The method used in this study is a signal-basetodan which the features of the
acceleration response signal, under a known eiwitaerve as the structural signature. This
signature will change when the dynamic propertigb® structure changes due to an inflicted
damage that will alter the dynamic properties efshructure.

The main goal of this study was to: (1) explordaus signal processing methods in
optimal extraction and preservation of the featafethe response signal; (2) identify the best
pattern recognition method; (3) develop a procégmtiern extraction and recognition for
damage detection and online structural monitoring.

In this study, a signal-based pattern extractiahracognition method, using a number of
signal transformations and pattern matching algor#, was investigated to detect structural
damage. The vibration acceleration signals ofuctire excited by a known dynamic
excitation, such as an impulse force, were decoetpby Fast Fourier Transform (FFT),
Continuous Wavelet Transform (CWT) or Wavelet Padkansform (WPT) for feature
extraction. Three statistical algorithms were afs@stigated to perform pattern matching
separately: correlation, least square distanceCarsth spectral distance. The method proposed
in this study implements feature extraction andgoatrecognition algorithms in damage
detection procedure. To show the validity and eacyiof the method and related
transformation and pattern recognition algorithmanerical simulation and experimental case
studies were conducted on a small-scale three-stegy} structure. The structural dynamic
response under different damage scenarios exojted bmpulsive load was numerically
simulated by a detailed finite element model ugMNFYS, and the recorded vibration response
was processed using MATLAB.



CHAPTER 2 - LITERATURE REVIEW

Recently, signal-based damage detection methodsreaeived many attentions. These
methods involve two main processes: (1) featureaetton and selection, and (2) pattern
recognition. Feature extraction and selectiohésprocess of identifying and selecting damage-
sensitive features derived from the measured dynasponse, to quantify the damage state of
the structure (Sohn et al. 2003). This procesndfivolves fusing and condensing the large
amount of available data from multiple sensors atauch smaller data set that can be better
analyzed in a statistical manner. Also, variousi®of data normalization are employed in the
process in an effort to separate changes in theuned response caused by varying operational
and environmental condition from changes causedilnyage.

A pattern can be a set of features given by coatisudiscrete or discrete-binary
variables formed in vector or matrix notation. t#en recognition is concerned with the
implementation of the algorithms that operate @ndktracted features and unambiguously

determine the damage state of the structure” (Fatral. 2001).

2.1 Feature Extraction and Selection
A variety of methods are employed to improve theudee extraction and selection
procedure. Based on different signal processidgnigues for feature extraction, these methods
are classified into time-domain methods, frequedagtain methods, and time-frequency

methods.

2.1.1 Time-domain Methods
Time-domain methods use linear and nonlinear fonstof time histories to extract
features. Sohn et al. (2000) used an auto-regeeé&R) model to fit the measured time history

on a structure. Damage diagnoses using X-baraattart were performed using AR

coefficients as damage-sensitive features. InAR¢n) model, the current point in a time series

is modeled as a linear combination of the previoysoints



X(t) =2 ox(t-j)+e(t) (2.2)
j=1
where x(t) is the time history at time @, is the unknown AR coefficient; angf(t) is the
random error with zero mean and constant variafiée value ofy, is estimated by fitting the

AR model to the time history data. The AR coeéius of the model fit to subsequent new data
were monitored relative to the baseline AR coedfics. The X-bar control chart was used to
provide a framework for monitoring the changeshia mean values of the AR coefficients and
identifying samples that were inconsistent with plast data sets. A statistically significant
number of AR coefficients outside the control lignimdicated that the system was transited from
a healthy state to a damaged state. Principal coem analysis and linear and quadratic
projections were applied to transform the timeesefiom multiple measurement points into a
single time series in an effort to reduce the disn@mality of the data and enhance the
discrimination between features from undamageddamedaged structures. For demonstration,
the authors applied the AR model combined with Xdmmtrol chart to determine the existence
of damage on a concrete bridge column as the coluasmprogressively damaged. The AR
coefficients on the X-bar control chart as detailethe method indicated the damage existence.

Sohn and Farrar (2001) proposed a two-stage tistergiprediction model, combining
auto-regressive (AR) model and an autoregressitreexiogenous inputs (ARX) model. The
residual error, which was the difference betweenratttual acceleration measurement for the
new signal and the prediction obtained from the ARX model from the reference signal, was
defined as the damage-sensitive feature. Theaserm residual errors was monitored to detect
system anomalies. In this method, the ARX modekjzressed as

x(t)= Sox(t=i)+ ésjex (t=)+e, (1) (2.2)
wherea andb are the order of the ARX modety; and; are the coefficients of the AR and the
exogenous input, respectively;, (t) is the residual error after fitting t#éRX (a,b) model to
the g, (t) and x(t) pair in the one-stage ahead AR model. If the ARddel obtained from the
reference signal block pait(t) ande,(t) were not be a good representation of the newly

obtained block paily(t) ande, (t), there would be a significant change in the resiiéwror,



g, (t), compared te, (t). The standard deviation ratio of the residuabmsio (e, ) /o (e, ).,

would reach its maximum value at the sensors ingnied near the actual damage locations.
The applicability of this approach was demonstrémgthe authors using acceleration time
histories obtained from an eight degree-of-freedoass-spring system.

Sohn et al. (2002) developed a unique combinatidtheoAR-ARX model, auto-
associative neural network, and statistical pattecognition techniques for damage
classification explicitly taking the environmentaid operational variations of the system in the
consideration. In this method, AR-ARX model is dieyped to extract damage sensitive

features, which are tle andf; coefficients of the ARX model. An auto-associatheural

network is trained to characterize the dependehtiyeoextracted features on the variations
caused by environmental and operation conditigigamage classifier is constructed using a
sequential probability ratio test to automaticalgtermine the damage condition of the system.
The authors demonstrated the proposed approach asiamerical example of a computer hard
disk and an experimental study of an eight degfdeecedom spring-mass system.
Bodeux and Golinval (2001) applied the autoregwessioving average vector
(ARMAV) model and statistical tools such as confide interval and the normal distribution of
random variable for damage detection. In the sjpéee, the ARMAV model is expressed as
x[n] = Ax[n-1] +W[n] (2.3)
where x[n] is the observed vibration vector at tith discrete time poinf is the matrix

containing the different coefficients of the autmessive (AR) partyv [n] is a matrix containing

the moving average (MA) terms. The natural eigagenciesf, and damping ratiog, can be

extracted from the eigenvalues of the AR matrixA as

_lin(x,)
f. = Py (2.4)
- Real In(t,)) 25)
‘In(r,)

where At is the discrete time interval. The authors ubedchanges in the frequencies estimated
by the ARMAV model to detect the damage on thelSpemke structure at the Joint Research
Center in Ispra, ltaly. The frequencies were agsuita be independently distributed variables



and a negative change in frequencies indicated gamwaused by structure change. As damage
indicator, the probability of negative chanBg in frequencyf; is given by

where ¢’ and ’, are the variances of the frequencieand f ,corresponding to the damaged
and undamaged state® is the unit normal distribution function. Theuwtture was assumed
damaged if the probability was close to one. Tioppsed method was limited to only detecting
the damage existence.

Nair et al. (2006) applied an Auto-Regressive Mgwitverage (ARMA) model for
damage identification and localization. A damagesgive feature, DSF, was defined as a
function of the first three auto regressive (ARnpmnents. The mean values of the DSF
obtained from the damaged and undamaged signaéssignificantly different. In this method,

the vibration signals obtained from sensors areateadas ARMA time series as
P q
X = Z 0 (t—k)+k2:19ks” (t=k)+e(t) (2.7)
where x; (t) Is the normalized acceleration signg}; and 6, are thek-th AR (Auto-Regressive)

and MA (Moving Average) coefficients, respectivglyandq are the model orders of the AR
and MA processes, respectively; aeqj((t) is the residual term. DSF is defined as
al
[a12+a22+a33

wherea,, a, anda, are the first three AR coefficients. A hypotlsesist involving the t-test

DS =

(2.8)

was used to determine the existence of damagesemstructure. Two indices, 1and Lb, were
introduced based on the AR coefficient space talibe damages. At the sensor locations where
damage was introduced,ldnd Lb had comparatively large values. The authorsdesie
proposed methodologies on the analytical and exyearial results of the ASCE benchmark
structure. The results of the damage detectioicaned that DSF was able to detect the
existence of all damage patterns in the ASCE Beackisimulation experiment. The results of
the damage localization indicated that &hd LL were all able to localize minor damages but

LI; was more robust than 4.



Nair and Kiremidjian (2007) utilized the Gaussiaixtdre Model (GMM) to detect the
existence and extent of damage. The vibrationassgobtained from the structure were modeled
as ARMA processes. The first three autoregresre#ficients obtained from the modeling of
the vibration signals formed the feature vectohe Teature vectors were clustered by Gaussian
mixture model. The existence of damage was detertimmg the gap statistic to ascertain the
optimal number of mixtures in a particular databa&amigration of the number of mixtures
indicated the existence of damage. The Mahalarthsiance between the centroids of the
mixture in question and the undamaged mixture vasen as a good indicator of damage
extent. The authors used the simulation data tl@ASCE benchmark structure to test the
efficacy of the method. It was demonstrated thgiMGbased algorithm was able to detect
minor, moderate, and major damage patterns; theaMabbis distance was highly correlated to
the damage extent even under the presence of nbieelimitations of the algorithm were that
this algorithm was effective only for linear stat#oy signals; and changes are identified relative
to the initial measurement which was assumed théendamaged state.

Liu et al. (2007) presented a damage sensitiveifeatdex for damage detection based
on Auto-Regressive Moving Average (ARMA) time seranalysis. The acceleration signal was
modeled as ARMA models, and a principal componeattisnderived from the AR coefficients

of these models was utilized to establish the Matalis distance criterion function. The

Mahalanobis-distances of m-dimensional vectofrom the principal component matrix of

damaged structure to the ones of undamaged stewetere defined as the damage sensitive

feature (DSF) index. Itis expressed as

1

Dpe :[(x—u)T Z'l(x—u)}5 (2.9)
wherep and ). are mathematics expectation and covariance matoicthe m-dimensional
vector from the principal component matrix of unday®d structure, respectively. A hypothesis
test involving the t-test method was further apptie make a damage alarming decision by
determining the statistical significance in thdetiénce of mean valuesDf obtained from
the damaged and undamaged cases. These methedolage tested on a numerical three-span-
girder beam model containing some subtle damagks.results show that the defined index is

sensitive to these subtle structure damages, anprtiposed algorithm can be applied to the on-

line damage alarming in structural health monitgrin
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Yan et al. (2004) applied the residual errors efpihediction model and statistical
process control techniques for damage diagnosiKalfhan model was constructed to fit the
measured vibration response histories of the undachatructure. The residual error of the
prediction by the identified Kalman model with respto the actual measurement of signals was
defined as a damage-sensitive feature. The Xdrara chart was constructed to provide a
guantitative indicator of damage. The damage ionatwere determined as the errors reached
the maximum values at the sensors instrumentdteidamaged sub-structures. The authors
successfully applied this method to indicate tretesy anomaly on an aircraft model in a
laboratory and on a real bridge.

Omenzetter and Brownjohn (2006) applied the timeseanalysis to process data from a
continuously operating SHM system installed in gambridge structure. The strain data
recorded during the construction and service lifthe bridge were modeled using a vector

seasonal autoregressive integrated moving avefdg®A) model. The model is expressed as
D(B)D® (B)®,(B),7 (B)x =©,(B)0," (B)e 10)
where{x} (t=1, 2...N) is thep-dimensional vector of the time series of analyzigdal;{e} is

zero mean multivariate Gaussian white noBdgnotes the backshift operatar; (B),

»®(B), ©,(B), and®,® (B)are all matrix polynomials in the backshift operat@he

coefficients of the ARIMA model were identified dine by an extended Kalman filter and
chosen as damage sensitive features. The vait@unges in the features were statistically
examined using an outlier detection technique Yeakunusual events as well as structural

change or damage sustained by the structure.

2.1.2 Frequency-domain Methods
Frequency-domain methods analyze any stationamytéoealized in time domain. They
use Fourier analysis, cepstrum (the inverse Fotraesform of the logarithm of the Fourier
spectra magnitude squared) analysis, spectral eigafgequency response technique, etc to
extract features in a given time window. Tangle{l®91) quantitatively diagnosed gear-wear
through cepstrum analysis of gear noise signale amplitude value of the peak in cepstrum
represented gear mesh-harmonics in spectrum. réhe of the change of gear-wear degree was

about the same as that of the change of the valag@eak in cepstrum. The value was
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independent of intensity of gear noise signal aad used as an indicator for quantitatively
diagnosing gear-wear. Based on analyzing thetsestiexperiments with gearboxes, the
thresholds of the gear wear by cepstrum diagnoassdetermined to distinguish normal,
moderate and serious wears. The theoretical daagseed with the experimental results very
well.

Kamarthi and Pittner (1997) presented sensor @égi@sentation schemes for flank wear
estimation in turning processes. The sensor @gi@sentation algorithm based on fast Fourier

transform (FFT) transformed a time series veitof the sensor signal from turning experiments
into the spectral vectar, and then formed the vectar with the se{il,iz,...,id} . The

features( , thed-dimensional sensor data representatioX,afas computed through the relation

x =S 2x (2.11)
The features were used by recurrent neural netenmthitecture to continually compute the flank
wear estimates.

Lee and Kim (2007) used the frequency analysiseted and localize damage. A signal
anomaly index (SAI) which quantified the changdrefjuency response was developed as
damage feature. The SAl is defined as a Euclideam of the difference between two

frequency response function (FRFs) of basis andoeoed state as

f
2 f,n= f

HB(fi)—HC(fi)\2 %_HFRFB— FRE|

SAl =
s He () B

(2)12

where, H ( ) and FRF represent the frequency response funicticontinuous form and

discrete form respectively, superscripand C stand for the state of Basic and Compared. The

symbols, f, and f_ are the lowest and highest frequency of the cenisid frequency range,

respectively. Changes in the shape of the FRRaltlee reason of structural damage caused the
increase of SAl value. The presence of damagddeasified from the SAl value. All SAI

values calculated from different sensors and dfiefrequency ranges formed a SAI matrix
which showed variation patterns of the FRF in kbthspace and the frequency domain. The
SAIl matrix was used as input for the neural networidentify the location of damage. The
authors conducted a series of experimental testsiamerical simulation on an experimental

model bridge to demonstrate the feasibility of pheposed algorithm. The results of this
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example application show that the SAI based pateragnition approach has the great potential
for structural health monitoring on a real bridge.

Fasel et al. (2005) used a frequency domain agpessive model with exogenous inputs
(ARX) to detect joint damage in steel moment-ré@sgstrame structures. Damage sensitive
features were extracted from the ARX model in thiesideration of non-linear system
input/output relationships. A frequency domain ARXdel was used to predict the response at
a particular frequency based on the input at tiegfuiency, as well as responses at surrounding
frequencies. The responses at the surroundingdreges were included as inputs to the model
to account for sub-harmonics and super-harmontesdaced to the system through non-linear
feedback. To accounts for non-linearity in thetays first-order ARX model in the frequency

domain is built as

Y (k) =B(k)U (k)+ A (K)Y(k-1)+ A, (k)Y (k+1) k=23..,N, -1 (2.13)
where N; is the highest frequency value examinlétﬂk) is the response at tketh frequency,
U (k)is the input at thé-th frequency, and (k-1) andY (k +1) are the responses at thel{th
and k+1)th frequencies, respectivel, (k) and A, (k) are the frequency domain auto-

regressive coefficients, arBi(k) is the exogenous coefficient. The frequency respaf one

accelerometer was treated as an input and the aticeferometer response was treated as an
output. The auto-regressive coefficients in thegjlency domain model were used as features.
These features were then analyzed using extrerne g#dtistics (EVS) to differentiate between
damage and undamaged conditions. The suitabflilyeppARX model, combined with EVS, to

non-linear damage detection was demonstrated lorea-story building model.

2.1.3 Time-Frequency (or Scale)-domain Methods
In contrast to the frequency-domain methods, the-irequency (or scale) methods can
be used to analyze any non-stationary event |lagiiz time domain. Staszewski et al. (1997)
applied the Wigner-Ville distribution (WVD) to detelocal tooth faults in spur gears. The
authors showed that the visual observation of théDWontour plots could be used for fault
detection. Dark zones and curved bands in theocomiots were the main features of an
impulse produced by the fault in the spur geare @lmanges in features of the distribution were

used to monitor the progression of a fault. kergake of automatic fault detection, the authors
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chose the two-dimensional contour plots of the Wa&patterns, and the amplitude values of the
contour plots as features. Pattern recognitiocguares based on the statistical and neural
approaches were used for classification of diffefault conditions.

Biemans et al. (2001) employed the orthogonal wei\atalysis of the strain data
measured from piezoceramic sensors to detect gragkth in the middle of a rectangular
aluminum plate. The strain data measured fronpkiie under the Gaussian white noise

excitation was decomposed into orthogonal waveletls. The logarithm of the variance of the
orthogonal wavelet coefficients was calculateddibwavelet levels. The mean veqmrof the
logarithms for the undamaged plate formed the tategbr the similarity analysis. A Euclidean
distance between the templap_xeand the Iogarithm;s, for the damaged plate was used as a

damage index. The damage index is denoted as

d,,” =(x-) (x-p) 214
The mean and standard deviation of the damage iregiegsenting the undamaged condition of
the plate were used to establish an alarm levbé damage could be considered existence in the
plate if the damage index was above the alarm.leVké experimental results on the aluminum
plate show that such damage index can be usedtessfully detect as small as 6-7mm crack
and to monitor the crack growth.

Hou et al. (2000) presented the great potentialadfelet analysis for singularity
extraction in the signals. Characteristics of fiyes of representative vibration signals were
examined by continuous and discrete wavelet tramsfo The singularity in these signals were
extracted and best illustrated in the plot of wavebefficient in the time-scale plane. The fringe
pattern in the continuous wavelet coefficient confolot indicated the existence of a singularity
in the local time and the spike in the discrete el@tvcoefficient plot also indicated the existence
of a singularity in the local time. The sensititf wavelet results to a singularity was
effectively used to detect possible structural dgenasing measured acceleration response data.
To demonstrate the feasibility of the proposed weétithe authors used both numerical
simulation data from a simple structural model withltiple paralleled breakable springs and
actual acceleration data recorded on the rooflfil@ing during an earthquake event. The
detection results showed that occurrence of darcaglel be detected by spikes in the detailed of

the wavelet decomposition of the response datatrentbcations of these spikes could
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accurately indicate the moments when the damag&m@ct The similar work can also be found
on Hera and Hou (2004), Ovanesova and Suarez (20@4)elhem and Kim (2003, 2004).

Kim and Kim (2005) used the ratio of the inciderstwe toward and the reflected wave
from the damage as index to assess the damageRiegatio was estimated by the continuous
wavelet transform of the measured signal and titgeranalysis. In the time-frequency plane of
the continuous wavelet transform, the ridge wasetlao compare the magnitude of the incident
wave and the magnitude of the reflected wave floendamage. It was found that “the ratio of
these magnitudes along the two ridges was the aarttee ratio of the magnitude of the incident
wave to the magnitude of the reflected wave. Duthé fact that the magnitude and frequency-
dependent pattern of the ratio varied with damazgs g was able to correlate the ratio and the
damage size except when the damage size was vaitly 8dim and Kim 2005). The authors
conducted the wave experiments in a cylindricabimagnetic beam. Magnetostrictive sensors
were used to measure the bending waves in the bem® section. The continuous Gabor
wavelet transform was employed to estimate thekcsere in the beam.

Robertson et al. (2002) used the Holder exponedaamge-sensitive to detect the
presence of damage and determine the moment ofgdaotaurrence because of its time-
varying nature. The authors provided a procedu@pture the time-varying nature of the
Holder exponent based on wavelet transforms anddstrated this procedure through
applications to non-stationary random signals aaseat with earthquake ground motion and to a
harmonically excited mechanical system that hawbad part inside. Statistical process control
was established to identify the changes of the éfoddkponent in time. The results show that
Holder exponent is an effective feature for sucmalge detection that introduces discontinuities
into the measured system acceleration signal.

Yen and Lin (2000) investigated the feasibilityapiplying the Wavelet Packet Transform
(WPT) to detect and classify the mechanical vibrasignals. They introduced a wavelet packet
component energy index and demonstrated that thielatgpacket component energy had more
potential for use in signal classification as conspato the wavelet packet component
coefficients alone. The component energy is defaee

E =7 f (t)dt (2.15)
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where fji (t) is theith component aftgrlevels of decomposition. Sun and Chang (2002)iegpl

the wavelet packet component energy index to assesgural damage. The vibration signals of
a structure were decomposed into wavelet packepooents. The component energies were
calculated and the ones which were both significamtlue and sensitive to the change in
rigidity were selected as damage indices and tked as inputs into neural network models for
damage assessment. The authors performed nunsnedhtions on a three-span continuous
bridge under impact excitation. Various levelsglamage assessment including identifying the
occurrence, location, and severity of the damage wtidied. The results show that the WPT-
based component energies are sensitive to strudamege and can be used for various levels
of damage assessment.

Sun and Chang (2004) also derived two damage itmigcrom the WPT component
energies. The acceleration signals of a struexcéed by a pulse load were decomposed into
wavelet packet components. The energies of thaselet packet components were calculated
and sorted by their magnitudes. The dominant carapioenergies which were highly sensitive
to structural damage were defined as the wave paakeature (WPS). Two damage indicators,
SAD (sum of absolute difference) and SSD (squane cludifference), were then formulated to
guantify the changes of these WPSs. SAD and S8M0efmed as

SAD =3 [E| - E| (2.16)
i=1
A \2
ssozﬁ[E;—E;] 2.17)
i=1

where Ei]. (i=1,2,...,m) are termed as the baseline WPS that are useceésrence; and

E} (i=1,2,....,m) are WPS obtained from any subsequent measureniese two indicators

basically quantified the deviations of the WPS fritvea baseline reference. To monitor the
change of these damage indicators, the X-bar dactieots were constructed and one-sided
confidence limits were set as thresholds for danadayening. For demonstration, the authors
conducted an experimental study on the health meng of a steel cantilever | beam. Four
damage cases, involving line cuts of different s@es in the flanges at one cross section, were
introduced. Results show that the health condibioimne beam can be accurately monitored by
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the proposed method; the two damage indicatorsersitive to structural damage and yet
insensitive to measured noise.

Yam et al. (2003) constructed a non-dimensionalatgnieature proxy vector for
damage detection of composite structures. The darature proxy vector was calculated
based on energy variation of the wavelet packetpom@nts of the structural vibration response

before and after the occurrence of structural d@mddne damage feature proxy vectdy,is

defined as
.
ud U ue .
V,=q1-—tt L2 g L2 (2.18)
UL,l UL,2 UL’ZL—I

whereufvj andJ f,j are the energy of thh order sub-signal of the intact and damaged

structures, respectivelyl; is the layer number of the tree structure of wetveecomposition.
Artificial neural network (ANN) was used to establithe mapping relationship between the
damage feature proxy and damage location and sgvditne method was applied to crack
damage detection of a PVC sandwich plate. Thdtseslbow that the damage feature proxy
exhibits high sensitivity to small damage.

Han et al. (2005) proposed a damage detection iodked wavelet packet energy rate

index (WPERI) for the damage detection. The rawgnal wavelet packet energ;/( Ejj ) atj

(=),-(&),

level is defined as

(2.19)

where Efj, is the energy stored in the component sigf]‘e(lt) afterj levels of decomposition;

(Efji )ais the component signal ener@yji atj level without damage; ar(dEfji )bis the component

signal energyE ; with some damage. It was assumed that structarabde would affect the
]

energies of wavelet packet components and theraftseed this damage indicator. To establish
threshold values for damage indexes, WPERIs, Xzcbatrol charts were constructed and one-
sided confidence limits were set as thresholdslémnage alarming. The proposed method was
applied to a simulated simply supported beam artklesteel beams with three damage
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scenarios in the laboratory. Both simulated amqkdrmental studies demonstrated that the
WPT-based energy rate index is a good candidagxititat is sensitive to structural local
damage.

Shinde and Hou (2005) incorporated a wavelet pawksed sifting process with the
classical Hilbert transform for structural healtbmitoring. The original signal was decomposed
into its components by a wavelet packet analysik isymmetrical mother wavelet. The
energy entropy and the Shannon entropy were usttk &sfting criterion. The dominant
components with nearly distinct frequency contevese sifted out based on their percentage
contribution of entropy of an individual componémthe total one of the original signal. The
dominant component of the original signal from Weevelet packet based sifting process had
quite simple frequency characteristic and was Blattor the classical Hilbert transform. The
transient frequency content or the so-called inataous frequency of the component was found
from the phase curve of Hilbert transform of thenponent. Since for a healthy structure, the
associated instantaneous frequency is time-invia@ay reduction in the instantaneous
frequency can be used as an indicator to reflegttsiral damage. The proposed sifting process
used for structural health monitoring, includinghbdetecting abrupt loss of structural stiffness
and monitoring development of progressive stiffradmgradation, was demonstrated by two case
studies.

Diao et al. (2006) proposed a two—step structumedae detection approach based on

wavelet packet analysis and neural network. Theelehpacket component energy chapge

was selected as an input into probabilistic nenealvork to determine the location of the

damage. They, is defined as

_E-E

= 2.20

where E! is theith component energy alevel without damageE! is theith component

energy as level with damage. The component energy was elexs input into back-
propagation network to determine the damage extEm¢ method was demonstrated by
numerical simulation of a tree-dimensional fourdagteel frame.

Chen et al. (2006) introduced an improved HilbeuaHg Transform (HHT) to extract

the structural damage information from the respaigeals of a simulated composite wingbox.
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The signals was firstly decomposed into sub-sigasisg Wavelet Packet Transform (WPT).
These sub-signals were then decomposed into naultipiinsic Mode Function (IMF)
components by Empirical Mode Decomposition (EMDhe IMF selection criterion was then
applied to eliminate the unrelated IMF componefiise retained IMF components were
transformed using HHT to obtain instantaneous gnef@ll sub-signals. By comparing the
instantaneous energy corresponding to IMFs of im@agbox with those of damaged wingbox,
it was found that some instantaneous energy wasgelabobviously. Based on this fact, the

authors constructed the variation quantity of inttaeous energfiE, as feature index vector,

which is defined as

AE, =(%0 —1)><10(P/o (2.21)

where E? and E, are instantaneous energy of intact and damagectste respectively at tinte

Reduction in Young's modulus was used to charamatamage in wingbox. The detection
results show that the feature index vector didiyrefflects the wingbox damage status, and is
more sensitive to small damage.

Ding et al. (2008) developed a procedure for danadaening of frame structures based
on energy variations of structural dynamic respsmEomposed by wavelet packet transform.
The damage alarming index ERVD, extracted fronwitheelet packet energy spectrum is

expressed as

ERVD =\/ 3 (ERV, -ERV)’ (2.22)
p=1

ERV, = |l = 14| (p=12,..,m) (2.23)

| = ar (p=12,...,m) (2.24)

wherel  and | are the damage indication vector in gtle dominant frequency band of the
intact and damaged structures, respectivily.is thejth component energy btevel. The

authors demonstrated the practicability of the dggralarming method for the frame structures
by using the ASCE structural benchmark data. €salts reveal that the WPT-based damage
alarming index ERVD is sensitive to structural lodamage affected by the actual measurement
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noise; the index ERVD constructed under the lovesodhposition level and dominant frequency
bands is efficient for the detection of the damaggurrence.

Ren and Sun (2008) combined wavelet transform &ftAnnon entropy to detect
structural damage from measured vibration signd&lavelet entropy, relative wavelet entropy
and wavelet-time entropy were used as featurestertiand locate damage. The wavelet

entropy is defined as

S =Swr (P)=-2 p; M| p, | (2.25)

j<0
Where{ pj} is the wavelet energy vector, which representsggndistribution in a time-scale. It

gives a suitable tool for detecting and charadtagizingular features of a signal in time-

frequency domain. For thth scale, the wavelet energy ratio vec{tcpg} Is defined as

p :i (2.26)
: E[0I .

The relative wavelet entropy (RWE) is defined as
p,
Su(P/a)= 2 p, ﬂh[q—’} (2.27)
i
which gives a measure of the degree of similaréiyeen two probability distributions. The

wavelet-time entropy is defined as

Sﬁ\lr)r(p) :_Eo pgi) E[h[p?)] (2.28)
where pgi) is the time evolution of relative wavelet energaaesolution levglin the time
intervali

pgi) - E_J(I) (2.29)

Eu

These features were investigated by numericallykitad harmonic signals and two laboratory
test cases. “It is demonstrate that wavelet-tinteopy is a sensitive damage feature in detecting
the abnormality in measured successive vibratignads; relative wavelet entropy is a good
damage feature to detect damage occurrence andyddatation through the vibration signals

measured from the intact and damaged structurestharelative wavelet entropy method is
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flexible in choosing the reference signal simultardy measured from any undamaged location

of the target structure” (Ren and Sun 2008).

2.2 Pattern Recognition

Feature patterns represent different conditiorenadnalyzed structure or machine. The
objective of pattern recognition in damage detecisoto distinguish between different classes of
patterns presenting these conditions based eitharpsior knowledge or on statistical
information extracted from the patterns (Changdadg, 2004). Classical methods of pattern
recognition use statistical and syntactic approsche recent years neural networks have been
established as a powerful tool for pattern recagmit An overview of these methods can be
found in Jain et al. (2000) and Duda et al. (200®Yrief description of some applications for

damage detection is given below.

2.2.1 Fisher’s Discriminant

Fisher’s discriminant is a classification methodttprojects multi-dimensional feature
vectors onto one-dimensional subspace to perfoassification. The projection maximizes the
distance between the mean of the two classes wiiignizing the variance within each class.
Farrar et al. (2001) defined Fisher’s discriminageng data from the vibration tests conducted on
the columns under both undamaged condition anddaheage condition of initial yielding of the
steel reinforcement. “The time series were modekdg auto-regressive estimation referred to
as linear predictive coding (LPC). Subsequent dpevels were then identified based on this
same Fisher projection. When Fisher’s discrimiveais applied to data from both sensors on
undamaged and damaged columns, there was stdlyssieparation between the LPC
coefficients for the undamaged cases and damaged.c&Vhile increasing damage was not
necessarily related to increasing Fisher coordjrake€lamaged cases had a profile significantly
different from that of the undamaged case”. Th@ns showed a strong potential for using

linear discriminant operators to identify the preseof damage.

2.2.2 X-bar Control Chart
Sohn et al. (2000) applied a statistical processrob(SPC) technique, known as an “X-
bar control chart”, to monitoring a reinforced cogte bridge column. “Acceleration time series

were recorded from the vibration tests of the k#idglumn and auto-regressive (AR) prediction
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models were used to fit the time series. Thentroboharts were constructed using the AR
coefficients of the AR model as the observationngjtias. The upper and lower control limits
were set to correspond to the 99% confidence iatef a normal distribution. The mean and
the standard deviation of the normal distributicerevderived from the AR coefficients of the
normal operational condition. After the yieldinfitbe concrete rebar was gradually introduced
in the column, new sets of AR coefficients were pated from various levels of damage. These
new AR coefficients were plotted on the controlrithahose limits were set from the initial
undamaged state of the system. If a significamlyer of the coefficients (at least more than 1%
of the coefficients) fell out of the limits, eitharstate of damage or a significant change in
environmental conditions was reached. Since thigoasiused a third order AR model, there
were three control charts for each damage leviil@tolumn. The authors determined that the
third AR coefficient was the most sensitive to dgesin this particular experiment” (Sohn et al.
2003). The core of this technique is to estaliiehlower and upper control limits (LCL and
UCL) which enclose the variation of the extractathdge indicators due to measurement noise
with a large probability. Once any damage indicéatls outside of the enclosure, it will signify
the change of the structural condition with higblgability (Sun and Chang, 2004). Similar
studies can also be found in Sun and Chang (20@#MHan et al. (2005)

2.2.3 Outlier Detection

Sohn et al. (2001) employed an outlier analysietha@s the Mahalanobis distance to
monitoring a surface-effect fast patrol boat. Ehsérain time signals were obtained from two
different structural conditions. Signal 1 and siga were measured when the ship was in
structural condition 1 while signal 3 was measwen ship was in structural condition 2.
Two-stage time series analysis combining auto-s=sgve (AR) and auto-regressive with
exogenous inputs (ARX) prediction models were usdi the time signals. The 30-
dimensional AR parameters were used for the outhatysis. The training data were composed
of half of signal 1 and 2. In order to compendatehe nonstationarity of the AR parameter
sequence, the training data and testing data \ekemtalternately from the relevant feature sets.
The Mahalanobis squared distance of the potentitieo was checked against a confidence
threshold of 99.99%. Any values above this thr&shad a less than 0.01% probability of
arising as a random fluctuation on the normal comaliset. The results show that there is an
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extremely clear separation between structural ¢mmdi and structural condition 2. All points
in the testing set from signal 1 and 2 are welbbethe threshold implying no false-positive

indication of changes in structural conditions.

2.2.4 Bayesian Probabilistic Approach
Sohn and Law (1997) used Bayesian probabilisticaauh to detect the locations and
amount of damage in a structure. “The systemngt#i§ matrix was represented as an assembly

of the substructure stiffness matrices and a noredsional parametd; was introduced to

model the stiffness contribution of tith substructure. The mass matrix was assumedowrkn
and invariant. A uniform probability density furart (PDF) was assumed for the non-

dimensional paramet8y. The authors formulated the relative posteriabpbility of an

assumed damage event and applied a branch-and-bearah scheme to identify the most
likely damage event. The measurement noise anelingcerror between the structure and the
analytical model were taken account into the Bayeprobabilistic framework. Several
examples using a shear frame structure, a two-stwya five-story three dimensional frame
structure was simulated to demonstrate the propostdod. It was found that as long as
sufficient modal data sets were available, the psed method was able to identify the actual
damage locations and amount in most cases. Thputational cost of the method was
significantly reduced by using a branch-and-bouwatch scheme” (Sohn and Law 1997).

Vanik et al. (2000) presented a continual on-limectural health monitoring (SHM)
method, which utilized Bayesian probabilistic agmio to identify damage indicators from sets
of modal parameter data in the presence of unoégai “The method required a linear
structural model whose stiffness matrix was paranmtd to develop a class of possible models
by grouping the elements of the structural modl substructures. Modal data (i.e. frequencies
and mode-shapes) measured from a structure wasagzhtify the model substructure
stiffness parameters. The differences in ther&tf§ parameters estimated from different modal
data sets were used as indicators of damage. Bagesem was used to develop a probability
density function (PDF) for the model stiffness paeters conditional on measured modal data
and the class of possible models” (Beck et al. 199%e authors illustrated their method with a
10 DOF shear building model that included storyseasand inter-story stiffness. Using modal

data simulated from a numerical model, they tesitedt algorithms with a 20% stiffness loss in
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the fifth story. Results were favorable only whire damage indicators were based on the
current monitoring cycle. Any addition of the pricaining seemed to create an unreal bias
towards undamaged states.

Sohn and Law (2000) used Bayesian probabilisticagah to predict the location of
plastic hinge deformation using the experiment&h détained from the vibration tests of a
reinforced concrete bridge column. The column gtatically pushed incrementally with lateral
displacements until a plastic hinge was fully fodha the bottom portion of the column.
Vibration tests were performed at different damsigge. “The proposed damage detection
method was able to locate the damaged region assigplified analytical model and the modal
parameters estimated from the vibration testso #&le Bayesian framework was able to
systematically update the damage probabilities wiesn test data became available. Better
diagnosis was obtained by employing multiple data than just by using each test data set
separately” (Sohn and Law 2000).

Ching and Beck (20044a, b) proposed a two-step |itiktac structural health monitoring
approach, which involved modal identification felled by damage assessment using the pre-
and post-damage modal parameters based on thei@ayesdel updating algorithm. “The
approach aimed to attack the structural health taong problems with incomplete mode shape
information by including the underlying full modkapes of the system as extra random
variables, and by employing the Expectation-Maxatian algorithm to determine the most
probable value of the parameters. The non-conegamdinear optimization problem associated
with incomplete mode shape cases was convertedvistacoupled quadratic optimization
problems, so that the computation becomes simpktn@ore robust” (Ching and Beck 2004b).
The authors illustrated the approach by analyZmegASC-ASCE Phase Il simulated and
experimental benchmark problems. The resultsetialysis show that the brace damage can
be successfully detected and assessed from diaéammer or ambient vibration data. The
connection damage is much more difficult to relatiétect and assess because the identified
modal parameters are less sensitive to connectiorage, allowing the modeling errors to have

more influence on the results.
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2.2.5 Neural Networks

Many damage detection schemes utilize neural né&sxordetect, localize, and quantify
damage in structure and machinery. They are poNveattern recognizers and classifiers.
Chang et al. (2000) proposed an iterative neutabar& technique for damage detection. “The
network was first trained off-line using initiabining data that contained a set of assumed
structural parameters, which represented varionsada cases, as output and their
corresponding dynamic characteristics as inputsnofiified back-propagation learning
algorithm was proposed to overcome possible sabaraf the sigmoid function and speed up
the training process. The trained NN model wasl tiggredict the structural parameters by
feeding in measured dynamic characteristics. Thdipted structural parameters were then used
in the FE model to calculate the dynamic charasties. The network model could go through
the second training phase if the simulated dynaméracteristics significantly deviated from the
measured ones. The identified structural parametere then used to infer the location and the
extent of structural damages. This iterative nenetwork method was verified on a clamped-
clamped RC T beam using both simulated and expatahdata” (Chang et al).

Chen and Wang (2002) used a multi-layer percepivtit) with back-error
propagation for fault detection on a gearbox. Whé® consisted of one input, output and hidden
layers. The input layer had 19 nodes, and theubldyer consisted of 4 neurons, each of which
delivered one classification vote. The waveletantaneous scale distribution (ISD) pattern
along the scale domain was used as input, andygheritolic tangent was used as the linear
active function of the hidden neurons. The backfgrropagation algorithm was employed in
the MLP training, and the momentum and adaptiviaitrg techniques were implemented in the
training algorithm.

Sun and Chang (2002) proposed a damage assessueedype based on the WPT and
the neural network (NN) models. Numerical simalas were performed on a three-span
continuous bridge under impact excitation. A detavelet packet component energies were
used as inputs to the NN model. Two NN models, MNd NN2 were used. The NN1 model
consisted of a 10-node input layer, a 6-node hidager, and a 1-node output layer and was
used to identify damage occurrence. The NN2 moalesisted of a 10-node input layer, a 7-
node hidden layer, and a 5-node output layer argdusad to identify the location and severity of

damage. As for training of these two models, altof 16 training cases were used. The training
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process of NN1 was stopped when the average meanesgrror was smaller than 2%16r

when the number of iterations reached 8,000. Hd¢2,Nhe training was stopped when the
average mean square error was smaller than 2efl@/hen the number of iterations reached
10,000. The results show that the NN1 model isiokgpof identifying the presence of structural
damage that corresponded to as small as 4% oigidéy reduction in any element. And the
NN2 model can locate and quantity moderate (10-ED¥&duction) and severe (20-30% EI
reduction) damage with reasonable accuracy. Téesament accuracy of both models is not
affected by the presence of measurement noise.

Fang et al. (2005) explored the structural damagection using frequency response
functions (FRFs) as input data to the back-propagateural network (BPNN). Various training
algorithms, such as the dynamic steepest desc&m)Blgorithm, the fuzzy steepest descent
(FSD) algorithm and the tunable steepest desc&D)ere studied. Numerical examples
demonstrated that “using the heuristic procedine TiISD training algorithm outperformed
significantly the DSD and FSD algorithms in traigieffectiveness, efficiency and robustness
without increasing the algorithm complexity”’(Fartgaé 2005). The TSD based neural network
was then used as the basis for structural stiffftsssdetection on a cantilever beam. The neural
network was a three-layer feed-forward network wighinput nodes, 40 hidden nodes, and 5
output nodes. 30 numerical stiffness loss cases uszd to train the network. The analysis
results show that the neural network can assesagknonditions with very good accuracy in all
considered damage cases.

Adeli and Jiang (2006) presented a dynamic timeydilzzy wavelet neural network
model for nonparametric identification of structsitesing the nonlinear autoregressive moving
average with exogenous inputs approach. The niogrates four different computing
concepts: dynamic time delay neural network, wayé@lezy logic, and the reconstructed state
space concept from the chaos theory. Noise isitirals was removed using the discrete
wavelet packet transform method to speed up tl@ngaconvergence and improve the system
identification accuracy. In order to preservediygaamics of time series, the reconstructed state
space concept from the chaos theory was employeanstruct the input vector. In addition to
de-noising, wavelets were employed in combinatidth two soft computing techniques, neural
networks and fuzzy logic, to create a new pattecognition model to capture the characteristics

of the time series sensor data accurately andegitly. The number of fuzzy wavelet neural
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network nodes in the hidden layer was selectedéy’kaike’s final prediction error criterion.
Experimental results on a 1/2-scaled five-storgldimme were used to validate the
computational model and demonstrate its accuradyeéiciency.

Jeyasehar and Sumangala (2006) employed feed-tbavaficial neural network (ANN)
learning by back—approach algorithm, to assesddh®age in pre-stressed concrete (PSC)
beams. The post-crack stiffness obtained fromahaeé-deflection characteristics of the beam
and the natural frequency of the beam, were uséukea®st inputs to the ANN. The training and
test data are generated from the experimentaltsesidained through the static and dynamic
tests conducted on the damaged and perfect beBinesdamage was introduced in the beam by
electrochemical pitting corrosion to resemble ratdamage in PSC beams. The efficiency of
this damage assessment method was studied bygtéssnrANN with the test data of a damaged
beam to different levels. It is demonstrated &idN trained with post-crack stiffness and
natural frequencies is sufficient to predict thendge with reasonable accuracy.

Li and Yang (2008) used back-propagation neuralort (BPNN) to detect damage on
a three-span continuous beam. The changes oheasggcovariance) of structural
displacements were adopted as input of neural mefjwad the damage status (location and
extent) as output of neural network. Both singlendge case and multi-damage case were
numerically simulated on the beam, and severaksiedamage location identification and
damage extent detection were carried out in eash. c@he results show that BPNN with
statistical property of structural response astimgan correctly detect the damage location and

identify the damage extent with high precision.

2.3 Applications to Special Structures
Some researchers have selected special structuagply signal-based damage detection

methods. A brief description of some cases isrghwow

2.3.1 Damage Detection on Bridge
Omenzetter et al. (2004) identified the unusuah&/a multi-channel bridge monitoring
strain data using wavelet transform and outliefyamm® The strain data was recorded during
continuous, long-term operation of a multi-sensou@&ural Health Monitoring (SHM) system
installed on a full-scale bridge. Outlier detentin multivariate data was applied to find and

localize abnormal, sudden events in the strain aladwavelet transform was used to separate
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the abrupt strain changes from slowly varying onelse method was successfully tested using
known events recorded during construction of theder and later effectively used for detection
of anomalous post-construction events.

Omenzetter and Brownjohn (2006) proposed and enedhthe application of concepts of
time series analysis to the processing of data &xa@ontinuously operating SHM system
installed in a major bridge structure. The recdrdiatic strain data was modeled using ARIMA
models. The coefficients of the ARIMA models watentified on-line using an extended
Kalman filter. The method was first applied tasts recorded during bridge construction, when
structural changes corresponded to known signifieaants such as cable tensioning. Then the
method was used to analyze signals recorded dtivengost-construction period when the
bridge was in service. The results show that tethod can provide information on structural
performance under normal environmental and operaticonditions.

Ding and Li (2007) proposed an online structuralltiemonitoring method for long-term
suspension bridge using wavelet packet transforf )V The method was based on the wavelet
packet energy spectrum (WPES) variation of strattambient vibration responses. As an
example application, the WPES-based health mong®ystem was used on the Runyang
Suspension Bridge to monitor the responses ofttidgédin real-time under various types of
environmental conditions and mobile loads. Astlfier vibration monitoring of the bridge, a total
of 27 uni-axial servo type accelerometers werenliest at the nine sections of the bridge deck.
In each deck section, one lateral accelerometecttijrrecorded the lateral response, and the
vertical acceleration of the deck section was olei@iby averaging the accelerations measured
by the two vertical accelerometers located in tiver and downriver cross section,
respectively. The analysis showed that changeavironmental temperature had a long-term
trend influence on the WPES, and the effect ofitrddadings on the WPES presented
instantaneous changes.

Zhang (2007) presented a statistical damage idgatidn procedure for bridge health
monitoring. The damage features were extracteddas time series analysis combining auto-
regressive and auto-regressive with eXogenous ioaatiction models. The structural condition
was evaluated in a statistical way based on theagarpossibilities that were derived from a
quite large number of data samples to minimizeeffect of the variability in data acquisition

process and in structural properties on the daraagessment. The proposed damage
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identification procedure was applied to a numer&apan continuous girder bridge model under
random ground excitations. Reasonable damageisesydéor beam structures as well as realistic
noise levels were simulated. The results showtletlamage identification procedure has great
potential to detect structural damage at earlyestegwhich the structural modal frequency

changes are almost imperceptible.

2.3.2 Crack Detection on Beam and Plate

Wang and Deng (1999) detected the crack on bearplatelstructures based on wavelet
analysis of spatially distributed structural resp@measurements. Simulated deflection signals
of a beam containing a transverse crack and tipdadisment response of a plate with a through-
thickness crack were used. Wavelet transforms per®rmed on these signals to obtain the
wavelet coefficients along the span of the striegurThe crack location was detected by
observing a sudden change, such as a spike, didtrution of the wavelet coefficients. The
magnitude of the spike in the wavelet analysis thasnaximum when the measurement point
was next to the damage location.

Biemans et al. (2001) applied the piezoceramicasrte monitoring crack propagation.
The specimens used were two rectangular (400 »I56m) aluminum plate with cracks
initiated by spark erosion in the middle of thetgda Each plate was instrumented with 6
piezoceramics bonded in a symmetrical configura#@mm below and above the initiated
crack. One of the piezoceramics was used as aataciexcited by a sine sweep and Gaussian
white noise signals to exploit broadband excitatidhe plates were subjected to static and
dynamic tensile loading. The growing crack was itawad by two of the remaining
piezoceramic sensors. The response strain datavedged using a number of time, frequency,
and wavelet domain statistical parameters. Thateeshow that low frequency broadband
excitation offers a possible means of on-line detamf cracks in metallic structures.

Yan et al. (2004) detected the crack damage imayummb sandwich plate by using two
structural vibration damage feature indexes: nafteguency and WPT energy index. The
finite element dynamic model of a honeycomb sandwiate was presented using different
mesh division for the surface plate and the sanuyiate to accurately express the crack
damage status (locations, length and directiom@plate. In order to acquire the experimental

dynamic response of the plate, two piezo-patchés avsize of 25x15x0.28 mm were bonded on
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the surface of the plate. One of them acted asarator and the other acted as a sensor. The
natural frequencies of the undamaged plate wererarpntally measured to verify the

numerical model. Based on the dynamic model \eztibiy the experiment, the damage feather
indexes for various crack damage status were noailgricomputed. Then the crack damage
status was determined by comparing the damageréeiadexes obtained from the numerical
and experimental results. The authors found taatral frequency of structure might not be
used to detect crack damage less than 10%, evena@8b of the total size of a plate-like
structure; energy spectrum of wavelet transformagof structural dynamic response was so
sensitive to crack damage that it could exhibiteeck length close to 2% of the dimension of a
plate-like structure. They also found that higdlesrmodes of a structure contain more structural
damage information; in order to detect a small dgamanore vibration modes should be included
in a structural dynamic model.

Chang and Chen (2005) detected the locations @ed ef multi-cracks in a beam by
spatial wavelet analysis. The crack type was apack and was represented as a rotational
spring. The mode shapes of the multi-cracked haaaher free vibration were analyzed by
wavelet transformation. The positions of the csaglere observed as a sudden change in the
plot of wavelet coefficients. The natural frequesmf the beam were used to predict the depth
of the cracks through the characteristic equatibime limitation of this method is that there are
two peaks near the boundaries in the wavelet pidttlae crack can not be detected when the
crack was near the boundaries.

Poudel et al. (2005, 2007) employed high-resoluitiaages for damage detection on a
simply supported prismatic steel beam. A high-dpdigital video camera was used to recode
the free vibration displacement of the beam whiels excited by imposing an initial
displacement near the mid-span from the left suppbine camera had a Complimentary Metal
Oxide Semiconductor (CMOS) sensor with 1280 x li@2blution and a 10-bit A/D converter.
Its frame rate ranges was from 100 to 2000 frameRfe displacement data with high spatial
resolution were then used to obtain the mode shapé$he mode shape difference function
between the reference and damage states of tlotuseru The spatial signal in terms of mode
shape difference function was decomposed by watralesformation to display the changes due

to cracking damage. The appropriate range of veagehle was determined by the spatial

30



frequency bandwidths of the mode shape differennetions. The maximum modulus and sign

change of phase angle in the wavelet coefficiemdgated the changes at the damage locations.

2.3.3 Damage Detection on Mechanical Structures

Staszewski and Tomlinson (1994) applied the wateesform to the problem of the
detection of a broken tooth in a spur gear. Thé fdetection algorithm was based on pattern
recognition analysis. Features of the pattern wezenodulus of the wavelet transform.

Spectral analysis and an orthogonal transform wsee to compress feature elements. The
Mahalanobis distance of two patterns obtained fitoeernormal (no fault) condition and not
normal (fault) condition was used as a fault dedecsymptom. Visual inspection of the
modulus and phase of the wavelet transform weré teskcalize the fault.

Wang and McFadden (1995, 1996) used the waveletftran to detect abnormal
transients generated by gear damage. The earlggiato a gear tooth usually caused a
variation in the associated vibration signal ovshart time, initially less than one tooth meshing
period, taking the form of modulated or unmodulagsdillation. In later stages, the duration of
the abnormal variation became longer, lasting niza@ one tooth meshing period. Other
distributed faults, such as eccentricity and weaght cover the most part of the whole
revolution of the gear. Changes in the vibratigmals therefore could be analyzed to provide
an indicator of gear condition. When the size simabe of a wavelet were exactly the same as a
section of the signal, the transform gave a maximabsolute value of wavelet coefficients.
Therefore, the abnormal signal caused by a geérdauld be displayed by the wavelet
transform, which could be regarded as a proceduredmparing the similarity of the signal and
the chosen wavelet.

Li et al. (1998) applied neural networks to theedgbn of motor bearing conditions
based on the frequency features of bearing vibratkive basic frequencies related to rolling
bearing dynamic movement were extracted by fasti€owansform (FFT) technique. The basic
frequency amplitude vectors were constructed toesmt different bearing vibrations. These
vectors were created from the power spectrum ofithration signal and consisted of the five
basic frequencies with varying amplitudes basetherdefect present. The network consisted of
five input measurements corresponding to the aog#i of the five basic frequencies of interest,

ten hidden nodes, and three output fault dete¢b@aring looseness, defects on the inner
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raceway, and defects on the rolling elements). ridte/ork was tested using the data generated
by MOTORSIM. The results show that neural netwezak be an effective agent in the detection
of various motor bearing faults through the measerd and interpretation of motor bearing
vibration signals.

Liao et al. (2004) developed a novel techniquenfonitoring the gearbox condition
based on the Self-Organizing Feature Maps (SOFMyar&. Seven time-domain features
parameters, i.e. standard deviation, Kurtosis, no&dn square value, absolute mean value, crest
factor, clearance factor and impulse factor weteaeted from industrial gearbox vibration
signals measured under different operating conttiolrained with the SOFM network and
visualized using the U-matrix method, the featuatadvere mapped into a two-dimensional
space and formed clustering regions, each indeatia specific gearbox work condition.
Therefore the gearbox operating condition withgiagi crack or a broken tooth compared with
the normal condition was identified clearly.

Kar and Mohanty (2006) applied the multi-resolutkurier transform (MFT) of
vibration and current signals to gearbox healthitdang. One and two teeth were artificially
removed in one gear of the gearbox to simulatesafault condition. When the gearbox was
operated under several loads, the vibration signafte acquired from the tail-end bearing of the
gearbox, and simultaneously the current drawn byrrtuction motor is acquired. The vibration
and current signals were decomposed into four $ewgihg discrete wavelet transform (DWT)
with an orthogonal wavelet of ‘db8’. Then a hamgwindow with 256 data points and 50%
overlap was applied to the scaled signals to fredMFT coefficients. The MFT coefficients of
signals were used to classify the types of defegtsacking the energy level possessed by the

defect characteristic frequency.
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CHAPTER 3- THEORETICAL BACKGROUND

Signal-based damage detection methods examine ehamthe non-parametric features
derived directly from the measured vibration sighabugh signal processing to detect damage.
The premise behind is that perturbations in a sirecsystem will cause changes in measured
vibration signals. These signals measured in titimaesting typically include acceleration,
velocity, strain, and displacement. These realdifjnals are analog signals which operate in the
continuous-time domain. Before they can be prexessth a computer, analog signals must be
converted to digital signals which operate in ddsestime domain. An analog-to-digital (A/D)
converter is used to convert a signal from anabodjgital. After processing the signal digitally,
it also can be converted to an analog signal ugigital-to-analog (D/A) converter. The process
of converting an analog signal to a digital signablves sampling the signal, holding it for
conversion, and converting it to the correspondiiggtal value. The sampling frequency must
be high enough so as to avoid aliasing.

Aliasing is a phenomenon due to which a high-freqyesignal when sampled using a
low sampling rate becomes a low frequency sigretl ey interfere with the signal of interest.
To avoid aliasing, the sampling theorem (or caNggjuist sampling theorem) states that the

sampling frequencyf, should be at least twice the highest frequencyeris of the analog
signal, f . For instance, if the highest frequency conterar analog signal is 10 kHz, it

should be sampled at 20 kHz or more to avoid algasBefore encountering the A/D converter,
the input signal is processed with a low-pass analput filter to remove all frequencies above
the Nyquist frequency (one-half the sampling rafEis is done to prevent aliasing during
sampling. The result of sampling and convertinguaalog signal is a digital sequence
presenting the signal samples. The processingjledcdigitizing. The sequence of these
discrete data is referred as the digital signal.

Such a digital signal can be viewed from two défgrstandpoints: (1) the frequency
domain; (2) the time domain. The transformationlistrete data between the time and

frequency domains is described in this chaptere tWo domains provide complementary
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information about the same signal. It may somedilmeemore meaningful in an application to
inspect the magnitude versus frequency plot fongba in the voltage amplitude at a particular
frequency than to observe the voltage wavefornrdeio for example, to obtain an early
indication of wear in a machine by fast Fouriensf@arming the output signal. The discrete
transforms are used in the data compression othpam®l video signals to allow transmission
with reduced bandwidth. They are also used in a@gcessing to obtain a reduced set of
features for pattern recognition purposes. Ofatvalable transforms, the discrete Fourier
transform (DFT) and the fast Fourier transform (JF&ile the best known. Recently considerable
efforts have been devoted to the wavelet transfiueto its ability to describe stochastic signals

of time varying frequency content in terms of waweplitudes (Ifeachor and Jervis, 2001).

3.1 Fourier Transforms

The Fourier transform (named after its discovetes,French mathematician Jean-
Baptiste Joseph Fourier) is a frequency-basedftransvidely used in analysis of linear
systems. It decomposes a signal into sine wavdgfefent frequencies which sum to the
original waveform, and also distinguishes suchedéht frequency sine waves and their

respective amplitudes.
3.1.1 Continuous Fourier Transform

Now, let f (t) be a given continuous signal in time domain. Towtiouous Fourier

transform of f (t) is defined by the equation:
F(s)= 7 f(t)e?™dt 1P
wherei =+/-1 and sis often called frequency variable. Gi\,lé(ls) , we can go backwards and

get f (t) by using inverse continuous Fourier transform:

f(t)=] F(s)e™ds 3.9)

Equations 3.1 and 3.2 are called Fourier transfoaurs. F (s) is the Fourier transform of

f (t) and thatf (t) is the inverse Fourier transformm{s). The only difference between the
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forward and inverse Fourier transform is the sigovee, which makes it easy to go back and

forth between time and frequency domain.

3.1.2 Discrete Fourier Transform
The continuous Fourier transform is a continuoufion of frequency and is not
suitable for computation with a digital signal pessing (DSP). Discrete Fourier transform
(DFT) representation of the continuous time sigrahits the computer analysis and is used
extensively in signal processing applications. @&halog signal which consists of an infinite
number of contiguous points is sampled at reguii@rvals. The input to the DFT is a sequence

of sampled values rather than a continuous funaifaime f (t) , SO that

F(k)=x f (™™™, k=0.1.2.( N} (3.3)
and
f(n ):% s F(K)E™N, n=0,1,2,.( NJ (3.4)

The equation 3.3 is called the DFT and the equéidns called the inverse discrete Fourier

transform (IDFT). f (n)and F (k) are the discrete sample values correspondiny(tg and

F(s). The Nin the DFT pair denotes the number of elementkerf {n) or F (k) sequence.

The discrete Fourier transform allows calculating Fourier transform on a computer,

but it is not so efficient. The number of compiexltiplications and additions required to

implement Equations.3.3 and 3.4 is proportion&lto For everyF (k), it needs to use

all f (0),..., f(N-1) and there aré\ F (k)to calculate. For a lard¢, the computations can

be prohibitively time-consuming, even for a higleeg computer.

3.1.3 Fast Fourier Transform
In 1965, Tuckey, J.W. and Cooley, J.W developedlgarithm to dramatically reduce
the number of computations required in performimgDFT. This algorithm is known as the
Fast Fourier transform (FFT). It reduces the nunabeomputations from an order &f*to an

order ofNlog, N . The time saved compared with a direct calcutaisaoughly:
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an=——-—
g log, (N)

If N=1024, the FFT is about 100 times faster tharditest calculation based on the definition
of the DFT.

(3.5)

Although there are many variations of the origihatkey-Cooley algorithm, these can be
grouped into two basic typedecimation-in-time anddecimation-in-frequency (Lathi, 1998).
The algorithm is simplified wheilN is a power of 2. Using the notation

W, =e /M) (3.6)

Equation 3.3 and Equation 3.4 become

F(k)="2 f(nw , k=0,1,2(. NJ (3.7)
and
f(n):%Nz:_:F(k)W,g"” . k=0,1,2.( N-Y (3.8)

The Decimation-in-Time Algorithm
The N -point data sequencé(n) is divided into two sequences, each of lerigta.

One of the two is formed from the even-numberedtsaf the original samples, the other from
the odd-numbered points, as follows:

f(0),f(2),f(4),..f(N-2,f(d.f(3.f(9.,...Ff(N-1)

sequence (g k sequencg i k

Then Equation 3.7 becomes,

ﬁ_l E—l
F()= % 1 (20 + 3 f (2n+ e (3.9)
n=0 n=0
Also, since
W, =W (3.10)
2
it has
ﬁ_l ﬁ—1
2 2 n
F(k)=% f (2n)W§” HWE S f (2n+ NZ 3.11)
=G(k)+WiH (k) DksN-1
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whereG (k) and H (k)are the(%]-point DFTs of the even- and odd-numbered sequences

g(k)andh(k), respectively. AlsoG (k) andH (k), being the(%)-point DFTs, are{%)-

periodic. Hence

G(k+%) =G(k)

H(k+%):H (k) (3.12)
Moreover,
W) S = e = ow (3.13)
N - N N N N -
From Equations (3.11), (3.12) and (3.13), it tusns
F(k+%)zG(k)—W,§H(k) 0< ks%—l (3.14)

z

This property can be used to reduce the numbesrapatations. The fir t—j points

N

(0<n s%—l) of F (k) can be computed using Equation 3.11 and the(l%s}points can be

computed using Equation 3.14 as

F (k) =G(k)+WiH (k) Osks—-1 (3.15a)

F(k+%)ze(k)—W§H(k) Osks—-1 (3.15b)

Thus, anN -point DFT can be computed by combining the @g}]-point DFTs, asin

Equations 3.15. These equations can be represemeeniently by the signal flow graph

depicted in Figure 3.1. This structure is knowm hstterfly.
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Figure 3.1 Butterfly

G(k) ®— - —® r(k)
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The next step is to compute tﬁ{-gl—j-point DFTsG(k)andH (k). The same procedure

is repeated by dividing (k) and h(k) into two (%)-point sequences corresponding to the

even- and odd-numbered samples. Then this pragessatinued until the one-point DFT is
reached.

The procedure for obtaining IDFT is identical tatthused to obtain the DFT except that

21/ N

W, =@M instead ofe ™ (in addition to the multipliet/ N). Another FFT algorithm, the

decimation-in-frequency algorithm, is similar to the decimation-in-time algorithrithe only

difference is thatf (n) is divided into two sequences formed by the f%lsand the last

%digits, proceeding in the same way until a sing&pDFT is reached. The total number of

computations in this algorithm is the same asith#ie decimation-in-time algorithm.

FFT is of great importance to digital signal prageg. It has been widely used to extract
the structure frequency response and has beenssfgitg applied for fault detection on beam
and rotating machinery. However, it should be dakat Fourier transform is not capable of
preserving the information on time domain. If ¢héx a local oscillation representing a

particular frequency in the signal, its locationtba time domain will be lost. Such

disadvantage is illustrated by the harmonic sidr{a) defined by:
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Figure 3.2 The Harmonic Signal and Its FFT Spectrum
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The signal f (t) as plotted in Figure 3.2(a) contains three comptnwith each frequency of 1,

2, and 5 Hz within the first 10 seconds. At exatt) second, only the 1 Hz component is

suddenly reduced to 0.8 Hz, and others keep the.sdiis signal is sampled by 1000 Hz. The
Fourier spectrum in Figure 3.2(b) shows the FTItesf the signal within the first and the last

10 seconds. Although the frequency component®Ha.in the signal caused by the small

perturbation is visible as peak in the spectruns, difficult to tell the exact time for the small

perturbation. The time information is lost in theurier transform. The signdl (t) is called a

“non-stationary signal” whose frequencies changar ¢ive duration.
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3.1.4 Short Time Fourier Transform
In order to overcome the problem with localizing trequency components on time, the
Short Time Fourier Transform (STFT) was designedrtalyze the signal in a time-frequency

domain. The STFT of a signdl(t) is defined as:
STFT (t,w) =[ f (t) g(t—T)e ™ at (3.17)
where g (t) is a window function. The drawback of STFT ispgtsr frequency resolution. Once

you choose a particular size for the time winddws window is also the same for all frequency
components. The STFT preserves information on émeell, but it is not as efficient as

wavelet.

3.2 Wavdet Transforms

The wavelet transform was developed by GrossmarMamtit in the early 1980s to
provide a time-frequency representation of thealigit is probably the most recent solution to
overcome the aforesaid deficiency mentioned forrieotransform. Although Short Time
Fourier Transform (STFT) can also be used to aeatyn-stationary signals, it gives a constant
resolution at all frequencies. The wavelet trarmefases multi-resolution technique by which

different frequencies are analyzed with differesgaiutions.

All wavelets are derived from a basis (mother) tiorg qJ(t) . There are a number of

possible basis functions, chosen to have the fatigywroperties (Ifeachor and Jervis 2001, Rao
and Boparadikar 1998):

(1) it is oscillatory or it has a wave appearandaich is expressed as;
iw@knzo (3.18)
(2) it decays rapidly towards zero with time ohais finite energy, which is expressed as;
i@@ﬁm<m (3.19)

(3) it has no DC component (constant or zero fraque

(4) it is bandpass (a functidi(t) is a band-pass function if its Fourier transfofrfiw) is

confined to a frequency interval, < |<q <w,, wherew, >0 andw, is finite);
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(5) it satisfies the admissibility condition that

cs_}"Mdm +00 (3.20)

o

The last property ensures the wavelet transformgfnal is unique and invertible. For

example, the Morlet mother wavelet is

p(t)=e" cos(rq /ét] (3.21)

Its plot is shown in Figure 3.3. More than 99%ha# total energy of the function is contained in

the intervallt| < 2.5sec. LetH (w) denotes the Fourier transformyoft) :

00

H(w)= 1 g(t)e™ 3.42)

From the plot ofH (oo) shown in Figure 3.4, it is seen that the wavelessentially a band-pass

function.

Figure3.3 TheMorlet Wavelet

0er B
06r B

04r B

I | S

41



Figure 3.4 Fourier Transform, H(w) of the Morlet Wavelet

Himl

3.2.1 Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) of the slg‘r(a) with respect to a wavelet

y(t) is defined as (Rao and Boparadikar 1998)

(ab)= IJ ( bj (3.23)

whereaand b are real andJ denotes complex conjugation. Thus, the wavedgistiorm is a

function of two variables. Equation 3.23 can bétem in a more compact form by defining

Wap (1) = w[ﬂ] (3.24)

\/ﬁ a

Then, combining Equations 3.23 and 3.24,

W (ab)= ( ) Wap (t)dlt (3.25)

The signal f (t) may be recovered or reconstructed by an inverselettransform of

W (a,b)as defined by

f)=2 T T Zw(ab).,(t)dad

“oveefaf
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The normalizing factor of/ \/ﬂ ensures that the energy stays the same faraaidb ; that is,

_3; W,y (1)t = i\w(t)\z dt (3.26)
For any given value @, the functiony, , (t)is a shift of, , (t) by an amounb along

the time axis. Thus, the variabberepresents time shift or translation. Variabl&etermines

the amount of time scaling or dilation, it is reéat to as the scale or dilation variable. FiguBe 3

shows Morlet wavelet at three scales and shifta.>IL, there is a stretching m|ﬁ(t) along the

time axis, whereas i <a<1, there is a contraction ¢vf(t) . The value of the scaleis

proportional to the reciprocal of the frequencyheBmaller the value af, the more the band-

pass shifts to a higher frequency, implying that@WT at small scales contains information

about f (t) at the higher end of its frequency spectrum.
The CWT is the inner product or cross correlatibthe signal f (t) with the scaled and

time shifted wavela,, (t) This cross correlation is a measure of the anityl between the

signal and the scaled and shifted wavelet. Thistfwd view is illustrated in the Figure 3.5.
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Figure 3.5 Signal f(t) along with the Morlet Wavelet (denoted by w) at Three Scales and

Shifts

f(t) with Morlet wavelets w((t+9)/0.5), w(t), and w((t-9)/2)
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Scale parameteat in wavelet analysis is related to frequency alefe (Kim 2004,
Yoon et al. 2000):

F
F=F 3.27
iy (3.27)

wherea is a scaleA is the sampling periody, is the center frequency of a wavelet in Hz,

is the pseudo-frequency corresponding to the szala Hz. Each wavelet has different center

frequency,F,. As shown in Figure 3.6, the approximation ofteefrequency for Morlet

wavelet is 0.8125 Hz.

44



Figure 3.6 Wavelet Morlet (blue) and Center Frequency Based Approximation

Period: 1.2308, Cent. Freq: 0.8125

The W (a,b) coefficient is called the scalogram of sighdt). The scalogram can be
plotted in 2-dimensional contours with time on kiwgizontal axis, scale on the vertical axis, and
coefficient given by a gray-scale color. Alterdgté can be plotted in 3-dimensional contours.

For illustration, the non-stationary signdl(t) in Figure 3.2(a) is transformed by CWT. As

mentioned earlier f (t) contains three frequency components of 1, 2, add Within the first

10 seconds. At exactly 10 second, only the 1 Hapmnent is suddenly reduced to 0.8 Hz, and
others keep the same. The signal is sampled by H@0 By using the Morlet wavelet, the
CWT scalogram of signaf (t) is shown in Figure 3.7 as scale-space (time) coato\t scales
of 163, 406, 813 and 1016, it shows the highestrmitade which indicates that these scales
correspond to signal frequencies. At exact 10rsd@E@ =10,00C), scale of 813 switches to

scale of 1016 to show that one frequency compaseasttanged. Using Equation 3.27, the scales
of 1016, 813, 406 and 163 can be converted to psfaduencies of 0.8, 1, 2 and 5, respectively
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which are the exact the same as the frequency coemp® off (t) . The CWT scalogram using

frequency instead of scale is plotted in Figureah8 a 3-D plot of CWT scalogram is shown in

Figure 3.9.

Figure 3.7 CWT Scale-Space (time) Contours of Signal, f(t)
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Figure 3.8 CWT Frequency-Time Contour of Signal, f(t)
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Figure 3.9 3-D View of CWT Frequency-Time Contour of Signal, f(t)

frequency (Hz)

3.2.2 Discrete Wavelet Transform (DWT)

CWT calculates the wavelet coefficients by contimly shifting a scalable basis
function over a signal and calculating the correlabetween the two at every possible scale. Its
computation may consume significant amount of tamd resources, depending on the resolution
required. DWT adopts scales and translations basgubwer of two, so called dyadic scales
and translations to yield a fast computation of @attransform and to reduce the resources
required.

Filters are one of the most used signal procedsimgtions. In DWT, a time-scale
representation of the digital signal is obtaineghbgsing the signal through filters with different
cutoff frequencies at different scales. The sige@lassed through a serious of high pass filters
to analyze the high frequency, and through a serdlow pass filters to analyze the low
frequency. Low pass filters and high pass filemesrelated to the scaling function and the

corresponding wavelet function, respectively. Theesponding wavelet function is
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constructed from the scaling function. The scafunggction (p(t) must satisfy the following three

conditions (Rao and Boparadikar 1998):
(2) It integrates to one;

iq)(t)dt =1 (3.28)
(2) It has unit energy;

Jo(t)]" = i\‘P(t)\zdt =1 (3.29)
(3) The set consisting ap(t) and its integer translation are orthogonal.

(o(t) o(t-n))=3(n) (330

The scaling functiorp(t) with N coefficients is defined by

N-1

o(t) =% c(n)p(2t-n) (3.31)

n=0

Coefficientsc n) must satisfy following conditions (Newman 1993):

. N-1

(i) > c(n)=2 (3.32)
n=0

so that the scaling function is unique and retamgsarea during iteration;

@ ¥ (-1)"n"c(n)=0 (3.33)
n=0

for integerm=0,1 2..., N/ 2- ](as high as the available number of coefficientsallow), in

order to achieve accuracy;

(i) 'Y c(n)c(n+2m)=0 & (3.34)
n=0

for m=1,2,..., N/ 2-1, in order to generate an orthogonal wavelet systath the additional

condition that
Yc(n) =2 (3.35)
n=0

The corresponding wavelet functigift) is defined by

N-1 n

w(t)=x (-1)

n=0

c(njp(2+n-N+1) (3.36)

Such function is called orthogonal wavelet functramch is satisfying the following:
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J(t)dt=0 (3.37)

i““(t)\zdt =1 (3.38)
(W(t) w(t-n))=5(n) (3.39)
(w(t).@(t-n))=0 (3.40)

In order to obtain a smoother function, it is necessary tadeamore terms in the scaling

function. IfN =4, the four-coefficient scaling function has a form

o(t) =c(0)o(2) +c(Do(2-J+c( Jo( 2- 3+c( Po( 2- P (3.41)
and the corresponding wavelet functiguft) is
W(t)=—c(3)p(2)+c(o(2-I-c(Io( 2- 2+c( Qo 2- F (3.42)

Figure 3.10 shows some examples of pairs of fungtign. The Meyer wavelets have
compactly supported Fourier transforg, ¢ themselves are infinitely supported. They are

shown in Figure 3.10a; The Battle-Lemarie wavelets areespinctions (linear in Figure 3.10b,

cubic in Figure 3.10c). Both, @ have exponential decay. Their numerical decay is fasar th
for the Meyer wavelets; The Haar wavelet, in Figure 3.10dbeanewed as the smallest degree

Battle-Lemarie wavelet(4aar= WsL, 0)-
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Figure 3.10 Some Example of Pairsof Functions @, Y: (a) The Meyer Wavelets; (b) and (c)
Battle-L emarie Wavelets; (d) The Haar Wavelet (Daubechies, 1992)
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Each filter is generated from the coefficients of theisgadnd wavelet function. The
filter length is equal to the number of the coefficientse DWT is computed by successive low
pass and high pass filtering of the discrete time-domgimakas shown in Figure 3.11. This is

called the Mallat algorithm or Mallat-tree decompositidm this figure, the signal is denoted

by f (t) The low pass decomposition (or called analysis) filteeimted by with an impulse

response di(n) , while the high pass decomposition filter is denote@ byith an impulse



response og;(n) . At each level, the high filter produces detail informauii{m] , While the low

pass filter associated with scaling function producgsagimate informationa[t] :

Figure 3.11 Three-Level Wavelet Decomposition Tree
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At each decomposition level, the half band filters produgeals spanning only half the
frequency band. This doubles the frequency resolution asittegtainty in frequency is reduced
by half. Down-sampling discards half the samples andebdhe time resolution as the entire
signal is now represented by only half the number of samfless, while the half band low
pass filtering removes half of the frequencies and thivesghe resolution, the down-sampling
double the scale (Rao and Boparadikar 1998). The protsephtting the spectrum is
graphically displaced in Figure 3.12.

Figure 3.12 Splitting the Signal with an Iterated Filter Bank
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The filtering and down-sampling process is continued thntildesired level is reached.
The maximum number of levels is determinedday N , whereN is the length of the signal. By
this approach, DWT yields good time resolution at high feegy components of signal, while
good frequency resolution at low frequency componentgyobbk

The reconstruction of the original signal is the reverseqa® of decomposition. As
shown in Figure 3.13, the approximation and detail coefiisi at every level are up-sampled by
two, passed through the low pass and high pass synthesis, fl and G, and then added. This
process is continued through the same number of levelslas detomposition process to obtain

the original signal.

Figure 3.13 Three-Level Wavelet Reconstruction Tree
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The impulse response of low pass synthesis fH(e), is found by

n(n)=S40) (343

where c(n) is the coefficient of the scaling function. The impulspaomse of the high pass
synthesis filterg(n) , is a quadrature mirror df(n) and defined as
g(n)=(-1)"h(N+1-n)  fork=12..,N (3.44)
The impulse responses of decomposition filté(s) andg(n), are the reserve di(n) and g(n)
h(n)=h(-n) (3.45)
g(n)=g(-n) (3.46)

As an example of decomposition and reconstruction, Figd#e shows the three-level

db6 discrete wavelet decomposition of the signal, namedsistl. The length of the signal
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“sumsin” is 1000. After down-sampled by two, the length ¢dhitleoefficients at 1st and 2nd

level, d1 andd2, are 500 and 250 respectively; the length of approximatiefficients and

detail coefficients at 3rd leve§3andd3, are 125. After up-sampled by two, the length of each
of the reconstructed coefficiens3, D3, D2, and D1 is 1000. By adding3,D3, D2, and

D1 together, the signal “simsin” can be reconstructed.

Figure 3.14 Decompose Signal at Depth 3 with Discrete Wavelet
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3.2.3 Wavelet Packet Transform (WPT)

Wavelet packets consist of a set of linearly combined wa#a@hctions. The wavelet

packets inherit properties such as orthonormality and-tietgiency localization from their

corresponding wavelet functions (Coifman and Wickerhal$92). A wave packetis a

function with three indiceq.;‘j K (t) , Where integers, j, and k are the modulation, the scale, and

the translation parameters, respectively,
Wik () =220 (2't-k)
The waveletg))' are obtained from the following recursive relationships:

v (1)=VZ § n(n)u (2-K)

n=-—co0

W) =v2 5 g(nu'(2-n)

n=—co
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where h(n)and g(n) are quadrature mirror filter responses mentioned formérhe
decomposition process is a recursive filter-decimatiarain. Figure 3.15 shows a full
wavelet packet transform tree of a time-domain sigr(a) up to the %' level of decomposition.

It is seen that the wavelet packet transform contains coendeomposition at every level and
hence can achieve a higher resolution in the high freyuemgion. The recursive relations

between thej th and thej+1th level components are

£ (t) = £757(6) + () (3.50)
fin(t) = Hifj (t) (3.51)
fra(t) =Gf/(t) (3.52)

where H and G are filtering-decimation operations and are related(to) and g (n) through

H{s}= ¥ h(n-21) (3.53)

n=-c

G{:}= 3 g(k-2t) (3.54)

n=-—oco

After jlevel of decomposition, the original signal(t) can be expressed as

f(1)=2 1 (1) (3.55)

The wavelet packet component sigrfél(t) can be expressed by a linear combination of wavelet

packet functiona)', (t) as follows:
fi(t)= kiw G i (1) (3.56)

The wavelet packet coefficients, can be obtained from

Chye = 1 (W (t)ct (3.57)

providing that the wavelet packet functions are orthogonal

Wi (Hw] (1) =0 if e (3.58)
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Figure 3.15 Tree Structurefor Wavelet Packet Analysis
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For illustration, harmonic signdl(t) , defined by Equation 3.16 is decomposed by WPT.

Figure 3.16 shows the eight wavelet packet componentisigftar three levels of wavelet

packet decomposition of (t) using db6 mother wavelet. It can be seen that the suddenfshif

the 1 Hz frequency at 10 second is quite visible in the mdkeoiavelet component signals.
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3.3 Pattern Recognition Techniques

A pattern can be a set of features formed in vector or nragta¢ion. A pattern class is a
family of patterns that share a set of common propertieserRaécognition involves techniques
for assigning pattern to their respective class. Given arpatits recognition/classification may
consist of one of the following two tasks: (1) supervisedsti@ation (e.g., discriminant
analysis) in which the input pattern is identified as a neroba predefined class; (2)
unsupervised classification (e.g., clustering) in whichpidigern is assigned to a hitherto
unknown class. The unsupervised classification can bedpplpatterns not containing
examples from the damage structure, but this approach ienthyeimited to level one or level
two damage classification, which identifies the presencaofage only. When patterns are
available from both the undamaged and damaged structersyplervised classification
approach can be taken to move forward to higher level daidagtification to classify and
guantify damage (Jain et al. 2000).

One of the best known and most efficient approaches tampagieognition is matching.
As a generic operation in pattern recognition, matchingésl to determine the similarity
between two entities (points, curves, or shapes) of the sgme Pattern matching approach has
been widely applied to speech recognition and fingerpianitification in which the pattern to
be recognized is matched against the stored template.s Isttly, the pattern recognition is
used to identify the damage location and level simultamgbysest matching the extracted
features of the response signal of the structure agaistré database while taking into account
all possible damage scenarios. Three matching algorittenssad separately to perform “best-
matching”. They are: (1) correlation, (2) least square chwulcgt (LSD), and (3) Cosh spectral
distance (CSD).

Correlation analysis calculates the correlation caefiicC; of two patterns (Posenato,

et al. 2008). A correlation value of +1 indicates that the tattes are identical, a correlation
value of -1 means that they are diametrically oppositeaarairelation value of 0 means that

they are completely different. A closer value to 1 showssec match between the two

s (9-5)
(s (0-5)

patterns.

=1

0O
I

(3.59)

M=

5 (S (k)—éi
)-s)

1

58



Least Square Distance (LSD) has been widely applied/ébem modeling and

identification, speech recognition and fingerprint tifezation. It is defined as
(& 2 %
d, = (kzzl(s (k) -, (k)) ) (3.60)
The least value shows a closer match and vice-versa.
Cosh Spectral Distance (CSD) gives an indication abougltial difference between
two patterns (Haritos and Owen, 2004; Owen, 2003; Trenda#i|@001). It is defined as

L1 g(S0) 0, 80,50 S
T R e oo

wheren is number of vector points in the patteg(k) and S, (k) are the vector values of the

patternsi and j at pointk ; andSand S; are the average values of the patteriasd | ,
respectively.

If i is the unknown-damage feature pattern, and a known feature pattern in the
database, then the highest correlation coefficient, thestou&D coefficient, and the lowest
CSD coefficient indicate the most similar pattern in thalgiase which shows the most probable

damage level and location for the unknown case.
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CHAPTER 4 - PRELIMINARY NUMERICAL STUDY

In order to realize structural damage detection using Isigassed pattern recognition, it is
necessary to obtain in advance the vibration responseiofise with different damage
scenarios. Because it is nearly impossible to let a padstimicture experience all kinds of
damage, the structural vibration response data with \sapgossible damages is obtained through
numerical simulation (Yam et al. 2003). Figure 4.1 showgtbposed process of pattern
recognition method for structural damage detection instiuidy. It mainly includes five
operation stages: (1) numerical simulation of the dynaesponse of the structure under
different known damage scenarios, (2) signal processiddgeature extraction and
normalization, (3) damage pattern database constru¢fipeignal acquisition on a structure
with an unknown damage, and (5) pattern matching to finchthst probable damage case from
the database which indicates the damage location andtger continuous structural
monitoring, it is necessary to update the numerical mods damage has been found to
accurately represent the physical condition of the &trac

As a preliminary numerical study, a three-story steel &traavas initially constructed
by a 2-D finite element model. This model was developedN$YS to numerically simulate
the structural dynamic response without damage, as weitlayarious possible damages. For
demonstration purpose, this model was also used to sinfiufdeown” test damage cases on

the structure and the associated dynamic response.

4.1 Descriptions of Test Structureand FE Model
A three-story steel structure shown in Figure 4.2(a) wed fa this purpose. The
structure was 60 in. tall and consisted of 3 floors and 30rowu The floors were steel plates
with dimensions o26"'x 20'x 2 and the columns were steel flat bars with dimensions
of20'x1'x Q 25 .
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Figure 4.1 Flowchart of Pattern Recognition
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This structure was numerically constructed by ANSYS uaigD FE model, as shown
in Figure 4.2(b). The ANSYS element type for floors androolsiwere 2-D elastic beam
(beam3). The baseline geometric properties of the ateietements were: floor cross sectional
areaA=40in*, moment of inertid =13.333in*; column cross sectional arée=1.25in*, and

moment of inertial =6.51x 10° in*. The material properties of the model were mass

densityp = 7.345x 1045, Poisson ratio = 0.3, modulus of elasticitf = 2.9x10 psi. The

in
floor was assumed as rigid. The ratio of unit nodal rotatioment of the floor to that of
column was more thdx10° (see Appendix A -). All the connections were assumed fixée,

therefore there were a total of 3 horizontal DOFs in the nigadestructure. Figure 4.3 shows
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the geometry of the 2-D model in the ANSYS Graphical Userfimce (GUI). Figure 4.4 shows

the input window of structure element geometry properéiks® (called real constants).

Figure4.2 3-D Sted Structureand 2-D FE M odel
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Figure 4.3 2-D Model in ANSY S Graphical User Interface
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Figure 4.4 Element Geometric Properties (Real Constants) Screen
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The damage was simulated using the baseline FE modieVaribus dynamic properties,
i.e. El, of the damaged components. In order to simplify thdgmglvarious damage cases
were introduced by symmetrically reducing the stiffndssotumns at different stories to
preserve the symmetry of the structure. For instance,ittress of the columns at the second
story and at the third story was reduced by 40% and 20%atéggly. This damage case was
denoted as 0-40-20 in this study.

4.2 Numerical Smulation of the Dynamic Response of the Structure

Transient dynamic analysis (sometimes called time-lyigtoalysis) is a technique used
by ANSYS to determine the dynamic response of a streictoder the action of any general
time-dependent load. This type of analysis can be useddordeé the time-varying
displacements, strains, stresses, and forces in a strustiiregponds to any combination of
static, transient, and harmonic loads. The basis equatimotadn solved by a transient dynamic

analysis is

(MK} +[CIle] +[K]{u} ={F (0} (4.1)
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where:
[M] = mass matrix
[C] = damping matrix
[K] = stiffness matrix
{u} = nodal acceleration vector
{u} = nodal velocity vector

{u} = nodal displacement vector

{F (t)} = load vector

The ANSYS program uses the Newmark time integration methedlve the equation at
discrete time points. The time increment between suceessie points is called the integration
time step which determines the accuracy of the transiemintigrsolution. The smaller the time
step, the higher the accuracy. A time step that is too largentwilduce error that affects the
response of the higher modes and hence the overall resgfidhsestructure. For the Newmark
time integration scheme, it has been found that using aippatedy twenty points per cycle of

the highest frequency of interest results in a reasonatleade solution. That is, if is the
frequency (in cycles/time), the integration time step (liE)qual teZ% (ANSYS).

Alpha damping andBeta damping are used to define Rayleigh damping constants

aand3. The damping matri{<C] is calculated by using these constants to multiply the mass
matrix [M ] and stiffness matrK ] :

[C]=a[m]+B[K] (4.2)
The value ofa andf are calculated from modal damping rati@s, If ) is the natural circular

frequency of mode, a andf3 satisfy the relation

Zi :gi+ﬁ_1 (43)
20 2w
In many practical structural problems, alpha damping (@sndamping) may be ignored

(a=0). Insuch case$ can be evaluated from known values(pfandw , as
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2
W

only one value ofy can be input in a load step, so the most dominant frequeneg ercthat

B= (4.4)

load step was chosen to calculfite

In this preliminary numerical study, the excitation foroetloe structure was an impulse
force of 501b with 0.02 seconds duration acting at nodldsee Figure 4.2(b)). Transient
dynamic analysis was performed by ANSYS to determineyhardic response at nod&(see
Figure 4.2(b)) under such a step impulse load. The irapodsl was defined using load steps
(L.S). The time history curve in Figure 4.5 shows the loaplssand time steps of the applied
impulse force. Load and time at the end of load segmeatimlead step were defined in the
ANSYSwindows of apply F/M on nodes (see Figure 4.6) artdme and time step options (see
Figure 4.7), respectively. To determine the time step sizeliminary modal analysis was
conducted on this structure to calculate the modal frezyen Since the highest frequency was
7.809Hz for baseline structure (see Appendix), the time &eskould be smaller than 0.006

seconds { 1 _ 1 =0.006). The value of 0.004 was chosen as the time step size (equal

20f  20x 7809

to 250 Hz sampling frequency) and entered at the time s#tefbsk in Figure 4.7. Each defined
load step was written and saved in a file (see Figure 4.8&handsolved by ANSYS. When

specifying the damping in the transient analysis of thetstre, the damping val@ein all load
step files will be changed to a certain value to meet spgdéenping ratiof , according to the

Equation 4.4. These new load step files will need to be redteak by ANSYS.

The dynamic response of a certain node was view&ahneHist Postprocessing from
the ANSYS main menu. NodB and its translation nodal DOF result were selected iAdde
Time-History Variable window (see Figure 4.9) and defined in Befine Nodal Data dialog box
(see Figure 4.10). The translation velocity and acagbte results of nod® were the first and
second derivative of the corresponding translationatgpent result at node, respectively
which were defined in thBerivative of Time-History Variables window (see Figure 4.11). All
of the time-history results of nod® can be inquired and graphed in Thee History Variables
window (see Figure 4.12). For illustration, Figure 4.18xshthe numerical acceleration result

for structure under baseline condition.
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Figure 4.5 Load Stepsand Time Steps
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Figure4.7 Time and Time Steps Options Window
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Figure 4.8 Write Load Step File Window
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Figure 4.9 Add Time-History Variable Window
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Figure 4.10 Define Nodal Data Window
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mﬂeriﬁratiﬁre of Time-History ¥Yariables

Figure4.11 Derivative of Time-History Variables Window
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Figure 4.13 Acceleration Signal for Baseline Condition (Damage Case 0-0-0)
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4.3 Signal Processing and Featur e Extraction and Normalization

The purpose of signal processing and feature extraistimnreduce the raw data and
extract features of the signal that can be used for idextidic of the structural condition, hence,
damage detection. Feature normalization is a procedummtmalize” feature sets so that
feature changes caused by operational and environnvani@tions of the system can be
separated from structural changes of interest. In a prelmneffort, frequency-based features
were extracted by FFT. Figure 4.14(a), (b), (c) and (d) sheWwET spectrums of acceleration
signals of the structure under damage cases 0-0-0, 20;40-@0-40 and 60-60-60,
respectively. The frequencies and magnitudes correspptalihe three peaks in each of the
FFT spectrums are listed in Table 4.1. It shows that dudfépetit damage cases, the peak
magnitude changes are more sensitive than the peakri@gsigifts. The FFT magnitude
vectors in frequency domain were selected as the serfgititees which also preserved the

information of frequency shifting. Such a set of vectorsift a one-dimension pattern to
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present a unique damage condition. Each magnitude veagrattern was normalized with

respect to the square root of the sum of squares of each tireepattern.

Figure4.14 FFT Spectrumsfor Different Damage Case: (a) Damage Case 0-0-0 (Baseline
Condition), (b) Damage Case 20-40-60, (c) Damage Case 60-20-40, (d) Damage Case 60-60-
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Table4.1 Peak Valueson the FFT Spectrums

Damage

Peak 1

Peak 2 Peak 3
Case frequency | magnitude| frequency magnitude| frequency magnitude
(Hz) (Hz) (Hz)

0-0-0 1.996 1911.9 5.489 3220.8 7.984 13517
20-40-60 1.497 1858 3.992 2468.5 5.988 709.95
60-20-40 1.497 1376.3 3.992 3601.2 6.4871 11819
60-60-60 1.497 882.4 3.493 2429.4 4.990 13661

At the second phase of the preliminary numerical study;fiegpiency-based features

were extracted by CWT. The db6 wavelet was used as the makielet. The acceleration

signal was decomposed by CWT and the extracted featuredimerscale-based CWT
coefficients. For example, Figure 4.15(a), (b), (c) andi{dyvshe CWT coefficients contours
of acceleration signals of the structure under the seldet@ége cases. The value of the

“scalea” was proportional to the reciprocal of the frequency ‘@mmeb” was the moment of

the wavelet along the time axis. Lighter shading in theotwnhdicates a higher wavelet

coefficient value. Comparison of the four figures shdves the time-frequency-based CWT
coefficients are sensitive to different damage casesh &set of coefficient vectors formed a
two-dimensional pattern which presented a unique camditir a damage case. Each coefficient

vector in a pattern was also normalized with respect taginers root of the sum of squares of
the corresponding pattern.
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Figure4.15 CWT Contoursfor Different Damage Cases: (a) Damage Case 0-0-0 (Baseline
Condition), (b) Damage Case 40-60-60, (c) Damage Case 60-40-60, (d) Damage Case 60-60-
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4.4 Damage Pattern Database Construction

As mentioned earlier, different damage levels and locatiere numerically simulated
by changing the properties of the baseline 2-D FE modékd$tructure, i.e. El, of the damaged
components. For demonstration purpose, the damage levasleivan a scale of 0 to 60% with
increments of 20% at different locations. A total of 64 sekhown damage cases, including
the baseline condition, were selected to represent thivlgossuctural damage conditions (level
and location) for the sample structure. All the 64 setshafilsited acceleration response were
transformed by FFT and CWT into FFT magnitude vectods@WT coefficient matrices,

74



respectively. The resulting 64 sets of normalized FFT nhadmivectors and 64 sets of CWT
coefficient matrices form the representative known dgariaature patterns in the database

individually. The three-dimensional graph of the FFTqratdatabase is shown in Figure 4.16

Figure4.16 FFT Pattern Database 3-D Graph
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4.5 Case Studies and Pattern Matching

In order to demonstrate the applicability of the proposetthoade twenty damage cases
slightly different from identical cases in the databaseewemerically simulated by changing
the baseline 2-D FE model, and the corresponding dynaspomse under the impulse
excitation was also numerically generated by ANSYS. Thetecases listed in Table 4.2 were
grouped into four kinds of damage categories: single dahoagtion (G1), multiple damage
locations (G2), multiple damage locations and severiti€3, @d high damage severity (G4).
Gaussian white noise was added to the generated adoelaighals of the test cases to simulate
the condition of signal contaminated with noise. The noismsity is defined by the signal-to-
noise ratio (SNR):

INR(db) =20 log,,— 4.5

where A, and A, are the root-mean-square (RMS) value of the acceleragoalsand the noise

respectively. The signal-to-noise ratio (SNR) was chasendB. The damping rati®) (vas
chosen as 2% when generating the structure dynamic sespatih damping.

Table 4.3 shows the signal properties of some test cases exsuaple, Figure 4.17
shows the generated acceleration signals for damage-88s88under the damping and noise

environmental conditions.

Table4.2 Numerical Test Cases

single damage multiple damage | multiple damage locations highest damage
location locations & severities severity
(G1) (G2) (G3) (G4)

0-0-19 0-38-38 19-38-58 0-58-58
0-19-0 38-0-38 19-58-38 58-0-58
19-0-0 0-38-38 38-19-58 58-58-0
0-0-58 38-0-38 38-58-19 58-58-58
0-58-0 58-19-38

58-0-0 58-38-19

76



Table 4.3 Signal Properties

Damage Case [-)isplacement | Velocity fAcceIeration
min max min max min max
0-19-0 -0.0720 0.0699 -1.1211 1.203p0 -24.3836  63.3905
19-0-0 -0.0716 0.0694 -1.1856 1.183f -28.3270  63.3905
0-0-19 -0.0749 0.0743 -1.1530 1.2674 -25.7285  63.6380
darrr]l(:)ing 58-38-19| -0.0848 0.0823 -1.1788 1.2061 -22.7%77  63.6881
38-19-58 | -0.1003 0.0960 -1.1553 1.2535 -18.5389  64.1505
58-0-58 | -0.0978 0.1045 -1.2639 1.2536  -19.9688 64.1506
58-58-58| -0.1086 0.1123 -1.1608 1.2535 -17.8047  64.1506
0-19-0 -0.0556 0.0530 -0.8550 1.162p -23.1392  63.0510
19-0-0 -0.0537 0.0532 -0.9587 1.162p  -23.3039 63.0510
Damping 0-0-19 -0.0636 0.0627 -0.9878 1.187p -21.4090 63.3615
(=2% 58-38-19| -0.0678 0.0680 -0.9831 1.1880 -21.1116  63.3p18
38-19-58| -0.0910 0.0830 -1.0194 1.2433 -16.1213  64.0047
58-0-58 -0.0898 0.0893 -1.066% 1.2433 -16.2771  64.0047
58-58-58 | -0.0908 0.0892 -0.9928 1.2433 -15.7636  64.0048
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Figure 4.17 Acceleration Signals for Damage Case 0-38-38
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As examples to show the test results, Figure B.1 to FigurehBwl the FFT pattern
correlation matching results for the test damage ca€e@ ®-38-38, 58-38-19 and 58-58-58
under four environmental conditions, respectively. Tighdst correlation value corresponds to
the most similar pattern in the database. In Figure B.1,ghes$t correlation value for each
environmental condition was achieved for pattern 20(@abnage condition: 20-0-0) in the FFT
pattern database, correctly detected the closest darmsgéncthe database. The similar
correlation matching results can also be found in Figu®e Figure B.3, and Figure B.4

Figure B.5 to Figure B.10 show the FFT pattern least squstande (LSD) matching
results for the test damage case 19-0-0, 0-38-38, 58-38-13Ba58+58 under four different
environmental conditions, respectively. The lowest LSDe/abrresponds to the most similar

pattern in the database. In Figure B.5 and Figure B.6, thestdvD values for each
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environmental condition were achieved for pattern 20¢@abnage condition: 20-0-0) and
pattern 0-40-40 (damage condition: 0-40-40) in the FRiEpadatabase, respectively. These
matching results correctly detected the closest danssgs ¢n the database which indicated the
damage locations and levels. In Figure B.7 and Figure lige8ptvest LSD values for
environmental conditions of damping and damping & naisee achieved for pattern 40-20-40
(damage condition: 40-20-40) and pattern 40-60-60 (darcagdition: 40-60-60) in the FFT
pattern database, respectively. These matching resu#td failndicate the closet damage
locations and level in the database.

Figure B.9 to Figure B.12 show the FFT pattern Cosh spefistaince (CSD) matching
results for the test damage case 19-0-0, 0-38-38, 58-38-13Ba58+58 under four different
environmental conditions, respectively. The lowest CSDevaturesponds to the most similar
pattern in the database. In Figure B.9 and Figure B.10westaCSD values for each
environmental condition were achieved for pattern ZD(@amage condition: 20-0-0) and
pattern 0-40-40 (damage condition: 0-40-40) in the FRiEpadatabase, respectively. These
matching results correctly indicated the closest damasggesdn the database which indicated the
damage locations and levels. In Figure B.11 and Figur2, Bhé lowest CSD values: for
environmental conditions of none and noise were achievqehftern 60-20-40 (damage
condition: 60-20-40) and pattern 60-40-60 (damage dondi®0-40-60) in the FFT pattern
database, respectively; and for environmental comditad damping and damping & noise were
achieved for pattern 40-0-40 (damage condition: 40-0aA@)pattern 20-0-60 (damage
condition: 20-0-60) in the FFT pattern database, respéctiidnese matching results failed to
indicate the closet damage locations and level in the dagaba

Similar as FFT pattern matching, Figure B.13 to FigurelBfibw the CWT pattern
matching results for the test damage case 19-0-0, 0-3838-39 and 58-58-58 under four
environmental conditions by using correlation, LSD and @&liching algorithms.

Table 4.4 shows the FFT and CWT pattern matching resultdl fitle test cases by
using the three different matching algorithms. The tesliow that correlation algorithm can
best perform pattern matching to identify the damage casewlen the signal is highly
contaminated with noise and structure has a dampinglgldjfferent from the damping used in

the database.
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Table4.4 FFT and CWT Pattern Recognition Results

Environmental| Damage| FFT Matching Correctness CWT Matching Correctness
condition condition| Correlation| LSD CSD | Correlation LSD CSD
Gl 6/6 6/6 3/6 6/6 6/6 3/6
G2 4/4 4/4 4/4 4/4 4/4 0/4
None
G3 6/6 6/6 0/6 6/6 6/6 0/6
G4 4/4 4/4 0/4 4/4 4/4 0/4
G1 6/6 6/6 3/6 6/6 6/6 3/6
G2 4/4 4/4 4/4 4/4 4/4 0/4
Noise Only
G3 6/6 6/6 0/6 6/6 6/6 0/6
G4 4/4 4/4 0/4 4/4 4/4 0/4
Gl 6/6 6/6 3/6 6/6 6/6 0/6
. G2 4/4 4/4 4/4 4/4 4/4 0/4
Damping Only
G3 6/6 1/6 0/6 6/6 6/6 0/6
G4 4/4 0/4 0/4 4/4 414 0/4
Gl 6/6 6/6 3/6 6/6 6/6 0/6
Damping
2 G2 4/4 4/4 4/4 4/4 4/4 0/4
_ G3 6/6 1/6 0/6 6/6 6/6 0/6
Noise
G4 4/4 0/4 0/4 4/4 4/4 0/4

4.6 Discussion on Preliminarily numerical Study
The structure under different damage scenarios showseaupajterns that are formed by
frequency magnitudes in frequency domain. It also presehe information of frequency
shifting. These patterns were successfully used asigerfsitures for damage detection.
Continuous wavelet coefficients show the changes in betjuéncy and time domain. The
patterns formed by these coefficients were also sucdlgss$ed as sensitive features. Pattern-
matching method with the two types of sensitive featureddas proved to be an efficient tool

to detect damage level and location with more accuracy.
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CHAPTER 5- EXPERIMENTAL TEST AND VERIFICATION

Following the successful initial numerical study, which wasducted on a 2-D
simulation of a three-story structure, the work progréssto the experimental verification
phase. At this phase, a three-story steel structure wasigentally constructed. An impulse
applicator was developed to simulate a consistent impadskeon the experimental structure. A
wireless data acquisition system was used to sample aord the vibration response of the
structure under impulse load excitation. An experinbnataned 3-D finite element model of
the structure was developed using ANSYS to numericallylgite the structural dynamic
response without damage, as well as with various possiblages excited by an impulse load.
Structural vibration signals from numerical simulatiamsl experimental measurements were
then decomposed by fast Fourier transform or continuoueldtavansform for feature
extraction. The normalized signal features from numiesicaulations generated for the baseline
(healthy) structure, as well as with various possible dasagre collected into a damage
pattern database. The normalized signal features of gegimental measurement for an
unknown damage case, was then compared against thisstatatugetect the most probable
damage case, using three different pattern matching &gsriseparately: (1) correlation, (2)
least square distance, and (3) Cosh spectral distance. yfeight damage cases were
experimentally simulated on the structure as “unknowmialge to demonstrate the validity and
accuracy of the proposed damage detection method.

In addition, Wavelet Packet Transform (WPT) was alsostigated for feature
extraction and pattern recognition. The db6 wavelet was as¢he mother wavelet for CWT

feature extraction. Meanwhile, the choice of wavelet funstiwas also discussed.

5.1 Design and Construction of the Representative Test Structure

To simplify the experimental demonstration, a small simplectire was designed and
constructed. The structure took two theoretical assomgtil) the rigid floor; 2) the rigid
connections. As shown in Figure 5.1, the structure was 3@srtell and consisted of 3 floors

(steel slabs) and 30 columns (steel flat bars). Each flasrswpported on ten columns. The
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steel was cold rolled steel. The clear height for eacl stas 12 inches. The dimensions,

weights and amount of the steel slabs and the flat barsteih Table 5.1. The dimensions of

the slabs and flat bars on the structure satisfied statatijuirements and rigid floor theoretical

assumption (see Appendix C -).

Figure5.1 Test Three-Story Steel Structure

Table 5.1 Dimensions, Weights and Amount of Structure Components

3-D Steel Frame Stiucture

Dimensions _ .
. _ Thickness Weight _
Component | Height x Width . _ Amount Location
- (in) (Ib/piece)
(in x in)
Steel Slab 10 x 15 1 42.6 3 1-3 floor
(Floor) 20 x 20 1 114 1 foundation
Steel Flat Bar; 16.5 x 0.75 0.125 0.319 20 "% 3" floor
(Column) 14.25 x 0.75 0.125 0.319 10 SYloor
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For easy removal of the columns from the structure andrepiacement of the columns
for different damage scenario simulation, bolts were usedroect the steel slab and the steel
flat bar. To make the rigid connection between the steebsldlthe steel flat column, four
pieces of steel angles (¥4 x1 ¥ x1 ¥4; length: 10 inches)wedded on the two faces of the
short edges of the floor plates (see Figure 5.2 anddé-@3); and two pieces of steel angles (¥4
x1 ¥4 x1 Y4; length: 10 inches) were welded on the top faceratiteshort edges of the
foundation slab. A total of fourteen pieces of steel angtee used. The columns were
connected to the angles vertical legs using four bolds (Avade: 5). To prevent rotation and
drift, the foundation slab was fixed to the ground by usidrdcal plaster and also two steel

pipes (see Figure 5.4).

Figure5.2 Slab and Flat Bar Connection
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Figure 5.3 Slab and Flat Bar Connection

Figure 5.4 Foundation Slab Fixing

e

84



5.2 Impulse Applicator
To apply a consistent impulse force on the structure, hlstevith a diameter of 1.75

inches and a mass df546x 10°Ib.s’ /in was used. As shown in Figure 5.5, the steel ball was
magnetically adhered to the top of a frame. It was tied bymi26hes chain to this frame so
that when the magnet was turned off, the ball dropped 20.5siticheeling on a circular path to
its lowest position, where it hit the third floor slab and theanced off the structure to create an
impulse force on the structure.

The impact was mostly elastic; however, since the resppas@ormalized, the impulse
magnitude did not affect the recognition process as lortgdas mot push the structure into non-
linear response range. This fact was demonstrated byigatesy the FFT feature patterns of
the structural acceleration response signals causedobyiffierent impulse forces (see Figure
5.6) applied on the structure separately. The acceleroals caused by the two different
levels of excitation are shown in Figure 5.7. By transfognthe two signals into FFT
spectrums, it was found that the relative low level impfdsee only caused relative low
magnitude in the FFT pattern but it did not affect the patteshape. After normalizing the two
patterns, it resulted in the exactly same two patterns (gaeeFs.8). The correlation coefficient
for such two patterns was 0.97. The impulse force magnitadeodiaffect the FFT pattern’s
shape as long as the force did not push the structure indinean range. The same result can
also be found in Figure 5.9. The normalized CWT contoussracture response under low and
high impulse force excitation were exactly the same. Thelation coefficient for such two
contours was 0.96. The data normalization procedurengiied the changes in the pattern
caused by impulse magnitude variability. Thus there was e toemeasure the impulse
magnitude. The swing ball system in Figure 5.6(Left) wasl tig apply the impulse force

during this experimental study.
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Figure 5.5 Close View of Magnetic Base, Ball, Chain and Frame
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Figure 5.6 [L eft] Relative High level Impulse Force Applicator; [Right] Relative low level

Impulse Force Applicator
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Figure 5.7 Structure Acceleration Signals Caused by Two Different Level Excitations
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Figure 5.8 Normalized FFT Spectrums of Structure Accelerations by Two Different L evel

I mpulse Excitations
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Figure 5.9 Normalized CWT Contoursof Structure Response under Different Level

I mpulse Excitations
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5.3 Sensor and Data Acquisition System

5.3.1 Accelerometer

The accelerometer used in the experimental test was Miam3ihc.’s +/-2g G-Link. It
has an integral tri-axial accelerometer built onto thedodhe full scale range is approximately
+/-2g. The physical axis orientation for each acceletenchannel is indicated in the Figure
5.10. G-Link is a complete wireless measurement systertraimamits data on a continuous
basis for a fixed period of time. In addition, G-Link has tieability to datalog sensor or
voltage data to onboard nonvolatile memory. Part of then&4d specification is listed in Table
5.2.
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Figure5.10 G-Link and Its Physical Axis Orientation

Table5.2 G-Link Specifications

CH2 CH?3

CHI1

On-board acceleration

Triaxial MEMs accelerometers|dmBevices
ADXL202

Accelerometer range

29

Measurement Accuracy

10mg

resolution

200pg (data sample resolution 12bit)

Analog to digital (A/D) converter

Successive approximratype, 12 bit resolution

Data storage capacity

2 megabytes (approximately 1,008@@@oints)

Data logging mode

Log up to 1,000,000 data points (from 108,506
samples or continuous) at 32 Hz to 2048 Hz

Sensor event driven trigger

Commence data logging whieshbld exceeded

Dimensions 58mm x 43mm x 26mm without antenna
Weight 46 grams
Software Agile-Link™ Windows XP compatible

5.3.2 Base Station

G-Link can be configured and triggered to sample data themvireless USB base

station (see Figure 5.11), and also the sample data stoi@eLink can then be wirelessly

downloaded to computer at a later time from the wireless $tasion.
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Figure5.11 USB Base Station

USB Base Station

5.3.3 Software

Agile-LinkTM software (see Figure 5.12) provides the tioality to communicate with
G-Link and also to configure streaming and datalogginder-Link. The configuration
window shown in Figure 5.13, allows the user to activateetéshannels. The channel
configuration settings apply for all modes of data @biée, including streaming and data
logging. A number of other tabs exist on the configurationunélhese tabs allow the user to
configure different parameters of the device. These irdledl-time streaming parameters (how
long you want to stream, etc.), datalogging parameters (@ elutation to datalog for, sample

rate, etc.) and power management functions.
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Figure5.12 Agile-Link™ softwareinterface
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In this experimental test, the G-Link was triggered to saraptl log from the base
station. The sampling rate for datalogging was configuse2Dd8 Hz and the measured time

duration was configured as 4.88 seconds.

5.4 Test Procedure

The following procedure was followed to conduct the expental test.

-1. Install the G-Link on the top of the third floor as shawthe Figure 5.14; connect
the base station to the PC.

-2. Select a damage case and simulate this damage casestn¢hee by removing
corresponding columns from the structure. As an exarfgere 5.15 shows the simulated
damage case 20-0-20. In order to simplify the problem, tluencs are removed symmetrically
to preserve the symmetry of the structure.

-3. Set parameters on the Agile-Lifksoftware (for example, the channel action,
sampling rate, sampling duration, etc.).

-4. Apply the impulse force on the still structure for eadbcted damage case and
record the acceleration response.

-5. Analyze the acceleration data.
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Figure 5.14 Ingtallation of the G-Link




5.5 Damage Pattern Database

5.5.1 3-D FE Model
A 3-D FE model of the structure was constructed by ANSYS, @srsin Figure 5.16.
The element type for floors and columns was shell63 andheaaspectively. In total, there
were 126 elements and 142 nodes in the model. The fullyraoesl boundary condition and
rigid connection between floor and column were also agpptieghe model. Transient dynamic
analysis as detailed described in section 4.2, was cautdd determine the dynamic response

of the structure under a step impulse force. The timeveis.000488 (1/2048).

Figure5.16 3-D FE model

1
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ANSYS
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Table5.3 3-D FE Model Baseline Properties

Floor Column
10" x 15” 10" (length)
shell63 (elastic 4node 63) beam4 (3D eldkstic

shell thickness at node | TK(I): cross-section area330.0

at node J TK(J):

area moment of inertia lzz
=0.000119

area moment of inertia
=0.004359

thickness along Z axis
=0.75

at node K TK(K): vy

at node L TK(L):

thickness along Y axis
=0.124

cross-section area =0.0915

area moment of inertia 1zz
=0.000113
area moment of inertia lyy
=0.004289

thickness along Z axis
=0.75

thickness along Y axis
=0.122

linear isotropic

modulus of elasticity of steel: 29,000ksi

poisson ratio: 0.3
density: 0.0007345
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5.5.2 Tuning the 3-D FE Model

To make 3-D FE model close to the physical baseline steydhe properties of the
model were tuned against the physical structure. The Ffdrpaf the acceleration signal
obtained by FE model simulation was correlated to the otzénalol by experimental test on the
baseline (healthy) structure. The geometry dimensionglantknt types of the model were
adjusted to achieve the highest FFT pattern correlatime va he FE model with the parameters
in Table 5.3 was the final tuned model which correspond#tkteelatively highest correlation
value (correlation value =0.9). The tuned FE model reptedéhe structure’s baseline

condition and was used in setting damage pattern database.

5.5.3 Constructing Damage Pattern Database
Various damage cases were introduced by symmetricallgvieg columns at different
locations, which simulated the failure of one or more columiise structure. 64 damage cases
including the baseline condition were designed to reptgsessible structural damage
conditions. In this study, the numerical dynamic respoo$éhe structure under the 64 damage
cases were simulated by removing corresponding colfimmsthe 3-D FE model of the
structure. The resulting 64 sets of normalized FFT magaivectors and 64 sets of CWT

coefficient matrices formed the damage feature pattartieidatabase.

5.6 Case Studies and Pattern Matching

Twenty-eight experimental damage cases, as listed ile Babwere chosen to test the
proposed damage detection procedure and the assoadtiexthg and pattern-matching
algorithms. The acceleration response of the structitiheeach damage case was measured
after application of the impulse using the impulse aptaicalhese acceleration signals were
then de-noised and transformed by FFT and CWT. As an egaRiglre 5.17 shows the
original and the de-noised signals of experimentallaa#on of the structure under damage
case 20-20-40. The three pattern-matching algorithme wserd for pattern recognition.

As examples of the test results, Figure 5.18 to Figure 5&0 8te FFT and CWT
pattern-matching results for damage case 0-0-20 by usingjation, least square distance and
Cosh spectral distance, respectively. Other exampgesh@awn in Appendix D - The highest

correlation value, the lowest least square distance Vvahaethe lowest Cosh spectral distance
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value indicate the most similar pattern in the databasehvimilicates the most probable damage
level and location for the unknown case.

All of the experimental test results indicate that both BRT CWT patterns can preserve
the damage information in term of level and location. How&WT can be more efficient to
detect the damage, especially in terms of location when tpetaignal is from more than one
sensor. Among all the three pattern-matching algoritbhpbeed in this study, correlation
algorithm could successfully perform a better recogmitbthe FFT and CWT patterns to detect
damages for the entire experimental test cases; leasestistance could also successfully
recognize CWT patterns to detect damages for the exjrerimental test cases, and all of the
FFT patterns except for three multiple extreme damage 2as0-20, 40-40-40, 40-60-20 (see
Figure D.26); and finally, Cosh spectral distance algoritailed to detect the damage for most
of the FFT and CWT patterns of the experimental cases.

Table 5.4 Experimental Test Cases

Single Damage Double Damage Triple Damage
Location Locations Locations

0-0-20 0-0-60 0-20-20 20-40-0 20-20-20 40-40-40
20-0-0 0-60-0 20-0-20 40-20-0 20-20-40 40-60-20
0-20-0 60-0-0 20-20-0 40-0-20 20-40-20

0-0-40 40-40-0 0-20-40 20-60-20

0-40-0 0-40-40 0-40-20 40-20-20

40-0-0 40-0-40 40-40-20

There are a number of wavelet functions that can be s another wavelet for CWT
feature extraction. The choice of wavelet function will etftbe computing time and pattern-
matching resolution. For demonstration purpose, somelyitsed wavelet functions were
chosen as mother wavelet for CWT- based pattern extrgsgenTable E.1). Then correlation
was used to perform pattern-matching to detect the seldutee experimental damage cases: 0-
0-20, 20-20-0, and 20-20-40. The successful detectionsdeukill the three experimental
damage cases by using different wavelet functions indichtg all of the selected wavelet

functions could be used as mother wavelet for CWT-basesitiserfeature extraction. The
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matching resolution based on each wavelet function waslatgd as the difference between the
two highest correlation values divided by the highestetation value, as listed on Table E.1 for
each of the three experimental test cases. It shows #aaf Baubechies, Symlets and Gaussian
wavelets have the best performance. It is also found that Blaabechies and Gaussian
wavelets take less computing time. In contrast, Meyr and Dvaeglets take much longer

computing time.

Figure5.17 Experimental Acceleration Signals of Structure under Damage Case 20-20-40,
Original and De-noised
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5.7 Discussion on Experimental Study
Experimental tests and case studies further validateolvérall feasibility of the method
for damage detection. Fourier and especially waveletftnansould well extract and preserve
the features of the signal under damage conditions. Siac@WhT pattern preserves the

frequency and time sensitive features, it results in higienpatatching resolution than FFT
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pattern does. Wave function affects CWT-based patteractixin and pattern-matching

resolution. The wavelet function is chose based on its simapiesaability to analyze the signal

5.8 WPT-Based Feature Extraction and Pattern Recognition
Yen and Lin (2000) investigated the feasibility of appdythe Wavelet Packet Transform
(WPT) to the classification of vibration signals. Theyaduced the wavelet packet node energy
and demonstrated that the node energy could be a robnsk fegture for classification.
Following this work, many researchers have derived a |laaifife indexes based on WPT node
energy for damage detection. Detailed descriptions of featgre-indexes were included in
chapter two. In this experimental study, energy variatemtors were selected as sensitive

features. The energy of each WPT component sitgjh@l) is defined as
El =7 f (t)dt (5.1)
The energy variation of each componcEertdue to damage is

Vi =E -E (5.2)

where E',- is the baseline (health condition) component energy usesference.

The acceleration signal was decomposed by WPT using diev&unction. The

wavelet packet decomposition level was set to 12 whichteskinl a total of 4096 wavelet

packet components after decomposition. The energy mrM].‘[i for each component was

calculated by Equation 5.2. Such a set of energy variationrgdormed a one-dimensional
pattern which presented a unique condition under diffefamage case. Each energy vector in a
pattern was also normalized with respect to the squar@fsaim of squares of each one in the
pattern.

Same as FFT and CWT pattern database construction, theidyeaponse of the
structure under the 64 damage cases were numerically sahbkaremoving the corresponding
columns from the 3-D FE model. All of the 64 sets of the satedl acceleration response by
ANSYS were transformed by WPT into energy variation vectdtse resulting 64 sets of WPT
energy variation vectors formed the damage featurerpatie the database.

Correlation algorithm was used to perform the patterndmragc Six experimental
damage cases: 0-0-20, 0-0-40, 0-20-0, 20-20-0, 0-20-20, an@-20+®ere selected to
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demonstrate the validity and accuracy of this method. dhdts shows that WPT-based energy
variation vectors can best preserve the dynamic respeatees of a structure under damage
with low level and few locations. And when increasing thelleffdamage and the number of
damage location, the detection result will be overestim@atsel Figure 5.21 to Figure 5.26). In
order to overcome this drawback, increasing the numbensebseand employing an iterative

detection process can be explored as a recommended kgaezah work.
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Figure5.18 Correlation Matching for Damage Case 0-0-20, FFT & CWT Pattern Matching
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Figure5.19 L east Square Distance (L SD) Matching for Damage Case 0-0-20, FFT & CWT
Pattern Matching

FFT Pattern Matching

1.4
[@0-0-20, 0.755512975

0.6

0.4

Least Square Distance (LSD) Value

0.2

S @Qﬂp S ® D P P LS
s N4 NS > s o © s
Q v ,,/0 v ,,/0 ,]/Q ™ ™ W
FFT Pattern Database

CWT Pattern Matching

18
E0-0-20, 0.7322

1.6

1.2

0.8

0.6

Least Square Distance (LSD) Value

0.4

0.2

0
%
7
25
)
22
0
i)
)
0
2

S PP PSS D PSSP

SN O g Sl o o O ¢ ) S & PP S

o 0 P Py ® W gy 9 F & < ©
CWT Pattern Database

104



Figure 5.20 Cosh Spectral Distance (CSD) Matching for Damage Case 0-0-20, FFT & CWT
Pattern Matching
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Figure5.21 Correlation Matching for Damage Case 0-0-20, WPT Pattern Matching
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Figure 5.22 Correlation Matching for Damage Case 0-20-0, WPT Pattern Matching
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Figure 5.23 Correlation Matching for Damage Case 0-0-40, WPT Pattern Matching
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Figure5.24 Correlation Matching for Damage Case 20-20-0, WPT Pattern Matching
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Figure5.25 Correlation Matching for Damage Case 0-20-20, WPT Pattern Matching
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Figure 5.26 Correlation Matching for Damage Case 20-20-20, WPT Pattern Matching

WPT Pattern Matching

0.7

60-20-0, 0.625262528
E20-20-20, 0.310447738

0.6 T = = A = i

0.5 1 i

0.4

0.3 = =

0.2 - -

Correlation Value

0.1

-0.2

WPT Pattern Database

108



CHAPTER 6 - CONCLUSIONS

6.1 Research Summary

In this study, a signal-based pattern extraction and nétbmg method, using a number of
signal transformations and pattern matching algorithms,imweestigated to detect structural
damage. The method is based on the extraction of sensiittgrds of the structural response
that present a unique pattern for a particular damageaseerrrequency-based features and
time-frequency-based features were extracted from dasuaned acceleration signal by Fast
Fourier Transform (FFT) and Continuous Wavelet Transf@mT) to construct one-
dimensional or two-dimensional patterns, respectively edlpattern recognition algorithms
were also investigated to perform pattern recognitioarsggly: (1) correlation, (2) least square
distance, and (3) Cosh spectral distance. Damage-pattalrada was developed analytically
by simulating possible damage scenarios. Damage locatleeel were identified
simultaneously by performing the matching of the unknoamale pattern with the known ones
in the database.

To demonstrate the validity of the method, numerical andraxpntal studies were
conducted on a small-scale three-story steel buildingheé\first phase of the numerical study, a
2-D three-story steel structure model numerically satad the aforesaid steel structure and the
method was applied to detect representative damage das&sying the successful initial
numerical study, conducted on the 2-D simulation of thestktery structure, the work
progressed into the experimental verification phase. idfpinase, the three-story small-scale
steel structure was constructed in the Kansas State Uty @SU) structural laboratory. An
impulse applicator was developed to apply a consistentlsepoad on the experimental
structure. A wireless data acquisition system was usedrpleand record the vibration
response of the structure under the impulse load excitat\n experimentally-tuned 3-D finite
element model of the structure was developed using ANSY&nemcally simulate the
structural dynamic response without damage, as well agsshense with various possible
damages, excited by an impulse load. Structural vibratggrals from numerical simulations

and experimental measurements were then decomposed bgdaer transform or continuous
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Wavelet transform for feature extraction. The normalizgdadifeatures from numerical
simulations generated for the baseline (healthy) streiciund for the structure with various
selected damages were collected into a damage pattabagat The normalized signal features
of the experimental measurement for an unknown damagewas then compared against this
database to detect the closest damage case, using theeendiffattern matching algorithms
separately: (1) correlation, (2) least square distance 3rbéh spectral distance. Twenty-
eight damage cases were experimentally simulated onrtlieuse as “unknown” damage to
demonstrate the applicability of the proposed damageta®tanethod.

In addition, Wavelet Packet Transform (WPT) was alsostigated for feature
extraction and pattern recognition. Meanwhile, the chdieeawelet functions was also

discussed.

6.2 Conclusion

The structure under a specific damage scenario, in terrosaifdn, level and type, has a
unique signature and shows a unique pattern in its dynaspomse to an excitation. Fourier
and Wavelet transforms provide means to extract and peetier dynamic response features of
a structure under various damage conditions. Differenagaracenarios can be presented by
the features extracted using these transformations. BHiC@reserves the frequency features of
the signal, while CWT preserves its frequency as well agriesgensitive features, CWT pattern
results in a higher pattern-matching resolution than Fiem. Comparing dynamic response
pattern of a damaged structure with a wide range of nuatigrgenerated damage cases stored
in a database can serve as a tool to detect the closegaleas in terms of its existence,
severity and location. Among the three algorithms usedgletion was the best to perform
pattern matching, even when the signal was contaminatbdwite. The highest correlation,
the lowest least square distance or Cosh spectral distdihca #amage case in the database
showed the closest damage case to the actual unknowgelaidawever, the numerical model
must be carefully tuned to accurately represent the physinditions of the structure. This
experimental tune-up of the model should be done for théhlgesdtucture in the beginning; and
then updated if the dynamic properties of the structuregdsanin this case, reconstruction of

the damage pattern database is necessary. The potensiateagbs of this approach are:
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1. It requires few measurements (single or limited numberpaftioutput signals).

2. It can be used to detect multiple damage locations aneteeity of damage at
each damage location.

3. It gives a relatively good accuracy even in the presenaoise, for isolated
damage cases.

4. The method can be implemented in various layers, startngdtobal (the whole
structure) and ending to a structural member for a detdibtection.

5. Fine-tuning of the numerical model against the physicattire and expansion
of the damage-pattern database enhances the detectiesrdtowever,
statistical considerations are needed as will follow.

6. The process can be automated in terms of detection andumurgifine-tuning of
the model and the database.

The method is particularly effective for large-scalecttrres due to their complicated
nonlinear behavior and the incomplete, incoherent, an@+ooistaminated measurements of
structural response. Signal-based damage detectiondwis gheat potential in the
experimental studies. It should be noted that a struotageexperience nonlinear deformations
in a severe event; but during detection process, the inpatahempulse, excites the structure
within its linear range. This is true for the numerical exictaused for reconstruction of the
damage pattern database after a severe event.

The choice of wavelet function in CWT-based pattern etitra and recognition affects
the computation time and pattern-matching resolution. i&uwh signal-based damage
detection, including the present work, have shown that,earbechies, Symlets and Gaussian
wavelets have the best performance. It has also been tloaindaar, Daubechies and Gaussian
wavelets take less computation time. In contrast, Meyr anelyDvavelets take much longer
computation time. The wavelet function is selected baséts shape and its ability to analyze
the signal and to preserve sensitive features.

This study has also shown that WPT-based energy vanadaars can best preserve
the dynamic response features of a structure under danithgewlevel and few locations.
Increasing the level of damage and the number of damag®lwcwill result in a wrong
detection. Increasing the number of sensors (accelezmhand employing an iterative process

may address this issue and is recommended as a futunehesesk in this field.
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6.3 Recommended Future Work

Further experimental work can be considered for otaeradje scenarios, e.g. “cracks” in
a beam or buckling of a column. The adequacy of other feexin&ction and feature
recognition methods combined with correlation and oth##eramatching algorithms may be
explored. The research may be applied to other types ofisgssuch as bridges.

The probability of a correct detection depends on a rieafisidel and a detailed
damage-pattern database. A statistical study, which is\ddipe scope of this research
program, is recommended to set the probability of a danesgedetected by this method.

While expansion of the damage-pattern database can entiendetection; it increases the error
margin for damage cases that may have close normalizednsat Increasing the number of
input/output signals can decrease the error, and atisttistudy can give the optimal number of
signals for a desired general detection accuracy.

WPT-based energy variation vectors can best preserve nlaendtyresponse features of a
structure under damage with low level and few locations. nifeasing the level of damage
and the number of damage locations, the detection will nattgrate. Increasing the number
of sensors (accelerometers) and employing an iteragiteeiion process may address this issue

and is recommended as a future research work in this field.
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Appendix A - Numerical Structure Properties
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For the unit nodal rotation of the column|
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Appendix B - Matching Resultsin Numerical Study

Figure B.1 Correlation Matching for Damage Case 19-0-0 (FFT Pattern Database)
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Environmental Condition: Damping & Noise
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Figure B.2 Correlation Matching for Damage Case 0-38-38 (FFT Pattern Database)
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Figure B.3 Correlation Matching for Damage Case 58-38-19 (FFT Pattern Database)
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Figure B.4 Correlation Matching for Damage Case 58-58-58 (FFT Pattern Database)
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Environmental Condition: Damping Only
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Figure B.5 Least Square Distance (L SD) Matching for Damage Case 19-0-0 (FFT Pattern
Database)
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Figure B.6 Least Square Distance (L SD) Matching for Damage Case 0-38-38 (FFT Pattern
Database)
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Figure B.7 Least Square Distance (L SD) Matching for Damage Case 58-38-19 (FFT Pattern
Database)
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Figure B.8 Least Square Distance (L SD) Matching for Damage Case 58-58-58 (FFT Pattern
Database)
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Figure B.9 Cosh Spectral Distance (CSD) Matching for Damage Case 19-0-0 (FFT Pattern
Database)
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Cosh Spectral Distance (CSD) Value
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Figure B.10 Cosh Spectral Distance (CSD) Matching for Damage Case 0-38-38 (FFT
Pattern Database)
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Cosh Spectral Distance (CSD) Value
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Figure B.11 Cosh Spectral Distance (CSD) Matching for Damage Case 58-38-19 (FFT
Pattern Database)
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Cosh Spectral Distance (CSD) Value

Cosh Spectral Distance (CSD) Value
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Figure B.12 Cosh Spectral Distance (CSD) Matching for Damage Case 58-58-58 (FFT
Pattern Database)
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Figure B.13 Correlation Matching for Damage Case 19-0-0 (CWT Pattern Database)
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Figure B.14 Correlation Matching for Damage Case 0-38-38 (CWT Pattern Database)
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Figure B.15 Correlation Matching for Damage Case 58-38-19 (CWT Pattern Database)
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Figure B.16 Correlation Matching for Damage Case 58-58-58 (CWT Pattern Database)
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Figure B.17 Least Square Distance (L SD) Matching for Damage Case 19-0-0 (CWT Pattern
Database)
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Least Square Distance (LSD) Value
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Figure B.18 L east Square Distance (L SD) M atching for Damage Case 0-38-38 (CWT
Pattern Database)
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Figure B.19 L east Square Distance (L SD) Matching for Damage Case 58-38-19 (CWT
Pattern Database)
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Figure B.20 L east Squar e Distance M atching for Damage Case 58-58-58 (CW T Pattern
Database)
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Figure B.21 Cosh Spectral Distance (CSD) Matching for Damage Case 19-0-0 (CWT
Pattern Database)
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Figure B.22 Cosh Spectral Distance Matching for Damage Case 0-38-38 (CWT Pattern

Database)
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Figure B.23 Cosh Spectral Distance (CSD) Matching for Damage Case 58-38-19 (CWT
Pattern Database)
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Cosh Spectral Distance (CSD) Value
Logarithmic Scale
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Figure B.24 Cosh Spectral Distance (CSD) Matching for Damage Case 58-58-58 (CWT
Pattern Database)

Environmental Condition: None

25
60-60-40, 0.2066
[ 60-60-60, 18.8871
20

15

10 A

Cosh Spectral Distance (CSD) Value

-10
CWT Pattern Database
Environmental Condition: Noise Only
25
60-0-40, 0.2085
[ 60-60-60, 20.358
20

15

10

[ll:l [l o

Cosh Spectral Distance (CSD) Value

TR O AP

-10
CWT Pattern Database

174



Cosh Spectral Distance (CSD) Value

Cosh Spectral Distance (CSD) Value

Environmental Condition: Damping Only

3
[ 60-20-20, 0.0718
. W 60-60-60, -5.3919
2
. ) a
o [ . | [ o S 1 B .
gL S
QQ ] r]/Q/ v 9 S % & I Q b v v ¢ M bQI \Q I8 /]/Q’ D(Q, %
1S e ol qIUR” B el AT llof ST & o SIS U & o & [l o
2 - - ] -
-3 -
-4
5
6

CWT Pattern Database

Environmental Condition: Damping & Noise

0-20-0, 0.1164
E60-60-60, -4.0912

CWT Pattern Database

175




Appendix C - Experimental Structure Properties
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[Check the bucking |
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Appendix D - Matching Resultsin Experimental Study

Figure D.1 Correlation Matching for Damage Case 0-20-0, FFT & CWT Pattern Matching
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Figure D.2 Least Square Distance (L SD) Matching for Damage Case 0-20-0, FFT & CWT
Pattern Matching
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Figure D.3 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-0, FFT & CWT
Pattern Matching
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Figure D.4 Correlation Matching for Damage Case 20-0-0, FFT & CWT Pattern Matching
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Figure D.5 Least Square Distance (L SD) Matching for Damage Case 20-0-0, FFT & CWT
Pattern Matching

Least Square Distance (LSD) Value

Least Square Distance (LSD) Value

FFT Pattern Matching
[@20-0-0, 0.787140179

14

1.2 17 =

0.8

0.6

0.4

0.2

FFT Pattern Database

CWT Pattern Matching

1.8

@20-0-0, 0.5817

16

1.4

0.8

0.6

0.4

0.2

® P @’0 o’bg 0"’0 Q’ILQ f@g & &
/ ™ L & & WG SN S <
v ke o W ©

CWT Pattern Database

186




Figure D.6 Cosh Spectral Distance (CSD) Matching for Damage Case 20-0-0, FFT & CWT
Pattern Matching
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Figure D.7 Correlation Matching for Damage Case 0-20-20, FFT & CWT Pattern

Matching

Correlation Value

Correlation Value

FFT Pattern Matching

0.9

[@0-20-20, 0.936530196

0.8

0.7 i

0.6

0.5 =

0.4

0.3 A

0.2 A

0.1 =

PR PP S D PSSP P S
Q A Q £ Nt " Q M © Q Qo ¢ ]
Q [\ Q Yo U S~ » ®

FFT Pattern Database

CWT Pattern Matching

0.8

@ 0-20-20, 0.914081766

0.6

0.4

0.2

CWT Pattern Database

188




Figure D.8 Least Square Distance (L SD) Matching for Damage Case 0-20-20, FFT & CWT
Matching
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Figure D.9 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-20, FFT &
CWT Pattern Matching
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Figure D.10 Correlation Matching for Damage Case 20-0-20, FFT & CWT Pattern
Matching
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Figure D.11 Least Square Distance (L SD) Matching for Damage Case 20-0-20, FFT &
CWT Pattern Matching
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Figure D.12 Cosh Spectral Distance (CSD) Matching for Damage Case 20-0-20, FFT &

CWT Pattern Matching
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Figure D.13 Correlation Matching for Damage Case 20-20-0, FFT & CWT Pattern

Matching

Correlation Value

Correlation Value

0.9

FFT Pattern Matching

0.8

@20-20-0, 0.780430969

0.7

0.6

0.5 o

0.3

0.2

0.1

FFT Pattern Database

CWT Pattern Matching

0.8

@ 20-20-0, 0.813426584

0.6

0.4

0.2

0 o
oo |:| [l [l oo [I I:l [I o [l o I] o
g @9 U@;& ,@"’Q USH> 'HJ;) i Upg,@ {]9»“ J b(Qn/Q }@9

CWT Pattern Database

194




Figure D.14 L east Square Distance (L SD) Matching for Damage Case 20-20-0, FFT &
CWT Pattern Matching
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Figure D.15 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-0, FFT &
CWT Pattern Matching
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Figure D.16 Correlation Matching for Damage Case 0-20-40, FFT & CWT Pattern

Matching
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Figure D.17 Least Square Distance (L SD) Matching for Damage Case 0-20-40, FFT &
CWT Pattern Matching
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Figure D.18 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-40, FFT &
CWT Pattern Matching
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Figure D.19 Correlation Matching for Damage Case 20-20-20, FFT & CWT Pattern
Matching
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Figure D.20 L east Square Distance (L SD) Matching for Damage Case 20-20-20, FFT &
CWT Pattern Matching
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Figure D.21 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-20, FFT &

CWT Pattern Matching
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Figure D.22 Correlation Matching for Damage Case 20-20-40, FFT & CWT Pattern
Matching
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Figure D.23 Least Square Distance (L SD) Matching for Damage Case 20-20-40, FFT &
CWT Pattern Matching
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Figure D.24 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-40, FFT &
CWT Pattern Matching
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Figure D.25 Correlation Matching for Damage Case 40-60-20, FFT & CWT Pattern
Matching
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Figure D.26 L east Square Distance (L SD) Matching for Damage Case 40-60-20, FFT &
CWT Pattern Matching
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Figure D.27 Cosh Spectral Distance (CSD) Matching for Damage Case 40-60-20, FFT &
CWT Pattern Matching
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Appendix E - Wavelet Function I nvestigation

TableE.1 CWT Pattern-Matching Resolution Based on Different Wavelet Function

Center Correlation Matching Resolution (%)
Mother Wavelet Frequency | Damage Case Damage Case Damage Case
(Hz) 0-0-20 20-20-0 20-20-40
haar 0.9961 31.91 20.54 34.5
dbl 0.9961 31.91 20.54 34.5
db2 0.6667 23.54 52.03 23.85
db3 0.8 40.13 31.61 33.69
db4 0.7143 36.94 43.5 28.02
daubechiss db5 0.6667 24.57 51.23 24
db6 0.7273 41.35 40.12 29.14
db7 0.6923 32.8 45.83 26.26
db8 0.6667 25.43 50.29 24.16
db9 0.7059 37.01 42.68 27.66
db10 0.6842 30.92 46.69 25.48
sym2 0.6667 23.54 52.03 23.85
sym3 0.8 40.13 31.61 33.69
sym4 0.7143 36.78 43.56 28.13
symlets sym5 0.6667 24.42 50.83 24.34
sym6 0.7273 41.09 40.21 29.63
sym7 0.6923 32.67 46.06 26.87
sym8 0.6667 25.22 50.12 24.56
coif coifl 0.800 41.12 33.19 33.24
coif2 0.7273 39.87 41.09 29.22
coif3 0.7059 35.65 43.49 27.92
coif4 0.6957 33.58 44.84 27.21
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coif5 0.6897 32.28 45.48 26.85
biorl.1 0.9961 31.91 20.54 34.5
biorl.3 0.8006 39.43 30.72 34.41
biorl.5 0.7781 40.19 31.65 33.87
bior2.2 1.0008 36.51 31.12 36.98
bior2.4 0.8893 41.69 34.04 32.62
bior2.6 0.9234 37.13 25.96 36.29
_ bior2.8 0.8826 39.34 29.74 34.28
plor bior3.3 1.0006 40.45 42.02 33.94
bior3.5 1.0004 37.34 30.26 35.84
bior3.7 0.9336 41.51 34.1 32.22
bior3.9 0.9476 38.69 28.95 34.51
bior4.4 0.7781 39.99 41.08 29.17
bior5.5 0.6366 17.16 54.83 22.2
bior6.8 0.7649 41.71 39.79 29.71
rbiol.1 0.9961 31.91 20.54 34.5
rbiol.3 0.8006 42.81 36.9 31.8
rbiol.5 0.6670 17.59 55.64 22.12
rbio2.2 0.6005 43.33 39.64 30.13
rbio2.4 0.5558 20.22 53.27 23.21
rbio2.6 0.6156 35.98 43.25 28
rbio2.8 0.5884 24.90 50.21 24.35
rbio rbio3.1 0.3338 13.44 59.43 21.32
rbio3.3 0.4288 10.39 59.78 20.33
rbio3.5 0.5456 42.12 39.24 29.98
rbio3.7 0.5335 31.05 45.9 26.41
rbio3.9 0.5264 23.35 50.53 23.88
rbio4.4 0.6670 38.76 42.23 28.74
rbio5.5 0.8185 39.71 30.48 34.28
rbio6.8 0.6472 30.29 47.15 26.13
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meyr 0.6902 34.28 45.79 26.12

dmey 0.6634 25.49 49.94 24.58

gausl 0.2 19.74 55.60 22.85

gaus2 0.3 31.84 47.18 26.40

gaus3 0.4 42.28 35.49 31.87

gaus4 0.5 36.03 24.45 37.08

gats gausS 0.5 43.63 37.83 30.41

gaus6 0.6 35.96 24.1 37.02

gaus’ 0.6 41.75 34.35 31.81

gaus8 0.6 30.08 45.13 26.29

mexh 0.25 38.81 29.97 35.03
morl 0.8125 38.78 28.65 34.2
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