

RAPID DEVELOPMENT OF MOBILE APPS USING APP INVENTOR AND AGCO API

by

SPENCER KEPLEY

A THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Biological and Agricultural Engineering
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2014

Approved by:

Major Professor
Naiqian Zhang

Copyright

SPENCER KEPLEY

2014

Abstract

Mobile apps are useful tools for many different purposes. In agriculture, apps can be used to

check the weather and markets, control irrigation, and monitor machine activity among other

uses. This research project is a collaboration between Kansas State University and AGCO and

includes the development of two apps, using MIT Application Inventor and Google App Engine.

Kansas State University was responsible for developing the apps user interface and functionality

while AGCO provide the data needs for the apps through Google App Engine. The first app is

called Crop Maturity App and measures Growing Degree Days from a crops planting date. The

second app is called Combine Efficiency App and determines the performance of a combine

harvesting based on its speed. AGCO provided the server support for these apps from a weather

service and their own combines that are connected. This project demonstrates the possibility of

an open-source development environment with AGCO machine data.

iv

Table of Contents

List of Figures .. vi	

List of Tables ... ix	

Acknowledgements... x	

Chapter 1 - Introduction.. 1	

Chapter 2 - Literature Review .. 3	

Developing Apps .. 3	

Potential in Agriculture... 5	

Chapter 3 - Crop Maturity App... 9	

Introduction... 9	

Use Case ... 10	

User Interface.. 11	

Model .. 12	

AGCO Weather API ... 12	

Blocks Editor .. 15	

Results... 20	

Chapter 4 - Combine Efficiency App ... 22	

Introduction... 22	

Use Case ... 22	

	

Model .. 25	

API.. 26	

Blocks Editor .. 28	

Initialization .. 28	

Registration and Logging In ... 34	

Requesting, Receiving, and Handling Machine Data ... 41	

Changing Fuel and Crop Losses ... 51	

Mashing Machine Data with Model ... 60	

Results... 64	

v

Chapter 5 - Conclusions.. 65	

Chapter 6 - Future Work Possibilities... 66	

Appendix A - Combine Efficiency Spreadsheet... 69	

Appendix B - Template App Sources ... 70	

vi

List of Figures

Figure 3.1. Home page of Crop Maturity App, displaying a ListPicker (Pick Field), field name

label (Field Label), labels for the field location, and labels for the date the crop was planted.

... 10	

Figure 3.2. (a) Display after ListPicker has been clicked. <Add Field> is the only choice

initially. (b)Add Field page. (c)Home page with a field selected. 11	

Figure 3.3. Procedure for making a request to the AGCO server.. 15	

Figure 3.4. Event block that occurs when the app has received a response from the AGCO

server... 16	

Figure 3.5. The parsing procedure places the response in the IncomingValuesList and removes

the IncomingTag. .. 17	

Figure 3.6. Procedure to fill column data, perform calculations, and display information. 18	

Figure 3.7. Procedures for storing column data... 19	

Figure 3.8. Blocks performing GDD calculations. .. 20	

Figure 4.1. The “Login View” contains nine entries: three for user information, three for account

information, and three for time factors that can be left alone. .. 23	

Figure 4.2. Views from the Home and Machine sections of the Combine Performance App.

Views a, b, and c show the “Home View” while d, e, and f show the “Machine View.” 24	

Figure 4.3. Speed vs. Operating expenses for a combine harvester ... 25	

Figure 4.4. Event block for the app initialization. ... 29	

Figure 4.5. Procedure block that is called upon the app initialization and registration............... 31	

Figure 4.6. Procedure block controlling the view displayed to the user. Three argument entries

are possible in this figure to return a true. These are “register_retry, register, and login.” . 32	

Figure 4.7. Continuation of the “WindowToDisplay” block. Argument entries include

“expenses, and configLosses.”.. 33	

Figure 4.8. Final part of “WindowToDisplay” block. “MachineStatus” is an argument entry. . 34	

Figure 4.9. Event block occurring with the click of the register button. 34	

Figure 4.10. Procedure block executed during registration. This procedure checks the time

values and stores the textbox entries on the “Login View” to a UserAccount. 35	

vii

Figure 4.11. Procedure block that Posts request to Hesston server for a key. 36	

Figure 4.12. Event block that handles web responses. .. 38	

Figure 4.13. Procedure block called in the web handler that handles code parsing. 39	

Figure 4.14. Procedure block that stores the register key received by the Hesston server

response... 40	

Figure 4.15. Procedure block that requests the Hesston server to sync machine data for a fleet.41	

Figure 4.16. Procedure block that posts request to Hesston server for stored machine data for a

fleet. .. 42	

Figure 4.17. Procedure block that handles response from Hesston server that confirms the

success or failure of the request to sync machine data for a fleet... 43	

Figure 4.18. Procedure block handling the Hesston server’s response containing machine data

for a fleet. .. 46	

Figure 4.19. Procedure block that clears the fleet lists for machine data. 47	

Figure 4.20. Procedure block that loads machine data into lists. The data for a machine has an

index and is organized accordingly in the lists. .. 48	

Figure 4.21. Continuation of block loading machine data into lists. ... 49	

Figure 4.22. Continuation of block loading machine data into lists. ... 50	

Figure 4.23. Continuation of block loading machine data into lists. ... 51	

Figure 4.24. Clicking the “Adjust Losses” button in the Home View allows the user to change

values for the Crop Losses and Fuel Consumption. ... 52	

Figure 4.25. Event block occurring when the button labeled “Adjust Losses” is clicked in the

Home View. This allows the user to change values for the Crop Losses and Fuel

Consumption. .. 52	

Figure 4.26. Event blocks occurring when the textbox has the focus or is selected. This event

clears the textbox contents. ... 53	

Figure 4.27. Event blocks occurring when the textbox has lost focus... 54	

Figure 4.28. Event blocks occurring when the “Refresh” button is clicked for either the Crop

Loss list or the Fuel Consumption list. ... 54	

Figure 4.29. Procedure blocks that check for a valid entries in the Crop Loss and the Fuel

Consumption lists.. 55	

Figure 4.30. Procedure blocks that update the Crop Loss and Fuel Consumption lists. 56	

viii

Figure 4.31. Procedure blocks that update the textbox text for the Crop Loss and Fuel

Consumption entries. .. 59	

Figure 4.32. Event block occurring after a machine has been picked. .. 60	

Figure 4.33. Event block occurring at the click of the Solver button in the Machine View. 60	

Figure 4.34. Procedure block that updates lists for the model... 61	

Figure 4.35. Procedure block that determines the optimal speed and cost. 62	

Figure 4.37. Procedure block that sets the Home View labels based on the machine status....... 63	

ix

List of Tables

Table 3.1 AGCO Weather API call to retrieve high and low temperatures for a period of days.13	

Table 3.2 AGCO Weather API response to Crop Maturity App request. 14	

Table 4.1. HTTP Post Request for Registration Key... 26	

Table 4.2. HTTP Post Request for Stored Data. .. 27

Table 4.3. HTTP Post Request to Sync Machine Data………………………………………….28

Table 4.4. AGCO Machine Data ... 44	

x

Acknowledgements

Many people were influential in the completion of this work. I would like to thank Dr.

Naiqian Zhang for his advice and persistence, Chris “Buzz” O’Neil at AGCO Corporation for his

partnership on the apps development, and my family and friends for their support. I would also

like to acknowledge the INSIGHT program at Kansas State University for funding my graduate

education.

1

Chapter 1 - Introduction

Mobile applications (apps) are popular among users of smartphones and tablets. Mobile users

interact with apps through a mobile device’s tactile, audio, and visual inputs and outputs. Apps

can integrate data from embedded or external sensors, the Internet, or any of the functions native

to smart devices and have strong computation power. Due to their small size and light energy

consumption, mobile devices are portable tools and are finding uses out of the office.

This research explores developing apps for agricultural purposes using the MIT Application

Inventor (AI) integrated development environment (IDE) and data provided by the Hesston

application program interface (API).

AI is an IDE still in its beta stage and is designed to allow people without development

experience to develop apps for Android devices. It has been taught as in introductory computer

information courses at the University of San Francisco, Harvard, and Massachusetts Institute of

Technology as well in other places. Developing happens in three windows. The first window is

on a browser and allows the developer to select and arrange components on the apps screen. The

second window is a Java window where the developer can connect blocks with the purpose of

controlling the apps features. The third window is an emulator or a device that allows real-time

testing and debugging.

AGCOMMAND is the telemetry system provided by AGCO. This system records data from

tractors with AGCOMMAND and sends the data to an AGCO server. The server can further

transmit the tractor data to a computer or device with Internet access. The Hesston API is a

noncommercial project set up by AGCO employees that communicates with AGCOMMAND to

provide tractor data to an app making requests. It is hosted on Google’s servers through Google

App Engine.

The market penetration of mobile devices is widespread. Smartphones and tablets are taking

computing out to remote locations and connecting their users with vast amounts of information.

They are highly functional with their complex sensors, Internet connection, portability, and

2

applications (apps). The market penetration, portability, and high functionality contribute to

their overall usefulness.

Android is a mobile operating system that has a large share of the mobile market. It is open-

sourced and very easy to develop apps for this platform with App Inventor (AI). AI is an

integrated development environment (IDE) that is designed for beginner programmers that are

developing apps for Android mobile devices. AI has code in the form of blocks that snap

together, similar to puzzle pieces, in order to alleviate programming issues with syntax and

correct spelling.

3

Chapter 2 - Literature Review

 Developing Apps
Smartphone apps have several different operating systems that they can be included on. Apple

iOS, Google Android, RIM BlackBerry 10, and Microsoft Windows Phone are just a few

versions available for smartphone users, a group that makes up 42% of mobile phone users

(Smith, 2011). Of this group, Android and iOS are the frontrunners. 900 million devices use

Android as the operating system with more than 48 billion apps downloaded (Panzarino, 2013).

IOS is on 600 million devices and 50 billion apps have been downloaded by Apple devices

(Ingraham, 2013). Market share for Android is around 51% while iOS is around 41% (Jones,

2013). Developing apps for both of these platforms would reach a large majority of the

population with smartphones or tablets. The number of apps available for each operating system

is an indicator of the strength of the ecosystem. Android has 1,000,000 apps, Apple has 900,000

apps, Windows has 145,000 apps, and Blackberry has 120,000 apps.

Apps have marketplaces suited for specific operating systems. These are Apple App Store,

Google Play Store, Windows Store, and Blackberry Store. A large difference in the platforms is

the rules to publishing an app on a marketplace. Android allows developers to publish apps with

little interference. A Google account and a one-time $25 registration fee to validate a Developer

Account are the only requirements to distribute apps on the Play Store (Google, 2013). Apple

requires a $99/year enrollment fee to even test the app on an actual device and also reviews apps

prior to distribution on the App Store (Apple, 2013). Both of these app markets charge a 30%

transaction fee for paid apps and in-app purchases (Transaction Fees, 2012 and iOS Developer

Programs, 2013). Windows has a $99 yearly registration fee except for DreamSpark students

who are given a free registration.

All of the operating system providers have toolkits for developers to use when developing apps

for their devices. Developing with these toolkits is specific to each operating system and not

compatible with others and is a process known as “native development”. Android has several

methods to deploy its Software Development Kit (SDK) while Apple has one method for

deployment.

4

When developing with Android SDK, a developer must decide on a development environment.

The options listed by Android Developers are the Android Developer Tools (ADT) Bundle,

Android Studio, or an existing IDE customized with the Android SDK (Android 2013). The

ADT Bundle includes a version of the Eclipse IDE with built-in Android SDK and is the

preferred environment. Android Studio is the newest environment promoted by Android. It uses

the IntelliJ IDEA environment, a simpler Java environment than Eclipse, includes built-in

Android SDK tools, and will be the “first dedicated IDE” for Android. However, it is

incomplete at the time of this research and is only available in “early access preview.”

Customizing an existing IDE can be done with Eclipse Helios or greater, Java Development Kit,

and Apache Ant. The steps to set up an environment by this method are more extensive.

For Android this means developing with the Android Software Development Kit (SDK),

programming in the Java language and usually in Eclipse IDE. Native development for iOS this

means using Xcode IDE, the iOS SDK and the Objective-C language. Apps developed natively

operate quick and smoothly as they are purposed specifically for an operating system. However,

developing natively and trying to reach all potential customers is very time consuming.

With all of the platform choices available to consumers, app developers have a difficult time

reaching everyone. Developing for the two largest operating systems are essential for reaching

the majority of potential customers but with the many other available operating systems it

becomes extremely difficult and costly to reach all markets by using native development tools.

A solution to this problem is to develop using “cross-platform development.” This development

technique reaches customers with less development time, but it does not always have all the

functions that are native to the device and can be slower or only work when an Internet

connection is available.

Android has an additional method to develop apps. MIT Application Inventor (AI) started as a

project under the supervision of Hal Abelsen while on sabbatical at Google, and was given to

MIT to be maintained as an educational tool to developing apps. It is currently in beta stage and

has been used in classrooms of all ages. Instead of using written code that is typical for other

5

developing techniques, AI uses blocks that snap together like puzzle pieces. This eliminates the

need for developers to memorize code and focus on how the app will interact with the user.

Designing the user interface with AI is as simple as dragging a component onto a design screen.

This style of designing is known as “what you see is what you get” (WYSIWYG). AI also

enables developers to test their app while programming with an emulator or an Android device

instead of waiting to compile. While not containing the complete Android SDK, future plans are

to make block code convertible to Java and thereby a complete Android developing toolkit.

Apps developed with AI can still be put on the Play Store, however, a gallery for AI programs

also exists where people can download the source code as well as the actual app. This is a

unique gallery and could become the first marketplace where an app user could purchase an app

and then modify the source code to make it better. With the simplicity of the block coding, most

people should be capable of doing this.

Developers are using application program interfaces (APIs) to incorporate data from online

sources into their apps. These apps are known as “mashups” or “Web 2.0” and are creating a

new wave of useful information from data that is available but purposed for other reasons. APIs

exist for Google Maps, NOAA, Facebook, and Yahoo! Market. An API that is mashed into

multiple apps is Google Maps. It is extremely useful when coupled with smartphone GPS

capabilities.

 Potential in Agriculture
Potential uses for smartphones in agriculture in North America are just beginning to be explored.

However, mobile phone use in agriculture or mAgriculture has been studied extensively as a

means of increasing income for small farmers in Africa. The only explanation for why this is the

case is that farmers in North America have access to other methods of communication and

information whereas farmers in Africa may only have access to a mobile phone for computation

power. Vodafone has cited a potential $138 billion lift to farmers incomes through mobile

services. This study cited twelve solutions to benefit farmers that were categorized four ways.

These four categories are improving access to financial services, provision of agricultural

information, improving data visibility for supply chain efficiency, and enhancing access to

markets.

6

Mobile banking is possible through texting, a website, or an app. Security is an important

concern with mobile banking. Security concerns compete with the convenience for accessibility

to financial services. The Bank of America Mobile Banking App provides the following

financial services depending on device: ability to look up account details and transaction history,

make transfers, pay bills, get alerts and BankAmeriDeals™, deposit a check (using the device’s

camera) and find the nearest Bank of America ATM and banking center.

Apps can provide other financial services. Mint is an app that organizes the user’s finances from

banking, 401k, loans, credit cards, and other sources. Insurance apps enable users to file a claim.

Market apps put stock information in user’s hands. Using near field communication (NFC),

Google Wallet is an app that allows phones to purchase goods at certain retailers. Payments can

be made to friends with Venmo. Square allows a device to accept credit card payments with an

attachment card reader. Financial services will continue to expand as consumers gain confidence

in their security.

An important source of agricultural information comes from extension services. Extension

professionals connect farmers with agricultural research and knowledge. An app, entitled

Machinery Sizing, was developed to demonstrate the feasibility of extension reaching clientele

through mobile devices. This app development was converted from a spreadsheet and is based

from the ASABE Standard D497.4 that estimates the tractor horsepower needed to pull different

implements under different conditions. The developers cited benefits for extension professionals

to include portability, ease for computations, and automatic updates.

Improving data visibility depends on systems of sensors, networks, displays, and processors.

Mobile phones are strongly adapted to the needs of data visibility with their portable screens,

strong networks, and computation power. Sensor data from other sources can be sent on phone

networks, processed, and displayed on an app or a website. Telemetry and machine-to-mobile

communication (M2M) are the terms used for the purpose above. Precision agriculture has made

M2M a very achievable means of improving data visibility. Dairy and field crops can be

operated nearly autonomously with precision agriculture endeavors.

7

Lely is an agricultural company with a robotic milking system. This system permits cows to be

milked when they desire throughout the day. Equipped with sensors, the Lely T4C is able to

detect: milk color, fat/protein indication of the milk, lactose indication of the milk, conductivity

of the milk, milk temperature, rumination minutes of the cow, cow activity, cow weight, milk

production of the cow, feed intake of the cow, amount of rest feed of the cow, milking time/dead

milking time, and milking speed. Lely does not have an app for monitoring the aforementioned

traits but does have an app for controlling its robotic feeder. The Lely Vector Control app allows

a user to set up a feeding plan, routes for the robot, and allows the user to analyze the feeding

data (Lely, 2013).

Tractor data apps are available through OEMs John Deere with JDLink and AGCO with

AGCOMMAND. The JDLink app is available on Apple and Android devices. The

AGCOMMAND app is only available with Apple devices but a website is also available.

Tractor data is tagged with GPS coordinates, timestamps, and includes information relevant to

the machine and operation. Every sixty seconds AgCommand™ collects machine performance

data and GPS location, which is transmitted via the GSM network and is then viewable via your

computer or phone with the AgCommand™ app. Operation information can be used to make

prescriptions for fertilizer and seed, insurance claims, and manage machinery and personnel.

Market access is an important revenue component. The more access a person has to a market,

the more revenue that person is liable to make. From a farming prospective, market access

includes access to transportation of crops, knowledge of prices and futures to hedge against

uncertainty. Better transportation allows farmers to find better markets that are farther away.

Smart devices help farmers determine the best buyer for their crops and the best seller for their

inputs based on price and location. The Growers Edge app displays cash bids at local

cooperatives and is available for Android and Apple devices (Growers, 2009).

Besides apps that fit into the four categories mentioned by Vodafone to increase farmers’

incomes, other apps purposed for agriculture exist. A study reviewed 60 available agricultural

apps and identified them in nine categorizes, some of which correspond with Vodafone’s

8

categories. These app categories are as follows: agriculture information, business, conference,

diseases and pests, farm management, learning and reference, location-based, market data, and

weather data (Woodill, 2013).

Apps also are available on devices other than smartphones and tablets. They are available on

televisions, cars, smartwatches, and heads-up displays. These devices have apps that interface

with embedded and external sensors, augment reality, perform tasks formerly accomplished by

other technologies, interact with the user through speech,

Apps can be specific to an operating system and also specific to sensor components. For

example, the Samsung Galaxy S4 has an infrared blaster that provides the means to control a

television. This remote control app is known as WatchOn (Samsung, 2013). This app allows the

S4 to perform most functions of a normal television remote including turning on, turning off,

changing channels, changing volume, and modifying settings. A new function recommends

programs to watch based on viewer preferences and viewing history. Other apps acting as a

remote must interface with an external IR source or require a television with WiFi or another

wireless connection. WiFi compatible televisions are not normal for older televisions but are

more frequent with newer televisions. WatchOn can therefore control old and new televisions

but may not be necessary with new televisions equipped with WiFi.

Car manufacturers are adding apps to their vehicles. Ford Sync can pair with a device to interact

with compatible apps and phone features. General Motor’s vehicles are equipped with OnStar

phone capabilities and will perform the functions of a smartphone in future models.

9

Chapter 3 - Crop Maturity App

 Introduction
This mobile application mimics the Farm Progress Growing Degree DaysTM App (Kansas

Farmer, 2011). Growing degree days (GDD) is a heuristic measurement that assigns a value for

heat units available for a given day.

The definition of GDD is as follows:

€

GDD =
Tmax +Tmin

2
−Tbase (3.1)

where

GDD = Growing degree days

Tmax = Maximum temperature for a certain day (°C)

Tmin = Minimum temperature for a certain day (°C)

Tbase = Constant temperature value that is base for a crop collecting heat units (10°C)

Days = Number of days from a crops plant date to the current date

When accumulated, GDD values can predict the crop stage, a useful tool for crop management.

For example, scheduling the application of pesticides or fertilizers is easier when using GDD

values than when using a calendar. This is due to the fact that the weather from year to year

varies while plants grow in relation to the amount of heat they receive.

The Farm Progress GDDTM App uses weather data provided by the National Weather Service

(NWS) API to calculate the number of GDDs accumulated from a certain date. To evaluate the

correct temperature date, the app user selects the location with Google Maps or by inputting the

zip code. The Crop Maturity App developed here similarly uses weather data from the NWS

API and specifies location with the phone’s GPS sensor.

The goal of this thesis is to use AGCO’s API in developing mashup mobile applications. It

therefore was a great fit to develop a mobile application after the GDDTM App. The Crop

Maturity App is the product of this work.

10

 Use Case
The app user interacts with textboxes, labels, and buttons. The user inputs the planting date and

field name via textboxes. Buttons are used to trigger screen changes, to affirm dates and field

names in textboxes, and to grab information from the phone’s clock and LocationSensor.

Upon opening the app, the user is presented with the home screen. From here, the user can view

the selected field’s GDUs, select a different field to view, or make a new field. As shown in

Figure 3.1, the fields are referenced with a location, planting date, and a name .

Figure 3.1. Home page of Crop Maturity App, displaying a ListPicker (Pick Field), field

name label (Field Label), labels for the field location, and labels for the date the crop was

planted.

Changing the field being viewed is accomplished through a ListPicker. This looks like a button

on the app but behaves differently. When the ListPicker is pressed it displays a list of field

names from which the user can choose by touching. This could change the information for the

planting date and weather data used as different fields could be planted on different days and use

different weather stations.

Creating a new field on the app is initiated with the <Add Field> choice in the ListPicker as

shown in Figure 3.2a. Selecting this changes the screen, displaying textboxes for the planting

date and for the field name. The field name can be anything the keyboard allows other than the

name of a field already entered in the memory. The planting date has a strict pattern that must

match in order to be allowed. The user is shown a hint in the text boxes. For example, the

11

month input has the hint MM to indicate that 2 digits here represent the month. If more or less

than 2 digits appear, then the month input is invalidated. If these inputs are valid , as the new

field is added to the field list and its GDD values are then displayed on the home page as shown

in Figure 3.2c.

 (a) (b) (c)

Figure 3.2. (a) Display after ListPicker has been clicked. <Add Field> is the only choice

initially. (b)Add Field page. (c)Home page with a field selected.

The Crop Maturity App calculates the accumulated GDDs, using temperature data from the

AGCO Weather API that in turn receives its information from the NWS API. The user

establishes the field location when clicking the ‘Add Field’ button on the Add Field page. This

triggers a call to the phone’s LocationSensor that then sends back the latitude and longitude

coordinates for the phones position.

 User Interface
The user interface is the end product of the described use case. It has the following components:

three textboxes, multiple labels, a listpicker, two buttons, a LocationSensor, a Clock, a TinyDB,

and a Web component. The textboxes, labels, listpicker, and buttons are visible to the user

whereas the other components work in the background to provide data to the visible components.

The app only has one screen but appears to have two screens. This is accomplished by

manipulating its visible components so that they are either hidden or visible. For this app, the

12

add field view is made visible if the user selects <Add Field> in the listpicker. The home page

and the GDU view are visible after the field is added.

 Model
The model uses an adaptation of Equation 1 to determine the accumulated GDDs for a crop.

Accumulating the GDDs for a period of time from the date a crop was planted until the current

date is simply a summation of the GDDs for each day in that period. This is given in Equation

3.2, below.

€

GDD =
Tmax +Tmin

2
−Tbase

⎛

⎝
⎜

⎞

⎠
⎟

Day=Planted

Current

∑∑ (3.2)

Using Equation 3.2 as the model would require an iterative procedure. This is feasible, but it

would mean an iterative calculation would have to be made. A better model is a rearrangement

of the right side of Equation 3.2, and is shown below, as Equation 3.3.

€

GDD =

(Tmax +Tmin)
Day=Planted

Current

∑

2∑ −Tbase *Days (3.3)

Therefore, Equation 3.3 is used as the model to calculate the accumulated GDDs. This

calculation can be broken down in steps and is not iterative. Equation 3.3 requires summations

of the temperatures and the number of days from the plant date to the current date. These

requirements are met in the delivery of data from the AGCO Weather API, and in the data

processing by the blocks for the Crop Maturity app in App Inventor’s Blocks Editor.

 	

 AGCO Weather API
Weather data delivery is simplified with the AGCO Weather API. The purpose of the AGCO

Weather API is to serve as a mediator between the National Weather Service (NWS) API and the

Crop Maturity App. While not currently online, the envisioned AGCO Weather API accepts

requests in the form of a URL Post and returns data that is compatible with App Inventor.

An example of the URL post is

13

http://ag-hes-

server.appspot.com/getgrowdayinfo?tag=gettempdata&cmd=gettempdata&fmt=ai&long=95.653

44&lat=35.65334&sd=20120522&ed=20120914

Components of the URL are further explained in Table 1.

Table 3.1 AGCO Weather API call to retrieve high and low temperatures for a period of

days.

URL	
 Components	
 Component	
 Explanation	

	

http://ag-­‐hes-­‐server.appspot.com/	

	

This	
 is	
 the	
 base	
 URL	
 for	
 AGCO’s	
 API	

server.	

	

getgrowdayinfo?	

	

AGCO	
 Weather	
 API	
 section.	
 	
 This	
 name	

will	
 likely	
 change	
 to	
 reflect	
 its	
 broader	

purpose	
 with	
 weather.	

	

tag=gettempdata&	

	

Tag	
 that	
 is	
 returned	
 to	
 app	
 after	
 the	
 API	

has	
 processed	
 the	
 request.	

	

cmd=gettempdata&	

	

Command	
 given	
 to	
 API.	
 	
 It	
 has	
 the	
 same	

value	
 as	
 the	
 tag	
 so	
 could	
 possibly	
 be	

removed.	

	

fmt=ai&	

	

Specifies	
 that	
 App	
 Inventor	
 is	
 making	
 the	

request.	

	

long=95.65344&	

lat=35.65334&	

	

Field	
 location	
 information.	
 	
 This	
 is	
 a	

latitude	
 and	
 longitude	
 point	
 in	
 the	

field	
 and	
 is	
 used	
 to	
 determine	
 what	

weather	
 station	
 to	
 use.	

	

sd=20120522&	

ed=20120914	

	

Dates	
 for	
 when	
 the	
 crop	
 was	
 planted	
 and	

the	
 current	
 date.	
 	
 This	
 has	
 the	
 format	

yyyymmdd.	

14

The data delivered from the AGCO Weather API to the requesting app has JSON Text format.

The data is transmitted in a single package and has the following form.

"gettempdata,2,100,104,75,77"

Components of the package delivered from the AGCO Weather API are explained in Table 2,

shown below.

Table 3.2 AGCO Weather API response to Crop Maturity App request.

Component	
 Explanation	

	

“gettempdata,	

	

Tag	
 for	
 request	

	

2,	

	

Number	
 of	
 days	
 from	
 start	
 date	
 to	
 current	

date.	
 	
 Should	
 also	
 correspond	
 to	
 the	
 number	

of	
 entries	
 in	
 the	
 Tmax	
 list	
 and	
 the	
 Tmin	
 list.	

	

100,104,	

	

Tmax	
 list.	
 	
 Tmax1,	
 Tmax2,	
 …	

	

75,77”	

	

Tmin	
 list.	
 Tmin1,	
 Tmin2,	
 …	

The API always returns the tag as the first item regardless of the call. The rest of the response

fits a pattern for the other API calls. The number of days corresponds to the number of items for

each list. For example, the 2 given in Table 2 is the number of days returned that have values for

both the temperature highs and lows. Returning the number of items in each list permits simple

parsing of the data. Grouping the data by temperature type instead of by day is another pattern

that is seen in the API responses. The day that they correspond to is referenced by their index in

the list.

Another way to order the response would be to group the data according to day instead of

temperature type. This is also feasible but it was decided to group by type.

15

 Blocks Editor
The blocks shown in this section are concerned with how the app works with the AGCO server

to receive data. These blocks implement what is defined in the “AGCO Weather API” and in the

Model sections above. The blocks are arranged in a logical order in explaining how data is

handled starting from the request for data from API call and ending at calculating the

accumulated GDDs.

The API call that requests weather data is shown below in Figure 4. Figure 4 is specifically a

procedure block named “getTempsDigest” that posts the request via the Web component

whenever it is called. The variable “FieldLongitude,” “FieldLatitude,” “PlantDate,” and

“CurrentDate” are passed into the procedure to specify the field.

Figure 3.3. Procedure for making a request to the AGCO server.

The request for data is normally followed by a short delay. An event block in AI is able to

handle waiting for the response and categorize it based on url, responseCode, responseType, and

responseContent as shown in Figure 5. For the purposes of this app, only responseCode and

responseContent are necessary. The responseCode is used to ensure a valid response and

responseContent contains all of the useful data. The event block contains a procedure called

parseResponse described later and a conditional block that checks the variable IncomingTag with

16

text “gettempdata”. If a match is detected, the procedure inside this conditional block is called,

otherwise nothing happens here.

Figure 3.4. Event block that occurs when the app has received a response from the AGCO

server.

The first procedure called in the event block above is parseResponse that is shown below in

Figure 6. This block is passed the responseCode and responseContent as arguments. It checks

the responseCode and if equal to 200 it is validated and the responseContent is handled

according to procedures. Otherwise, the user is shown that an error has occurred and the

accumulated GDD were not able to be determined.

Given a responseCode of 200, the responseContent is separated at commas and split into a list.

The first item is then taken from the list and given to the IncomingTag. This completes the

parseResponse procedure and the path continues with the conditional block of the Event Handler.

Assuming a match with “gettempdata,” the procedure GotValues_WeatherDigestAll is called

and passed the list IncomingValuesList.

17

Figure 3.5. The parsing procedure places the response in the IncomingValuesList and

removes the IncomingTag.

Figure 7 shows the block procedure GotValues_WeatherDigestAll. This procedure finishes the

task of sorting the data according the API and then calls other procedures to perform the GDD

calculations. Sorting the data involves storing the number of days from the planted date to the

current date in a variable and the temperature highs and lows into lists. Setting the variable Days

is simple since it has a single value. Setting lists requires a slightly more difficult process. The

first part is to clear the list values. This eliminates the possibility of retaining values not coming

from the current API response. The second part is sorting the values from the Data list and

setting them in their respective lists.

18

Figure 3.6. Procedure to fill column data, perform calculations, and display information.

19

The procedure to clear and load the TmaxList and TminList is shown in Figure 8 below and are

called ClearColData and LoadColData, respectively. ClearColData simply empties any current

data that may be held the lists. LoadColData sorts data into the TmaxList and TminList

according to the API response. AI provides multiple blocks for handling list items.

Figure 3.7. Procedures for storing column data.

20

The calculations are performed by three blocks shown in Figure 3.8. Two of the blocks are

summations of the items in TmaxList and TminList. The final block is a representation of

Equation 3.3.

Figure 3.8. Blocks performing GDD calculations.

 Results
The concept for this app was simple to establish, however, a problem existed with the AGCO

servers retrieving historical weather data. This problem remains unresolved with the app

implementation. An app implementation that would solve this problem would require the user to

set the planting date on or before the planting date so that weather data would be current. A

21

solution from the server side could possibly exist where historical weather data would be

retrieved. This would be ideal as the user could set the planting date for a past date.

22

Chapter 4 - Combine Efficiency App

 Introduction
The Combine Efficiency App is discussed in this chapter. This app was repurposed from an

Excel spreadsheet that a farmer used to determine the optimal harvest speed for a combine. The

advancement from a spreadsheet to an app lets the farmer monitor his combine fleet in near real-

time and from a remote location.

Optimal harvest speed is defined as the speed of a combine at which the operating expense is the

lowest. The model for this app assumes that the speed of the combine is the only factor that

determines the operating expenses. This is a simplified model that does not account for

variability in fan speed or concavity, both of which are important factors in crop losses.

The data used in the model come from two sources: a farmer and AGCOMMAND. The farmer

provides knowledge concerning operation factors and costs to the model. All machine data is

provided by AGCOMMAND, AGCO’s telemetry system and is transferred by the Hesston

server.

 Use Case
The end user of this app is a farmer or a farm manager who typically has multiple operating

combines that need to be monitored. Upon opening this app for the first time, the login page is

displayed. This page has the user information, account information, and timing rates. The user

information is the user’s name, email, and phone number. The account information is a

username, password, and fleet. This is the most essential information necessary for obtaining

machine data from AGCOMMAND. The timing rates are not necessary to change and can be

left alone. The timing rates are time zone, app sync interval, and machine sync rate. The time

zone is relative to Coordinated Universal Time and is in units of hours. The app sync interval

and machine sync rate are the time between calls the app will make to the server to refresh its

data and are in units of milliseconds.

23

Figure 4.1. The “Login View” contains nine entries: three for user information, three for

account information, and three for time factors that can be left alone.

After a successful login, the app displays the home page with the first machine in the fleet

selected. The information for this machine is its status, actual speed, actual cost, optimal speed,

and optimal cost. The app user can then choose between several buttons and a listpicker for

changing inputs to the model or changing the machine.

	
 	

24

 	

a.	
 	

 	

b.	

 	

c.	

 	

d.	

 	

e.	

 	

f.	

Figure 4.2. Views from the Home and Machine sections of the Combine Performance App.

Views a, b, and c show the “Home View” while d, e, and f show the “Machine View.”

25

 Model
The model determines the optimal speed and the optimal cost of operating a combine with

certain factors known by the farmer. These factors include machine cost per hour, fuel price,

crop price, header length, fuel consumption, and crop losses. The operating expenses are

categorized as machine cost, losses cost, and fuel cost and are calculated in units of dollars per

acre ($/ac). The losses cost typically increases with increasing speed, while the machine and fuel

cost typically

decrease with

increasing speed.

Figure 4.3. Speed vs. Operating expenses for a combine harvester

The farmer enters the factors fuel consumption and losses. Both of these factors vary according

to speed. Integers from two to eight are used to represent the speed of a combine in mph. The

expenses are then determined at those speeds with Equations 4.1, 4.2, 4.3, 4.4, and 4.5.

P = S * R * N * 5280 / 43560 (4.1)

Cm = H / P (4.2)

Cl = L / Pc (4.3)

Cf = Pf * Fc / P (4.4)

Ct = Cm + Cl + Cf (4.5)

where

P = performance (acre/hr)

26

S = speed (mph)

 R = row spacing (in)

N = number of rows

 Cm = machine cost ($)

 H = machine cost per hour ($/hr)

 Cl = grain losses cost ($)

 L = grain losses (bushels)

 Pc = crop price ($/bushel)

 Cf = fuel cost ($)

 Pf = fuel price per gallon ($/gal)

 Fc = fuel consumption (gal/hr)

 Ct = total cost ($)

 API
The login/register request is the first API call. This request retrieves a key. If successful, this key

is then used to authorize requests for machine data. Table 3 shows the registration request.

Table 4.1. HTTP Post Request for Registration Key.

URL	
 Components	
 Component	
 Explanation	

http://ag-­‐hes-­‐server.appspot.com	
 The	
 base	
 URL	
 for	
 the	
 Hesston	
 API	
 server	

getfleetownerinformation	
 Hesston	
 API	
 section	

tag=registration	
 Tag	
 that	
 requests	
 a	
 registration	
 key	

cmd=reg	
 Command	

fmt=ai	
 Format	
 specifying	
 that	
 App	
 Inventor	
 is	

making	
 the	
 request.	

n=”name”	
 The	
 user’s	
 name	

e=”email”	
 The	
 user’s	
 email	

c=”cell”	
 The	
 user’s	
 cell	
 phone	
 number	

u=”username”	
 The	
 username	
 to	
 Hesston	
 server	

a=”password”	
 The	
 password	
 to	
 Hesston	
 server	

d=”app	
 name”	
 The	
 app’s	
 name	

k=“key”	

The	
 key	
 is	
 handed	
 to	
 Hesston	
 API	
 server	

to	
 verify	
 authorization	
 to	
 receive	

information.	

27

The fleet data request is the same every time it is called. The key is the component that is given

to the app from the Hesston server and is essential to receive information from the server. This

requests all the data that the Hesston server has aggregated for a fleet at the time of the request.

The URL post is

http://ag-hes-

server.appspot.com/getfleetperformance?tag=getFleetDigestAll&cmd=fleetdigestall&fmt=ai

Table 4.2. HTTP Post Request for Stored Data.

URL	
 Components	
 Component	
 Explanantion	

http://ag-­‐hes-­‐server.appspot.com	
 The	
 base	
 URL	
 for	
 AGCO’s	
 API	
 server	

getcbfleetinformation	
 AGCO	
 Fleet	
 API	
 section.	

tag=getSelectData	
 Tag	
 that	
 requests	
 all	
 the	
 information	

available	
 for	
 the	
 fleet.	

fmt=ai	
 Format	
 specifying	
 that	
 App	
 Inventor	
 is	

making	
 the	
 request.	

cmd=getselectdata	
 Command	
 given	
 to	
 the	
 AGCO	
 API	
 server.	

k=“key”	

The	
 key	
 is	
 handed	
 to	
 AGCO	
 API	
 server	
 to	

verify	
 authorization	
 to	
 receive	

information.	

The Hesston response delivers all the fleet data ordered according to machine index in the fleet

and type of data.

An example response from the Hesston server for two machines is given below. The data is held

as comma-separated values (csv). The first three values are information about the response and

are the tag, number of machines in the fleet, and the key. The remaining values contain machine

information grouped by information type and indexed by machine.

"getSelectData,2, ag9zfmFnLWhlcy1zZXJ2ZXJyEAsSCEZsZWV0S01MGOXfHAw, \"2013

Test Fleet\" , \"2013 Test Fleet\", \"(2013) S77.18 (2793)\" , \"(2013) S77.19 (3630)\", \"340\" ,

\"442\", \"Harvester (Combine)\" , \"Harvester (Combine)\", \"6205042217\" , \"6205042217\",

45.6463432 , 39.9581756, -119.4072952 , -101.1401672, \"07/11/2013 09:06:27 PM EDT\" ,

\"07/11/2013 11:00:07 PM EDT\", \"0 mph\" , \"0 mph\", \"false\" , \"false\", \"921.35 hr\" ,

\"318.15 hr\", \"0 rpm\" , \"13.5 rpm\", \"OFF / Parked\" , \"OFF / Parked\", \"585.54 hr\" ,

28

\"163.67 hr\", \"66 %\" , \"24.8 %\", \"0 gal/hr\" , \"0 gal/hr\", \" Hermiston, Herm.. OR (11 Jul

7:53 pm PDT): 84F [55F/82F] W: 10mph RelH: 16 \" , \" McCook Municipa.. NE (11 Jul 21:53

pm CDT): 82F [70F/102F] W: 16mph RelH: 56 \", \"No Data\" , \"No Data\", \"No Data\" ,

\"No Data\", \"No Data\" , \"No Data\", \"No Data\" , \"No Data\", \"No Data\" , \"No Data\",

\"No Data\" , \"No Data\", \"No Data\" , \"No Data\", \"No Data\" , \"No Data\", \"No Data\" ,

\"No Data\", \"No Data\" , \"No Data\""

Before receiving viable data, a request to synchronize machine data must be made. This request

tells the Hesston server that data for a specific fleet needs to be aggregated. The response from

the server signifies the success or failure of the sync request. The request components are shown

in Table 4.3, below.

Table 4.3. HTTP Post Request to Sync Machine Data.

URL	
 Components	
 Component	
 Explanation	

http://ag-­‐hes-­‐server.appspot.com	
 The	
 base	
 URL	
 for	
 AGCO’s	
 API	
 server	

getcbfleetinformation	
 AGCO	
 Fleet	
 API	
 section.	

tag=requestMachineDataSync	
 Tag	
 that	
 requests	
 all	
 the	
 information	

available	
 for	
 the	
 fleet.	

cmd=fleetdigestall	
 Format	
 specifying	
 that	
 App	
 Inventor	
 is	

making	
 the	
 request.	

fmt=ack	
 Command	
 given	
 to	
 the	
 AGCO	
 API	
 server.	

k=“key”	

The	
 key	
 is	
 handed	
 to	
 AGCO	
 API	
 server	
 to	

verify	
 authorization	
 to	
 receive	

information.	

f=”fleet	
 name”	
 The	
 fleet	
 name	
 is	
 handed	
 to	
 the	
 AGCO	

API	
 server	
 to	
 single	
 out	
 the	
 fleet	
 	

 Blocks Editor
The block code for this app includes blocks that change the page view, blocks that make requests

and handle responses from a server, blocks that create a model from data, and blocks that accept

data from an app user. These blocks are explained in the following sections. They may overlap

one another at points.

 Initialization
The first block executed in the source code is the Screen1.Initialize block, shown in figure 4.4

This block initializes values for UserAccount and Index_Machine, and disables the timers. The

29

main function of this event block is to call the procedure_App_Initialization block, shown in

figure 4.5.

Figure 4.4. Event block for the app initialization.

30

The procedure_App_Initialization chooses what page will be shown. This procedure is called

after the app is initialized and the register button is pressed. It checks for a value saved in the

user account. This procedure has three pathways that are contained within two if-else tests and

are explained below.

The first pathway is a false result of the first “if-else” test. If no value is found in the user

account, the WindowToDisplay procedure is called with the argument “register” signifying the

app user will be shown the register page. This is what initially happens when the app is first

opened. Upon initial opening, the user must insert their information. This information is used to

restrict machine data to people with valid credentials and to specify the fleet.

After the first time a user enters their information, it is saved on the phone’s database and is

recalled and set to the UserAccount as seen in the first block. The procedure then checks the

value of UserAccount and finds whether it has content. If the answer is yes, the first if-else test

returns a true value and the code proceeds to the second if-else test, which checks whether the

information entered was accepted by AGCO. If the second if-else test returns a true value, the

sixth item in the UserAccount is changed from the initial value of “Key” to a new key sent back

by AGCO and this new key is then stored in the UserAccount on the phone database.

The second pathway is a false result of the second “if-else” test. The value for the sixth item in

the UserAccount is checked against the string ”key.” This is understood to be the initial value

set in the app but not a value sent by AGCO as a confirmation of a valid entry. This redirects the

user to the registration page.

The third and final pathway is a true result for the second if-else test. The value for the sixth

item of UserAccount does not match “key”, indicating that the app has received a confirmation

from AGCO. At this point, the view is changed to the home page and two requests are sent to

AGCO while the timers are set.

31

Figure 4.5. Procedure block that is called upon the app initialization and registration.

The WindowToDisplay procedure takes an argument that allows the developer to specify which

components should be visible to the user. The components are grouped together on the user

interface in arrangements made available by App Inventor. These arrangements, as well as most

components have a visibility property. It is this visibility property that is being changed by the

procedure and altering the page shown to the user. It is very simple to add new views to the

procedure by simply adding a new if-then test to the block shown in figures 4.4 to 4.6. If certain

components within an arrangement needed to be invisible in one view and then visible in another

view, the developer must carefully specify all components and make changes on the visibility

accordingly. A visibility error could occur if the developer assumes that an invisible component

will be visible. This is due to the visibility property that each component has as well as the

arrangements. For instance, in this app, the components in the machine arrangement

(VA_Machine) have their visibility changed corresponding with the arguments expenses,

configLosses, and machineStatus. If VA_Machine is visible then these components must be

managed to specify what is visible. This lengthens the WindowToDisplay block considerably as

32

seen when comparing the sub block under the argument “register” with the sub block under the

argument expenses.

Figure 4.6. Procedure block controlling the view displayed to the user. Three argument

entries are possible in this figure to return a true. These are “register_retry, register, and

login.”

33

Figure 4.7. Continuation of the “WindowToDisplay” block. Argument entries include

“expenses, and configLosses.”

34

Figure 4.8. Final part of “WindowToDisplay” block. “MachineStatus” is an argument

entry.

 Registration and Logging In

The registration page holds many textboxes that are filled with the user’s information. This page

also has a button which, when clicked, triggers two procedures, changes the text on a label and

on itself to indicate that a process is underway. The Button_login_register.Click block code is

shown in figure 4.8. The two procedures are procedure_login_register and

procedure_GetRegisterKey and are explained in the following paragraphs.

Figure 4.9. Event block occurring with the click of the register button.

Figure 4.9 is the procedure procedure_login_register. This procedure checks the values in the

textboxes for timezone, app sync rate, and machine sync rate to verify that they aren’t empty and

35

they are numbers. The textboxes from the register page are then filled in to a list and stored as

the UserAccount. This list is stored on the phone in the block Database_On_Phone.StoreValue

and recalled with the procedure_App_Initialization. This means that a user only needs to register

once on their phone and thereafter the home page will always be shown when opening the app.

However, the user may also go back and change the information. This is necessary for users that

have multiple fleets or for changing users.

Figure 4.10. Procedure block executed during registration. This procedure checks the

time values and stores the textbox entries on the “Login View” to a UserAccount.

36

The procedure_GetRegisterKey, shown in figure 4.10, is called next within the

Button_login_register.Click block code. This block posts a request to the AGCO API server

with the user information, excluding the final three items that involve time intervals. The

response to this request is waited on by the Web_AgServer_API.GotText block shown in figure

4.11.

Figure 4.11. Procedure block that Posts request to Hesston server for a key.

37

The Web_AgServer_API.GotText block handles all of the responses from the AGCO server.

Every response has four categories: url, responseCode, responseType, and responseContent. The

two categories that concern this app are responseCode and responseContent. The responseCode

gives the HTTP response status code indicating the success or failure of the transmission. This is

handled by the procedureParseResponse. The responseContent is the category of interest

because it carries the AGCO API server response. When the server is sending a response for the

registration, it sends two items. The first item identifies the response and contains the string

“registration.” The second item contains the key. This key is then handed to the

procedureGotValue_RegisterKey.

38

Figure 4.12. Event block that handles web responses.

The procedureParseResponse, shown in figure 4.12, tests the value of the responseCode and then

decides if the responseContent is valid. Valid responseContent is given if the responseCode has

a value of 200. It is invalid otherwise.

Valid responseContent is data separated by commas in JSON format. AI provides a block for

decoding JSON text and for splitting the data into a list. After splitting the data, the first item in

39

the list is designated as the “IncomingTag” and then removed from the list. This “IncomingTag”

is later compared in the Web_AgServer_API.GotText block. This determines how the

“IncomingValue” list is handled.

A responseCode has a value of 500 when there is a server error. This case is handled by the

procedure_Home_Display. If the value is not 500, nothing would happen. In either case the

responseContent is not handled.

Figure 4.13. Procedure block called in the web handler that handles code parsing.

40

The procedureGotValue_RegisterKey block, shown in figure 4.13, stores the key received from

the AGCO API server on the phone’s database, and then calls the procedure_App_Initialization.

Once the key is stored, the app no longer is limited to staying on the login/register page and can

query AGCO for machine data.

Figure 4.14. Procedure block that stores the register key received by the Hesston server

response.

41

 Requesting, Receiving, and Handling Machine Data
Requesting machine data from AGCO can be handled in two steps. The first step requires the

AGCO API server to aggregate and store data for a certain fleet. The second step requests to

retrieve the stored data. These two steps give the AGCO API server enough time to perform

both functions. This avoids the server from declaring timeout and aborting the task.

The first request is procedure_RequestMachineDataSync and is shown in figure 4.14. This

request implements what is defined in the “AGCO Machine API” for aggregating machine data

for a fleet. This request uses the key and the fleet name to designate the user and fleet to store

data for. This is the only request that uses the fleet name since later calls for the stored data

assume the same fleet.

Figure 4.15. Procedure block that requests the Hesston server to sync machine data for a

fleet.

The request procedure_GetFleetStoredData, shown in figure 4.15, is shorter than the request to

aggregate machine data by one parameter. The AGCO API server still needs to know who it is

communicating with but already has stored data and is ready to deliver it. That is the reason for

the inclusion of the key and the exclusion of the fleet name. Future changes in the API could

dictate a need for including the fleet name because a user could potentially request to aggregate

data for multiple fleets and then request their retrieval from the same app.

42

Figure 4.16. Procedure block that posts request to Hesston server for stored machine data

for a fleet.

The Web_AgServer_API.GotText block handles the responses, from both of the requests above.

After the procedureParseResponse, the response is handed to specific functions, based on the

“IncomingTag” or first value in the response, that handle the data.

The request from procedure_RequestMachineDataSync is given a response from the Hesston

server with the “IncomingTag” having a string value “requestMachineDataSync.” When the

Web_AgServer_API.GotText block receives this string, it hands the “IncomingValue” to the

procedureGotValue_RequestMachineDataSync, shown in figure 4.16. The data contained in the

list “IncomingValue” has only one item that describes the success or failure of the server to

perform the request. This item can be “LoginFailed,” “MachineSyncSuccess,” or

“NoVehiclesFound.” Upon determining what the item is, the procedure alters the text so that the

user can see the status of the data request.

43

Figure 4.17. Procedure block that handles response from Hesston server that confirms the

success or failure of the request to sync machine data for a fleet.

The request from the procedure_GetFleetStoredData is given a response from the Hesston server

with the “IncomingTag” having a string value “getSelectData.” When the

44

Web_AgServer_API.GotText block receives this string it hands the “IncomingValue” to the

procedureGotValue_FleetStoredData block. The “IncomingValue” is a list of items with a

variable length. The first item that is always delivered is the item describing the fleet size.

When no fleet is available, the shortest list occurs and the fleet size is “-1.” This value shows

the user that the Hesston server has not yet stored data for the requested fleet. The user is alerted

to this by a label change on the home page. The data given for one machine with this request is

delivered as a package of 27 items with the fleet size of “1”.

After the fleet size, the following items are delivered as shown in Table 4.4, below.

Table 3.4. AGCO Machine Data

	
 List	
 Name	
 List	
 Value	
 for	
 Index	
 =	
 1	

1	
 	
 unitFleet_Col	
 2013 Test Fleet

2	
 	
 unitName_Col	
 (2013) S77.18 (2793)

3	
 unitID_Col 340

4	
 	
 unitType_Col	
 Harvester (Combine)

5	
 	
 unitOpPhone_Col	
 6205042217

6	
 	
 unitLat_Col	
 45.6463432

7	
 	
 unitLong_Col	
 -119.4072952

8	
 unitDateTime_Col 07/11/2013 09:06:27 PM EDT

9	
 unitSpeed_Col 0 mph

10	
 unitAlarm_Col FALSE

11	
 unitEngHr_Col 921.35 hr

12	
 	
 unitEngSpeed_Col	
 0 rpm

13	
 	
 unitStatus_Col	
 OFF/Parked

14	
 unit_ThresherHr_Col 585.54 hr

15	
 unit_FuelLvl_Col 0.66

16	
 unitFuelRate_Col 0 gal/hr

17	
 unit_Weather_Col Hermiston, Herm.. OR (11 Jul 7:53 pm PDT): 84F
[55F/82F] W: 10mph RelH: 16

18	
 unit_baleWeight_Col No Data

19	
 unit_yieldAve_Col No Data

20	
 unit_yieldMoisture_Col No Data	

45

21	
 unit_baleMoisture_Col No Data	

22	
 unit_baleTotalCnt_Col No Data	

23	
 unit_baleCnt_Col No Data	

24	
 unit_engineLoad_Col No Data	

25	
 unit_lossRotor_Col No Data	

26	
 unit_lossShoe_Col No Data	

27	
 	
 unit_capacityAve_Col	
 No Data	

These items are sorted in the list “IncomingValue” in a manner that places data of a certain type

together and indexed to match the machine. This is discussed in fuller detail in the API section.

The apps task of ordering this data into lists is accomplished with the FleetSize block, the

procedure_ClearColSelectData block, a “for range” block, and the

procedure_LoadColSelectData. The procedure_ClearColSelectData clears all previous data held

in these lists. The procedure_LoadColSelectData is ran each time the “for range” block informs

it to run. The “for range” block is a for loop, incrementing an index by one each time it runs the

procedure_LoadColSelectData block until the index reaches a determined quantity that is the

value of FleetSize here.

46

Figure 4.18. Procedure block handling the Hesston server’s response containing machine

data for a fleet.

47

The procedure_ClearColSelectData, shown in figure 4.18, clears the 27 lists that hold the data

for the app. It is important to clear all of the data to prevent old data from being presented with

new data.

	

a.	

	

b.	

Figure 4.19. Procedure block that clears the fleet lists for machine data.

48

The procedure_LoadColSelectData, shown in figures 4.19 to 4.22, take the data from a single list

and transform it to 27 lists. If new data types were to be added to into a machine data response, a

new list could be easily added with its unique index for type of data. The start index for type of

data is zero. This procedure is the final one for transferring the data from the Hesston server to

the app.

Figure 4.20. Procedure block that loads machine data into lists. The data for a machine

has an index and is organized accordingly in the lists.

49

Figure 4.21. Continuation of block loading machine data into lists.

50

Figure 4.22. Continuation of block loading machine data into lists.

51

Figure 4.23. Continuation of block loading machine data into lists.

 Changing Fuel and Crop Losses

The farmer’s knowledge is important for executing a correct model. The farmer can change the

values for crop losses and fuel consumption at speeds from 2 to 8 mph. This range was selected

as a base for most operating conditions and is changeable in the blocks.

From the homepage, the user can change these values by clicking the button with “Adjust

Losses” shown in figure 4.23a. This triggers a change in the window viewed that allows the user

to scroll to the crop losses view or the fuel consumption view shown in figures 4.23b and 4.23c

respectively.

52

	

a.	
 	
 Home	
 View	

	

b.	
 	
 Machine	
 View	
 –	
 Crop	

Losses	
 	

	

c.	
 	
 Machine	
 View	
 –	
 Fuel	

Consumption	

Figure 4.24. Clicking the “Adjust Losses” button in the Home View allows the user to

change values for the Crop Losses and Fuel Consumption.

The block code that controls this behavior is an event block called btn_Hm_Configure.Click,

shown in figure 4.24. This block calls the WindowToDisplay with the argument “configLosses.”

This changes the visibility properties of components, resulting in the display in figures 4.23b and

4.23c.

Figure 4.25. Event block occurring when the button labeled “Adjust Losses” is clicked in

the Home View. This allows the user to change values for the Crop Losses and Fuel

Consumption.

The user changes the values by selecting a textbox, inputting a new value, and then pressing the

refresh button. These three steps are described below.

53

Selecting a textbox clears its contents, after which a user is restricted to inputting number values.

The figures 4.25a and 4.25b, show event blocks for selecting a textbox for the Fuel Consumption

and for the Field Loss. Both the Fuel Consumption and the Field Loss require seven of these

event blocks for selecting a textbox.

	
 	

Figure 4.26. Event blocks occurring when the textbox has the focus or is selected. This

event clears the textbox contents.

The blocks in figures 4.26a and 4.26b are event blocks that happen after their specific textbox

has lost focus. These blocks dictate that once their textbox has lost focus, the textbox’s contents

will change to show the new value with the unit or the old value with the unit if a new value has

not been input.

	

a	

	

b	

54

Figure 4.27. Event blocks occurring when the textbox has lost focus.

Pressing the refresh button saves the value to a list and displays the value with its unit, such as

Bu/ac, in the textbox. The refresh button block codes controlling these behaviors are shown in

figures 4.27a and 4.27b. However, pressing the refresh button does not make a textbox lose

focus, providing a need for a number check.

	
 	

Figure 4.28. Event blocks occurring when the “Refresh” button is clicked for either the

Crop Loss list or the Fuel Consumption list.

The test within the refresh block codes returns true if a number is found and the app then

performs the update blocks. The block codes for these tests are shown in the figures 4.28a and

4.28b. These tests are necessary because the model must use numbers. Without the test blocks,

a user could input nothing into a textbox and then press the refresh button. This would result in

an empty value for a list item and the textbox would then be changed to hold the unit such as

“Bu/ac.” If repeated the list item would hold a value of the unit and the textbox would change to

“Bu/ac Bu/ac.”

55

	

a.	

	

b.	

Figure 4.29. Procedure blocks that check for a valid entries in the Crop Loss and the Fuel

Consumption lists.

The block code updating the lists is shown in figures 4.29a and 4.29b. These blocks treat the

textbox text as a list and select the first item that is the number value.

56

	

a.	

	

b.	

Figure 4.30. Procedure blocks that update the Crop Loss and Fuel Consumption lists.

57

The blocks updating the textboxes text are shown in figures 4.30a and 4.30b. These blocks pull

the value from the respective lists and then append a unit.

58

	

a.	

59

	

b.	

Figure 4.31. Procedure blocks that update the textbox text for the Crop Loss and Fuel

Consumption entries.

60

 Mashing Machine Data with Model
The block code that manipulates the combine data to perform models is called after the data is

loaded to lists in procedureGotValue_FleetStoredData . They are also called when a different

combine is selected and when the user changes inputs. Figure 4.31 is the event block code that is

activated after a machine has been picked and figure 4.32 is the event block that is activated

when a button is clicked after inputs are changed.

Figure 4.32. Event block occurring after a machine has been picked.

Figure 4.33. Event block occurring at the click of the Solver button in the Machine View.

The first procedure to be called from both of the event handler is the procedure to change the

view to the home page. After this procedure, the event blocks above follow different paths to

update the model. After selecting a machine from the listpicker, the app does not need to change

any inputs other than the actual operation. Changing inputs such as fuel consumption, field

losses, machine depreciation, and header width requires altering the model for calculating the

optimal operating cost and speed. To alter the model two procedures are called. The first is

61

UpdateCostLists, shown in figure 4.33, and the second is DetermineOptimals, shown in figure

4.34.

The procedure UpdateCostLists renews the list items for five lists. These lists are

Performance_List, MachineCost_List, CropLossCost_List, FuelCost_List, and TotalCostList.

The “foreach” block performs its code on every “speed” variable in the “Speed_List.” This list

has seven variables, speeds two to eight mph. The index variable sets the list position of the new

items. It starts at one and ends at seven for the seven list items.

Figure 4.34. Procedure block that updates lists for the model.

The procedure DetermineOptimals uses the “min” block given by AI to find the lowest operating

cost. The “position in list” block then identifies the index value for the lowest operating cost in

the TotalCost_List and that index value is set to OptimalIndex. The OptimalSpeed and

OptimalCost are subsequently chosen with the OptimalIndex from their respective lists,

Speed_List and TotalCost_List.

62

Figure 4.35. Procedure block that determines the optimal speed and cost.

The procedure updateActualOperation contains the block code that is responsible for changing

the actual operation parameters to the latest data from the Hesston server and for deciding the

text shown to the user. The largest determinant of what to show the user is the machine status.

The status can be OFF/Parked, Idle, Work, Headland, Transport, and No Contact. The model

created with this research is intended for only the Work status, but options remain to add new

code to the other statuses. Regardless, the machine status is displayed on the app.

When a machine status is Work, this app rounds the machine’s speed to the nearest integer and

then checks that value to see if it exists on the Speed_List. If it does not exist on the list, the app

sets a label to report to the user that it does not recognize the speed as a valid working speed. If

it does exist on the list, the app then sets the actual operating cost to the amount corresponding to

the item in the TotalCost_List with the index of the rounded ActualSpeed in the Speed_List.

Labels are then set to show the user the actual operation and optimal cost and speed.

63

Figure 4.36. Procedure block that sets the Home View labels based on the

machine status.

64

 Results
The blocks used for requesting and handling responses for the fleet data can be reused in other

fleet management apps. This app and others like it don’t need all of the data that is given.

However, the potential remains to expand this app’s functionality and use all of the data. This is

countered by the noted difficulties that AI has with handling large files.

65

Chapter 5 - Conclusions

Two apps were developed using MIT Application Inventor and Google App Engine with the

server support from AGCO Corporation.

The first app’s intent is to measure Growing Degree Days and has yet to be successfully

implemented. Possibly two solutions exist. The first would change the app and not allow the

user to set the planting date in the past. The second may not be possible but involves changing

the calls accepted by the servers and allows the retrieval of historical weather data.

The second app determines the efficiency of combines that are harvesting based on their speed

and input from an app user, preferably a farmer. This app retrieves a combine fleet’s data from

AGCO’s servers, displays information for a selected machine, and determines the best speed and

operating costs based on an app user’s inputs.

These apps demonstrate the capability of sharing machine-generated data with independent app

developers. MIT Application Inventor is a user-friendly development environment allowing a

larger population of developers to implement their app ideas with less hassle. With AGCO’s

server support, developers can create apps specific to farmers and expand on the value of their

machine data.

66

Chapter 6 - Future Work Possibilities

The open source nature of App Inventor leaves opportunities for developing new apps using

AGCO’s API. These opportunities exist for developers and for AGCO. From this research,

future developers have available a template app to help with their own apps development.

AGCO has the possibility of expanding their API to accommodate other practices.

The Combine Efficiency App was stripped of its model components, leaving it with the

components to retrieve data from the AGCO API and serving as a template for future apps using

other developer’s models. This template is available on AGCO’s App Engine site. A QR code

and URL for downloading the template app and its code are displayed in Appendix B.

The opportunity also exists for AGCO to expand its API for purposes other than combining. For

example, data could be used for apps developed for planting, spraying, spreading, and other

applications. This creates more opportunities and a stronger environment for developers to make

apps.

67

References

AgCommand. 6/14/2013. Massey Ferguson. http://www.masseyferguson.com/EMEA/int-

en/products/2847.aspx retrieved on June 17 2013.

API. TechTerms.com. http://www.techterms.com/definition/api retrieved on June 13, 2013.

Apple’s App Store Marks Historic 50 Billionth Download. May 16, 2013. Apple Press Info.

http://www.apple.com/pr/library/2013/05/16Apples-App-Store-Marks-Historic-50-Billionth-
Download.html retrieved on July 2, 2013.

Bank of America Mobile Banking App. 2013. Bank of America.

https://www.bankofamerica.com/online-banking/mobile-banking-applications.go retrieved on
July 29, 2013.

Dvorak, Joseph S., Tanya C. Franke-Dvorak, Randy R. Price. December 2012. “Apps”-An Innovative

Way to Share Extension Knowledge. Journal of Extension.

Google Play Developer Console. 2013. Google. https://play.google.com/apps/publish/signup/ retrieved

on July 3, 2013.

Growers Edge. 2009. Growers Edge. https://www.growers-edge.com/howitworks-mobile-

app.html#&panel1-10 retrieved on July 30, 2013.

HTTP Requests: Get vs Post. http://www.w3schools.com/tags/ref_httpmethods.asp retrieved on June

16, 2013.

Ingraham, Nathan. June 10, 2013. Apple announces 600 million iOS devices sold, 93 percent of

devices running iOS 6. The Verge. http://www.theverge.com/2013/6/10/4415258/apple-
announces-600-million-ios-devices-sold retrieved on June 2, 2013.

iOS Developer Program. 2013. Apple. https://developer.apple.com/programs/ios/ retrieved on July 3,

2013.

iOS Developer Program 3. Distribute. 2013. Apple.

https://developer.apple.com/programs/ios/distribute.html retrieved on July 3, 2013.

Jones, Chuck. July 2, 2013. Apple and Android Trading Smartphone Market Shares in the Largest

Markets. Forbes. http://www.forbes.com/sites/chuckjones/2013/07/02/apple-and-android-
trading-market-shares-in-the-largest-markets/ retrieved on July 2, 2013.

Kansas Farmer. 2011. iNet Solutions Group. http://farmprogress.com/customPage.aspx?p=260

retrieved on August 1, 2013.

68

Kirk, Matthew, Julie Steele, Christèle Delbé, Laura Crow. Connected Agriculture: The role of mobile in
driving efficiency and sustainability in the food and agriculture value chain. Vodafone,
Accenture, Oxfam.

Kovach, Steve. June 4, 2013. 8 Great Apps For Managing Your Finances. Business Insider.

http://www.businessinsider.com/best-financial-apps-2013-5?op=1 retrieved on July 29, 2013.

Lely International N.V. July 30, 2013. Lely Vector Control. Google Play.

https://play.google.com/store/apps/details?id=com.lelycontroller retrieved on July 30, 2013.

Panzarino, Matthew. 15 May 2013. Google announces 900 million Android activations, 48 billion apps

downloaded. The Next Web. http://thenextweb.com/google/2013/05/15/google-announces-900-
million-activations-of-android-in-total-to-date/ retrieved on June 11, 2013.

Panzarino, Matthew. 16 May 2013. Billions: How exactly do Apple and Google count app downloads?

The Next Web. http://thenextweb.com/apple/2013/05/16/billions-how-exactly-do-apple-and-
google-count-app-downloads/ retrieved on June 11, 2013.

Samsung WatchON. July 31, 2013. Google Play.

https://play.google.com/store/apps/details?id=tv.peel.samsung.app retrieved on August 1, 2013.

Siegler, MG. July 11 2010. Is Google App Inventor A Gateway Drug Or A Doomsday Device

For Android? http://techcrunch.com/2010/07/11/google-app-inventor/ retrieved June 11 2013.

Smith, Aaron. July 11, 2011. Overview of smartphone adoption. Pew Internet.

http://pewinternet.org/Reports/2011/Smartphones/Section-1.aspx retrieved on July 2, 2013.

Transaction Fees. Dec 13, 2012. Google Play. https://support.google.com/googleplay/android-

developer/answer/112622?hl=en&ref_topic=15867 retrieved on July 3, 2013.

Walter, John. 11/02/2011. Smartphones a big trend. Agriculture.com.

http://www.agriculture.com/farm-management/technology/cell-phone-and-smart-
phones/smartphones-a-big-trend_325-ar20351 retrieved June 14, 2013.

Wen, Howard. June 3, 2011. The ascendance of App Inventor. O’reilly Programming.

http://programming.oreilly.com/2011/06/google-app-inventor-programmers-mobile-apps.html
retrieved on June 12, 2013.

Wolber, David, Hal Abelson, Ellen Spertus, and Liz Looney. April 2011. App Inventor: Create Your

Own Android Apps. Sebastopol, California. O’Reilly Media.

Woodill, G., and C. Udell. 2012. mAgriculture: The Application of Mobile Computing to the Business

of Farming. Float Mobile Learning.

Woodill, G., and C. Udell. 2012. Future Uses of Mobile Technologies in Farming, Fishing and Forestry.

Float Mobile Learning.

69

Appendix A - Combine Efficiency Spreadsheet

70

Appendix B - Template App Sources

http://ag-hes-server.appspot.com/aigui?fmt=combinetemplateapp.html

