

TV SCHEDULES APP FOR IPHONE/IPOD TOUCH

by

ANUPAM GODBOLE

B.E, University of Pune, 2006

A REPORT

submitted in partial fulfillment of the requirements for the degree

 MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2009

Approved by:

Major Professor
Dr. Daniel Andresen

Abstract

TV Schedules App for iPhone/iPod Touch is an interactive App that helps users to keep

up-to-date with favorite TV Shows by displaying the airing time and date of the upcoming

episode.

The primary focus was to get familiar with Cocoa Touch framework and Objective-C

programming language to provide an intuitive GUI to enable users to add and remove favorite

TV shows from a list. The App not only provides an easy and convenient way to keep track of

the upcoming episodes but also allows the users to be notified minutes before the upcoming

episode is about to be aired.

 iii

Table of Contents

List of Figures ... v	

List of Tables ... vi	

Acknowledgements... vii	

Dedication .. viii	

CHAPTER 1 - Introduction .. 1	

1.1 Motivation... 1	

1.2 Scope... 1	

1.3 Goal... 1	

1.4 Assumptions.. 1	

1.5 Platform Specifications... 2	

CHAPTER 2 - Developer Platform .. 3	

2.1 Objective-C... 3	

2.2 Cocoa Touch Framework.. 3	

CHAPTER 3 - Technologies .. 4	

3.1 Tools and Technologies .. 4	

3.1.1 Objective-C .. 4	

3.1.2 Cocoa Touch Framework... 4	

3.1.3 Xcode ... 6	

3.1.4 eXtensible Markup Language .. 7	

CHAPTER 4 - Introduction to iPhone/iPod Touch App Development.. 8	

4.1 Getting started... 8	

4.2 Running the App in iPhone Simulator.. 8	

4.3 Running the App on iPhone/iPod Touch .. 8	

CHAPTER 5 - System Architecture ... 10	

5.1 System Architecture.. 10	

5.2 Architecture of TV Schedules App... 10	

5.2.1 Client (Fat Client) .. 11	

5.2.1.1 Main Screen .. 11	

 iv

5.2.1.2 Add Screen.. 11	

5.2.1.3 Episode Info screen... 12	

5.2.1.4 Series Info screen.. 12	

5.2.1.5 Settings screen .. 12	

5.2.2 Thin Server(thetvdb.com and tvrage.com) .. 13	

5.3 Use Case Diagram .. 13	

CHAPTER 6 - Testing .. 18	

6.1 Performance Testing ... 18	

6.2 Black Box Testing .. 19	

6.3 Screenshots ... 20	

CHAPTER 7 - Project Metrics ... 24	

7.1 Project Metrics.. 24	

CHAPTER 8 - Conclusion and Future Work ... 25	

8.1 Conclusion .. 25	

8.2 Future Work.. 25	

References... 27	

 v

List of Figures

Figure 3.1 Cocoa Touch Framework Architecture ... 4	

Figure 3.2 How Xcode uses source file references, targets, and executable environments. 6	

Figure 5.1 Two-tier Architecture .. 10	

Figure 5.2 Use Case Diagram of TV Schedules App ... 13	

Figure 5.3 Partial Class Diagram of TV Schedules App (Class Diagram 1)................................ 14	

Figure 5.4 Partial Class Diagram of TV Schedules App (Class Diagram 2)................................ 16	

Figure 6.1 CPU and Memory usage on iPhone Simulator (Run 1 with WiFi connectivity, Second

run with simulated GPRS connectivity) ... 18	

Figure 6.2 CPU and Memory usage on iPod Touch (With WiFi connectivity) 18	

Figure 6.3 Main Screen of TV Schedules App in Portrait Mode.. 20	

Figure 6.4 Main Screen of TV Schedules App in Landscape Mode .. 21	

Figure 6.5 Episode Info screen ... 21	

Figure 6.6 Series Info screen .. 22	

Figure 6.7 Add Series Screen.. 22	

Figure 6.8 Settings Screen .. 23	

 vi

List of Tables

Table 7.1 Project Lines of Code ... 24	

Table 7.2 Project Planning Phase.. 24	

 vii

Acknowledgements

I would like to thank my Major Professor Dr. Daniel Andresen for his constant help,

encouragement and guidance throughout the project. I especially acknowledgement his help in

suggesting new and innovative ideas for improving the overall user experience for the TV

Schedules App.

I would also like to thank Dr. Gurdip Singh and Dr. Torben Amtoft for their support and

for graciously accepting to serve on my committee.

 viii

Dedication

I would like to dedicate this project to my parents Mr. Ramesh Godbole and Mrs.

Madhuri Godbole for their words of encouragement and helping me to get through the difficult

times. I would also like to dedicate this project to my brother Mr. Atul Godbole for helping me

solve some of the technical difficulties.

 1

CHAPTER 1 - Introduction

1.1 Motivation
iPhone/iPod Touch has revolutionized the way internet is accessed on a mobile device.

Both the devices use advanced technologies like touch screen, multitouch, accelerometer, GPS.

The motivation to develop TV Schedules App comes from my urge to learn

Xcode, iPhone OS and Objective-C for building applications for iPhone/iPod Touch. The

most important factor that motivated the development of the App was the ease of development

and intuitiveness with which it can be developed.

Also, keeping track of the upcoming episodes of several TV shows at a time was a hassle.

Hence a need was felt to develop an App that would show the airing time and date to the user,

just by launching the App.

1.2 Scope
TV Schedules App can be used to add/delete TV shows to favorite list. This list gets

updated at App startup and hence keeps the user up-to-date with the airing time/date of the

upcoming episode of the favorite TV shows. Additionally, Google Alerts can also be set to

inform the user minutes before the upcoming episode is about to be aired. Optionally, timezone

correction can be applied to the airing time. The App also shows names of guest stars, directors,

writers and ratings of already aired episodes.

1.3 Goal
Goal is to gain a good knowledge of the complete life cycle of the project development

starting from the Requirement Gathering Phase to the Testing Phase. The implementation phase

of this App also gives a hands-on experience in Objective-C, iPhone OS and the testing phase

gives hands-on experience in use of tools like Instruments.

1.4 Assumptions
• User will have Internet Connection while using TV Schedules App.

• User will have iPhone/iPod Touch with iPhone OS 3.0 or above firmware.

 2

• User will have a valid iTunes account to download TV Schedules.

1.5 Platform Specifications
• iPhone 2G/3G/3GS, iPod Touch 1G/2G/3G

• iPhone OS 3.0 or above firmware

 3

CHAPTER 2 - Developer Platform

TV Schedules App for iPhone/iPod Touch is developed for the iPhone OS platform using

the Cocoa Touch framework and Objective-C programming language. Xcode 3.2 is used as an

Integrated Development Environment on Mac OS 10.6. The goal of this chapter is to give an

overview of Objective-C programming language and the Cocoa Touch Framework.

2.1 Objective-C
The Objective-C language is a simple computer language designed to enable

sophisticated object-oriented programming. Objective-C is defined as a small but powerful set of

extensions to the standard ANSI C language. Its additions to C are mostly based on Smalltalk.

Objective-C is designed to give C full object-oriented programming capabilities, and to do so in

a simple and straightforward way.

2.2 Cocoa Touch Framework
Cocoa Touch is the application development environment for iPhone OS, respectively.

Cocoa Touch include the Objective-C runtime and Cocoa Touch frameworks which includes

Foundation and UIKit frameworks, is used for developing applications that run on iPhone OS.

The Foundation framework implements the root class, NSObject, which defines basic object

behavior. It implements classes that represent primitive types (for example, strings and numbers)

and collections (for example, arrays and dictionaries). Foundation also provides facilities for

internationalization, object persistence, file management, and XML processing. Its classes can be

used to access underlying system entities and services, such as ports, threads, locks, and

processes. Foundation is based on the Core Foundation framework, which publishes a procedural

(ANSI C) interface. UIKit frameworks is used for developing an application’s user interface. It

includes classes for event handling, drawing, image-handling, text processing, typography, and

inter-application data transfer. They also include user-interface elements such as table views,

sliders, buttons, text fields, and alert dialogs.

 4

CHAPTER 3 - Technologies

This chapter includes the details of the latest technologies and tools used to build this

application, their benefits and implementation details. The chapter also describes the interaction

of these tools with the Cocoa Touch Framework.

3.1 Tools and Technologies
The latest tools and technologies involved in building this App are: Objective-C, Cocoa

Touch Framework, Xcode, eXtensible Markup Language.

3.1.1 Objective-C

The Objective-C language is a simple computer language designed to enable

sophisticated object-oriented programming. Objective-C is defined as a small but powerful set of

extensions to the standard ANSI C language. Its additions to C are mostly based on Smalltalk,

one of the first object-oriented programming languages. Objective-C is designed to give C full

object-oriented programming capabilities, and to do so in a simple and straightforward way.

Most object-oriented development environments consist of several parts:

• An object-oriented programming language

• A library of objects

• A suite of development tools

• A runtime environment

3.1.2 Cocoa Touch Framework

Figure 3.1 Cocoa Touch Framework Architecture

 5

The following summarizes some of the frameworks found at each layer of the iPhone OS

stack, starting from the foundation layer.

Core OS—This level contains the kernel, the file system, networking infrastructure,

security, power management, and a number of device drivers. It also has the libSystem library,

which supports the POSIX/BSD 4.4/C99 API specifications and includes system-level APIs for

many services.

 Core Services—The frameworks in this layer provide core services, such as string

manipulation, collection management, networking, URL utilities, contact management, and

preferences. This layer includes Core Foundation, a framework that provides abstractions for

common data types (such as strings and collections); they allow a large degree of integration

between object-oriented and procedural code. It also contains Core Data, a framework for object

graph management and object persistence.

 Media—The frameworks and services in this layer depend on the Core Services layer

and provide graphical and multimedia services to the Cocoa Touch layer. They include Core

Graphics, OpenGL ES, Core Animation, Core Audio, and video playback.

 Cocoa Touch—The frameworks in this layer directly support applications based on

iPhone OS. They include two Objective-C frameworks that are particularly important for

developing applications for iPhone OS:

1. The UIKit framework provides the objects an application displays in its user

interface and defines the structure for application behavior, including event

handling and drawing.

The Foundation framework defines the basic behavior of objects, establishes mechanisms

for their management, and provides objects for primitive data types, collections, and operating-

system services. Foundation is essentially an object-oriented cover to the Core Foundation

framework.

 6

3.1.3 Xcode
Xcode is Apple's development environment for Mac OS X and iPhone OS. Xcode

includes all the tools you need to create, debug, and optimize your applications. At the heart of

the Xcode tools package is the Xcode IDE, a graphical workbench that tightly integrates a

professional text editor, a robust build system, a debugger, and the powerful GCC compiler

capable of targeting Intel and PowerPC regardless of host platform. Xcode is both easy to use,

and yet powerful enough to build mobile iPhone OS applications. The complete iPhone OS

developer tools chain is distributed as part of Xcode; these tools include Interface Builder,

Instruments, Dashcode, the WebObjects framework, and the complete reference documentation,

to name just a few.

All activity in Xcode, from creating and editing files to building and debugging

applications, revolves around projects. Xcode projects organize and give access to all of the files

and resources that are used to build a software product. Regardless of what you are building,

Xcode manages three kinds of information to build your product:

Source file references that include source code, images, localized string files, data

models, and more. Targets that define the products to build. A target organizes the files and

instructions needed to build a product into a sequence of build actions that can be taken.

Executable environments in which you can run and test a software product. An executable

environment defines the program that should be used to run the product with. In many cases, this

will be the product itself, but doesn't have to be. In addition, the executable environment defines

any command-line arguments and environment variables which should be used.

Figure 3.2 How Xcode uses source file references, targets, and executable environments.

 7

When you execute the Build and Run command, Xcode processes a target that performs a set of

actions on source code that in turn produces a product. Then, Xcode runs the product using the

active executable environment.

3.1.4 eXtensible Markup Language
XML (eXtensible Markup Language) is a set of rules for encoding documents

electronically. It is defined in the XML 1.0 Specification produced by the W3C and several other

related specifications; all are fee-free open standards.

XML’s design goals emphasize simplicity, generality, and usability over the Internet. It is

a textual data format, with strong support via Unicode for the languages of the world. Although

XML’s design focuses on documents, it is widely used for the representation of arbitrary data

structures, for example in web services.

There are a variety of programming interfaces which software developers may use to

access XML data, and several schema systems designed to aid in the definition of XML-based

languages.

 8

CHAPTER 4 - Introduction to iPhone/iPod Touch App

Development

4.1 Getting started
• The IDE for iPhone/iPod Touch App development is Xcode 3.x. It can be downloaded for

free from Apple web-site http://developer.apple.com.

• Download the latest iPhone SDK from the same site.

• Install Xcode 3.x and iPhone SDK by following the instructions in the setup.

• Run Xcode 3.x and in the File Menu click on the “New Project...” sub-menu. In the

dialog box that appears, click on the Application item under the iPhone OS heading in the

left pane.

• Click on the Navigation-based Application and press the “Choose...” button. Provide a

name for the App and you are ready to go. All the files needed to develop the App are

created and the project is ready to build.

4.2 Running the App in iPhone Simulator
• Build the App by clicking on the “Build” sub-menu of the “Build” menu.

• Once the App is built with 0 errors, it can be run in the iPhone Simulator by clicking on

one of the run commands in the “Run” menu.

• Doing so installs the App in the iPhone Simulator and runs it. Developer can debug the

App by clicking on the “Debug” sub-menu in the “Run” menu.

4.3 Running the App on iPhone/iPod Touch
• To run the App on iPhone/iPod Touch, developer has to join the Apple iPhone Developer

Program.

• Once joined, the developer can create profiles which is used to identify the developer, the

iPhone/iPod Touch on which the App will be run and tested and the App to be run and

tested. The whole thing is done thru developer.apple.com/iphone web portal. Once the

profile is created on the portal, a file containing all the above information is generated by

the portal which can be saved on the local drive.

• This file can be copied on to the iPhone/iPod Touch using iTunes or Xcode Organizer.

 9

• Once that is done, select 'Device 3.0 – Debug' from the 'Project' → 'Set Active SDK' sub-

menu.

• Build the App by clicking on the “Build” sub-menu of the “Build” menu.

• Once the App is built with 0 errors, it can be run in the iPhone/iPod Touch by clicking on

one of the run commands in the “Run” menu.

• Doing so installs the App on the iPhone/iPod Touch and runs it. Developer can debug the

App by clicking on the “Debug” sub-menu in the “Run” menu.

 10

CHAPTER 5 - System Architecture

5.1 System Architecture

This chapter provides an Architectural Design for the TV Schedules App which

represents a two tier architecture comprising of a client and a server. Since the business Logic is

coupled with the Server, its called Fat Client with Thin Server. The client which in this case is

the TV Schedules App running on an iPhone/iPod Touch is responsible for presenting the data

retrieved from the server. thetvdb.com and tvrage.com are used as servers in this App to retrieve

information about the TV series and its aired, upcoming episodes. An HTTP request is sent by

the client to the server and the server responds to the request by sending relevant data in XML

format as a response.

5.2 Architecture of TV Schedules App
TV Schedules App uses a two-tier architecture with a Fat Client i.e. most of the business

logic is in the client and a thin server which just sends the information back to client on client's

request.

Figure 5.1 Two-tier Architecture

 11

5.2.1 Client (Fat Client)
TV Schedules App is comprised of multiple screens. Each one is described in details in

the coming sections.

5.2.1.1 Main Screen

The class that represents the Main Screen has most of the business logic. Following chain

of events happen when iPhone OS gives control to the TV Schedules App's class derived from

UIApplication:

1. TV Schedules checks whether the App executable loaded is of current version or is an

update. If it's an update, then it downloads the information of TV Series from the list

all over again else it just downloads the information of the upcoming episodes of the

TV Series.

2. User's favorite TV Series' upcoming episodes information is downloaded from the

server tvrage.com by sending a HTTP request to it.

3. The main screen class waits for a response from the server which an XML file.

4. On receiving the response, it checks whether it's valid. If so, the response is parsed

using xml parser library provided with iPhone SDK. Relevant information is

retrieved, stored in the iPhone/iPod Touch's persistent memory and showed to the

user on the main screen.

5. The summary of the upcoming episode is retrieved in a similar fashion from

thetvdb.com server.

When the main screen is rotated left/right, the screen changes to a calendar view which

shows the TV Series airing on the particular day.

5.2.1.2 Add Screen

On tapping the '+' button on the main screen, an 'Add Series' screen animates into the

view. The series to be added to the favorite list can be entered in a textbox. Upon tapping the

'Search' button, TV Schedules App sends a request to the thetvdb.com server. The server sends

an XML response as a list of TV Series containing the search keywords. This list is shown in a

table view. User can select the TV Series to add to the favorite list by tapping on the TV Series

name.

 12

5.2.1.3 Episode Info screen

On tapping on the TV Series cell in the main screen, the App takes the user to a screen in

which Summary, Director, First Aired and other details are shown. This info is obtained from the

thetvdb.com server by sending it a HTTP request with the series ID, season & episode number

Info of the previously aired episodes is shown as well. The season number and episode number

can be selected easily by tapping on the Previous, Next or Season Number and Episode number

button.

5.2.1.4 Series Info screen

Tapping on the 'Series Info' button in Episode Info screen takes the user to the Series Info

screen where it shows the series banner, Runtime, Content Rating etc. This info is obtained from

the thetvdb.com server by sending it a HTTP request with the series ID.

5.2.1.5 Settings screen

Tapping on the gear like icon in the toolbar of the main screen brings the Settings screen.

Various settings of the App can be changed from here. On tapping the done button, the changes

are saved to the persistent memory. The various settings of the App are explained below:

• Timezone offset from EST: Determines the timezone in which the user is located so

that corresponding offset can be added to the TV Series airing time.

• Overview in main window: Gives an option to the user to switch the visibility of

summary in the main window.

• Series airing today badge: Option to show the number of series airing today badge on

the App icon on the Home screen of iPhone/iPod Touch.

• Refresh at Startup: Determines whether the favorite TV Series list is updated when

the App is launched.

• Refresh on Shake: An option to refresh the favorite TV Series list when the

iPhone/iPod Touch is shaken.

• Google Alert reminder (mins): Number of minutes before upcoming episode's airing

time that Google Alert sends a reminder.

 13

5.2.2 Thin Server(thetvdb.com and tvrage.com)
thetvdb.com and tvrage.com servers just have the database which contains information

about the TV Series, Episode Info and Series Info. They don't have any business logic other that

accepting a request and sending a response. Both the servers expose a web-service which takes a

HTTP request and gives a response in the form of a well-formed XML file. Following are some

sample URLs.

• thetvdb.com

http://thetvdb.com/api/<DEVELOPER_KEY>/series/19345/default/2/1/en.xml

Retrieves the information of an episode of with TV Series id 19345, season number 2

and episode number 1.

• tvrage.com:

http://services.tvrage.com/tools/quickinfo.php?show=House

Retrieves the information about the upcoming episode of the TV Series House.

5.3 Use Case Diagram
Figure 4.3 shows the Use Case Diagram for the TV Schedules App. The user can Add

Series to the favorites list, Remove Series from the list, View info of the aired/upcoming

episodes of favorite TV Series and View favorite TV Series Info.

Figure 5.2 Use Case Diagram of TV Schedules App

 14

Figure 5.3 Partial Class Diagram of TV Schedules App (Class Diagram 1)

The classes and their role in the App architecture is explained below:

RootViewController class:

RootViewController class has UIViewController as its base class. The UIViewController

class provides the fundamental view-management model for iPhone applications. The basic view

controller class supports the presentation of an associated view in addition to basic support for

managing modal views and rotating views in response to device orientation changes.

RootViewController class represents the “Main Screen” in the TV Schedules App. It is

responsible for refreshing the upcoming episode's information by generating valid URLs,

 15

accepting the response XML and parsing it to extract the required information. Libxml library

provided with iPhone SDK is used for parsing XML. RootViewController is also responsible for

handling events that get fired when the Calendar View is shown when iPhone/iPod Touch is in

landscape mode.

SeriesDetailsController:

SeriesDetailsController class is also derived from UIViewController class. This class

represents the “Series Info” screen in the App. Given a Series ID or Series Name, this class

generates a valid URL, passes it on to the HTTPRequestHandler class, gets XML data from

HTTPRequestHandler and finally parses it and extracts the relevant information.

SettingsController:

SeriesDetailsController class is also derived from UIViewController class. This class

represents the “Settings” screen in the App. It loads the settings from the settings file and shows

them as a graphical user interface. Whatever changes are made by the user are committed to the

settings file on dismissing the screen.

 16

Figure 5.4 Partial Class Diagram of TV Schedules App (Class Diagram 2)

ShakeDelegate class:

ShakeDelegate class which is derived from NSObject is responsible for handling the

shake event that is fired when iPhone/iPod Touch is shaken. When the event is fired, the class

informs RootViewController class about it and RootViewController refreshes the favorite TV

Series list in turn.

HTTPRequestHandler class:

This class takes a URL and a pointer to a function as an input. It opens a connection with

the host, and requests the file specified in the URL. It schedules the request on a run loop which

is kind of a thread that waits for the incoming response. When the runloop gets the response, it

passes it on the function that's specified as an input.

 17

TV_Forecast_1AppDelegate class:

This class handles the events that get fired when the App is loaded into the memory and

control is transferred to the App. When the App is loaded, its applicationDidFinishLaunching:

method is called. In this method an instance of the RootViewController class is created and

shown as the “Main Screen”.

RootView class:

RootView class is derived from UIView class. The UIView class is primarily an abstract

superclass that provides concrete subclasses with a structure for drawing and handling events.

This class is responsible for laying out all the child UIViews in their proper position on initial

load.

ViewWithBorder class:

ViewWithBorder class is also derived from UIView class. This class takes image data as

an input, resizes it to the UIView size, draws a thin border around the image and finally renders

it on the touch screen.

 18

CHAPTER 6 - Testing

6.1 Performance Testing

In Figure 6.1, the first run shows the System, User and Total Load when the App is run

with Wi-Fi connectivity while the second run is with GPRS connectivity on an iPhone Simulator.

As it can be seen the total load gets spread out in Run 2 as the data comes to App at a much

slower rate and hence taking more time to perform the same task. As for the memory

requirement, it remains unchanged in both the runs as can be seen in the figure. Figure 6.2 shows

Figure 6.1 CPU and Memory usage on iPhone Simulator (Run 1 with WiFi connectivity,

Second run with simulated GPRS connectivity)

Figure 6.2 CPU and Memory usage on iPod Touch (With WiFi connectivity)

 19

the System, User and Total Load when the TV Schedules App is run on an iPhone/iPod Touch.

As it can be seen, the nature of the graph is totally different as compared to those in Figure 6.1.

Hence it's quite apparent that the performance of the App differs considerably on iPhone

Simulator as compared to iPhone/iPod Touch.

6.2 Black Box Testing
Black box testing takes an external perspective of the test object to derive test cases.

These tests check functional as well as non-functional aspects of the App. The test designer

selects valid and invalid inputs and determines the correct output. Following cases were

considered while doing the black box testing:

1. Low connectivity:

Low connectivity simulation isn't possible on iPhone/iPod Touch hence iPhone Simulator

was used to achieve it. A software called “Speed Limit” was used for the purpose. Speed

Limit limits the internet speed for the Mac OS X which in turn reduces the incoming and

outgoing date rate for the iPhone Simulator. Because of low connectivity, the HTTP

request timeouts randomly. Black Box Testing made it sure whether such a case was

dealt with. On connection timeout or similar failure cases, TV Schedules App shows an

error message informing the user about it.

2. Simulating packet loss:

A utility named ipfw was used to simulate packet loss. It randomly drops incoming and

outgoing packets and hence simulating packet loss for iPhone Simulator. Because of the

packet loss, connection timeouts randomly. In such a case, TV Schedules App shows an

error message informing the user about it.

3. TV Series name with special characters in it:

To check whether special characters in the TV Series are processed correctly, various TV

Series names like “The Office (US)”, “How clean is your house?” were used.

 20

4. Ended/Cancelled series:

Since Ended/Cancelled series won't have any upcoming episodes. Asking the web service

for its upcoming episode is just waste of bandwidth and hence it was made sure that that

doesn't happen.

6.3 Screenshots

Figure 6.3 Main Screen of TV Schedules App in Portrait Mode

 21

Figure 6.4 Main Screen of TV Schedules App in Landscape Mode

Figure 6.5 Episode Info screen

 22

Figure 6.6 Series Info screen

Figure 6.7 Add Series Screen

 23

Figure 6.8 Settings Screen

 24

CHAPTER 7 - Project Metrics

This chapter presents the project metrics showing the number of hours spent completing

each phase of the project. It also summarizes the experiences gained during the entire life-cycle

of the project.

7.1 Project Metrics
Project Metrics are the indicators that track the ongoing project progress. The Project

Metrics discussed in this document are source lines of code and the amount of time spent during

the entire project span. Table 1 and Table 2 represent the project metrics: source lines of code

and project phases and their duration respectively.

Objective – C code 2500 lines

Table 7.1 Project Lines of Code

Learning Project Technologies 2 weeks

Requirement Gathering and Design 1 week

Implementation 10 weeks

Testing 2 weeks

Documentation 1 week

Table 7.2 Project Planning Phase

 25

CHAPTER 8 - Conclusion and Future Work

This chapter describes the future scope and extensions for the project. There is still a

huge scope of implementing something new and more to the project which can make it to the

level of a commercial product.

8.1 Conclusion
TV Schedules App uses iPhone OS 3.0 SDK as a development platform and Xcode 3.2 as

an Integrated Development Environment on Mac OS X 10.5.8 (Leopard). It uses two-tier

architecture in which TV Schedules App acts as a fat client and thetvdb.com, tvrage.com act as

thin servers. These servers accept the series ID, season number and episode number as a HTTP

request and sends the response in XML format. This XML response is parsed using libxml

library of the SDK, relevant information is extracted and displayed on the device. The whole

user experience is made intuitive since iPhone/iPod Touch has advances hardware like

touchscreen, accelerometer and powerful graphics processor.

8.2 Future Work
In the current iPhone OS framework, App aren't allowed to run in the background. Hence

a user cannot be notified of airing of upcoming episode from iPhone/iPod Touch itself. TV

Schedules App uses Google Alert service as a work around to solve the above problem. TV

Schedules App adds a recurring event to the Google Calendar with the event time as the airing

duration of the TV Series, event name as the TV Series Name, event location as the channel on

which the TV Series is aired. If a user doesn't have a google account, this feature is unavailable

to him. Secondly, user has to setup the alerts to be sent via email or SMS. User has to log into

Google Calendar and specify the email address or a cell phone number for the same. This might

seem to be a stretch for some users, hence reducing the usability of the App for those users.

Another work around that's less hassle for user is to use Apple Push Notification Service.

The Apple Push Notification Service is a mobile service created by Apple Inc. that was released

with iPhone OS 3.0. It uses push technology through a constantly-open IP connection to forward

notifications from the servers of third party applications to the iPhone or iPod Touch; such

notifications may include badges, sounds or custom text alerts. Implementing such a solution

 26

would involve writing a server application and maintaining a database that contains the id of

users' iPhone/iPod Touch and the TV Series present in their favorite TV Shows list. The server

would go thru the database every few minutes and send a notification to the user about

information of upcoming episodes few minutes before the airing time. Hence the need to have a

Google Account to get the notifications would be done away with.

 27

References

[1] iPhone Dev Center - Apple Developer Connection

http://developer.apple.com/iphone

[2] Stack Overflow

http://www.stackoverflow.com

