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CHAPTER I

I] PRODUCTION

There has been much interest recently in the hydraulic

regime of biological waste treatment processes (1, 2, 3, k
t 5)*«

.zzarn of flow into the system, the recycle flow, and the

Lng and distribution of liquid and of the materials dissolved

or suspended in the liquid within the compartments of the process

are all important parts of the hydraulic regime. Since the

hydraulic regime may greatly influence the rate of biological

growth, it is a fundamentally important consideration in the

improvement of a biological waste treatment process.

The step aeration waste treatment process shown in Figure 1,

in which the influent is introduced at several locations, was

first described by Gould (6) in 1942. Although this process is

fairly old and widely used, little work has been done to develop

an optimal step aeration design. The paper by Polonesik, Grieves,

1 ilbury (3) is probably the first reported effort to optimize

the 'design -of a step aeration activated sludge process. These

investigators examined the behavior of three completely mixed

:z connected in series using two different models to describe

the growth kinetics. In a later investigation (2, 5)i a discrete

version of the maximum principle was used to optimize several

ferent step aeration systems. These investigators considered

systems represented by several completely mixed tanks connected

. .'jers in parentheses refer to references given on page 67



if*

<fi

O
o
o

c
o

a

CL
o>

a

o

o

a*



ries, several tanks with plus flow connected in series, a

osite system composed of a tank with complete mixing followed

_ . with plug flow, and a plug flow system with continuous

allocation of influent along the length of the system.

The present study is a continuation of the work reported

previously (1, 2, 5). In this study the step aeration process

conventional process shown in Figure 2, in which all of

the influent is fed to the first tank, are compared under optimal

conditions. The effects of recycle of organisms and endogenous

respiration which were not considered in the previous study of

the step aeration process (2, 5) are included in this investiga-

In the present study only systems composed of tanks with

complete mixing are considered. The analysis is limited to the

secondary portion of the waste treatment system where aerobic.

biological oxidation is taking place and it is primarily concerned

with "die optimization of the hydraulic regime of this portion of

the system. The difference between the oxygen demand pattern of

the' step aeration and the conventional process is illustrated

in Figure 3.

In this work, the process is analyzed by employing mathemat-

. -odeiing and optimization procedures to determine the optimum

3S of several of the design variables. In employing this

:oach, It is necessary to have a mathematical model which de-

scribes the growth kinetics of the biological waste treatment

process and a mathematical model which represents the hydrodyhamic

ivior of the flow system. An economic model which relates the

design variables to the various treatment costs, such as capital
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and operating costs, is also often used in this type of investi-

gation. In addition to the kinetic , hydrodynamics, and economic

models, one must have an objective function to be optimized, that

is, one must have the objective of the design stated in mathemat-

ical terms. The process and economic models and the objective

function together provide a mathematical statement of the problem.

When simulation and optimization procedures are employed to

solve mathematically stated optimum design problems, engineering

judgement and experience must be used in evaluating the results.

Since the process and economic models and the objective function

are only approximations, the optimum of the mathematical problem

will probably deviate from the true optimum. Inspite of this,

studies of this type can be useful in obtaining a better under-

standing of the biological waste treatment process and in predict-

ing the effect of specific parameters and variables on the per-

formance of the system.



CHAPTER II

MATHEMATICAL ANALYSIS OF THE PROCESS

1. PRINCIPLE OF AERATION AND KINETIC MODEL

(a) Principle of Biological Oxidation (7)

Biological oxidation is simply a conversion process therein

dissolved organic compounds are converted into "bacterial cells,

which can then be removed from the waste water. The generalized

reaction for the removal of soluble organics may be considered

as follows:

Orc^ani ^ms
Drganlcs + 2 + Nutrients —2™- >. C02 + H2 + Organisms.

(b) Growth Pattern (S)

The curve in Figure 4 illustrates the classic growth pattern

exhibited by microorganisms in a batch culture. Examination of

the curve reveals that growth passes through three different phases.

Initially, all nutrients are present in excess of the requirements

of the microorganism, and growth is unrestricted. During this

period, called the constant growth phase, the concentration of

Dorganlsms increases at an exponential rate. At some concen-

ion, one of the nutrients becomes growth limiting and the

culture proceeds into the declining growth phase. In response to

the increasing competition of the microorganisms for the remaining

1j ting nutrient, the rate of growth decreases until growth

f lly halts. The remaining portion of the curve represents the

decrease of the microorganism resulting from autooxidation which
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occurs after the depletion of the available organics. This is

often called the endogeneous respiration phase of activated

sludge.

(c) Kinetic Model

The Kichaelis-Kenten form of rate equation is often used to

describe the growth kinetics of biological systems. It is known

this is a gross over-simplification of the very complex

phenomena that are occurring and that Tsuchiya, Fredrickson, and

Aris (9) have recently presented the results of their initial

smpt for a more complete treatment. Since much more work will

be necessary before such a treatment will be usable for engineer-

ing design purposes, the Michaelis-Menten form of rate equation

will be used in this study. Although it is widely recognized

that there are a number of different types of micro-organisms

present in biological waste treatment systems and that different

types of micro-organisms predominate under different conditions

(10), no attempt will be made to Include the effects of interac-

tions between different types of micro-organisms in the mathemat-

ical model of the growth process.

The growth of activated sludge micro-organisms will be

expressed in terms of a single growth rate equation which is at

all times a function of the concentrations of organic nutrients

and active sludge organisms. If oxygen and other trace nutrients

vallable in sufficient quantities, the kinetic model for

micro-organism growth is assumed to be
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'
2 - kD Xj> (1)

where

dx
-TT- =s growth rate, mg/liter hr,

x-j = concentration of organic nutrients, mg/liter f

x
2

as concentration of active micro-organisms, mg/liter,

k = maximum specific growth rate when the organic

concentration is not limiting the rate of growth,

hr"1 ,

K = the concentration of organics at which the specific

growth rate observed is one half the maximiim value,

k~j = specific endogenous microbial attrition rate, 'hr""1 .

When growth occurs according to equation (1), the organic nutri-

ents are being consumed at a rate-

dxl k xl x
2 , 2)

dt
=
T(K + x1

)" '

where

dx,— = rate with which organic nutrients are consumed,

mg/liter hr,

Y = nutrient conversion yield factor.

Simplified forms of equations (1) and (2) result if X is
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much larger than x-^ or if K is much smaller than x^. When K»
:._ .. equation (1) reduces to

dxo k x-, xo
l = _|-2-kD *2 (3)

while when K «*< x1# equation (1) reduces to

dx
2 _

"dF ~ iCX
2 " kD X

2

= (k - kD )x2 {k)

Similar simplifications can be written for equation (2).

2, THE MATHEMATICAL REPRESENTATION OF THE PROCESS

(a) Flow Models

Since the conventional actived sludge process can be consid-

ered as a special case of the step aeration process in which all

:'oed are allocated to the first tank, only the step aeration

process is described here.

_.-_ _;._: aeration, the influent is fed to the system at

several different locations. At each location the influent is

_ with the fluid at that location. Material balance equations

can be used to describe the resulting concentrations if complete

mixing of the influent and the fluid is assumed to occur at each

location. In this investigation we shall assume that the influ-

_ccation is instantaneously mixed with the fluid at

location. Mathematically, we shall assume that this mixing

of influent takes place at an individual mixing point of negligi-
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ble volume and that a completely mixed stream leaves each mixing

point and passes to an aeration or reaction tank where growth

occurs. In this way, the material balance equations for the

aeration tanks will reflect only the effect of the growth process.

This mathematical modeling approach is illustrated in Figure 5

where each circle and each box denotes a set of material balance

equations .. Complete mixing will always be assumed for both the

mixing points and the aeration tanks where growth .is assumed to

occur.

The secondary portion of the biological waste treatment

system is assumed to be composed of a sequence of N completely

mixed tanks connected in series followed by a secondary clarifier.

Each square box in Figure 5 corresponds to a completely mixed

aeration tank. The circle preceeding each square box corresponds

to the mixing point where untreated influent can be added to the

fluid flowing from one tank to the next. The final circle corre-

sponds to the secondary clarifier inhere the sludge micro-organisms

are allowed to settle. A portion of the sludge from the bottom

of the clarifier is removed and sent to the sludge disposal system

and the remainder is recycled.

(b) Simplifying Assumptions (5)

The following assumptions and simplifications are made in

specifying the process and developing the mathematical represen-

zz.zL.oii for the process.

(1) The system is isothermal (and is under the steady

state condition)

•
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(2) Physical properties such as density, dlffusivity, and

viscosity are constant.

(3) Y is dependent only upon the property of the waste

itself, and independent of the age of the organisms

and the effect of other physical conditions such as

the concentrations of organics and organisms.

(4) Oeganics and organisms are distinctly separate entities

in solution.,

(5) Endogeneous respiration does not influence the ststem

performance.

(6) The sludge and waste streams are completely mixed at

each point where the waste is introduced.

(?). Sufficient oxygen is supplied for the oxidation.

(8) The fluid is a continuum and there is no segregation..

Some of these assumptions depart from reality. They are

justified on the grounds that they simplify the relationship of

the process without appreciably changing its basic character-

(c) The Mathematical Representation

In Figure 5, q is the volumetric flow rate of the feed or

influent to the overall system, qr is the recycle flow rate, qw

2n-l
is the volume flow rate to the sludge digester, x~* is the

concentration of organic nutrients in the stream entering the nth

tion tank from the mixing point preceding this tank while

1

12 the organic nutrient concentration of the stream leaving

this aeration tank, x?*
1"1 and x~

n
are the concentrations of
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"ganisms in the entering and exit streams of the nth

aeration tank respectively, and x^
n" and xJ1

are the volumetric

flow rates of the entering and exit streams of the nth aeration

respectively. In Figure 5» q
2n~1 is the volumetric flow

ie raw waste introduced to the mixing point that pre-
2n

-eration tank and V denotes the volume of the

nth aeration tank.

(1) Analysis of a mixing point.

arder to establish a mathematical model for each mixing

point, we consider the mixing point preceding the nth aeration

- in Fig. 6. a. The essential governing equations are

;ten based on the assumed complete mixing flow model using the

notation established above. The organic nutrient balance around

this mixing point gives

J
2*"1 4 + xf-

2
xf-

2
= xf-

1
xf-

1
(5)

treated waste fed to the system. A balance of the active sludge

organisms around this mixing point gives

2:i-l f 2n-2 2n-2 2n-l 2n-l . ,.
q x

2
+ x~ x

2
= x x

2 (6)

.:'. is the organism concentration in the raw waste. A bal-

ance on the volumetric flow, x~, gives

C
2-1

, xf"
2
= xf-

1
(7)
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sis of an aeration tank.

.^o nutrient balance around the nth aeration tank as

m in Fig. 6b gives

- xf-
1 - *f xf -

k ^ \ V
2n

. (8)

when the growth kinetics are described by equations (1) and (2).

ilarly, an organism balance around the nth aeration tank gives

y. v2n ,r
2n

*f"l xf"* -
,f xf * (LS-g. - x

D xf )V
2» = (9)

K + x-_

Since the volumetric flow rate does not change at the aeration

t ank , we have

x;--
1"1

= x?
n

do)
3 ->

the nth aeration tank.

i ilysis of the secondary clarifier.

For a system with N aeration tanks, the flow entering the

2N
secondary clarifier is denoted by x^ which is equal to qd-j-r)..

The effluent flow from the clarifier is q(l-w) and the bottoms

flow q(r+w). This is schematically represented in Fig. 6c.

anic waste is assumed to pass through the clarifier

i, the concentration in the effluent and bottoms is

2Ngiven by n . If the sludge is concentrated in the clarifier to

a bottoms- concentration of ^xj , the organism balance around the
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cl_ri:i"_ar is

q(l±T)xf = qd-wjz® + q(r-w)3 X
^

N
(11)

x is the organism concentration in the effluent stream

and g is the separator concentration efficiency. For any given

set of influent flow rate and concentration, recycle flow rate,

and waste sludge flow rate, .the value of p is assumed constant

in this investigation.

Since. the recycle stream is connected to the first mixing

point, the organic and organism concentrations and the flow of

this stream must satisfy the relations

x° . xf (12)

4 - Pxf (13)

(14)

Equations (5) through (14) provide a mathematical model of

the step aeration waste, treatment system composed of N completely

mixed aeration tanks connected in series. Since equations (5)

through (10) can be written for each stage consisting of a mixing

point and an aeration tank, there are 6n + k equations in the

model. The model for the conventional process in which all of

the influent is fed to the first mixing point can be obtained by

let jinc
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i
1

= q (15)

and

-1
= (16)

-•._- :•:,

Model

ire are a number of costs associated with the biological

reatment process. Both capital and operating costs must

be considered in developing a complete economic model. Some of

the capital costs which should be considered include the costs

to the biological chamber, the secondary clarifier, the sludge

digester, and the operations and maintenance building. Some of

the operating costs which should be considered include plant

maintenance costs, power costs, the cost of nutrients and chemi-

cal additives, operating labor costs, and administrative costs.

ith and Sliassen (11) have presented an economic model in

tsitivity analysis of activated sludge economics. Their

mc^l. cr ^cddls similar to theirs, can be used in design opti-

m _ z s t i on studles

•

In -che simple economic model which will be used here, the

lc of the biological chamber will be minimized for a fixed

ility. In McBeath and Eliassen's economic model, the

. al cost of the biological chamber is a function of the total

ae of the aeration tank (11). Thus, minimizing the total

biological chamber minimizes the capital cost of

the biological unit according to their cost equation.
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The mathematical objective function for this problem is thus

to minimize the total volume of the biological growth chamber

N 2n
VM = £ V (1?)
x e=1

2r
where V is the volume of the nth aeration tank. Although this

mathematical objective function is rather simple, it can be used

to obtain useful information about the effect of the hydraulic

flow pattern on the performance of the system. Information about

the optimal allocation of influent to the system and the optimal

distribution of volume among the aeration tanks can be gained

using this objective function.
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CHAPTER III

OPTIMIZATION SI CHE PROCESS

1. : CION STUDIES OF STEP AERATION AND CONVENTIONAL SYSTEMS

srlbed in the previous chapter, equations (5) through

provide a mathematical model of the step aeration activated

:e system shown in Figure 5- ±? equations (15) and (16) are

substituted into these equations, a mathematical model of the

sntional activated sludge system can be obtained. In the

alzation analysis, the recycle ratio r, the separator concen-

tration efficiency 3» and the concentration of the organic waste

the effluent from the secondary clarifier will be treated as

fixed parameters for each optimization calculation. The minimiza-

tion of equation (17) subject to the equality constraints pre-

sented in equations (5) through (14) can be readily accomplished

hen the values of q, x^J , x2> x , r, and g are fixed and N is

fairly small.

An analysis of the degrees of freedom of these optimization

problems reveals that there are N-l degrees of freedom for the

Lai system in which all of the influent is fed to the

first tank while there are 2N-2 degrees of freedom for the step

- system. The details of the system analysis are listed

ilx I. Thus, in searching for the optimal design of the

il system, the volumes of all except one of the tanks

.. treated as independent variables. For the step aeration

3m, one may assume that the 2N-2 independent design variables

1st of the allocation of feed and volume to all except one of
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the N tanks.

In order to make the. results, as. general as possible, the

concentrations and flow rates are put -into a dimensionl ess form.

The' organic, waste*, concentrations are. made-, dimensionless, by di-

viding them by- -the- concentration of the . organic waste in the

f f
influent g x-,, the . organism, concentrations, by the product, Yy* ,

and the flow rates to individual mixing points by the flow rate

of the influent to the system, q. This gives rise to the fol-

lowing dimensionless variables.

2n 2n 2n

9
2n-l _ £±2n x. 2n x

2 2n - ^L.y
l

= 4-, y
2 = ^*1X

1

y
3 G 1 q

2n 2n
where y~" and y ?

are the dimensionless concentrations of the

2n
organic waste and organisms respectively in the nth tank, y^ the

2n-l J

dimensionless flow from the nth aeration tank, and 9^ the dl-

2n
mensionless flow of influent to the nth mixing point, 8^ defined

below is the holding time in hours for the nth aeration tank.

2n

e
2n -L_
2 2n

The constant K may also be made dimensionless by dividing it by

x i that is

"1

ius, K is the dimensionless organic concentration at which the
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.-. rate observe< half the maximum value.

In addition to this, the objective function, equation(17)

,

i by q(l+r) to give

V
T

N 2n

3 = q7l^7
= ^qJUtT (18)

S is indeed the total mean holding time for the conventional

system, but it may not be the total mean holding time for the step

-on system, since the flow rate through some of the tanks

may be less than q(l+r). Nevertheless, S is the total required

volume per unit of the total flow rate to the aecondary clarifier,

sh is identical for both conventional and step aeration pro-

cesses under the equivalent operating conditions. Thus the use

- still enables one to compare both processes on a consistent

.s. In the presentation and discussion of the results, equa-

- 18) will be referred to as the total holding time, even

though this may not be the ture mean holding time for the step

aeration system.

In this investigation a modified direct pattern search tech-

originally developed and the simplex method were used to

In the optimal results (12). The details of the mathematical

ion procedure are contained in Appendix II and the

.fied search technique is described in Appendix III.

AND DISCUSSION

minimization of equation (18) for the model shown in

Figure 5» which is described mathematically by equations (5)

agh (14), was carried out for conventional and step aeration
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activated sludge systems with one, two, and three aeration tanks.

Optimal results were obtained for 90, 95 s 92, and 99>£ treatment

for several values of the parameters p and K... The following

values for the constants and parameters were used in this investi-

gation*

y = 0, dimensionless
2

k = 0,1 hr

k = 8 002 hr""
1

r s Q 8 25» dimensionless

3 sb 4.0, dimensionless

K = 0.01, 0.02, o 05 s 0.1, 0.2, 0.5, dimensionless

2Ny" ss 9 01 9 0.02, 0*05, 0,1, dimensionless.
1

The results of this investigation are presented in Figures 7

through 25* Tabular values of the results are presented in Tables

1 through 5» Figures 7, 8, and 9 show the variation in the objec-

tive function (total holding time) with per cent of treatment for

z, _ Oc^Lj G*05 y and 0.5, respectively. In these Figures, the

solid lines give the optimal results for the conventional system

in which all of the influent is fed to the first tank while the

dashed lines present the optimal results for the step aeration

2m. For all systems considered, the minimum required holding

time increases as the per cent of treatment increases; however,

increase is much more rapid for the one tank system. As the

number of aeration tanks in the conventional activated sludge

system Increases, the total volume required for treatment de-
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This decrease in re olume is much larger for 99/-'

t ohan for 90/» tl

The effect of step aeration on the required volume is shown

3 ? and 3; however, for K, = 0.5 » the effect of step

-ion is very snail and thus, separate curves are not shown in

/or the st^_ Dn system. In Figure 2, where the

le of K_ is small (K = 0.01), the effect of step aeration is

lifleant in that the required volume is reduced considerably

_ing a three tank step aeration system. Figure 8 shows that

Li al step aeration system can be used to reduce the required

. , :,. treatment, but that very little volume reduction

is obtained for 99$ treatment. While the savings in volume due

to using additional aeration tanks is greatest for 99% treatment,

the savings in volume due to using the step aeration system rather

conventional system is greatest for 90$ treatment.

are 10 shows the variation of the objective function with

leter IC.
(

for 90% treatment. When K is small (X = 0.01),

jre is only a very small volume reduction that can be obtained

ising an optimal multi-tank conventional aeration system in-

stead of a single tank system with complete mixing; however, when

K is large (X., = 0.5) the results predict that a substantial

in volume can be obtained by using an optimal multi-tank

_ . .'.a other hand the results indicate that the savings

in volume that can be obtained "oy using step aeration is greatest

n K is small.

The variation of the objective function with per cent treat

-

ment with K as a parameter is shown in Figures 11 and 12 for two
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: ms, respectively. These results show that

. required holding time increases much more rapidly \ 1

__ large. These results also show how

it _on decreases as K-, increases and per

. reatment incr^

lgures 13 through lo the volume ratio, which is defined

-_mum volume requirement for a particular multi-t

vided oy the volume requirement for a single tank system,

— rod. Figures 13 and 14 show the variation of the volume

er cent treatment for various values of K
n

. Figure

1; si , for 90% treatment and K = 0.01 the predicted re-

in volume obtained by using an optimal three tank conven-

tal system rather than a one tank system is only about 2% while

the corresponding reduction predicted for the optimal three tank

aeration system is about 23/«» The results presented in

re 14 predict that when K, is small there are conditions where

it is better to use an optimal two tank step aeration system than

a three tank conventional system.

The results in Figures 13 and 1U- also predict that when X,

arge, the volume requirement is greatly reduced by using multi-

systems rather than a single tank system; however, the addi-

t lal volume reduction due to step aeration appears to be quite

.1 .'. .'.- -3 large. As per cent treatment increases, the

reduction in volume due to using multi-tank systems

-is is because the volume requirement for the single

tank system nisreases very rapidly as per cent treatment increases.

__ and 16 show how the volume ratio with the para-
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meter K in the kinetic model used in this study. As K-, increases,

volume ratio decreases for both the conventional and the step

aeration systems • Figure 15 » which is for the two tank system,

shows that there is little to be gained by using step aeration in

a two tank system unless K_ is less than 0.1. The results for the

three tank systems in Figure 16 also predict that the greatest ad-

vantages are gained using step aeration when K- is small.

The variation of the per cent of feed allocated to the first

tank with per cent treatment for the two tank step aeration system

is shown in Figure 17* For EL = S 01 and 90 to 95% treatment the

results show that about one half of the influent should be allo-

cated to each tank of the two tank sjstems however , for values of

K greater than 6 2 the results predict that all of the influent

should be fed to the first tank as in the conventional process.

For 99$ treatment, there is no difference between the optimal two

tank step aeration system and the optimal conventional process

because all of the feed is allocated to the first tank even for

the case where K = 0.01.

The variation of the per cent of volume allocated to the

first tank with per cent treatment for the two tank systems is

shown in Figure 18. As the per cent treatment increases, the

optimal allocation of the total volume to the first tank of the

twc tank conventional system gradually decreases; however, the

I: 1 allocation of per cent volume to the first tank of the two

step aeration system increases with per cent treatment. This

'ease of per cent volume allocated to the first tank with per

cent treatment closely follows the increase in feed allocation to
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ted to the first tank decreases for the conventional

Lon process, the optimal

of per cent volume to the first tank lncre£

.ncreased.

The variation of the optimal feed allocation to the three

iem with K-, is shown for 90/& treatment in Figure 19. The

he optimal allocation of volume with K. Is shown

.. system and the conventional process in Figure 20.

-aration system abrupt changes in the slope of the

when "Che allocation to a particular tank reaches zero.

= 19 the optiaml allocation of influent to the first tank

incr ~s with K-, while the allocation to the second tank first

3ases and then decreases. In Figure 20 the optimal allocation

\;o these two tanks follows a similar pattern. The

ime allocation to the third tank decreases until the feed alio-

-.i to this tank reaches zero; however, the allocation of

she third tank then increases as X.. increases.

For the conventional process the optimal allocation of total

- the first tank decreases as K increases while the allo-

catic other two increases with K . For the conventional

. .nsidered here, the allocation of per cent volume is

jest for the first tank and smallest for the last tank,

-jure 20.

. Figure 21 the variation of the organic concentration in

3f the two system is plotted as a function :

>er cent ti _eter. For the conventional
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10. /arictlon of volume allocation to the three tank

nWd K for £3 % treatment and 9 = 4.0
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cenl ration does not change significantly wl

.se significantly as

r step aeration on the other hand,

3 optimal step aeration system differs from the

system the organic concentrat ion 1]

nd on the per cent of treatment, but instead, it In-

apidly as K., increases. However, when K-, increases to

/.ere all of the feed is allocated to the first tank,

rom that point on the results for the tx\To systems are

itical. This point depends on the per cent of treatment

Lt occurs for each case inhere the dashed line meets

the solid line for that particular per cent of treatment; that is,

anic concentration of about 0.12 for 98/2 treatment, 0.19

ment, and 0.28 for 90;6 treatment.

Figure 22 presents similar results for the organic concentra-

te first tank of the three tank system. As in Figure 21,

as long as there is allocation to more than one tank, the optimal

results for the step aeration system can be represented by a

hich does not depend on the per cent of

trea-

it desired.

Ihe variation of the organic concentration in the second tank

shown in Figure 23. The curves for the conventional

process are similar to those in Figures 21 and 22; however, the

.mal results for step aeration are different. In

_ 22 the results for step aeration were almost inde-

fcment as long as there was allocation

lan one tank; however, this is not true for the
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..lie concentration in the second tank of the three tank step

fcion process • As long as there is allocation of feed to the

third tank s this organic concentration is almost independent of

per cent treatment; however, when there is allocation of feed to

only the first two tanks, it is greatly dependent on per cent of

treatment. Figure 23 shows that the organic concentration in the

second tank of the optimal step aeration process may exceed the

organic concentration in that tank for the optimal conventional

process. The abrupt changes in slope in the curves for the step

aeration process occur where the allocation of feed to a partic-

ular tank reaches zero. For example , for 95% treatment there is

a change in slope at about K-, = 0*04 and K-. = 0*22 6 The first

occurs because the allocation of feed to the third tank reaches

zero '
:\hen K_ is increased to about the value of 0,04 while the

second change in slope occurs because the allocation of feed to

the second tank stops when K is increased approximately to 0.22.

Figures 2k, 25 and 26 provide some information about the

sensitivity and shape of the contour surface for the two tank step

aeration system,. Figure 2h shows how the optimal total holding

":_^G varies with the allocation of feed to the first tank, This

curve was obtained by fixing the allocation of feed and then

ptlmizing the objective function by proper choice of the one

dning independent variable.

Figure 25 shows a plot of total holding time versus the

_^3s organic concentration in the inlet stream of the

:>nd reaction stage with the fraction of allocation of sewage

to the first tank of a two tank system as parameter. The curve
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se

.ned by numerical simulation.

xre 2.6 shows how two particular variables effect the value

;ive function 8 2ach surface contour is for a partic-

ular value of the objective function! the point 1.S7 denotes the

mj limum point. Since the value of the organic concentration from

the second mixing point to the second tank is influenced dj the

1 allocated to the second mizing point, the results appear in

the region "jo the right of zhe diagonal line-*

Some results were also obtained for 3 = 4*5 and 4.75* but the

effect of g on the optimal results is not as significant as that

of K. and per cent treatment. Some of the effects of these values

of ,j are reported elsewhere (1).

Since it may be possible to achieve the optimal pattern of

flow and mixing within an activated sludge system without greatly

affecting the costs of separation and sludge disposal, it is

desirable to increase our knowledge about the effects of the

hydraulic regime on the performance of the system. Although the

results presented here indicate that step aeration can be used to

reduce the volume requirements under some conditions, one should

ber that the mathematical model used here to describe the

. Dgical waste treatment process is only an approximation of the

results of this investigation show that the values of

and per cent treatment greatly influence the optimal design.

is very small step aeration can be used to significantly reduce

le requirement j hoxfever, when K_ is large, there is almost

no incentive to try to design an optimal step aeration syst<

—



.Ity

lng a step aeiv ;e reduc-

is much greater for 90$ treat

jnsionless

y~ *
, appears to be an lm]

.- in deciding whether or not step aeration should be

2N
i K. is less than y. the possible advantages of

sration should be considered; however, when K, is

" the advantages of step aeration are almost always

a results of this investigation predict that an optim

rial activated sludge system composed of several completely

ries will require less volume than a

Lth one completely mixed aeration tank when either K, or

treatment or both are large. When K-, is small, the

;rea approaches that of one completely

ration tankj however 9 for all other conditions invest!-

aptimal multi-tan n requires significantly less

_ __:._•! w :^-J: i,„--^~~-

leters 1- and per ^ent treatment affect the type of

Is to be designed; however, they also greatly affect

- ial values of the design variables. For the conventional

when K. is small most of the volume should be allocated to

rever, when K-, is large an optimal design would

sater allocation of volume to the other tanks.

1 or the step aeration system, there is also considerable variation

1 -liecation of influent



nent. rhus, it is desirable to know the values of these

3rs for each waste treatment problem

.

Iditii .1 experimental research is needed in order to deter-

2 8 the value of K for different wastes. Values of K reported

. gton, Hetling, and Rao (13) for different substrates

2 from 2 to 20 zag/liter. Milbury, Pipes and Grieves (10)

reported a X value of 110 mg/liter GOD for dried skim milk. Since

the concentration of the influent entering a waste treatment

system is usually between about 100 and 1000 mg/liter, the value

of K. should usually be between about 0.002 and l 8 e

The concentrations of the organic nutrients and the micro-

organisms in each tank are important variables and they can be

used to provide some explanation for the outcome of this optimiza-

study. For the conventional system, the microorganism con-

."3 ion increases gradually from tank to tank in going from

the first to the last tank; however, the increase from the first

he last tank is usually less than 10$ for the results reported

On the other hand the organic concentration rapidly

.cases from tank to tank In going from the first to the last

Itfhen K- is large this latter effect predominates and the

.ts tend towards those for a first order chemical reaction

the optimal result is equal allocation of volume to each

(14). When K is small , the rate of growth of microorganisms

L Dst independent of the organic concentration. Thus, as K-,

; :ero, the optimal conventional system approaches the

3te mixing activated sludge system which is composed :

well nixed aeration tank and a secondary clari



i aeratioi.

influent

her microori

m concent:.--

r, since the org ration in

_rst tank is less thi ;he conventional system, s

jion is most advantageous, when K, is small and the organic

-on does not greatly affect who rate of grc

3f tanks with complete mixing in tk is

For this st je this type of flow "behavior can

in practice. It is known that a system where plug fl

is assumed would theoretically give a smaller volume requirement

: . - .stems considered here (^). A ra-

tion £ 3 influent is optimally allocated along the

ank in hich >lug flow is assumed to occur (2) will

i a smaller volume requirement than that obtained for the

ation systems considered in this investigation. However,

It is difficult to design an activated sludge waste treatment

low can be assumed, because aeration and "

must be continuously provide ^nc the residence ti

is quire large. Since the tanks in series sy_ „lso

be used as a model for a flow system with some longitudi-

it seemed d< nvestigate this system.

_ and Grieves (15) have reported tl have

a laboratory size activat

_ a compartmentalized aeration tank. _. •

Ltal Investigation is on- Lon ' apt! lal alio-



f olume among bhe partments 3f a tank may lead to

3d 'fo nee j however, additional laboratory studies are

. in order to determine all of the effects of optimizing the

srn of flow in an rtivated sludge system.



CONCLUSION A]

;o the des- ~ste

: nv< Ives the use of

h employs mathematical optimizatic

lues of the desi

Ldy. When b approach is used, one must have a mathe-

he biological waste treatment process that

Lor of the = nd an

Ddel 1 tat relates the design variables to the varic

st consider, such as capital and oper-

costs. In additio] te process and economic models, one

_ objective function to be optimized, that is, one

objective of the design stated in mathematical terms.

-- economic models and the objective function togeth-

atical statement of the design- pro'.

proach, simulation and mathematical opti

2S are used to find the optimum of the mathematical

an* However, since the process and economic models

objective function are only approximations, the

deviate from the true

: of mathe d

ste treatment process is

.use of the many factors affecting biologic_

?f this type can be useful in obtaining a be Ler-

of the process and in predicting the effect of specific
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param Ld variables on the performance of the system. This

jstigation shows that the constant K-,, which is the dimension-

5£ organic nutrient concentration at which the specific growth

. ate is one half the maximum value, and the per cent treatment

portant variables xvhich affect the optimal design of

^ec .udge systems « The optimum type of system and the

m values of the. design variables change significantly with

changes in K and per cent treatment.

The results of this analysis predict that an optimal step

aeration system requires less volume than a conventional system

when :C- and per cent treatment are small, but that there is no

advantage to using step aeration when K, and per cent treatment

are ". rge. The results also predict that optimal multi-tank

entional systems require less volume than single tank system

and that the greatest savings in volume requirement occur when K..

and per cent treatment are large.

ice, as mentioned previously, the mathematical model of a

process is just an approximation, experimental research with step

aeration systems is needed to verify the results presented here.

Although it would be difficult to experimentally optimise a

ry size activated sludge system where the per cent treat-

is specified, one could experimentally optimize a laboratory

bem of fixed total volume by adjusting the allocation of

. ...: among the tanks until the maximum per cent

is obtained. A direct sarch optimization procedure

guide bhe a - lent of feed and volume alloca-

lt to experiment so that the optimum may be
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NOMENCLATURE

k Maximum specific growth rate when the organic concen-
tration is not limiting the rate of growth, hr" .

K The concentration of organic at which the specific
growth rate observed is one half the maximum value,
mg/llter.

k Specifio endogeneous microbial attrition rate, hr"" .

K, The dimenslonless organic concentration at which the
specific growth rate observed is one half the maximum
value

•

q Volumetric flow rate of feed to the overall system,
liters/hr.

q zi-1
. The Yoi^etrlc flow rate of feed introduced to the

mixing point at that precedes the nth aeration tank,
liters/hr.

r Recycle ratio.

S Object function

VT Total volume of the biological growth chamber, liters.

,2n
The volume of the nth aeration tank, liters.

Withdrawal ratio.

Concentration of organic nutrients, mg/liter.

Concentration of active micro-organisms, mg/liter.

f "

x The concentration of organics in the feed, mg/liter

f
x
2

The concentration of organisms in the feed, mg/liter.

x " The concentration of organic nutrients entering the
nth aeration tank, mg/liter.

x
2
n" The concentration of organisms entering the nth

aeration tank, mg/llter.



°2

trie flow rate of the enterln
ion tank, llters/hr.

:rlc flow rate of th of the nth

Lonless . . tion of the
in the nth ..

.imensionless concentration of org

le dimensionless flow rate frcri the nth

The dimensionless flow rate of influent to the nth
_nt.

rhe holding time for the nth tank, hrs.
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APPENDIX I

.DETERMINATION OF THE NUMBER OF DEGREES OP
FREEDOM OF THE BIOLOGICAL WASTE TREATMENT SYSTEMS

An analysis of the system to determine the number of inde-

pendent variables or degrees of freedom is often required for

designing and optimizing complex systems. In this analysis, an

N stage system is considered; however, each stage is assumed to

consist of a mixing point and reaction stage; thus, the actual

model we consider here is composed of 2N stages (see Figure 27).

(1) Type and Number of System Variables

a) Dimensionless volumetric flow rate of feed,

.2n-l
"1 n=l,2 N| N

b) Dimensionless organic concentration,

1
yV 1 = 0, 1, ..., 2N; 2N +:i

c) Dimensionless organism concentration,

Y
2

, 1=0,1, .... 2N; 2N + 1

d) Dimensionless volumetric flow rate through each stage,

7y I . 0.-1. .... 2N; 2N + 1

e) Reactor volume at each stage,

A 2n
2

' n = 1, 2 N; N
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f) Dimensionless concentrations of organic and organism

in feed,

y and y c

Total number of system variables = 3(2N + 1) + 2N + 2

= 8N + 3

(2) Type and Number of Relations Among System Variables

a) Material balance of organic component,

(i) Mixing points,

2n-2 2n-2 Q 2n-1 2n-l 2n-l - ' „
y
i

y3 + Q
l = yl y3 n = 1, 2, .... N| N

(11) Reaction stages (Tank reactor is under consideration),

2n-l 2n-l Tr
2n 2n zn

y
i

y3 +
s 2

= yl y3 '
n = 1, 2, ..., N; N

b) Material balance of organism component,

(i) Mixing stages,

2n-2 2n-2 9n-l f 2n-l 2n-l , . __ __
9
1 y2

= y2 y
3

,nn a
* ' '" J

(11) Reactor stages,

2n-l 2n-l 2n 2n 2n
y
2

y
3

+ rQ
2

= y2 y3 '
n = 1, 2 N; N
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c) Overall material balance at each stage,

(i) Mixing stages,

2n-2
y
3

+
2n-l

6
i = :

2n-

7
3

•1

(ii) Reacti<

y
2n-l _

Dn stages

2n
y
3

t

1, 2, ..., Nj N

nsl, 2, „„N| N

d) Total number of relations = 6n

(3) Degree of Freedom of System

From the total number of variables and relations obtained in

previous sections, the number of degree of freedom for the entire

system is

F = 8N + 5 - 6N = 2N + 5

2N
If the system is specified by the variables, y , y2 ,

y' y, ,

f f
y.. » y 2 with the equality constraint

N 2n-l
2 e =1,

n=l 1

then the number of degrees of freedom becomes

F=2N+5-7=2N-2

for the step aeration process. Moreover, among the 2N-2 variables,

N—1 variables of influent allocation should be specified. In
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other words, N-l variables have to be specified as the influent

allocation. However, for the conventional process all the influent

is allocated to the first tank, there are only N-l decision vari-

ables to be considered.
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APPENDIX II

MATHEMATICAL OPTIMIZATION PROCEDURE

The mathematical problem of minimizing equation (18) subject
2N

to equations (5) - (14) for fixed values of y. , £, and r can be

accomplished using direct search optimization procedures. If

the allocation of influent, 9 , to N-l of the N mixing points

and the organic waste concentration, y_ , in all of the aeration

tanks except the last one are taken as the independent decision

variables of the optimization problem, the objective function,

equation (18), can be evaluated. If the dimensionless variables

defined earlier are used, the problem is that of minimizing

2nv
T

N 6"
1 V

=
1+r

Xtal

~ 1 N 2n 2n
as —— 2 y 9

q(l+r)

subject to the equality constraints

2n-2 2n-2 2n-l 2n-l 2n-l

(A-II-1)

(A-II-2)

2n-2 2n-2 2n-l f 2n-l 2n-l
, ^ ^ v

y2 y3 * 1 y2 ~ y2 y
3

(A-II-3)

2n-l 2n-2 2n-l
y » y +9 (A-±I-4)
3 " -3

T
l

2n 2n
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,
2n 2n

7

2
T

2
L

2n ' D *2
K- + y.

y^
n

- yf"
1

(a-ii-7)

N 2n-l
2 6^ =1 (A-II-8)

n=l 1

2N
(A-II-9)

and

2N
y
2
= 3y

£
(A-II-10)

y° = r (A-II-11)

This optimization problem can be put in a form in which the

objective function, S, can be easily computed for various values

of the desogn variables. We first solve equation (A-II-5) for

2n
a to obtain
2

a Cy^-yfHK + yf)2„
_ _i l 1 1_

2 2n 2nky
i

y
2

Substituting this result into equation (A-II-6) gives

. 2n-l 2n. r , 2n , 2n -,

5>« 1
(y

i " yi
)tk y

i
" k

D
(K

l
+ yi ^

2n
__ v

2n-\ X X 1 D 1 1 (A-II-13)y
2 " y

2 + 2nky
i

3y rearranging equation (A-II-3), we obtain
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2n-2 2n-2 A 2n-1 f
y y. + e y

4
n-x - J—^^

—

! <«"*>
y

Combining equations (A-II-13) and (A-II-1^) gives

2n-2 2n-2 2n-l f , 2n-l 2n 2n , 2n,-,

2n
y
2

y
3

+ 6
1

y
2

(y
i - yl )Ck y

i ' k
D
(K

l
+ 7

1
)]

2n-l 2n
y
3

ky
l

2n 2n 2n-2 2n
Y = A y^ + B (A-II-15)
2 2

where
2n-2

2n-l

2n y
3

A = ~ (A-II-16)

and

7
3

. 2n-l 2n
r 2n

, , T,
2n -. 2n-l f

2n
(y
x

- yx
)[k y

x
- k^ + ^ )J e

1 y
2

B
2n

T
2n-l

k yx y
3

(A-II-17)

Equation (A-II-10) may be written in the form

2N
y
2

= A y2
(A-II-15)

by letting A = B. Substitution of y into the equation for

y , we obtain
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2 2 2N 2
y 2

= A A y
2

+ B

Substitution of this expression into equation (A-II-15) for n = 12

gives

Z| ^20 2N ^ 2 4
y a A A A y + A B + B

"by induction, the expression for the nth tank can be obtained as

2n 2n 2n-2 2 2N 2n 2n-2 k 2
y = A A ... A A y + A A , .. A B

2n 2n-2 2n
+ ... + A B + B (A-II-19)

Waen n = N, equation (A-II-19) may be written in the form

2N 2N-2 i+ 2 2N 2N-2 2N

v2N = A A ... A 3 + ... + A B + B (a.h.20)y
2

"
2N 2N-2 2

[1 - (A A ... A A )]

2N
For a desired degree of treatment, y_ is fixed. Selecting

2n-l 2n
values for the variables e.. and y1 , n = 1, 2, ..., N-l is

sufficient to specify the values of the dependent variables and

the objective function, S. To obtain the minimum value of S, the

2n-l 2n
values of 6. and y. , n = 1, 2, ..., N-l must be the optimum

values; that is, the values which allow. S to take on its minimum

value must be selected.

The suggested computational procedure to compute S is as

follows:

2n-l 2n
1. Assume values for 6, and y , n = 1, 2, ..., N-l.
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2N-1
2. Compute 6 using equation (A-II-8).

3. Compute y
n

and yJ1" for n = 1, 2, • .., W using equation

(A-II-4) and (A-II-7).

4. Compute y^
n" for n = 1, 2, . .., N using equation (A-II-2).

5. Compute A and B for n = 1, 2, ..., N using equations

(A-II-16) and (A-II-17).

6. Compute y using equation (A-II-20).

7. Compute y using equation (A-II-18) and y for n = 1, 2, . ..,

N-l using equation (A-II-15).

8. Compute y
2n for n = 1, 2, . .., N using equation (A-II-14).

9. Compute 6^ for n = 1, 2, ..„ N using equation (A-II-12).

10. Compute S using equation (A-II-1).

A direct search optimization procedure may be used to system-

atically assume sets of values of 9- " and y.. for n = 1, 2, . ..,

N-l until the optimum values of these design variables have been

found. For the problem considered here a modified direct pattern

search technique and the simplex method has been written as an

optimization subroutine to determine the optimum values of these

variables. In assuming sets of values of 9^
" and y_ only

values between zero and one were allowed.

For the problem in which step aeration is considered the

above procedure can be used directly. When the conventional

system is considered, the decision variables related to the alio-



79

cation of feed are fixed such that 6=1 and all other values of

9 are zero} however, the same method can still be used to obtain

the optimum design for the conventional system.
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APPENDIX III

A MODIFIED PATTERN SEARCH TECHNIQUE (1)

The general concept of this method is to set up a pattern of

K >; n+1 vertices, that is, to select K points in the space of n

independent variables and evaluate the objective function values

at these selected points. Then, by comparing the objective

function values at these points, the vertex with the highest

function value (i.e. the worst point in minimization) is replaced

by another point with a lower value of the objective function,

which is determined according to certain operations. This method

forces the objective function to approach the minimum by, at each

stage of the operation, discarding the worst point of the pattern

and adapting a better point to form a new pattern. This procedure

is repeated until the minimum point is reached.

In this method, K = n-j-1 points are used, of which one is the

given or starting point. The additional (K-l) points required to

set up the initial pattern are obtained one at a time by the use

of a step size increment for each of independent variables, i.e.,

x = x. + <&x. for i = 1, 2, ..., n. In other words, if P (x , x ,

..., x ) is the starting point, then the further (K-l) points are

set up in this way*

P t (x-j^ +^xlt x
2

, ..., x
n )

P , (x^ x
2
+ -x

2
x
n

)
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„n ,
0.

p * < x
i'

x
2

xn-l +* xn-l' xn }

n+1 ,00
xP

"
(x

l'
x
2

X
n ^ X

n )

The objective function Is then evaluated at each vertex, and

thesearch is carried on by the following operating procedures

i

At first we write S. for the objective function value at P. and

define

S. = max (S.) where subscript h stands for "the highest",
n * J

med (S ) where subscript m stands for "the second
J

highest",

and

S/ = min (S.) where subscript £ stands for "the lowest".

K-l
3

,

£ x.VK-1,
J-l i

i = 1, 2, ..., N, as the centroid of the points with j = h and

write P.P for the distance from P to P.. At each stage in the

operations - reflection, contraction, and expansion,

i) Reflection

By using a positive reflection coefficient a, the reflection

relation,

P* = P + a(P - P )

Note that P* is co-linear with P and P, , on the far side of P from
h



82

If S* lies between S and S , then P is replaced by P* and the

search is started again with the new pattern.

ii) Expansion

If S* 4 Sj2 , i.e. reflection has produced a new minimum, then

we wxpand P* to P** by the relation

P** = P + Y(P* - P)

In other words, the expansion coefficient Y, which Is greater

than unity, is the ratio of the distance P**P to P*P. If S** < S* f

we replace Ph"by P** and before starting, define a new centroid P

with

K-l1 ^-J-
i

(2n-l)x, + L (2n-2)x J

1
.1=2 *

(2n-l) + (K-2) (2n-2)

ill) Contraction:

If on reflecting P to P* we find that S* > S^, then we

define a new P to be either the old P, or P*, whichever has the

lower S value, and form

P* = P + 3(P - P)

The contraction coefficient g is the ratio of the distance P* P

to P^P and has a value between and 1. Unless S* > S , we accept

P* for P and restart the search. However, for such a failed
h

contraction we replace all the P.'s by (P. + P )/2 before

restarting the process.
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A good expansion may be thought of as resulting from a right

direction toward the valley, so It is reasonable to select a

centroid much near the best point of the pattern instead of using

the conventional way for defining the centroid together with a

slightly larger reflection coefficient. A failed contraction

seldom happens, but can occur when a valley Is curved. Therefore,

the action of contracting the pattern towards the lowest point

will eventually bring all points into the valley. A flow chart

to describe the complete method is given in Fig. AIII-1.

The criterion for stopping the computation is to compare the

"standard error" of the S's in the form
J
I(S

1
- S) /n as in the

simplex method with a pre-set value, and to stop when it falls

below this value. The success of this critertion depends on the

pattern not becoming too small in relation to the curvature of

the surface until the final minimum is reached.

NUMERICAL EXAMPLES

Two functions, all of which have a minimum of zero and have

been used before for testing minimization search techniques, were

used to test the method. These were*

(1) Rosenbrock's parabolic valley (Hosenbrock (i960))

2 2- 2
S(xlf x

2
) = 100(x

2
- x

x
) + (1 - x

x
) ,

starting point (-1.2, 1).

(2) Powell's quadratic function (Powell (1962))
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^ v
'
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.

~v r.o

j

Cc.rEM

p*=p+?(p
A

Compute S

. No

1

j

i

1

Jci: py
( P' V

s by

P/)/2j

Replace

P„ by P*

The general flow chart for 'the new method .
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2 2
S(xlt x

2
, x., x^) (x + 10x

2
) + 5(x - x^)

+ (x
2

- 2x ) + 10 (x
x

- x ) ,

starting point (3, -1, 0, 1),

I

—~~2 -9
The stopping criterion used was J£(S. - S) /n <C 3 x 10 .

However, the results shown in the tables are picked as the func-
—8

tion values are down below 1.0 x 10~ • It is certain that the

size and orientation of the initial pattern had a significant

effect on the speed of convergence. Also, the definition of the

new centroid, due to a good expansion, showed a big effect on the

speed of reaching the minimum. The first set of results inves-

tigated the different strategies, which include different values

of a, g, and Y and different definition of the new centroid due

to a good expansion. The second compared the results for the best

strategy with those of the simplex (19^5)

•

The first trial with function (1) used all combinations of

a = 1.0, 1.2, 1.0— 1.2; p = l/2j Y = 2j initial step-lengths 0.2,

0.8, 1.2, 2.4; and the weight for the points of the pattern is

(2.1), (3.2), (4.3), and (5«^). Part of the results are presented

in Table A III-l.

On using function (2), the same strategies were used and

part of the results are presented in Table AIII-2.

The analyzing of the results shows the following strategy

gives the best result, i.e.,

a i 1.0 -* 1.2 (1.2 follows the good expansion)

3 : 0.5



TABLE AIII-1

Number of Evaluations for Function 1

86

3.0 x 10
-9

Strategy(a,g f /)

Step-Length «(1, i, 2) (1. * 1.2, 1, 2)
2 2

(1.2, |, 2)

0.2 144 149 155

0.8 112 98 107

1.2 134 121 ioO

2.4 150 158 75

Definition of new centroid P with

;2n-l)x.J Z (2n-2)x.J

.1=2
x

x
i ~ "

,2n-l) + (K-2)(2n-2)
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TABLE All I-

2

Number of Evaluations for Function 2

6 = 3.0 x 10
-9

Step-Length a. A, 2) (1 •* 1.2.
1
2' 2) ex..".

i.
2)

0.5 250 215 250

1.0 240 226 250

2.0 250 207 245

4.0 245 213 250

The same definition of the new centroid as in Table 1.



Y t 2.0

and the definition of the new centroid P with

1 K~1
J

(2n-l)x, + I (2n-2)x.
— _

x j-2
x
i
=

(2n-l) + (K-2) C2n-2T

Results obtained with the above strategy are shown in Table AIII-3.

DISCUSSION

For comparison, the simplex method has been built in as a

part of the present computer program. The best strategy stated

in the simplex original paper was used to treat with the four

step-lengths and the results are presented in Table AIII-4. The

mean numbers of evaluations for functions given by equations (1)

and (2) by using the modified method are 131 and 215 respectively.

3y using the simplex, the results are 1^3 and 225 » respectively.

Of course, the modified method may not always have the advantage

over the simplex. Sometimes, however, in using the two equations

as the testing sample, it appears to hold a slight advantage over

the simplex method. The problem which was originally used by Box

to test a constrained maximization procedure, has been changed to

a minimization problem. The modified method and the simplex

method have then been employed to solve the problem. The original

problem has a maximum value of 1 at the point (3» */3) i however,

the transformed problem has a minimum value of zero at (3, Jj) .

In other words, the transformed minimization function has the

minimum value at the same vertex. The problem is stated as

follows I



TA3LE AIII-3

Minimum Number of Evaluations Required For
Different Step-Lengths for Functions (1)
and (2) from Tables (1) and (2).

39

Step-Length
Function

(1) (2)

0.2 149

0.5 215

0.8 93

1.0 226

1.2 121

2.0 207

2.4 158

4.0 213

Mean 131 215
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TA3LE AIII-4

Comparison of the results obtained with the
best strategies by the modified method and
simplex method

Step-Length The Modified Method The Simpl 2X Method

Function (1) Function (2) Function (1) Function (2)

0.2 149 146

0.5 215 225

0.8 98 129

1.0 226 233

1.2 121 158

2.0 20? 223

.2.4 158 140

4.0 213 220

Mean 131 215 143 225
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Minimize the function f, of 2 variables, subject to 3 con-

straints given below;

3

f = 1 - p - (x, - 3)
2]— .

2773

subject to

£ 2L

x
l

- 2 ~V3

< X
3
S X

x
+ V3 (X

£
) < 6

The initial point used in this problem was

x1= l

x
2
= 0.5

Corresponding to f a 0.9866^.

The optimum value is at x = 3» x = </3«

The simplex method has given rise to a function value of 2 x 107

at (3, 1.732) after 179 evaluations; however, the modified method

yield a function value of 2 x 10*"7 at (3, 1.732) after 161 evalu-

-99
ations and incidently it reached a function value of 10 after

196 evaluations! Comparison of the results obtained with the best

strategies by the modified method and the simplex method is also

presented in Table AIII-4.

The method has been written as a subroutine in FORTRAN II

language. The details of the computer program are described in
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the comment statements. Although the search deck has been built

for minimization problems, the same deck can also be used for

maximization problems. Specifically, when S is to be maximized,

(- S ) is used as the objective function to be minimized in the

search deck. This eventually gives rise to a desired result since

the maximum of an objective function is equivalent to the negative

of the minimization of its negative, i.e. max (S ) = - min (-S.).

The flow charts of the modified method and the built-up computer

program are presented in Figures AIII-1 through AIII-6.



teen reached

V coll SCHICK J

AH -2. Jhe flow chert for the bu:;d-up cc"z—z-r program.



D.V. : Decision variables

S.V. -. State varieties

•ig. All! - O \Q) The first pert of the flow chert of

subroutine SUBNAM .
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Write

SC?T CXOPT(I) ,

1=1, ND1M) ,KK

KCONT =

KCC.\7 + the civen

Ail! -3(b). i he second part of The fiow c':

of subroutine SU3NAM .



LT1 = K-I
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1 A = S(M+4)
S(M+4)=S(J)

1

-<ts>
B = DCVX(L

1 M+4)

DCVX(L,M+l) = DCVX(L,J)
DCVX(L,J)= B

-®

RETURN

Fig. A 111 -4. How chart of subroutine ORDER.
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SUM=CSUM
+ C(I)

:..-"RC C(!)

; =ax 15+ C(J)

^Z\ ,J)

; AX! 5=C •.T.\CX .',

I C.\!TRGX C

I

)

i — CNTi\'GXU)/CS !JM

';. A' HI— 5. "ha flow chert for subroutine

CNTROQ .
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*

i

SAVG =

V/ •

,

v--;-
K
)

i 4

SAVG -SAVG

X

SAVG = SAVG/AK

T
i

i

t

I

2 1

SUM = SUM +

(S(U-SAVG)
i

fte 2

i

andim^dim
SU?v1 = SUM a:i

0.5/AND1M

'ig. AHL-6. F'ow chart for subroutine SCHECK

.
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PROGRAM SYMBOLS EXPLANATION MATICAL
NOTATION

ALPHA The reflection coefficient of the
worst point with respect to the
centrold.

BETA The contraction coefficient of
the worse reflected point to the
centre.

C(L) The weight assigned to the Lth
vertex of the pattern.

CNTROD(I) The lth decision variable of the
centroid.

DCVX(I.J) The lth decision variable x, at
the Jth vertex in an N dimensional
space

DLTVX(I.L) The increment of the lth decision
variable from the starting vertex
to the Lth remaining vertex of
the initial pattern.

ERROR The prescribed accuracy of the
function value for stopping the
computation.

G ... Expansion coefficient.

J The Jth vertex of the pattern.

K The maximum points used for setting
up the initial pattern.

KK Number of acrual function evaluation.

MAXNO Maximum number of function
evaluation set for terminating
the computation. q

MDIM Maximum dimensionality used in
the search deck.

METHOD 1 indicates the modified method;
2, the simplex method and 3t the
Box method.

Y

J

k

k+2

NDIM Number of decision variables.
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NDIMP1

NOPT

The number of vertices other
than the starting point for forming
the initial pattern.

Number of vertices of the pattern
to which the desired information
will be written out.

k-1.

S(J)

SUPLIM

The function value
vertex.

of the Jth

Superlimit in constrained
optimization problem, which
is positively inifinite in
minimization (negatively inifinite
in maxization) when the constraints
are violated.



101

(1) Chen, Gilbert K. C, Fan, L. T. and Wen, C. Y. f

MA Modified
Direct Pattern Search Technique," Unpublished Report (1968).
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APPFMDIX IV
COMPUTER PROGRA'

2»GILBI \
r

I) iSGLE VEL=1
-' F X V L I

)

<UN = ChECK»TIME = l:>->PAGE0 = 40C>LII . - 6 •

MEM PATTERN SEARCH TECHNIQUE DEVELOPED AN
IL3ERT K. C. CHEN DEPT. OF CHEM. tNGG. KSU

1 BY
] 9 6 7

PURPOSE
TO FIND THE BEST FUNCTION VALUE OF A FUNCTIC!
INDEPENDENT 'VARIABLES AND The Si. T OF INDEI
AoLES WHICH PRODUCES THIS OUTCOME.

:
I T V A R I

-

USAGt

PART Or THE SUBROUTING CALLLDGSUbNAM Si : L

JITTEN AND PLUGGED IN THE PR0V1DEL SUBROUT I
i E >EG

JGETHER WITH SOME ARRANGEMENTS BY THE '
!

' -'
•> IF NECE

: A R Y .

DESCRIPTION OF PARAMETERS

ALPHA.. REFLECTION FACTOR WITh A VALUE BETWEE
AND 1.5.

BETA.. CONTRACTION FACTOR BETA= O.b HAS
THE SEARCH UlCK. ITS RANGE LIl. iET'.\'Efc

1.

C(J)'. . THE WEIGHT OF THF JTH VERTEX OF Ti

. . DIMFNS [.ON. . ( K-l ) .

CNTROX( I ) • .THE ITH HF.CISICN VARIA3LF l

OF THE PATTi: RN. . . DJ ENS1C I*. (K) .

UCVX ( I » J) . .TriL ITH ; MDi PEf DEN1 W\l lAdLi •' T fl

JMCHEN = 1 IN Tii

, =NDIM IN THF

' L 1 V X ( I , J ) . . I

-
:-

;t '
'

-

x i

:

t
"

' T T :

run p R

i

kCCI IR/ - Y OF Ti-
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.

FUNCT I

C

.: [MAT]
\. LUAT J

. ^L H . IAX . VALUt --'j'j-jjo.

f
'

f- ETHCD. . =1 ..Trt v. LOPcl SEARC I

-2 ..Trih '.1 v'.PLI Y f. I- ThCD.
= 3 ..THI BOX METHOD

N'D] . . NO. OF DECISION VARIABLES, N.

MDI PI.. THE NO. OF VFRTICES GThEF TIW t- 5T
POI N'T I.N FORMII G Tn : IMT IAL P/ TT! •

'

.

Oh VERTICES
ED INFOR ATI.C

:f the pattern re

, '/.ILL o_ WRITTEN

T
.,

1 FUNCT ION VALl E Gh

SIGN. . (K) .

The j i h vertex.

SUPLTM.. THIS IS A S'URERLIMIT SET BY TIG"

STRAINED OPT IMI ZATI CIS PRCBLI
S IT [VELY I NF INI TE I M Mli If- I ZATI
INF INI Tl: IN MAXIMIZATION) WHI P

VIOLATED.

:

•
:

'

I

'

~

:

i T
-

] I : [ON SI ATI r
:''T 1 G THt D( CK h/ - IL1

• r 7 ! C ' •: i Ti! 2 7 DECESICN VARIABL :

'

2 «\R| USED. IF METHOD 3 IS USED, IT CAf^ ONLY
FOF 5 F INCTICN WITH 14 DECESIO.N VARIABLES.

.

~ ; C -

1 )

2 ) > C V X ( I , 1 )

3) DLTVX( I »J ) » 1 = 1 , NO I

«->

•

)
> XNO

6) METHOD

7
: RS SHOULD P R V I [
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bLEr . HOWEVER Tnr.

PROBLEM IF -S( J)
Fl iNCl ION VALUE Th

/
, r mi ! C/

i ...

FOR -UN J i /.,-
.

LSO be

J ) (/o ( J ) ; T :

M) IS USE >. I .E. S ( J )
=

I LLUSTRATION STRAINED PRGbLE

IMG PCI
ThE • INPU
1 ) N >IM =

2 ) MO I riP

3 ) DCVXI
A) DLTVX

DLTVX
5 ) NCPT =

ft ) MAXMO
7 ) £ R f? Q p
8 ) MFTHC
9) SUPLI

IZF S( X»Y)=X*X+Y*Y+1
T » S 1 1 , 5 ) .

T DATA ARE
2

1=2 FOR METHOD 1 AND 2jFOR
1 >1 )=10. ,DCVX (2»1)=0.
(1*1) =0.5 » DLTVX (2 ,i )= r..

(l»2)=o, »DLTVX(2>1)=0.25

ITH.'AN AF II n r T
/

; 7 -

iE PART OF SUBROUTINE TO !3l

T = X( 1 )*X ( 1 )+X(2)*X(2 ) + l

\l ORThER WORDS* THE C0NT1NL
7 CONTINUE

T = X( 1 )*X( 1 )+X(2)*X(.2)+]
S ( J ) = T

MC PLUG .

IREE CARDS
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l
•

: ; i

L T V X ( 2 7 »

2

1 > 9 : • 127,30)

. . 4 )

= 15/)
.

i

»SUPLIM
»] 2 )(DCVX( I ,1 ) ,1=] ,M

rV X ( I , J ) , I = 1 , MD I M ) »

J

.
1

i
'

[w, PT»/
T P1,MAXNC»

[3»] .

)

: RGRjSUPLI^
rE(3»] •')

( DCVX ( 1,1 ) , 1 = 1 ,NI i
'

)

E(3»] U) ( (DLTVX ( I ,J) ,1=1 ,N I[I )

•

(N IM,i EThCL < >

: rE(3'»104') S(NDI .+ 2 ) j (DCVX ( I »NDI. 1
+

(3,1 4) ( ( DCVX ( I ,J) ,1=1 ,NDIM) , J=i ,NCPT

)

rE(3,l 4) (S{ I ) , I=1,N0PT

)

a'RI TE(3,] 03) KK
F '• D

1
.•

i

II THC(

=1 ,ND1[MP1 )

SUPL I

) ,I=l!»NDI -i
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THE NEW PATTERN STARCH TECHNIQUE DLVELOPED AND V.' ^ I T T •!

'

GILBERT CHEN CHEM. ENGG. KSU DEC. 1967

THE HOLLOWING PROGRAM HAS BEEN WRITTEN IN FORTRAN II

PUNCHED IN KEYPUNCHER 26. .

SUBROUTINE GKCHEN(NDIM,METHGD»MAXNO»ERRGR , SUPLIM,DLTVX ,DCVX
1»S»KK)
DIMENSION DLTVX(27,28 ) ,C(28) ,DCVX( 2 7 » 30 ) , S ( 30 ) ,CNTROX{ 27)

110 FORMAT (/1QH THIS IS MEW METHOD/)
111 FORMAT (/16H THIS IS SIMPLEX/)

'

11? FORMAT (./l 2 K THIS IS BOX/)
1 1 ? FORMAT ( / 16H ****WARN I NG** **/

)

114 F0RMATU9H INADEQUATE GIVEN MAX NO FOR FUNCTION EVALUATION,:
115 FORMAT <.A7H INCREASING THE MAXNO OR CHANGING THE STEP SIZE/)

GO TO ( 116,117,11b) , METHOD

THE SEARCH BcGINS WITH THE CHOSEN METHOD.

THIS IS THE NEW METHOD. '

116 J^CHFN=1
KCHEN.= 1

ALPHO=l .0
BFTA=0.5
COFFF=1.2
GAMMA =2.0
WRITE (3, 110)
GO TO 1

THIS IS THE SIMPLEX. \;

117 JMCHFM=1
KCHEN=2
ALPHO=1.0
BFTA=0.5
GAMMA=2.0
WRITE (3, 111)
GO TO 1

THK IS BOX.

116 JMCHEN = N'DIM

ALPHO=1.3
BET'A = 0.5 ,:';.'
WRITE (3, 11 2.)

NC STATEMENTS FROM NOW ON CAN BE REMOVED EXCEPT YOU ARE SI

WHAT TO DO. *">
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[ N I T I A L P A T :

1 ) n . i
, i i IAL PCIN1

1 J = l

KK = 1

( i >J»SUPLI t »,DCVX,KK)

<LT1=K-1

2 ) EVALUAT ICN Or r I . ING PCI IS V

DC 3 J = 2 » K

DC ?. [ = 1 t ND'I M

2 DCVX( I »J) =OCVXI I , 1 )+DLTVX( I iJ-1 )

:ALL . (NDIM,J,SUPLIM,S»DCVX,i^)
3 CCNT]

:f the pattern

\LPH ^=ALPHC

IMG THE FUNCTION VALUE!

CALL ORDER (M»NDIM ,S »DCVX)

DEFINING THE CENTRCID TO OBTAIN THE FURTHER

DO 3 I=1,KLT1
C ( I ) = 1

.

CALL CNTROD( NDIM»KLT1 »C ,CNTRCX , DCVX

)

r Lt :t;- OPERATION

':? 7 I = 1,NDIIW"

DCVX( I »<+l )=CNTRCX( I )+ALPHA#(CNTRCX( I )-OCVX ( I ,K

J = K + ]

Call SUBNAM(NDIM»J , SUPLI M , S » DCVX , KK

)

I
r

( KK-MAXNC) 8,8,36
GO TO (9,9,23) ,METHCD

. C EXPANSION IN BOX METHOD, THAT lb THE SIGNIFIC
ENCE.

IF (5 (.K+] )-S( 1) ) 10,10,23

' XPANDI vg OPERATION

DC It 1 = 1,1 I!

' CVX ( I ,K+2 >=0 TRCX( I )+GAMMA*( D^VX ( I ,K+1 ) -CNTRCX
J=K+2
CALL S'Ji NAM(NDIM,J,SUPLIM,S,DCVX,Ki^)
1 F (KK-MAXNC) 12*12 ,36

kNT D1FFER-

. . OF THI Nt •• MLTHOD fHE SI 4PLEX
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] ? GC TC ( 16 » ]3) »KCHFN
n IF(S(y t?)-S( 1 ) ) 14* 14, 2]

3 4 S(K )=?( K + 2 )

PC 1 '^
I
-

1 >NDIM
1

r
- DCVX(L»K) =DCVX(L»K+2)
GC TC 3 b

16 IF(S(K.+2)-SU+l) ) 17*17.21
17 S (K)=S(K+2 )

DC 16 L=1,NDIM
18 DCV;<.(L»K)=DCVX(L»K+2)

M = K

CALL CRDER(M,NDIM,S»DCVX)
CALL SCHECK

(

K »SUM »ND IM

»

S )

I F< SUM-ERROR) 37,37* 19

C • DEFINING THE NEW CNTRCD ACCORDING TO THE IDEA OF Tr
C METHOD

'

C

19 CVALUE=2*NDIM-1
'

DC 20 I=1*KLT1
C(

I

)=CVALUE
2 CVALUE=2*NDIK-2

CALL CMTR0D(NDIM»KLT1»C»CNTR0X,DCVX)
ALPHA=ALPHC*CCEFF
GC TO 6

21 S(K)=S(K+1 )

DC 2? L=1,NDIM
22 DCVX(L*K) =DCVX(L*K+1 )

GC TC 35
2 3 I F( S ( K+l ) -S( K-l )) 21*21,24
2 4 I F(S ( K+l )-S(K)) 25*25*27
25 S(K)=S(K+'1I

DC 2 6 1=1,NDIM \
26 DCVX( I ,K) =DCVX( I ,K+1 )

C

C CONTRACTING OPERATION
r .-''_.',

.

2 7 DC 2 8 1=] ,NDIM
2° DCVX( I »K+1 )=CNTROX( I ) +BETA* ( DCVX ( I »K)-CNTRCX( I ) )

J = K + 1

CALL 5UENAM ( ND I M , J , SUPL I M , S , DCVX , \K

)

I FfKKrMAXNO) 29,29*36
2 9 IF(S(K+1)-S(K) ) 30* 30* 32
3 - S ( ,<) = 5 ( K + 1 )

DO 31 I = l',NDIM
3 1 CCVX( I ,<) =DCVX( l

%
tk + l )

GC TC 3 5

C SHRINKING *'T.HE PATTERN DUE TC A rfAD CONTRACTION
C '

".i

°2 DC 34 J=2,K
DC 33 I»1»NDIM
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rvx( r »j) = (dcvxi 1 1] »+dcvx(

i

»j) )/2.
\'AMi(NDIM»J»SUPLIM»S»DCVXiKK]

riN :
*

i r (KK-MAXNC) 3 1^ » 3 5 > ^

6

CALL SCHECK ( K > SUM »ND I M * S

)

IF(SUM-ERRCR) 37,37,4

fHE SEARCH IS INCOMPLETE ACCORDING TO THE+GIVEN INDDEGUATic rn; s -: a « *CH I

r MAXNC.
C

36 RITFOi.113)
t»»Rl TE(3i.114)
'•.'RITEOi,115)
GO TC 4(

THE SEARCH IS COMPLETED* RETURN TO THE MAIN PROGRAM AFTER'
" EVALUATING THE CNTRCD OF THE PATTERN.

3 7 JC 38 i=i,KLTi
38 C(I)=1.

CALL CNT ROD ( NDI M > KLT 1 > C »CNTRCX » DCVX

)

DC 3 9 I=1»NDIM
39 DCVX( I »K+1 )=CNTRCX( I

)

J = < +

1

CALL SUBNAM(NDIM»J»SUPLIM,S»DCVX»KK)
40 RETURN

END

C ThIS SUBROUTINE SUHNAM SHOULD PROVIDED BY Lbc,< FOR GbTAIN-
C ING THE REQUIRED OBJECTIVE FUNCTION VALuL.

KCCNT...A CONTROL NUMBER SET FOR CulHUT. FOR EVERY- KCO.NT
C NO. OF FUNCTION EVALUATIONS

£\<
r
< A FUNCTION VALUE SFT FOR THE DATA TC BE WEITTE.N CUT

C AS THE COMPUTED FUNCTION VALUE DROPPED A TENTH ORDER
C . EACH TIME.
C SOPT..-.THE BEST FUNCTION VALUE HAS BEEN FOUND AT EACH STAGE
C TrIE COMPUTATION.

C XOPT(I).THE CORRESPONDING ITH DECISION VARIABLE OF SOFT.
C

SUB ROUT I N E SUBNAM ( ND I M J » SUP L I M > S > uCVX » K.K )

DIMENSION S( 3w) ,DCVX(27»3G ) »X(27) ,"XCPT(27)

1 FORMAT ( 3 1H THE OPTIMUM FUNCTION VALUE IS E13.6)
? FCRM-AT(6E13.6)

.

3 FCFMAT(10J4)
IF(J-1 )4,4,5

4 KCOMTslC ^
,

FRR = 10. i
* ' •

•

GO TC 6
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•«A\SLOCATICN OF Tilt VALULS
RwM THE SEARCH DECK TC THOS
-~RF X( I ) IS TMF ITH INDEPE

1 i^lVi.;1iDE \T W>R

I n thi:.j S ptci;,L
VARIAbLE: i,N T r, E

6 DC'7 1=1 ,MDIM
X ( I )=DCVX( I ,J)

7 CONTINUE

THE USER SHOULD PROVIDE A PART OF This S.UbRGUTINE F

TAINING THE REQUIRED JUNCTION VALuc AT EACH VERTEX
THIS COMMENT STATEMENT AND* '."HE FOLLOWING STATEMENT
T MEANS THE REQUIRED FUNCTION VALUl.

CALL WASTE ( J » NDI M,XX » AK 1 »BETA ,R , AK

)

"
( J)

STOP. \GE OF BETTER FUNCTION VALUE WITH THE CORRFSPC
4DENT AND DEPEDENT' VARIABLES, IF NECESSARY.
-1)9,0,1]
.) I = 1»NDIM'

X ( I )

"
•

'

I )
=

NU

11

1 2

1?

1 4

15

-1) 1

( 1 )-

'-KC
"(3,
r

( 3,
r {3,

f = KC

16 S

17 P

F

RR*'
17

SUP

7, 1

S( J

CNT
1 )S

2) (

3)K
CHI
FRR
1 )S

2) (

3 )K

0.1

LIM

7,12
) )12,9,9
> 14,13,13
OPT
XOPT( I ) , I=1,NDIM>
K

+ 1

) 15,15,17
OPT
XOPT( I

)

,I=1,NDIM)
K



: ENS I ON S(3o) »DCVX(27f3C )

<i ri=K-i
;j 5 ;=i,klti

;ri.M" + i)-c(j))2,2,4-

? \=M?'+1 )

c
.

,'
• i- 1 ) =S < J )

s ( j ) = a

"i?. 3 L=l iWDIM
ii=;.^cvx(L t«+i

)

DrVX(L>i'.+ l )=OCVX(L»J)
JCVX(LtJ) =b

3 CCMTINUC
- CONTINUE

.

'

5 CONTINUE
'

END
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fHE SUBROUTINE 3I< ORDERING Tri^ FUNCTION Vm

NECESSARY PART OF THF WHCLF SEARCH DECK bUlLT F

E CENTRGID OF THF PATTERN EXCLUSIVE OF THE WCRS POINT,

SUBROUTINE CNTROD ( ND IM » KLT-1 »C >CNTRCX >DCVX )

DIMENSION C(28") »CNTRGX(27) , DCVX ( 27 > 30

)

SEARCHING FOR THE BETTER PO'INT OF THE SPACE
CSUM=C.
DO 1 1=1 , <LT1
CSU»i = CSUM+C< I

)

DO 3 I = l»NOI.M
AXIS = C."'

DO ? J=1,KLT1
CNTROX( I ) =AXIS+C(J)*DCVX( l'.»J.J

AXIS=CNTROX( I

)

CONTINUE ;-,.
CNTROXI I

)

=CNTROX( I ) /CSUM
CONTINUE
RETURN .

'

END
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;r.. nulLT-IN SUBROUTINE rCi'< CrtLCKlNG WiJlTHcS ThE CPTl.'IU
POINT MAS uhtN ACriiKVtU
Thi CRITERION USL-i> lb SORT (( (AVG. (b>-M J ) >**2/i\DIM) »J=-1 ,<)
. L.E. LRRCR.
ERROR.

5.1 '' ^Oi IT I N E 5CHFCK ( K » SU>' » NO I M » S )

;••• ENSIGN SOG)
SAVGaO.
:^C } L=1»K
SAVG=S<L)+SAVG
A "' = N

SAVG=SAVG/AK

do 2 L=l.,<

SUM=SUM+(S(L)-SAVG)**2
ANDIM=NDIM *

SUN' = 5UM **0.5/ANDIM
RTTURN
END
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•ROUTINE WASTE ( J»NDIM,XX»AK1 »BETA ,R , AK )

•'ENS 1 CM C> ( 7 ) » DCVX ( /» » 7 ) »G.( 4 )» TH3 ( 6 ) » Tl-I ].0 ( 5 ) !

DIMENSION XI (6) ,X2(6) ,X3(6) ,TH1 (5.) »TH2(6) ,A(6) »B(
DIMENSION !?X2(6) »X?C(6)
C ;•• M ON c

, D C V X , G , F R R C R , DCVZ » NJ
1 FORMAT (3H J=I2»6H S ( J

)

=E13 . 6 )

3 FORMAT (6E 13.6)
6 6 rOKMATUH BT=F5.3,4H K1 = F5.3»7H Xl(6)-F5.3)
6 [-0RM'AT(4H K 1 = F b . 2 )

7 FOKMAT(6(13h '•

))

33 FORMAT ( 6 ( 13H **#******.***
) / )

400 FORMAT* 1-2H 1ST TANK F7 . 3 ,4X • F6 . 3 , AX , F6 . 3 , 2X , F

1F7.3,2X,F7.3,4X,F6.3)
4C1 FORMAT! \?M 2ND TANK " F7 . 3 ,4X , F6 . 3 j AX , F6 . 3 , 2X , F

1F7.3,2X,F7.3,4X,F6.3)
402 FORMAT* 12H 3RD TANK F7 . 3 ,4X ,F6 . 3 ,4X »F6. 3 ,2X ,F

1F7.-3»2X,F7.3,4X,F6.3 )

4C4 FORMAT* S4H • ' VOL. OF FEED INLET! 1)

UNLET! 1) -OUTLET (2) OF VO'L.)
405 FORMAT (67H

1 )

X (3 )=DCVZ(3,NJ) '

X(4 )=DCVZ(4,NJ) •
.•

X2F:=G. . . .

' •
.

:, "' •

AKD=C.0 02 •
'."•'.

NSTG=(NDIM+2)/2 ;
.

.

-

NSTG2=NSTG*2 ''"
' ;.".'' '..' ' *"

.'

NDIMH =N0IM/2 '

' '•'
'•

X] (2*NSTG)=XX ' .' -

P = l.+R " .",••••. ':,"•;'"

DO 5 I=1,NDIM
IE ! I-NDIMH ) 44, 44, 4 .

A A ] I=NSTG-I+1, . , .

•
: .

'

TH1 (2*11-1 )=bCVX.( I »J)
'

•

GO TO 5 "

... ..

'

:

4 XI (2*1-4 ) =DCVX( I ,J)

5 CONTINUE '

i

' •

D0 503I=2,NSTG '

'•
•

•

I F(TH1_( 2*1-1 )) 56,500, 500
5CV I F( TH 1 (2*1-1 )-l. ) 5.01 ,.50 1,56'

501 IF (XI (2*1-2) ) 56,56,502
50 2 I F(X1 (2*I-2)-(.( 1-+X1 (2*NSTG)*R ) / M -+R ) ) ) 503 , 503 »!

50 3 CONTINUE
9 AA = G.

DO 1C N=2,NSTG
AA=AA+TH1 (2*N-1 )

If CONTINUE
I F ( '\A--1 . ) 1.0] ,].of,56

1 f ; 1 Tn] ( l ) = i '.-A

A

DO, 13 N=l ,NSTG
'

•

r F ( r- — 1 ) 10. ,] ':u, U '.

100 X' ( 2*N-1 ) =R+TH1 (2*N-1

)

00 TO 12

»X
]
0( 7 i

'/.? (6)

OUTLET (2)
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n \~.
( 2#n-1 ) -X'' ( ?*H-2 )+TH] ( 2*N-3 )

1? X3( ?.*N ) = X? (.?#N-1 )

] ? c:cnt r ni i

< i ( i ) = ( x 1 ( ?#NSTG ) *R+TH ] {

1

) ) , X3 ( 1 )

DC '* N=2»NSTG
XI ( 2*N-1 ) = (Xi ( 2*N-2) *X3(2*N-2)+THlU*N-l) )/X3(2*N-l)

4U CCNTINUc
DC a: N=1,NSTG
I F ( XI ( 2*N-1.) -X 1 ( 2*.N ) ) 56 » A 1 > 41

4] CONTINUE
DC 7' N=1,NSTG
r (?*N ) = (X1 ( 2*N-1 )-Xi (2*N) )#(AK*X1( 2*N)-A.<D*< AK1+X1 (2*
B(2*NJaR(2*N)/(AK*Xl (2*NJ )+THl (2*N-1 )*X2F/X3 { 2*N-1 )

I F(N-3 )65 ,65,60
6 5 A (2*N)=R/X3(2*N)

GC TO
60 A (2*N) = X3( 2»N-2 )/X3( 2*N)
7. CONTINUE

DC 19 i\=l,NSTG"
AC^bETA
DC 15 1=1»N
AX2 (N)=AC*A( 2*1 )>~.

A C = A X 2 ( N )

IF(N-]

)

15,16,15
1 5 CONTINUE '.«-•;•/• •

GC TO 17 •

]
a px? (M)=B(2*N)

GC TC 19
•

.
;•

"

17 BX2(N)=B(2*N)+Al2*N)*BX2(N-l )

19 CONTINUE
X2 (2*NSTG)=BX2(NSTG) /( 1.-AX2 (NSTG) )-

i- =r^STG-l
DC 30 N=1,M
IF(\'-1 )31 ,31,32

31 X2 (2*N )=A( 2*N)*BETA*X2(2*NSTG)+S(2*N)
C-C TO 3C

x p y? (2*N) =A( 2*N)*X2 ( 2*N-2 >+B(2*N)
3: CONTINUE

PC 2 1 N=3 ,NSTG
I F( N-l ) 3 9 .v, 190,20

19' X2 (2*N-1 ) = X2(2*NSTG).*SETA*R/.X3(2*N-1 )

GC TC.21 .

2: X2 (2*N-1 l«i.X2(2*N-2 ) *X3(2*N."2 )+Thl (2*N-i )*X2h ) /X3( 2*

2 1 CONTINUE

DC 22 N=1,NSTG
TH2 (2*N)= (XI (2*N-3 ) --X1 ( 2*N ) ) * ( AK1+X1 (2*N ) ) / ( AK.*X1 ( 2*N
TH3(?*N)=TH2 (2*N)*X3 ( 2* N ) / ( 3 . + R )

•

TsSC+TH3f2**n
rr=T ;

2 2 CONTINUE " •

, . .

:

5 ( J ) = T

EXCHANGE OF MINIMUM DECISION AND STATE VARIABLES
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222 nc

22 C

22?
226

J-l )2

2 74 N

(N)=X
( ;V ) = X

TIMUE
275 N

u(2*N
J(2*N
TINUE
5(J)
TH3(2
TH3 (4

TH3(6
J-l )2

S ( 1 )

J-(ND
TE(3,
T E ( 3 ,

TE(3.
TE(.3»

TE( 3»

TE(3»
TE(3»
T F ( 3 »

TE,(3>

TF(3,
URN
= 10.

URN

27 »227» 723
=] ,NSTG2
] (N)

?(N)

=1 »NSTG
) =TH3(2*N)
) =TH1(2*N) "•

S( J)

5(J) -

S( J)

220,226
J) )?26,222,222
+ 2) )220,221.221
J .ST"

AK1 ;
. .

404)
4 0o ) Tri3 ( 2 ) » T HI ( 1 J » X 1 ( 1 ) » X 1 ( 2 J » X20 < 1 ) > X 2 ( 2 !

4Ol)TH30(4)'».T.HI0(3) »X10(3) »X10 ( 4 ) , X20 ( 3 ) » X2C ( 4 )

4v2)TH30(6) »ThlO(5)Vx'lO(5) »X10(6) »X20(5) »X2C(6)
33 ) .

*.*6
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ABSTRACT

The pattern of flow Into the system, the recycle flow, and

the mixing within the system are Important variables which need-

to be considered in the design biological waste treatment systems.

In this investigation, optimization procedures are used to

determine the optimum flow regime for several types of activated

sludge systems. Step aeration and conventional activated sludge

systems composed of several completely mixed aeration tanks

connected In series are optimized and the results are compared.

The analysis indicates that the degree of treatment and the

Kichaeiis-Menten constant, which is the dimensionless organic

nutrient concentration at which the observed specific growth rate

is one half the maximum value , are important parameters in

selecting the optimal flow regime.


