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Abstract 

 Civil structures are susceptible to damages over their service lives due to aging, 

environmental loading, fatigue and excessive response.  Such deterioration significantly affects 

the performance and safety of structure.  Therefore, it is necessary to monitor the structural 

performance, detect and assess damages at the earliest possible stage in order to reduce the life-

cycle cost of structure and improve its reliability.  Over the last two decades, extensive research 

has been conducted on structural health monitoring and damage detection.    

In this study, a signal-based pattern-recognition method was applied to detect structural 

damages with a single or limited number of input/output signals.  This method is based on the 

extraction of sensitive features of the structural response under a known excitation that present a 

unique pattern for any particular damage scenario.  Frequency-based features and time-

frequency-based features of the acceleration response were extracted from the measured 

vibration signals by Fast Fourier Transform (FFT) and Continuous Wavelet Transform (CWT) to 

form one-dimensional or two-dimensional patterns, respectively.  Three pattern recognition 

algorithms were investigated when performing pattern-matching: (1) correlation, (2) least square 

distance, and (3) Cosh spectral distance.   

To demonstrate the validity and accuracy of the method, numerical and experimental 

studies were conducted on a simple small-scale three-story steel building.  In addition, the 

efficiency of the features extracted by Wavelet Packet Transform (WPT) was examined in the 

experimental study.  The results show that the features of the signal for different damage 

scenarios can be uniquely identified by these transformations.  Suitable correlation algorithm can 

then be used to identify the most probable damage scenario.  The proposed method is suitable for 

structural health monitoring, especially for the online monitoring applications.  Meanwhile, the 

choice of wavelet function affects the resolution of the detection process and is discussed in the 

“experimental study part” of this report.
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algorithms were investigated when performing pattern-matching: (1) correlation, (2) least square 
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To demonstrate the validity and accuracy of the method, numerical and experimental 

studies were conducted on a simple small-scale three-story steel building.  In addition, the 

efficiency of the features extracted by Wavelet Packet Transform (WPT) was examined in the 

experimental study.  The results show that the features of the signal for different damage 

scenarios can be uniquely identified by these transformations.  Suitable correlation algorithm can 

then be used to identify the most probable damage scenario.  The proposed method is suitable for 

structural health monitoring, especially for the online monitoring applications.  Meanwhile, the 

choice of wavelet function affects the resolution of the detection process and is discussed in the 

“experimental study part” of this report. 
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CHAPTER 1 - INTRODUCTION 

1.1 Introduction 

Deterioration of structures due to aging, cumulative crack growth or excessive response 

decreases their stiffness and integrity, and therefore significantly affects the performance and 

safety of structures during their service life.  Structural Health Monitoring (SHM) and damage 

detection denotes the ability to monitor the performance of structure, detect and assess any 

damage at the earliest stage in order to reduce the life-cycle cost of structure and improve its 

reliability and safety.  Figure 1.1 shows a brief classification of different damage detection 

categories, methods and basic algorithms.   

Figure 1.1 SHM and Damage Detection Categories 
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In this field, Destructive Damage Detection (DDD) and/or Non-destructive Damage 

Detection (NDD) techniques are employed to continuously monitor the structure, detect the 

possible damage, and evaluate the safety of the structure.  Recent advances in computer, sensors 

and other electronic technologies make NDD techniques far more convenient and cost effective 

than destructive detection techniques which usually evaluate the safety of a structure by testing 

samples removed from the structure.  NDD techniques can be classified into two categories: (1) 

local methods; and (2) global methods.  

Current highly effective localized NDD methods include acoustic or ultrasonic methods, 

magnetic field methods, radiograph, microwave/ground penetrating radar, fiber optics, eddy-

current methods and thermal field methods.  These methods are visual or localized experimental 

methods that detect damage on or near the surface of the structure by measuring light, sound, 

electromagnetic field intensity, displacements, or temperature.  Some of these methods are 

particularly effective for a specific application.  For example, eddy current is very effective for 

crack detection at welded joint (Chang and Liu, 2003).  But these methods have several 

limitations when testing large and complex structures.  First, the depth of wave penetration is 

limited.  Second, the vicinity of the damage should be known and the portion of the structure 

being inspected should readily be accessible.  However, there is no easy way to determine the 

global health condition of a structure.  Chang and Liu (2003) provided detailed information 

about “local” methods. 

Static-based and vibration-based NDD methods provide the opportunity to detect and 

assess damage on a global basis.  Static-based methods rely on the strain or displacement 

measurements from a structure under known static loads and the finite-element model updating 

to determine changes in deflection, stiffness, and load-carrying capacity of the structure.  These 

methods are widely used for bridge health monitoring and evaluation.  Examples of such work 

are Barr et al. (2006) and Cardinale and Orlando (2004).  The drawbacks of static-based NDD 

methods are: (1) they require a large amount of measured data; (2) they require the finite-element 

model updating using accurate material properties; (3) they require static-load tests which will 

interrupt the structure service.  These drawbacks will make static-based NDD methods more 

difficult for online damage detection of an in-service structure.  Vibration-based NDD methods 

rely on the change of vibration characteristics and signals as indication of damage due to the 

reason that the damage changes the physical properties of a structure, which in turn will cause 
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changes to the vibration characteristics and signals of the structure.  Over the last two decades, 

extensive research has been conducted on Vibration-based detection approach, leading to various 

experimental techniques, methodologies, and signal processing algorithms.  Doebling et al. 

(1996) and Sohn et al. (2003) presented comprehensive literature reviews of vibration based 

damage detection and health monitoring methods for structural and mechanical systems.  These 

methods can be classified into either modal-based or signal-based categories.   

Modal-based methods use changes in measured modal parameters (resonant frequencies, 

modal damping, mode shapes, etc.) or their derivatives as a sign of change in physical-dynamic 

properties of the structure (stiffness, mass and damping).  The basic premise behind the methods 

is that a change in stiffness leads to a change in natural frequencies and mode shapes.  Modal-

based methods have been applied successfully to identify the dynamic properties of linearized 

and time-invariant equivalent structural systems.  The methods include mode shape curvature 

method, the change in flexibility method, the change in stiffness method, modal strain energy, 

etc.  Examples of such work are Kosmatka and Ricles (1999), Ren and Roeck (2002), Shi et al. 

(2000) and Kim et al. (2003).  Recently, wavelet-based and Hilbert-based approaches have been 

developed as enhanced techniques for parametric identification of non-linear and time-variant 

systems.  Examples of such work are Staszewski (1998), Kijewski and Kareem (2003), Yang et 

al. (2004), Huang et al. (2005), Hou et al. (2006), Chen et al. (2006) and Yan and Miyamoto 

(2006).  Although modal-based methods are generally applicable for the purpose of damage 

detection and structural health monitoring, they still have many problems and challenges: (1) 

damage is a local phenomenon and may not significantly influence modal parameters, 

particularly for large structures; (2) variation in the mass of the structure or environmental noise 

may also introduce  uncertainties in the measured modal parameters; (3) the number of sensors, 

the types of sensors, and the coordinates of sensors may have a crucial effect on the accuracy of 

the damage detection procedure (Kim et al. 2003).  

Signal-based methods examine changes in the features derived directly from the 

measured time histories or their corresponding spectra through proper signal processing methods 

and algorithms to detect damage.  Based on different signal processing techniques for feature 

extraction, these methods are classified into time-domain methods, frequency-domain methods, 

and time-frequency (or time-scale)-domain methods.  Time-domain methods use linear and 

nonlinear functions of time histories to extract the signal features.  Examples of this category are 
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Auto-Regressive (AR) model, Auto-Regressive Moving Average (ARMA) model, Auto-

Regressive with eXogenous input (ARX) model and Extended Kalman Filter (EKF).  Frequency-

domain methods use Fourier analysis and cepstrum (the inverse Fourier transform of the 

logarithm of the Fourier spectra magnitude squared) analysis to extract features in a given time 

window.   Examples of this category are Frequency Response Functions (FRFs), frequency 

spectra, cross power spectra, power spectra, and power spectral density.  Time-frequency domain 

methods employ Wigner-Ville distribution and wavelet analysis to extract the signal features. 

Examples of this category are spectrogram, continuous wavelet transform coefficients, wavelet 

packet energies and wavelet entropy.  Detailed descriptions of these signal-based features, 

feature extraction and successful applications will be presented in Chapter Two.  As an 

enhancement for feature extraction, selection and classification, pattern recognition techniques 

are deeply integrated into signal-based damage detection.  Staszewski (2000) and Farrar et al. 

(2001) presented the detailed descriptions of feature extraction, selection and analysis in the 

context of statistical pattern recognition.  Some cases of successful application of the procedure 

for damage detection can be found in Sohn et al. (2000, 2001), Trendafilova (2001), Posenato et 

al. (2008) and Fang et al. (2005).  Detailed descriptions of these mostly used pattern recognition 

methods and successful applications for damage detection will also be presented in Chapter Two.  

Compared with modal-based methods, signal-based methods have received considerable 

attentions from the civil, aerospace, and mechanical communities because they are particularly 

more effective for structures with complicated nonlinear behavior and the incomplete, 

incoherent, and noise-contaminated measurements of structural response (Adeli and Jiang 2006).  

They are also more cost effective and suitable for online structural monitoring. 

1.2 Objectives 

The overall problem of structural damage detection involves five levels of damage 

identification which are categorized according to a logical sequence: level 1, existence of 

damage; level 2, location of damage; level 3, type of damage; level 4, quantity of the damage; 

and level 5, life to failure (Sohn et al. 2003, Doebling et al. 1996, Rytter 1993).  The first four 

levels are mostly related to identification and modeling of structural systems, signal processing, 

feature extraction and statistical pattern recognition.  The last level of identification generally 
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falls into the fields of fatigue life analysis, fracture mechanics, design assessment, reliability 

analysis and machine learning.  

The main goal of any damage detection method is to detect the damage, assess the level 

and type, and spot the location.  As detailed in the introduction, there are many methods and 

algorithms that can be used depending on the type of structure, source of possible damage and 

the desired accuracy of detection. 

The method used in this study is a signal-based method in which the features of the 

acceleration response signal, under a known excitation serve as the structural signature.  This 

signature will change when the dynamic properties of the structure changes due to an inflicted 

damage that will alter the dynamic properties of the structure. 

 The main goal of this study was to: (1) explore various signal processing methods in 

optimal extraction and preservation of the features of the response signal; (2) identify the best 

pattern recognition method; (3) develop a process of pattern extraction and recognition for 

damage detection and online structural monitoring. 

In this study, a signal-based pattern extraction and recognition method, using a number of 

signal transformations and pattern matching algorithms, was investigated to detect structural 

damage.  The vibration acceleration signals of a structure excited by a known dynamic 

excitation, such as an impulse force, were decomposed by Fast Fourier Transform (FFT), 

Continuous Wavelet Transform (CWT) or Wavelet Packet Transform (WPT) for feature 

extraction.  Three statistical algorithms were also investigated to perform pattern matching 

separately: correlation, least square distance, and Cosh spectral distance.  The method proposed 

in this study implements feature extraction and pattern recognition algorithms in damage 

detection procedure.  To show the validity and accuracy of the method and related 

transformation and pattern recognition algorithms, numerical simulation and experimental case 

studies were conducted on a small-scale three-story steel structure.  The structural dynamic 

response under different damage scenarios excited by an impulsive load was numerically 

simulated by a detailed finite element model using ANSYS, and the recorded vibration response 

was processed using MATLAB.  
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CHAPTER 2 - LITERATURE REVIEW 

Recently, signal-based damage detection methods have received many attentions.  These 

methods involve two main processes: (1) feature extraction and selection, and (2) pattern 

recognition.  Feature extraction and selection is the process of identifying and selecting damage-

sensitive features derived from the measured dynamic response, to quantify the damage state of 

the structure (Sohn et al. 2003).  This process often involves fusing and condensing the large 

amount of available data from multiple sensors into a much smaller data set that can be better 

analyzed in a statistical manner.  Also, various forms of data normalization are employed in the 

process in an effort to separate changes in the measured response caused by varying operational 

and environmental condition from changes caused by damage.  

A pattern can be a set of features given by continuous, discrete or discrete-binary 

variables formed in vector or matrix notation.  “Pattern recognition is concerned with the 

implementation of the algorithms that operate on the extracted features and unambiguously 

determine the damage state of the structure” (Farrar et al. 2001).  

2.1 Feature Extraction and Selection 

A variety of methods are employed to improve the feature extraction and selection 

procedure.  Based on different signal processing techniques for feature extraction, these methods 

are classified into time-domain methods, frequency-domain methods, and time-frequency 

methods. 

2.1.1 Time-domain Methods 

Time-domain methods use linear and nonlinear functions of time histories to extract 

features.  Sohn et al. (2000) used an auto-regressive (AR) model to fit the measured time history 

on a structure.  Damage diagnoses using X-bar control chart were performed using AR 

coefficients as damage-sensitive features.  In the ( )AR n  model, the current point in a time series 

is modeled as a linear combination of the previous n  points  
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( ) ( ) ( )
1

n

j x
j

x t x t j e t
=

= φ − +∑                                                                                             (2.1)                                                   

where ( )x t  is the time history at time t; jφ  is the unknown AR coefficient; and ( )xe t  is the 

random error with zero mean and constant variance.  The value of jφ  is estimated by fitting the 

AR model to the time history data.  The AR coefficients of the model fit to subsequent new data 

were monitored relative to the baseline AR coefficients.  The X-bar control chart was used to 

provide a framework for monitoring the changes in the mean values of the AR coefficients and 

identifying samples that were inconsistent with the past data sets.  A statistically significant 

number of AR coefficients outside the control limits indicated that the system was transited from 

a healthy state to a damaged state.  Principal component analysis and linear and quadratic 

projections were applied to transform the time series from multiple measurement points into a 

single time series in an effort to reduce the dimensionality of the data and enhance the 

discrimination between features from undamaged and damaged structures.  For demonstration, 

the authors applied the AR model combined with X-bar control chart to determine the existence 

of damage on a concrete bridge column as the column was progressively damaged.  The AR 

coefficients on the X-bar control chart as detailed in the method indicated the damage existence. 

Sohn and Farrar (2001) proposed a two-stage time history prediction model, combining 

auto-regressive (AR) model and an autoregressive with exogenous inputs (ARX) model.  The 

residual error, which was the difference between the actual acceleration measurement for the 

new signal and the prediction obtained from the AR-ARX model from the reference signal, was 

defined as the damage-sensitive feature.  The increase in residual errors was monitored to detect 

system anomalies.  In this method, the ARX model is expressed as   

 ( ) ( ) ( ) ( )
1 1

a b

i j x x
i j

x t x t i e t j t
= =
∑ ∑= α − + β − + ε                                                                      (2.2)                                           

where a and b are the order of the ARX model;  iα  and jβ  are the coefficients of the AR and the 

exogenous input, respectively;  ( )x tε  is the residual error after fitting the ( )ARX a,b  model to 

the ( )xe t  and ( )x t  pair in the one-stage ahead AR model.  If the ARX model obtained from the 

reference signal block pair ( )x t  and ( )xe t  were not be a good representation of the newly 

obtained block pair ( )y t  and ( )ye t , there would be a significant change in the residual error, 
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( )y tε , compared to ( )x tε .  The standard deviation ratio of the residual errors, ( ) ( )y xσ ε σ ε , 

would reach its maximum value at the sensors instrumented near the actual damage locations.  

The applicability of this approach was demonstrated by the authors using acceleration time 

histories obtained from an eight degree-of-freedom mass-spring system. 

Sohn et al. (2002) developed a unique combination of the AR-ARX model, auto-

associative neural network, and statistical pattern recognition techniques for damage 

classification explicitly taking the environmental and operational variations of the system in the 

consideration.  In this method, AR-ARX model is developed to extract damage sensitive 

features, which are theiα  and jβ  coefficients of the ARX model.  An auto-associative neural 

network is trained to characterize the dependency of the extracted features on the variations 

caused by environmental and operation conditions.  A damage classifier is constructed using a 

sequential probability ratio test to automatically determine the damage condition of the system.  

The authors demonstrated the proposed approach using a numerical example of a computer hard 

disk and an experimental study of an eight degree-of-freedom spring-mass system.    

Bodeux and Golinval (2001) applied the autoregressive moving average vector 

(ARMAV) model and statistical tools such as confidence interval and the normal distribution of 

random variable for damage detection.  In the state space, the ARMAV model is expressed as 

 [ ] [ ] [ ]1x n Ax n W n= − +                                                                                                  (2.3)                                                   

where [ ]x n  is the observed vibration vector at the nth discrete time point; A is the matrix 

containing the different coefficients of the autoregressive (AR) part; [ ]W n  is a matrix containing 

the moving average (MA) terms.  The natural eigenfrequencies rf  and damping ratios rζ  can be 

extracted from the eigenvalues rτ  of the AR matrix A as 

 
( )

2

ln

 
r

rf t

τ
=

π ∆
                                                                                                                   (2.4)                                                                                 

 
( )( )

( )
r

r

Real ln

ln
r

τ
ζ =

τ
                                                                                                          (2.5)                                                                      

where t∆  is the discrete time interval.  The authors used the changes in the frequencies estimated 

by the ARMAV model to detect the damage on the Steel-Quake structure at the Joint Research 

Center in Ispra, Italy.  The frequencies were assumed to be independently distributed variables 
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and a negative change in frequencies indicated damage caused by structure change.  As damage 

indicator, the probability of negative change 
if

Pδ in frequency if   is given by 

0
2 2

0

1
i

i i
f

i i

f f
Pδ

 −= − Φ  σ + σ 
                                                                                                    (2.6) 

where 2
iσ and 2

0iσ  are the variances of the frequencies if and 0if corresponding to the damaged 

and undamaged states.  Φ  is the unit normal distribution function.  The structure was assumed 

damaged if the probability was close to one.  The proposed method was limited to only detecting 

the damage existence. 

Nair et al. (2006) applied an Auto-Regressive Moving Average (ARMA) model for 

damage identification and localization.  A damage-sensitive feature, DSF, was defined as a 

function of the first three auto regressive (AR) components.  The mean values of the DSF 

obtained from the damaged and undamaged signals were significantly different.  In this method, 

the vibration signals obtained from sensors are modeled as ARMA time series as 

 ( ) ( ) ( )
1 1

p q

ij k ij k ij ij
k k

x x t k t k t
= =
∑ ∑= ϕ − + θ ε − + ε                                                                     (2.7) 

where ( )ijx t  is the normalized acceleration signal; kϕ  and kθ  are the k-th AR (Auto-Regressive) 

and MA (Moving Average) coefficients, respectively; p and q are the model orders of the AR 

and MA processes, respectively; and ( )ij tε is the residual term.  DSF is defined as

 1

2 2 3
1 2 3

DSF
α=

α + α + α
                                                                                                (2.8) 

where 1α , 2α  and 3α  are  the first three AR coefficients.  A hypothesis test involving the t-test 

was used to determine the existence of damages on the structure.  Two indices, LI1 and LI2, were 

introduced based on the AR coefficient space to localize damages.  At the sensor locations where 

damage was introduced, LI1 and LI2 had comparatively large values.  The authors tested the 

proposed methodologies on the analytical and experimental results of the ASCE benchmark 

structure.  The results of the damage detection indicated that DSF was able to detect the 

existence of all damage patterns in the ASCE Benchmark simulation experiment.  The results of 

the damage localization indicated that LI1 and LI2 were all able to localize minor damages but 

LI1 was more robust than LI2. 
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Nair and Kiremidjian (2007) utilized the Gaussian Mixture Model (GMM) to detect the 

existence and extent of damage.  The vibration signals obtained from the structure were modeled 

as ARMA processes.  The first three autoregressive coefficients obtained from the modeling of 

the vibration signals formed the feature vector.  The feature vectors were clustered by Gaussian 

mixture model.  The existence of damage was detected using the gap statistic to ascertain the 

optimal number of mixtures in a particular database.  A migration of the number of mixtures 

indicated the existence of damage.  The Mahalanobis distance between the centroids of the 

mixture in question and the undamaged mixture was chosen as a good indicator of damage 

extent.  The authors used the simulation data from the ASCE benchmark structure to test the 

efficacy of the method.  It was demonstrated that GMM-based algorithm was able to detect 

minor, moderate, and major damage patterns; the Mahalanobis distance was highly correlated to 

the damage extent even under the presence of noise.  The limitations of the algorithm were that 

this algorithm was effective only for linear stationary signals; and changes are identified relative 

to the initial measurement which was assumed to be the undamaged state. 

Liu et al. (2007) presented a damage sensitive feature index for damage detection based 

on Auto-Regressive Moving Average (ARMA) time series analysis.  The acceleration signal was 

modeled as ARMA models, and a principal component matrix derived from the AR coefficients 

of these models was utilized to establish the Mahalanobis distance criterion function.  The 

Mahalanobis-distances of m-dimensional vector ix  from the principal component matrix of 

damaged structure to the ones of undamaged structure were defined as the damage sensitive 

feature (DSF) index.  It is expressed as 

 ( ) ( )
1

1 2T

DSFD x x− = − µ ∑ − µ
 

                                                                                       (2.9) 

where µ  and ∑  are mathematics expectation and covariance matrices of the m-dimensional 

vector from the principal component matrix of undamaged structure, respectively.  A hypothesis 

test involving the t-test method was further applied to make a damage alarming decision by 

determining the statistical significance in the difference of mean values ofDSFD  obtained from 

the damaged and undamaged cases.  These methodologies were tested on a numerical three-span-

girder beam model containing some subtle damages.  The results show that the defined index is 

sensitive to these subtle structure damages, and the proposed algorithm can be applied to the on-

line damage alarming in structural health monitoring. 
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Yan et al. (2004) applied the residual errors of the prediction model and statistical 

process control techniques for damage diagnosis.  A Kalman model was constructed to fit the 

measured vibration response histories of the undamaged structure.  The residual error of the 

prediction by the identified Kalman model with respect to the actual measurement of signals was 

defined as a damage-sensitive feature.  The X-bar control chart was constructed to provide a 

quantitative indicator of damage.  The damage locations were determined as the errors reached 

the maximum values at the sensors instrumented in the damaged sub-structures. The authors 

successfully applied this method to indicate the system anomaly on an aircraft model in a 

laboratory and on a real bridge. 

Omenzetter and Brownjohn (2006) applied the time series analysis to process data from a 

continuously operating SHM system installed in a major bridge structure.  The strain data 

recorded during the construction and service life of the bridge were modeled using a vector 

seasonal autoregressive integrated moving average (ARIMA) model.  The model is expressed as  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S SS
t t t t t tD B D B B B x B B eΦ Φ = Θ Θ                                                  (2.10)                 

where { }tx (t = 1, 2… N) is the p-dimensional vector of the time series of analyzed signal; { }te is 

zero mean multivariate Gaussian white noise; B denotes the backshift operator; ( )t BΦ , 

( ) ( )S
t BΦ , ( )t BΘ , and ( ) ( )S

t BΘ are all matrix polynomials in the backshift operator.  The 

coefficients of the ARIMA model were identified on-line by an extended Kalman filter and 

chosen as damage sensitive features.  The various changes in the features were statistically 

examined using an outlier detection technique to reveal unusual events as well as structural 

change or damage sustained by the structure. 

2.1.2 Frequency-domain Methods 

Frequency-domain methods analyze any stationary event localized in time domain.  They 

use Fourier analysis, cepstrum (the inverse Fourier transform of the logarithm of the Fourier 

spectra magnitude squared) analysis, spectral analysis, frequency response technique, etc to 

extract features in a given time window.  Tang et al. (1991) quantitatively diagnosed gear-wear 

through cepstrum analysis of gear noise signals.  The amplitude value of the peak in cepstrum 

represented gear mesh-harmonics in spectrum.  The trend of the change of gear-wear degree was 

about the same as that of the change of the value of a peak in cepstrum.  The value was 
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independent of intensity of gear noise signal and was used as an indicator for quantitatively 

diagnosing gear-wear.  Based on analyzing the results of experiments with gearboxes, the 

thresholds of the gear wear by cepstrum diagnosis was determined to distinguish normal, 

moderate and serious wears.  The theoretical analysis agreed with the experimental results very 

well.  

Kamarthi and Pittner (1997) presented sensor data representation schemes for flank wear 

estimation in turning processes.  The sensor data representation algorithm based on fast Fourier 

transform (FFT) transformed a time series vector X of the sensor signal from turning experiments 

into the spectral vectorɵx , and then formed the vector ɵ fx with the set{ }1 2 di ,i ,...,i .  The 

features rx , the d-dimensional sensor data representation of X, was computed through the relation 

ɵ1 2/
fr wx S x−=                                                                                                                  (2.11) 

The features were used by recurrent neural network architecture to continually compute the flank 

wear estimates. 

Lee and Kim (2007) used the frequency analysis to detect and localize damage.  A signal 

anomaly index (SAI) which quantified the change of frequency response was developed as 

damage feature.  The SAI is defined as a Euclidean norm of the difference between two 

frequency response function (FRFs) of basis and compared state as 

( ) ( )
( )

1

1

1
2 2

2

B C

B

FRF FRF
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n

i

n

i

f B C
f f i i

f B
f f i

H f H f
SAI

H f

=

=

∑

∑

 − −
 = =
 
 

                                              (2.12) 

where, ( )H  and FRF represent the frequency response function in continuous form and 

discrete form respectively, superscript B and C  stand for the state of Basic and Compared.  The 

symbols, 1f  and nf  are the lowest and highest frequency of the considering frequency range, 

respectively.  Changes in the shape of the FRF due to the reason of structural damage caused the 

increase of SAI value.  The presence of damage was identified from the SAI value.  All SAI 

values calculated from different sensors and different frequency ranges formed a SAI matrix 

which showed variation patterns of the FRF in both the space and the frequency domain.  The 

SAI matrix was used as input for the neural network to identify the location of damage.  The 

authors conducted a series of experimental tests and numerical simulation on an experimental 

model bridge to demonstrate the feasibility of the proposed algorithm.  The results of this 
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example application show that the SAI based pattern recognition approach has the great potential 

for structural health monitoring on a real bridge. 

Fasel et al. (2005) used a frequency domain auto-regressive model with exogenous inputs 

(ARX) to detect joint damage in steel moment-resisting frame structures.  Damage sensitive 

features were extracted from the ARX model in the consideration of non-linear system 

input/output relationships.  A frequency domain ARX model was used to predict the response at 

a particular frequency based on the input at that frequency, as well as responses at surrounding 

frequencies.  The responses at the surrounding frequencies were included as inputs to the model 

to account for sub-harmonics and super-harmonics introduced to the system through non-linear 

feedback.  To accounts for non-linearity in the system, first-order ARX model in the frequency 

domain is built as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 1Y k B k U k A k Y k A k Y k−= + − + +           2 3 1fk , ,...,N= −            (2.13) 

where fN  is the highest frequency value examined, ( )Y k  is the response at the k-th frequency, 

( )U k is the input at the k-th frequency, and ( )1Y k −  and ( )1Y k + are the responses at the (k-1)th 

and (k+1)th frequencies, respectively. ( )1A k and ( )1A k− are the frequency domain auto-

regressive coefficients, and ( )B k is the exogenous coefficient.  The frequency response of one 

accelerometer was treated as an input and the other accelerometer response was treated as an 

output.  The auto-regressive coefficients in this frequency domain model were used as features.  

These features were then analyzed using extreme value statistics (EVS) to differentiate between 

damage and undamaged conditions.  The suitability of the ARX model, combined with EVS, to 

non-linear damage detection was demonstrated on a three-story building model.   

2.1.3 Time-Frequency (or Scale)-domain Methods 

In contrast to the frequency-domain methods, the time-frequency (or scale) methods can 

be used to analyze any non-stationary event localized in time domain.  Staszewski et al. (1997) 

applied the Wigner-Ville distribution (WVD) to detect local tooth faults in spur gears.  The 

authors showed that the visual observation of the WVD contour plots could be used for fault 

detection.  Dark zones and curved bands in the contour plots were the main features of an 

impulse produced by the fault in the spur gear.  The changes in features of the distribution were 

used to monitor the progression of a fault.   For the sake of automatic fault detection, the authors 
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chose the two-dimensional contour plots of the WVD as patterns, and the amplitude values of the 

contour plots as features.  Pattern recognition procedures based on the statistical and neural 

approaches were used for classification of different fault conditions.   

Biemans et al. (2001) employed the orthogonal wavelet analysis of the strain data 

measured from piezoceramic sensors to detect crack growth in the middle of a rectangular 

aluminum plate.  The strain data measured from the plate under the Gaussian white noise 

excitation was decomposed into orthogonal wavelet levels.  The logarithm of the variance of the 

orthogonal wavelet coefficients was calculated for all wavelet levels.  The mean vectorµ , of the 

logarithms for the undamaged plate formed the template for the similarity analysis.  A Euclidean 

distance between the template µ  and the logarithmsx , for the damaged plate was used as a 

damage index.  The damage index is denoted as 

( ) ( )2 T

x ,d x xµ = − µ − µ                                                                                                  (2.14) 

The mean and standard deviation of the damage index representing the undamaged condition of 

the plate were used to establish an alarm level.  The damage could be considered existence in the 

plate if the damage index was above the alarm level.  The experimental results on the aluminum 

plate show that such damage index can be used to successfully detect as small as 6-7mm crack 

and to monitor the crack growth.  

Hou et al. (2000) presented the great potential of wavelet analysis for singularity 

extraction in the signals.  Characteristics of four types of representative vibration signals were 

examined by continuous and discrete wavelet transforms.  The singularity in these signals were 

extracted and best illustrated in the plot of wavelet coefficient in the time-scale plane.  The fringe 

pattern in the continuous wavelet coefficient contour plot indicated the existence of a singularity 

in the local time and the spike in the discrete wavelet coefficient plot also indicated the existence 

of a singularity in the local time.  The sensitivity of wavelet results to a singularity was 

effectively used to detect possible structural damage using measured acceleration response data.  

To demonstrate the feasibility of the proposed method, the authors used both numerical 

simulation data from a simple structural model with multiple paralleled breakable springs and 

actual acceleration data recorded on the roof of a building during an earthquake event.  The 

detection results showed that occurrence of damage could be detected by spikes in the detailed of 

the wavelet decomposition of the response data, and the locations of these spikes could 
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accurately indicate the moments when the damage occurred.  The similar work can also be found 

on Hera and Hou (2004), Ovanesova and Suarez (2004) and Melhem and Kim (2003, 2004).  

Kim and Kim (2005) used the ratio of the incident wave toward and the reflected wave 

from the damage as index to assess the damage size.  The ratio was estimated by the continuous 

wavelet transform of the measured signal and the ridge analysis.  In the time-frequency plane of 

the continuous wavelet transform, the ridge was traced to compare the magnitude of the incident 

wave and the magnitude of the reflected wave from the damage.  It was found that “the ratio of 

these magnitudes along the two ridges was the same as the ratio of the magnitude of the incident 

wave to the magnitude of the reflected wave.  Due to the fact that the magnitude and frequency-

dependent pattern of the ratio varied with damage size, it was able to correlate the ratio and the 

damage size except when the damage size was very small” (Kim and Kim 2005).   The authors 

conducted the wave experiments in a cylindrical ferromagnetic beam.  Magnetostrictive sensors 

were used to measure the bending waves in the beam cross section.  The continuous Gabor 

wavelet transform was employed to estimate the crack size in the beam.  

Robertson et al. (2002) used the Holder exponent as damage-sensitive to detect the 

presence of damage and determine the moment of damage occurrence because of its time-

varying nature.  The authors provided a procedure to capture the time-varying nature of the 

Holder exponent based on wavelet transforms and demonstrated this procedure through 

applications to non-stationary random signals associated with earthquake ground motion and to a 

harmonically excited mechanical system that had a loose part inside.  Statistical process control 

was established to identify the changes of the Holder exponent in time.  The results show that 

Holder exponent is an effective feature for such damage detection that introduces discontinuities 

into the measured system acceleration signal. 

Yen and Lin (2000) investigated the feasibility of applying the Wavelet Packet Transform 

(WPT) to detect and classify the mechanical vibration signals.  They introduced a wavelet packet 

component energy index and demonstrated that the wavelet packet component energy had more 

potential for use in signal classification as compared to the wavelet packet component 

coefficients alone.  The component energy is defined as 

 ( )2i i
j jE f t dt

∞

−∞
∫=                                                                                                            (2.15) 



 16 

where ( )i
jf t  is the ith component after j levels of decomposition.  Sun and Chang (2002) applied 

the wavelet packet component energy index to assess structural damage.  The vibration signals of 

a structure were decomposed into wavelet packet components.  The component energies were 

calculated and the ones which were both significant in value and sensitive to the change in 

rigidity were selected as damage indices and then used as inputs into neural network models for 

damage assessment.  The authors performed numerical simulations on a three-span continuous 

bridge under impact excitation.  Various levels of damage assessment including identifying the 

occurrence, location, and severity of the damage were studied.  The results show that the WPT-

based component energies are sensitive to structural damage and can be used for various levels 

of damage assessment.  

Sun and Chang (2004) also derived two damage indicators from the WPT component 

energies.  The acceleration signals of a structure excited by a pulse load were decomposed into 

wavelet packet components.  The energies of these wavelet packet components were calculated 

and sorted by their magnitudes.  The dominant component energies which were highly sensitive 

to structural damage were defined as the wave packet signature (WPS).  Two damage indicators, 

SAD (sum of absolute difference) and SSD (square sum of difference), were then formulated to 

quantify the changes of these WPSs.  SAD and SSD are defined as 

1

^m i i
j j

i
SAD E E

=
∑= −                                                                                                          (2.16) 

2

1

^m i i
j j

i
SSD E E

=
∑
 = − 
 

                                                                                                     (2.17) 

where 
^

i
jE ( i =1,2,…,m ) are termed as the baseline WPS that are used as a reference; and 

i
jE ( i =1,2,…,m ) are WPS obtained from any subsequent measurement.  These two indicators 

basically quantified the deviations of the WPS from the baseline reference.  To monitor the 

change of these damage indicators, the X-bar control charts were constructed and one-sided 

confidence limits were set as thresholds for damage alarming.  For demonstration, the authors 

conducted an experimental study on the health monitoring of a steel cantilever I beam.  Four 

damage cases, involving line cuts of different severities in the flanges at one cross section, were 

introduced.  Results show that the health condition of the beam can be accurately monitored by 
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the proposed method; the two damage indicators are sensitive to structural damage and yet 

insensitive to measured noise. 

Yam et al. (2003) constructed a non-dimensional damage feature proxy vector for 

damage detection of composite structures.  The damage feature proxy vector was calculated 

based on energy variation of the wavelet packet components of the structural vibration response 

before and after the occurrence of structural damage.  The damage feature proxy vector, dV  is 

defined as 
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                                                                          (2.18) 

where 0
L, jU  and d

L, jU  are the energy of the jth order sub-signal of the intact and damaged 

structures, respectively;  L is the layer number of the tree structure of wavelet decomposition.  

Artificial neural network (ANN) was used to establish the mapping relationship between the 

damage feature proxy and damage location and severity.  The method was applied to crack 

damage detection of a PVC sandwich plate.  The results show that the damage feature proxy 

exhibits high sensitivity to small damage.   

Han et al. (2005) proposed a damage detection index called wavelet packet energy rate 

index (WPERI) for the damage detection.  The rate of signal wavelet packet energy ( )jjE∆   at j 

level is defined as 

 ( ) ( ) ( )
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j j
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∑
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∆ =                                                                                         (2.19) 

where i
jf

E is the energy stored in the component signal ( )i
jf t after j levels of decomposition; 

( )i
jf

a
E is the component signal energy i

jf
E at j level without damage; and ( )i

jf
b

E is the component 

signal energy i
jf

E with some damage.  It was assumed that structural damage would affect the 

energies of wavelet packet components and therefore altered this damage indicator.  To establish 

threshold values for damage indexes, WPERIs, X-bar control charts were constructed and one-

sided confidence limits were set as thresholds for damage alarming.  The proposed method was 

applied to a simulated simply supported beam and to the steel beams with three damage 
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scenarios in the laboratory.  Both simulated and experimental studies demonstrated that the 

WPT-based energy rate index is a good candidate index that is sensitive to structural local 

damage. 

Shinde and Hou (2005) incorporated a wavelet packet based sifting process with the 

classical Hilbert transform for structural health monitoring.  The original signal was decomposed 

into its components by a wavelet packet analysis with a symmetrical mother wavelet.  The 

energy entropy and the Shannon entropy were used as the sifting criterion.  The dominant 

components with nearly distinct frequency contents were sifted out based on their percentage 

contribution of entropy of an individual component to the total one of the original signal.   The 

dominant component of the original signal from the wavelet packet based sifting process had 

quite simple frequency characteristic and was suitable for the classical Hilbert transform.  The 

transient frequency content or the so-called instantaneous frequency of the component was found 

from the phase curve of Hilbert transform of the component.  Since for a healthy structure, the 

associated instantaneous frequency is time-invariant, any reduction in the instantaneous 

frequency can be used as an indicator to reflect structural damage.  The proposed sifting process 

used for structural health monitoring, including both detecting abrupt loss of structural stiffness 

and monitoring development of progressive stiffness degradation, was demonstrated by two case 

studies. 

Diao et al. (2006) proposed a two–step structural damage detection approach based on 

wavelet packet analysis and neural network.  The wavelet packet component energy changesiγ  

was selected as an input into probabilistic neural network to determine the location of the 

damage. The siγ is defined as 

 
d u
si si

si u
si

E E

E

−γ =                                                                                                                (2.20) 

where u
siE  is the ith component energy at s level without damage, d

siE  is the ith component 

energy at s level with damage.  The component energy was selected as input into back-

propagation network to determine the damage extent.  The method was demonstrated by 

numerical simulation of a tree-dimensional four-layer steel frame. 

Chen et al. (2006) introduced an improved Hilbert-Huang Transform (HHT) to extract 

the structural damage information from the response signals of a simulated composite wingbox.  
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The signals was firstly decomposed into sub-signals using Wavelet Packet Transform (WPT).  

These sub-signals were then decomposed into multiple Intrinsic Mode Function (IMF) 

components by Empirical Mode Decomposition (EMD).  The IMF selection criterion was then 

applied to eliminate the unrelated IMF components.  The retained IMF components were 

transformed using HHT to obtain instantaneous energy of all sub-signals.  By comparing the 

instantaneous energy corresponding to IMFs of intact wingbox with those of damaged wingbox, 

it was found that some instantaneous energy was changed obviously.  Based on this fact, the 

authors constructed the variation quantity of instantaneous energy tE∆  as feature index vector, 

which is defined as 

 0 1 100t
t

t

EE %
E
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                                                                                             (2.21) 

where 0
tE  and tE  are instantaneous energy of intact and damaged structure respectively at time t.  

Reduction in Young’s modulus was used to characterize damage in wingbox.  The detection 

results show that the feature index vector distinctly reflects the wingbox damage status, and is 

more sensitive to small damage. 

Ding et al. (2008) developed a procedure for damage alarming of frame structures based 

on energy variations of structural dynamic responses decomposed by wavelet packet transform.  

The damage alarming index ERVD, extracted from the wavelet packet energy spectrum is 

expressed as 
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where upI and dpI are the damage indication vector in the pth dominant frequency band of the 

intact and damaged structures, respectively. i , jE  is the jth component energy at l level.  The 

authors demonstrated the practicability of the damage alarming method for the frame structures 

by using the ASCE structural benchmark data.  The results reveal that the WPT-based damage 

alarming index ERVD is sensitive to structural local damage affected by the actual measurement 
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noise; the index ERVD constructed under the lower decomposition level and dominant frequency 

bands is efficient for the detection of the damage occurrence.  

Ren and Sun (2008) combined wavelet transform with Shannon entropy to detect 

structural damage from measured vibration signals.  Wavelet entropy, relative wavelet entropy 

and wavelet-time entropy were used as features to detect and locate damage.  The wavelet 

entropy is defined as 

 ( )
0

lnWT WT j j
j

S S p p p
<
∑  = = − ⋅                                                                                     (2.25) 

where { }jp is the wavelet energy vector, which represents energy distribution in a time-scale.  It 

gives a suitable tool for detecting and characterizing singular features of a signal in time-

frequency domain.  For the jth scale, the wavelet energy ratio vector { }jp is defined as 
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The relative wavelet entropy (RWE) is defined as 
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which gives a measure of the degree of similarity between two probability distributions.  The 

wavelet-time entropy is defined as  
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where ( )i
jp  is the time evolution of relative wavelet energy at a resolution level j in the time 

interval i 
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These features were investigated by numerically simulated harmonic signals and two laboratory 

test cases.  “It is demonstrate that wavelet-time entropy is a sensitive damage feature in detecting 

the abnormality in measured successive vibration signals; relative wavelet entropy is a good 

damage feature to detect damage occurrence and damage location through the vibration signals 

measured from the intact and damaged structures; and the relative wavelet entropy method is 
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flexible in choosing the reference signal simultaneously measured from any undamaged location 

of the target structure” (Ren and Sun 2008). 

2.2 Pattern Recognition 

Feature patterns represent different conditions of an analyzed structure or machine.  The 

objective of pattern recognition in damage detection is to distinguish between different classes of 

patterns presenting these conditions based either on a prior knowledge or on statistical 

information extracted from the patterns (Chang and Yang, 2004).  Classical methods of pattern 

recognition use statistical and syntactic approaches.  In recent years neural networks have been 

established as a powerful tool for pattern recognition.  An overview of these methods can be 

found in Jain et al. (2000) and Duda et al. (2000).  A brief description of some applications for 

damage detection is given below.  

2.2.1 Fisher’s Discriminant 

Fisher’s discriminant is a classification method that projects multi-dimensional feature 

vectors onto one-dimensional subspace to perform classification.  The projection maximizes the 

distance between the mean of the two classes while minimizing the variance within each class.  

Farrar et al. (2001) defined Fisher’s discriminate using data from the vibration tests conducted on 

the columns under both undamaged condition and the damage condition of initial yielding of the 

steel reinforcement.  “The time series were modeled using auto-regressive estimation referred to 

as linear predictive coding (LPC).  Subsequent damage levels were then identified based on this 

same Fisher projection.  When Fisher’s discriminant was applied to data from both sensors on 

undamaged and damaged columns, there was statistically separation between the LPC 

coefficients for the undamaged cases and damaged cases.  While increasing damage was not 

necessarily related to increasing Fisher coordinate, all damaged cases had a profile significantly 

different from that of the undamaged case”.  The authors showed a strong potential for using 

linear discriminant operators to identify the presence of damage. 

2.2.2 X-bar Control Chart 

Sohn et al. (2000) applied a statistical process control (SPC) technique, known as an “X-

bar control chart”, to monitoring a reinforced concrete bridge column.  “Acceleration time series 

were recorded from the vibration tests of the bridge column and auto-regressive (AR) prediction 
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models were used to fit the time series.  Then, control charts were constructed using the AR 

coefficients of the AR model as the observation quantities.  The upper and lower control limits 

were set to correspond to the 99% confidence intervals of a normal distribution.  The mean and 

the standard deviation of the normal distribution were derived from the AR coefficients of the 

normal operational condition.  After the yielding of the concrete rebar was gradually introduced 

in the column, new sets of AR coefficients were computed from various levels of damage.  These 

new AR coefficients were plotted on the control charts whose limits were set from the initial 

undamaged state of the system.  If a significant number of the coefficients (at least more than 1% 

of the coefficients) fell out of the limits, either a state of damage or a significant change in 

environmental conditions was reached.  Since the authors used a third order AR model, there 

were three control charts for each damage level of the column.  The authors determined that the 

third AR coefficient was the most sensitive to damages in this particular experiment” (Sohn et al. 

2003).  The core of this technique is to establish the lower and upper control limits (LCL and 

UCL) which enclose the variation of the extracted damage indicators due to measurement noise 

with a large probability.  Once any damage indicator falls outside of the enclosure, it will signify 

the change of the structural condition with high probability (Sun and Chang, 2004).  Similar 

studies can also be found in Sun and Chang (2004) and Han et al. (2005) 

2.2.3 Outlier Detection 

Sohn et al. (2001) employed an outlier analysis based on the Mahalanobis distance to 

monitoring a surface-effect fast patrol boat.  Three strain time signals were obtained from two 

different structural conditions.  Signal 1 and signal 2 were measured when the ship was in 

structural condition 1 while signal 3 was measured when ship was in structural condition 2.  

Two-stage time series analysis combining auto-regressive (AR) and auto-regressive with 

exogenous inputs (ARX) prediction models were used to fit the time signals.  The 30-

dimensional AR parameters were used for the outlier analysis.  The training data were composed 

of half of signal 1 and 2.  In order to compensate for the nonstationarity of the AR parameter 

sequence, the training data and testing data were taken alternately from the relevant feature sets.  

The Mahalanobis squared distance of the potential outlier was checked against a confidence 

threshold of 99.99%.  Any values above this threshold had a less than 0.01% probability of 

arising as a random fluctuation on the normal condition set.  The results show that there is an 
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extremely clear separation between structural condition 1 and structural condition 2.  All points 

in the testing set from signal 1 and 2 are well below the threshold implying no false-positive 

indication of changes in structural conditions. 

2.2.4 Bayesian Probabilistic Approach 

Sohn and Law (1997) used Bayesian probabilistic approach to detect the locations and 

amount of damage in a structure.  “The system stiffness matrix was represented as an assembly 

of the substructure stiffness matrices and a non-dimensional parameter iθ  was introduced to 

model the stiffness contribution of the ith substructure.  The mass matrix was assumed to known 

and invariant.  A uniform probability density function (PDF) was assumed for the non-

dimensional parameteriθ .  The authors formulated the relative posterior probability of an 

assumed damage event and applied a branch-and-bound search scheme to identify the most 

likely damage event.  The measurement noise and modeling error between the structure and the 

analytical model were taken account into the Bayesian probabilistic framework.  Several 

examples using a shear frame structure, a two-story and a five-story three dimensional frame 

structure was simulated to demonstrate the proposed method.  It was found that as long as 

sufficient modal data sets were available, the proposed method was able to identify the actual 

damage locations and amount in most cases.  The computational cost of the method was 

significantly reduced by using a branch-and-bound search scheme” (Sohn and Law 1997). 

Vanik et al. (2000) presented a continual on-line structural health monitoring (SHM) 

method, which utilized Bayesian probabilistic approach to identify damage indicators from sets 

of modal parameter data in the presence of uncertainties.  “The method required a linear 

structural model whose stiffness matrix was parameterized to develop a class of possible models 

by grouping the elements of the structural model into substructures.  Modal data (i.e. frequencies 

and mode-shapes) measured from a structure was used to identify the model substructure 

stiffness parameters.  The differences in the stiffness parameters estimated from different modal 

data sets were used as indicators of damage.  Bayes’ theorem was used to develop a probability 

density function (PDF) for the model stiffness parameters conditional on measured modal data 

and the class of possible models” (Beck et al. 1999).  The authors illustrated their method with a 

10 DOF shear building model that included story masses and inter-story stiffness.  Using modal 

data simulated from a numerical model, they tested their algorithms with a 20% stiffness loss in 
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the fifth story.  Results were favorable only when the damage indicators were based on the 

current monitoring cycle.  Any addition of the prior training seemed to create an unreal bias 

towards undamaged states. 

Sohn and Law (2000) used Bayesian probabilistic approach to predict the location of 

plastic hinge deformation using the experimental data obtained from the vibration tests of a 

reinforced concrete bridge column.  The column was statically pushed incrementally with lateral 

displacements until a plastic hinge was fully formed at the bottom portion of the column.  

Vibration tests were performed at different damage stage.  “The proposed damage detection 

method was able to locate the damaged region using a simplified analytical model and the modal 

parameters estimated from the vibration tests.  Also the Bayesian framework was able to 

systematically update the damage probabilities when new test data became available.  Better 

diagnosis was obtained by employing multiple data sets than just by using each test data set 

separately” (Sohn and Law 2000).  

Ching and Beck (2004a, b) proposed a two-step probabilistic structural health monitoring 

approach, which involved modal identification followed by damage assessment using the pre- 

and post-damage modal parameters based on the Bayesian model updating algorithm.  “The 

approach aimed to attack the structural health monitoring problems with incomplete mode shape 

information by including the underlying full mode shapes of the system as extra random 

variables, and by employing the Expectation-Maximization algorithm to determine the most 

probable value of the parameters.  The non-concave non-linear optimization problem associated 

with incomplete mode shape cases was converted into two coupled quadratic optimization 

problems, so that the computation becomes simpler and more robust” (Ching and Beck 2004b).  

The authors illustrated the approach by analyzing the IASC-ASCE Phase II simulated and 

experimental benchmark problems.  The results of the analysis show that the brace damage can 

be successfully detected and assessed from either the hammer or ambient vibration data.  The 

connection damage is much more difficult to reliably detect and assess because the identified 

modal parameters are less sensitive to connection damage, allowing the modeling errors to have 

more influence on the results. 
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2.2.5 Neural Networks 

Many damage detection schemes utilize neural networks to detect, localize, and quantify 

damage in structure and machinery.  They are powerful pattern recognizers and classifiers.  

Chang et al. (2000) proposed an iterative neural network technique for damage detection. “The 

network was first trained off-line using initial training data that contained a set of assumed 

structural parameters, which represented various damage cases, as output and their 

corresponding dynamic characteristics as inputs.  A modified back-propagation learning 

algorithm was proposed to overcome possible saturation of the sigmoid function and speed up 

the training process.  The trained NN model was used to predict the structural parameters by 

feeding in measured dynamic characteristics.  The predicted structural parameters were then used 

in the FE model to calculate the dynamic characteristics.  The network model could go through 

the second training phase if the simulated dynamic characteristics significantly deviated from the 

measured ones.  The identified structural parameters were then used to infer the location and the 

extent of structural damages.  This iterative neural network method was verified on a clamped-

clamped RC T beam using both simulated and experimental data” (Chang et al).    

 Chen and Wang (2002) used a multi-layer perceptron (MLP) with back-error 

propagation for fault detection on a gearbox.  The MLP consisted of one input, output and hidden 

layers.  The input layer had 19 nodes, and the output layer consisted of 4 neurons, each of which 

delivered one classification vote.  The wavelet instantaneous scale distribution (ISD) pattern 

along the scale domain was used as input, and the hyperbolic tangent was used as the linear 

active function of the hidden neurons.  The back-error propagation algorithm was employed in 

the MLP training, and the momentum and adaptive training techniques were implemented in the 

training algorithm. 

Sun and Chang (2002) proposed a damage assessment procedure based on the WPT and 

the neural network (NN) models.  Numerical simulations were performed on a three-span 

continuous bridge under impact excitation.  A set of wavelet packet component energies were 

used as inputs to the NN model.  Two NN models, NN1 and NN2 were used. The NN1 model 

consisted of a 10-node input layer, a 6-node hidden layer, and a 1-node output layer and was 

used to identify damage occurrence.  The NN2 model consisted of a 10-node input layer, a 7-

node hidden layer, and a 5-node output layer and was used to identify the location and severity of 

damage.  As for training of these two models, a total of 16 training cases were used.  The training 
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process of NN1 was stopped when the average mean square error was smaller than 2×10-5 or 

when the number of iterations reached 8,000.  For NN2, the training was stopped when the 

average mean square error was smaller than 2×10-7 or when the number of iterations reached 

10,000.  The results show that the NN1 model is capable of identifying the presence of structural 

damage that corresponded to as small as 4% of the rigidity reduction in any element.  And the 

NN2 model can locate and quantity moderate (10-20% EI reduction) and severe (20-30% EI 

reduction) damage with reasonable accuracy.  The assessment accuracy of both models is not 

affected by the presence of measurement noise.   

Fang et al. (2005) explored the structural damage detection using frequency response 

functions (FRFs) as input data to the back-propagation neural network (BPNN).  Various training 

algorithms, such as the dynamic steepest descent (DSD) algorithm, the fuzzy steepest descent 

(FSD) algorithm and the tunable steepest descent (TSD) were studied.  Numerical examples 

demonstrated that “using the heuristic procedure, the TSD training algorithm outperformed 

significantly the DSD and FSD algorithms in training effectiveness, efficiency and robustness 

without increasing the algorithm complexity”(Fang et al. 2005).  The TSD based neural network 

was then used as the basis for structural stiffness loss detection on a cantilever beam.  The neural 

network was a three-layer feed-forward network with 78 input nodes, 40 hidden nodes, and 5 

output nodes. 30 numerical stiffness loss cases were used to train the network.  The analysis 

results show that the neural network can assess damage conditions with very good accuracy in all 

considered damage cases.  

Adeli and Jiang (2006) presented a dynamic time-delay fuzzy wavelet neural network 

model for nonparametric identification of structures using the nonlinear autoregressive moving 

average with exogenous inputs approach.  The model integrates four different computing 

concepts: dynamic time delay neural network, wavelet, fuzzy logic, and the reconstructed state 

space concept from the chaos theory.  Noise in the signals was removed using the discrete 

wavelet packet transform method to speed up the training convergence and improve the system 

identification accuracy.  In order to preserve the dynamics of time series, the reconstructed state 

space concept from the chaos theory was employed to construct the input vector.  In addition to 

de-noising, wavelets were employed in combination with two soft computing techniques, neural 

networks and fuzzy logic, to create a new pattern recognition model to capture the characteristics 

of the time series sensor data accurately and efficiently.  The number of fuzzy wavelet neural 
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network nodes in the hidden layer was selected by the Akaike’s final prediction error criterion.  

Experimental results on a 1/2-scaled five-story steel frame were used to validate the 

computational model and demonstrate its accuracy and efficiency. 

Jeyasehar and Sumangala (2006) employed feed-forward artificial neural network (ANN) 

learning by back–approach algorithm, to assess the damage in pre-stressed concrete (PSC) 

beams.  The post-crack stiffness obtained from the load-deflection characteristics of the beam 

and the natural frequency of the beam, were used as the test inputs to the ANN.  The training and 

test data are generated from the experimental results obtained through the static and dynamic 

tests conducted on the damaged and perfect beams.  The damage was introduced in the beam by 

electrochemical pitting corrosion to resemble natural damage in PSC beams.  The efficiency of 

this damage assessment method was studied by testing this ANN with the test data of a damaged 

beam to different levels.  It is demonstrated that ANN trained with post-crack stiffness and 

natural frequencies is sufficient to predict the damage with reasonable accuracy. 

Li and Yang (2008) used back-propagation neural network (BPNN) to detect damage on 

a three-span continuous beam.  The changes of variances (covariance) of structural 

displacements were adopted as input of neural network, and the damage status (location and 

extent) as output of neural network.  Both single damage case and multi-damage case were 

numerically simulated on the beam, and several steps of damage location identification and 

damage extent detection were carried out in each case.  The results show that BPNN with 

statistical property of structural response as input can correctly detect the damage location and 

identify the damage extent with high precision. 

 2.3 Applications to Special Structures 

Some researchers have selected special structures to apply signal-based damage detection 

methods.  A brief description of some cases is given below 

2.3.1 Damage Detection on Bridge  

Omenzetter et al. (2004) identified the unusual events in multi-channel bridge monitoring 

strain data using wavelet transform and outlier analysis.  The strain data was recorded during 

continuous, long-term operation of a multi-sensor Structural Health Monitoring (SHM) system 

installed on a full-scale bridge.  Outlier detection in multivariate data was applied to find and 

localize abnormal, sudden events in the strain data and wavelet transform was used to separate 
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the abrupt strain changes from slowly varying ones.  The method was successfully tested using 

known events recorded during construction of the bridge and later effectively used for detection 

of anomalous post-construction events.  

 Omenzetter and Brownjohn (2006) proposed and examined the application of concepts of 

time series analysis to the processing of data from a continuously operating SHM system 

installed in a major bridge structure.  The recorded static strain data was modeled using ARIMA 

models.  The coefficients of the ARIMA models were identified on-line using an extended 

Kalman filter.  The method was first applied to strains recorded during bridge construction, when 

structural changes corresponded to known significant events such as cable tensioning.  Then the 

method was used to analyze signals recorded during the post-construction period when the 

bridge was in service.  The results show that the method can provide information on structural 

performance under normal environmental and operational conditions.  

Ding and Li (2007) proposed an online structural health monitoring method for long-term 

suspension bridge using wavelet packet transform (WPT).  The method was based on the wavelet 

packet energy spectrum (WPES) variation of structural ambient vibration responses.  As an 

example application, the WPES-based health monitoring system was used on the Runyang 

Suspension Bridge to monitor the responses of the bridge in real-time under various types of 

environmental conditions and mobile loads.  As for the vibration monitoring of the bridge, a total 

of 27 uni-axial servo type accelerometers were installed at the nine sections of the bridge deck.  

In each deck section, one lateral accelerometer directly recorded the lateral response, and the 

vertical acceleration of the deck section was obtained by averaging the accelerations measured 

by the two vertical accelerometers located in the upriver and downriver cross section, 

respectively.  The analysis showed that changes in environmental temperature had a long-term 

trend influence on the WPES, and the effect of traffic loadings on the WPES presented 

instantaneous changes. 

Zhang (2007) presented a statistical damage identification procedure for bridge health 

monitoring.  The damage features were extracted based on time series analysis combining auto-

regressive and auto-regressive with eXogenous input prediction models.  The structural condition 

was evaluated in a statistical way based on the damage possibilities that were derived from a 

quite large number of data samples to minimize the effect of the variability in data acquisition 

process and in structural properties on the damage assessment.  The proposed damage 
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identification procedure was applied to a numerical 3-span continuous girder bridge model under 

random ground excitations.  Reasonable damage severities for beam structures as well as realistic 

noise levels were simulated.  The results show that the damage identification procedure has great 

potential to detect structural damage at early stage, in which the structural modal frequency 

changes are almost imperceptible. 

2.3.2 Crack Detection on Beam and Plate 

Wang and Deng (1999) detected the crack on beam and plate structures based on wavelet 

analysis of spatially distributed structural response measurements.  Simulated deflection signals 

of a beam containing a transverse crack and the displacement response of a plate with a through-

thickness crack were used.  Wavelet transforms were performed on these signals to obtain the 

wavelet coefficients along the span of the structures.  The crack location was detected by 

observing a sudden change, such as a spike, in the distribution of the wavelet coefficients.  The 

magnitude of the spike in the wavelet analysis was the maximum when the measurement point 

was next to the damage location.  

Biemans et al. (2001) applied the piezoceramic sensors to monitoring crack propagation.  

The specimens used were two rectangular (400 × 150 × 2 mm) aluminum plate with cracks 

initiated by spark erosion in the middle of the plates.  Each plate was instrumented with 6 

piezoceramics bonded in a symmetrical configuration 20 mm below and above the initiated 

crack.  One of the piezoceramics was used as an actuator excited by a sine sweep and Gaussian 

white noise signals to exploit broadband excitation.  The plates were subjected to static and 

dynamic tensile loading.  The growing crack was monitored by two of the remaining 

piezoceramic sensors.  The response strain data was analyzed using a number of time, frequency, 

and wavelet domain statistical parameters.  The results show that low frequency broadband 

excitation offers a possible means of on-line detection of cracks in metallic structures. 

Yan et al. (2004) detected the crack damage in a honeycomb sandwich plate by using two 

structural vibration damage feature indexes: natural frequency and WPT energy index.  The 

finite element dynamic model of a honeycomb sandwich plate was presented using different 

mesh division for the surface plate and the sandwich plate to accurately express the crack 

damage status (locations, length and direction) of the plate.  In order to acquire the experimental 

dynamic response of the plate, two piezo-patches with a size of 25×15×0.28 mm were bonded on 
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the surface of the plate.  One of them acted as an actuator and the other acted as a sensor.  The 

natural frequencies of the undamaged plate were experimentally measured to verify the 

numerical model.  Based on the dynamic model verified by the experiment, the damage feather 

indexes for various crack damage status were numerically computed.  Then the crack damage 

status was determined by comparing the damage feature indexes obtained from the numerical 

and experimental results.  The authors found that natural frequency of structure might not be 

used to detect crack damage less than 10%, even up to 20% of the total size of a plate-like 

structure; energy spectrum of wavelet transform signals of structural dynamic response was so 

sensitive to crack damage that it could exhibit a crack length close to 2% of the dimension of a 

plate-like structure.  They also found that high order modes of a structure contain more structural 

damage information; in order to detect a small damage, more vibration modes should be included 

in a structural dynamic model. 

Chang and Chen (2005) detected the locations and sizes of multi-cracks in a beam by 

spatial wavelet analysis.  The crack type was open crack and was represented as a rotational 

spring.  The mode shapes of the multi-cracked beam under free vibration were analyzed by 

wavelet transformation.  The positions of the cracks were observed as a sudden change in the 

plot of wavelet coefficients.  The natural frequencies of the beam were used to predict the depth 

of the cracks through the characteristic equation.  The limitation of this method is that there are 

two peaks near the boundaries in the wavelet plot and the crack can not be detected when the 

crack was near the boundaries.  

Poudel et al. (2005, 2007) employed high-resolution images for damage detection on a 

simply supported prismatic steel beam.  A high-speed digital video camera was used to recode 

the free vibration displacement of the beam which was excited by imposing an initial 

displacement near the mid-span from the left support.  The camera had a Complimentary Metal 

Oxide Semiconductor (CMOS) sensor with 1280 × 1024 resolution and a 10-bit A/D converter.  

Its frame rate ranges was from 100 to 2000 frames/s.  The displacement data with high spatial 

resolution were then used to obtain the mode shapes and the mode shape difference function 

between the reference and damage states of the structure.  The spatial signal in terms of mode 

shape difference function was decomposed by wavelet transformation to display the changes due 

to cracking damage.  The appropriate range of wavelet scale was determined by the spatial 
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frequency bandwidths of the mode shape difference functions.  The maximum modulus and sign 

change of phase angle in the wavelet coefficients indicated the changes at the damage locations.  

2.3.3 Damage Detection on Mechanical Structures 

Staszewski and Tomlinson (1994) applied the wavelet transform to the problem of the 

detection of a broken tooth in a spur gear.  The fault detection algorithm was based on pattern 

recognition analysis.  Features of the pattern were the modulus of the wavelet transform.  

Spectral analysis and an orthogonal transform were used to compress feature elements.  The 

Mahalanobis distance of two patterns obtained from the normal (no fault) condition and not 

normal (fault) condition was used as a fault detection symptom.  Visual inspection of the 

modulus and phase of the wavelet transform were used to localize the fault. 

Wang and McFadden (1995, 1996) used the wavelet transform to detect abnormal 

transients generated by gear damage.  The early damage to a gear tooth usually caused a 

variation in the associated vibration signal over a short time, initially less than one tooth meshing 

period, taking the form of modulated or unmodulated oscillation.  In later stages, the duration of 

the abnormal variation became longer, lasting more than one tooth meshing period.  Other 

distributed faults, such as eccentricity and wear, might cover the most part of the whole 

revolution of the gear.  Changes in the vibration signals therefore could be analyzed to provide 

an indicator of gear condition.  When the size and shape of a wavelet were exactly the same as a 

section of the signal, the transform gave a maximum absolute value of wavelet coefficients. 

Therefore, the abnormal signal caused by a gear fault could be displayed by the wavelet 

transform, which could be regarded as a procedure for comparing the similarity of the signal and 

the chosen wavelet. 

Li et al. (1998) applied neural networks to the detection of motor bearing conditions 

based on the frequency features of bearing vibration.  Five basic frequencies related to rolling 

bearing dynamic movement were extracted by fast Fourier transform (FFT) technique.  The basic 

frequency amplitude vectors were constructed to represent different bearing vibrations.  These 

vectors were created from the power spectrum of the vibration signal and consisted of the five 

basic frequencies with varying amplitudes based on the defect present.  The network consisted of 

five input measurements corresponding to the amplitudes of the five basic frequencies of interest, 

ten hidden nodes, and three output fault detectors (bearing looseness, defects on the inner 
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raceway, and defects on the rolling elements).  The network was tested using the data generated 

by MOTORSIM.  The results show that neural network can be an effective agent in the detection 

of various motor bearing faults through the measurement and interpretation of motor bearing 

vibration signals.  

Liao et al. (2004) developed a novel technique for monitoring the gearbox condition 

based on the Self-Organizing Feature Maps (SOFM) network.  Seven time-domain features 

parameters, i.e. standard deviation, Kurtosis, root mean square value, absolute mean value, crest 

factor, clearance factor and impulse factor were extracted from industrial gearbox vibration 

signals measured under different operating conditions.  Trained with the SOFM network and 

visualized using the U-matrix method, the feature data were mapped into a two-dimensional 

space and formed clustering regions, each indicative of a specific gearbox work condition.  

Therefore the gearbox operating condition with fatigue crack or a broken tooth compared with 

the normal condition was identified clearly.  

Kar and Mohanty (2006) applied the multi-resolution Fourier transform (MFT) of 

vibration and current signals to gearbox health monitoring.  One and two teeth were artificially 

removed in one gear of the gearbox to simulate actual fault condition.  When the gearbox was 

operated under several loads, the vibration signals were acquired from the tail-end bearing of the 

gearbox, and simultaneously the current drawn by the induction motor is acquired.  The vibration 

and current signals were decomposed into four levels using discrete wavelet transform (DWT) 

with an orthogonal wavelet of ‘db8’.  Then a hanning window with 256 data points and 50% 

overlap was applied to the scaled signals to find the MFT coefficients.  The MFT coefficients of 

signals were used to classify the types of defects by tracking the energy level possessed by the 

defect characteristic frequency.  
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CHAPTER 3 - THEORETICAL BACKGROUND 

Signal-based damage detection methods examine changes in the non-parametric features 

derived directly from the measured vibration signal through signal processing to detect damage.  

The premise behind is that perturbations in a structure system will cause changes in measured 

vibration signals.  These signals measured in vibration testing typically include acceleration, 

velocity, strain, and displacement.  These real-life signals are analog signals which operate in the 

continuous-time domain.  Before they can be processed with a computer, analog signals must be 

converted to digital signals which operate in discrete-time domain.  An analog-to-digital (A/D) 

converter is used to convert a signal from analog to digital.  After processing the signal digitally, 

it also can be converted to an analog signal using digital-to-analog (D/A) converter.  The process 

of converting an analog signal to a digital signal involves sampling the signal, holding it for 

conversion, and converting it to the corresponding digital value.  The sampling frequency must 

be high enough so as to avoid aliasing. 

Aliasing is a phenomenon due to which a high-frequency signal when sampled using a 

low sampling rate becomes a low frequency signal that may interfere with the signal of interest.  

To avoid aliasing, the sampling theorem (or called Nyquist sampling theorem) states that the 

sampling frequency, sf  should be at least twice the highest frequency contents of the analog 

signal, maxf .  For instance, if the highest frequency content in an analog signal is 10 kHz, it 

should be sampled at 20 kHz or more to avoid aliasing.  Before encountering the A/D converter, 

the input signal is processed with a low-pass analog input filter to remove all frequencies above 

the Nyquist frequency (one-half the sampling rate).  This is done to prevent aliasing during 

sampling.  The result of sampling and converting an analog signal is a digital sequence 

presenting the signal samples.  The processing is called digitizing.  The sequence of these 

discrete data is referred as the digital signal. 

Such a digital signal can be viewed from two different standpoints: (1) the frequency 

domain; (2) the time domain.  The transformation of discrete data between the time and 

frequency domains is described in this chapter.  The two domains provide complementary 
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information about the same signal.  It may sometimes be more meaningful in an application to 

inspect the magnitude versus frequency plot for changes in the voltage amplitude at a particular 

frequency than to observe the voltage waveform in order, for example, to obtain an early 

indication of wear in a machine by fast Fourier transforming the output signal.  The discrete 

transforms are used in the data compression of speech and video signals to allow transmission 

with reduced bandwidth.  They are also used in image processing to obtain a reduced set of 

features for pattern recognition purposes.  Of the available transforms, the discrete Fourier 

transform (DFT) and the fast Fourier transform (FFT) are the best known.  Recently considerable 

efforts have been devoted to the wavelet transform due to its ability to describe stochastic signals 

of time varying frequency content in terms of wave amplitudes (Ifeachor and Jervis, 2001). 

3.1 Fourier Transforms 

The Fourier transform (named after its discoverer, the French mathematician Jean-

Baptiste Joseph Fourier) is a frequency-based transform widely used in analysis of linear 

systems.  It decomposes a signal into sine waves of different frequencies which sum to the 

original waveform, and also distinguishes such different frequency sine waves and their 

respective amplitudes.   

3.1.1 Continuous Fourier Transform 

Now, let ( )f t be a given continuous signal in time domain.  The continuous Fourier 

transform of ( )f t is defined by the equation: 

( ) ( ) 2 istF s f t e dt
∞ − π

−∞
∫=                                                                                                     (3.1) 

where 1i = −  and s is often called frequency variable.  Given( )F s , we can go backwards and 

get ( )f t by using inverse continuous Fourier transform: 

 ( ) ( ) 2 istf t F s e ds
∞ π

−∞
∫=                                                                                                      (3.2) 

 Equations 3.1 and 3.2 are called Fourier transform pairs.  ( )F s is the Fourier transform of 

( )f t and that ( )f t is the inverse Fourier transform of( )F s .  The only difference between the 
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forward and inverse Fourier transform is the sign abovee , which makes it easy to go back and 

forth between time and frequency domain. 

3.1.2 Discrete Fourier Transform 

The continuous Fourier transform is a continuous function of frequency and is not 

suitable for computation with a digital signal processing (DSP).  Discrete Fourier transform 

(DFT) representation of the continuous time signal permits the computer analysis and is used 

extensively in signal processing applications.  The analog signal which consists of an infinite 

number of contiguous points is sampled at regular intervals.  The input to the DFT is a sequence 

of sampled values rather than a continuous function of time ( )f t , so that 

 ( ) ( ) ( )1 2

0
  ,    k=0,1,2,... N-1

N ink / N

n
F k f n e

− − π

=
∑=                                                                 (3.3)   

and 

 ( ) ( ) ( )1 2

0

1
,    n=0,1,2,... N-1

N ink / N

k
f n F k e

N

− π

=
∑=                                                                (3.4) 

The equation 3.3 is called the DFT and the equation 3.4 is called the inverse discrete Fourier 

transform (IDFT).  ( )f n and ( )F k are the discrete sample values corresponding to ( )f t and 

( )F s .  The N in the DFT pair denotes the number of elements in the ( )f n or ( )F k sequence. 

The discrete Fourier transform allows calculating the Fourier transform on a computer, 

but it is not so efficient.  The number of complex multiplications and additions required to 

implement Equations.3.3 and 3.4 is proportional to2N .  For every ( )F k , it needs to use 

all ( )0f ,…, ( )1f N −  and there are ( )N F k to calculate.  For a largeN , the computations can 

be prohibitively time-consuming, even for a high-speed computer.  

3.1.3 Fast Fourier Transform 

In 1965, Tuckey, J.W. and Cooley, J.W developed an algorithm to dramatically reduce 

the number of computations required in performing the DFT.  This algorithm is known as the 

Fast Fourier transform (FFT).  It reduces the number of computations from an order of 2N to an 

order of 2N log N .  The time saved compared with a direct calculation is roughly: 
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( )2

N
gain=

log N
                                                                                                               (3.5) 

If N = 1024, the FFT is about 100 times faster than the direct calculation based on the definition 

of the DFT. 

Although there are many variations of the original Turkey-Cooley algorithm, these can be 

grouped into two basic types: decimation-in-time and decimation-in-frequency (Lathi, 1998).  

The algorithm is simplified when N  is a power of 2.  Using the notation  

( )2 i / N
NW e− π=                                                                                                                   (3.6) 

Equation 3.3 and Equation 3.4 become 

( ) ( ) ( )1

0
          ,  k=0,1,2... N-1

N kn
N

n
F k f n W

−

=
∑=                                                                  (3.7) 

and 

( ) ( ) ( )1

0

1
   ,   k=0,1,2... N-1

N kn
N

n
f n F k W

N

− −

=
∑=                                                                 (3.8) 

The Decimation-in-Time Algorithm 

The N -point data sequence ( )f n is divided into two sequences, each of length2N .  

One of the two is formed from the even-numbered points of the original samples, the other from 

the odd-numbered points, as follows: 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

0 2 4 2 1 3 5 1

sequence g k sequence h k

f , f , f ,..., f N , f , f , f ,..., f N− −
������������� �������������

  

Then Equation 3.7 becomes, 

( ) ( ) ( ) ( )
1 1

2 2 2 12

0 0
2 2 1

N N

n kkn
N N

n n
F k f n W f n W

− −
+

= =
∑ ∑= + +                                                                 (3.9) 

Also, since 

2

2

N NW W=                                                                                                                       (3.10) 

it has    

( ) ( ) ( )

( ) ( )

1 1
2 2

0 0
2 2

2 2 1

1                               0

N N

kn k kn
N N N

n n

k
N

F k f n W W f n W

G k W H k k N

− −

= =
∑ ∑= + +

= + ≤ ≤ −

                                                  (3.11) 
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where ( )G k and ( )H k are the 
2

N 
 
 

-point DFTs of the even- and odd-numbered sequences, 

( )g k and ( )h k , respectively. Also, ( )G k and ( )H k , being the 
2

N 
 
 

-point DFTs, are 
2

N 
 
 

-

periodic. Hence 

( )
2

N
G k G k
 + = 
 

 

( )
2

N
H k H k
 + = 
 

                                                                                                      (3.12) 

Moreover, 

2 2

N Nk
k i k k

N N N N NW W W e W W
 +  − π  = = = −                                                                                 (3.13) 

From Equations (3.11), (3.12) and (3.13), it turns out 

( ) ( ) 0 1
2 2

                         k
N

N N
F k G k W H k k
 + = − ≤ ≤ − 
 

                                       (3.14) 

This property can be used to reduce the number of computations.  The first 
2

N 
 
 

points 

( 0 1
2

N
n≤ ≤ − ) of ( )F k can be computed using Equation 3.11 and the last 

2

N 
 
 

points can be 

computed using Equation 3.14 as 

( ) ( ) ( ) 0 1
2

                             k
N

N
F k G k W H k k= + ≤ ≤ −                                          (3.15a) 

( ) ( ) 0 1
2 2

                     k
N

N N
F k G k W H k k
 + = − ≤ ≤ − 
 

                                         (3.15b) 

 Thus, an N -point DFT can be computed by combining the two 
2

N 
 
 

-point DFTs, as in 

Equations 3.15.  These equations can be represented conveniently by the signal flow graph 

depicted in Figure 3.1.  This structure is known as a butterfly.   
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Figure 3.1 Butterfly 

 

The next step is to compute the 
2

N 
 
 

-point DFTs ( )G k and ( )H k .  The same procedure 

is repeated by dividing ( )g k and ( )h k into two 
4

N 
 
 

-point sequences corresponding to the 

even- and odd-numbered samples.  Then this process is continued until the one-point DFT is 

reached.   

The procedure for obtaining IDFT is identical to that used to obtain the DFT except that 

( )2i / N
NW e π= instead of ( )2i / Ne− π (in addition to the multiplier1/ N ).  Another FFT algorithm, the 

decimation-in-frequency algorithm, is similar to the decimation-in-time algorithm.  The only 

difference is that ( )f n is divided into two sequences formed by the first 
2

N
and the last 

2

N
digits, proceeding in the same way until a single-point DFT is reached.  The total number of 

computations in this algorithm is the same as that in the decimation-in-time algorithm. 

FFT is of great importance to digital signal processing.  It has been widely used to extract 

the structure frequency response and has been successfully applied for fault detection on beam 

and rotating machinery.  However, it should be noted that Fourier transform is not capable of 

preserving the information on time domain.  If there is a local oscillation representing a 

particular frequency in the signal, its location on the time domain will be lost.  Such 

disadvantage is illustrated by the harmonic signal( )f t defined by: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
2 4 10

1 6 4 10

          0 t 10s 

       (10s<t 20s)

sin t sin t sin t
f t

sin . t sin t sin t

 π + π + π ≤ ≤ =  π + π + π ≤  
                                  (3.16) 

Figure 3.2 The Harmonic Signal and Its FFT Spectrum 

 

The signal ( )f t  as plotted in Figure 3.2(a) contains three components with each frequency of 1, 

2, and 5 Hz within the first 10 seconds.  At exactly 10 second, only the 1 Hz component is 

suddenly reduced to 0.8 Hz, and others keep the same.  This signal is sampled by 1000 Hz.  The 

Fourier spectrum in Figure 3.2(b) shows the FT results of the signal within the first and the last 

10 seconds.  Although the frequency component of 0.8 Hz in the signal caused by the small 

perturbation is visible as peak in the spectrum, it is difficult to tell the exact time for the small 

perturbation.  The time information is lost in the Fourier transform.  The signal ( )f t is called a 

“non-stationary signal” whose frequencies change over the duration. 
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3.1.4 Short Time Fourier Transform 

In order to overcome the problem with localizing the frequency components on time, the 

Short Time Fourier Transform (STFT) was designed to analyze the signal in a time-frequency 

domain.  The STFT of a signal ( )f t is defined as: 

( ) ( ) ( ) i tSTFT , f t g t e dt− ω
∫τ ω = − τ                                                                              (3.17) 

where ( )g t is a window function.  The drawback of STFT is its poor frequency resolution.  Once 

you choose a particular size for the time window, this window is also the same for all frequency 

components.  The STFT preserves information on time as well, but it is not as efficient as 

wavelet. 

3.2 Wavelet Transforms 

The wavelet transform was developed by Grossman and Morlet in the early 1980s to 

provide a time-frequency representation of the signal.  It is probably the most recent solution to 

overcome the aforesaid deficiency mentioned for Fourier transform.  Although Short Time 

Fourier Transform (STFT) can also be used to analyze non-stationary signals, it gives a constant 

resolution at all frequencies.  The wavelet transform uses multi-resolution technique by which 

different frequencies are analyzed with different resolutions. 

All wavelets are derived from a basis (mother) function, ( )tψ .  There are a number of 

possible basis functions, chosen to have the following properties (Ifeachor and Jervis 2001, Rao 

and Boparadikar 1998):  

(1) it is oscillatory or it has a wave appearance, which is expressed as; 

( ) 0t dt
∞

−∞
∫ ψ =                                                                                                                 (3.18) 

(2) it decays rapidly towards zero with time or it has finite energy, which is expressed as; 

 ( )
2

t dt
∞

−∞
∫ ψ < ∞                                                                                                              (3.19) 

(3) it has no DC component (constant or zero frequency);  

(4) it is bandpass (a function( )f t  is a band-pass function if its Fourier transform ( )F ω  is 

confined to a frequency interval 1 2ω < ω < ω , where 1 0ω >  and 2ω  is  finite);  

 



 41 

(5) it satisfies the admissibility condition that 

( ) 2

C d
∞

−∞
∫

ψ ω
≡ ω < +∞

ω
                                                                                                (3.20)  

The last property ensures the wavelet transform of a signal is unique and invertible.  For 

example, the Morlet mother wavelet is  

 ( ) 2 2

2
tt e cos t

ln
−  

ψ = π  
 

                                                                                             (3.21) 

Its plot is shown in Figure 3.3.  More than 99% of the total energy of the function is contained in 

the interval 2 5t .≤ sec.  Let ( )H ω  denotes the Fourier transform of( )tψ : 

 ( ) ( ) i tH t e
∞ − ω

−∞
∫ω = ψ                                                                                                      (3.22) 

From the plot of ( )H ω shown in Figure 3.4, it is seen that the wavelet is essentially a band-pass 

function. 

Figure 3.3 The Morlet  Wavelet 
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Figure 3.4 Fourier Transform, H(ω) of the Morlet Wavelet 

 

3.2.1 Continuous Wavelet Transform (CWT) 

The continuous wavelet transform (CWT) of the signal ( )f t with respect to a wavelet 

( )tψ is defined as (Rao and Boparadikar 1998) 

( ) ( )1 * t b
f t

a
W a,b

a

−
ψ  =  
 

∫                                                                                     (3.23) 

where a and b are real and ∗  denotes complex conjugation.  Thus, the wavelet transform is a 

function of two variables.  Equation 3.23 can be written in a more compact form by defining 

 ( ) 1
a ,b

t b
t

aa

− ψ ≡ ψ  
 

                                                                                               (3.24) 

Then, combining Equations 3.23 and 3.24, 

 ( ) ( ) ( )*
a ,bW a,b f t t dt

∞

−∞
∫= ψ                                                                                           (3.25) 

The signal ( )f t  may be recovered or reconstructed by an inverse wavelet transform of 

( )W a,b as defined by 

( ) ( ) ( )2

1 1
 a ,b

a b
f t W a,b t da db

C a

∞ ∞

=−∞ =−∞
∫ ∫= ψ

                                                                  



 43 

The normalizing factor of 1/ a  ensures that the energy stays the same for all a andb ; that is, 

( ) ( )2 2

a ,b t dt t dt
∞ ∞

−∞ −∞
∫ ∫ψ = ψ                                                                                          (3.26) 

For any given value ofa , the function ( )a ,b tψ is a shift of ( )0a , tψ by an amount b along 

the time axis.  Thus, the variable b  represents time shift or translation.  Variable a  determines 

the amount of time scaling or dilation, it is referred to as the scale or dilation variable.  Figure 3.5 

shows Morlet wavelet at three scales and shifts.  If 1a > , there is a stretching of ( )tψ along the 

time axis, whereas if 0 1a< < , there is a contraction of( )tψ .  The value of the scale a is 

proportional to the reciprocal of the frequency.  The smaller the value ofa , the more the band-

pass shifts to a higher frequency, implying that the CWT at small scales contains information 

about ( )f t  at the higher end of its frequency spectrum.   

The CWT is the inner product or cross correlation of the signal ( )f t with the scaled and 

time shifted wavelet ( )a ,b tψ .  This cross correlation is a measure of the similarity between the 

signal and the scaled and shifted wavelet.  This point of view is illustrated in the Figure 3.5. 
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Figure 3.5 Signal f(t) along with the Morlet Wavelet (denoted by w) at Three Scales and 

Shifts 

 

 

Scale parameter a  in wavelet analysis is related to frequency as follows (Kim 2004, 

Yoon et al. 2000): 

 c
a

F
F

a
=

∆
                                                                                                                        (3.27) 

where a  is a scale, ∆  is the sampling period, cF  is the center frequency of a wavelet in Hz.  aF  

is the pseudo-frequency corresponding to the scale a , in Hz.  Each wavelet has different center 

frequency, cF .  As shown in Figure 3.6, the approximation of center frequency for Morlet 

wavelet is 0.8125 Hz. 
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Figure 3.6 Wavelet Morlet (blue) and Center Frequency Based Approximation 

 

 

The ( )W a,b coefficient is called the scalogram of signal( )f t .  The scalogram can be 

plotted in 2-dimensional contours with time on the horizontal axis, scale on the vertical axis, and 

coefficient given by a gray-scale color.  Alternately, it can be plotted in 3-dimensional contours.  

For illustration, the non-stationary signal, ( )f t  in Figure 3.2(a) is transformed by CWT.  As 

mentioned earlier, ( )f t contains three frequency components of 1, 2, and 5 Hz within the first 

10 seconds.  At exactly 10 second, only the 1 Hz component is suddenly reduced to 0.8 Hz, and 

others keep the same.  The signal is sampled by 1000 Hz.  By using the Morlet wavelet, the 

CWT scalogram of signal ( )f t is shown in Figure 3.7 as scale-space (time) contours.   At scales 

of 163, 406, 813 and 1016, it shows the highest magnitude which indicates that these scales 

correspond to signal frequencies.  At exact 10 seconds ( 10 000b ,= ), scale of 813 switches to 

scale of 1016 to show that one frequency component is changed.  Using Equation 3.27, the scales 

of 1016, 813, 406 and 163 can be converted to pseudo-frequencies of 0.8, 1, 2 and 5, respectively 
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which are the exact the same as the frequency components of ( )f t . The CWT scalogram using 

frequency instead of scale is plotted in Figure 3.8 and a 3-D plot of CWT scalogram is shown in 

Figure 3.9.  

Figure 3.7 CWT Scale-Space (time) Contours of Signal, f(t) 
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Figure 3.8 CWT Frequency-Time Contour of Signal, f(t)  

 

 



 48 

Figure 3.9 3-D View of CWT Frequency-Time Contour of Signal, f(t)  

 

3.2.2 Discrete Wavelet Transform (DWT)   

CWT calculates the wavelet coefficients by continuously shifting a scalable basis 

function over a signal and calculating the correlation between the two at every possible scale.  Its 

computation may consume significant amount of time and resources, depending on the resolution 

required.  DWT adopts scales and translations based on power of two, so called dyadic scales 

and translations to yield a fast computation of wavelet transform and to reduce the resources 

required.   

Filters are one of the most used signal processing functions.  In DWT, a time-scale 

representation of the digital signal is obtained by passing the signal through filters with different 

cutoff frequencies at different scales.  The signal is passed through a serious of high pass filters 

to analyze the high frequency, and through a serious of low pass filters to analyze the low 

frequency.  Low pass filters and high pass filters are related to the scaling function and the 

corresponding wavelet function, respectively.   The corresponding wavelet function is 
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constructed from the scaling function.  The scaling function ( )tφ must satisfy the following three 

conditions (Rao and Boparadikar 1998):  

(1) It integrates to one; 

( ) 1t dt
∞

−∞
∫ φ =                                                                                                                   (3.28) 

(2) It has unit energy; 

( ) ( )
22

1t t dt
∞

−∞
∫φ = φ =                                                                                                 (3.29) 

(3) The set consisting of ( )tφ and its integer translation are orthogonal. 

( ) ( ) ( )t , t n nφ φ − = δ                                                                                                  (3.30) 

The scaling function ( )tφ with N coefficients is defined by 

( ) ( ) ( )1

0
2

N

n
t c n t n

−

=
∑φ = φ −                                                                                                 (3.31) 

Coefficients ( )c n  must satisfy following conditions (Newman 1993): 

(i)        ( )1

0
2

N

n
c n

−

=
∑ =                                                                                                                    (3.32) 

so that the scaling function is unique and retains unit area during iteration;  

(ii)       ( ) ( )1

0
1 0            

N n m

n
n c n

−

=
∑ − =                                                                                          (3.33)  

for integer 0 1 2 2 1 m , , ,..., N /= − (as high as the available number of coefficients will allow), in 

order to achieve accuracy; 

(iii)      ( ) ( )1

0
2 0                               m 0

N

n
c n c n m

−

=
∑ + = ≠                                                           (3.34)  

for 1 2 2 1 m , ,..., N /= − , in order to generate an orthogonal wavelet system, with the additional 

condition that 

( )1 2

0
2

N

n
c n

−

=
∑ =                                                                                                                  (3.35) 

The corresponding wavelet function( )tψ is defined by  

( ) ( ) ( ) ( )1

0
1 2 1

N n

n
t c n t n N

−

=
∑ψ = − φ + − +                                                                           (3.36) 

Such function is called orthogonal wavelet function which is satisfying the following:  
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( ) 0t dt
∞

−∞
∫ ψ =                                                                                                                 (3.37) 

( ) 2
1t dt

∞

−∞
∫ ψ =                                                                                                               (3.38) 

( ) ( ) ( )t , t n nψ ψ − = δ                                                                                                 (3.39) 

( ) ( ) 0t , t nψ φ − =                                                                                                       (3.40) 

In order to obtain a smoother function, it is necessary to include more terms in the scaling 

function.  If 4N = , the four-coefficient scaling function has a form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 1 2 1 2 2 2 3 2 3t c t c t c t c tφ = φ + φ − + φ − + φ −                               (3.41) 

and the corresponding wavelet function ( )tψ is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 2 2 2 1 1 2 2 0 2 3t c t c t c t c tψ = − φ + φ − − φ − + φ −                            (3.42) 

Figure 3.10 shows some examples of pairs of functionφ ,ψ .  The Meyer wavelets have 

compactly supported Fourier transform. φ , ψ  themselves are infinitely supported.  They are 

shown in Figure 3.10a; The Battle-Lemarie wavelets are spline functions (linear in Figure 3.10b, 

cubic in Figure 3.10c).  Bothφ , ψ  have exponential decay.  Their numerical decay is faster than 

for the Meyer wavelets; The Haar wavelet, in Figure 3.10d, can be viewed as the smallest degree 

Battle-Lemarie wavelet (ψHaar = ψBL, 0). 
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Figure 3.10 Some Example of Pairs of Functions φφφφ, ψ, ψ, ψ, ψ: (a) The Meyer Wavelets; (b) and (c) 

Battle-Lemarie Wavelets; (d) The Haar Wavelet (Daubechies, 1992) 

 

 

Each filter is generated from the coefficients of the scaling and wavelet function.  The 

filter length is equal to the number of the coefficients.  The DWT is computed by successive low 

pass and high pass filtering of the discrete time-domain signal as shown in Figure 3.11.  This is 

called the Mallat algorithm or Mallat-tree decomposition.  In this figure, the signal is denoted 

by ( )f t .  The low pass decomposition (or called analysis) filter is denoted byHɶ  with an impulse 

response of( )h nɶ , while the high pass decomposition filter is denoted byGɶ  with an impulse 
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response of ( )g nɶ .  At each level, the high filter produces detail information,[ ]d t , while the low 

pass filter associated with scaling function produces approximate information, [ ]a t . 

Figure 3.11 Three-Level Wavelet Decomposition Tree 

 

At each decomposition level, the half band filters produce signals spanning only half the 

frequency band.  This doubles the frequency resolution as the uncertainty in frequency is reduced 

by half.  Down-sampling discards half the samples and halves the time resolution as the entire 

signal is now represented by only half the number of samples.  Thus, while the half band low 

pass filtering removes half of the frequencies and thus halves the resolution, the down-sampling 

double the scale (Rao and Boparadikar 1998).  The process of splitting the spectrum is 

graphically displaced in Figure 3.12.  

Figure 3.12 Splitting the Signal with an Iterated Filter Bank 
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The filtering and down-sampling process is continued until the desired level is reached.  

The maximum number of levels is determined by2log N , where N is the length of the signal. By 

this approach, DWT yields good time resolution at high frequency components of signal, while 

good frequency resolution at low frequency components of signal.  

The reconstruction of the original signal is the reverse process of decomposition.  As 

shown in Figure 3.13, the approximation and detail coefficients at every level are up-sampled by 

two, passed through the low pass and high pass synthesis filters, H and G , and then added.  This 

process is continued through the same number of levels as in the decomposition process to obtain 

the original signal.   

Figure 3.13 Three-Level Wavelet Reconstruction Tree 

 

The impulse response of low pass synthesis filter,( )h n , is found by 

( ) ( )
2

c n
h n =                                                                                                                  (3.43) 

where ( )c n  is the coefficient of the scaling function.  The impulse response of the high pass 

synthesis filter, ( )g n , is a quadrature mirror of ( )h n  and defined as 

( ) ( ) ( )1 1 1 2        for  
n

g n h N n k , ,....,N= − + − =                                                         (3.44) 

The impulse responses of decomposition filters, ( )h nɶ and ( )g nɶ , are the reserve of ( )h n  and ( )g n   

( ) ( )h n h n= −ɶ                                                                                                                (3.45) 

( ) ( )g n g n= −ɶ                                                                                                               (3.46) 

As an example of decomposition and reconstruction, Figure 3.14 shows the three-level 

db6 discrete wavelet decomposition of the signal, named “sumsin”.  The length of the signal 
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“sumsin” is 1000.  After down-sampled by two, the length of detail coefficients at 1st and 2nd 

level, 1d  and 2d , are 500 and 250 respectively; the length of approximation coefficients and 

detail coefficients at 3rd level, 3a and 3d , are 125.  After up-sampled by two, the length of each 

of the reconstructed coefficients,3A , 3D , 2D , and 1D  is 1000.  By adding3A , 3D , 2D , and 

1D  together, the signal “simsin” can be reconstructed. 

Figure 3.14 Decompose Signal at Depth 3 with Discrete Wavelet 
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3.2.3 Wavelet Packet Transform (WPT) 

Wavelet packets consist of a set of linearly combined wavelet functions.  The wavelet 

packets inherit properties such as orthonormality and time-frequency localization from their 

corresponding wavelet functions (Coifman and Wickerhauser, 1992).  A wave packet is a 

function with three indices, ( )i
j ,k tψ , where integers i , j , and k are the modulation, the scale, and 

the translation parameters, respectively, 

( ) ( )22 2 1 2                                     i j / i j
j ,k t t k i , ,...,ψ = ψ − =                                         (3.47) 

The wavelets iψ are obtained from the following recursive relationships: 

( ) ( ) ( )2 2 2i i

n
t h n t k

∞

=−∞
∑ψ = ψ −                                                                                    (3.48) 

( ) ( ) ( )2 1 2 2i i

n
t g n t n

∞+

=−∞
∑ψ = ψ −                                                                                        (3.49) 
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where ( )h n and ( )g n are quadrature mirror filter responses mentioned formerly.  The 

decomposition process is a recursive filter-decimation operation.  Figure 3.15 shows a full 

wavelet packet transform tree of a time-domain signal ( )f t up to the 3rd level of decomposition.  

It is seen that the wavelet packet transform contains complete decomposition at every level and 

hence can achieve a higher resolution in the high frequency region.  The recursive relations 

between the j th and the 1j+ th level components are  

( ) ( ) ( )2 1 2
1 1

i i i
j j jf t f t f t−

+ += +                                                                                                (3.50) 

( ) ( )2 1
1
i i

j jf t Hf t−
+ =                                                                                                          (3.51) 

( ) ( )2
1
i i

j jf t Gf t+ =                                                                                                              (3.52) 

where H and G are filtering-decimation operations and are related to ( )h n and ( )g n through 

{ } ( )2
n

H h n t
∞

=−∞
∑• = −                                                                                                    (3.53) 

{ } ( )2
n

G g k t
∞

=−∞
∑• = −                                                                                                    (3.54) 

After j level of decomposition, the original signal ( )f t can be expressed as 

( ) ( )2

1

j
i
j

i
f t f t

=
∑=                                                                                                              (3.55) 

The wavelet packet component signal ( )i
jf t can be expressed by a linear combination of wavelet 

packet functions ( )i
j ,k tψ as follows: 

( ) ( )i i i
j j ,k j ,k

k
f t c t

∞

=−∞
∑= ψ                                                                                                  (3.56) 

The wavelet packet coefficients i
j ,kc  can be obtained from 

( ) ( )i i
j ,k j ,kc f t t dt

∞

−∞
∫= ψ                                                                                                  (3.57) 

providing that the wavelet packet functions are orthogonal. 

( ) ( ) 0               if m nm n
j ,k j ,kt tψ ψ = ≠                                                                             (3.58) 
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Figure 3.15 Tree Structure for Wavelet Packet Analysis 

 

 

Figure 3.16 Components of the 3rd Level WPT for the Harmonic signal, f (t)   

 

For illustration, harmonic signal( )f t , defined by Equation 3.16 is decomposed by WPT.  

Figure 3.16 shows the eight wavelet packet component signals after three levels of wavelet 

packet decomposition of ( )f t  using db6 mother wavelet.  It can be seen that the sudden shift of 

the 1 Hz frequency at 10 second is quite visible in the most of the wavelet component signals.  
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3.3 Pattern Recognition Techniques 

A pattern can be a set of features formed in vector or matrix notation.  A pattern class is a 

family of patterns that share a set of common properties.  Pattern recognition involves techniques 

for assigning pattern to their respective class.  Given a pattern, its recognition/classification may 

consist of one of the following two tasks: (1) supervised classification (e.g., discriminant 

analysis) in which the input pattern is identified as a member of a predefined class; (2) 

unsupervised classification (e.g., clustering) in which the pattern is assigned to a hitherto 

unknown class.  The unsupervised classification can be applied to patterns not containing 

examples from the damage structure, but this approach is inherently limited to level one or level 

two damage classification, which identifies the presence of damage only.  When patterns are 

available from both the undamaged and damaged structure, the supervised classification 

approach can be taken to move forward to higher level damage identification to classify and 

quantify damage (Jain et al. 2000).   

One of the best known and most efficient approaches to pattern recognition is matching.  

As a generic operation in pattern recognition, matching is used to determine the similarity 

between two entities (points, curves, or shapes) of the same type.  Pattern matching approach has 

been widely applied to speech recognition and fingerprint identification in which the pattern to 

be recognized is matched against the stored template.  In this study, the pattern recognition is 

used to identify the damage location and level simultaneously by best matching the extracted 

features of the response signal of the structure against feature database while taking into account 

all possible damage scenarios.  Three matching algorithms are used separately to perform “best-

matching”.  They are: (1) correlation, (2) least square of distance (LSD), and (3) Cosh spectral 

distance (CSD).  

Correlation analysis calculates the correlation coefficient ijC  of two patterns (Posenato, 

et al. 2008).  A correlation value of +1 indicates that the two patterns are identical, a correlation 

value of -1 means that they are diametrically opposite, and a correlation value of 0 means that 

they are completely different.  A closer value to 1 shows a closer match between the two 

patterns.  

( )( ) ( )( )
( )( ) ( )( )

1

2 2

1 1

n

i ji j
k

ij
n n

i ji j
k k

S k S S k S
C

S k S S k S

=

= =

∑

∑ ∑

− −
=

− −
                                                                   (3.59) 
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Least Square Distance (LSD) has been widely applied for system modeling and 

identification, speech recognition and fingerprint identification.  It is defined as 

( ) ( )( )( )
1

2 2

1

n

ij i j
k

d S k S k
=
∑= −                                                                                          (3.60) 

The least value shows a closer match and vice-versa. 

Cosh Spectral Distance (CSD) gives an indication about the global difference between 

two patterns (Haritos and Owen, 2004; Owen, 2003; Trendafilocva, 2001).  It is defined as  

( )
( )

( )
( )

( )
( )

( )
( )1

1
2

2

n j ji i
ij

k
j j i i

S k S kS k S k
Co log log

n S k S k S k S k=
∑
 

= − + − −  
 

                                         (3.61) 

where n  is number of vector points in the pattern; ( )iS k and ( )jS k are the vector values of the 

patterns i and j at pointk ; and iS and jS  are the average values of the patterns i  and j , 

respectively. 

If i  is the unknown-damage feature pattern, and j  is a known feature pattern in the 

database, then the highest correlation coefficient, the lowest LSD coefficient, and the lowest 

CSD coefficient indicate the most similar pattern in the database which shows the most probable 

damage level and location for the unknown case. 

 

 



 60 

 

CHAPTER 4 - PRELIMINARY NUMERICAL STUDY 

In order to realize structural damage detection using signal-based pattern recognition, it is 

necessary to obtain in advance the vibration response of structure with different damage 

scenarios.  Because it is nearly impossible to let a practical structure experience all kinds of 

damage, the structural vibration response data with various possible damages is obtained through 

numerical simulation (Yam et al. 2003).  Figure 4.1 shows the proposed process of pattern 

recognition method for structural damage detection in this study.  It mainly includes five 

operation stages: (1) numerical simulation of the dynamic response of the structure under 

different known damage scenarios, (2) signal processing and feature extraction and 

normalization, (3) damage pattern database construction, (4) signal acquisition on a structure 

with an unknown damage, and (5) pattern matching to find the most probable damage case from 

the database which indicates the damage location and severity.  For continuous structural 

monitoring, it is necessary to update the numerical model once damage has been found to 

accurately represent the physical condition of the structure.  

As a preliminary numerical study, a three-story steel structure was initially constructed 

by a 2-D finite element model.  This model was developed by ANSYS to numerically simulate 

the structural dynamic response without damage, as well as with various possible damages.  For 

demonstration purpose, this model was also used to simulate “unknown” test damage cases on 

the structure and the associated dynamic response.    

4.1 Descriptions of Test Structure and FE Model 

A three-story steel structure shown in Figure 4.2(a) was used for this purpose.  The 

structure was 60 in. tall and consisted of 3 floors and 30 columns.  The floors were steel plates 

with dimensions of 26 20 2" " "× × and the columns were steel flat bars with dimensions 

of 20 1 0 25" " . "× × .  
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Figure 4.1 Flowchart of Pattern Recognition 

 

This structure was numerically constructed by ANSYS using a 2-D FE model, as shown 

in Figure 4.2(b).  The ANSYS element type for floors and columns were 2-D elastic beam 

(beam3).  The baseline geometric properties of the structure elements were: floor cross sectional 

area 40 2 inA = , moment of inertia 13 333 4 inI .= ; column cross sectional area 1 25 2 inA .= , and 

moment of inertia 36 51 10 4 inI . −= × .  The material properties of the model were mass 

density 47 345 10
2

4

lb.s

in
. −ρ = × , Poisson ratio 0 3.υ = , modulus of elasticity 72 9 10 psiE .= × .  The 

floor was assumed as rigid.  The ratio of unit nodal rotation moment of the floor to that of 

column was more than 31 10×  (see Appendix A -).  All the connections were assumed to be fixed, 

therefore there were a total of 3 horizontal DOFs in the numerical structure.  Figure 4.3 shows 
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the geometry of the 2-D model in the ANSYS Graphical User Interface (GUI).  Figure 4.4 shows 

the input window of structure element geometry properties (also called real constants). 

Figure 4.2 3-D Steel Structure and 2-D FE Model 
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Figure 4.3 2-D Model in ANSYS Graphical User Interface 
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Figure 4.4 Element Geometric Properties (Real Constants) Screen 

 

 

The damage was simulated using the baseline FE model with various dynamic properties, 

i.e. EI, of the damaged components.  In order to simplify the problem, various damage cases 

were introduced by symmetrically reducing the stiffness of columns at different stories to 

preserve the symmetry of the structure.  For instance, the stiffness of the columns at the second 

story and at the third story was reduced by 40% and 20%, respectively.  This damage case was 

denoted as 0-40-20 in this study.  

4.2 Numerical Simulation of the Dynamic Response of the Structure 

Transient dynamic analysis (sometimes called time-history analysis) is a technique used 

by ANSYS to determine the dynamic response of a structure under the action of any general 

time-dependent load.  This type of analysis can be used to determine the time-varying 

displacements, strains, stresses, and forces in a structure as it responds to any combination of 

static, transient, and harmonic loads.  The basis equation of motion solved by a transient dynamic 

analysis is 

[ ]{ } [ ][ ] [ ]{ } ( ){ }M u C u K u F t+ + =ɺɺ ɺ                                                                               (4.1) 
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where: 

             [ ]M  = mass matrix 

             [ ]C  = damping matrix 

             [ ]K  = stiffness matrix 

             { }uɺɺ  = nodal acceleration vector 

             { }uɺ  = nodal velocity vector 

             { }u  = nodal displacement vector 

             ( ){ }F t = load vector 

The ANSYS program uses the Newmark time integration method to solve the equation at 

discrete time points.  The time increment between successive time points is called the integration 

time step which determines the accuracy of the transient dynamic solution.  The smaller the time 

step, the higher the accuracy.  A time step that is too large will introduce error that affects the 

response of the higher modes and hence the overall response of the structure.  For the Newmark 

time integration scheme, it has been found that using approximately twenty points per cycle of 

the highest frequency of interest results in a reasonable accurate solution.  That is, if f is the 

frequency (in cycles/time), the integration time step (ITS) is equal to
1

20 f
 (ANSYS). 

Alpha damping and Beta damping are used to define Rayleigh damping constants 

α andβ .  The damping matrix [ ]C is calculated by using these constants to multiply the mass 

matrix [ ]M and stiffness matrix[ ]K : 

[ ] [ ] [ ]C M K= α + β                                                                                                         (4.2) 

The value of α  and β  are calculated from modal damping ratios,iζ .  If iω is the natural circular 

frequency of modei , α  and β  satisfy the relation 

1 1

2 2i
i i

α βζ = +
ω ω

                                                                                                            (4.3) 

In many practical structural problems, alpha damping (or mass damping) may be ignored 

( 0α = ).  In such cases, β  can be evaluated from known values of iζ  and iω , as 
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2 i

i

ζβ =
ω

                                                                                                                           (4.4) 

only one value of β  can be input in a load step, so the most dominant frequency active in that 

load step was chosen to calculate β .  

In this preliminary numerical study, the excitation force on the structure was an impulse 

force of  50 lb  with 0.02 seconds duration acting at node A  (see Figure 4.2(b)).  Transient 

dynamic analysis was performed by ANSYS to determine the dynamic response at node B (see 

Figure 4.2(b)) under such a step impulse load.  The impulse load was defined using load steps 

(L.S).  The time history curve in Figure 4.5 shows the load steps and time steps of the applied 

impulse force.  Load and time at the end of load segment in each load step were defined in the 

ANSYS windows of apply F/M on nodes (see Figure 4.6) and time and time step options (see 

Figure 4.7), respectively.  To determine the time step size, a preliminary modal analysis was 

conducted on this structure to calculate the modal frequencies.  Since the highest frequency was 

7.809Hz for baseline structure (see Appendix), the time step size should be smaller than 0.006 

seconds (
1 1

0 006
20 20 7 809

.
f .

= =
×

).  The value of 0.004 was chosen as the time step size (equal 

to 250 Hz sampling frequency) and entered at the time step size box in Figure 4.7.  Each defined 

load step was written and saved in a file (see Figure 4.8) and then solved by ANSYS.  When 

specifying the damping in the transient analysis of the structure, the damping valueβ  in all load 

step files will be changed to a certain value to meet specified damping ratio,ζ , according to the 

Equation 4.4.  These new load step files will need to be re-executed by ANSYS.  

   The dynamic response of a certain node was viewed in TimeHist Postprocessing from 

the ANSYS main menu.  Node B  and its translation nodal DOF result were selected in the Add 

Time-History Variable window (see Figure 4.9) and defined in the Define Nodal Data dialog box 

(see Figure 4.10).  The translation velocity and acceleration results of node B  were the first and 

second derivative of the corresponding translation displacement result at nodeB , respectively 

which were defined in the Derivative of Time-History Variables window (see Figure 4.11).  All 

of the time-history results of node B  can be inquired and graphed in the Time History Variables 

window (see Figure 4.12).  For illustration, Figure 4.13 shows the numerical acceleration result 

for structure under baseline condition.   
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Figure 4.5 Load Steps and Time Steps 

 

 

Figure 4.6 Apply F/M on Nodes Window 
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Figure 4.7 Time and Time Steps Options Window 

 

 

 

Figure 4.8 Write Load Step File Window 
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Figure 4.9 Add Time-History Variable Window 

 

 

 

Figure 4.10 Define Nodal Data Window 
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Figure 4.11 Derivative of Time-History Variables Window 

 

Figure 4.12 Time History Variables Window 
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Figure 4.13 Acceleration Signal for Baseline Condition (Damage Case 0-0-0) 

 

4.3 Signal Processing and Feature Extraction and Normalization 

The purpose of signal processing and feature extraction is to reduce the raw data and 

extract features of the signal that can be used for identification of the structural condition, hence, 

damage detection.  Feature normalization is a procedure to “normalize” feature sets so that 

feature changes caused by operational and environmental variations of the system can be 

separated from structural changes of interest.  In a preliminary effort, frequency-based features 

were extracted by FFT.  Figure 4.14(a), (b), (c) and (d) show the FFT spectrums of acceleration 

signals of the structure under damage cases 0-0-0, 20-40-60, 60-20-40 and 60-60-60, 

respectively.  The frequencies and magnitudes corresponding to the three peaks in each of the 

FFT spectrums are listed in Table 4.1.  It shows that due to different damage cases, the peak 

magnitude changes are more sensitive than the peak frequency shifts.  The FFT magnitude 

vectors in frequency domain were selected as the sensitive features which also preserved the 

information of frequency shifting.  Such a set of vectors formed a one-dimension pattern to 
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present a unique damage condition.  Each magnitude vector in a pattern was normalized with 

respect to the square root of the sum of squares of each one in the pattern.   

Figure 4.14 FFT Spectrums for Different Damage Case: (a) Damage Case 0-0-0 (Baseline 

Condition), (b) Damage Case 20-40-60, (c) Damage Case 60-20-40, (d) Damage Case 60-60-

60 
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Table 4.1 Peak Values on the FFT Spectrums 

Peak 1 Peak 2 Peak 3 Damage 

Case frequency 

(Hz) 

magnitude frequency 

(Hz) 

magnitude frequency 

(Hz) 

magnitude 

0-0-0 1.996 1911.9 5.489 3220.8 7.984 1351.7 

20-40-60 1.497 1858 3.992 2468.5 5.988 709.95 

60-20-40 1.497 1376.3 3.992 3601.2 6.487 1181.9 

60-60-60 1.497 882.4 3.493 2429.4 4.990 1366.1 

 

At the second phase of the preliminary numerical study, time-frequency-based features 

were extracted by CWT.  The db6 wavelet was used as the mother wavelet.  The acceleration 

signal was decomposed by CWT and the extracted features were time-scale-based CWT 

coefficients.  For example, Figure 4.15(a), (b), (c) and (d) show the CWT coefficients contours 

of acceleration signals of the structure under the selected damage cases.  The value of the 

“scale a ” was proportional to the reciprocal of the frequency, and “time b ” was the moment of 

the wavelet along the time axis.  Lighter shading in the contour indicates a higher wavelet 

coefficient value.  Comparison of the four figures shows that the time-frequency-based CWT 

coefficients are sensitive to different damage cases.  Such a set of coefficient vectors formed a 

two-dimensional pattern which presented a unique condition for a damage case.  Each coefficient 

vector in a pattern was also normalized with respect to the square root of the sum of squares of 

the corresponding pattern. 
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Figure 4.15 CWT Contours for Different Damage Cases: (a) Damage Case 0-0-0 (Baseline 

Condition), (b) Damage Case 40-60-60, (c) Damage Case 60-40-60, (d) Damage Case 60-60-

60 

 

4.4 Damage Pattern Database Construction 

As mentioned earlier, different damage levels and locations were numerically simulated 

by changing the properties of the baseline 2-D FE model of the structure, i.e. EI, of the damaged 

components.  For demonstration purpose, the damage level was set on a scale of 0 to 60% with 

increments of 20% at different locations.  A total of 64 sets of known damage cases, including 

the baseline condition, were selected to represent the possible structural damage conditions (level 

and location) for the sample structure.  All the 64 sets of simulated acceleration response were 

transformed by FFT and CWT into FFT magnitude vectors and CWT coefficient matrices, 
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respectively.  The resulting 64 sets of normalized FFT magnitude vectors and 64 sets of CWT 

coefficient matrices form the representative known damage feature patterns in the database 

individually.  The three-dimensional graph of the FFT pattern database is shown in Figure 4.16 

Figure 4.16 FFT Pattern Database 3-D Graph 
1
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4.5 Case Studies and Pattern Matching 

In order to demonstrate the applicability of the proposed method, twenty damage cases 

slightly different from identical cases in the database were numerically simulated by changing 

the baseline 2-D FE model, and the corresponding dynamic response under the impulse 

excitation was also numerically generated by ANSYS.  These test cases listed in Table 4.2 were 

grouped into four kinds of damage categories: single damage location (G1), multiple damage 

locations (G2), multiple damage locations and severities (G3), and high damage severity (G4).  

Gaussian white noise was added to the generated acceleration signals of the test cases to simulate 

the condition of signal contaminated with noise.  The noise intensity is defined by the signal-to-

noise ratio (SNR): 

( ) 1020db   S

N

A
SNR log

A
=                                                                                                (4.5) 

where SA  and NA  are the root-mean-square (RMS) value of the acceleration signal and the noise 

respectively.  The signal-to-noise ratio (SNR) was chosen as 5 dB.  The damping ratio (ζ) was 

chosen as 2% when generating the structure dynamic response with damping.   

Table 4.3 shows the signal properties of some test cases.  As an example, Figure 4.17 

shows the generated acceleration signals for damage case 0-38-38 under the damping and noise 

environmental conditions. 

Table 4.2 Numerical Test Cases 

single damage 

location  

(G1) 

multiple damage 

locations  

(G2) 

multiple damage locations 

& severities  

(G3) 

highest damage 

severity  

(G4) 

0-0-19 0-38-38 19-38-58 0-58-58 

0-19-0 38-0-38 19-58-38 58-0-58 

19-0-0 0-38-38 38-19-58 58-58-0 

0-0-58 38-0-38 38-58-19 58-58-58 

0-58-0  58-19-38  

58-0-0  58-38-19  
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Table 4.3 Signal Properties 

Displacement Velocity Acceleration 
Damage Case 

min max min max min max 

0-19-0 -0.0720 0.0699 -1.1211 1.2030 -24.3836 63.3905 

19-0-0 -0.0716 0.0694 -1.1856 1.1837 -28.3270 63.3905 

0-0-19 -0.0749 0.0743 -1.1530 1.2674 -25.7285 63.6380 

58-38-19 -0.0848 0.0823 -1.1788 1.2061 -22.7577 63.6381 

38-19-58 -0.1003 0.0960 -1.1553 1.2535 -18.5389 64.1505 

58-0-58 -0.0978 0.1045 -1.2639 1.2535 -19.9688 64.1506 

no 

damping 

58-58-58 -0.1086 0.1123 -1.1608 1.2535 -17.8047 64.1506 

0-19-0 -0.0556 0.0530 -0.8550 1.1622 -23.1592 63.0510 

19-0-0 -0.0537 0.0532 -0.9587 1.1622 -23.3039 63.0510 

0-0-19 -0.0636 0.0627 -0.9878 1.1879 -21.4090 63.3615 

58-38-19 -0.0678 0.0680 -0.9831 1.1880 -21.1116 63.3618 

38-19-58 -0.0910 0.0830 -1.0194 1.2433 -16.1213 64.0047 

58-0-58 -0.0898 0.0893 -1.0665 1.2433 -16.2771 64.0047 

Damping 

ζ=2% 

58-58-58 -0.0908 0.0892 -0.9928 1.2433 -15.7636 64.0048 
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Figure 4.17 Acceleration Signals for Damage Case 0-38-38  

 

As examples to show the test results, Figure B.1 to Figure B.4 show the FFT pattern 

correlation matching results for the test damage case 19-0-0, 0-38-38, 58-38-19 and 58-58-58 

under four environmental conditions, respectively.  The highest correlation value corresponds to 

the most similar pattern in the database.  In Figure B.1, the highest correlation value for each 

environmental condition was achieved for pattern 20-0-0 (damage condition: 20-0-0) in the FFT 

pattern database, correctly detected the closest damage case in the database.  The similar 

correlation matching results can also be found in Figure B.2, Figure B.3, and Figure B.4 

 Figure B.5 to Figure B.10 show the FFT pattern least square distance (LSD) matching 

results for the test damage case 19-0-0, 0-38-38, 58-38-19 and 58-58-58 under four different 

environmental conditions, respectively.  The lowest LSD value corresponds to the most similar 

pattern in the database.  In Figure B.5 and Figure B.6, the lowest LSD values for each 
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environmental condition were achieved for pattern 20-0-0 (damage condition: 20-0-0) and 

pattern 0-40-40 (damage condition: 0-40-40) in the FFT pattern database, respectively. These 

matching results correctly detected the closest damage cases in the database which indicated the 

damage locations and levels.  In Figure B.7 and Figure B.8, the lowest LSD values for 

environmental conditions of damping and damping & noise were achieved for pattern 40-20-40 

(damage condition: 40-20-40) and pattern 40-60-60 (damage condition: 40-60-60) in the FFT 

pattern database, respectively.  These matching results failed to indicate the closet damage 

locations and level in the database.      

Figure B.9 to Figure B.12 show the FFT pattern Cosh spectral distance (CSD) matching 

results for the test damage case 19-0-0, 0-38-38, 58-38-19 and 58-58-58 under four different 

environmental conditions, respectively.  The lowest CSD value corresponds to the most similar 

pattern in the database.  In Figure B.9 and Figure B.10 the lowest CSD values for each 

environmental condition were achieved for pattern 20-0-0 (damage condition: 20-0-0) and 

pattern 0-40-40 (damage condition: 0-40-40) in the FFT pattern database, respectively.  These 

matching results correctly indicated the closest damage cases in the database which indicated the 

damage locations and levels.  In Figure B.11 and Figure B.12, the lowest CSD values: for 

environmental conditions of none and noise were achieved for pattern 60-20-40 (damage 

condition: 60-20-40) and pattern 60-40-60 (damage condition: 60-40-60) in the FFT pattern 

database, respectively; and for environmental conditions of damping and damping & noise were 

achieved for pattern 40-0-40 (damage condition: 40-0-40) and pattern 20-0-60 (damage 

condition: 20-0-60) in the FFT pattern database, respectively.  These matching results failed to 

indicate the closet damage locations and level in the database.    

Similar as FFT pattern matching, Figure B.13 to Figure B.24 show the CWT pattern 

matching results for  the test damage case 19-0-0, 0-38-38, 58-38-19 and 58-58-58 under four 

environmental conditions by using correlation, LSD and CSD matching algorithms.  

 Table 4.4 shows the FFT and CWT pattern matching results for all the test cases by 

using the three different matching algorithms.  The results show that correlation algorithm can 

best perform pattern matching to identify the damage case even when the signal is highly 

contaminated with noise and structure has a damping slightly different from the damping used in 

the database. 
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Table 4.4 FFT and CWT Pattern Recognition Results 

FFT Matching Correctness CWT Matching Correctness Environmental 

condition 

Damage 

condition Correlation LSD CSD Correlation LSD CSD 

G1 6/6 6/6 3/6 6/6 6/6 3/6 

G2 4/4 4/4 4/4 4/4 4/4 0/4 

G3 6/6 6/6 0/6 6/6 6/6 0/6 
None 

G4 4/4 4/4 0/4 4/4 4/4 0/4 

G1 6/6 6/6 3/6 6/6 6/6 3/6 

G2 4/4 4/4 4/4 4/4 4/4 0/4 

G3 6/6 6/6 0/6 6/6 6/6 0/6 
Noise Only 

G4 4/4 4/4 0/4 4/4 4/4 0/4 

G1 6/6 6/6 3/6 6/6 6/6 0/6 

G2 4/4 4/4 4/4 4/4 4/4 0/4 

G3 6/6 1/6 0/6 6/6 6/6 0/6 
Damping Only 

G4 4/4 0/4 0/4 4/4 4/4 0/4 

G1 6/6 6/6 3/6 6/6 6/6 0/6 

G2 4/4 4/4 4/4 4/4 4/4 0/4 

G3 6/6 1/6 0/6 6/6 6/6 0/6 

Damping 

& 

Noise 
G4 4/4 0/4 0/4 4/4 4/4 0/4 

 

4.6 Discussion on Preliminarily numerical Study 

The structure under different damage scenarios shows unique patterns that are formed by 

frequency magnitudes in frequency domain.  It also preserves the information of frequency 

shifting.  These patterns were successfully used as sensitive features for damage detection.  

Continuous wavelet coefficients show the changes in both frequency and time domain.  The 

patterns formed by these coefficients were also successfully used as sensitive features.  Pattern-

matching method with the two types of sensitive features has been proved to be an efficient tool 

to detect damage level and location with more accuracy. 
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CHAPTER 5 - EXPERIMENTAL TEST AND VERIFICATION  

Following the successful initial numerical study, which was conducted on a 2-D 

simulation of a three-story structure, the work progressed into the experimental verification 

phase.  At this phase, a three-story steel structure was experimentally constructed.  An impulse 

applicator was developed to simulate a consistent impulse load on the experimental structure.  A 

wireless data acquisition system was used to sample and record the vibration response of the 

structure under impulse load excitation.  An experimentally-tuned 3-D finite element model of 

the structure was developed using ANSYS to numerically simulate the structural dynamic 

response without damage, as well as with various possible damages excited by an impulse load.  

Structural vibration signals from numerical simulations and experimental measurements were 

then decomposed by fast Fourier transform or continuous Wavelet transform for feature 

extraction.  The normalized signal features from numerical simulations generated for the baseline 

(healthy) structure, as well as with various possible damages were collected into a damage 

pattern database.  The normalized signal features of the experimental measurement for an 

unknown damage case, was then compared against this database to detect the most probable 

damage case, using three different pattern matching algorithms separately: (1) correlation, (2) 

least square distance, and (3) Cosh spectral distance.  Twenty-eight damage cases were 

experimentally simulated on the structure as “unknown” damage to demonstrate the validity and 

accuracy of the proposed damage detection method. 

 In addition, Wavelet Packet Transform (WPT) was also investigated for feature 

extraction and pattern recognition.  The db6 wavelet was used as the mother wavelet for CWT 

feature extraction.  Meanwhile, the choice of wavelet functions was also discussed.  

5.1 Design and Construction of the Representative Test Structure 

To simplify the experimental demonstration, a small simple structure was designed and 

constructed.  The structure took two theoretical assumptions: 1) the rigid floor; 2) the rigid 

connections.  As shown in Figure 5.1, the structure was 36 inches tall and consisted of 3 floors 

(steel slabs) and 30 columns (steel flat bars).  Each floor was supported on ten columns.  The 
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steel was cold rolled steel.  The clear height for each story was 12 inches.  The dimensions, 

weights and amount of the steel slabs and the flat bars are listed in Table 5.1.  The dimensions of 

the slabs and flat bars on the structure satisfied stability requirements and rigid floor theoretical 

assumption (see Appendix C -). 

Figure 5.1 Test Three-Story Steel Structure 

 

 

Table 5.1 Dimensions, Weights and Amount of Structure Components 

Component 

Dimensions 

Height × Width 

(in × in) 

Thickness 

(in) 

Weight 

(lb/piece) 
Amount Location 

10 × 15 1 42.6 3 1-3 floor Steel Slab 

(Floor) 20 × 20 1 114 1 foundation 

16.5 × 0.75 0.125 0.319 20 2nd & 3rd floor Steel Flat Bar 

(Column) 14.25 × 0.75 0.125 0.319 10 1st floor 
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 For easy removal of the columns from the structure and easy replacement of the columns 

for different damage scenario simulation, bolts were used to connect the steel slab and the steel 

flat bar.  To make the rigid connection between the steel slab and the steel flat column, four 

pieces of steel angles (¼ ×1 ¼ ×1 ¼; length: 10 inches) were welded on the two faces of the 

short edges of the floor plates (see Figure 5.2 and Figure 5.3); and two pieces of steel angles (¼ 

×1 ¼ ×1 ¼; length: 10 inches) were welded on the top face and on the short edges of the 

foundation slab.  A total of fourteen pieces of steel angles were used.  The columns were 

connected to the angles vertical legs using four bolts (1/4; Grade: 5).  To prevent rotation and 

drift, the foundation slab was fixed to the ground by using hydrocal plaster and also two steel 

pipes (see Figure 5.4).               

Figure 5.2 Slab and Flat Bar Connection 
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Figure 5.3 Slab and Flat Bar Connection  

 

 

 

Figure 5.4 Foundation Slab Fixing 
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5.2 Impulse Applicator 

To apply a consistent impulse force on the structure, a steel ball with a diameter of 1.75 

inches and a mass of 31 546 10 2lb.s /in. −×  was used.  As shown in Figure 5.5, the steel ball was 

magnetically adhered to the top of a frame.  It was tied by a 20.5 inches chain to this frame so 

that when the magnet was turned off, the ball dropped 20.5 inches traveling on a circular path to 

its lowest position, where it hit the third floor slab and then bounced off the structure to create an 

impulse force on the structure.   

The impact was mostly elastic; however, since the response was normalized, the impulse 

magnitude did not affect the recognition process as long as it did not push the structure into non-

linear response range.  This fact was demonstrated by investigating the FFT feature patterns of 

the structural acceleration response signals caused by two different impulse forces (see Figure 

5.6) applied on the structure separately.  The acceleration signals caused by the two different 

levels of excitation are shown in Figure 5.7.  By transforming the two signals into FFT 

spectrums, it was found that the relative low level impulse force only caused relative low 

magnitude in the FFT pattern but it did not affect the pattern’s shape.  After normalizing the two 

patterns, it resulted in the exactly same two patterns (see Figure 5.8).  The correlation coefficient 

for such two patterns was 0.97.  The impulse force magnitude did not affect the FFT pattern’s 

shape as long as the force did not push the structure into non-linear range.  The same result can 

also be found in Figure 5.9.  The normalized CWT contours of structure response under low and 

high impulse force excitation were exactly the same.  The correlation coefficient for such two 

contours was 0.96.  The data normalization procedure eliminated the changes in the pattern 

caused by impulse magnitude variability.  Thus there was no need to measure the impulse 

magnitude.  The swing ball system in Figure 5.6(Left) was used to apply the impulse force 

during this experimental study. 
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Figure 5.5 Close View of Magnetic Base, Ball, Chain and Frame 
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Figure 5.6 [Left] Relative High level Impulse Force Applicator; [Right] Relative low level 

Impulse Force Applicator 
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Figure 5.7 Structure Acceleration Signals Caused by Two Different Level Excitations 
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Figure 5.8 Normalized FFT Spectrums of Structure Accelerations by Two Different Level 

Impulse Excitations  
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Figure 5.9 Normalized CWT Contours of Structure Response under Different Level 

Impulse Excitations 

 

 

5.3 Sensor and Data Acquisition System 

5.3.1 Accelerometer 

The accelerometer used in the experimental test was MicroStrain, Inc.’s +/-2g G-Link.  It 

has an integral tri-axial accelerometer built onto the board.  The full scale range is approximately 

+/-2g.  The physical axis orientation for each accelerometer channel is indicated in the Figure 

5.10.  G-Link is a complete wireless measurement system that transmits data on a continuous 

basis for a fixed period of time.  In addition, G-Link has the capability to datalog sensor or 

voltage data to onboard nonvolatile memory.  Part of the G-Link’s specification is listed in Table 

5.2.  
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Figure 5.10 G-Link and Its Physical Axis Orientation 

 

 

Table 5.2 G-Link Specifications 

On-board acceleration Triaxial MEMs accelerometers, Analog Devices 

ADXL202  

Accelerometer range ±2 g 

Measurement Accuracy 10mg 

resolution 200µg  (data sample resolution 12bit) 

Analog to digital (A/D) converter Successive approximation type, 12 bit resolution 

Data storage capacity 2 megabytes (approximately 1,000,000 data points) 

Data logging mode Log up to 1,000,000 data points (from 100 to 65,500 

samples or continuous) at 32 Hz to 2048 Hz 

Sensor event driven trigger Commence data logging when threshold exceeded 

Dimensions 58mm × 43mm × 26mm without antenna 

Weight  46 grams 

Software Agile-LinkTM Windows XP compatible 

 

5.3.2 Base Station 

G-Link can be configured and triggered to sample data from the wireless USB base 

station (see Figure 5.11), and also the sample data stored on G-Link can then be wirelessly 

downloaded to computer at a later time from the wireless base station. 
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Figure 5.11 USB Base Station 

 

5.3.3 Software 

Agile-LinkTM software (see Figure 5.12) provides the functionality to communicate with 

G-Link and also to configure streaming and datalogging on the G-Link.  The configuration 

window shown in Figure 5.13, allows the user to activate desired channels.  The channel 

configuration settings apply for all modes of data collection, including streaming and data 

logging.  A number of other tabs exist on the configuration menu.  These tabs allow the user to 

configure different parameters of the device.  These include real-time streaming parameters (how 

long you want to stream, etc.), datalogging parameters (i.e. the duration to datalog for, sample 

rate, etc.) and power management functions. 
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Figure 5.12 Agile-LinkTM software interface 

  

 

Figure 5.13 G-Link Configuration Screen 
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In this experimental test, the G-Link was triggered to sample and log from the base 

station.  The sampling rate for datalogging was configured as 2048 Hz and the measured time 

duration was configured as 4.88 seconds. 

5.4 Test Procedure 

The following procedure was followed to conduct the experimental test. 

-1. Install the G-Link on the top of the third floor as shown in the Figure 5.14; connect 

the base station to the PC. 

-2. Select a damage case and simulate this damage case on the structure by removing 

corresponding columns from the structure.  As an example, Figure 5.15 shows the simulated 

damage case 20-0-20.  In order to simplify the problem, the columns are removed symmetrically 

to preserve the symmetry of the structure.  

-3. Set parameters on the Agile-LinkTM software (for example, the channel action, 

sampling rate, sampling duration, etc.). 

-4. Apply the impulse force on the still structure for each selected damage case and 

record the acceleration response. 

-5. Analyze the acceleration data. 
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Figure 5.14 Installation of the G-Link 

 

 

Figure 5.15 Damage Simulation on experimental structure 
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5.5 Damage Pattern Database 

5.5.1 3-D FE Model 

A 3-D FE model of the structure was constructed by ANSYS, as shown in Figure 5.16.  

The element type for floors and columns was shell63 and beam4, respectively.  In total, there 

were 126 elements and 142 nodes in the model.  The fully constrained boundary condition and 

rigid connection between floor and column were also applied to the model.  Transient dynamic 

analysis as detailed described in section 4.2, was carried out to determine the dynamic response 

of the structure under a step impulse force.  The time-step was 0.000488 (1/2048).  

Figure 5.16 3-D FE model 

   

 

 

 

 



 97 

Table 5.3 3-D FE Model Baseline Properties 

 Floor Column 

Dimension 10” × 15” 10” (length) 

Element Type shell63 (elastic 4node 63) beam4 (3D elastic 4) 

shell thickness at node I TK(I):   1 cross-section area =0.093 

                         at node J TK(J):  1 area moment of inertia Izz 

=0.000119 

                        at node K TK(K): 1 area moment of inertia Iyy 

=0.004359 

                        at node L TK(L):  1 thickness along Z axis 

=0.75 

No.1 

(for second 

and third 

floor 

columns) 

thickness along Y axis 

=0.124 

cross-section area =0.0915 

area moment of inertia Izz 

=0.000113 

area moment of inertia Iyy 

=0.004289  

thickness along Z axis 

=0.75 

Real Constant 

 

No.2 (for 

first floor 

columns) 

thickness along Y axis 

=0.122 

linear isotropic 

modulus of elasticity of steel: 29,000ksi 

poisson ratio: 0.3 

Material 

Properties 

density: 0.0007345 
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5.5.2 Tuning the 3-D FE Model 

To make 3-D FE model close to the physical baseline structure, the properties of the 

model were tuned against the physical structure.  The FFT pattern of the acceleration signal 

obtained by FE model simulation was correlated to the one obtained by experimental test on the 

baseline (healthy) structure.  The geometry dimensions and element types of the model were 

adjusted to achieve the highest FFT pattern correlation value.  The FE model with the parameters 

in Table 5.3 was the final tuned model which corresponded to the relatively highest correlation 

value (correlation value =0.9).  The tuned FE model represented the structure’s baseline 

condition and was used in setting damage pattern database.   

5.5.3 Constructing Damage Pattern Database 

Various damage cases were introduced by symmetrically removing columns at different 

locations, which simulated the failure of one or more columns in the structure.  64 damage cases 

including the baseline condition were designed to represent possible structural damage 

conditions.  In this study, the numerical dynamic responses of the structure under the 64 damage 

cases were simulated by removing corresponding columns from the 3-D FE model of the 

structure.  The resulting 64 sets of normalized FFT magnitude vectors and 64 sets of CWT 

coefficient matrices formed the damage feature patterns in the database. 

5.6 Case Studies and Pattern Matching 

Twenty-eight experimental damage cases, as listed in Table 5.4 were chosen to test the 

proposed damage detection procedure and the associated patterns and pattern-matching 

algorithms.  The acceleration response of the structure with each damage case was measured 

after application of the impulse using the impulse applicator.  These acceleration signals were 

then de-noised and transformed by FFT and CWT.  As an example, Figure 5.17 shows the 

original and the de-noised signals of experimental acceleration of the structure under damage 

case 20-20-40.  The three pattern-matching algorithms were used for pattern recognition.   

As examples of the test results, Figure 5.18 to Figure 5.20 show the FFT and CWT 

pattern-matching results for damage case 0-0-20 by using correlation, least square distance and 

Cosh spectral distance, respectively.  Other examples are shown in Appendix D - The highest 

correlation value, the lowest least square distance value, and the lowest Cosh spectral distance 
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value indicate the most similar pattern in the database which indicates the most probable damage 

level and location for the unknown case.   

All of the experimental test results indicate that both FFT and CWT patterns can preserve 

the damage information in term of level and location.  However CWT can be more efficient to 

detect the damage, especially in terms of location when the output signal is from more than one 

sensor.  Among all the three pattern-matching algorithms explored in this study, correlation 

algorithm could successfully perform a better recognition of the FFT and CWT patterns to detect 

damages for the entire experimental test cases; least square distance could also successfully 

recognize CWT patterns to detect damages for the entire experimental test cases, and all of the 

FFT patterns except for three multiple extreme damage case, 20-60-20, 40-40-40, 40-60-20 (see 

Figure D.26); and finally, Cosh spectral distance algorithm failed to detect the damage for most 

of the FFT and CWT patterns of the experimental cases. 

Table 5.4 Experimental Test Cases 

Single Damage  

Location 

Double Damage 

Locations 

Triple Damage 

Locations 

0-0-20 0-0-60 0-20-20 20-40-0 20-20-20 40-40-40 

20-0-0 0-60-0 20-0-20 40-20-0 20-20-40 40-60-20 

0-20-0 60-0-0 20-20-0 40-0-20 20-40-20  

0-0-40  40-40-0 0-20-40 20-60-20  

0-40-0  0-40-40 0-40-20 40-20-20  

40-0-0  40-0-40  40-40-20  

 

There are a number of wavelet functions that can be used as the mother wavelet for CWT 

feature extraction.  The choice of wavelet function will affect the computing time and pattern-

matching resolution.  For demonstration purpose, some widely used wavelet functions were 

chosen as mother wavelet for CWT- based pattern extraction (see Table E.1).  Then correlation 

was used to perform pattern-matching to detect the selected three experimental damage cases: 0-

0-20, 20-20-0, and 20-20-40.  The successful detection results for all the three experimental 

damage cases by using different wavelet functions indicated that all of the selected wavelet 

functions could be used as mother wavelet for CWT-based sensitive feature extraction.  The 
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matching resolution based on each wavelet function was calculated as the difference between the 

two highest correlation values divided by the highest correlation value, as listed on Table E.1 for 

each of the three experimental test cases.  It shows that Haar, Daubechies, Symlets and Gaussian 

wavelets have the best performance.  It is also found that Haar, Daubechies and Gaussian 

wavelets take less computing time.  In contrast, Meyr and Dmey wavelets take much longer 

computing time.     

Figure 5.17 Experimental Acceleration Signals of Structure under Damage Case 20-20-40, 

Original and De-noised 

 

5.7 Discussion on Experimental Study 

Experimental tests and case studies further validated the overall feasibility of the method 

for damage detection.  Fourier and especially wavelet transform could well extract and preserve 

the features of the signal under damage conditions.  Since the CWT pattern preserves the 

frequency and time sensitive features, it results in high pattern-matching resolution than FFT 
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pattern does.  Wave function affects CWT-based pattern extraction and pattern-matching 

resolution.  The wavelet function is chose based on its shape and its ability to analyze the signal 

5.8 WPT-Based Feature Extraction and Pattern Recognition 

Yen and Lin (2000) investigated the feasibility of applying the Wavelet Packet Transform 

(WPT) to the classification of vibration signals.  They introduced the wavelet packet node energy 

and demonstrated that the node energy could be a robust signal feature for classification.  

Following this work, many researchers have derived a lot of feature indexes based on WPT node 

energy for damage detection.  Detailed descriptions of these feature-indexes were included in 

chapter two.  In this experimental study, energy variation vectors were selected as sensitive 

features.  The energy of each WPT component signal ( )i
jf t is defined as 

( )2i i
j jE f t dt

∞

−∞
∫=                                                                                                              (5.1) 

The energy variation of each component i
jE  due to damage is 

� ii i
jj jV E E= −                                                                                                                    (5.2) 

where �
i

jE  is the baseline (health condition) component energy used as reference. 

 The acceleration signal was decomposed by WPT using db6 wavelet function.  The 

wavelet packet decomposition level was set to 12 which resulted in a total of 4096 wavelet 

packet components after decomposition.  The energy variation i
jV  for each component was 

calculated by Equation 5.2.  Such a set of energy variation vectors formed a one-dimensional 

pattern which presented a unique condition under different damage case.  Each energy vector in a 

pattern was also normalized with respect to the square root of sum of squares of each one in the 

pattern.   

Same as FFT and CWT pattern database construction, the dynamic response of the 

structure under the 64 damage cases were numerically simulated by removing the corresponding 

columns from the 3-D FE model.  All of the 64 sets of the simulated acceleration response by 

ANSYS were transformed by WPT into energy variation vectors.  The resulting 64 sets of WPT 

energy variation vectors formed the damage feature patterns in the database. 

Correlation algorithm was used to perform the pattern-matching.  Six experimental 

damage cases: 0-0-20, 0-0-40, 0-20-0, 20-20-0, 0-20-20, and 20-20-20 were selected to 
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demonstrate the validity and accuracy of this method.  The results shows that WPT-based energy 

variation vectors can best preserve the dynamic response features of a structure under damage 

with low level and few locations.  And when increasing the level of damage and the number of 

damage location, the detection result will be overestimated (see Figure 5.21 to Figure 5.26).  In 

order to overcome this drawback, increasing the number of sensors and employing an iterative 

detection process can be explored as a recommended future research work.    
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Figure 5.18 Correlation Matching for Damage Case 0-0-20, FFT & CWT Pattern Matching 
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Figure 5.19 Least Square Distance (LSD) Matching for Damage Case 0-0-20, FFT & CWT 

Pattern Matching 
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Figure 5.20 Cosh Spectral Distance (CSD) Matching for Damage Case 0-0-20, FFT & CWT 
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Figure 5.21 Correlation Matching for Damage Case 0-0-20, WPT Pattern Matching 
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Figure 5.22 Correlation Matching for Damage Case 0-20-0, WPT Pattern Matching 

WPT Pattern Matching

0-20-0, 0.221094696

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0-
0-

20

0-
20

-0

0-
20

-6
0

0-
40

-4
0

0-
60

-2
0

20
-0

-0

20
-0

-6
0

20
-2

0-
40

20
-4

0-
20

20
-6

0-
0

20
-6

0-
60

40
-0

-4
0

40
-2

0-
20

40
-4

0-
0

40
-4

0-
60

40
-6

0-
40

60
-0

-2
0

60
-2

0-
0

60
-2

0-
60

60
-4

0-
40

60
-6

0-
20

WPT Pattern Database

C
o

rr
el

at
io

n
 V

al
u

e

 



 107 

Figure 5.23 Correlation Matching for Damage Case 0-0-40, WPT Pattern Matching 
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Figure 5.24 Correlation Matching for Damage Case 20-20-0, WPT Pattern Matching 
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Figure 5.25 Correlation Matching for Damage Case 0-20-20, WPT Pattern Matching 
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Figure 5.26 Correlation Matching for Damage Case 20-20-20, WPT Pattern Matching 
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CHAPTER 6 - CONCLUSIONS 

6.1 Research Summary 

In this study, a signal-based pattern extraction and recognition method, using a number of 

signal transformations and pattern matching algorithms, was investigated to detect structural 

damage.  The method is based on the extraction of sensitive features of the structural response 

that present a unique pattern for a particular damage scenario.  Frequency-based features and 

time-frequency-based features were extracted from the measured acceleration signal by Fast 

Fourier Transform (FFT) and Continuous Wavelet Transform (CWT) to construct one-

dimensional or two-dimensional patterns, respectively.  Three pattern recognition algorithms 

were also investigated to perform pattern recognition separately: (1) correlation, (2) least square 

distance, and (3) Cosh spectral distance.  Damage-pattern database was developed analytically 

by simulating possible damage scenarios. Damage location and level were identified 

simultaneously by performing the matching of the unknown damage pattern with the known ones 

in the database.    

To demonstrate the validity of the method, numerical and experimental studies were 

conducted on a small-scale three-story steel building.  At the first phase of the numerical study, a 

2-D three-story steel structure model numerically simulated the aforesaid steel structure and the 

method was applied to detect representative damage cases.  Following the successful initial 

numerical study, conducted on the 2-D simulation of the three-story structure, the work 

progressed into the experimental verification phase.  At this phase, the three-story small-scale 

steel structure was constructed in the Kansas State University (KSU) structural laboratory.  An 

impulse applicator was developed to apply a consistent impulse load on the experimental 

structure.  A wireless data acquisition system was used to sample and record the vibration 

response of the structure under the impulse load excitation.  An experimentally-tuned 3-D finite 

element model of the structure was developed using ANSYS to numerically simulate the 

structural dynamic response without damage, as well as the response with various possible 

damages, excited by an impulse load.  Structural vibration signals from numerical simulations 

and experimental measurements were then decomposed by fast Fourier transform or continuous 
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Wavelet transform for feature extraction.  The normalized signal features from numerical 

simulations generated for the baseline (healthy) structure, and for the structure with various 

selected damages were collected into a damage pattern database.  The normalized signal features 

of the experimental measurement for an unknown damage case, was then compared against this 

database to detect the closest damage case, using three different pattern matching algorithms 

separately: (1) correlation, (2) least square distance, and (3) Cosh spectral distance.   Twenty-

eight damage cases were experimentally simulated on the structure as “unknown” damage to 

demonstrate the applicability of the proposed damage detection method. 

 In addition, Wavelet Packet Transform (WPT) was also investigated for feature 

extraction and pattern recognition.  Meanwhile, the choice of wavelet functions was also 

discussed.  

6.2 Conclusion 

The structure under a specific damage scenario, in terms of location, level and type, has a 

unique signature and shows a unique pattern in its dynamic response to an excitation.  Fourier 

and Wavelet transforms provide means to extract and preserve the dynamic response features of 

a structure under various damage conditions.  Different damage scenarios can be presented by 

the features extracted using these transformations.  Since FFT preserves the frequency features of 

the signal, while CWT preserves its frequency as well as its time-sensitive features, CWT pattern 

results in a higher pattern-matching resolution than FFT pattern.  Comparing dynamic response 

pattern of a damaged structure with a wide range of numerically-generated damage cases stored 

in a database can serve as a tool to detect the closest damage case in terms of its existence, 

severity and location.  Among the three algorithms used, correlation was the best to perform 

pattern matching, even when the signal was contaminated with noise.  The highest correlation, 

the lowest least square distance or Cosh spectral distance with a damage case in the database 

showed the closest damage case to the actual unknown damage.  However, the numerical model 

must be carefully tuned to accurately represent the physical conditions of the structure.  This 

experimental tune-up of the model should be done for the healthy structure in the beginning; and 

then updated if the dynamic properties of the structure changes.  In this case, reconstruction of 

the damage pattern database is necessary.  The potential advantages of this approach are: 
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1. It requires few measurements (single or limited number of input/output signals). 

2. It can be used to detect multiple damage locations and the severity of damage at 

each damage location. 

3. It gives a relatively good accuracy even in the presence of noise, for isolated 

damage cases. 

4. The method can be implemented in various layers, starting from global (the whole 

structure) and ending to a structural member for a detailed detection. 

5. Fine-tuning of the numerical model against the physical structure and expansion 

of the damage-pattern database enhances the detection process.  However, 

statistical considerations are needed as will follow. 

6. The process can be automated in terms of detection and continuous fine-tuning of 

the model and the database. 

The method is particularly effective for large-scale structures due to their complicated 

nonlinear behavior and the incomplete, incoherent, and noise-contaminated measurements of 

structural response.  Signal-based damage detection has shown great potential in the 

experimental studies.  It should be noted that a structure may experience nonlinear deformations 

in a severe event; but during detection process, the input, here an impulse, excites the structure 

within its linear range.  This is true for the numerical excitation used for reconstruction of the 

damage pattern database after a severe event. 

The choice of wavelet function in CWT-based pattern extraction and recognition affects 

the computation time and pattern-matching resolution.  Studies on signal-based damage 

detection, including the present work, have shown that Haar, Daubechies, Symlets and Gaussian 

wavelets have the best performance.  It has also been found that Haar, Daubechies and Gaussian 

wavelets take less computation time.  In contrast, Meyr and Dmey wavelets take much longer 

computation time.  The wavelet function is selected based on its shape and its ability to analyze 

the signal and to preserve sensitive features.  

   This study has also shown that WPT-based energy variation vectors can best preserve 

the dynamic response features of a structure under damage with low level and few locations.  

Increasing the level of damage and the number of damage locations will result in a wrong 

detection.  Increasing the number of sensors (accelerometers) and employing an iterative process 

may address this issue and is recommended as a future research work in this field.     
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6.3 Recommended Future Work 

Further experimental work can be considered for other damage scenarios, e.g. “cracks” in 

a beam or buckling of a column.  The adequacy of other feature extraction and feature 

recognition methods combined with correlation and other pattern-matching algorithms may be 

explored.  The research may be applied to other types of structures such as bridges.  

The probability of a correct detection depends on a realistic model and a detailed 

damage-pattern database.  A statistical study, which is beyond the scope of this research 

program, is recommended to set the probability of a damage case detected by this method.  

While expansion of the damage-pattern database can enhance the detection; it increases the error 

margin for damage cases that may have close normalized patterns.  Increasing the number of 

input/output signals can decrease the error, and a statistical study can give the optimal number of 

signals for a desired general detection accuracy. 

WPT-based energy variation vectors can best preserve the dynamic response features of a 

structure under damage with low level and few locations.  When increasing the level of damage 

and the number of damage locations, the detection will not be accurate.  Increasing the number 

of sensors (accelerometers) and employing an iterative detection process may address this issue 

and is recommended as a future research work in this field.    

   

 

 

 

 

 

  

 

   

.  
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Appendix A - Numerical Structure Properties 
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Appendix B - Matching Results in Numerical Study  

Figure B.1 Correlation Matching for Damage Case 19-0-0 (FFT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.2 Correlation Matching for Damage Case 0-38-38 (FFT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping and Noise
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Figure B.3 Correlation Matching for Damage Case 58-38-19 (FFT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.4 Correlation Matching for Damage Case 58-58-58 (FFT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.5 Least Square Distance (LSD) Matching for Damage Case 19-0-0 (FFT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.6 Least Square Distance (LSD) Matching for Damage Case 0-38-38 (FFT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.7 Least Square Distance (LSD) Matching for Damage Case 58-38-19 (FFT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Damping Only

60-40-20, 0.3958
40-20-40, 0.3545

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

FFT Pattern Database

L
ea

st
 S

q
u

ar
e 

D
is

ta
n

ce
 (

L
S

D
) 

V
al

u
e

 

Environmental Condition: Damping & Noise
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Figure B.8 Least Square Distance (LSD) Matching for Damage Case 58-58-58 (FFT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.9 Cosh Spectral Distance (CSD) Matching for Damage Case 19-0-0 (FFT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.10 Cosh Spectral Distance (CSD) Matching for Damage Case 0-38-38 (FFT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.11 Cosh Spectral Distance (CSD) Matching for Damage Case 58-38-19 (FFT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.12 Cosh Spectral Distance (CSD) Matching for Damage Case 58-58-58 (FFT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.13 Correlation Matching for Damage Case 19-0-0 (CWT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise

20-0-0, 0.8667

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

CWT Pattern Database

C
o

rr
el

at
io

n
 V

al
u

e

 

 



 154 

Figure B.14 Correlation Matching for Damage Case 0-38-38 (CWT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.15 Correlation Matching for Damage Case 58-38-19 (CWT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.16 Correlation Matching for Damage Case 58-58-58 (CWT Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.17 Least Square Distance (LSD) Matching for Damage Case 19-0-0 (CWT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.18 Least Square Distance (LSD) Matching for Damage Case 0-38-38 (CWT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.19 Least Square Distance (LSD) Matching for Damage Case 58-38-19 (CWT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.20 Least Square Distance Matching for Damage Case 58-58-58 (CWT Pattern 

Database) 

Environmental Condition: None
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.21 Cosh Spectral Distance (CSD) Matching for Damage Case 19-0-0 (CWT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.22 Cosh Spectral Distance Matching for Damage Case 0-38-38 (CWT Pattern 

Database) 

Environmental Condition: None

0-40-40, 0.1907

20-20-60, 0.0109

0.01

0.1

1

10

100

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

CWT Pattern Database

C
o

sh
 S

p
ec

tr
al

 D
is

ta
n

ce
 (

C
S

D
) 

V
al

u
e

L
o

g
ar

it
h

m
ic

 S
ca

le

 

Environmental Condition: Noise
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.23 Cosh Spectral Distance (CSD) Matching for Damage Case 58-38-19 (CWT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Figure B.24 Cosh Spectral Distance (CSD) Matching for Damage Case 58-58-58 (CWT 

Pattern Database) 

Environmental Condition: None
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Environmental Condition: Noise Only
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Environmental Condition: Damping Only
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Environmental Condition: Damping & Noise
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Appendix C - Experimental Structure Properties 
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Appendix D - Matching Results in Experimental Study 

Figure D.1 Correlation Matching for Damage Case 0-20-0, FFT & CWT Pattern Matching 
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CWT Pattern Matching
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Figure D.2 Least Square Distance (LSD) Matching for Damage Case 0-20-0, FFT & CWT 
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Figure D.3 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-0, FFT & CWT 
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Figure D.4 Correlation Matching for Damage Case 20-0-0, FFT & CWT Pattern Matching 
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Figure D.5 Least Square Distance (LSD) Matching for Damage Case 20-0-0, FFT & CWT 
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Figure D.6 Cosh Spectral Distance (CSD) Matching for Damage Case 20-0-0, FFT & CWT 
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Figure D.7 Correlation Matching for Damage Case 0-20-20, FFT & CWT Pattern 
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Figure D.8 Least Square Distance (LSD) Matching for Damage Case 0-20-20, FFT & CWT 
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Figure D.9 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-20, FFT & 

CWT Pattern Matching 

FFT Pattern Matching

40-0-0, 0.5876

0-20-20, 0.6824

0

0.2

0.4

0.6

0.8

1

1.2

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

FFT Pattern Database

C
o

sh
 S

p
ec

tr
al

 D
is

ta
n

ce
 (

C
S

D
) 

V
al

u
e

 

CWT Pattern Matching

0-20-20, 0.1197

0.1

1

10

100

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

CWT Pattern Database

C
o

sh
 S

p
ec

tr
al

 D
is

ta
n

ce
 (

C
S

D
) 

V
al

u
e

L
o

g
ar

it
h

m
ic

 S
ca

le

 



 191 

Figure D.10 Correlation Matching for Damage Case 20-0-20, FFT & CWT Pattern 
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Figure D.11 Least Square Distance (LSD) Matching for Damage Case 20-0-20, FFT & 

CWT Pattern Matching 
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Figure D.12 Cosh Spectral Distance (CSD) Matching for Damage Case 20-0-20, FFT & 

CWT Pattern Matching 
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Figure D.13 Correlation Matching for Damage Case 20-20-0, FFT & CWT Pattern 

Matching 
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Figure D.14 Least Square Distance (LSD) Matching for Damage Case 20-20-0, FFT & 

CWT Pattern Matching 
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Figure D.15 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-0, FFT & 

CWT Pattern Matching 
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Figure D.16 Correlation Matching for Damage Case 0-20-40, FFT & CWT Pattern 
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Figure D.17 Least Square Distance (LSD) Matching for Damage Case 0-20-40, FFT & 

CWT Pattern Matching 

FFT Pattern Matching

0-20-40, 0.618967817

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

FFT Pattern Database

L
ea

st
 S

q
u

ar
e 

D
is

ta
n

ce
 (

L
S

D
) 

V
al

u
e

 

CWT Pattern Matching

0-20-40, 0.5268

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0-
0-

0

0-
0-

60

0-
20

-4
0

0-
40

-2
0

0-
60

-0

0-
60

-6
0

20
-0

-4
0

20
-2

0-
20

20
-4

0-
0

20
-4

0-
60

20
-6

0-
40

40
-0

-2
0

40
-2

0-
0

40
-2

0-
60

40
-4

0-
40

40
-6

0-
20

60
-0

-0

60
-0

-6
0

60
-2

0-
40

60
-4

0-
20

60
-6

0-
0

60
-6

0-
60

CWT Pattern Database

L
ea

st
 S

q
u

ar
e 

D
is

ta
n

ce
 (

L
S

D
) 

V
al

u
e

 



 199 

Figure D.18 Cosh Spectral Distance (CSD) Matching for Damage Case 0-20-40, FFT & 

CWT Pattern Matching  
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Figure D.19 Correlation Matching for Damage Case 20-20-20, FFT & CWT Pattern 
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Figure D.20 Least Square Distance (LSD) Matching for Damage Case 20-20-20, FFT & 

CWT Pattern Matching 
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Figure D.21 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-20, FFT & 

CWT Pattern Matching 
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Figure D.22 Correlation Matching for Damage Case 20-20-40, FFT & CWT Pattern 

Matching 
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Figure D.23 Least Square Distance (LSD) Matching for Damage Case 20-20-40, FFT & 

CWT Pattern Matching 
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Figure D.24 Cosh Spectral Distance (CSD) Matching for Damage Case 20-20-40, FFT & 

CWT Pattern Matching 
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Figure D.25 Correlation Matching for Damage Case 40-60-20, FFT & CWT Pattern 
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Figure D.26 Least Square Distance (LSD) Matching for Damage Case 40-60-20, FFT & 

CWT Pattern Matching 
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Figure D.27 Cosh Spectral Distance (CSD) Matching for Damage Case 40-60-20, FFT & 

CWT Pattern Matching 
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Appendix E - Wavelet Function Investigation  

Table E.1 CWT Pattern-Matching Resolution Based on Different Wavelet Function 

Correlation Matching Resolution (%) 

Mother Wavelet 

Center 

Frequency 

(Hz) 

Damage Case 

0-0-20 

Damage Case 

20-20-0 

Damage Case 

20-20-40 

haar 0.9961 31.91 20.54 34.5 

db1 0.9961 31.91 20.54 34.5 

db2 0.6667 23.54 52.03 23.85 

db3 0.8 40.13 31.61 33.69 

db4 0.7143 36.94 43.5 28.02 

db5 0.6667 24.57 51.23 24 

db6 0.7273 41.35 40.12 29.14 

db7 0.6923 32.8 45.83 26.26 

db8 0.6667 25.43 50.29 24.16 

db9 0.7059 37.01 42.68 27.66 

daubechies 

db10 0.6842 30.92 46.69 25.48 

sym2 0.6667 23.54 52.03 23.85 

sym3 0.8 40.13 31.61 33.69 

sym4 0.7143 36.78 43.56 28.13 

sym5 0.6667 24.42 50.83 24.34 

sym6 0.7273 41.09 40.21 29.63 

sym7 0.6923 32.67 46.06 26.87 

symlets 

sym8 0.6667 25.22 50.12 24.56 

coif1 0.800 41.12 33.19 33.24 

coif2 0.7273 39.87 41.09 29.22 

coif3 0.7059 35.65 43.49 27.92 

coif 

coif4 0.6957 33.58 44.84 27.21 
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 coif5 0.6897 32.28 45.48 26.85 

bior1.1 0.9961 31.91 20.54 34.5 

bior1.3 0.8006 39.43 30.72 34.41 

bior1.5 0.7781 40.19 31.65 33.87 

bior2.2 1.0008 36.51 31.12 36.98 

bior2.4 0.8893 41.69 34.04 32.62 

bior2.6 0.9234 37.13 25.96 36.29 

bior2.8 0.8826 39.34 29.74 34.28 

bior3.3 1.0006 40.45 42.02 33.94 

bior3.5 1.0004 37.34 30.26 35.84 

bior3.7 0.9336 41.51 34.1 32.22 

bior3.9 0.9476 38.69 28.95 34.51 

bior4.4 0.7781 39.99 41.08 29.17 

bior5.5 0.6366 17.16 54.83 22.2 

bior 

bior6.8 0.7649 41.71 39.79 29.71 

rbio1.1 0.9961 31.91 20.54 34.5 

rbio1.3 0.8006 42.81 36.9 31.8 

rbio1.5 0.6670 17.59 55.64 22.12 

rbio2.2 0.6005 43.33 39.64 30.13 

rbio2.4 0.5558 20.22 53.27 23.21 

rbio2.6 0.6156 35.98 43.25 28 

rbio2.8 0.5884 24.90 50.21 24.35 

rbio3.1 0.3338 13.44 59.43 21.32 

rbio3.3 0.4288 10.39 59.78 20.33 

rbio3.5 0.5456 42.12 39.24 29.98 

rbio3.7 0.5335 31.05 45.9 26.41 

rbio3.9 0.5264 23.35 50.53 23.88 

rbio4.4 0.6670 38.76 42.23 28.74 

rbio5.5 0.8185 39.71 30.48 34.28 

rbio 

rbio6.8 0.6472 30.29 47.15 26.13 
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meyr 0.6902 34.28 45.79 26.12 

dmey 0.6634 25.49 49.94 24.58 

gaus1 0.2 19.74 55.60 22.85 

gaus2 0.3 31.84 47.18 26.40 

gaus3 0.4 42.28 35.49 31.87 

gaus4 0.5 36.03 24.45 37.08 

gaus5 0.5 43.63 37.83 30.41 

gaus6 0.6 35.96 24.1 37.02 

gaus7 0.6 41.75 34.35 31.81 

gaus 

gaus8 0.6 30.08 45.13 26.29 

mexh 0.25 38.81 29.97 35.03 

morl 0.8125 38.78 28.65 34.2 

 


