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Abstract

Guardol, a domain-specific language (DSL) developed by Rockwell Collins, was designed
to streamline the process of specifying, implementing, and verifying Cross Domain Solution
(CDS) security policies. Guardol’s syntax and intended computational behavior tightly
resembles the core of many functional programming languages, but a number of features
have been added to ease the development of high assurance cross domain solutions. A
significant portion of the formalization and implementation of Guardol’s grammar and type
system was performed by the SAnToS group at Kansas State University.

This report summarizes the key conceptual components of Guardol’s grammar and tool-
chain architecture. The focus of the report is a detailed description of Guardol’s type system
implementation and formalization. A great deal of effort was put into a formalization which
provided a high level of assurance that the specification of types and data structures were

maintained in the intended implementation.
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Chapter 1

Introduction

1.1 Background

Modern information systems are highly networked and distributed systems enabling the
transfer of information across multiple platforms and disseminating it using a diverse set
of networking policies. The information system, which we will refer to as the composition
of these platforms and networking policies, provides the infrastructure for communication
between the different domains. The network policies abstract over much of the platform
specific implementation and specify properties about the information passing through the
system. This report focuses on the specification of security policies, from the simple govern-
mental security classifications such as TOP SECRET or RESTRICTED information and
their allowable destinations to more complex policies.

A Cross Domain Solution (CDS) is “an information assurance solution that provides the
ability to manually and/or automatically access and/or transfer data between two or more
differing security domains” [1]. For security critical systems, each network or platform may
have its own security domain and set of security policies that govern the flow of data through
the system for which a CDS must be designed. In the case of an information system that
utilizes security classifications, it is understood that each classification may have its own
security domain and require that information be transferred between the secure networks of

different classifications. However, it can be assumed that not all information should be able



to pass between networks with different classifications. Thus, we have need of a security
policy that determines what information is safe to transfer between corresponding security
domains and what information must be altered or discarded. In this scenario, the security
policy would be specified in the CDS and the information system would be implemented
such that all information passing between the networks goes through the CDS and is subject

to its security policy.
1.2 Cross Domain Solutions

Information passing through differing security domains provides unique information security
obstacles with the potential for sensitive information to “leak” to unauthorized users. A
CDS is built when information security is of the utmost importance to one or more of
these domains. Cross domain information sharing, often thought of as a necessary evil, is
found more frequently in industry and government due to the shear quantity of information
required by specific domains as well as the increased need for the immediate dispersion of
urgent intelligence despite its classification and origin.

Abstractly, a CDS should be thought of as a high-level security policy that is automati-
cally enforced by a message passing system. This abstraction allows the technical specifica-
tion of the CDS security policy to be easily understood. For instance, a written requirement
that a message marked as TOP SECRET can only be sent to the United Kingdom when its
destination is London seems straightforward. However even for simple specifications such
as this, it is often difficult to verify that the CDS implements the intended security policy.
These problems are best expressed by The Anderson Panel Report of 1972 where it is un-
derstood that “a large part of the design problem is attributable to the absence of models
as a medium for translating security requirements to technical specification and as a source

of acceptance criteria for evaluating the product” [2].



1.2.1 Existing Guards

A number of potential Cross Domain Solutions exist for use in industry today. Many,
however, are targeted for specific end-to-end domains. For example, “General Dynam-
ics’ Trusted Network Environment (TNE) has a flexible range of Commercial off-the-shelf
(COTS) hardware and software that can be customized to fit the network”[3]. The TNE is
dependent on program requirements that must be customized by a General Dynamics team
for each client. While this does have the potential to provide a secure environment based on
a specific set of security policies, the environment is restricted to the domain built by the
General Dynamics team. These domain restrictions, e.g. forcing the domains to be same,
imply that this solution is more of a single domain solution than a CDS.

Problems with the existing CDS solutions stem from the need for trained technicians to
administer guard policies. The cost of these solutions is difficult to predict with modular
or frequently changing security policies because the static security policies must constantly
be updated. These solutions are also unadaptable to quickly changing policies needed for
rapid response because they must be manually configured. Limitations caused by platform

dependencies are also a hazard to the distribution of these solutions.
1.3 Guardol Motivation

The Guardol development effort, sponsored by the United States Department of Defense,
was undertaken to create a domain-specific language (DSL) that would enable the spec-
ification, implementation, verification, and standardization of high assurance guard solu-
tions. Guards, as they will be referred to in this document, provide the connections used
in within the CDS. The implementations of these guards provide an automated mechanism
for communication between specific security domains where communications are restricted
and enforced by the functionality of the guard.

Currently, the development and maintenance of high assurance guards is an extremely

expensive endeavor. Most guards are targeted for use on platforms dedicated to the guarding



application where the guard is expensive to buy and expensive to configure. Since guards
are often developed utilizing static security policies, they are hugely cumbersome and costly
to change. The absence of a standardized framework for potential platforms also restricts
the ability of guarding specifications and implementations to be quickly adapted to changing
risks and alternate platforms.

In an effort to surmount the disadvantages of developing fixed guards for dedicated
platforms, Rockwell Collins Advanced Technology Center is developing a DSL, developed
to specifically target the creation of high assurance guards. The SAnToS group at Kansas
State University has received a contract from Rockwell Collins to assist in the design of
the Guardol Language and implement a prototype compiler. It is hoped that this DSL will
provide a means to design flexible guarding policies, a mechanism by which guarding policies
can be specified separately from their actual implementations and execution platforms, and
a high assurance that these guards function correctly. Also, with the expanded use of a DSL
for guard specific applications, it is anticipated that a standardization of guarding policies

will emerge that facilitates faster development and higher assurance of correct functionality.
1.3.1 Goals

The following themes guide the design of the Guardol DSL.

1. Domain Appropriateness — The Guardol DSL should not aim to be a general purpose
programming language. Instead, it should focus on providing built-in mechanisms that
facilitate rapid development and verification of guarding functionality. This implies
that it should focus primarily on providing language constructs that facilitate descrip-
tions of packets of data, deconstruction of packets into individual fields, operations to
examine and transform form packet fields, and reconstruction of packets from fields.
The language should omit features to support numeric computation, dynamic creation
of storage, etc. non-crucial to the guarding domain. In situations where such func-

tionality is needed by a guard application, it will be achieved via external programs



that are made visible to the application as external functions.

2. Extensibility — Recognizing that guards will be applied in a variety of contexts that
cannot be anticipated presently, the DSL should support addition of new types of
data, new predicates and formal claims to be used in specification and verification,
new forms of data checkers and transformers (both internal and external). The DSL
should provide mechanisms for organizing these extensions into libraries of usable

artifacts.

3. Analyzability — Due to the high-assurance nature of the domain, the DSL should be
designed to facilitate highly automated analysis for both functional correctness and
information flow properties, and analysis to determine if guard design corresponds to
implementations that stay within the resource bounds of a target platform. The DSL
and associated analysis components should be designed to ensure that : (a) analysis
can take place as early in the life cycle as possible, and (b) analysis can be applied

and interpreted by developers that may not be experts in formal methods.

4. Platform Independence and Retargetability — The DSL should support rendering of
guard descriptions in a manner that allows an implementation to be generated in either
hardware or software and in a manner that allows a guard originally implemented on

one platform to be subsequently implemented on a different platform.

1.4 Contributions of this Report

This report describes the implementation of a compiler for Guardol including much of the
language’s base architecture and its corresponding tool chain. This MS project, however, en-
compasses a large development effort beyond the design of the language itself. The language
proper consists of the Guardol grammar, parser, Abstract Syntax Tree (AST) representa-
tion, Pilar Intermediate Representation (Pilar IR), and type system. This project provides

a foundation upon which a large number of verification analysis, external tools, target plat-



form translations, and a property language can be implemented to further the flexibility of
the final product.

The contributions of this MS project are:
e a justification for the Guardol DSL development project.
e a demonstration of the use of the Guardol core language.

e a description and specification of the current Guardol language architecture and im-

plementation.
e an XML representation of the Guardol AST.
e a translation to the Pilar IR such that existing static analyses can be leveraged.

e a type system that leverages the correlation between name-centric type specification

and high assurance guard domains.

e a formal definition of the Guardol language’s type equivalence and type constraint

rules such that Guardol’s type system can be rigorously evaluated.

e a framework to reason about and later incorporate verification analysis, external tools,

target platform translations, and the creation of a property language.

The grammar of a language is a fundamental formalization that must be finalized before
much of the language development can begin. Presently, the Guardol grammar has been
finalized in two different forms: the formal grammar exhibited in Appendix A and the
adapted ANTLR grammar, Appendix B, created to perform parsing and the construction
of the Guardol AST. Guardol, however, is an experimental language, so it is conceivable
that further changes to the grammar are possible. Any syntax changes or extension that
cause a significant modification to the grammar will invariably require adjustments to the

entire existing tool chain. At present, no changes to the grammar are expected.



The Guardol parser is constructed using the ANTLR parser generator (http://antlr.
org/). ANTLR is an open source parser generator that processes LL* grammars[4], which al-
lows grammar productions to be written more naturally (e.g., without worry about shift /re-
duce conflicts). Parsing errors produce messages that can be displayed in, for example,
console output. Then the Guardol parser constructs an AST using classes custom designed
model generating scripts. The modeling file used to construct the AST classes is exhibited
in Appendix C.

The Pilar IR and XML-based representation have also been finalized for the Guardol
profile. Currently, these two translations are implemented through a traversal of the AST.
The XML-based representation is used exclusively for an external audit by Rockwell Collins
proprietary software. The Pilar IR provides a foundation for the use of verification analysis
and translations to target platforms that have not yet been implemented.

The type system is built using the Pilar IR. A traversal of the Pilar IR, similar to that of
the AST, is done after the translation to the Pilar IR is completed. This traversal encodes
the type equivalence and type constraint generation rules demonstrated in Chapter 4 and
Chapter 5. Type checking errors are output to the console should the type constraint

generation phase fail.


http://antlr.org/
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Chapter 2

Guardol By Example

In this section, we illustrate the key language features of the Guardol Implementation Lan-
guage, GIL, with a simple example. The example is a guard application which takes an
input email message in MIME format and checks/transforms the message based on a policy.
The example is reasonably challenging because it involves recursive message structure, mul-
tiple fields with varying types occurring as subcomponents to the message, and a variety of

checks/transformations for each type.
2.1 High-level policy
Below we list policies that the guard application should enforce.

1. The MIME message must go through a virus check and if virus is found the message

is blocked.

2. The body of the email shall go through a “dirty-word search” process, in which words
in the message body are looked up in a dictionary of disallowed words. If a “dirty

word” is found the message is blocked.

3. If the message contains an attachment whose name has an executable-file suffix (.exe,

.com, .dll, .o, .vba, .zip), the message is blocked.



4. If an attachment is a MIME message it is subject to the same check as the guard

performs.
5. If an attachment is a textual file, the file is subject to dirty-word search.

6. If the attachment is an XML file, it is subject to a check called “XML_DOM_CHECK?”.

7. If the attachment is a binary file, it will be checked to see whether the binary file is
an executable (even if the file’s name does not have an executable-file suffix). If it is

indeed an executable the message is blocked.
8. All other types of attachments are blocked.

9. Whenever a MIME message is rejected by the guard, an audit log shall record the

reason why it is blocked.

The complete code of the MIME guard in GIL is illustrated in Figure 2.1 - 2.3. Below

we explain the key parts of the language by walking through this simple example.

2.2 Type declarations

The general form of type declaration in GIL is type ID is Type, where ID is the name of the

type being declared, and Type is the definition of the type.
2.2.1 Qualified Type Names

The following declaration illustrates how the current package uses (and can potentially
rename) a type declared in another GIL package (the definition of the GIL package system

is not finalized and we do not discuss it further in this document).
type XML_.DOM_Type is packagel.XML_.DOM_Type;
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package MIME is

type XML_DOM_Type;

type stringlist is list string end list;
type Bytelist is list byte end list;

type AttachmentType is union
MIME_Email of MIME_Type |
Text of string |
XMLDOM of XML.DOM_Type |
Binary of Bytelist |
Other

end union;

type Attachment is record
name : string,
object : AttachmentType
end record;

type AttachmentlList is list Attachment end list;

type MIME_Type is record

body : string,

attachments : AttachmentList
end record;

type AuditMsg is union
Dirty_Word_Check_Failed |
Virus_Check_Failed |
Exe_Suffix_Check_Failed |
Exec_Check_Failed |
Unknown_Object_Type

end union;

node VIRUS_CHECK
(Imput : MIME_Type) returns
(ok : bool)

is external;

node DIRTY_WORD_SEARCH

(text : string) returns

(newText : string, Audit : AuditMsg)
is external;

node EXEC_.CHECK
(input : Bytelist) returns
(ok : bool)

Figure 2.1: Sample GIL code for an MIME email guard (part 1)
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is external;

node NOT_SUFFIX
(input : string, suffixes: stringlist) returns
(ok : bool)

is external;

node XML_DOM_CHECK

(input : XML.DOM_Type) returns

(newXML : XML_DOM_Type, Audit : AuditMsg)
is external;

node MIME_Check
(Input : MIME_Type) returns
(Output : MIME_Type, Audit : AuditMsg)

is
local
virusOk : bool;
newAttachments : AttachmentList;

newBody : string;
attachAudit : AuditMsg;
dirtyAudit : AuditMsg;
begin
virusOk := VIRUS_.CHECK(Input);
newBody, dirtyAudit := DIRTYWORD_SEARCH(Input.body) when virusOk;

attachAudit, newAttachments := attachmentListCheck(Input.attachments);
Output := MIME Type'[body => newBody, attachments => newAttachments];
Audit := attachAudit default

(AuditMsg ' Dirty _Word_Check_Failed when (not exists newBody)) default
(AuditMsg ' Virus_Check_Failed when (not virusOk));
end node;

node attachmentListCheck
(Input : Attachmentlist) returns
(audit : AuditMsg, newlist : AttachmentList)

is

local
newHd : Attachment;
newT| : AttachmentList;

auditHd : AuditMsg;
auditTl : AuditMsg;
hd : Attachment;

tl : AttachmentList;
begin
match Input with
hd:: tl =
auditHd , newHd := attachmentCheck(hd);
auditTl, newTl| := attachmentListCheck(tl);
newlist := (newHd::newTl);

Figure 2.2: Sample GIL code for an MIME email guard (part 2)

11
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audit := auditHd default auditTlI;
| - = skip;
end match;
end node;

node attachmentCheck
(Input : Attachment) returns
(Audit : AuditMsg, newAttachment : Attachment)
is
local
isNotExeSuffix : bool;
newObject : AttachmentType;
objectAudit : AuditMsg;
newMail : MIME_Type;
newText : string;
newElem : XML_DOM Type;
wellFormed : bool;
mail : MIME_Type;
text : string;
elem : XML_DOM _Type;
bin : Bytelist;
begin
isNotExeSuffix :=
NOT_SUFFIX(Input.name,
stringlist "{".exe”, ".com”, ".dIll",
".0", ".vba", ".zip"});
match Input.object with
MIME_Email mail =>
newMail , objectAudit := MIME_Check(mail );
newObject := AttachmentType ' MIME_Email (newMail);
| Text text =>
newText, objectAudit := DIRTY_WORD_SEARCH(text);
newObject := AttachmentType Text(newText);
| XMLDOM elem =>
newElem, objectAudit := XML.DOM_CHECK(elem);
newObject := AttachmentType 'XMLDOM(newElem );
| Binary bin =
wellFormed := EXEC_CHECK(bin);

newObject := Input.object when wellFormed;

objectAudit := AuditMsg ' Exec_Check_Failed when (not wellFormed);
| Other =>

newObject := Input.object when false;

objectAudit := AuditMsg ' Unknown_Object_Type;
end match;
Audit := (AuditMsg' Exe_Suffix_Check_Failed when (not isNotExeSuffix))
default objectAudit;
newAttachment := Attachment ' [name => Input.name, object => newObject];
end node;
end package;

Figure 2.3: Sample GIL code for an MIME email guard (part 3)

12



2.2.2 List Types

GIL supports parameterized (generic) types such as StringlList. However, the language
requires that all types be named. The following type declarations give specific names

(StringList and ByteList) to instantiations of the generic type String.
type Stringlist is String list;

type Bytelist is byte list;

2.2.3 Union Types

A union type provides the capability of expressing choices for various possible data shapes.
It consists of multiple branches corresponding to the multiple choices. Each branch is given
a name and the type of the data when the branch is chosen, in the form of Name of Type.
For example, the type of an attachment’s data content could be one of MIME, Text, XML,

Binary, or others. This can be expressed in the following union type declaration.

type AttachmentType is union
MIME_Email of MIME_Type |
Text of String |
XMLDOM of XML_DOM_Type |
Binary of Bytelist |
Other

end union;

2.2.4 Record Types

A record type specifies a composite data structure that consists of one or more fields. For
example, an attachment contains a field that specifies the name of the attachment and the
actual data content. Thus the type Attachment can be expressed as a record type as below.

The object field is the data content and its type is the AttachmentType specified above.

type Attachment is record
name : String,
object : attachmentType
end record;

We give a named type for a list of attachments.

type AttachmentlList is Attachment list;

13



An MIME message has a message body which is a string of characters, and zero or more

attachments. This can be expressed in the following record type.

type MIME_ Type is record

body : String,

attachments : AttachmentList
end record;

2.2.5 Combining Composite Types

We also define a type for audit messages, which is a union type with each branch indicating a
reason for the message to be blocked. In this example, we consider only a very simple notion
of audit messages — audit messages are just tags indicating the kind of guarding failure that
occurred. Thus, in this union type definition the branches do not have a corresponding type
which means there is no data associated with each branch. The name of the branch is the

only information a value of the type conveys.

type AuditMsg is union
Dirty_Word_Check_Failed |
Virus_Check_Failed |
Exe_Suffix_Check_Failed |
Exec_Check_Failed

end union;

2.3 Node declarations

The functionality of a guard is expressed in the units of “nodes” in GIL. A node is a
subroutine that takes zero or more inputs and produces zero or more outputs. The general

form of node definition in GIL is

node NodeName
InputParameters
returns
OutputParameters

is

local
LocalParameters

begin
Statements

end node;

14



The “local” block is optional and is used to declare local variables in addition to the input
and output parameters. Node bodies cannot reference non-local variables. The following

node defines the top-level function of checking an MIME message.

node MIME_Check
2 (Input : MIME_Type) returns
(Output : MIME_Type, Audit : AuditMsg)

4 is
6 local
virusOk : Boolean;
8 newAttachments : AttachmentList;

newBody : String;
10 attachAudit : AuditMsg;
dirtyAudit : AuditMsg;
12
begin
14 virusOk := VIRUS_.CHECK(Input);
newBody, dirtyAudit := DIRTY_WORD_SEARCH( Input.body) when virusOk;

16 newAttachments, attachAudit := attachmentListCheck(Input.attachments);
Output := MIME_Type'[body => newBody, attachments => newAttachments];
18 Audit := attachAudit default
(AuditMsg ' Dirty_Word_Check_Failed when (not exists newBody)) default
20 (AuditMsg ' Virus_Check_Failed when (not virusOk));
end node;

The node takes an input parameter of type MIME_Type, and returns two values which
are the transformed message (Output) if the message is allowed, and an audit message
(AuditMsg) if the message is blocked.

The node body is composed of a number of statements corresponding to the various
checks performed on the message. Fach of the statements is an assignment of an expression
value to a variable. In GIL, a variable can be assigned at most once. The value of an
unassigned variable is undefined. GIL supports a variety of expressions some of which could
also produce an undefined value. As one example of such expressions, if a function’s node
body does not assign a value for an output parameter, the expression that applies the
function will return an undefined value for that output. If such an expression happens to
be the right hand side of an assignment statement, the left hand side variable will still be

undefined.
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At line number 14, the virus check is performed by invoking the function VIRUS_CHECK
on the input message. The function returns a Boolean value which is assigned to a local
variable virusOk. At line number 15, the dirty-word search is performed on the message
body only when the virus check has succeeded. The “when” expression will evaluate to the
left operand if the right operand evaluates to the “true” Boolean value. If the right operand
evaluates to “false” or is undefined, the whole “when” expression is undefined. This means
that local variable newBody and dirtyAudit will be defined only if virusOk is “true”. At line
number 16, the attachments are checked by invoking the attachmentListCheck function on
the attachments field of the input message. The check returns a transformed attachment
lists assigned to newAttachments, and an audit message assigned to attachaudit.

At this point, we know that both newBody and newAttachments could be undefined, and
if the message should be blocked due to problems in its body or attachment, we shall find
the reason in virusOk, dirtyAudit, and attachAudit. So we can construct the new transformed
message and the audit message. To construct a value with a type T, GIL uses the expression
T'DataContent. For the case of record type, the corresponding fields are given values in
DataContent. For the case of union type, the chosen branch and associated data value are
given in DataContent, and so on. The newly constructed MIME message will have newBody
as its body, and newAttachments as its attachments. An interesting question is what happens
when one (or both) of them is undefined? GIL supports a “strict” evaluation semantics in
which case if a component of an expression is undefined, the whole expression becomes
undefined. Under the strict semantics, the guard will discard the whole message when a
component of it violates the policy. Alternatively, if we adopt a non-strict semantics, the
violating components will be stripped off the message and the remainder of the message
will still be allowed. Another interesting question is when more than one component in a
message violates the policy, what audit message shall the guard produce? The guard uses a
“default” expression to provide a precedence in outputting audit messages. Informally, the

expression P default Q will evaluate to P if P is defined, otherwise it will evaluate to Q. By
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chaining a number of “default” expressions we can define the precedence of outputting audit
messages. In this example, the audit from checking attachments has the highest priority.
If there is no audit from the attachment, then the audit of dirty word search is used. The
expression uses when not exists newBody as the condition to indicate dirty-word search
has failed. exists V returns a Boolean value that is “true” when V is defined. If dirty-word
search does not find any problem either, then the result of virus check is used to construct
the audit message.

The other functions in the guard are defined in a similar manner. Some functions are
actually interfaces for external capabilities such virus checking and data scrubbing. In these
cases the node declaration explicitly uses the external directive and no definition of the

body needs to be given. For example:

node VIRUS_CHECK
(Input : MIME_Type) returns
(ok : Boolean)

is external;

node DIRTY_WORD_SEARCH

(text : String) returns

(newText : String, Audit : AuditMsg)
is external;
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Chapter 3

Guardol Compiler/Toolchain
Architecture

Figure 3.1 presents the architecture of the Guardol compiler built during this MS project
and its relationship to other tool capabilities being developed in the Guardol project.
The compiler and supporting analysis are developed using Kansas State’s Sireum (http:
//sireum.org) analysis and verification framework and a number of widely used open source
packages such as the ANTLR parser generator and XStream XML manipulation libraries.
Sireum itself is publicly available under the open source Eclipse Public License. The imple-
mentation specific to this MS project is comprised of over 20000 lines of Java code, where
15000 were auto-generated by tools. About 6000 lines of code were written to facilitate the
IR translation, type checking algorithms, as well as the scripting code used to auto-generate
Java code for the parser and AST. Below we provide an overview of each component of the

compiler architecture.

3.1 Parser

The Guardol parser is constructed using the ANTLR parser generator (http://antlr.
org/). ANTLR is an open source parser generator that processes LL* grammars[4], which al-
lows grammar productions to be written more naturally (e.g., without worry about shift /re-

duce conflicts). Below is an example production rule written in ANTLR’s grammar lan-
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Figure 3.1: Guardol Compiler/Toolchain Architecture

guage.

assignmentStatement returns
[ AssignmentStatement result = new AssignmentStatement() ]
@init {ArrayList<Name> names = new ArrayList<Name>();}

(n=nameIdentifier {names.add($n.result);}
(’,’ n=nameldentifier {names.add($n.result);}

) *

?:=’ e=expression 1=’;’{result.setTheExp($e.result);}
{result.setTheNames (names) ;}
{result.setTheSelection(
new RegionSelection(
names.get (0) .getTheSelection() .getStart (),
new Caret($l.line,$1l.pos),false));}

The ANTLR production rule above specifies the rule for parsing and generating the
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Abstract Syntax Tree (AST) for an assignment statement, i.e., the ANTLR production rule
that corresponds to the Guardol grammar rule for assignmentStatement (A.63). The BNF
production rule can be lifted directly from the text when you exclude text that is surrounded
by brackets or curly braces and other keywords used to construct the Java AST. The distilled
BNF rule in ANTLR is

assignmentStatement :
nameIdentifier (’,’ nameldentifier)* ’:=’ expression ’;’

where nameldentifier and expression other production rules within the ANTLR gram-
mar. This BNF rule requires the left hand side of an assignment can be constructed with one
name or multiple names separated by a comma and the right hand side of the assignment
statement be an expression.

The code wrapped in curly braces and brackets is used to help ANTLR automatically
generate a custom AST from the grammar. For instance, the [AssignmentStatement result
= new AssignmentStatement()] code tells ANTLR to create a new AssignmentStatement
object every time the assignmentStatement production rule is used. The AssignmentState-
ment object’s class is part of an automatically generated set of Java classes representing the
Java AST produced by the Sireum class design module.

ANTLR is widely used in both academia and industry (e.g. Oracle and Microsoft). It
produces a parse tree represented as a Java data structure, and provides good support for
tree construction, tree walking, translation, error recovery, and error reporting. The parse
tree that results the compiler parsing phase can either be translated to the Pilar IR (used in
analysis/verification and further translation to target platforms or languages, e.g. Lustre),
or it can be used to provide an XML-based external representation that can be utilized
by other tools such as the Rockwell Collins ACL2 verification tool chain. The ANTLR

grammar definition file produced for this MS Project can be found in Appendix B.
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32 //The generic AST Node
//Contains:
34 //—A selection object referring to the starting/ending line numbers/char offsets
record abstract Node
36 {
org::sireum:: profile :: guardol::selection::IRegionSelection theSelection
38 @Default new org.sireum.profile.guardol.selection.RegionSelection ();

}

237 //Statement
//—Abstract definition of a statement
239 record abstract Statement extends Node

{
}

241

//Assignment Statement
255 //Contains:

//—A list of names identifying the assignment of the exp to these variables
257 //—An exp that is used for the assignment

record AssignmentStatement extends Statement

259
Name[] theNames

261 @Default "[];
Exp theExp;

263}

Figure 3.2: Excerpts from “model.plr”

3.2 Abstract Syntax Tree

Although ANTLR does provide a mechanism for the implicit construction of a Concrete
Syntax Tree (CST) based on the production rules enumerated in the Guardol grammar, it
was too unwieldy to manage the translation to the Pilar IR and the XML-based external
representation. Instead, the Guardol parser generates the AST using modifications to the
ANTLR grammar as described in Section 3.1. The Guardol Abstract Syntax Tree (AST)
is constructed using a collection of Java classes generated by a Sireum class design module.
The file used to generate the AST in Appendix C briefly summarizes the purpose of the
AST nodes. For example, the last record in Figure 3.2 models the creation of the Assign-
mentStatement class. AssignmentStatement is an extension of the abstract Statement class
such that it inherits all of the fields provided by the abstract Statement and abstract Node
class. The Node class represents the generic AST node containing fields for the storage of

line number and char offset markers specifying the AST node’s position in the parsed text.
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The AssignmentStatement class specifies two fields corresponding to the AST nodes that

are contained within an assignmentStatement

e A list of name AST nodes — the variable names to be assigned

e An expression AST node — the expression that will be assigned

All classes created in this way will extend the generic AST Node class such that line number
and char offset information can be gathered for every node in the AST.

The Sireum class design module automatically generates an AST node traversal class
known as a Visitor. This Visitor class is the product of the well known visitor design
pattern that “separates an algorithm from an object structure by moving the hierarchy of
methods into one object” [5]. Using a simple overloading of the Visitor’s empty visit methods
representing each AST node, the Visitor can be used to translate the AST into the Pilar IR
and the XML-based external representation. At this point, only the rules enforced by the
grammar cause any error messages to be generated. Type checking and other verification

analyses are performed after the AST has been translated into the Pilar IR.
3.3 XML Builder

The XML Builder provides a convenient mechanism for generating an XML-based external
representation of a parse tree using the XStream framework (http://xstream.codehaus.
org/).

XStream provides API to serialize any Java object to XML and also to deserialize it back
without any schema definitions. Class structures are used as the XML schema by default,
while allowing custom serializers/deserializers to be specified for flexibility. XStream has
been used in a lot of commercial and open source projects in production code such as
Atlassian Confluence (http://www.atlassian.com/software/confluence/) and Apache
Muse (http://ws.apache.org/muse/), and it is supported by a variety of frameworks such
as jBoss ESB (http://www.jboss.org/jbossesb/) and Mule (http://www.mulesource.

org/).
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<AssignmentStatement>
<NameList><IDName><ID><String>
virusOK
</String></ID></IDName></NameList>
<CallExp><ID><String></String></ID>
<ID><String>
VIRUS_CHECK
</String></ID>
<ExpList><NameExp><IDName><ID><String>
Input
</String></ID></IDName></NameExp></ExpList>
</CallExp>
</AssignmentStatement>

Figure 3.3: Example XML output of Guardol program

XML representation allows analysis, translation, and verification tools to work on Guardol
while avoiding the need for these tools to work with internal representations in the Sireum
framework. Currently the XML Builder is used to provide a path to Rockwell Collins ACL2
verification infrastructure. Up to this point in the project, this path has been used primarily
to achieve a translation of a Guardol guard description to a Turnstile rule set.

Figure 3.3 presents an XML output of the translated simple Guardol code below.

virusOK := VIRUS_CHECK[Input];

3.4 IR Translation

The IR Translation phase translates a Guardol parse tree to an intermediate representation
in the Sireum’s Pilar modeling language. The Sireum framework provides a rich collection
of static analysis and verification tools that work on the Pilar modeling language.

The Guardol Pilar IR is a three-address code representation. Three-address code is a
common intermediate representation style that consists of a 4 tuple of: result, first operand,
operator, second operand [6]. In three address code form, each instruction implements
exactly one operation. For example, a complex statement such as:

X := A * B + C;
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virusOK := VIRUS_.CHECK[Input];

newBody := DIRTY_WORD_SEARCH[Input.body] when virusOk;

newBody := DIRTY_WORD_SEARCH[ Input.body];

[newAttachments, attachAudit] := attachmentListCheck[Input.attachments];
Output := MIME Type'( body => newBody, attachments => newAttachments)
Audit := attachAudit default

(Dirty_-Word_Check_Failed when (not exists newBody)) default
(Virus_Check_Failed when (not virusOk));

Figure 3.4: A fragment of Guardol source code

$templ := Input @Loc(45,18,45,22];

call MIME::VIRUS_CHECK ($templ, $temp2) @Loc;
virusOK Q@Loc := $temp2 QLoc;

$temp4d := Input.body @Loc;

call MIME::DIRTY_WORD_SEARCH($temp4, $temp5) G@Loc;
$tempb := virusOk @Loc;

$temp3 := when($tempb5,$temp6) QLoc;

newBody @Loc := $temp3 @Loc;

$temp7 := Input.attachments @Loc;

call MIME::attachmentListCheck($temp7, $temp8, $temp9) @Loc;
newAttachments @Loc := $temp8 @QLoc;

attachAudit Q@Loc := $temp9 @Loc;

H OH H H H K R H H B H R

Figure 3.5: Pilar intermediate representation

is translated as two statements:

-
i

A *x B;
T + C;

b
i

The form is usually employed in compiler frameworks to ease code analysis, transforma-
tion, and optimization because such meta-programs can assume simpler form of the code
that they work with. Figure 3.4 presents the Guardol Pilar IR of the example in Figure 3.5.

The Pilar modeling language also features sophisticated annotation mechanism to store
meta-data at various levels such as statements, expressions, and other programming lan-
guage constructs. This facility allows, for example, code location information to be stored
as meta-data, thus allowing mapping of Guardol Pilar IR code to the original Guardol code.
Storing mapping information in the IR simplifies management of such information, and it

eases debugging.
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3.5 KSU Analysis and Verification

The analysis and verification module provides a collection of standard compiler-oriented data
flow and control flow analyses, constraint-based type checking and inference, verification
oriented analyses including modeling checking, symbolic execution and access to a variety
of decision procedure packages. The current translation only makes use of the constraint-
based type analysis to perform type checking for Guardol programs. In the next phase of

the project, the analysis components will be utilized to a much greater extent.

3.6 Lustre Back-end

One of the primary tasks in the KSU Guardol Statement of Work requires translating to the
Rockwell Collins representation of Lustre[7]. This provides a connection from Guardol to the
Rockwell Collins Gryphon tool chain that provides a variety of model checking capabilities.
The translation rules to the for the Guardol to Lustre translation are still being solidified.

The translation framework is currently in place and being tested on the MIME example.
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Chapter 4

Types

Guardol is a strongly typed language, requiring that all programs be well typed in accordance
with the type constraint rules in Section 5.5. It is also statically typed, ensuring that all
type checking is be completed before any translation or compilation to a target platform
can be performed. This chapter will discuss the motivation behind the design decisions that

lead to Guardol’s type system followed by an in depth description the types themselves.

4.1 Motivation

In the construction of a DSL such as Guardol, an intuitive framework for the manipulation
of structured data is paramount. A common approach to dealing with structured data
within a language is the introduction of a type system. While the common use description
of a type system is an expansive generalization on the specific goals we want to accomplish

within the CDS domain, it does provide four functional areas of interest:
e Abstraction
e Safety
e Error Detection

e Documentation
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which we will discuss in greater detail as they relate to the design of Guardol’s own type

system.
4.1.1 Abstraction

The nature of the CDS problem makes the use of data abstraction absolutely critical in the
design of the Guardol language. Since the restricted domain of Guardol refers to the ma-
nipulation of “structured packets”, there must be a mechanism within the language itself to
specify the structure of these packets. Specifying the structure of data, in this case packets,
is done by creating user defined types, as described in Section 4.3, or utilizing Guardol’s
primitive types, as described in Section 4.2. This is the first step towards creating a language
framework that allows for the translation of security requirements into the implementation
model of a CDS. This data abstraction layer enables a structural interface to exist between
the domains of the system, where a domain’s ability to communicate is limited by the type
of the packets it can send to and receive from the CDS.

Guardol’s type system enforces the structure of a packet by checking it against the spec-
ified type. A type cannot, however, be used to reason about the actual values contained
within a given message. Given this, it is clear that not all security requirements can be
assured by a lightweight type system; the introduction of property language and type qual-
ifiers in future work would allow for a more expansive specification of security requirements

that could be verified given an implementation model.
4.1.2 Safety

Naturally, since we are working to provide a DSL for the development of CDS solutions,
the assurance of safety properties is a primary concern. The term “language safety” has a
broad scope and can often be a point of contention when assertions are made that a certain
language is “safe”. For now, it will suffice to say that “a safe language is one that protects its
own abstractions” [8]. As described in the above Section 4.1.1, the key abstractions utilized

by Guardol’s type system are those used to explicitly specify the structure of packets. The
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limitations placed on the specification of types and the construction of variables provide the
user’s of Guardol a high level of assurance that the implementation of a Guardol specifi-
cation on any platform will only construct and transform packets in accordance with the

specification.
4.1.3 Error Detection

As stated previously, Guardol is a language developed for the specification and implementa-
tion of CDS security policies. While many DSLs are designed to enable a faster development
time, the nature of the security domain requires that security concerns take precedence over
the simple elimination of burden placed on the user. This rationale, along with the realiza-
tion that rapid prototyping is not a motivating factor in the design of Guardol, demanded
the creation of a statically typed language. With a statically typed language, we are assured
that no type errors will be raised during the execution of the guard on the target platform

and that all type errors will be detected and corrected before the compilation of the guard.
4.1.4 Documentation

Natural language documentation often leaves something to be desired when used to describe
the functionality of a program. It is difficult to coerce the ambiguity out and harder still
to provide a clear and concise description of intent. Because Guardol was developed for
both specification and implementation purposes, many attempts were made to merge the
two whenever appropriate. Guardol type definitions provided an excellent opportunity to
produce an unambiguous and readable form of specification. These types cannot only be
used at an implementation level but they can also be used within the high level policy
specification. In this way, the description of packet structure becomes rule governed and

requires only that a superficial knowledge of the language be known to the reader.

4.2 Primitive Types
Guardol provides a simple collection primitive types - bool, int, real, char, and string -
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e [bool] = {true, false}

e [int] =4{...,-1,0,1, ...}
o [real] = R

e [char] = UTF-8 charset

o [string] = [char]*

that form the basis of communication between the CDS domains. Since these types are
commonly used in almost all the conceivable target domains, we chose to formalize their use
within Guardol’s type system. Looking ahead, we expect to add a mechanism that allows
primitive types to be customized to the target platform for which a guard is to be deployed.
This will allow more of the guard’s functionality to be specified within the Guardol program.
For instance, some platforms may require that the specification of a int primitive refers to a
32-bit integer. These refinements would cause the generation of additional type constraints
as described in Chapter 5.

Along with primitive types, Guardol also supports a number of operators (e.g. +, -,
not) for use in the specification of an implementation model. This collection of arithmetic
and boolean operators will provide Guardol users with the ability to model the computation

implemented by the guard.
4.3 User Defined Types

User defined types provide Guardol with the ability to formalize the specific structure of
incoming and outgoing packets within a guarding application. User defined types include
a unique type name followed by a definition of the type’s structure. This naming schema
follows from similar approaches, e.g., in SPARK Ada, where the uniqueness of type names
is a restriction motivated by general concerns in safety critical systems that include the
need for increased clarity (sometimes at the expense of programmer effort) and the ability

to trace each type to a particular definition. All type names are case sensitive.
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package my_package is

type my_int is int;
type my_bool is bool;
type my_tuple is int x bool;

node external_node
(il : my_int) returns
(ol : int, o2 : bool)
is external;

node internal_node

(il : my_.int, i2 : my_bool) returns
(ol : bool)

is

local
tl : my_tuple;

begin
tl := external_node(il+2) when i2;
ol = t1+#2;

end node;

end package;

Figure 4.1: Sample GIL code for demonstrating type constraints

User defined types are qualified by the package in which they are defined. They can
be referenced within the defining package by type name (e.g. x : my_int) and referenced
outside the defining package using the fully qualified type name (e.g. x : my_package.my_int).
Because the enclosing package is used to qualify a type name outside of the package, type

names are only required to be unique with respect to enclosing package’s name space.
4.3.1 Simple Types

Simple type definitions take the general form

type <type name> is <component type name> ;
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where a <type name> identifier represents a unique type name and <component type name>
references an existing type. This type definition specifies a new type that is structurally
equivalent to the component type used in its definition. These two types, however, are not
considered equivalent in Guardol. The new simple type is a type alias of the component
type, where as the new type may utilize all the functionality available to the component
type but the two types are not compatible. The reasoning behind this distinction and a
formal definition of type equivalence can be found in Section 4.5.

The following type definition in Figure 4.1 provides an example of a simple type defini-
tion,

3 type my_int is int;

where my_int is a newly defined type structurally identical to int. The shared structure of

these two types is formally defined as [int].
4.3.2 List Types

List type definitions take the general form
type <type name> is list <component type name> end list;

where a <type name> identifier represents a unique type name and <component type name>
references an existing type. This type definition specifies a new list type whose corresponding
data structure is an ordered collection of values whose types are equivalent to the component
type. A list is either empty, signified by nil, or a single value of the component type, the
head, paired with another list which shares the type of the aforementioned list. This second
list is known as the tail.

The manipulation of list types within the Guardol language is done using primitive
recursion, that is, recursion that is numerically bounded such that it can only recurse a
finite number of times. Though not currently implemented, the Guardol language will
provide verification that requires all recursive calls to be performed on a substructure of the

input parameters.
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The following type definition in Figure 2.1 provides an example of a list type definition,
5 type stringlist is list string end list;

where stringList is a newly defined list type whose component type is string.
4.3.3 Tuple Types
Tuple type definitions take the general form

type <type name> is

<component type name 1> *

--*

<component type name n> ;

where a <type name> identifier represents a unique type name and each <component type
name> references an existing type. This type definition specifies a new tuple type whose
corresponding data structure consists of a value for each of the defined component types.
Tuple data structures can be thought of as a simple ordered collection of values where each
component type is paired with a single value in the collection. The values within a tuple
data structure are accessed positionally based on the order in which their corresponding
component type is specified in the tuple type definition.

Tuple types are the simplest way to define a structured data. Within Guardol tuples are
the only form of structured data that do not require type names, though one can be assigned.
Multi-variable assignments and node calls which return more than one variable implicitly
create a tuple structure with no name composed positionally of the types corresponding the
multiple variables. These unnamed tuples are compatible with any tuple with an identical

structure. The following assignment provides an example of this compatibility

19 tl := external_node(il+2) when i2;

where t1 is of type my tuple and external_node returns an unnamed tuple of whose structure
is [int x bool]. Tuple type equivalence is discussed in greater detail in Section 4.5.

The following type definition in Figure 4.1 provides an example of a tuple type definition,
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5 type my_tuple is int x bool;

where my_tuple is a newly defined type whose component types are int and bool. A variable,
v, of type my_tuple accesses its first component of type int using a positional reference to
the first component, i.e. the expression v#1, and accesses its second component of type
bool using a positional reference to the second component, i.e. the expression v#2. A type

error is raised when a tuple access expression attempts to refer tuple component that is not

defined.
4.3.4 Record Types

Record type definitions take the general form

type <type name> is record

<field name 1> : <component type name 1>,

<field name n> : <component type name n>

end record;

where a <type name> identifier represents a unique type name, each <field name> identifier
represents a field name that is unique with respect to all other field names defined by the
record type, and each <component type name> references an existing type. This type
definition specifies a new record type whose corresponding data structure consists of a value
for each of the defined component types. That is to say, a record data structure is a finite
collection of field name and component value pairs where a single value exists for each
component type and is accessed by the corresponding field name.

In Guardol, the advantages of using a record type over a tuple type lie in record type’s
ability to abstract over the position of its component types. The use of a field name to access
a component of the record type enhances the clarity of the specification. However, since

the record type abstracts over the position of component types, the Guardol conventions
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used in the positional construction and deconstruction tuples cannot be applied to records.
In summation, we find that record types provide better specifications than tuple types but
they have a more verbose definition, construction, and component access expression. For
these reasons, we have included both type definitions in the Guardol language and defer to
those designing Guardol programs to choose the best type for their purposes.

The following type definition in Figure 2.1 provides an example of a record type defini-
tion,

17 type Attachment is record
name : string,
19 object : AttachmentType
end record;

where Attachment is a newly defined record type whose component types are string and
AttachmentType. A wvariable, v, of type Attachment accesses its first component of type
string by referencing the field name name, i.e. the expression v.name, and accesses its
second component of type AttachmentType by referencing the field name object, i.e. the
expression v.object. A type error is raised when a record access expression attempts to refer

record component that is not defined.
4.3.5 Union Types

Union type definitions take the general form

type <type name> is union

<wvariant 1>

<wvariant n>

end union;

where a <type name> identifier represents a unique type name and each <wariant> takes

the general form
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<wunton component name> <component type>
or simply
<wunton component name>

Every <wariant> contains a <union component name> which represents a unique name
with respect to all other union component names defined in the union type and an optional
<component type> which references an existing type. This type definition specifies a new
union type that is a disjoint union of variants. A variant is composed of either a unique name
or a unique name and a component type. This means that each variant is a place holder
or inhabited by a value of the component type specified. The union data structure itself is
inhabited by exactly one of the possible variants specified in the union type definition.

The following type definition in Figure 2.1 provides an example of a record type defini-
tion,

type AttachmentType is wunion
10 MIME_Email of MIME Type |
Text of string |
12 XMLDOM of XML_DOM_Type |
Binary of Bytelist |
14 Other
end union;

where AttachmentType is a newly defined union type whose union component names are
MIME_Email, Text, XML_DOM, Binary, and Other. A variable, v, of type AttachmentType is
inhabited by exactly one of these union components. This definition provides an example
of the two possible types of variants exemplified by MIME_Email and Other. If the variable
v is inhabited by the union component MIME_Email then it also contains a value of type
MIME_Type. Conversely, if the variable v is inhabited by the union component Other we
know that the union component name itself provides the required information needed to

reason about v.
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4.4 Recursive and Mutually Recursive Types

Recursive type definitions, i.e., the use of the defining type name within the definition of
that type name are restricted for use with union type definitions. Guardol also enables the
definition of mutually recursive types, however this relationship must be explicitly stated
through the use of the andTypeDeclaration (A.14). A mutually recursive type definition
refers to two or more types that reference each other in their own type definitions. When
defining mutually recursive types the first type definition is done in the standard fashion,
while the subsequent type definitions replace the type keyword with the and keyword. All
types connected together in this fashion have the capability to be mutually recursive. Types

defined in this fashion must be sequentially defined within the Guardol language.

4.5 Type Equivalence

4.5.1 Overview

Type equivalence refers to the formal definition of compatibility between any two types
within a type system. The two relevant approaches to type compatibility discussed during
the design of Guardol were nominal and structural type compatibility. Each of these type
compatibility models provides a unique approach to type equivalence and displays a number
of different properties regarding the specification and use of data structures.

Nominative type compatibility, often used in procedural and object oriented languages,
utilizes the definition of unique type names, where the name of a type is a first class repre-
sentative of the type itself. Nominal type equivalence is performed by comparing two type
names; if the type names are the same then the types are equivalent, otherwise they are
not[6]. With the definition of new types, nominative type systems provide a simple way to
produce type aliases that are structurally equivalent but not type equivalent. This is an
important distinction that will be discussed in Subsection 4.5.6.

Structural type compatibility, as embodied in functional languages such as SML and

OCAML, does not require that types be named. In a structural type system, “types are
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compatible if they have the same structure. To verify structural equivalence, user-defined
type names are replaced by their definition. This process is repeated until no user-defined
type name remains. The types are then considered structurally equivalent if they have
exactly the same definition”[6]. Although the use of structural type equivalence is not
limited to functional languages, structural type equivalence utilized in conjunction with a
functional language provides a mechanism for type inference, i.e., a property of the type
system whereby the structure of most types can be inferred. Using this model, type systems
are able to achieve type safety properties without ever requiring the explicit specification of

all type structures.
4.5.2 Motivation

To demonstrate the difference between a structural type system and the Guardol type system
we will consider a number of potential assignments. First, we will define two types for use

in these examples,

type my_bool is bool;
type my_tuple is int % bool;

For this following assignment, ol is of the type bool and t1 is of type my_tuple
ol = t1#2;
It can be shown that the expression t1#2 has type bool because it is a tuple access of
tl’s second component whose type is bool. This assignment statement is valid because the
variable ol and the assigned expression t1#2 are both of type bool.
Now, consider another potential assignment, where ol is of type bool and i2 is of type

my_bool

In this case, the assignment statement should not be valid because the variable ol is of
type bool and the assigned expression i2 is of type my_bool. Although these two types
are structurally equivalent, they are not nominally compatible and therefore incompatible

within the Guardol type system.
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To further illustrate why this distinction is important, we will compare two similar

functions in Guardol and SML. The following are two type definitions in Guardol.

type meters is int; type feet is int;

It is obvious from these two type names that we expect them to be incompatible with each
other, even though we have that meters and feet are both structurally equivalent to [int].
We do not want a variable x of type meters and a variable y of type feet to be used in the

assignment statement

zZ = X + vy,

no matter what the type of z.
In a language with a pure structural type system, such as SML, we must create a datatype

to mimic the Guardol type definitions measurement

datatype measurement =
METERS of int
| FEET of int;

which is used to distinguish between the two types of measurement. However, in this case,
it is assumed that variables of type measurement are opened upon execution and during the

execution the guard must determine during runtime how to handle this discrepancy.

fun add (x,y) =
case (x,y) of
(METERS x1, METERS y1)
=> METERS (x1+yl)
| (FEET x1, FEET y1)
=> FEET (x1+4yl)
| - => raise IncompatibleMeasurementException;

4.5.3 Guardol Type Equivalence

The Guardol type system utilizes a hybrid approach of both nominal and structural type
compatibility. Essentially, we want all types to be named, and we want type compatibility
to be based on name compatibility. However, there are a few exceptional cases of structural

type compatibility that we would like to allow as a convenience to the developer. These cases
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arise during the use of arithmetic literals and or when handling multiple return parameters
from a node call.

For instance, given the assignment statement,

z =y + 7;

that z and y are both of the same type (e.g. feet), and the definition of that type is struc-
turally equivalent to int, we would expect the type system to correctly type this assignment
statement without the developer having to assign a type to the numeric literal 7. This
requires that we do not incorporate a strictly nominal type system and that the structure
of types are stored and evaluated against the primitive types of literals.

Second, when a node call has multiple return values, the grammar allows for the assign-
ment statement to either split assignment of each tuple component individually or generate
a tuple type which has defined component types but is not named. For example if the type

my_tuple and the node external_node were defined as follows,

type my_tuple is int x bool;
node external_node

(il : my_int) returns

(ol : int, o2 : bool)
is external;

we would want both of the following assignment statements to type check.

tl := external_node(1);
0l,02 :=external_node (2);

where tl is of type my_tuple, ol is of the type int, 02 is of the type bool, and external_node
has the type structure [int x bool].

To model the fact we want to include a degree of structural typing in the two situations
above, we introduce the notion of type structure which exposes structure of primitive and
tuple type instances generated by the type system such that they can be compared to user
defined types. It is important to note that when a variable or parameter is declared with a
primitive type, such as ol in the code excerpt above, this is equivalent to mapping ol to the

type name int and not a type structure [int]. The constraint-based algorithm introduced in
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the following chapter generates these structures and uses them as internal representations
of type structure. Formally, when referring to the structure of a types we must extend the
type domain used in the type checking algorithm to include both type structures and type

variables as follows

n € qualified TypeName (A.11)

p € primitive Type (A.16)
5 € typeStructure = [p]

| GENSEEM
T € typeVariable n= 5

where a single primitive type name, e.g. [bool] or a tuple type, e.g. [bool x my_int] is
wrapped in single brackets to denote a type structure and a type variable denotes the union
of type structures and qualified type names. The full semantics for Guardol type equivalence
is defined in Figure 4.2. This semantics makes reference to the Guardol type environment

defined in the following subsection.
4.5.4 Type Environment

The Guardol type environment, 3, is a data structure used to maintain a mapping of user
defined type names to their corresponding type definitions in the grammar excluding the is
keyword. For example,
Y[ my_int — int;

my_tuple — int * bool;

int_option — union NONE | SOME of int end union]
would be a valid construction of the type environment with three user defined types. All user
defined types are parsed and mapped into the type environment before any type equivalence

is performed to ensure that the formalization for type equivalence holds. For use in the

definition of type equivalence there is one lookup operation, ¥(7), that takes a type variable
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Y. I [bool] ~ [bool] Y F [int] ~ [int] Y F [real] ~ [real]

YEng=ng
Y. I [char] ~ [char] Y. | [string]| ~ [string] Y Fnp~ng

Y F ¥(n) ~ [p] when %(n) # Fail Y EX(n) = [f *...x 7] when X(n) # Fail

YFn~|p Yo [T*. ..ok T
YER~T YRR ~F el k
YFRHh~h SR [A ok kT 2 [Tk ok TR

Figure 4.2: Formal Definition of Type Equivalence
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and returns a type structure or an indication of failure. If the lookup operation is performed
on a type structure it will return that type structure, while a lookup operation performed on
a type name that does not yield a type structure will return indication of failure. Figure 4.3

provides a formal definition of this lookup operation.

Y.(bool) = [bool] Y(int) = [int] Y(real) = [real|
Y.(char) = [char] Y.(string) = [string] X(5) =3
Sliy > fia] S(fie) =5 D[ o fio] D) = Fail D[+ iy * ... * ]
Y[n—list...] Y[n + record. .. | Y[n + union. .. ]
Y (n) = Fail Y (n) = Fail ¥(n) = Fail

Figure 4.3: Formal Definition of the Type Structure Lookup Operation

The type environment is also used in the evaluation of the type constraints from Chap-
ter 5, where the data structure is identical to the one used in this chapter. Additional lookup
operations on the type environment to expose the component types of type definitions are
defined and explained in Section 5.2. These lookup operations are used to verify that a type
name is mapped to a specific kind of composite type and/or return a specific component
type name located in that composite type’s definition. For example, the component type of
a list type definition must be used to verify that the elements used to construct the list are

of the correct type.
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4.5.5 Example Derivations

Using the formal definitions from Figure 4.2 and Figure 4.3 we can formally derive the
equivalence of two type variables used in some of the interesting examples in the above
subsections.

Our first derivation will deal with the assignment statement

z =y + 7
in which the type feet is equated to [int]. This derivation assumes that the type declaration
type feet is int;
is mapped into the type environment as follows X[feet — int]. On the left, the type equiv-
alence rules are used in conjunction with the type environment lookup rules, on the right,
to derive the type equivalence of a type variable whose type is feet and the type structure

int].

Y F [int] ~ [int] where (feet) = [int] Y[feet — int] X(int) = [int]
Y b feet ~ [int] Y (feet) = [int]

Our second derivation will deal with the assignment statement

tl := external_node(1);

in which my_tuple is equated to [intxbool]. This derivation assumes that the type declaration
type my_tuple is int x bool;

is mapped into the type environment as follows X[my_tuple — int * bool]. Again, type

equivalence rules and the type environment lookup rules are used to derive type equivalence

of a type variable whose type is my_tuple and the type structure [int x bool].

Y I [int] ~ [int] X F [bool] ~ [bool]
Y I [int * bool| ~ [int * bool| where X (my_tuple) = [int x bool]
Y F my_tuple ~ [int x bool]

Y[my_tuple — int x bool]
Y (my_tuple) = [int * bool]
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If my_tuple had the type structure [int * bool], no derviation would be possible. This

would indicate that a type equivalence could not be constructed.
4.5.6 Assessment

A purely structural type compatibility was disregarded based on its inability to complement
the language design goals specified for Guardol, and a purely nominative type compatibility
was abandoned due to the disparities that arise with the introduction of tuples that are not
uniquely named. This assessment lead to the development of a new set of type equivalence

for use in the Guardol language. The key design features that guided its development were

e A correspondence between semantic domains where the exchange of values between

domains requires explicit conversions, e.g., feet and meters and

e A type specification such that the details of a type implementation are hidden from

the clients of that type.

A nominal element of type equivalence is needed to satisfy both of these requirements
and a structural element of type equivalence is needed to incorporate tuple compatibility.
Guardol’s hybrid type system, while possibly placing a small additional burden on user with

respect to a pure structural type system, provides
e name-centric type specification — type names that correspond to semantic domains
e enhanced domain specification readability and verification

e static checks for incompatible types that are structurally identical before the execution

of the guard

e climination of case statements describing the compatibility of user defined primitive

types under their respective operators

coinciding with Guardol’s language design goals.
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Chapter 5

Type Constraints

After the initial parsing and symbol resolution phases, the Guardol compiler carries out a
type checking phase to enforce compliance to the Guardol type system. Type checking is
implemented via a constraint solving algorithm. Constraints are generated first in a syntax-
directed traversal of the Guardol program’s AST, then the constraints are solved using an
unification algorithm.

Specifically, constraint generation begins by compiling the primitive and user defined
types into a type environment, Y, and the user defined nodes into a node environment,
W. As the list of type constraints is generated and evaluated based on the type constraint
generation rules in Section 5.5, a cache of type variables, expression labels, and variable
names is denoted by C'. In Guardol, there is no notion of a “global variable” — all variable
references refer to a local variable or parameter, so there is a unique C for each node such
any type constraint generated for a node does not impact other nodes.

After the type checking phase is finished and there are no errors raised, the type checking
phase is considered complete. An error in the type checking indicates the usage of an

undefined type, a type mismatch, an incorrect type construction, or an incorrect type access.

5.1 Syntax Domain

The type constraint generation rules below follow the structure of the grammar in Section A.

However, for conciseness in stating the type constraint rules, we abbreviate the labels of non-
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terminals and terminals used in Appendix A. Figure 5.1 summarizes these abbreviations.
Exp-Labels, or expression labels, comprise the only additional syntax domain extension
found within these abbreviations. An expression label is simply an unique label used to
identify each individual expression AST node. The extension is required to formalize the

type constraint generation rules in Section 5.5.

b € [bool] d € constructorName (A.5) € € expression (A.30)
¢ € [char]  f € fieldName (A.8) | € Exp-Labels
i € [int] m € statement (A.62) ms € statementList (A.61)
7 € [real] 0 € qualifiedNodeName (A.10) p € pattern (A.71)
5 € [string] Z € wvariableName (A.6) var € TUIUT
TP € binaryNumericOpl (A.49) U binary NumericOp2 (A.49)
B U binaryRelationalOp (A.53)
b_op € binaryBooleanOp (A.55) u_op € unaryNumericOp (A.45)

Figure 5.1: Type Constraint Syntax Domain

5.2 Data Structures

The type checking algorithm utilizes three data structures >, ¥, and C in the process of
constraint generation and solving. The table below summarizes these data structures and
indicates the output of the lookup operations used to access their contents. Pass and Fail
are terms introduced at this stage to identify whether or not a lookup operation could
be completed. Fail is returned when a lookup operation attempts to access a node or
particular kind of type definition that is not defined in the environment according to the
lookup operations parameters. If the lookup operation does not return Fail then it will
return a type variable, a type structure, or an affirmative Pass which signifies that this type

or node definedness portion of the constraint rule is satisfied.
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(types) X Type Environment
X(7) Type Variable — Type Structure U Fail
YlistComponent (T) Type Variable — Type Variable U Fail
ErecordComponent (T f) Type Variable * Field Name — Type Variable U Fail
tupleComponent (T 1) Type Variable * N — Type Variable U Fail

YunionComponent (T, d)  Type Variable * Constructor Name — Type Variable U Fail

Yispnist(T) Type Variable — Pass U Fail

ShasComponent (75 d) Type Variable * Constructor Name — Pass U Fail

Y hasConstructor (T d) Type Variable * Constructor Name — Pass U Fail
(nodes) W Node Environment

U, (0,1) Qualified Node Name * N — Type Variable U Fail

U, (0,1) Qualified Node Name * N — Type Variable U Fail
(cache) C Type Variable Cache

C(var) Variable Name U Exp-Labels U Type Variable

— Variable Name U Exp-Labels U Type Variable

A brief description of each of the above lookup operations is provided below.

e X (7) - Given any type variable, this lookup operation returns the type structure
associated with it or an indication of failure if there is no type structure associated

with this type variable. This operation is described in more depth in Section 4.5.4.

® Yistcomponent(T) - Given a type variable that is of the list type, this lookup operation
returns the component type variable. An indication of failure is returned if the given

type variable is of any other type or is not defined.

® Y ccordComponent(T, f) - Given a type variable that is of the record type, this lookup
operation returns the component type variable associated with the field f. An indica-
tion of failure is returned if the given type variable is of any other type, is not defined,

or the given field does not exist.

® YiupleComponent(T, 1) - Given a type variable that is of the tuple type, this lookup oper-
ation returns the component type variable associated with the index 7. An indication
of failure is returned if the given type variable is of any other type, is not defined, or

the given index does not exist.
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YunionComponent (T, d) - Given a type variable that is of the union type, this lookup
operation returns the component type variable associated with the constructor d. An
indication of failure is returned if the given type variable is of any other type, is not
defined, the given constructor does not exist, or the given constructor is not associated

with a type.

Yispist(T) - Given a type variable that is of the list type, this lookup operation returns
an affirmative indication. An indication of failure is returned if the given type variable

is of any other type or is not defined.

Y hasComponent(T, d) - Given a type variable that is of the union type, this lookup op-
eration returns an affirmative indication if the constructor d has a component type
associated with it. An indication of failure is returned if the given type variable is of

any other type, is not defined, or the given constructor does not exist.

Y hasConstructor (T, d) - Given a type variable that is of the union type, this lookup
operation returns an affirmative indication if the constructor d exists. An indication
of failure is returned if the given type variable is of any other type, is not defined, or

the given constructor does not exist.

U,,(0,4) - Given a node name 0, this lookup returns a type variable of its 7" input
parameter. An indication of failure is returned if the node is not defined or does not

have an *" input parameter.

W,,:(0,7) - Given a node name 0, this lookup returns a type variable of its i'* output
parameter. An indication of failure is returned if the node is not defined or does not

have an i*" output parameter.

The cache C' is the primary data structure used in the constraint solving algorithm.

Each use of C (var) represents a call of the FIND operation defined in Section 5.6.
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5.3 Definedness Extension of Type Equivalence

The definition of type equivalence in Figure 4.2 does not account for the possibility that
the lookup of a type variable in the type environment can fail. Figure 5.2 introduces a
new judgement, X = 7; o~ 7T, that can only hold if all the type variables occurring in the
given types are also present in X. According to these rules, all primitive type structures are
automatically defined and tuple type structures are defined if and only if their corresponding
component type variables are defined. Type names are defined if the type environment
lookup does not return a Fail condition. The final rule constructs a new type equivalence
relation by which the two type variables must be equivalent based on the previous type

equivalence formalization and each type variable must be defined based on the definedness

formalization.
Y. | [bool| Y H| [int] Y H| [real| Y. F| [char]
Sk 7 iel.. .k Fail ¢ $(#)
Y. | [string] YL [fx. .. %7y YHL 7

E}_7~'127~'2 l7~'1 l7~'2

Zl_%lﬁl%g

Figure 5.2: Definedness Extension of Type Equivalence
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5.4 Rule Form

As an example of the general form for constraint rules consider the rule for multiple assign-

ments.

The <C’ , 2, W) represents the context for the constraint; it indicates the current auxiliary
data structures used to solve each constraint. The rule should be understood as follows in
the context of the data structures (C’, X, ), 7, 1= el is correctly typed if and only if & is
correctly typed in the same context and if the type C (I) of the expression e (which is found
by looking up the expression label [ of € in the cache) is a tuple type where each component
type of the matches the type C (Z;) of the corresponding variable Z;.

Each constraint generation rule follows the structure of the associated grammar rule in
Section A. Algorithmically, constraints are generated in a recursive traversal of the parse
tree. The arguments of the function carrying out the traversal are the data structures
from the context (C, ¥, U) and the current AST node (e.g. Zi, ..., Zn := &). The
function will recursively call the traversal algorithm for subcomponents (e.g. é[), and will
add constraints representing type equality/equivalence conditions that need to be enforced
for type soundness.

As described in the above Section 5.3 type equivalence is extended to reason about
the definedness of the namespace including but not limited to type names, field names,
variable names, node names, and parameter names. Each type constraint generation rule
follows one of two different forms. A constraint is either an equality constraint, ~|, where
two type variables are equated together, in this case C'(I) ~, [C(Z1) * ... * C(Z,)], or a
strict definedness constraint that returns a Pass or Fail. A constraint rule is not satisfied

it generates a Fail condition. Equality constraints that cannot be satisfied indicate a type

checking error.
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5.5 Type Constraint Rules

The following type constraint rules are generated as the Abstract Syntax Tree (AST) is

traversed. Since not all nodes of the AST generate type constraints, only those relevant

to the type system are enumerated in the following type constraint rules. For example,

although there is no specific constraint generation rule for nodeDeclaration (A.6), we will

assume that all parameter variable name declarations and local variable name declarations

will be visited sequentially followed by the statements defined within the node. We will

also assume that both the type environment, >, and the node environment, ¥, have been

constructed with all the definitions required to verify the typing rules. The cache, C, is

assumed to be empty when a new node is visited.

<év Ev \Ij> ):D
<O’ 27 \Ij> ):D
<CA” E? \IJ> ):S

<C’7 2? \Ij> ):S r

<Cv 27 \I]> ):S

S
™
=

s

rin
T:Pnyg*x...xny,
Ti=¢

. |
T, , Ty = €
if & then s
elseif ¢ then ms

else ms

match & with

iff
iff
iff
and
iff
and
iff
and
and
iff
and
and
and
iff
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ms, and Vi.(C, X, U) |=g5 ms;

|pa=> ms, and Vi(C, 3, U, C(I)) Ep pi

g

Rl

Rl

S S S

Rl

M M M ™

I ) iff EisList<7~—) (512

Rl

SH

Kl

and (C, %, ¥) |=g m
and (C, %, ¥) |=g m
and <é, E, \I/> }:SS ms

it C(z) o~ 7 (5.9

it Sisrist(T) (5.11

and  C(71) | SisiComponent (7)

and C(Z) ~| 7

iff Sisnist(7) (5.13)
and C(Z9) > 7

it Sy (F) (5.14)

A

and C(i'l) = Zlz}st(,’om;uonent(7~-)

iff ZhasC’omponent (7:7 d) (515)

and ZhasConstructor (%7 d)

and é(j) = Eunz’onC’ompone’mﬁ(T’ d)

iff ZhcLsC’o*rnponem‘ (7:7 d) (516)

and ZhasC’onstructor (7:7 d)

iff ZhzzsC’O'rzstrmztor (7:7 J) (5 ].7)
et i VO, 3, ) g eb (5.18)
and Vi.C(l;) ~, U (0,19)

~ =

and C(l) =) Wou(0,1) | n=1
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S

S

S

s

S

S

M M M M M M M

S

and  C(I) | [Woue(0,1) % ... % Upu(G,n)] | 0 > 1
7 it C(l) ~, C(z) (5.19)
v iff C(l) ~, [booll (5.20)
it it C(l) ~ [int] (5.21)
i it C(l) ~ [real| (5.22)
d it C(I)~ [char] (5.23)
g iff C(I) ~ [string] (5.24)
(e #n) iff (C, %, V) Ep et (5.25)
and C’(l_) ) Ztupzecomponent(éu_l)a n)
(. f) iff (C, %, V) g el (5.26)
and  Srecoracomponent (C(1), f) 2 C(1)
(L, ....em)  iff VilC, %, U p e (5.27)
and C(I) ~ 7
and Vi Stupiecomponent (71, 1) = C(I;)
(' {er, .. et iff VilC, %, U g e (5.28)
and C’(Z) >~ N
and  Vi.Xjiscomponent (1) = C(I;)
(W'[fi= > e} iff ViC, %, 0 g e (5.29)
ety and C(I) ~| 7
fa=>EDt and Vi Sccondcomponent (72, fi) =2y C(I1)
(7’ d)! it C(l)~ n (5.30)
(7’ d(e)) iff (C, %, V) Ep el (5.31)

and C(I) ~| 7

unionComponent (ﬁ; d) =) é(l )

N

and
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(@)

@

(when(é?, e2)))  if (C, %, U) =5 &} (5.32)
and (C,
and C(ly) ~, [bool|
and C

(default(el, €2))' iff (C, %, U) =5 &} (5.33)
and (C, :
and C(I) ~| C(ly)
and C

(exist(e"))! iff (C, %, 0) p et (5.34)
and C(I) ~, [bool]

(el zel2)! iff (C, %, 0) g et (5.35)
and (C, %, ) |=p e
and C(I) ~ C(l)
and  Siistcomponent(C(I2)) 22 C(11)
and  Xis1is(C(l))

(@) it (C, %, 0) g et (5.36)
and (C, S, U) k=g e
and C(I) ~ C(ly)
and C(I) ~, C(Iy)
and  Yiuri(C(l2))

(not &) iff (0, %, 0) 5 &b (5.37)
and C
and C

(wop &)’ it (C, %, U) Ep & (5.38)
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and C(

and C(ly) ~, [int]
(O, 2, 0) p (¢F bopey) it (C, %, W) fp e (5.39)
and (C,
and C(I) ~ C(Iy)

(
and C(ly) ~, C(ly)
(

and C(ly) ~, [bool|
O, %, 0 Ep (8" nop é?)! it (O, %, U) =g & 5.40
1 2 1
and (C, 2, U) =g &2

and C(I) ~, C(Iy)
and C(ly) ~, C(ly)

and C(ly) ~, [int]

5.6 Union-Find

The constraint solving algorithm for Guardol’s type system was constructed using well
known disjoint-set data structure called Union-Find[9]. A disjoint-set data structure con-
tains no overlapping sets, such that every element in the data structure is unique and belongs

to exactly one set. Two operations can be performed on a Union-Find data structure:

e FIND(var) - This operation is used to determine the set to which a particular element

belongs.

e UNION(war, var) - This operation combines or merges two sets into a single set.

A

The type variable cache (C'), defined in beginning of this chapter, is maintained by our
implementation of the Union-Find algorithm. Elements of the data structure are either type

variables (7), expression labels (1), or variable names (Z). These elements are collectively
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denoted by var in Section 5.1. All of these elements share the ability to be associated with
type variables, such that every element in a particular set has the same type. If no type
variable exists in a set then that set of elements would not have a defined type, while a set
containing two incompatible type variables indicates a typing error.

Elements are introduced into the data structure via the FIND operation. When FIND
is called with an element that does not exist in the data structure, it creates a singleton
set with that element and returns the inhabiting element. If FIND is called on an existing
element within the data structure, an element with the highest rank is returned. Rank will
be discussed in depth in the following paragraph, however it is sufficient to know that each
set must return an element of its set when FIND is called and in this case rank is used to
determine which element is returned. FIND creates a new element every time its argument
is a type variable, however if its argument is a variable name or an expression label then it
only creates a new element iff an element with that argument does not already exist in the
data structure. A new element is created for each type variable because type variables are
used to provide information on the type of the set and not unify existing multi-element sets
together. Whereas expression labels and variables names are used by the constraint rules
to join multi-element sets together. When UNION is called, it performs a FIND on both
elements and subsequently merges them into the same set.

It is not strictly necessary to create a new element for each type variable, however this
simplifies the approach without adding undo space or time complexity. Coercion, or the
unioning, of type names and type structures into the same set is possible but we want to
make sure that the type structure is not used to reference the set. For example, if [int]
is unioned with my_int and in some completely unrelated expression or statement [int] is
unioned with int, we would not want a type error to occur. A type error, however, would
occur if [int] could not belong to multiple sets. We solve this problem by assuring that a
new element is created when any type variable is introduced, eliminating the possibility that

a type variable is used to union sets together.
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Rank is a standard mechanism found in many Union-Find algorithms used to manipulate
the algorithm’s time complexity[9]. Its primary purpose is to balance the tree data structures
storing each set such that the asymptotic running time of the FIND operation is faster. For
reasons that are clear based on the limiting structure of the AST and the relative number
of elements that are created to type each program, we are not necessarily concerned with
a faster asymptotic running time. Instead we appropriate the ranking mechanism for a
different purpose that allows us to assure that FIND returns an element that provides the
highest level of detail regarding the type of the elements in the set. In all cases where FIND
is called with an element whose set contains more than one element, FIND will return a
type variable. This can be proven inductively over AST on a case by case basis for each
type constraint rule.

The algorithm utilizes three different ranks such that the FIND operation returns the
element (i.e. type variable, expression label, or variable name) that corresponds with the
most precise type description. The lowest rank is comprised of expression labels and variable
names which by themselves provide no description of their type. Type variables are split
into two separate groups, qualified type names and type structures as defined in Section 4.5.
Type structures comprise the middle rank because they provide a description of a type’s
structure but could be associated with any number of qualified type names which have
the same structure. Finally, qualified type names are given the highest rank because they
directly reference a user defined or primitive type and are not compatible with any other
user defined types.

For example, if we had the variable name il and the type variable [int]! (type variables are
uniquely identified by a superscript identifier so that they can be differentiated from other
type variables of the same type) a UNION operation would result in these two elements
occupying the same set. Any call of the FIND operation on either element would return
the type variable [int]'. Later, if the type variable my_int?> was unioned to either [int]! or il

then a call of the FIND operation with any of these elements would return the type variable

57



my_int? because they all occupy the same set and my_int? is the element with the highest
rank. The “strength” of an element is directly related to its rank. The stronger the element
that is returned the more precise the type of that set and the less potential it has to be
unioned with other sets. To determine if two elements can be unioned together, we must
evaluate whether or not they are equivalent.

The evaluation of equivalence, var; ~ vars, is split into two cases:

e if var; and var, € typeV ariable, var, and varsy are equivalent iff the equivalence rules

defined in Figure 4.2 hold.
e otherwise, var; and var, are always equivalent.

Algorithmically, var; ~ var, is modeled by invoking the UNION operation on var; and
varsy if they are equivalent. If they are not equivalent, then a type error is raised. This is
indicative of a type mismatch where one type was expected by the type system and another
type was supplied. If we consider the example in the above paragraph, where we have
my_int?, [int]', and i1 inhabiting the same set, we would not want a union to occur with any
set that contained an element such as int® or [bool]*. The resulting set would then have a
conflicting type information. A type cannot have two names or be composed of conflicting
type structures, such as [bool]* and [int]'.

We want to guarantee that sets with conflicting type information will never be unioned
together. As part of our inductive argument, we will assume that the empty set does not
contain conflicting type information and sets whose identifying elements are equivalent do
not have conflicting type information. If a set contains int® and was not incorrectly unioned
previously, when FIND is called on any element in that set we know that some type variable
int” will be returned because those elements have the highest rank. This assures that sets
containing different type names cannot be unioned together. If a set contains [bool]* and
was not incorrectly unioned previously, when find is called on any element in that set we

know that either some [bool]” or type name such as my_bool will be returned. Since the type
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name my_bool is stronger than [bool]* and any other [bool]” provides identical information,
we can be assured that using the evaluation of equivalence before unioning this set with any
other will not result in a set with conflicting type information being created.

Equivalence constraints are regarded semantically as operations performed to refine or
maintain the type of either the var; argument or the vars argument. Since we can assume
that one of the wars is a type variable, we know that if the equivalence check holds a FIND
operation performed on any element in the resulting union set will return a type variable
that is as strong or stronger than the type variable that would have been returned before the
UNION operation. Informally, this is indicative of each set either maintaining or gaining a
more precise definition of its type. The following section provides an example that illustrates

the utility of the Union-Find algorithm in conjunction with the type constraint generation

rules.

5.7 Type Constraint Generation Example

This type constraint generation example traverses the following assignment statement
19 tl := external_node(il+2) when i2;

from Figure 4.1. A pair of figures, the AST and the cache (C’), model each of the seven
constraint generation steps required to type check this statement. For the sake of this
example, we will assume that the nested type constraint rule calls, e.g. (C’ , 2, U Eg e ,
are visited in the order in which they are declared within the type constraint rules. This
will cause the AST to be traversed depth first from left to right. The order that the child
nodes are visited, however, is not important algorithmically or semantically as long as the
AST is traversed depth first. Each expression node in the AST is given a unique expression
label that will eventually be mapped to a type variable. This mapping is represented by C.

Though Cis algorithmically modeled using a Union-Find data structure as explained in
Section 5.6, we will model it visually as a table with variable names and expression labels on

the left and the corresponding type variable on the right. A superscript number is used to
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uniquely identify the type variable representing a disjoint set of elements. For the purpose
of being able to identify different type variables of the same type, a unique identifier is used
for type variables. So if il and I3 are both identified by my_int!, then they are all in the
same set. However, if one is identified by my_int! and the other is identified by my_int? they
are in different sets.

From the perspective of the Union-Find algorithm, the type variable in the right cell is
found by calling FIND on the variable name or expression label (e.g. C'(i1) returns my_int!).
An empty cell signifies that FIND returned a variable name or expression label that was
identical to its argument, meaning that the variable name or expression label is the only

inhabitant its disjoint set.
5.7.1 Step1

We begin by processing declarations in the following code which results in initial constraints

for C being processed as illustrated in Figure 5.4.

12 node internal_node
(il : my_.int, i2 : my_bool) returns
14 (ol : bool)
is
16 local
tl : my_tuple;

The variable name declaration AST nodes are visited and the corresponding Type Constraint
Rule 5.1 is evaluated. The variables il, i2, t1, and ol have been unioned with their respective
type variables: my_int', my_bool?, my_tuple?, and bool*.

In Step 1, we will generate the constraints for the node i1 in Figure 5.3. This node
matches Type Constraint Rule 5.19 and the constraint C (14) >~ C (i1) is generated. Where
C(i1) returns my_int! and C(l;) returns l;. After the union operation, we see that the

expression label I; now has the type my_int! in Figure 5.4.
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] = il | my_int!
i2 | my_bool?
J, tl | my_tuple’
when 1 ol | bool
/ \ [y
ly
external_node "2 i2lo I
i I, | my_int!
l
+13 5
/ \ l6
(1?4 | ols Figure 5.4: Cache (C) - Step 1
KI__ J
Figure 5.3: AST - Step 1
5.7.2 Step 2

In Step 2, we will generate the constraints for the node 2% in Figure 5.5. This node matches
Type Constraint Rule 5.21 and the constraint C(l5) ~| [int] is generated. In Figure 5.6
we can see the expression label I5 is now unioned with the primitive type structure [int]>.
This type structure will eventually be strengthened by its replacement with a qualified type
name, however for the type constraint to be satisfied the structure of the type name must

be equivalent to [int].
5.7.3 Step 3

In Step 3, we will generate the constraints for the node +% in Figure 5.7. This node
matches Type Constraint Rule 5.40 and the constraints C(l3) ~; C(ly), C(ls) ~; C(l5),
C(l;) ~, [int]. Where C(ly) returns my_int!, C(l5) returns [int]’, and C(I3) returns Is.
We must union my_int!, [int]>, and I3. There is no type constraint violation since the
primitive structural type, [int]®, is type equivalent to my_int!. In Figure 5.8, note that
C(l5) has changed from [int]® to my_int! due the nature of our Union-Find algorithm as
explained in Section 5.6. We also know that collectively these constraints assure that the

arguments of the operator + are type equivalent to [int] as well as the resulting expression.
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tl =

|

when i1

O\

external_node /2 i2lo

|

T

i1l | 205 |
N

Figure 5.5: AST - Step 2

il | my_int!

i2 | my_bool?
tl | my_tuple’
ol | bool

l

ly

l3

I, | my_int!
l5 [int]5

l

Figure 5.6: Cache (C) - Step 2

Algorithmically, we ensure this constraint by always unioning one of the expression labels,

~

C(l5), with [int]. This may cause multiple structural checks if the arguments are numeric

literals or expressions that have primitive types, such as 2 or 6 * 9.

tl .=

|

when i1

O\

external_node ‘2 i2l6

|

/O

A

i1l 210

Figure 5.7: AST - Step 3
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il | my_int!

i2 | my_bool?
tl | my_tuple?
ol | bool*

l
ly
I5 | my_int!
I, | my_int!
I5 | my_int!
l

Figure 5.8: Cache (C) - Step 3



5.7.4 Step 4

In Step 4, we will generate the constraints for the node external_node’? in Figure 5.9. This
node matches Type Constraint Rule 5.18 and the constraints C(I3) ~ W, (external_node, 1)
and C(ly) ~| [Wou(external_node, 1) * U, (external_node, 2)] are generated. Using the node
parameter lookup function we find that U, (external_node, 1) returns my_int”, [¥,,, (external_node, 1)x*
U, (external_node,2)] returns [int * bool]®, C(I3) returns my_int!, and C (Iy) returns l,. First,
we must union my_int* and my_int” which are equivalent. Next, in Figure 5.10, the expression

label I is unioned with [int * bool].

tl = il | my_int!
l i2 | my_bool?
tl | my_tuple?
when 1 T ool
\ I
| external_node | il I | [int * bool]®
Rl e I3 | my_int!
Iy | my_int!
I5 | my_int!
lg

Figure 5.10: Cache (C) - Step 4
i1l 205

Figure 5.9: AST - Step 4

5.7.5 Step 5

In Step 5, similar to Step 1, we will generate the constraints for the node i2% in Figure 5.11.
This node matches Type Constraint Rule 5.19 and the constraint C(lg) ~ C(i2) is gener-
ated. Where C(i2) returns my_bool? and C(lg) returns lg. In Figure 5.12, the expression

label I is unioned with my_bool?.
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(] = il | my_int!

i2 | my_bool?
J, tl | my_tuple?
when & ol | bool
/ \ L
SRR ly | [int * bool]®
external_node 2 2 16) ls | my_int!

I, | my_int!
ls | my_int!
+ls ls | my_bool?

\ Figure 5.12: Cache (C) - Step 5

i1l 205

Figure 5.11: AST - Step 5

5.7.6 Step 6

In Step 6, we will generate the constraints for the node whent in Figure 5.13. This node
matches the Type Constraint Rule 5.32 and the constraints C(lg) ~; [bool] and C(I;) ~,
C(ly) are generated. Where C(lg) returns my_bool?, C(I3) returns [int * bool]%, and C(1;)
returns [;. The first constraint ensures that my_bool? is type equivalent to [bool] which
allows us to verify that the second argument of a when expression is typed correctly. In
Figure 5.14, expression label [; has is assigned with [int * bool]® and the type of the when

expression is equivalent to [int * booll®.

5.7.7 Step 7

In Step 7, we will generate the constraints for the node tl1 := in Figure 5.15. This node
matches the Type Constraint Rule 5.3 and the constraint C(l;) ~; C(tl1) is generated.
Where C(I;) returns [int * bool]® and C(t1) returns my_tuple®. Referring to the type decla-

ration of my_tuple

5 type my_tuple is int x bool;
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] — il | my_int!

i2 | my_bool?
. l _ . tl | my_tuple?
| when® | ol | bool*
-~ X Iy | [int * booll®
Iy | [int * bool]®
‘ external_node "2 i lo I3 | my_int!

I, | my_int!
l5 | my_int!
s ls | my_bool?

/ \ Figure 5.14: Cache (C) - Step 6

i1l 205

Figure 5.13: AST - Step 6

in Figure 4.1, we can see that this constraint is satisfied because [int * bool]® and my_tuple?
are equivalent. The union of these two type variables also results in a strengthening of
the type [int * bool]® to my_tuple® in the cache; the resulting type variables occurring from
C((Ol) and C(()ly) are adjusted to standardize this strengthening. Algorithmically, this
process is ensured by the simple union of the two type variables, where the type names (i.e.
my_tuple®) will always have a higher rank than type structures (i.e. [int * bool]®). This node
call whose type structure is [int * bool]® has been strengthened to the type name my_tuple?.
This does not affect the type of any subsequent node calls or the referenced node’s parameter
type definition.

Type constraint solving fails when any constraint fails. If a constraint cannot be unioned,
then a type mismatch error is raised for that constraint relating the expression labels and/or
variable names with their expected/given types. Failure to adhere to predicate constraint
determinations are also related in error messages. A match statement that expected a con-
structor with a specific name and was given another is an example of a predicate constraint
failure. Error messages are detailed with line numbers and provide as much of the ex-

pected/given type information about the violating expression labels and variable names as
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(1= il | my_int!
S i2 | my_bool?
l tl | my_tuple?
when & ol | bool*
I, | my_tuple?

l5 | my_tuple?
l5 | my_int!

lo 9 lg
external_node i2 I, | my.nt!
I5 | my_int!
i lg | my_bool?®
/ \ Figure 5.16: Cache (C) - Step 7
i1k 215

Figure 5.15: AST - Step 7
possible. For ease of use, the constraint solving algorithm does not stop after one constraint

fails. It caches the error and continues without the evaluation or union resulting from the

violating constraint.
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Chapter 6

Future Work

The Guardol compiler composed of the grammar, parser, AST, translation to the Pilar
IR, and type system represents full scope of the implementation provided by this report.
The purpose of this project, as explained in Section 1.4, was to provide a foundation upon
which various verification analysis, target platform translations, and external tools could
be harnessed. The scope of future work includes the implementation and formalization of

these tool chains to provide a high degree of confidence in the resulting product.

6.1 Specification Language

A large part of future development efforts will center around the creation and use of a guard
specification language. This language is a critical component of the guard design process,
where straightforward abstractions can be understood from a natural language perspective.
The necessity of guarding applications often stems from simple written directives describing
an information flow policy that must be enforced. A specification language that provides the
appropriate abstractions, in an unambiguous manner, corresponding directly to the style in
which guarding policies are conceptualized and formally written.

While, informally, the is the goal of most DSLs is to provide a framework for computing
in a given domain, this specification language’s purpose would be to facilitate the construc-
tion of guarding policies that are readable, unambiguous, and applicable to the Guardol

tool-chain. The specification of guarding policies is the first step in the design and imple-
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mentation of a guarding solution. As such, the specification language should be able to be
compiled at any point in the design process and checked to verify that it is well-formed with
respect to the specification language. The compilation of a specification, however, will not
yield an implementation.

To verify properties about the implementation of a guarding solution some sort of spec-
ification must exist, so it is likely that implementations will not be able to be compiled
without a specification. While the specification and the implementation languages are com-
piled separately, it is not unreasonable to assume that developers would want the shared
abstractions (e.g. data types, node definitions) in the specification and implementation lan-
guages to inhabit the same file or set of files. A comprehensive grammar that encapsulates
both languages such that the two languages are merged but maintain separate compiling

phases is a feasible development goal.
6.2 Pilar Intermediate Representation

The Pilar IR was designed by the SAnToS group so static analysis such as information
flow and symbolic execution can be applied to all Pilar IR translations conforming to the
corresponding language profiles. Guardol was designed as a single assignment language with
an added restriction requiring that referenced variables could not subsequently be assigned
any value. Regardless of this restriction to the single assignment paradigm, we know that
a single assignment language is a functional language[10]. Therefore a generic functional
language profile for the Pilar IR would be an acceptable target for many of Guardol’s static
analysis tools.

Currently, there is no documentation or formalization for the Pilar language profiles as
it is an implementation mechanic that is under development. However, providing existing
static analysis tools that work directly on the Pilar IR is advantageous during the develop-
ment of DSLs which do not differ greatly from standard language paradigms. Static analysis

tools developed specifically for the DSL must be re-certified or proven for that implementa-
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tion. In contrast, a DSL that uses existing static analysis tools through the Pilar IR requires
that the translation from the DSL to the IR be certified or proven correct. This decision
is a choice of implementation strategy and not necessarily correctness. It is conceivable,
however, that one implementation strategy provide a framework that is significantly easier

to certify and/or prove.
6.3 Verification

The verification of guard implementations on target platforms adhering to a given speci-
fication is the end to end goal of the Guardol project. Currently, a majority of the focus
has been targeted at the integration of static analysis tools to verify a guard’s functional
equivalence to the provided specification. Dynamic analysis, such as runtime checks, are
not the type of analysis tools that we are interested in implementing to prove that guard
implementation adheres to a specification or guard policy. Relying on this type of analysis
would provide no guarantees about the guards behavior at runtime and if it was used to
enforce behavior then it should be used in place of the guard as a verified external tool.

The process of verification will rely heavily on future decisions regarding the construction
of the specification language. If further efforts are made to design a language that maintains
property specifications on the inputs and outputs of nodes (e.g. VirusChecked, Scrubbed),
a framework for reasoning about these properties and possibly in a temporal context would
be the next step. A readable and intuitive specification of properties and when they hold is
critical to the design of the language as well as the verification process.

Verification on different target platforms requires that the translations from the Pilar IR
to each platform be certified or that properties of the specification are maintained at every
step in the tool-chain. This by-product of platform independence will be the subject of a
great deal of future effort. Many different and possibly redundant strategies must be used
to accomplish this task in such a way that we have a “high assurance” that the resulting

implementation is correct.
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Appendix A

Grammar

This appendix provides the grammar for the syntax of Guardol. There is a direct corre-

spondence between these grammar production and the ANTLR rules used in the Guardol

parser.

A.1 Names
name = IDENTIFIER (A.1)
packageName = name (A.2)
nodeName = name (A.3)
typeName = name (A.4)
constructorName = name (A.5)
variableName = name (A.6)
constName = name (A.7)
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fieldName = name (A.8)

qualifiedPackageName ::= packageName (A.9)

| packageName . qualifiedPackageName

qualifiedNodeName == nodeName (A.10)

| packageName . qualifiedNode Name

qualified TypeName = typeName (A.11)

| packageName . qualified TypeName

componentTypeName — ::= primitive Type (A.12)

| qualified TypeName

A.2 Type Declarations

typeDeclaration = type typeName is typeDefinition; (A.13)

andTypeDeclaration ::= and typeName is typeDefinition; (A.14)

typeDefinition = unionType (A.15)
| recordType
| listType
| simpleType
| componentType

| external

primitive Type = bool (A.16)
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union Type

variants

variant

recordType

fieldDeclarations

fieldDeclaration

list Thype

simpleType

tuple Thype

componentType

int
real
char

string

union variants end union

variant

variant | variants

constructorName

constructorName of componentType

record fieldDeclarations end record

fieldDeclaration

fieldDeclaration , fieldDeclarations

fieldName : componentType

list componentType end list

component TypeName

component TypeName * component TypeName

component TypeName * tuple Type

simpleType

tuple Type
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(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

(A.25)

(A.26)



A.3 Constant Declarations

constantDeclaration ::= constant constName : componentType constAssign (A.27)

constAssign = = literalFxpression

| is external

A.4 Expressions

ETPTESSIONS =

ETPTESSION, =

nameExpression =

literal Expression =

parenFExpression =

callExpression =

exTPTession

exTPTession , erpressions

whenFExpression

variableName

“STRING ¢
>CHARACTER”’
true

false

INTEGER

REAL_ NUMBER

( expression )

qualifiedNodeName ( expressions )

qualifiedNodeName ()
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(A.28)

(A.29)

(A.30)

(A.31)

(A.32)

(A.33)

(A.34)



simpleErpression

tupleAccess

recordAccess

unionConstruction

tupleConstruction

recordConstruction

fieldConstructions

fieldConstruction

listConstruction

unaryBooleanOp

unaryNumericOp

namelrpression
literal Expression
parenfzrpression

callEzpression

(A.35)

simpleEzpression § NATURAL_NUMBERA.36)

simpleExpression . fieldName

typeName > constructorName

typeName * constructorName ( expression )

typeName ’( fieldConstructions )

typeName ’[ fieldConstructions |

fieldConstruction

fieldConstruction , fieldConstructions

fieldName = > expression

typeName *{ expressions }
type Name ’nil

typeName *{}

not

+
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(A.37)

(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)

(A.45)



unaryFxpression

existsErpression

compExpression

binaryNumericOpl1

binaryNumericExpressionl

binaryNumericOp2

binaryNumericExpression2

unaryBooleanOp expression

unaryNumericOp expression

exists expression

simpleEzpression
tupleAccess
recordAccess
tupleConstruction
recordConstruction
listConstruction
unionConstruction
unaryExpression

existsExpression

%

compFxpression

compFExpression binaryNumericOpl

binaryNumericExpressionl

_|_

binaryNumeric Expressionl
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(A.46)

(A.47)

(A.48)

(A.49)

(A.50)

(A.51)

(A.52)



binaryRelationalOp

binaryRelational Expression

binaryBooleanOp

binaryBooleanFxpression

consFExpression

appendFxpression

binaryNumeric Expressionl binaryNumericOp2

binaryNumeric Expression2

— (A.53)

binaryNumericEzpression? (A.54)
binaryNumbericExpression?2 binaryRelational Op

binaryRelational Expression

and (A.55)
or
binaryRelational Expression (A.56)

binaryRelational Expression binaryBooleanOp

binaryBooleanFExpression

binaryBooleanExpression (A.57)

binaryBooleanExpression :: consExpression

consExpression (A.58)

consExpression @ appendExpression
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default Expression

whenFExpression

A.5 Statements

statementList

statement

assignmentStatement

matchStatement

ifStatement

elseStatement

= appendEzxpression

| appendExpression default defaultEzpression

= defaultExpression

| defaultExpression when whenEzxpression

statement ;

statement ; statementList

assignmentStatement
matchStatement
ifStatement

skipStatement

varldentifiers := expression

match expression with clauses end match

if expression then statementList

elseStatement

elseif expression then statementList
elseStatement
else statementList end if ;

end if ;
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(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)

(A.65)

(A.66)



skipStatement

varldentifiers

clauses

clause

pattern

consList

== skip

= wariableName

variableName , varldentifiers

= clause

clause | clauses

= pattern = > statementList

= wariableName

consList

’constructorName

*constructorName variableName

= nil

variableName :: variableName

A.6 Node Declarations

nodeDeclaration

nodeBody

node nodeName
nodeParams returns nodeParams

is nodeBody ;

external

begin statementList end node

(A.67)

(A.68)

(A.69)

(A.70)

(A.T1)

(A.72)

(A.73)

(A.74)

local nameDeclarations begin statementList end node
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nodeParams

nameDeclarations

partial Type

nameDeclaration

)

( nameDeclarations )

nameDeclaration

nameDeclaration , nameDeclarations

componentType

componentType total

variableName : partial Type

A.7 Package Declarations

packageDeclarations

packageDeclaration

typeDeclarations

andTypeDeclarations

= packageDeclaration packageDeclarations

empty

= withClauses

package packageName is
typeDeclarations constantDeclarations
nodeDeclarations

end package ;

= typeDeclaration ; typeDeclarations

typeDeclaration 5 andTypeDeclarations

empty

= andTypeDeclaration ; typeDeclarations
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(A.75)

(A.76)

(A.77)

(A.78)

(A.79)

(A.80)

(A.81)

(A.82)



constantDeclarations

nodeDeclarations

withClauses

withClause

packageldentifiers

andTypeDeclaration ; and TypeDeclarations

constantDeclaration ; constantDeclarations

empty

nodeDeclaration ; nodeDeclarations

empty

withClause withClauses

empty

with packageldentifiers ;

qualifiedPackageName

qualifiedPackageName , qualifiedPackageName
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(A.83)

(A.84)

(A.85)

(A.86)

(A.87)



Appendix B
ANTLR Grammar
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* Copyright (c) 2009 Jonathan Hoag, Kansas State University , and others. *
All rights reserved. This program and the accompanying materials *
are made available under the terms of the Eclipse Public License v1.0 *
which accompanies this distribution , and is available at *
http://www. eclipse .org/legal /epl—v10.html *
*

*

*

*

Contributors:
Jonathan Hoag — initial APl and implementation

*
*
*
*
*
*
*
s o o o s s o o o ok ko ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk s s s o o o o ok ok kK K oK oK ok ok sk sk sk sk sk sk sk sk sk sk ok ok ok ok o o o o kR K ok ok ok ok ok ok sk ok sk ok /)

grammar guardol;
options { backtrack=true; memoize=true; }
Q@header {
package org.sireum.profile.guardol.parser;

import org.sireum.base.message.Message;
import org.sireum.base.message. ErrorMessage;

import java.util.Arraylist;
import org.sireum.profile.guardol.model.x;

import org.sireum. profile.guardol.selection.RegionSelection;
import org.sireum. profile.guardol.selection. Caret;

Ve
* Guardol parser.
*
% Qauthor jonathan hoag
*/
}

Q@lexer :: header {
package org.sireum.profile.guardol.parser;

[
* Guardol lexer.
*
#* Qauthor jonathan hoag
*/
}

@members {
protected Arraylist<Message> errors = new ArraylList<Message >();

private String source = null;

public List<Message> popErrors() {
List<Message> result = errors;
errors = new ArraylList<Message >();
return result;

public void setSource(String s) {
source = s;

}
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Q@Override

public void displayRecognitionError(String[] tokenNames,
RecognitionException re)
final ErrorMessage em = new ErrorMessage();
em.setTheLineNumber(re.line);
final String s = re.token.getText();
final String[] ss = s.split("\n");
final int len = ss.length;
em.setTheColumnNumber(re.charPositionlnLine + 1);
em.setTheOptionalEndLineNumber(re.line + len — 1);
em.setTheOptionalEndColumnNumber(re.charPositionlnLine +

ss[len — 1].length());

em.setTheMessageText(getErrorMessage(re, tokenNames));
em.setTheOptionalSource(this.source);
this.errors.add(em);

compilation returns [ Compilation result = null ]
c=compilationFile EOF { result = $c.result; }
compilationFile returns [ Compilation result = new Compilation() ]

Q@init{ArrayList<PackageDeclaration> packages =
new Arraylist<PackageDeclaration >(); }
(p=packageDeclaration {packages.add($p.result);}
)* {result.setThePackageDeclarations(packages);}

withClause returns
[ ArraylList<PackageName> result = new ArrayList<PackageName>() ]
"with ' n=packageldentifier {result.add($n.result);}
(",' n=packageldentifier {result.add($n.result);}

* H

packageDeclaration returns

[ PackageDeclaration result = new PackageDeclaration() ]
Q@init{ RegionSelection selection = new RegionSelection(false);}
(w=withClause {result.setTheWithPackageNames($w.result);}
{selection.setStart($w.result.get(0).getTheSelection ().getStart());}

)?

p='package' i=packageldentifier 'is'
{if(selection.isEmpty())selection.setStart(new Caret($p.line $p.pos));}
{result.setThePackageName($i.result);}

t=typeDeclarations {result.setTheTypeDeclarations($t.result);}
c=constantDeclarations {result.setTheConstantDeclarations($c.result);}
n=nodeDeclarations {result.setTheNodeDeclarations($n.result);}
"end’ 'package' I=";"’ {selection .setEnd(new Caret($l.line, $I.pos+1));

result .setTheSelection(selection);}

typeDeclarations returns
[ ArrayList<TypeDeclaration> result = new ArraylList<TypeDeclaration >() ]
Q@init{ ArrayList<ID> currentAndTypelDs = new ArraylList<ID>();
ArrayList<TypeDeclaration> currentAndTypes = new ArrayList<TypeDeclaration >();}
(t=singleTypeDeclaration {result.add($t.result);
currentAndTypes.add($t.result);
currentAndTypelDs.add($t.result.getThelD());}
( t=singleTypeDeclaration {result.add($t.result);
for(TypeDeclaration type : currentAndTypes){
type.getTheAndTypelDs (). addAll(currentAndTypelDs);
type.getTheAndTypelDs ().remove(type.getThelD ());

currentAndTypelDs = new ArrayList<ID>();
currentAndTypes = new Arraylist<TypeDeclaration >();
currentAndTypes.add($t.result);
currentAndTypelDs.add($t.result.getThelD());}

| t=andTypeDeclaration {result.add($t.result);
currentAndTypes.add($t.result);
currentAndTypelDs.add($t.result.getThelD());}

) *

)? {for(TypeDeclaration type : currentAndTypes){
type.getTheAndTypelDs (). addAll(currentAndTypelDs);
type.getTheAndTypelDs (). remove(type.getThelD());

}
singleTypeDeclaration returns [TypeDeclaration result = null ]
I="type' t=typeDeclaration {result = $t.result;}
{result.getTheSelection().setStart(new Caret($!.line, $l.pos));}
andTypeDeclaration returns [TypeDeclaration result = null ]
I="and' t=typeDeclaration {result = $t.result;}

{result.getTheSelection().setStart(new Caret($!.line, $l.pos));}
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typeDeclaration returns [ TypeDeclaration result = null |

Q@init{ RegionSelection selection = new RegionSelection(false);}
i=identifier
( 'is’
( 'external’ {result = new AbstractTypeDeclaration();}
| u=unionType {result = $u.result;}
| r=recordType {result = $r.result;}
| li=listType {result = $li.result;}
| s=simpleType { SimpleTypeDeclaration st = new SimpleTypeDeclaration();
st.setTheSimpleType ((SimpleType)$s.result);
result = st;
}
| t=tupleType {TupleTypeDeclaration tt = new TupleTypeDeclaration ();
tt.setTheTupleType(( TupleType)$t.result);
result = tt;
¥
)

="’ {result.setThelD($i.text);}
{selection.setEnd(new Caret($l.line, $I.pos+1));
result.setTheSelection(selection);}

componentType returns|[ Type result = null]
p=partialType {result = $p.result;}
| t =tupleType {result = $t.result;}

partialType returns [SimpleType result = null]

s=simpleType {result = $s.result;}
('total’ {result.setTheQualifier(Qualifier . TOTAL);}
)?

simpleType returns [ SimpleType result = new SimpleType ()]
: p= pathldentifier {result.setTheTypelD($p.result);
result .setTheOptionalPackageName($p. parent);
result.setTheSelection($p.result.getTheSelection());}

tupleType returns [ TupleType result = new TupleType()]
. s= partialType 'x' {result.setTheSelection (
new RegionSelection (
$s.result.getTheSelection (). getStart(),
$s.result.getTheSelection ().getEnd (), false));}
{result.getTheSimpleTypes().add($s.result);}

s= partialType {result.getTheSimpleTypes().add($%s.result);}
( 'x' s=partialType {result.getTheSimpleTypes().add($%s.result);}
{result.getTheSelection().setEnd($%s.result.getTheSelection().getEnd());}
) *
listType returns [ListTypeDeclaration result = new ListTypeDeclaration ()]
"list ' c=componentType {result.setTheType($c.result);}
'end’ 'list’
unionTypeElement returns [UnionTypeElement result = new UnionTypeElement ()]
i=identifier {result.setTheUnionID($i.text);}

{result.setTheSelection(
new RegionSelection (
$i.text.getTheSelection (). getStart(),
$i.text.getTheSelection ().getEnd (), false));}
("of ' t=componentType {result.setTheOptionalType($t.result);}
{result.getTheSelection ().setEnd($t.result.getTheSelection().getEnd());}

)?
unionType returns [ UnionTypeDeclaration result = new UnionTypeDeclaration() ]
Q@init{ ArraylList<UnionTypeElement> elems = new ArraylList<UnionTypeElement >();}
"union’
e=unionTypeElement {elems.add($e.result);}
('|" e=unionTypeElement {elems.add($e.result);}
) *
"end’ 'union’ {result.setTheUnionTypeElements(elems);}
recordField returns [ RecordField result = new RecordField () ]
i=identifier ':’ {result.setThelD($i.text);}
t=componentType {result.setTheType($t.result);}

{result.setTheSelection (
new RegionSelection (
$i.text.getTheSelection (). getStart(),
$t.result.getTheSelection ().getEnd(), false));}
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recordType returns [ RecordTypeDeclaration result = new RecordTypeDeclaration() ]
Q@init{ ArrayList<RecordField> fields = new ArraylList<RecordField >();}

"record’

r=recordField {fields .add($r.result);}

(", r=recordField {fields .add($r.result);}

) *

'end’ 'record’ {result.setTheRecordFields(fields);}
nameDeclaration returns [ NameDeclaration result = new NameDeclaration() ]

i=identifier ':’ {result.setThelD($i.text);}

t=componentType {result.setTheType($t.result);}

{result.setTheSelection (
new RegionSelection (
$i.text.getTheSelection (). getStart(),
$t.result.getTheSelection ().getEnd(),false));}

constantDeclarations returns

[ ArraylList<ConstantDeclaration> result = new ArrayList<ConstantDeclaration >() ]
(c=constantDeclaration {result.add($c.result);}
) *
constantDeclaration returns [ConstantDeclaration result = null]
Qinit { InternalConstantDeclaration internal = new InternalConstantDeclaration();}
: l1="constant’ i=identifier ':' t=componentType
( =" I=literal {internal.setTheLiteralValue($l.result);}
{result=internal;}
| 'is’' ’external’ {result= new ExternalConstantDeclaration();}

Y {result.setThelD($i.text);
result.setTheType($t.result);}

nodeDeclarations returns
[ ArraylList<NodeDeclaration> result = new ArraylList<NodeDeclaration>() ]

(n=nodeDeclaration {result.add($n.result);}
) *
nodeDeclaration returns [ NodeDeclaration result = null ]
Qinit{ InternalNodeDeclaration internal = new InternalNodeDeclaration();}
I1="node' i=identifier
in=nodeParameters ’'returns’ out=nodeParameters
s
( "external’ {result = new ExternalNodeDeclaration();}
| (l=localDeclarations {internal.setThelLocalDeclarations($l.result);}
N
"begin’
s=statementList {internal.setTheStatements($s.result);}
{result = internal;}
'end’ 'node’
)
12=";" {result.setThelD($i.text);}

{result.setThelnParameters($in.result);}
{result.setTheOutParameters($out.result);}
{result.setTheSelection(

new RegionSelection($I1.line,$I1.pos,$12.line,$12.pos, false));}

nodeParameters returns
[ArrayList<NameDeclaration> result = new ArraylList<NameDeclaration >() ]

| '(' n=nameDeclaration {result.add($n.result);}
("," n=nameDeclaration {result.add($n.result);}
) )
localDeclarations returns
[ArrayList<NameDeclaration> result = new ArraylList<NameDeclaration >() ]
"local’
n=nameDeclaration ';’ {result.add($n.result);}
(n=nameDeclaration ';’ {result.add($n.result);}
)
statementlist returns [ArraylList<Statement> result = new Arraylist<Statement>() ]
o
( a=assignmentStatement {result.add($a.result);}
| m=matchStatement {result.add($m.result);}
| f=ifStatement {result.add($f.result);}
) *
| s = skipStatement {result.add($s.result);}
)
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skipStatement returns [ SkipStatement result =
I1="skip ' 12=";"
{result.setTheSelection(
new RegionSelection($I1.line,$I1.pos,$I12.line, $I2.pos, true));}

new SkipStatement() ]

assignmentStatement returns

AssignmentStatement result = new AssignmentStatement() ]
Qinit {ArrayList<Name> names = new ArraylList<Name>();}

(n=nameldentifier

{names.add($n.result);}
," n=nameldentifier {names.add($n.result);}
)E

)

:=' e=expression |=";" {result.setTheExp($%e.result);}
{result.setTheNames(names);}
{result.setTheSelection (
new RegionSelection (
names.get (0). getTheSelection (). getStart(),
new Caret($l.line,$l.pos), false));}

ifStatement returns [ IfStatement result
Q@init {lfStatement current = null;}
¢ 11="if ' e=expression
"then' s=statementList

new IfStatement() ]

{result.setTheExp(%e.result);}

{result.setTheStatements($s.result);}
{result.setTheSelection (

new RegionSelection (
new Caret($l11.line , $I1.pos),
$s.result.get($s.result.size()—1)

.getTheSelection ().getEnd(), false));}
{current = result;}
( 11="elseif ' e=expression
"then' s=statementList {ElselfStatement elselfStatement = new ElselfStatement();
IfStatement nestedIfStatement =

new IfStatement();
elselfStatement.setThelfStatement(nestedIfStatement);
nestedlfStatement.setTheExp($e.result);
nestedlfStatement.setTheStatements($s.result);
nestedlfStatement.setTheSelection (
new RegionSelection (
new Caret($l1.line, $I11.pos),
$s.result.get($s.result.size()—1)
.getTheSelection ().getEnd (), false));
current.setTheOptionalElse(elselfStatement);
current = nested|fStatement;}
(I1="else ' s=statementList {ElseStatement elseStatement = new ElseStatement();
elseStatement.setTheStatements($s.result);
elseStatement.setTheSelection (
new RegionSelection (
new Caret($l11.line, $I1.pos),
$s.result.get($s.result.size()—1)

.getTheSelection ().getEnd (), false));
current.setTheOptionalElse(elseStatement);
)?

component returns [Component result = null]
( i=identifier {NamedComponent namedComponent = new NamedComponent();

namedComponent.setThelD ($i.text);

result = namedComponent;}

{result.setTheSelection($i

.text.getTheSelection());}
[11="_" {result = new Wildcard ();
result.setTheSelection (
new RegionSelection (
new Caret($l11.line , $I1.pos),
new Caret($l1.line, $I1.pos + 1),true));}
)

matchOption returns [ MatchOption result = null]

@init{ SingleOption tempSingle new SingleOption ();
ListOption templist = new ListOption();
UnionOption tempUnion new UnionOption ();
RegionSelection selection new RegionSelection(false);}

( 11= "nil"’ {result new ListOption ();
selection = new RegionSelection (
new Caret($l11.line,$I1.pos),
new Caret($l1.line, $I1.pos + 3),true);}
c= component

{tempSingle.setTheComponent($c.result);}
{templList.setTheFirstOptionalComponent($c.result);}
{result = tempSingle;
selection.setStart($c.result.getTheSelection (). getStart());
selection.setEnd($c.result.getTheSelection ().getEnd()):}
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( et {result = templList;}
(c= component {templList.setTheSecondOptionalComponent($c.result);
selection .setEnd($c.result.getTheSelection ().getEnd()):}
)

)?
| "\"'u=identifier {result = tempUnion;
tempUnion.setTheUnionID ($u.text);
selection.setStart($u.text.getTheSelection (). getStart());
selection .setEnd($u.text.getTheSelection ().getEnd());}
( c=component {tempUnion.setTheOptionalComponent($c.result);
selection .setEnd($c.result.getTheSelection ().getEnd());}

)?

) {result.setTheSelection(selection);}
matchStatement returns [ MatchStatement result = new MatchStatement() ]
Q@init{ArraylList<MatchClause> clauses = new ArraylList<MatchClause >();}

: I1="match’' e=expression 'with’ {result.setTheExp($%e.result);}
m=matchOption '=>' s=statementList {MatchClause clause = new MatchClause();

clause.setTheMatchOption($m.result);

clause.setTheStatements($s.result);

clause.setTheSelection (

new RegionSelection (
$m.result.getTheSelection (). getStart(),
$s.result.get(
$s.result.size()—1).getTheSelection ().getEnd(), false));

clauses.add(clause);}

(']’ m=matchOption '=>" s=statementList {MatchClause clause = new MatchClause();
clause.setTheMatchOption($m.result);
clause.setTheStatements($s.result);
clause.setTheSelection (

new RegionSelection (
$m.result.getTheSelection (). getStart(),
$s.result.get($s.result.size()—1).getTheSelection ().getEnd(), false));
clauses.add(clause);}

) *

'end’ 'match’ 12=";" {result.setTheMatchClauses(clauses);}
{result.setTheSelection(

new RegionSelection($I1.line,$I1.pos,$12.line, b $12.pos, false));}
expression returns [ Exp result = null ]

w=whenExpression {result = $w.result;}

whenExpression returns [Exp result = null]
Qinit{ WhenExp exp = new WhenExp ();
RegionSelection selection = new RegionSelection(false);}
e= defaultExpression {result =$e.result;}
(

'when' e2=expression {exp.setTheRightExp($e2.result);}
{exp.setTheLeftExp(result);}
{selection.setStart($e.result.getTheSelection().getStart());}
{selection.setEnd($%$e2.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}

)?
defaultExpression returns [Exp result = null]
Qinit{ DefaultExp exp = new DefaultExp();
RegionSelection selection = new RegionSelection(false);}
: e= appendExp {result =$e.result;}
(

"default ' e2=defaultExpression {exp.setTheRightExp($e2.result);}
{exp.setTheLeftExp(result);}
{selection.setStart($e.result.getTheSelection ().getStart());}
{selection.setEnd(%$e2.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}

)?

appendExp returns [Exp result null]
@init{ AppendList exp = new AppendList();
RegionSelection selection = new RegionSelection(false);}

e= consExp {result =$e.result;}
(

'@ e2=appendExp {exp.setTheRightExp($e2.result);}
{exp.setTheLeftExp(result);}
{selection.setStart($e.result.getTheSelection ().getStart());}
{selection.setEnd(%$e2.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}
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consExp returns [Exp result = null]
Qinit{ ConslList exp = new ConsList();

RegionSelection selection = new RegionSelection(false);}
e= binaryBooleanExp {result =$e.result;}
(
e2=consExp {exp.setTheRightExp($e2.result);}

{exp.setThelLeftExp(result);}
{selection.setStart($e.result.getTheSelection (). getStart());}
{selection.setEnd($e2.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}

)?
binaryBooleanExp returns [Exp result = null]
Q@init{ BinaryExp exp = new BinaryExp();
RegionSelection selection = new RegionSelection(false);}
:e= binaryRelationalExp {result =$e.result;}
(
( ‘'and’ {exp.setTheBinaryOp(BinaryOp.AND);}
| or’ {exp.setTheBinaryOp(BinaryOp.OR);}
{selection.setStart($e.result.getTheSelection (). getStart());}
e= binaryBooleanExp {exp.setTheRightExp($e.result);}
{exp.setThelLeftExp(result);}
{selection .setEnd(%e.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}
)?
binaryRelationalExp returns [Exp result = null]
Q@init{ BinaryExp exp = new BinaryExp();
RegionSelection selection = new RegionSelection(false);}
:e= binaryNumericExp2 {result =$e.result;}
(
('= {exp.setTheBinaryOp(BinaryOp .EQUAL);}
| /=" {exp.setTheBinaryOp(BinaryOp .NOT_EQUAL);}
| <= {exp.setTheBinaryOp(BinaryOp.LESS_.EQUAL);}
| '>= {exp.setTheBinaryOp(BinaryOp.GREATER.EQUAL);}
| < {exp.setTheBinaryOp(BinaryOp.LESS);}
| > {exp.setTheBinaryOp(BinaryOp.GREATER);}
) {selection.setStart($e.result.getTheSelection (). getStart());}

e= binaryRelationalExp {exp.setTheRightExp($e.result);}
{exp.setThelLeftExp(result);}
{selection.setEnd($%e.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result=exp;}

)?
binaryNumericExp2 returns [Exp result = null]
@init{ BinaryExp exp = new BinaryExp();
RegionSelection selection = new RegionSelection(false);}
:e= binaryNumericExpl {result =$e.result;}
(
( '+ {exp.setTheBinaryOp (BinaryOp.ADD);}
| = {exp.setTheBinaryOp(BinaryOp.SUB);}
) {selection.setStart($e.result.getTheSelection (). getStart());}
e= binaryNumericExp2 {exp.setTheRightExp($e.result);}

{exp.setTheLeftExp(result);}
{selection.setEnd(%e.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result =exp;}

)?
binaryNumericExpl returns [Exp result = null]
Q@init{ BinaryExp exp = new BinaryExp();
RegionSelection selection = new RegionSelection(false);}
e= expCombined {result= $e.result;}
(
'/ {exp.setTheBinaryOp(BinaryOp.DIV);}
| "%’ {exp.setTheBinaryOp(BinaryOp.MOD); }
|t {exp.setTheBinaryOp(BinaryOp.MUL);}
) {selection.setStart($e.result.getTheSelection (). getStart());}
e2= binaryNumericExpl {exp.setTheRightExp(%$e2.result);}
{exp.setThelLeftExp(result);}
{selection.setEnd(%$e2.result.getTheSelection ().getEnd());
exp.setTheSelection(selection);
result = exp;}
)?
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expCombined returns [Exp result = null]

o=unaryExpression {result = $o.result;}
| e=existsExpression {result = $e.result;}
| n=expName {result = $n.result;}
| c=expConstruction {result = $c.result;}
simpleExpression returns [ Exp result = null ]
c=callExpression {result = $c.result;}
| p=parenExpression {result = $p.result;}
| I=literal {result = $l.result;}
//Nameldentifier needs to be here for backtracking to work.
| n=nameldentifier {NameExp name = new NameExp();

name.setTheName($n.result);
name.setTheSelection($n.result.getTheSelection());

result = name;}
recordAccess returns [ RecordAccess result = new RecordAccess ()]
Q@init{ RegionSelection selection = new RegionSelection(false);}
s=simpleExpression '.' r=identifier {result.setThelD($r.text);}

{ result.setTheExp($s.result);
selection.setStart($s.result.getTheSelection (). getStart());
selection .setEnd($r.text.getTheSelection ().getEnd());
result.setTheSelection(selection);}

tupleAccess returns [ TupleAccess result = new TupleAccess ()]
Qinit{ RegionSelection selection = new RegionSelection(false);}
s=simpleExpression '#' t=NUMERIC_LITERAL
{result.setThelnteger(new Integer($t.text));}

result.setTheExp($s.result);
selection.setStart(9%s.result.getTheSelection (). getStart());
selection.setEnd(new Caret($t.line , $t.pos + $t.text.length()));
result .setTheSelection(selection);}

expName returns [Exp result = null]
r=recordAccess {result = $r.result;}
| t=tupleAccess {result = $t.result;}

| s=simpleExpression {result = $s.result;}

expConstruction returns [Exp result = null]

: r=recordConstruction {result = $r.result;}

| le=listConstruction {result = $lc.result;}

| u=unionConstruction {result = $u.result;}

| t=tupleConstruction {result = $t.result;}

unaryExpression returns [ UnaryExp result = new UnaryExp() ]
Q@init{ RegionSelection selection = new RegionSelection(false);}
: ( I="not’ {result.setTheUnaryOp(UnaryOp.NOT);}
| 1="4 {result.setTheUnaryOp(UnaryOp.POS);}
| == {result.setTheUnaryOp(UnaryOp.NEG);}
) {selection.setStart(new Caret($!.line, $l.pos));}
e=expression {result.setTheExp($e.result);}
{selection.setEnd(%e.result.getTheSelection ().getEnd());
result.setTheSelection(selection);}
existsExpression returns [ ExistsExp result = new ExistsExp () ]
Qinit{ RegionSelection selection = new RegionSelection(false);}

: |="exists ' e=expression {selection.setStart(new Caret($!.line, $l.pos));}
{result.setTheExp($%e.result);}
{selection.setEnd(%e.result.getTheSelection ().getEnd());

result.setTheSelection(selection);}
callExpression returns [ CallExp result = new CallExp() ]
Q@init{ ArraylList<Exp> exps = new ArrayList<Exp>();
RegionSelection selection = new RegionSelection(false);}
p=pathldentifier {result.setThelD($p.result);}
{result.setTheOptionalPackageName($p.parent);}
{selection.setStart($p.result.getTheSelection (). getStart());}

"(" (e=expression {exps.add(%e.result);}

(',' e=expression {exps.add(%e.result);}

)x )7

1=")"

{result.setTheParameters(exps
{selection .setEnd(new Caret($

)i}
1

ine, $!.pos+1));
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result .setTheSelection(selection);}

parenExpression returns [ Exp result = null ]

"(' e=expression ')’ {result = $e.result;}
recordConstruction returns [RecordConstruction result = new RecordConstruction() ]
Qinit{ Arraylist<RecordAssignment> recs = new ArraylList<RecordAssignment >();

RegionSelection selection = new RegionSelection(false);}

: p=pathldentifier

e {result.setThelD($p.result);}
{result.setTheOptionalPackageName($p.parent);}
{selection.setStart($p.result.getTheSelection (). getStart());}

(i=identifier '=>' e=expression) {RecordAssignment rec = new RecordAssignment ();

rec.setThelD($i.text);
rec.setTheExp($e.result);
recs.add(rec);}

(",' i=identifier '=>' e=expression {RecordAssignment rec = new RecordAssignment ();

rec.setThelD($i.text);
rec.setTheExp($e.result);
recs.add(rec);}

) *
=] {result.setTheRecordAssignments(recs);}
{selection .setEnd(new Caret($l.line, $I.pos+1));
result.setTheSelection(selection);}
listConstruction returns [ ListConstruction result = new ListConstruction() ]
Q@init{ ArraylList<Exp> exps = new ArrayLlist<Exp>();
RegionSelection selection = new RegionSelection(false);}
// listing elements of list

p=pathldentifier {result.setThelD($p.result);}
{result.setTheOptionalPackageName($p.parent);}
{selection.setStart($p.result.getTheSelection (). getStart());}

("{' (e=expression {exps.add($%e.result);}

( e=expression {exps.add($%e.result);}
)*)?

="} {selection .setEnd(new Caret($l.line, $l.pos+1));}

| n="nil"’ {selection .setEnd(new Caret($n.line, $n.pos+3));}

)

{result.setTheExps(exps);

result .setTheSelection(selection);}
unionConstruction returns [UnionConstruction result = new UnionConstruction() ]
Qinit{ RegionSelection selection = new RegionSelection(false);}

p=pathldentifier {result.setTheOptionalPackageName($p.parent);}
{result.setThelD($p.result);}
{selection.setStart($p.result.getTheSelection().getStart());}

i=identifier {result.setTheUnionID($i.text);}
{selection.setEnd($i.text.getTheSelection ().getEnd());}

(e

e=expression {result.setTheOptionalExp($e.result);}

1=")" {selection .setEnd(new Caret($l.line, $I.pos+1));}

)? {result.setTheSelection(selection);}

tupleConstruction returns [TupleConstruction result = new TupleConstruction() ]
Qinit{ RegionSelection selection = new RegionSelection(false);}

(p=pathldentifier {result.setTheOptionalPackageName($p.parent);}
{result.setThelD($p.result);}
{selection.setStart($p.result.getTheSelection ().getStart());}

e=expression {result.getTheExps().add(%e.result);}

(

! e=expression {result.getTheExps().add($e.result);}

)+

1=")" {selection .setEnd(new Caret($l.line, $!.pos+1));}
{result.setTheSelection(selection);}

literal returns [Literal result = null]
s=STRING_LITERAL {StringLiteral sl = new StringlLiteral ();
sl.setTheString($s.text.substring(1,%s.text.length()—1));
sl.setTheSelection(new RegionSelection(
$s.line ,$s.pos,$s.line ,$s.pos+%s.text.length (), true));
result = sl;}
| n=NUMERIC_LITERAL {NumericLiteral nl = new NumericLiteral ();
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nl.setTheNumberString ($n.text);
nl.setTheSelection(new RegionSelection (
$n.line ,$n.pos,$%n.line ,%n.pos+%n.text.length (), true));
result = nl;}
| ("\" e=. '\ {CharacterLiteral cl = new CharacterLiteral ();
cl.setTheCharacterString ($c.text);
cl.setTheSelection(new RegionSelection (
$c.line ,$c.pos—1,%c.line ,$c.pos+2,true));
result = cl;}
{result = new TrueBooleanLiteral ();
result.setTheSelection(new RegionSelection (
$b.line ,$b.pos,$b.line ,$b.pos+$b.text.length (), true));}
| b="false’ {result = new FalseBooleanLiteral ();
result.setTheSelection(new RegionSelection (
$b.line ,$b.pos,$b.line ,$b.pos+$b.text.length (), true));}

nameldentifier returns [ Name result = null ]
i=identifier { IDName n = new IDName();
n.setThelD($i.text);
n.setTheSelection($i.text.getTheSelection());

result = n;}
packageldentifier returns [ PackageName result new PackageName() ]
Qinit { ArraylList<ID> path = new ArrayList<ID>();
RegionSelection selection = new RegionSelection(true);}
i=identifier {result.setThelD($i.text);}

{selection.setStart($i.text.getTheSelection().getStart());}
{selection.setEnd($i.text.getTheSelection ().getEnd());}
('." i=identifier {path.add(result.getThelD());}
{result.setThelD($i.text);}
{selection.setEnd($i.text.getTheSelection ().getEnd());}
) * {result.setThePackagePath(path);}
{result.setTheSelection(selection);}

pathldentifier returns
[ OptionalPackageName parent = new EmptyPackageName(), ID result = new ID() ]
Q@init { ArraylList<ID> path = new ArraylList<ID>();

RegionSelection selection = new RegionSelection(true);}
i=identifier {$pathldentifier.result = $i.text;}
{selection.setStart($i.text.getTheSelection ().getStart());}
(' i=identifier {if($pathldentifier.parent instanceof PackageName)

path.add (((PackageName)$pathldentifier.parent).getThelD());

$pathldentifier.parent = new PackageName();
((PackageName) $pathldentifier.parent).setThelD($pathldentifier.result);}
{selection.setEnd($pathldentifier.result.getTheSelection ().getEnd());}
{$pathldentifier.result = $i.text;}

)* {if($pathldentifier.parent instanceof PackageName)

((PackageName) $pathldentifier.parent).setThePackagePath(path);
((PackageName) $pathldentifier.parent).setTheSelection(selection);

// parent — identifier

identifier returns [ID text = new ID() ]
i=IDENTIFIER {text.setThelDString ($i.text);}
{text.setTheSelection(new RegionSelection (
$i.line,$i.pos,$i.line,$i.pos+$i.text.length(), true));}

/+xu_identifier returns [UnionID text = new UnionID() ]
i=UC_IDENTIFIER {text.setThelDString ($i.text);}
{text.setTheSelection(new RegionSelection (
$i.line ,$i.pos,$i.line,$i.pos+$i.text.length(), true));}

*/

// Guardol 1.0 — ldentifiers/fragments
fragment
IDENTIFIER_.LETTER
UPPER_CASE_IDENTIFIER_.LETTER
| LOWER_CASE_IDENTIFIER.LETTER

fragment
UPPER_CASE_IDENTIFIER_.LETTER

A LT
fragment
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LOWER_CASE_IDENTIFIER_LETTER
:'al L. 'z

fragment
DIGIT

//

/*LC_IDENTIFIER
LOWER_CASE_IDENTIFIER_.LETTER
( '-'? LETTER.OR.DIGIT )=

UC_IDENTIFIER
UPPER_CASE_IDENTIFIER.LETTER
( '-'? LETTER.OR.DIGIT )=

i/

IDENTIFIER
IDENTIFIER_.LETTER
( '-'? LETTER.OR.DIGIT )=

fragment

LETTER_OR._DIGIT
: IDENTIFIER.LETTER
| DIGIT

//

NUMERIC_LITERAL
: DECIMAL_LITERAL
| BASED_LITERAL

//

fragment
DECIMAL_LITERAL

: NUMERAL ( ( '." DIGIT ) => '.’' NUMERAL )? EXPONENT?

fragment
NUMERAL
DIGIT ( '-'? DIGIT )=

fragment
EXPONENT
© 'E’ ( '+ | "= )? NUMERAL

//

fragment
BASED_LITERAL
BASE '#' BASED_NUMERAL '#' EXPONENT?

fragment
BASE
: NUMERAL

fragment
BASED_NUMERAL
EXTENDED.DIGIT ( '-'? EXTENDED.DIGIT )=

fragment
EXTENDED_DIGIT

DIGIT | 'A" .. 'F’
//This is really annoying — cannot be separated
//CHARACTER_LITERAL-OR-QUOTE
77 SO\ LY = T L ]
// i

STRING_LITERAL
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COMMENT

|
\n’ { $channel=HIDDEN; }

(PN A
| "\u000C’ | '\n’' ) { $channel=HIDDEN; }
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Appendix C
Guardol AST Model

/KK K K o o ok oK oK oK oK oK oK K KKK KKK KRR KR K KK K K R R oK oK oK oK oK oK oK K KKK KKK KR KKK K K K K o o ok ok ok ok o
2 x Copyright (c) 2009 Jonathan Hoag, Kansas State University , and others.

* All rights reserved. This program and the accompanying materials *
4 * are made available under the terms of the Eclipse Public License v1.0 *
* which accompanies this distribution, and is available at *
6 x http://www. eclipse.org/legal/epl—v10.html *
* k
8 * Contributors: *
* Jonathan Hoag — initial APl and implementation *
10 stk stk sk sk sk ok ok sk ok sk ok K o sk sk ok Kk sk ok sk ok sk sk ok sk ok ks sk sk sk ok K sk ok sk ok s s ok sk sk ok sk ok sk ok K sk sk sk sk ok sk ok sk ok sk sk ok sk ok Kk sk sk ok ok ok skok ok ok /
12 VAT
* Guardol Model
14 *
* @author Jonathan Hoag
16 */

18 Q@Profile org::sireum:: profile :: modeling:: classdesign

20 @Top :Node
@Visitor (packageName = org::sireum:: profile :: guardol :: model,
22 visitorName = :NodeVisitor ,
clonerName = :NodeCloner,
24 comparatorName = :NodeComparator,
Q@AvoidVisitAttribute :theOptionalParent, :thelDStrings,
26 :theSelection, :theAndTypeDeclarations,
@AvoidCompareAttribute :theSelection, :theOptionalParent,
28 @AvoidSubstituteAttribute :theSelection)

30 package org::sireum:: profile::guardol:: model;

32 //The generic AST Node
//Contains:
34 //—A selection object referring to the starting/ending line numbers/char offsets
record abstract Node
36 {
org::sireum:: profile :: guardol:: selection :: IRegionSelection theSelection
38 @Default new org.sireum.profile.guardol.selection.RegionSelection ();

}

//The optional ID node serving as a place holder for a ID or EmptylD
42 record abstract OptionallD extends Node

{
}

40

44
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46

48

50

52

54

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

102

104

106

108

110

//The ID node

//Contains :

//—A string object

record ID extends OptionallD

{

String thelDString
©@Default "7;

//The empty ID node — No ID present

record EmptylD extends OptionallD

{

}

//The base node for a guardol program file.
//Contains:

//—A list of package declarations
record Compilation extends Node
{
PackageDeclaration[] thePackageDeclarations
©@NonNull;

}

//The Package Declaration
//Contains :
//—A package name (e.g. Foo.Bar.Pack)
//—A list of with Packages
//—A list of Type Declarations
//—A list of Node Declarations
record PackageDeclaration extends Node
{
PackageName thePackageName;
PackageName [] theWithPackageNames
@Default "[];
TypeDeclaration[] theTypeDeclarations
@Default "[];
NodeDeclaration[] theNodeDeclarations
@Default "[];

}

//The Qualifier enumeration

//Contains:

//—An element in the enumeration signifying partial or
enum Qualifier

{
}

//Name Declaration is used when defining parameters or
//Contains :
//—An id string identifying a variable/parameter name

PARTIAL, TOTAL

total

variables

//—A type identifying the type of the variable/parameter

record NameDeclaration extends Node

{

ID thelD;
Type theType;

}

//Type Declarations
//The Type Declaration place holder
record abstract TypeDeclaration extends Node

ID[] theAndTypelDs
@Default "[];

95



112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

152

154

156

158

160

162

164

166

168

170

172

174

ID thelD;

}

record abstract OptionalType extends Node{
}

record EmptyType extends OptionalType{

}

record abstract Type extends OptionalType{
Qualifier theQualifier
©@Default Qualifier . PARTIAL;

record SimpleType extends Type{
ID theTypelD;
OptionalPackageName theOptionalPackageName
@Default new EmptyPackageName();

record TupleType extends Type{
SimpleType[] theSimpleTypes
@Default "[];
}

//Abstract Type Declaration
record AbstractTypeDeclaration extends TypeDeclaration

{
}

//Simple Type Declaration

//Contains :

//—A simple type identifying the component type
record SimpleTypeDeclaration extends TypeDeclaration

{
SimpleType theSimpleType;
}
record TupleTypeDeclaration extends TypeDeclaration
{
TupleType theTupleType;
}
//List Type Declaration
//Contains:

//—A type identifying the component type
record ListTypeDeclaration extends TypeDeclaration

{

}

//Record Field
record RecordField extends Node

{

Type theType;

ID thelD;
Type theType;

}

//Record Type Declaration

//Contains:

//—A List of Record Fields each identifying a field name and a type
record RecordTypeDeclaration extends TypeDeclaration
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176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

RecordField [] theRecordFields
@Default "[];

}

//Union Type Element
//Contains:
//—An id string identifying the name of the datatype

//—An optional type identifying the component type of the datatype

record UnionTypeElement extends Node

ID thelD;
OptionalType theOptionalType
@Default new EmptyType();

}

//Union Type Declaration
//Contains:

//—A list of Union Type Elements containing each datatype definition

record UnionTypeDeclaration extends TypeDeclaration

{
UnionTypeElement [] theUnionTypeElements
@Default "[];
}
//Node Declaration
//Contains :

//—An id string identifying the name of the node
//—A list of in parameters with their ids and types
//—A list of out parameters with their ids and types
//——#xxIMPORTANT % %
//—External and Internal both inherit this class and its fields
record abstract NodeDeclaration extends Node
{
ID thelD;
NameDeclaration[] thelnParameters
@Default "[];
NameDeclaration [] theOutParameters
@Default "[];

}

//External Node Declaration
//—Inherits all needed fields from Node Declaration
record ExternalNodeDeclaration extends NodeDeclaration

{
}

//Internal Node Declaration
//Contains :
//—A list of local variable declarations and their types
//—A list of statements
//—NOTE: the statement list could also be composed of one skip
record InternalNodeDeclaration extends NodeDeclaration
{
NameDeclaration[] thelLocalDeclarations
@Default "[];
Statement[] theStatements
@Default "[];

}

//Statement
//—Abstract definition of a statement
record abstract Statement extends Node

{
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242

244

246

248

250

252

254

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

296

298

300

302

304

}
//Skip Statement

//—An empty statement that does nothing
//—if there is a skip statement then there are no other
//——statements in the statement list (xenforced by ANTLR grammarx)

//—useful for match statements

record SkipStatement extends Statement

{
}

//Assignment Statement
//Contains:

//—A list of names identifying the assignment of the exp to these
//—An exp that is used for the assignment
record AssignmentStatement extends Statement

Name[] theNames
@Default "[];
Exp theExp;

}

//1f Statement

record abstract OptionallfStatement extends Statement

{
}
record IfStatement extends OptionallfStatement
{
OptionalExp theOptionalExp
@Default new EmptyExp();
Statement [] theStatements
@Default "[];
OptionallfStatement theOptionalElse
@Default new EmptylfStatement();
}
record EmptylfStatement extends OptionallfStatement
{
}

//Match Statement

//A Component is a wildcard or newly named variable
record abstract Component extends OptionalComponent

{
}

record abstract OptionalComponent extends Node

{
}

record EmptyComponent extends OptionalComponent

{
}

record Wildcard extends Component
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306

308

310

312

314

316

318

320

322

324

326

328

330

332

334

336

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

{
}

record NamedComponent extends Component

ID thelD;

}

record ListOption extends MatchOption

{

OptionalComponent theFirstOptionalComponent

Q@Def

ault new EmptyComponent();

OptionalComponent theSecondOptionalComponent

©@Def
}

ault new EmptyComponent();

record UnionOption extends MatchOption{
Component theFirstComponent;

Component theSeco

}

ndComponent;

record SingleOption extends MatchOption

{

Component theComponent;

}

//Match Option

//—A match option is a single case in the matching
//—There is an optional Union type for datatype matching

record abstract MatchOption extends Node

{
}

//Match Clause

//——combines the case with the succeeding statements
//—the statement list can be made of a single skip statement if

//—nothing is to be

done in that case

record MatchClause extends Node

MatchOption theMatchOption;
Statement [] theStatements

{

@Def
}
//Match Statement
//Contains :

ault “[];

//—the exp is element that is being matched against

//—the match clauses

are all the cases and their succeeding statements

record MatchStatement extends Statement

{
Exp theExp;
MatchClause []
@Def
}
//Expressions

//—All expressions

theMatchClauses
ault “[];

will have a type so that we can do type checking

//—this type will be identified after parsing when the symbol table

//—is generated
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record abstract OptionalExp extends Node

372 A

374}

376 record abstract Exp extends OptionalExp
{

378
}

380
record EmptyExp extends OptionalExp

382 {

384 }

386 //Record Name is used only to construct record accesses

388 record RecordAccess extends Exp

{
390 Exp theExp;
ID thelD;
392}
394 record TupleAccess extends Exp
{
396 Exp theExp;
Integer thelnteger;
398 }
400 record abstract InfixExp extends Exp
{
402 Exp thelLeftExp;
Exp theRightExp;
404}
406 record NameExp extends Exp
{
408 Name theName;
}
410
record CallExp extends Exp
412 {
OptionalPackageName theOptionalPackageName
414 @Default new EmptyPackageName();
ID thelD;
416 Exp[] theParameters
@Default "[];
418 }
420 enum UnaryOp
{
422 POS, NEG, NOT
}
424
record UnaryExp extends Exp
426 {
UnaryOp theUnaryOp;
428 Exp theExp;
}
430
record ExistsExp extends Exp
432 {
Exp theExp;
434}
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436

438

440

442

444

446

448

450

452

454

456

458

460

462

464

466

468

470

472

474

476

478

480

482

484

486

488

490

492

494

496

498

500

enum BinaryOp

{
AND, OR, XOR, EQUAL, NOT_EQUAL, LESS, LESS_EQUAL, GREATER,
GREATER_EQUAL, ADD, SUB, MUL, DIV, MOD
}
record BinaryExp extends InfixExp
{
BinaryOp theBinaryOp;
}
record WhenExp extends InfixExp
{
}
record DefaultExp extends InfixExp
{
}
//Literals

//—AIll literals are expressions
record abstract Literal extends Exp

{

}

record Stringliteral extends Literal

{ String theString;

}

record Numericliteral extends Literal
{ String theNumberString;

}

record CharacterlLiteral extends Literal
i String theCharacterString;

//Union Construction

//—The optional parent id string identifies the package the union type is in
//—The id string is the name of the type

//—The type id string is the name of the datatype

//—The exp is used to construct the type

record UnionConstruction extends Exp

{
OptionalPackageName theOptionalPackageName
@Default new EmptyPackageName();
ID thelD;
ID theTypelD;
OptionalExp theOptionalExp
@Default new EmptyExp();
}

// Record Construction
// The record construction creates a record assigning an expression to each field
record RecordConstruction extends Exp

{
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502

504

506

508

510

512

514

516

518

520

522

524

526

528

530

532

534

536

538

540

542

544

546

548

550

552

554

556

558

560

562

564

OptionalPackageName theOptionalPackageName
@Default new EmptyPackageName();

ID thelD;

RecordAssignment [] theRecordAssignments
@Default "[];

}

// Record assignment keeps track of which field gets assigned to an expression
record RecordAssignment extends Node

ID thelD;
Exp theExp;

}

// List Construction constructs a list
// Note: the expressions must all be of the same type
record ListConstruction extends Exp

{
OptionalPackageName theOptionalPackageName
@Default new EmptyPackageName();
ID thelD;
Exp[] theExps
@Default "[];
}
record TupleConstruction extends Exp
{
OptionalPackageName theOptionalPackageName
@Default new EmptyPackageName();
ID thelD;
Exp[] theExps
@Default "[];
}

// Append list concatenates two lists together
// Note: the expressions must all be of the same type
record AppendList extends InfixExp

{
}

// Cons list adds the element to the beginning of a list
// Note: the first expression must be of the same type of the second expressions
record Conslist extends InfixExp

{

}
// Names

record abstract Name extends Node

{
}

//IDName s used to reference a local variable or parameter
record IDName extends Name

ID thelD;

102

elements



566

568

570

572

574

576

578

580

582

584

//Package name is used when defining a package name and in with

record abstract OptionalPackageName extends Name

{
}

record EmptyPackageName extends OptionalPackageName

{
}

record PackageName extends OptionalPackageName
ID[] thePackagePath

@Default "[];
ID thelD;
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