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Introduction

With the advent of low-cost and relatively high performance

microprocessors, digital signal processing has found application

in a wide variety of fields. One such application is the use of

adaptive linear prediction in intruder detection devices. These

algorithms reduce false alarms by adapting to correlated

background noise and passing only intruder signals. Many

processors are capable of performing these algorithms in real-

time, but few of these have the low power requirements desirable

for field applications. The Electrical and Computer Engineering

Department at Kansas State University, in conjunction with Sandia

National Laboratories, has attempted to identify processors

which are most appropriate for such use. The ideal processor

would require very little power, be easy to interface, perform

multiplications very quickly and use floating-point arithmetic.

Processors which have been previously evaluated include the Zilog

Z80, Intel 8748, RCA ATMAC [1] and National NSC800 [2,3]. These

processors were successful to varying degrees, but still left

much room for improvement.

In the winter of 1983-1984, a processor that satisfies the

above criteria became available for evaluation. This

microprocessor, the Advanced Architecture Microprocessor (AAMP)

,

was designed by Rockwell-Collins in Cedar Rapids, Iowa and is

produced by Rockwell in Anaheim, California. It is a CMOS/SOS



microprocessor that has a stack architecture with a 16-bit wide

data path. Single and double precision integer and fractional as

well as single and extended precision floating-point data types

are supported on a single chip. It consumes approximately 50 mW

at its rated 20 MHz clock rate and uses a single 5 volt supply.

The purpose of this thesis is to examine the architecture of

the AAMP and attempt to estimate performance on signal processing

algorithms. Special attention is paid to both strong points and

bottlenecks of the processor. Relative efficiency that can be

achieved with high-level languages is also investigated.

The remainder of this thesis consists of three parts. The

first part is an introduction to the AAMP's architecture,

instruction set and data structures. This description is not

exhaustive but seeks to highlight the processor's properties

which are significant to the evaluation at hand and to supplement

the detailed treatment available from Rockwell-Collins. The

second part details the investigation and findings from the

evaluation. Included in this section is a discussion of ways to

optimize the Widrow and Lattice algorithms for the processor's

architecture. The third part contains the results and

conclusions of the evaluation in a concise form.

Gary Mauersberger is currently completing a hardware

oriented evaluation of the AAMP which includes the development of

a minimal system. The hardware evaluation combined with this

thesis should provide a comprehensive view of the AAMP and form a

basis for future comparisons of microprocessors.



Features of the AAMP

The purpose of this chapter is to provide an introduction to

the architecture and capabilities of the AAMP. The discussion is

directed toward an Electrical Engineer with a limited knowledge

of computer run-time structures. A concise but detailed

description can also be found in the August 1982 issue of IEEE

Micro [41; a very detailed description is contained in a document

from Collins-Rockwell titled AAMP, CAPS-7 and CAPS-10 INSTRUCTION

SET ARCHITECTURE t5].

Software environment

The primary run-time structure found in the AAMP is the

process stack. This process stack contains the environment of

the currently active procedure and the status of procedures that

were suspended in the calling process. This will be discussed in

more detail below.

Because the AAMP has nearly a pure stack architecture, that

is, it has no user-accessible registers, nearly all of its

instructions fall into four main categories:

1) Memory reference instructions which place the contents of

the specified memory location on the top of the stack. Also,

literal instructions which place constants on the top of the

stack.

2) Operators which perform actions on operands which reside

on the top of the stack, deleting the operands and placing the

result on the top of stack.

3) Memory assignment instructions which remove data from the



top of the stack and place them in the specified memory location.

4) Control instructions such as SKIP, CALL and RETURN which

affect the sequence in which instructions are executed.

The AAMP uses a 24 bit address word to select 16 bit memory

words. Since all AAMP opcodes are 8 bits long, the 16 bit word

containing the opcode byte is read and a 25th bit is used

internally to select the proper byte. Constructing the 24 bit

address from concatenating the top two stack locations is known

as the Universal addressing mode (see Figure la).

Because the data path is only 16 bits wide, it becomes

awkward to specify the full address. In order to increase

efficiency, the Global addressing form specifies the least

significant 16 bits and automatically uses the upper address bits

specified when the procedure started. The 8 most significant

address bits for data constitute the Data Environment (DENV).

The Code Environment (CENV) consists of the 9 most significant

address bits for the area of memory containing the opcodes. The

16 least significant address bits are specified by the word on

the top of the stack (see Figure lb) or by two immediate bytes

following the opcode. Note that the DENV and CENV can both refer

to the same area if desired.

A third form of addressing is yet more efficient and is used

to reference variables local to the current procedure (see Figure

lc). A reference or assignment using Local addressing can

specify any of 16 locations in a single byte opcode or any of 256

locations using a one byte opcode with an immediate byte. Local

addressing is also very useful because of the nature of block



structured languages and their emphasis on local variables.

Instructions are available to provide the absolute address of a

local storage location in the current procedure (LOCL) and in

calling procedures (LOCNL).

Finally, memory may be accessed through an Indexed

addressing mode where the index into the array is contained in

the stack and the base address of the array is either on top of

the stack or in an immediate word following the opcode. The

array base and index are used to calculate the address of the

element, taking into account the data type specified in the

instruction (see Figure Id). Another addressing mode is the

Constant Offset form which is essentially the same as the Indexed

immediate mode with the offset in an immediate byte and the array

base on the top of the stack. The calculation of the element's

address consists of adding the base and the offset together

without taking into account the data type being accessed as the

Indexed mode does.

Each addressing mode discussed above can be used to access

single (16-bit) words and double (32-bit) or triple (48-bit)

words stored in the form of consecutive 16-bit memory locations.

Also, a byte indexed mode is available wherein a byte offset is

added to a base (both of which must be on the stack) to access a

byte.



[ ]

TOS-> [ BBBB ]

[ xxAA ]

[ ]

[ ]

TOS->[ 7777 ]

address contents
AABBBB [ 7777 ]

before after

a) REFSD: reference single word with Universal addressing mode,

[ ]

TOS-> [ BBBB ]

[ ]

TOS->[ 6666 ]

DENV = xxCC
CCBBBB [ 6666 ]

before after

b) REFS: reference single word with Global addressing mode,

[

TOS-> [

TOS->[ 5555 ]

[ ]

accumulator
stack

[ ]

[ SPCR ] I

[ CENV ] I stack
[PROCID] I mark
[ LENV ] I

accumulator
stack

LENV->[ 5555 ]

[ ]

[ SPCR ] I

[ CENV ] I stack
[PROCID] I mark
[ LENV ] I

LENV->[ 5555 ] I

• 1 Local
• 1 storage

[

[

]

]

1

* stack frame
• of calling
• procedure
•

] I

I Local
storage

stack frame
of calling
procedure

before after

c) REFSL.O: reference single Local from location 0.

t ]

TOS->[ 1000 ]

[ 0040 ]

[ ]

[ ]

TOS->[ 4444 ]

DENV = xxCC
CC1040 [ 4444 ]

before after

d) REFSX: reference single word indexed.

Figure 1. AAMP Addressing Modes



The three word-lengths correspond to the data types

supported in the instruction set with arithmetic and conversion

functions. The data types are shown in Table 1.

Table 1. AAMP data types

Data type Precision Length Notation used

Boolean

Integer

Integer

Fractional

Fractional

Single

Double

Single

Double

Floating-point Single

Floating-point Extended

16 bits

16 bits

32 bits

16 bits

32 bits

32 bits

48 bits

0=FALSE,else TRUE

Two's complement

Two's complement

Two's complement,
msb = 2~-l

Two's complement,
msb = 2

A-1

Signed, hidden-bit,
8 bit XS128 exponent

Signed, hidden-bit,
8 bit XS128 exponent

In the floating-point notation, the mantissa is represented

in a positive normalized form with the sign bit and an assumed

binary point to the left of the most significant bit. Since a

properly aligned floating-point number (the AAMP automatically

handles alignment) will have a one for the most significant bit

(except in the case of zero), the bit can be omitted. The

representation of zero is defined to be the case where the sign,

mantissa and exponent are all zero. The exponent is represented

in excess 128 form in the least significant byte. Extended



precision floating-point numbers are the same except for 16

additional bits of precision in the mantissa.

The six arithmetic operations available for each of the

above non-boolean data types and their execution times are shown

in Table 2. Other instructions perform boolean (AND, OR, NOT and

XOR) and numeric data type conversion operations.

Table 2. Arithmetic operations and execution times,
(all times in microseconds)

Fixed-point Floating-point

Operation single double single extended
precision precision precision precision

Addition 0.55 0.75 7.55 11.35

Subtraction 0.55 0.75 8.65 12.25

Multiplication 4.75 14.95 19.15 30.25

Division 5.55 15.75 19.75 34.65

Negation 0.55 0.75 0.75 0.95

Absolute value 0.75 0.85 0.35 0.55

The preceding paragraphs have briefly described the primary

data types available and the instructions to manipulate them.

The procedures doing the manipulations are rooted in a process

stack which is dedicated to a particular task. This means that a

task's procedures, functions and subroutines and their associated

local variables, accumulator stack and parameters are all

contained in the stack. AAMP supports the concept of task

concurrency, that is, having multiple independent process stacks.

An executive stack initializes the system on reset and provides



the means for transferring control between tasks.

Process Stack

The process stack for a task has an active stack frame for

the currently active procedure on the top and its calling

procedures' stack frames below it in the calling order. When a

procedure is called, a new stack frame is set up on top of the

current one and becomes active. When the procedure ends, the new

stack frame is deactivated and, in effect, becomes lost as the

previous stack frame becomes active. This is illustrated in

Figure 2. Each of these stack frames consists of three main

areas: 1) the accumulator stack, 2) the local storage area and

3) the stack mark.

A procedure's accumulator stack is the area on the top of

the stack where nearly all operations on data are performed.

This area is the logical equivalent of registers in conventional

architecture microprocessors. The accumulator stack is initially

empty but grows as literal and reference instructions place data

on it and shrinks as words of data are removed by operations and

assignment instructions. If the current procedure calls another

procedure, the accumulator stack is left unused under the new

stack frame until the new stack frame is removed when the new

procedure returns.



TOS->

LEVN->

TOS->

LENV->

I Proc. A
I Acc.
I

I Proc. A
I stack
I mark

Proc. A
Local

storage

previous
stack
frames

I Proc. B
I stack
I mark
I

I Proc. B
I Local
I storage

I

I Proc. A
I Acc.

TOS->

I Proc. A
stack
mark

I

LENV->
Proc. A
Local

storage

previous
stack
frames

I

I Proc. A
I Acc.
I

I Proc. A
I stack
I mark

Proc. A
Local

storage

previous
stack
frames

a) Proc. A executing b) Proc. B executing c) Proc. A executing

Figure 2. Process stack for Procedure A, after Procedure A has
called Procedure B, and after Procedure B has returned.
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Proc. B
active
stack
frame

DENV,TOS->

DENV,LENV->

Proc. A
suspended

stack
frame

SPCR 1

CENV ]

PROCID]
LENV ]

locO ]

loci 1

loc2 ]

locN-1]

-\
-/

]ace
ace J

ace ]

SPCR ]

CENV ]

PROCID]
LENV ]

locO ]<
loci ]

[locM-1]

>[
[

[

[

N

[ M ]

[ ]

[call B ]

>[ ]

[ ]

- header

code

[ ]

Procedure B

- header

code

Procedure A

Figure 3. Process stack and linkages after Procedure A calls
Procedure B.
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The Local storage area is the area of the stack frame below

both the accumulator stack and stack mark. This area is used for

variables needed for the procedure associated with the stack

frame. This local variable area has four advantages: 1) the

quickest access times, 2) freedom from side-effects from other

procedures, 3) space is reclaimed automatically when the

procedure ends and 4) independence from a particular location in

memory or calling order. Local variable locations are created

when the stack frame is set up by leaving unused a specified

number of stack locations between the calling procedure's

accumulator stack and the stack mark of the stack frame being

created. This is shown in Figure 2.

The stack mark is the linkage between a procedure and its

calling procedure as shown in Figure 3. Recorded in the stack

mark is the calling procedure's Syllable (byte) Program Counter

Register (SPCR) , Code Environment (CENV) , Procedure ID (PROCID)

and Local Environment (LENV). The Code Environment is

concatenated with the Syllable Program Counter Register to form

the byte address of the instruction of the calling procedure

which is to be executed upon return from the called procedure.

The Procedure ID is an identification number for the calling

procedure which happens to be the byte address of the header of

its code body. The Local Environment is a pointer to the

location of the first Local storage location of the calling

procedure. These four words of data give the processor

information it needs to restart the calling procedure when the

called procedure ends.

12



At this point, it is appropriate to ask what makes up a

procedure. A procedure is a body of code with a header at

the location given by PROCID. This single word header defines

the number of words of storage to allocate for Local variables

between the calling procedure's accumulator stack and the new

stack frame's stack mark. The least significant byte of the word

following the header contains the first opcode to be executed in

the new procedure. Each time a procedure is called, a stack

frame is created to be associated with the procedure. Each time

a procedure is exited, the stack frame associated with that

activation is discarded. Thus, as long as Universal or Global

references are not used, the procedure may be called by different

procedures, by itself or even by different tasks and work well,

free from unwanted side-effects. Procedures are therefore

recursive with the above qualifications.

The calling sequence has been described above, but there is

one more detail: argument passing. To pass arguments to a

called procedure, the arguments are simply placed on top of the

calling procedure's accumulator stack before the CALL instruction

is executed. Since these arguments (and the rest of the calling

procedure's accumulator stack) are just below the called

procedure's Local variables, the called procedure can access them

using the Local addressing mode. The number of Local variables

and their relative locations are assigned and incorporated into

the procedure's header and instructions at the time the code is

13



compiled.

When a RETURN is executed, the top of the accumulator stack

must contain a number. This number tells the processor how many

storage locations below the stack mark to "deallocate." The

locations deallocated can include the called procedure's Local

storage, passed arguments and locations on the calling

procedure's accumulator stack. The called procedure's stack

mark is used to restore the processor state and is then discarded

along with the indicated number of local variables and calling

procedure arguments. Any locations between the called

procedure's stack mark and the deallocation number are considered

to be arguments to be returned and are copied onto the newly

determined top of the calling procedure's stack. Note that

parameters can also be returned if they reside in the local

storage locations immediately adjacent to calling procedure's

accumulator stack. The number of locations to be deallocated

would simply be the total number of local storage locations less

the number of locations to be left on the stack.

Executive process

In a system that may have multiple process stacks, the

mechanism which organizes the transfer of control between

processes is the Executive process. The Executive process begins

execution on reset through use of the Executive Entry Table. The

Executive Entry Table is located at memory addresses 0-8 and

contains information in three categories: 1) a Continuation

Status Pointer, 2) initialization information and 3) PROCIDs for

procedures handling special events that might arise.

14



When the processor is reset, there must be some way for it

to tell if it is starting cold or if it was executing a procedure

which needs to continue. The Continuation Status Pointer at

location contains the address of a memory location. If the

memory location pointed to contains zero, it indicates that

initialization should take place upon reset. Nonzero contents

indicate that the processor was interrupted in the middle of some

process, the status of which has been preserved and may now be

recovered to resume execution. Note that a pointer was used

because the Executive Entry Table will nearly always be located

in ROM and the indicated location in RAM. If the processor is

always to be initialized on reset, a zero in location will

insure this.

The three pieces of data in the Executive Entry Table used

in initialization are the Initial Stack Limit, Initial Top of

Stack and the Initial PROCID. The first two elements define the

location and extent of the Executive stack and the third

element gives the location of the instructions needed to perform

initialization. In addition, the processor automatically sets

LENV = DENV = CENV = and disables interrupts. The resulting

processor state is known as the Initialization State.

If a suspended process is to be restarted, the conditions

which existed before interruption must be recovered from the

process's Processor State Descriptor (PSD). For the Executive

process, this PSD is written out just before the processor halts.

This halting can occur from executing the HALT instruction or

15



from any of a number of error conditions that have been trapped.

Recorded in this Executive PSD are the contents of internal

registers that make up the processor state: Stack Limit (SKLM),

Top of Stack (TOS), LENV f DENV, SPCR and CENV. In addition, the

interrupt enable flip-flop status and an error code giving the

reason the processor was halted are provided. This dumping of

the processor status happens just below the Initial Executive Top

of Stack (the base of the Executive stack). The processor can be

restarted only if the error code indicates that the stoppage was

caused by the HALT instruction. No other errors can be corrected

by the processor (bus failure, etc.) and all are considered

fatal.

Once the Executive process has been started, it may then

call other procedures and perform operations on the Executive

stack. This single task system is the simplest configuration.

If multi-tasking is to take place, the Executive task must take

the responsibility for scheduling the tasks and initiating their

execution. Each User task (any task except the Executive task)

has its own PSD. This PSD contains the processor status (SKLM,

TOS, LENV, DENV, SPCR and CENV) of the task when execution was

stopped or the initial status if it has not yet been executed.

In addition, the PROCID and CENV for both the task and exception

handling routines are recorded. The User PSD and its

relationship with its process stack is shown in Figure 4.

16
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Proc. B
active
stack
frame

Proc. A
suspended

stack
frame

SPCR
CENV

PROCID
LENV
locO
loci
loc2

locN-1
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ace
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SPCR
CENV
PROCID
LENV
locO
loci

[locM-1]

<-+

SKLM ]

TOS ]
—

LENV ]

DENV ]

SPCR ] -\
CENV ] -/

TASK. PROCID ] \.

TASK. CENV ] /

EXCEP. PROCID ] -\
EXCEP.CENV ]-/

[

[

>[
[

N ] header
]

]

]

code

[ ]

Procedure B

M>[
[ ]

[call B ]

[ ]

[ ]

] header

->[

code

[ ]

Procedure A

] header
]

code

]

Exception
Procedure

Note: DENV is concatenated with SKLM f TOS and LENV.

Figure 4. User PSD and Process stack.
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[INIT. EXEC. SKLM
[INIT.EXEC.TOS
[INIT.PROCID
[BUS. ERROR. PROC
[NMI.PROCID
[INT.PROCID
[TRAP.PROCID
[EXCEP.PROCID

> [CONTINUE. STAT]

EXEC. STACK
•>[

[

[

[

-[
[

[

[

[

[

[

[

[

USER. PSD. PTR
EXEC.SKLM
EXEC.TOS
EXEC.LENV
EXEC.DENV
EXEC.SPCR
EXEC.CENV
INT. ENABLE. FF
EXEC. ERR. CODE

<-

EXEC. PSD

> [ SKLM
TOS
LENV
DENV
SPCR
CENV

TASK.PROCID
TASK. CENV
EXCEP.PROCID
EXCEP.CENV

Task A

SKLM
TOS
LENV
DENV
SPCR
CENV

TASK.PROCID
TASK. CENV

EXCEP.PROCID
EXCEP.CENV

SKLM
TOS
LENV
DENV
SPCR
CENV

TASK.PROCID
TASK. CENV
EXCEP.PROCID
EXCEP.CENV

Task B Task C

Note: Task B and Task C are inactive

Figure 5. Executive and User data structures
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The Executive process initiates a User task by executing a

RETURN from the outermost Executive procedure. A pointer to the

PSD of the User task must be stored in the initial Executive TOS.

The processor uses the information in the indicated User task PSD

to set up the proper state in the processor and resume (or begin)

execution of the task. This is called Outer Procedure Return

Processing. The relationship between the Executive Entry Table,

Executive PSD and User PSD is shown in Figure 5.

The other instance of Outer Procedure Return processing is

when the User task execution is terminated. This could be due to

either an interrupt or a trap. The most common type of trap is

that which is generated when a procedure attempts to return with

no previous procedures on the User task's process stack. In any

case, the status of the processor is written into the task's PSD

so that execution can resume in the future and a pointer to the

User task's PSD remains in the initial top of the Executive

process stack. If the process has terminated itself, the PSD is

reset to its initial start-up state.

Event handling

There are three special kind of events that are handled by

the processor: interrupts, traps and exceptions. Interrupts are

generated externally by a reset, by a bus error condition or by

an external device asking for service. Traps are essentially

interrupts generated by the CPU itself. A trap can be caused by

the TRAP instruction, by an illegal instruction or by data

accessing problems such as stack overflow. Interrupts and traps

19



are handled on a system-wide basis by specific Executive

procedures. The PROCID of the routine corresponding to the type

of interrupt or trap can be found in the Executive Entry Table.

If a User task is executing at the time a trap or interrupt

occurs, the processor first performs an Outer Procedure Return to

save the User task status and to return to the Executive mode

where the proper servicing routine can be activated. In the case

of a trap, the trap number is placed on the top of the Executive

process stack so that it will be passed to the trap handling

procedure. The trap handling procedure may then use the trap

number to select and call a procedure appropriate to handle the

trap.

The other type of event, exceptions, are handled separately

by each task. Exceptions occur when the data being processed

cause arithmetic overflows, division by zero, etc. These events

can be handled in a default manner if no exception handling

procedures are specified (EXCEP. PROCID =0). If an exception

procedure is specified, it is handled as a normal procedure call

on the currently active process stack with the exception type

number passed as an argument.

20



Evaluation Procedure

This chapter discusses the research performed toward

completion of this thesis. Two main evaluation areas were

addressed. The first area was the identification of potential

strengths and weaknesses in the processor's architecture and

implementation. This was accomplished by first conducting a

general study of the processor, followed by a specific analysis

of its potential performance in the execution of signal

processing algorithms. At the same time, an attempt was made to

estimate how efficiently the AAMP can execute high-level compiled

languages. The second area was the testing of the validity of

the first analysis by running benchmark programs coded in the

first step. This was accomplished through the cooperation of

Collins-Rockwell in Cedar Rapids during a Sandia-sponsored visit.

Also, the author assisted Gary Mauersberger this spring in the

interfacing of a prototyping board supplied by Rockwell to the

Electrical Engineering department's HP9845B testing system. This

allowed the AAMP's initialization procedure and specific transfer

sequences to be confirmed on a logic analyzer.

Code Used for Evaluation

To compare the AAMP to other processors in the execution of

signal processing algorithms, it was necessary to use programs

which are representative of the class of algorithms which would

be ultimately run on the processor. Two adaptive linear

prediction algorithms, the Lattice and Widrow, were selected

21



because they had been used for this purpose in previous

evaluations. These algorithms are shown in Figures 6 and 7.

These choices seem to be valid ones because even though the

specific algorithms or implementations may not be used in future

designs, the type of operations performed will be similar.

Specifically, both algorithms involve large numbers of

multiplications and array handling in a real-time environment.

These factors were examined closely in addition to the general

performance of the stack-architecture for this type of algorithm.

n

(1) g(m) = \ b(m,k) * f(m-k) delta = 1 implied
/_ i

by subscripts
k=l n = 16 (# of weights)

m = iteration

(2) e(m) = f(m) - g(m)

(3) b(m,k) = u * b(m-l,k) k = 1,2,. ..n

+ v * e(m) * f(m-k)

L

(4) q(m) = 1/L \ e(m-k+l) L = 16 (MAF window size)

k=l

(5) q2(m) = q(m) * q(m) output is squared for
threshold detection

Figure 6. Widrow adaptive linear prediction algorithm
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eCl) = adc_input

wl(l) = e(l)

do 1 = l,n

e(l+l) = e(l) - k(l) * wl(l)

w(l+l) = wl(l) - k(l) * e(l)

v(l) = beta * v(l) +

betal * (e(l) * e(l) + will) * wl(D)

k(l) = k(l) + alpha * (e(l+l) *wl (1) + e ( 1) *w( 1+1) ) /v( 1)

wl(l) = w(l)

endo

wl (n+1) = w(n+l)

dac_out = e(n+l)

loop back to the beginning

Figure 7. Lattice adaptive linear prediction algorithm

Because of the potential speed of the processor and the

unique architecture (among micros), two versions of both the

Lattice and Widrow algorithms were coded. The listings of these

programs can be found in the appendices. The first version was

coded from a high-level representation to indicate what one would

expect from a compiler. The second version takes advantage of

assembly language "tricks" to optimize performance. The results

of this comparison are discussed in detail in the following

sections. After the Widrow algorithm had been coded, it was
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discovered that previous evaluations had used what appeared to be

a less efficient method of implementation. The fifth listing was

written to correspond to the earlier implementations and see how

much was gained from the algorithm modifications. The gain was

18% for floating-point and 35% for fixed-point calculations.

This modification is discussed in detail in the section titled

"Widrow Algorithm Modification".

The AAMP was designed as a stack-machine to enhance support

of high-level language constructs. This efficiency coupled with

the processor's speed allows high-level language implementation

of algorithms which previously required assembly language

programming. The ability to implement algorithms in high-level

languages is a big advantage because it decreases required

programmer time and increases program reliability, portability

and quality of documentation.

Beginning with high-level pseudo-language, the Widrow and

Lattice algorithms were coded and then converted into AAMP

assembly language. Initialization was not included because it is

quite language dependent and would not affect the performance of

the algorithm once begun. It was assumed, however, that the most

frequently used variables were declared as local variables and

that the proper variable type declarations had been made. It was

also assumed that the default exception handling (divide by zero,

etc.) was used. An attempt was made to avoid restructuring the

high-level language representations to take advantage of

knowledge of the low-level structures except in the hand-

optimized versions of the algorithms. Optimizations obvious at
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the high-level were used, such as the Widrow modification,

avoiding references to array members where local variables could

be used (as in the Lattice) and performing a multiplication once

outside a loop instead of every time through the loop. It was

assumed that the compiler would correctly select the addressing

modes, literal length, use the increment instruction, etc. and in

general take advantage of the facilities offered by the

processor. This turned out to be a reasonable assumption.

For the purposes of this evaluation, single-precision

integer and single-precision floating-point versions of the

algorithms were coded. Table 3 shows the execution times for the

Widrow and Table 4 shows execution times for the Lattice. The

AAMP has equivalent instructions available for each data format.

Because of this, the two versions were coded side by side, each

with the correct form of the arithmetic instructions and proper

length memory reference instructions. Execution statistics for

the fractional data format are identical to the integer version

and was not coded again. Another possibility which offers a

compromise between the fixed-point and floating-point is the

double-precision fixed-point format. Because of the word length,

double-precision fixed-point data transfers are the same as

single-precision floating-point transfers. Double-precision

fixed-point execution statistics have been estimated from single-

precision floating-point execution estimates. Shorter execution

times of the double-precision fixed-point arithmetic instructions

were taken into account. Extended-precision floating-point

implementations were not investigated because they would execute

much more slowly and the added precision seemed unnecessary.
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Table 3. AAMP Widrow Execution Times
(all times in microseconds)

Add/ Stack
Algorithm Multiply Subtract Update

Samples
Other Total /sec

Fixed pt;

Standard
Modified
Optimized

237.50
237.50
237.50

19.25
19.25
19.25

Double-precision fixed pt

:

Standard
Modified
Optimized

757.50
757.50
757.50

Floating-point:

Standard
Modified
Optimized

957.50
957.50
957.50

26.25
26.25
26.25

272.05
272.05
272.05

507.60
345.60

0.00

907.20
691.20

0.00

907.20
691.20

0.00

588.20 I 1352.55
402.10 I 10o4.45
411.25 I 668.05

705.15
486.40
566.25

2396.10
1961.35
1350.00

I

712.90 I 2849.65
494.15 I 2414.90
574.00 I 1803.55

739
996

1497

417
510
741

351
414
554

Table 4. AAMP 16-Stage Lattice Execution Times
(all times in microseconds)

Multiply/ Add/ Stack
Algorithm Divide Subtract Update Other

Samples
Total /sec

Fixed pt;

Standard
Optimized

772.80
772.80

52.80
52.80

Double-precision fixed pt:

Standard 2436.80 72.00
Optimized 2436.80 72.00

Floating-point:

Standard 3073.60 756.80
Optimized 3073.60 756.80

345.60
0.00

1152.00
0.00

1152.00
0.00

758.10
648.70

1001.25
1134.75

1009.00
1142.50

1929.30
1474.30

4662.05
3643.55

5991.40
4972.90

518
678

214
274

167
201
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It should be pointed out that the integer versions of both

algorithms make no provision for scaling. If needed, scaling

operations should not seriously affect the performance of the

algorithm. It is possible that using fractional notation could

take care of the scaling problem, but this has not been

investigated in any detail. Also, the AAMP automatically invokes

exception handling for overflows and division by zero. The

default exception handling should be adequate for most uses and

requires very little execution time overhead. If necessary,

however, user-supplied exception handling routines can be used at

the cost of the time needed to transfer to, execute and return

from the routines.

After the programs described above were coded and execution

rates were calculated, a trip to Collins-Rockwell at Cedar

Rapids, Iowa was arranged. With the cooperation of the Rockwell

personnel, the Lattice and Widrow algorithms were coded and

executed on their test equipment. Originally, Rockwell's PL/I

and Ada-subset were to be used, but due to lack of time and

accessibility only the Ada-subset was used. The object code

produced is discussed under the appropriate sections below and

more detail is provided in the "Performance measurements"

section.

The viability of using compiled output for time-critical

real-time signal processing depends on the efficiency of the

generated object code. Another program was written to test the
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compiler's optimizations; it consists of a number of structures

that are commonly optimized, particularly those which appear

quite often in signal processing applications. The listings for

this program, ADATESTS, can be found in the appendices.

Widrow Algorithm Modification

While most of the Widrow algorithm's execution time can be

attributed to multiplications, a significant amount of time is

spent aligning the weight (b), input (f) and error (e) arrays.

This has been done either with block moves of the arrays or

through maintaining circulating buffers. The following is a

description of a method which is simpler and more efficient to

implement. The author came across this method by examining the

algorithm closely and has not found any previous use of this

method.

A common form of the Widrow algorithm is shown in Figure 6.

An important point to note is that the summation in step 1 will

be correct as long as all of the corresponding weight and input

pairs are multiplied and summed, regardless of order. The same

weight-sample pairs as in step 1 are used in the weight updating

in step 3, with one weight updated at a time. Again, the new

weights will be correct regardless of the order the updating

process uses. In fact, the only time a particular member of f is

needed is when the oldest sample is replaced with the new sample

(in a circular buffer).

28



Note that as long as a pointer is maintained to the oldest

sample in f, we need only concern ourselves with providing the

proper pairings of samples and weights for steps 1 and 3.

Usually, the sample array is advanced by one to simulate passage

of time. Instead, the weight array can be "moved back" by one to

create the same pairings of samples and weights. This turns out

to be convenient since newly calculated weight values must be

written into the array anyway. The updated weights are simply

written into the correct position for the next iteration's

pairings. Figure 8 illustrates this process.

Because the order is irrelevant as long, as the pairings are

correct, steps 1 and 3 can be efficiently performed by proceeding

from one end of the arrays to the other. In assembly language,

it is most efficient to go from the largest to smallest buffer

addresses, terminating when the array index equals zero. The

weight updating then requires only one additional memory transfer

to complete the circulation. This eliminates the overhead needed

for circulating pointers.

The pointer to the oldest sample circulates and thus must be

checked, but this occurs only once per sample. Also, the index

to the oldest value of e is the same as the index into f,

allowing a single index to be used for both purposes. Figure 9

illustrates the updating of the sample (f) and error (e) arrays.

Finally, Figure 10 shows that the pairs match correctly after

updating.

The results of the comparison between the block-move updates

and the modified version show an improvement of 35% for the fixed
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point version and 18% for the floating point version. The timing

difference is actually greater in the floating-point version

because the buffers are twice as large, but the proportion of the

total is less. One would expect that the savings would be less

dramatic on processors that have block-move instructions using

register pointers. Dwight Gordon's NSC800/hardware multiplier

evaluation [3] showed that block-moves represented approximately

10% of the total execution time, which is what would be expected.

b(16)
b(15)
b(14)
b(13)
b(12)
b(ll)
b(10)
b( 9)

b(
b(
b(
b(
b(
b(
b(
b(
b(

8)

7)

6)

5)

4)

3)

2)

1)

1)

> update
< process

Step #1

[ b(16) > update 1 b( 1) ' ]<--
[ b(16) '

1

<

process 1 b(16) ] 1

[ b(15) : b(15) ' ] 1

[ b(14) '
: b(14) ' ] 1

[ b(13) '
: b(13) ' ] 1

[ b(12) '
: b(12) ' ] 1

[ bdi) •
: b(ll) ' ] 1

[ b(io) ' : b(10) ' ] 1

[ b( 9) •
: b( 9) ' ] 1

[ b( 8) : b( 8) ] 1

[ b( 7) : b( 7) •
] 1

[ b( 6) •

'

b( 6) ' ] 1

[ b( 5) '

'

b( 5) » ] 1

[ b( 4)
'

b( 4) ] 1

[ b( 3) '

'

b( 3) ' ] 1

[ b( 2) '

'

b( 2) ] 1

[ b( 1) ' b( 1) ]
—

Step #16 Step #17

Figure 8. Weight Updating Process

Note: The prime indicates variables for the next iteration.
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discard old insert new value discard old insert new value
I
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f (15)
f (14)
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(11) '

(10) '

( 9) »

( 8) »

( 7) '

( 6) '

( 5)

( 4)
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->e(16)
e(15)
e(14)
e(13)
e(12)
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>[
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e(15)
e(14)
e(13)
e(12)
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e(10)
e( 9)

e( 8)

e(
e(
e(
e(
e(
e(
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6)

5)

4)

3)
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Figure 9. Sample and Error Array Updating Scheme

Note: Only the oldest sample and error values are physically
replaced; the rest are left in the same place and merely
relabeled.

-> = pointer to oldest, ' = for next iteration

[ f(16) 1 <— > 1 b(16) ] [ f ( 1) '
1 <— > 1 b( 1) ' ]

[ f(15) 1 <—

>

b(15) ] [ f (16) 1 <—

>

b(16) ' ]

[ f(14) 1 <—

>

b(14) ] [ f (15) '
I <—

>

b(15) ]

[ f(13) 1 <—

>

b(13) ] [ f (14) '
1 <— > b(14) ' ]

[ f(12) 1
<--> b(12) ] [ f (13) 1 <—

>

b(13) ' ]

[ f(ll) 1 <—

>

b(ll) ] [ f (12) 1 <— > 1 b(12) ' ]

[ f(10) 1 <— > 1 b(10) ] [ f (11) 1 <— > 1 b(ll) ]

t f( 9) 1 <— > 1 b( 9) ] [ f (10) »
1 <— > b(10) ' ]

[ f( 8) 1 <— > 1 b( 8) ] [ f ( 9) »

] <— > 1 b( 9) ' ]

[ f( 7) ] <— > 1 b( 7) ] [ f ( 8) »
:

<— > 1 b( 8) • ]

[ f( 6) 1 <— > 1 b( 6) ] [ f ( 7) '
1 <— > 1 b( 7) ' 3

[ f( 5) :
<— > 1 b( 5) 1 t f ( 6) ' : <— > 1 b( 6) '

]

[ f( 4) 1 <— > 1 b( 4) ] [ f ( 5) '
1 <— > 1 b( 5) ]

[ f( 3) <— > 1 b( 3) ] [ f ( 4) : 1 <— > 1 b( 4) ' ]

[ f( 2) 1 <— > ! b( 2) ] t f ( 3)
'

1 <— > I b( 3) ' ]

[ f( 1) <— > 1 b( 1) ] [ f ( 2) ' '

1 <— > 1 b( 2) 1

Figure 10. Sample-Weight Pairs Before and After Updating

Note: The pairings remain the same between the arrays.
' = for next iteration
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Optimization for the AAMP

The following section discusses a few of the features of the

AAMP that significantly affect the execution rates of programs.

These factors can be dealt with through coding style and compiler

optimiztion.

As a stack machine, the AAMP performs operations on the top

elements of the stack, popping the arguments off and pushing the

result. To speed this process, there is a provision to hold up

to four of the top values on the stack in registers inside the

processor itself. These registers are transparent to the

programmer; transfers into and out of these registers are handled

automatically by the processor. As elements are placed on the

stack, they are put in the processor registers. If a new value

is to be pushed onto the top of the stack when all processor

registers are full, the bottom element is moved out into memory

to free a register. Later, when the top elements of the stack

are removed by operations, the registers become empty and the

values in memory must be brought back into the registers. Thus,

each time the stack grows to more than four elements, stack

updating must take place. This storage and later retrieval of

stack elements is handled automatically by the processor but is

very costly in terms of processing time. Table 5 compares the

stack updating action with other operations. Each time a stack

element is moved from the registers to memory it must later be

returned to the registers. Therefore, the stack updating time in

this report is the combined storage and retrieval times.
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Table 5. Execution Times of Some Common Operations
(all times in microseconds)

Operation Execution time

Fixed-point multiply 4.75

Floating-point multiply 19.15

Fixed-point addition 0.55

Floating-point addition 7.75

Local reference, 16-bit 0.85

Stack update 3.60

For the preliminary performance estimates, it was assumed

that the processor displaced into memory only enough registers to

make room for the element being pushed onto the stack. Also, the

processor retrieved only enough elements from memory to perform

the current instruction. This is the optimum approach since it

avoids unnecessary transfers and seemed to be the logical way to

implement the stack updating scheme. Tables 3 and 4 demonstrate

the significance of the stack updating in the execution time. If

any other scheme is used, it could degrade performance

significantly.

Due to "real estate" problems encountered in the

implementation of the AAMP on a single chip, it was not possible

to have optimal stack-updating. Instead, Rockwell used the

mapping of opcodes to internal stack status shown in Table 6.

This mapping is nearly optimal with the non-optimal instructions

listed in Table 7 and discussed below.
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Stack
Elements

Opcodes Allowed

00-1F 0-3
20-3F 0-2
40-5F 1-4
60-7F 2-2
80-9F 4-4
AO-BF 3-4
CO-DF 2-4
EO-FF 2-4

Table 6. Opcode to stack update mapping

There are three types of non-optimal stack-updates:

1) Unnecessary - a stack update which provides a range of

stack elements that is more restrictive than required by the

instruction. There is a 0.5 probability that this action must be

reversed in subsequent instructions, causing inefficiency.

2) Inadequate - a stack update which provides a range of

stack elements that is less restrictive than required by the

instruction. The instruction must then continue the stack

updating (if needed) to meet its more restrictive requirements.

This type is harmless.

3) Destructive - a stack update which provides a condition

that must be immediately corrected before the instruction can be

executed.

Key to symbols:
( ) = a harmless state
<- = stack not used by instruction
!? = stack-update which must be immediately undone
# = optimums are 0-0 for PROCID = CENV =

0-4 for PROCID = CENV <>
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Opcode Mnemonic Implemented Optimum

IB INTE 0-3 0-4
ID SKIPI 0-3 0-4
(IF CALLPI 0-3 0-0)
20 NOP 0-2 0-4<-
(23 CALLI 0-2 0-0)
(26 LIT48 0-2 0-1)
28 LIT4B.8 0-2 0-3
29 LIT4B.9 0-2 0-3
2A LIT4B.A 0-2 0-3
2B LIT4B.B 0-2 0-3
2C LIT4B.C 0-2 0-3
2D LIT4B.D 0-2 0-3
2E LIT4B.E 0-2 0-3
2F LIT4B.F 0-2 0-3

(58 TRAP 1-4 1-1)
(5D CALL 1-4 1-1)
(5E CALLP 1-4 1-1)
65 CVTSD 2-2 1-3
66 LOCU 2-2 1-3
67 REFD 2-2 1-3
68 REFDC 2-2 1-3
69 REFDXI 2-2 1-3
6A DUP 2-2 1-3
6C CVTDFE 2-2 2-3
6D CVTFFE 2-2 2-3
6E REFTXI 2-2 1-2
6F REFTX 2-2 2-3
74 REFTI 2-2 0-1 !?

75 REFT 2-2 1-2
76 REFTC 2-2 1-2
77 REFTLE 2-2 0-1 !?
78 REFTU 2-2 2-3
79 DUPT 2-2 3-4 !?

7A INCSLE 2-2 0-4 <-
7B INCSI 2-2 0-4 <-
7C INCS 2-2 1-4
7D DECSLE 2-2 0-4 <-
7E DECSI 2-2 0-4 <-
7F DECS 2-2 1-4
B7 POPD 3-4 2-4
B8 ARS 3-4 2-4
BD EXCEPTO 3-4 #

BE EXCEPT1 3-4 #

BF EXCEPT2 3-4 #

F4 NOT 2-4 1-4
F8 CVTBIT 2-4 1-4
FE HALT 2-4 0-4?<-

Table 7. Instructions with non-optimum stack-updating
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Examination of the assembly listings for the Widrow and

Lattice algorithms led to the conclusion that the nonoptimum

instructions did not have a significant effect on execution rate.

The hand-compiled versions used the LIT4B, REFDXI, DUP and DECSL

instructions while the Ada-subset compiler output used only the

LIT4B instruction. Nonoptimal instructions would be used quite

frequently, however, if triple words were being accessed but

would not be very significant compared with the accompanying

relatively slow extended floating-point operations.

For hand-compilation of algorithms for the performance

estimates, it was assumed that the compiler was not "smart"

enough to generate object code that would not cause stack

updating. This turned out to be the case with the Ada-subset

compiler. There are two methods of avoiding stack updating: 1)

rearranging arguments and 2) storing intermediate results in

temporary locations. These two methods are complementary, and

both have been used in the hand-optimized versions of the

algorithms.

Rearranging arguments is the most desirable way of avoiding

stack updating because it does not require any extra

instructions. This rearranging of arguments is commonly used by

owners of RPN calculators when equations are entered beginning

with the innermost parenthetical expression. Also,

multiplication and division terms are evaluated before addition

and subtraction terms whenever possible. This does not always

work, as in the following case:

F=A*B + C*D
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In this case, both product terms must be evaluated before they

can be summed. As the second multiplication is about to take

place, the product A*B, C and D are on the stack. If being

performed with floating-point numbers, each variable takes up two

storage locations, forcing the stack to have six members (or more

depending on previous actions). This causes at least two stack

updates.

The second way of avoiding stack updates is to store

intermediate answers in temporary locations. In the example

above, the product A*B would be stored in a temporary location

until C*D had been evaluated. Then the value would be retrieved

and the summation could take place. This method is only

economical if the temporary location can be efficiently accessed.

The addressing mode must use immediate data (to avoid pushing

more data on the stack!) or, preferably, the local addressing

mode.

Both of the above methods were used in the optimized

versions of the algorithms. Tables 3 and 4 show that the time

spent on "other" operations increased when the stack updates were

taken out. This was due to the added overhead from the temporary

variables.

A second important feature of the AAMP is its addressing

modes. The methods of addressing array elements are of

particular interest for the evaluation of signal processing

algorithms. The AAMP provides three addressing modes which can

be used for accessing array members: 1) Indexed, 2) Indexed

Immediate, and 3) Constant Offset.

The Indexed addressing mode adds the top two elements of the
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stack to form an address. The top element of the stack

represents the base address of the array while the element next

to the top represents the index into the array. Before adding,

the index is multiplied by two for double-length word accesses

and by three for triple-word accesses. Through use of this

addressing mode, an array element may be specified by index

regardless of the element's word length.

The Indexed Immediate addressing mode is the same as the

indexed mode except that the base address of the array is in

immediate data in the instruction instead of on the top of the

stack.

The third addressing mode is Constant Offset. This mode

works essentially the same as Indexed Immediate except that the

base and offset are added together without taking into account

the word-length of the data being accessed. In other words, the

two numbers are added together without any multiplication of the

offset.

These are not the only methods of referencing arrays, but

they are the most convenient. Other methods include more

complicated calculation of offset and pre-calcul ating addresses

when the index into the array being used for a particular

reference is constant.

The AAMP's addressing modes are very convenient for

referencing data in tables and other common structures, but there

are some actions that are awkward at best for the AAMP to

perform. In particular, block moves and other actions which

require the use of one or more pointers fairly intensively are
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awkward. The processor is fast enough to make these actions

reasonable, but the processor will yield better performance when

other programming techniques are used to perform these tasks.

This was the factor that led to the modified version of the

Widrow algorithm.

Because of the nature of array addressing in the AAMP, the

array's base address must be obtained from either the stack or

the accessing instruction's immediate data bytes. The array

index must be taken from the top of the stack. To get the index

onto the top of the stack, another memory access must have taken

place. If an array member is to be accessed more than once, it

becomes advantageous to store the member in a temporary local

location during its first access. From the next reference until

the last reference, the locally stored variable is accessed.

Quite often, the last access involving a variable is to assign a

new value to it before the next iteration is begun. This allows

the new value to be written directly to the actual array storage

location only.

Another possible optimization is in the case of a loop that

references the k+1 element during the kth iteration. If k+1 is

used more than once in the loop, k + 1 might be calculated once and

stored for future references, but a better solution at the

assembly language level is to specify an offset array base so

that when the Indexed address is calculated, it automatically

includes the +1 offset. This turned out to be one of the few

optimizations the Ada-subset compiler made.

The most efficient storage is in a 16 word Local area.

These locations should be used for the most frequently used

39



variables. For example, during a block move, the pointers must

be continually retrieved from memory. If the Local addressing

mode is used to access the pointers, significant improvements in

performance can be achieved.

Another signifcant factor in signal processing programs is

how efficiently loop structures can be implemented. The AAMP has

a pair of instructions, DO and ENDO, for that express purpose.

Before DO can be executed, the information necessary for control

of the loop must be put on the stack: loop variable address,

initial value, final value and increment value. The DO

instruction is then executed, intializing the variable and

executing the loop. In the process, the initial loop value on

the stack is replaced by the address of the beginning of the loop

(the instruction following DO). At the end of the loop, the ENDO

instruction performs the incrementing and comparison necessary to

determine whether to execute the loop again or to exit. To do

this, the four stack locations containing the information must

all be brought into the registers. Note that the DO instruction

is executed only once but the ENDO instruction is executed every

time the loop is executed.

The assumption made when hand-compiling the algorithms was

that the compiler would use these instructions to implement most

if not all loop structures. This had a rather significant effect

on the execution rates of the algorithms because of the large

number of stack updates it caused. Since all four stack

locations had to be brought into the processor for the ENDO

instruction, any word placed onto the stack automatically led to
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a stack-update. For large loops, this would not constitute a

very significant part of the execution time, but for small loops

the effect is quite significant. In the hand optimizations, the

DO and ENDO instructions were not used but the actions were coded

explicitly. This eliminates the need for four words of

information to be stored on the stack during the loop and does

not cause stack-updates. This change alone accounted for much of

the improved performance in the hand-optimized versions of the

algorithms. It was discovered that the Ada-subset compiler also

discards the DO/ENDO instructions and codes the structures

explicitly.

In the implementation of large signal processing programs,

it is desirable if not necessary to partition the program into

functions and subroutines or procedures. This partitioning

offers the advantages of making the program easier to understand,

maintain and modify. The following discusses the resources

available in the AAMP to implement such partitioning.

The structures of functions, subroutines and procedures can

all be implemented through use of the AAMP's CALL and RETURN

instructions. These instructions are powerful because they allow

the programmer to set up a local environment and to pass

parameters using only a few instructions. Working with this

mechanism is the instruction LOCNL (locate nonlocal) which will

search through the process stacks until it finds the specified

PROCID and locates the specified variable. This mechanism allows

variables to be accessed from calling procedures without passing

the variables as arguments or making the variables global. An

example of where this would be useful is when a procedure which

41



has created a local array calls another procedure to manipulate

the array. Using LOCNL, the called procedure can locate the

array base and calculate the positions of the individual

elements.

The chief advantages of the AAMP's procedure calling

mechanism are the ease of programming and the flexibility it

allows in the calling order of procedures. The alternative is to

put a return address and arguments on the stack and SKIP to the

subroutine. The subroutine would return by SKIPing to the return

address left on the stack. The advantage of this alternative

method is that it requires less execution time. The

disadvantages are that more care must be taken in accessing

variables and passing parameters and that new local storage is

not set up for temporary variables used by the function. A

break-even point can be calculated where the savings from local

referencing set up by a procedure call become greater than the

procedure call's overhead. Both single and double word

references and assignments take one more microcycle and one half

more instruction fetch for Local Extended than for Local

addressing. The CALLI, LIT4A and RETURN instructions require 31

microcycles, 4.5 fetch cycles, 3 read cycles and 4 write cycles.

In addition, 6 microcycles, 1 read cycle and 1 write cycle are

required for each argument returned. Using these figures, 27

Local Extended accesses require the same amount of execution time

as 27 Local accesses plus a procedure call with no arguments

returned. Thus, 27 or more accesses make the procedure call

economical. The other advantages, however, should encourage the
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use of the CALL/RETURN mechanism more often than what is strictly

economical.

Another possibility is that of doing away with the looping

structures altogether and using "in-line" code. This is not a

very graceful solution but should be considered, especially in

light of the good code density characteristic of AAMP. Instead

of a looping structure where each iteration processes a

corresponding stage, in-line code would have a specific set of

instructions for each stage. Instead of using the loop variable

as an index into the arrays, sections of in-line code would

contain the exact address of the element of interest, coded as

bytes of immediate data.

Compiler optimizations

In the past, digital signal processing programs written for

microprocessors have had to be hand-coded, with the utilization

of as many assembly language "tricks" as possible. As a result,

program efficiency was to a large degree a function of the

programmer's cleverness. Unfortunately, there always seems to be

a shortage of clever programmers and the cleverness must often

later be unraveled. If feasible, the ability to program in high-

level languages would greatly decrease the programming and

maintenance time.

The efficiency of execution of compiled high-level languages

seems to be dependent on three factors: 1) the ability of the

compiler to manipulate the program without altering the

semantics, 2) the mapping of compiled structures into machine

43



language instructions and 3) the execution speed of these

instructions.

The first factor, the manipulation of the algorithm, is

dependent upon the compiler. After the compiler has converted

the program into an internal form, often an abstract syntax tree,

this internal form can be rearranged and condensed.

Rearrangement uses commutati vity to produce a more efficient

order of evaluation. The internal form can be condensed by

the calculation of constant expressions, elimination of common

subexpressions, etc. [61.

The second factor, the translation of compiled constructs

into machine language instructions, is mostly dependent on the

microprocessor's acrhi tect ur e. Most register-oriented

microprocessors must use several machine language instructions to

implement a complex operation such as a procedure call or

a floating-point multiply. In particular, the allocation of

their registers is critical to performance. Because of the

AAMP's instruction set and stack architecture, high-level

languages map quite directly into machine language instructions.

Another way to state this is to say that AAMP programs exhibit

good code densities. Stack machines have no register allocation

problems but instead must strive to keep few arguments on the

stack. This is somewhat less of an optimization problem than

register allocation.

The third factor, the execution speed of the instructions,

depends on the technology of the implementation and appears to be

quite adequate in the case of the AAMP. The specifics of this
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can be found elsewhere. [7]

The potential efficiency of compiled high-level languages

was first assessed when the Widrow and Lattice algorithms were

compiled. To examine the first two factors more closely, a

program titled ADATESTS was coded in both integer and floating-

point versions. This program was then compiled by the ICSC Ada-

subset compiler at Collins-Rockwell. The results of this test

show directly only what had been implemented on this compiler but

should indicate problems other compiler implementations might

encounter. Many common structures and commonly optimized

expressions were placed in this program:

- while , for and loop structures

- function and procedure calls

- commutative rearrangement of expressions

- optimization between statements

- constant expression evaluation

- loop invariant expressions

- use of the increment instruction

Examination of the compiled object code revealed little

optimization but did reveal an efficient translation of high-

level structures into machine language instructions. Exceptions

found were the DO/ENDO intructions discussed previously and the

DUP and INC instructions. The compiler, however, did calculate a

constant expression in the integer version. Also, in the Lattice

and Widrow programs, Local Extended addressing was used to access

specific array elements by computing the address of the element

at compile time.

The optimizations not present in the Ada-subset compiler
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are practical but had not yet been added due to lack of time.

Another pass could be added to the compiler to take the

intermediate code macros it produces and optimize them before

the macro assembler generates object code. With this, the

compiler's output would be very close to that produced by a

skilled programmer. Optimization on the programmer's part would

then be performed only by simplifying the high-level

representation.
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Performance measurements

Table 8 shows the total numbers of various types of cycles

for each of the versions of the algorithms coded. These numbers

were derived from the program listings and Rockwell's "AAMP

Instruction Execution Statistics" document [7], These totals are

provided here to show how the data shown in earlier tables were

arrived at and to allow performance calculations for various

memory speeds and processor clock speeds. The following

equations were supplied in Rockwell documents to calculate

execution times. The following section will develop a variant of

this equation which was used for the execution rate estimations.

Briefly, the equation from Rockwell does not take into account

synchronization.

Te = Nc * Tc

+ Nf * (Tf + (S+3) * Tc/4)

+ Nr * (Tr + (S+3) * Tc/4)

+ Nw * (Tw + (S+2) * Tc/4)

+ Nb * Tb

where:

T = time

N = number of actions

S = set-up time configuration of the processor

e = total execution

c = internal cycles

f = instruction fetches

r = data reads

w = data writes

b = bus cycles
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Table 8 Microcycles Required by the AAMP

Algorithm Cycles Fetches Reads Writes

Fixed Point:

Standard Lattice 7311 735 594 228

Optimized Lattice 5531 581 482 164

Floating Point:

Standard Lattice 26270 7 85 1107 566

Optimized Lattice 21818 7 91 835 405

Fixed Point:

Standard Widrow 4953 482.5 463 261

Modified Widrow 3827.5 339.5 334 173

Optimized Widrow 2290 3 52 271 77

11765 506.5 708 441

10286.5 363 520 309

7541 411.5 424 149

Floating Point:

Standard Widrow

Modified Widrow

Optimized Widrow

Since the AAMP is being evaluated for use on small systems,

bus arbitration is unnecessary and Tb = 0, canceling the last

term in the equation. Rockwell has done all of its

specifications using a 20 MHz external clock and seems to be

getting parts to run at that speed or better, so 20 MHz was used

for this study. The microcycle clock frequency is the external
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clock frequency divided by 4; thus, Tc = 200 ns. The fetch, read

and write times depend on the memory used and on the method of

generating control signals. To be conservative, 200 ns was

allowed for each write and 250 ns for each fetch and read cycle.

This could represent any one of the following conditions:

1) Tw = Tr = Tf = 100 ns, S = 0.

2) Tw = Tr = Tf = 50 ns, S = 1.

3) Tw = Tr = Tf = ns, S = 2.

These seem to represent a wide variety of set-up times which

should surely allow a common RAM to be used. It is possible that

such a system will be able to run without wait-states (S=0, Tf=0,

Tr=0 and Tw=0), but this needs to be investigated further.

To check the validity of the estimates, the programs were

written in Ada and executed on a Rockwell development system at

Collins-Rockwell in Cedar Rapids, Iowa. The output of the Ada-

subset front-end is in the form of macro-instructions for a

general stack machine, which is then translated into machine

instructions for either the VAX, 8086 or in this case, the AAMP.

The object code output was down-loaded into the AAMP test

equipment and executed. A Hewlett-Packard logic analyzer was

used to monitor execution rates of the programs.

Because there were no analog-to-digital or digital-to-analog

converters available on the AAMP development system, memory

locations (variables in the high-level notation) were read from

and written to respectively. This should approximate memory-

mapped real devices except for the lack of control signals and

possible overflows and underflows due to non-varying input
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(unchanged memory contents) into the adaptive digital filter.

The algorithms have been checked by several people and appear to

be correct, but have not been run with actual data.

In the Ada-subset coding, a pragma was used to instruct the

compiler to generate code which does not check for array bounds

errors during execution. This checking would be very costly when

the number of array references is taken into account. Including

this pragma increases the execution rate significantly but puts

the burden on the programmer of guaranteeing correctness of

references. In these small programs, this represented no

problem. In larger programs, the pragma could be omitted until

the program is debugged and then inserted to increase execution

speed.

Table 9 compares estimated and measured sampling rates for

the Widrow and Lattice algorithms. The measured values were

obtained during the April 16-17 visit to the Rockwell facility in

Cedar Rapids, Iowa. These algorithms were coded in Ada and were

executed on a test system.

The timing differences between the estimated and measured

values are due primarily to coding differences. To check the

timing estimates, the following major coding differences were

taken into account. First, the Ada-subset compiler does

virtually no optimization. In the Widrow, a multiplication that

was moved outside of a loop in the estimated version was left

inside in the measured version. The Ada-subset compiler did not

use the DO/ENDO instructions, and therefore produced fewer stack-

updates and faster execution. These differences are shown in
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Tables 10 and 11. Some differences in execution time remain

unaccounted for but probably would not be if all coding

differences were reconciled. Also, floating-point instruction

times vary according to the data used.
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Table 9. Estimated vs measured execution rates

Samples/Second

Algorithm Timing
Parameters

Estimated
(20 MHz)

Actual
(20 MHz)

Actual
(30 MHz)

Widrow, integer s=0 780 826 1156

s=l 773 766 1140

s=2 698 741 1042

s=3 693 694 1031

Widrow, floating s=0

s=l

s=2

3 57

354

335

422

3 92

606

565

Lattice, integer s=0

s=l

s=2

488

483

446

481

427

625

617

ice, floating s=0 168

s=l 166

s=2 161

176

168

258

245

All measured times use XAQ=XRQ, BG=BR and Tb<0 ns,
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During this benchmarking, the use of an odd number of set-up

cycles (S) caused erratic measurements. This problem was due to

the bus delays in the test system and a synchronization action of

the AAMP which is discussed below.

Although the AAMP interfaces with external devices in an

asynchronous manner, the signals are synchronized internally.

Figures 11a and lib contain timing diagrams showing this

synchronization for read and write cycles respectively. A bus

cycle begins in the middle of the 5 MHz microcycle clock and

stops the microcycle clock until the bus cycle is complete. The

microcycle clock is then restarted and continues the second half

of the microcycle.

When the microcycle clock is stopped, the AAMP attempts to

assert Bus Request. Bus Request can only become active when Bus

Grant, Transfer Acknowledge and Transfer Error are inactive. In

this manner, the AAMP will not disrupt other processors which

might be using the bus or use a bus which has failed. External

bus arbitration logic responds to Bus Request with a Bus Grant

when appropriate. If there is only one processor on the bus, Bus

Request and Bus Grant can be tied together, by-passing the bus

arbitration logic. When received, however, Bus Grant is

synchronized internally so that for a 20 MHz clock, tying Bus

Grant to Bus Request (Tb = 0) gives no time improvements over a

bus acquisition time of slightly less than one clock cycle (Tb <

50 ns).
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Figure 11a. Read Cycle Synchronization

20 Mh2j [_n_n
10 Mhz I

[
r

CLOCK

BR

|«-j- clock stopped

BG

XRQ

XAK

Figure lib. Write Cycle Synchronization
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When Bus Grant has been received, the address, data and

status line drivers are enabled immediately. These signals are

then given time to propagate through the bus interface before a

Transfer Request is asserted. This time comes from the Bus Grant

synchronization delay plus one clock cycle for reads, or plus two

clock cycles for writes. The SI and SO pins provide a means of

externally selecting an additional set-up time of from zero to

three cycles. Thus, if Bus Request is tied to Bus Grant and SO =

SI = 0, there will be nearly two clock cycles (100 ns) from Bus

Request to Transfer Request for a read and three clock cycles

(150 ns) for a write.

The device being accessed is responsible for generating a

Transfer Acknowledge in response to a Transfer Request, allowing

itself enough time to operate correctly. Transfer Acknowledge

is, however, synchronized internally with the 10 MHz clock,

probably to ensure the microcycle clock restarts correctly.

Because of this synchronization, there must be an integer number

of 10 MHz clock cycles and thus an even number of 20 MHz clock

cycles between Bus Request and the internally synchronized

Transfer Acknowledge.

The microcycle clock is restarted when the synchronized

Transfer Acknowledge is received in the case of a write, or after

an additional 10 MHz clock cycle in the case of read. Transfer

Request and the other address, data and status lines remain

active until the end of the microcycle (100 ns after the clock is

restarted). Hold and Bus Request remain active until the middle

of the next microcycle, the point where another bus transaction

could begin. Because of this, the processor can make consecutive
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bus transactions without relinquishing the bus, thus eliminating

the bus arbitration logic delay. The minimum, however, is the

same as the case where Bus Request is tied to Bus Grant due to

synchronization.

The key to the previously mentioned problem with an odd

number of set-up cycles is that because of the 10 MHz

synchronization, the Transfer Request assertion is delayed

without lengthening the total bus transaction time. The amount

of time Transfer Request is active is thus shortened. Usually,

Transfer Request is used to select the memory device and erratic

operation may result if it is not selected for a sufficient

amount of time.

The above analysis is summarized in Figure 12a in the form

of a timing worksheet. Note that Transfer Request is active from

the end of the set-up time until the end of the microcycle.

Applying the worksheet to the conditions that existed for the

benchmarking shows that at 20 MHz and SI, SO = 0, Transfer Request

is active six clock cycles (300 ns) for a read and three clock

cycles (150 ns) for a write. With SI = and SO = 1 (one set-up

cycle), Transfer Request is shortened to five clock cycles (250

ns) for a read and lengthened to four cycles (200 ns) for a

write. The shortened read select in combination with bus delays

most probably caused the erratic operation.

Once the timing worksheet has been filled out, it is then

possible to calculate the execution times of instructions.

Figure 12b shows the numbers used for the performance estimates.

Because of the predictable nature of translation from high-level
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representations to AAMP instructions, it is possible to quickly

estimate the execution rate of an algorithm from a high level

language representation. This process is summarized in another

worksheet provided in Figure 13. By counting the occurrences of

various types of references, arithmetic operations and loops, the

majority of operations have been accounted for and a reasonable

estimate of the execution rate of an algorithm can be obtained.

This quick estimate is for single and double precision fixed-

point and single precision floating-point only. Less frequently

used operations such as type conversion are not included. By far

the most important operation omitted is the stack-updating. The

resulting estimate assumes that the coding was such that no

stack-updating occurred. As discussed earlier, this could be

brought about by making the compiler optimize more or by hand-

coding the program. Otherwise, a hand-optimized version will

likely yield only small amounts of improvement unless high-level

optimizations such as loop invariants are ignored.

The original performance estimates used the equations

supplied by Rockwell in [7] which failed to take into account the

synchronization action. These estimates have since been

recalculated to reflect the correct timing using the equations at

the bottom of Figure 13.

Another undocumented feature of the AAMP is a limited

prefetch feature. A single portion of the AAMP's

microinstruction word controls either its shift registers or its

bus cycle logic. During long instructions which are not

performing any shifts, the instruction word containing the next

opcode can be fetched if it is not already in the upper byte of
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the word in the instruction latch. This prefetching does not

appear to increase the execution rate because the opcode fetch

microcycle must be performed by the instruction anyway. The only

difference is that the time for the bus transaction is taken

during a different microcycle.
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Figure 12a. AAMP Timing Worksheet

read write

Bus Request to Bus Grant

Set-up overhead

Set-up cycles (0-3)

Transfer Request to
Transfer Acknowledge

SUBTOTAL

Add 1 if SUBTOTAL is odd

10 MHz cycle for read

TOTAL CYCLES Cf = Cr = Cw =.

Figure 12b. Timing parameters used for estimates

Bus Request to Bus Grant 1 * 1 *

Set-up overhead 1 2

Set-up cycles (0-3)

Transfer Request to
Transfer Acknowledge

SUBTOTAL

Add 1 if SUBTOTAL is odd

10 MHz cycle for read

TOTAL CYCLES Cf = Cr = 6 Cw =.

Note: * indicates that the number should be rounded up to the
next highest integer; the minimum is one cycle.
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Figure 13. Execution Rate Estimate Worksheet
Operation totals

Nc Nf Nr Nw Instances Nc Nf Nr Nw

Reference Variable (non-indexed)

s.p. fixed 2

d.p. fixed 3

s.p. floating 3

Reference Fixed-index variable

s.p. fixed 3

d.p. fixed 4

s.p. floating 4

Reference Indexed variable

s.p. fixed 7

d.p. fixed 9

s.p. floating 9

Assign Variable (not indexed)

s.p. fixed 2 0.5 1

d.p. fixed 3 0.5 2

s.p. floating 3 0.5 2

Assign Fixed-index variable

s.p. fixed 3

d.p. fixed 4

s.p. floating 4

Assign Indexed variable

s.p. fixed 7

d.p. fixed 9

s.p. floating 9

Constants

s.p. fixed 1

d.p. fixed 4

s.p. floating 4

Addition

s.p. fixed 2

d.p. fixed 3

s.p. floating 38

0.5 1

2

2

0.5
0.5

1 1

2

2

1

1

3 2

3

3

3

3

0.5
1 2

1 2

0.5
0.5
0.5

1 1

1 2

1 2

3 11
3 12
3 1 2
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Figure 13 (continued) . Execution Rate Worksheet

Subtraction

s.p. fixed 2

d.p. fixed 3

s.p. floating 38

0.5
0.5
0.5

0.5
0.5
0.5

Multiplication

s.p. fixed 23
d.p. fixed 74
s.p. floating 94

Division

s.p. fixed 27

d.p. fixed 78
s.p. floating 98

Procedure/ function
Call and Return

30 4 3 4

plus for N return parameters
6N N N

Loop structure

initial 15.5 5.5 1 1

plus for N iterations
24.5 9 2 2

If. . . then. . .else

If branching 2 1.5
else branching 2 1.5

Goto

TOTAL

1.5

0.5
0.5
0.5

TOTAL CYCLES = Nc * 4 + Nf * Cf + Nr * Cr + Nw * Cw

Note: Cf, Cr and Cw come from the AAMP Timing Worksheet

ITERATIONS/ SECOND = CYCLES/ SECOND
TOTAL CYCLES
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Table 10. Widrow coding differences

Fixed-point Floating-point
Nc Nf Nr Nw Nc Nf Nr Nw

Estimated 4953 482.5 463 261 11765 506.5 708 441

Invariant -30 -3
Multiplication +384 +16

Loop structure +724 +376

Stack updates -2115

Index ref.s +280 +70

Loop var refs +140 +7

Constants -16

Cnst Indxd vars -6 -3

k+1 calculation -90 -30

New estimate 4230 962,

-1 -1 -106 -4 -2 -2
+1584 +2 4 +3 2

+50 +724 +376 +50

-141 -141 -2820 +188 +188

+140 +7

+140 +7

+3 2 -32 -48 +6 4

-6 -4.5 +3

-90 -3

413 119 11299 95 9 667 251

Table 11. Lattice coding differences

Fixed-point Floating-point
Nc Nf Nr Nw Nc Nf Nr Nw

Estimated 7311 735 594 228 26270 785 1107 566

Loop structure +247 +128 +17 +247 128 17

Stack updates -720 -48 -48 -960 -64 -64

Constants -24 +48 -48 -72 +64

DUP not used +160 +48 +64 +160 +48 +48

New estimate 7494 1015 691 196 25957 1017 1188 518
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Results and Conclusions

The AAMP offers significant improvements over previously

evaluated processors due to its powerful instruction set and low

power consumption. The execution statistics for previously

evaluated processors are shown in Tables 12 and 13 for the Widrow

and Lattice algorithms respectively. Unfortunately, information

on digital signal processing execution by 16 bit microprocessors

was not available. Other microprocessors which might compete

with the AAMP, such as the Motorola's 68000 or National's 16032,

are not currently available in low-power versions. AAMP's

closest rival would probably be Intel's 80C86, which has to use

an external multiplier board or an external 8087 math chip, thus

increasing power consumption. Execution data comparing AAMP and

these other microprocessors for other types of programs have been

published [41. The AAMP appears to live up to published

performance claims and (unlike other recently released advanced

microprocessors) no bugs were observed. Undocumented features

found were: a limited instruction prefetching, nonoptimal stack

updating and synchronized timing. None of these features appear

to significantly affect performance.
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Table 13. Lattice Implementation Comparisons
(all times in microseconds)

fixed-point floating-point

NSC800 AAMP AAMP AAMP AAMP
Action (8-Stage) (optimized) (optimized)

Multiply type HW HW HW HW HW

Multiply time 74.5 4.75 4.75 19.15 19.15

22.60 13.50 57.40 41.25

11.80 8.70 43.00 34.05

38.15 28.30 128.35 110.60

37.70 30.10 131.70 109.70

3.25 2.90 4.25 4.25

6.10 7.85 8.10 9.85

Input from A/D 32.25 11.65 8.20 17.75 14.30
and init. loop

Loop:

Compute e(l+l) 122.0

Compute w(l+l) 119.25

Compute v(l) 364.50

Update weights 403.25

wl(l)=w(l) 27.50

Loop overhead

Output 10.50 4.05 4.05 8.85 8.85

Totals:
8-Stage 8334.75 972.50 743.05 3009.00 2500.75

16-Stage - 1929.30 1474.30 5991.40 4972.90

Sampling rate (in Hz):

8-Stage 121 1028 1346 332 400

16-Stage - 518 678 167 201
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After a preliminary learning period, the AAMP intruction set

was quite easy to use. Coding was easy because of the relative

symmetry of the instruction set, which is demonstrated by the

side-by-side listings of the fixed-point and floating-point

versions.

The lack of registers eliminates register usage optimization

but introduces other optimization problems. First, the number of

arguments on the stack must be limited to avoid stack-updates.

Secondly, the Local memory locations must be used wisely for most

efficient operation. Both of these problems, especially the

former, can probably be dealt with more easily than register

optimizations on other microprocessors. The ease of

optimization and high-level language support structures indicate

that compilers could produce code very nearly as efficient as

that of assembly language programmers. While not very important

for this application, the high code density characteristic of the

AAMP is an indicator of the instruction set's efficiency.

To further ensure efficiency, compilers could be modified to

optimize structures common to signal processing programs.

An important factor in using a microprocessor is the

availability and completeness of documentation. With the

exception of timing specifications, the documentation provided is

as good if not better than that available for most commercially

marketed microprocessors. The lack of timing specifications was

due to Rockwell's use of the processor primarily on a CPU board

with a bus interface. The bus timing information was supplied,

however, and the Rockwell personnel were cooperative in answering

questions.
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Most signal processing algorithms rely heavily on arrays of

values, which can be efficiently implemented with index

registers. The AAMP's lack of index registers is compensated for

by its speed, but best performance can be achieved by avoiding

structures such as block-transfers which require pointers.
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Appendix A: Notes on Widrow and Lattice Listings

The following are lists of variables used in the hand-

compiled Widrow and Lattice algorithms. These lists may help to

explain the use of certain addressing modes in the algorithms.

It was assumed that the necessary declarations were made in the

high-level language to establish the named variables as local.

Not shown but common to all implementations are the digital-to-

analog and analog-to-digital converters which are assumed to be

memory-mapped and are referenced through use of the Universal

addressing mode. The universal addressing mode allows a complete

address to be specified, which might make upper address line

decoding easier.

Standard Lattice:

Local variables

present_w
present_e
next_w
next_e
*1 (loop variable)

Non-local variables

k( )

wl( )

v( )

Optimized Lattice:

Local variables

present_w
present_e
next_w
next_e
*1 (loop variable)
wl_l
k_l
**temp

Non-local variables

k( )

wl( )

v( )
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Traditional Widrow:

Local variables

f

g
*k (loop variable)
e
c

q

Non-local variables

b( )

f( )

e( )

Modified Widrow:

Local variables

f

g
*k (loop variable]
e

c

q
*ptr

Non-local variables

b( )

f( )

e( )

Optimized Widrow:

Local variables

f

g
*k (loop variable)
e
c

q
*ptr
**temp

Non-local variables

b( )

f( )

e( )

Since only the execution times were important, no attempt

was made to write initialization or exception handling routines,

assign actual memory addresses to variables or include opcodes.

The single asterisk denotes variables that are always

integer. The rest of the variables and arrays vary according to

the number system in use. The double asterisk denotes variables

that are used only in the floating-point or double-precision
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fixed-point implementations.

An important point is that there are only 16 local memory

words. These 16-bit words can store either 16 single-precision

numbers, 8 floating-point (or double-precision fixed-point)

numbers or some combination of the two. Fifteen of the sixteen

available locations were used in the optimized Lattice, but some

programs could require more, thus calling for careful coding or a

good compiler to make the most of these locations.

A point that might not be immediately obvious is that the

five instructions generated from a "do" statement initialize the

loop and are only executed once. On the other hand, the "endo"

instruction is executed each time the loop is executed.

Unlike the first three listings, the two optimized listings

use low-level manipulations. The majority of the changes come

from the following optimizations:

- Using a series of instructions to replace the "do" and

"endo" instructions to avoid stack penalties.

- Changing an incrementing loop to a decrementing loop to

allow easier testing for the final value (0).

- Rearranging arguments to avoid stack penalties.

- Using DUP to leave an argument on the stack for the next

operation.

- Storing frequently referenced indexed variables into local

memory for more efficient access.

- Using REFSC in place of REFSXI because both do the same

thing but REFSC has a shorter instruction (fewer instruction

fetches)

.
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Standard Widrow listing

This listing approximates the output of a non-optimizing

compiler for the algorithm given below. The program was

translated quite directly and few assembly language modifications

were made.

loop: f = adc_in

g =

do k = 1,16

g = g + b(k) * f(k)

endo

e = f - g

c = v * e

do k = 1,16

b(k) = u * b(k) + c * f(k)

endo

q = q - e(16) + e

dac_out = q * q

do k = 1,15

e(k+l) = e(k)

f(k+l) = f(k)

endo

e(l) = e

f(l) = f

goto loop

Note: + = indicates a stack update
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comments

loop: f = adc_in'

read ADC

convert to f.p.

store f

fixed-point floa ting-point

opcode Nc Nf Mr Nw opcode Nc Nf Nr Nw

LIT3 2 5.0 2.5 - - LIT3 2 5.0 2.5
REFSU 5.0 0.5 1 - REFSU 5.0 0.5 1 -

- CVTSD 2.0 0.5
- CVTDF 21.0 0.5

ASNSL 2.0 0.5 - 1 ASNDL 3.0 0.5 - 2

12. 3.5 1 1 36. 4.5 1 2

'g = 0'

get
store g

LIT4
ASNSL

1.0 0.5
2.0 0.5

3. 1.

LITD0
ASNDL

2.0 0.5
3.0 0.5

5. 1. -

"do k = 1,16'

loop var. addr.
initial value
final value
increment

LIT16
LIT4
LIT8
LIT4
DO

3.0
1.0
2.0
1.0

10.0

17. 5.5 -

LIT16
LIT4
LIT8
LIT4
DO

3.0 1

1.0
2.0 1

1.0
10.0 2

17. 5.5 -

"g = g + b(k) * f(k)"

get g +REFSL 2.0 0.5 1 - ++REFDL 3.0 0.5 2 -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get b(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get f(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

store in g ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

41. 6. 5 1 153. 6. 8 2

"endo"

end of loop ENDO 9.0 1.0 1 1

9. 1. 11

ENDO 9.0 1.0 1 1

9. 1. 11
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iteration total
loop total

50 7

800 112
6 2

96 32
162 7 9 3

2592 112 144 48

'e = f - g'

get f REFSL 2.0 0.5 1 - REFDL
get g REFSL 2.0 0.5 1 - REFDL
subtract SUB 2.0 0.5 - - SUBF
store e ASNSL 2.0 0.5 - 1 ASNDL

8. 2. 2 1

3.0 0.5 2 -

3.0 0.5 2 -

40.0 0.5
3.0 0.5 - 2

49. 4 2

c = v

get v LIT16 3.0 1.5 LIT3 2

get e REFSL 2.0 0.5 1 - REFDL
multiply MPYI 23.0 0.5 MPYF
store c ASNSL 2.0 0.5 - 1 ASNDL

30. 3. 1 1

5.0 2.5
3.0 0.5 2 -

95.0 0.5 - -

3.0 0.5 - 2

106. 4. 2 2

do k = 1,16'

loop var. addr. LIT16 3.0 1.5 - - LIT16 3.0 1.5 - -

initial value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

final value LIT8 2.0 1.0 - - LIT8 2.0 1.0 - -

loop increment LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

DO 10.0 2.0 - 1 DO 10.0 2.0 - 1

17. 5.5 - 1 17. 5.5 - 1

'b(k) = u * b(k) + c * f(k)

get u
get k

get b(k)
multiply
get c
get k

get f(k)
multiply
add
get k

store b(k+l)

+LIT16 3.0 1.5 - - ++LIT3 2 5.0 2.5 - -

+REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

+REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

ASNSXI 4.0 1.5 — 1 ASNDXI 5.0 1.5 — 2

71. 9.5 6 1 257. 10.5 9 2

'endo'
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end the loop ENDO 9.0 1.0 1 1

9. 1. 11

ENDO 9.0 1.0 1 1

9. 1. 11

iteration total
loop total

80 10.5 7 2

1280 168 112 32
266 11.5 10 3

4256 184 160 41

q = q - e(16) + e'

get q REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get 16 LIT8 2.0 1.0 - - LIT8 2.0 1.0 - -

get e(16) REFSXI 4.0 1.5 1 - REFDXI 5.0 1.5 2 -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

get e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

duplicate q DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

store in q ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

17. 5.5 3 1 96. 5.5 6 2

'dac_out = q * q"

duplicate q DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

square q MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

convert from f.p. CVTFD 17.0 0.5 - -
- CVTDS 3.0 0.5 - -

write to DAC LIT32 5.0 2.5 - - LIT3 2 5.0 2.5 - -

ASNSU 5.0 0.5 - 1 ASNSU 5.0 0.5 - 1

34. 4. - 1 127. 5. - 1

"do k = 1,15"

loop var. addr. LIT16 3.0 1.5 — — LIT16 3.0 1.5 — —

initial value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

final value LIT8 2.0 1.0 - - LIT8 2.0 1.0 - -

loop increment LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

DO 10.0 2.0 - 1 DO 10.0 2.0 - 1

17. 5.5 - 1 17. 5.5 - 1

"e(k+D = e(k)"

get k +REFSL 2.0 0.5 1

get e(k) REFSXI 4.0 1.5 1

get k +REFSL 2.0 0.5 1

get 1 +LIT4 1.0 0.5 -

+REFSL 2.0 0.5 1 -

+REFDXI 5.0 1.5 2 -

+REFSL 2.0 0.5 1 -

+LIT4 1.0 0.5 - -
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add
store e(k+l)

ADD 2.0 0.5 - -

ASNSXI 4.0 1.5 - 1

15. 5. 3 1

ADD 2.0 0.5 - -

ASNDXI 5.0 1.5 - 2

17. 5. 4 2

"f(k+D = f(k)

get k

get f(k)
get k

get 1

add
store f(k+l)

REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

REFSXI 4.0 1.5 1 - REFDXI 5.0 1.5 2 -

REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

ADD 2.0 0.5 - - ADD 2.0 0.5 - -

ASNSXI 4.0 1.5 — 1 ASNDXI 5.0 1.5 — 2

15. 5. 3 1 17. 5. 4 2

"endo"

end the loop ENDO 9.0 1.0 1 1

9. 1. 11

ENDO 9.0 1.0 1 1

9. 1. 11

iteration total
loop total

39 11 7 3

585 165 105 45
43 11 9 5

645 165 135 75

e(l) = e'

get e
get 1

store in e(l)

REFSL 2.0 0.5 1 -

LIT4 1.0 0.5 - -

ASNSXI 4.0 1.5 - 1

7. 2.5 1 1

REFDL 3.0 0.5 2 -

LIT4 1.0 0.5 - -

ASNDXI 5.0 1.5 - 2

9. 2.5 2 2

f(l) = £'

get f

get 1

store in e(l)

REFSL 2.0 0.5 1 -

LIT4 1.0 0.5 - -

ASNSXI 4.0 1.5 - 1

7. 2.5 1 1

REFDL 3.0 0.5 2 -

LIT4 1.0 0.5 - -

ASNDXI 5.0 1.5 - 2

9. 2.5 2 2

"goto loop"

repeat LIT8N 2.0 1.0 LIT8N 2.0 1.0
SKIP 2.0 1.0 SKIP 2.0 1.0 - -

4. 2.0 4. 2.0
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total instr. cycles 2838 482.5 322 120 7985 506.5 456 189
stack updates 2115 - 141 141 3780 - 252 252

TOTAL 4953 482.5 463 261 11765 506.5 708 441
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Standard Lattice listing

This listing approximates the output of a non-optimizing

compiler for the algorithm given below. The program was

translated quite directly and few assembly language modifications

were made.

begin present_w = adc_input

present_e = present_w

loop do 1 = 0,15

next_e = present_e - k(l) * wl(l)

next_w = wl(l) - k(l) * present_e

v(l) = beta * v(l) + betal * (present_e *

present_e + wl(l) * wl(D)

k(l) = k(l) + alpha * (next_e * wl(l) + present_e

* next_w)/v(l)

wl(l) = present_w

present_w = next_w

present_e = next_e

endo

dac_out = present_e

goto begin

Note: + indicates a stack update.
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comments

'begin present_w
present_e

read ADC

convert to f.p.

duplicate data
store present_w
store present_e

fixed-point

opcode Nc Nf Nr Nw

adc_input
present_w"

LIT32 5.0 2.5
REFSU 5.0 0.5 1 -

DUP 1.0 0.5 - -

ASNSL 2.0 0.5 - 1

ASNSL 2.0 0.5 - 1

15.0 4.5 1 2

floating-point

opcode Nc Nf Nr Nw

LIT32 5.0 2.5 - -

REFSU 5.0 0.5 1 -

CVTSD 2.0 0.5 - -

CVTDF 21.0 0.5 - -

DUPD 2.0 0.5 - -

ASNDL 3.0 0.5 - 2

ASNDL 3.0 0.5 - 2

41.0 5.5 1 4

loop do 1 = 0,15'

loop var. addr. LIT16 3.0 1.5 - - LIT16 3.0 1.5 - -

initial value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

final value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

increment LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

DO 10.0 2.0 - 1 DO 10.0 2.0 - 1

16.0 5.0 - 1 16.0 5.0 - 1

'next_e = present_e - k(l) * wl(l) 1

get present_e +REFSL 2.0 0.5 1 - ++REFDL 3.0 0.5 2 -

get 1 +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get k(l) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

get 1 +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get wl(l) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

store next_e ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 - 2

41.0 6.0 5 1 155.0 6.0 8 2

"next_w = wl(l) - k(l) * present_e'

get 1 REFSL 2.0 0.5 1

get wl(l) REFSXI 4.0 1.5 1

get 1 REFSL 2.0 0.5 1

get k(l) REFSXI 4.0 1.5 1

get present_e REFSL 2.0 0.5 1

multiply MPYI 23.0 0.5 -

subtract SUB 2.0 0.5 -

store next w ASNSL 2.0 0.5 -

REFSL 2.0 0.5 1 -

REFDXI 5.0 1.5 2 -

REFSL 2.0 0.5 1 -

REFDXI 5.0 1.5 2 -

++REFDL 3.0 0.5 2 -

MPYF 95.0 0.5 - -

SUBF 40.0 0.5 - -

ASNDL 3.0 0.5 - 2
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41.0 6.0 5 1 155.0 6.0 8 2

v(l) = beta * v(l) + betal *

(present_e * present_e + wl(l) * wl(D)

get beta LIT16
get 1 REFSL
get v(l) REFSXI
beta*v(l) MPYI
get betal LIT16
get present_e REFSL
square present_e +DUP

MPYI
get 1 REFSL
get wl(l) REFSXI
square wl (1) +DUP

MPYI
sum ADD
multiply MPYI
sum ADD
get 1 REFSL
store v(l) ASNSXI

3.0 1.5
2.0 0.5 1 -

4.0 1.5 1 -

23.0 0.5
3.0 1.5
2.0 0.5 1 -

1.0 0.5
23.0 0.5
2.0 0.5 1 -

4.0 1.5 1 -

1.0 0.5
23.0 0.5
2.0 0.5 - -

23.0 0.5
2.0 0.5
2.0 0.5 1 -

4.0 1.5 - 1

124. 13.5 6 1

LIT32 5.0 2.5 - -

REFSL 2.0 0.5 1 -

REFDXI 5.0 1.5 2 -

MPYF 95.0 0.5 - -

LIT32 5.0 2.5 - -

++REFDL 3.0 0.5 2 -

++DUPD 2.0 0.5 - -

MPYF 95.0 0.5 - -

REFSL 2.0 0.5 1 -

REFDXI 5.0 1.5 2 -

++DUPD 2.0 0.5 - -

MPYF 95.0 0.5 - -

ADDF 38.0 0.5 - -

MPYF 95.0 0.5 - -

ADDF 38.0 0.5 - -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 — 2

494. 15.5 9 2

k(l) = k(l) + alpha * (next_e * wl(l) +

present_e * next_w) / v(l)

get 1 REFSL 2.0 0.5 1 - REFSL
get k(l) REFSXI 4.0 1.5 1 - REFDXI
get alpha LIT16 3.0 1.5 - - LIT32
get next e REFSL 2.0 0.5 1 - ++REFDL
get 1 REFSL 2.0 0.5 1 - +REFSL
get wl(l) REFSXI 4.0 1.5 1 - +REFDXI
multiply MPYI 23.0 0.5 - - MPYF
get present_e REFSL 2.0 0.5 1 - REFDL
get next_w +REFSL 2.0 0.5 1 - ++P.EFDL
multiply MPYI 23.0 0.5 - - MPYF
add ADD 2.0 0.5 - - ADDF
multiply MPYI 23.0 0.5 - - MPYF
get 1 REFSL 2.0 0.5 1 - REFSL
get v(l) REFSXI 4.0 1.5 1 - REFDXI
divide DIVI 27.0 0.5 - - DIVF
add ADD 2.0 0.5 - - ADDF
get 1 REFSL 2.0 0.5 1 - REFSL
store k(l) ASNSXI 4.0 1.5 — 1 ASNDXI

133. 14. 10 1

2.0 0.5 1 -

5.0 1.5 2 -

5.0 2.5
3.0 0.5 2 -

2.0 0.5 1 -

5.0 1.5 2 -

95.0 0.5
3.0 0.5 2 -

3.0 0.5 2 -

95.0 0.5
38.0 0.5
95.0 0.5
2.0 0.5 1 -

5.0 1.5 2 -

98.0 0.5
38.0 0.5
2.0 0.5 1 -

5.0 1.5 - 2

501. 15. 16 2

81



'wl(l) = present_w'

get present_w
get 1

store wl (1)

REFSL 2.0 0.5 1 -

REFSL 2.0 0.5 1 -

ASNSXI 4.0 1.5 - 1

8. 2.5 2 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2

10. 2.5 3 2

"present_w = next_w'

get next_w REFSL
store present_w ASNSL

2.0 0.5 1 -

2.0 0.5 - 1

4. 1. 11

REFDL 3.0 0.5 2 -

ASNDL 3.0 0.5 - 2

6 . 1 . 2 2

'present_e = next_e"

get next_e REFSL
store present_e ASNSL

2.0 0.5 1 -

2.0 0.5 - 1

4. 1. 11

REFDL 3.0 0.5 2 -

ASNDL 3.0 0.5 - 2

6. 1. 2 2

"endo 1

end loop

iteration total
loop total

ENDO 9.0 1.0 1 1

9. 1. 11

364 45 31 8

5824 720 496 128

ENDO 9.0 1.0 1 1

9. 1. 11

1336 48 49 15
21376 768 784 240

'dac_output = present_e"

get present_e
convert from f.p.

store to DAC

REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -
- CVTFD 17.0 0.5
- CVTDS 3.0 0.5

LIT32 5.0 2.5 - - LIT32 5.0 2.5
ASNSU 5.0 0.5 - 1 ASNSU 5.0 0.5 - 1

12. 3.5 1 1 33. 4.5 2 1

goto begin"

' begin' LIT8N 2.0 1.0 LIT8N 2.0 1.0
SKIP 2.0 1.0 SKIP 2.0 1.0 - -

2.0 2.0 2.0 2.0
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total instr. cycles 5871 735 498 132 21470 785 787 246
stack updates 1440 - 96 96 4800 - 320 320

TOTAL 7311 735 594 228 26268 785 1107 566
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Modified Widrow listing

This listing approximates the output of a non-optimizing

compiler. Although the algorithm is modified, the translation

was quite direct and few assembly language modifications were

made.

loop: f = adc_in

g =

do k = 1,16

g = g + b(k) * f(k)

endo

e = f - g

c = v * e

do k = 16,1

b(k+l) = u * b(k) + c * f(k)

endo

b(l) = b(17)

q = q - e(ptr) + e

dac_out = q * q

e(ptr) = e

f(ptr) = f

if ptr = 16

then ptr = 1

else ptr = ptr + 1

goto loop
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Note: + = indicates a stack update

comments

'loop: f = adc_in'

read ADC

convert to f.p.

store f

fixed-point floa ting-point

opcode Nc Nf Nr Nw opcode Nc Nf Nr Nw

LIT32 5.0 2.5 LIT3 2 5.0 2.5
REFSU 5.0 0.5 1 - REFSU 5.0 0.5 1 -

- CVTSD 2.0 0.5
- CVTDF 21.0 0.5

ASNSL 2.0 0.5 - 1 ASNDL 3.0 0.5 - 2

12. 3.5 1 1 36. 4.5 1 2

'g = 0'

get
store g

LIT4
ASNSL

1.0 0.5
2.0 0.5

3. 1. -

LITD0
ASNDL

2.0 0.5
3.0 0.5

5.1.-

"do k = 1, 16"

loop var. addr • LIT16 3.0 1.5 — — LIT16 3.0 1.5 — —

initial value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

final value LIT8 2.0 1.0 - - LIT8 2.0 1.0 - -

increment LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

DO 10.0 2.0 - 1 DO 10.0 2.0 - 1

17. 5.5 - 1 17. 5.5 - 1

g = g + b(k) * f(k)

get g +REFSL 2.0 0.5 1 - ++REFDL 3.0 0.5 2 -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get b(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get f(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

store in g ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

41. 6. 5 1 153. 6. 8 2

"endo"

end of loop ENDO 9.0 1.0 1 1 ENDO 9.0 1.0 1 1
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9. 1. 11 9. 1. 11

iteration total
loop total

50 7

800 112
6 2

96 32
162 7 9 3

2592 112 144 48

e = f - g'

get f REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get g REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

subtract SUB 2.0 0.5 SUBF 40.0 0.5 - -

store e ASNSL 2.0 0.5 - 1 ASNDL 3.0 0.5 - 2

8. 2. 2 1 49. 2. 4 2

c = v

get v LIT16 3.0 1.5 LIT32 5.0 2.5
get e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

multiply MPYI 23.0 0.5 MPYF 95.0 0.5
store c ASNSL 2.0 0.5 - 1 ASNDL 3.0 0.5 - 2

30. 3. 1 1 106. 4. 2 2

"do k = 16, 1"

loop var. addr. LIT16 3.0 1.5 - - LIT16 3.0 1.5 - -

initial value LIT8 2.0 1.0 - - LIT8 2.0 1.0 - -

final value LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

loop increment LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

DO 10.0 2.0 - 1 DO 10.0 2.0 - 1

17. 5.5 - 1 17. 5.5 - 1

"b(k+l) = u * b(k) + c * f(k)"

get u +LIT16 3.0 1.5 - - ++LIT3 2 5.0 2.5 - -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get b(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

get c REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get k +REFSL 2.0 0.5 1 - +REFSL 2.0 0.5 1 -

get f(k) REFSXI 4.0 1.5 1 - +REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get 1 LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

add ADD 2.0 0.5 - - ADD 2.0 0.5 - -

store b(k+l) ASNSXI 4.0 1.5 — 1 ASNDXI 5.0 1.5 — 2

74. 10.5 6 1 260. 11.5 9 2
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"endo"

end the loop

iteration total
loop total

ENDO 9.0 1.0 1 1

9. 1. 11

83 11.5 7 2

1328 184 112 32

ENDO 9.0 1.0 1 1

9. 1. 11

269 12.5 10 3

4304 200 160 48

'b(l) = b(17)-

get 17 LIT8 2.0 1.0 - -

get b(17) REFSXI 4.0 1.5 1 -

get 1 LIT4 1.0 0.5 - -

store in b(l) ASNSXI 4.0 1.5 - 1

11. 4.5 1 1

LIT8 2.0 1.0 - -

REFDXI 5.0 1.5 2 -

LIT4 1.0 0.5 - -

ASNDXI 5.0 1.5 - 2

13. 4.5 2 2

'q = q - e(ptr) + e'

get q REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get ptr REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get e(ptr) REFSXI 4.0 1.5 1 - REFDXI 5.0 1.5 2 -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

get e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

duplicate q DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

store in q ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

17. 5. 4 1 96. 5. 7 2

"dac_out = q * q'

duplicate q
square q
convert from f.p.

write to DAC

DUP 1.0 0.5 DUPD 2.0 0.5
MPYI 23.0 0.5 MPYF 95.0 0.5 - -

- CVTFD 17.0 0.5
- CVTDS 3.0 0.5 - -

LIT32 5.0 2.5 LIT3 2 5.0 2.5
ASNSU 5.0 0.5 - 1 ASNSU 5.0 0.5 - 1

34. 4.-1 127. 5. - 1

"e(ptr) = e"

get e REFSL
get ptr REFSL
store in e(ptr) ASNSXI

2.0 0.5 1 -

2.0 0.5 1 -

4.0 1.5 - 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2
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8. 2.5 2 1 10 2.5 3 2

f(ptr) = f

get f

get ptr
store in e(ptr)

REFSL 2.0 0.5 1 -

REFSL 2.0 0.5 1 -

ASNSXI 4.0 1.5 - 1

8. 2.5 2 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2

10. 2.5 3 2

"if ptr = 16"

get ptr REFSL
get 16 LIT8
equal? EQ
if not go to else SKIPZI

2.0 0.5 1 -

2.0 1.0
3.0 0.5
3.5 1.5

10.5 3.5 1 -

REFSL 2.0 0.5 1 -

LIT8 2.0 1.0 - -

EQ 3.0 0.5 - -

SKIPZI 3.5 1.5 - -

10.5 3.5 1 -

"then ptr = 1"

get 1 LIT4
store in ptr ASNSL
jump past else SKIPI

1.0 0.5
2.0 0.5
2.0 1.5

- 1

5.0 2.5 - 1

LIT4
ASNSL
SKIPI

1.0 0.5
2.0 0.5
2.0 1.5

- 1

2.5 - 1

"else ptr = ptr + 1"

increment ptr INCSLE 5.0 1.0 1 1

5. 1. 11

INCSLE 5.0 1.0 1 1

5. 1. 11

"goto loop'

repeat LIT8N
SKIP

2.0 1.0
2.0 1.0

4. 2.0

LIT8N
SKIP

2.0 1.0
2.0 1.0

4. 2.0

total instr. cycles
stack updates

2387.5 339.5 238 77
1440 - 96 96

7404.5 363
2880

TOTAL

328 117
192 192

3827.5 339.5 334 173 10286.5 363 520 309
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Optimized Widrow listing

The following listing is a hand-optimized version of the Widrow

algorithm given below. The program generally follows the equations

below but uses some assembly language "tricks" to improve

efficiency.

loop: f = adc_in

g =

do k = 16,1

g = g + b(k) * f(k)

endo

e = f - g

c = v * e

do k = 16,1

b(k+l) = u * b(k) + c * f(k)

endo

b(l) = b(17)

q = q - e(ptr) + e

dac_out = q * q

e(ptr) = e

f(ptr) = f

if ptr = 16

then ptr = 1

else ptr = ptr + 1

goto loop

Note: + = indicates a stack update
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comments

'loop: f = adc_in'

read ADC

convert to f.p.

store f

fixed-point

opcode Nc Nf Nr Nw

LIT32 5.0 2.5
REFSU 5.0 0.5 1 -

ASNSL 2.0 0.5 - 1

12. 3.5 1 1

float ing-point

opcode Nc Nf Nr Nw

LIT32 5.0 2.5
REFSU 5.0 0.5 1 -

CVTSD 2.0 0.5
CVTDF 21.0 0.5 - -

ASNDL 3.0 0.5 - 2

36. 4.5 1 2

'g = 0'

get
store g

LIT4
ASNSL

1.0 0.5
2.0 0.5

3. 1. -

LITD0
ASNDL

2.0 0.5
3.0 0.5

5. 1. -

"do k = 16,1"

initialize count LIT8
store count ASNSL

2.0 1.0
2.0 0.5

4. 1.5 -

LIT8
ASNSL

2.0 1.0
2.0 0.5

1.5 -

"g = g + b(k) * f(k)"

get g REFSL 2.0 0.5 1 - -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get b(k) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get f(k) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

get g
- REFDL 3.0 0.5 2 -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

store in g ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

39. 5. 5 1 153. 6. 8 2

"endo"

decrement count DECSLE
get count REFSL
loop if countOO LIT8N

SKIPNZ

5.0 1.0 1 1 DECSLE 5.0 1.0 1 1

2.0 0.5 1 - REFSL 2.0 0.5 1 -

2.0 1.0 - - LIT8N 2.0 1.0 - -

3.5 1.0 - — SKIPNZ 3.5 1.0 — —

12.5 3.5 2 1 12.5 3.5 2 1
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iteration total
loop total

51.5 8.5 7 2

824 136 112 32
165.5 9.5 10 3

2648 152 160 48

e - f - g'

get f REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get g REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

duplicate e DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

store e ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

9. 2.5 2 1 51. 2.5 4 2

"c = V * e"

get v REFSL 2,.0 0,.5 1 —

multiply MPYI 23 .0 0,.5 - -

store c ASNSL 2..0 0,.5 — 1

27. 1.5 1 1

REFDL 3.0 0.5 2 -

MPYF 95.0 0.5 - -

ASNDL 3.0 0.5 - 2

101. 1.5 2 2

"do k = 16,1'

initialize count
store count

LIT8
ASNSL

2.0 1.0
2.0 0.5

4. 1.5 -

LIT8 2.0 1.0
ASNSL 2.0 0.5 - 1

4. 1.5 - 1

*b(k+l) = u * b(k) + c * f(k)

get u REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get b(k) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

store in temp - ASNDL 3.0 0.5 - 2

get c REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get f(k) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

retrieve temp - REFDL 3.0 0.5 2 -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get k REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get 1 LIT4 1.0 0.5 - - LIT4 1.0 0.5 - -

add ADD 2.0 0.5 - - ADD 2.0 0.5 - -

store b (k+1) ASNSC 3.0 1.0 — 1 ASNDXI 5.0 1.5 — 2

70. 8. 7 1 264. 10.5 13 4
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endo'

decrement count DECSLE 5.0 1.0 1 1

get count REFSL 2.0 0.5 1 -

loop if countOO LIT8N 2.0 1.0 - -

SKIPNZ 3.5 1.0 - —

12.5 3.5 2 1

DECSLE 5.0 1.0 1 1

REFSL 2.0 0.5 1 -

LIT8N 2.0 1.0 - -

SKIPNZ 3.5 1.0 - -

12.5 3.5 2 1

iteration total
loop total

82.5 11.5 9 2

1320 184 144 32
276.5 14
4424 224

15
240

5

80

'b(l) = b(17)"

get b(17)
store b(l)

REFSLE
ASNSLE

3.0 1.0 1 -

3.0 1.0 - 1

6. 2. 11

REFDLE 4.0 1.0 2 -

ASNDLE 4.0 1.0 - 2

8. 2. 2 2

q = q - e(ptr) + e"

get q REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get ptr REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get e(ptr) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

get e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

add ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

duplicate q DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

store in q ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

16. 4.5 4 1 96. 5. 7 2

"dac_out = q * q"

duplicate q
square q
convert from f.p.

write to DAC

DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

- CVTFD 17.0 0.5 - -

- CVTDS 3.0 0.5 - -

LIT3 2 5.0 2.5 - - LIT32 5.0 2.5 - -

ASNSU 5.0 0.5 - 1 ASNSU 5.0 0.5 - 1

34. 4. - 1 127. 5. - 1

e(ptr) re e*

get e

get ptr
store in e( ptr)

REFSL
REFSL
ASNSC

2,

2,

3,

.0

.0

.0

0,

1,

.5

.5

.0

1

1

1

7. 2. 2 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2

10. 2.5 3 2
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"f(ptr) = f"

get f REFSL
get ptr REFSL
store in e(ptr) ASNSC

2.0 0.5 1 -

2.0 0.5 1 -

3.0 1.0 - 1

7. 2. 2 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2

10. 2.5 3 2

if ptr = 16"
"then ptr = 1"

"else ptr = ptr + 1'

increment ptr INCSLE
get ptr REFSL
load mask pattern LIT16
mask ptr AND
store ptr ASNSL

; 5.0 1.0 1 1 INCSLE 5.0 1.0 1 1

2.0 0.5 1 - REFSL 2.0 0.5 1 -

3.0 1.5 LIT16 3.0 1.5 - -

1.0 0.5 AND 1.0 0.5 - -

2.0 0.5 - 1 ASNSL 2.0 0.5 - 1

13. 4. 2 2 13. 4. 2 2

"goto loop"

repeat LIT8N 2.0 1.0
SKIP 2.0 1.0

LIT8N 2.0 1.0
SKIP 2.0 1.0 - -

program total
(no stack updates)

4. 2.0

22290 352 271 77

4. 2.0

7541 411.5 424 149
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Optimized Lattice listing

The following listing is a hand-optimized version of the

Lattice algorithm presented below. The program generally follows

the equations below but uses some assembly language "tricks" to

improve efficiency.

begin present_w = adc_input

present_e = present_w

loop do 1 = 0,15

next_e = present_e - k(l) * wl(l)

next_w = wl(l) - k(l) * present_e

v(l) = beta * v(l) + betal * (present_e *

present_e + wl(l) * wl(D)

k(l) = k(l) + alpha * (next_e * wl(l) + present_e

* next_w)/v(l)

wl(l) = present_w

present_w = next_w

present_e = next_e

endo

dac_out = present_e

goto begin

Note: + = indicates a stack update
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comments fixed-point floating-point

opcode Nc Nf Nr Nw opcode Nc Nf Nr Nw

comments

"begin present_w
present_e

read ADC

convert to f.p.

duplicate data
store present_w
store present_e

fixed-point

opcode Nc Nf Nr Nw

adc_input
present_w"

LIT32 5.0 2.5 - -

REFSU 5.0 0.5 1 -

DUP 1.0 0.5 - -

ASNSL 2.0 0.5 - 1

ASNSL 2.0 0.5 - 1

15. 4.5 1 2

floating-point

opcode Nc Nf Nr Nw

LIT32 5.0 2.5 - -

REFSU 5.0 0.5 1 -

CVTSD 2.0 0.5 - -

CVTDF 21.0 0.5 - -

DUPD 2.0 0.5 - -

ASNDL 3.0 0.5 - 2

ASNDL 3.0 0.5 - 2

41. 5.5 1 4

loop do 1 = 0,15'

init loop count
store count

LIT8
ASNSL

2.0 1.0
2.0 0.5

4. 1.5 -

LIT8
ASNSL

2.0 1.0
2.0 0.5

4. 1.5 -

"The following sequence of steps seeks to reduce the referencing
time of array members by copying them into local memory locations
at the beginning of each iteration. The floating point version
must do some of this using extra references to avoid stack
updates caused by having more than two floating point numbers on
it at once."

"next_e = present_e - k(l) * wl(D"

get 1 -

duplicate 1 -

get wl(l) -

store wl_l -

get k(l) -

duplicate k(l) -

store k_l —

get present._e REFSL 2.0 0.5 1

get 1 REFSL 2.0 0.5 1

get k(l) REFSC 3.0 1.0 1

REFSL 2.0 0.5
DUP 1.0 0.5
REFDXI 5.0 1.5
ASNDL 3.0 0.5
REFDXI 5.0 1.5
DUPD 2.0 0.5
ASNDL 3.0 0.5

1 -

2 -

- 2

2 -

- 2
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duplicate k_l DUP 1.0 0.5 - - -

store k_l ASNSL 2.0 0.5 - 1 -

get 1 REFSL 2.0 0.5 1 - -

get wl(l) REFSC 3.0 1.0 1 - REFDL 3.0 0.5 2 -

duplicate wl_l DUP 1.0 0.5 - - -

store wl_l ASNSL 2.0 0.5 - 1 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

get present_e - REFDL 3.0 0.5 2 -

reorder arguments - EXCHD 6.0 0.5 - -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

store next_e ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 - 2

45. 7. 5 2 171. 8.5 9 6

'next_w = wl(l) - k(l) * present_e'

get wl_l REFSL 2.0 0.5 1 - -

get k_l REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 —

get present_e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

get wl_l - REFDL 3.0 0.5 2 -

reorder argume nts - EXCHD 6.0 0.5 - -

subtract SUB 2.0 0.5 - - SUBF 40.0 0.5 - -

store next_w ASNSL 2.0 0.5 — 1 ASNDL 3.0 0.5 — 2

33. 3. 3 1 153. 3.5 6 2

v(l) = beta * v(l) + betal *

(present_e * present_e + wl(l) * wl(D)

get wl_l REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

square wl_l DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

store in temp - ASNDL 3.0 0.5 - 2

get present_e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

square present_e DUP 1.0 0.5 - - DUPD 2.0 0.5 - -

MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

retrieve temp - REFDL 3.0 0.5 2 -

sum squares ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get betal REFSL 2.0 0.5 1 - LIT32 5.0 2.5 - -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

store in temp - ASNDL 3.0 0.5 - 2

get 1 REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get v(l) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

get beta REFSL 2.0 0.5 1 - LIT32 5.0 2.5 - -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

retrieve temp - REFDL 3.0 0.5 2 -

sum expressions ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get 1 REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

store in v(l) ASNSC 3.0 1.0 — 1 ASNDXI 5.0 1.5 — 2

116. 9. 7 1 502. 16. 12 6
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'k(l) = k(l) + alpha * (next_e * wl(l) +

present_e * next_w) / v(D"

get present_e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get next_w REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

store in temp - ASNDL 3.0 0.5 - 2

get next_e REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

get wl_l REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

retrieve temp - REFDL 3.0 0.5 2 -

sum products ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get alpha REFSL 2.0 0.5 1 - LIT32 5.0 2.5 - -

multiply MPYI 23.0 0.5 - - MPYF 95.0 0.5 - -

get 1 REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

get v(l) REFSC 3.0 1.0 1 - REFDXI 5.0 1.5 2 -

divide DIVI 27.0 0.5 - - DIVF 98.0 0.5 - -

get k_l REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -

sum expression ADD 2.0 0.5 - - ADDF 38.0 0.5 - -

get 1 REFSL 2.0 0.5 1 - REFSL 2.0 0.5 1 -

store k(l) ASNSC 3.0 1.0 — 1 ASNDXI 5.0 1.5 — 2

122. 9. 9 1 499. 13. 16 4

'wl(l) = present_w"

get present_w
get 1

store wl (1)

REFSL 2.0 0.5
REFSL 2.0 0.5
ASNSC 3.0 1.0

7.

1 -

1 -

- 1

2 1

REFDL 3.0 0.5 2 -

REFSL 2.0 0.5 1 -

ASNDXI 5.0 1.5 - 2

10. 2.5 3 2

"present_w = next_w"

get next_w REFSL 2.0 0.5 1 -

store present_w ASNSL 2.0 0.5 - 1

4. 1. 11

REFDL 3.0 0.5 2 -

ASNDL 3.0 0.5 - 2

6. 1. 2 2

'present_e = next_e'

get next_e REFSL
store present_e ASNSL

2.0 0.5 1 -

2.0 0.5 - 1

4. 1. 11

REFDL 3.0 0.5 2 -

ASNDL 3.0 0.5 - 2

6. 1. 2 2

"endo'
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decrement count DECSLE
get count REFSL
loop if countOO LIT8N

SKIPNZ

iteration total
loop total

5.0 1.0 1 1

2.0 0.5 1 -

2.0 1.0
3.5 1.0

12.5 3.5 2 1

343.5 35.5 30 10
5496 568 480 160

DECSLE 5.0 1.0 1 1

REFSL 2.0 0.5 1 -

LIT8N 2.0 1.0 - -

SKIPNZ 3.5 1.0 - -

12.5 3.5 2 1

1359.5 49 52 25
21752 784 832 400

'dac_output = present_e"

get present_e
convert from f.p.

store to DAC

REFSL 2.0 0.5 1 - REFDL 3.0 0.5 2 -
- CVTFD 17.0 0.5
- CVTDS 3.0 0.5

LIT32 5.0 2.5 - - LIT32 5.0 2.5
ASNSU 5.0 0.5 - 1 ASNSU 5.0 0.5 - 1

12. 3.5 1 1 33. 4.5 2 1

"goto begin"

repeat LIT8N 2.0 1.0
SKIP 2.0 1.0 - -

program total
(no stack updates)

4. 2.0

5499 571.5 482 164

LIT8N 2.0 1.0
SKIP 2.0 1.0 - -

4. 2.0

21786 781.5 835 405
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Appendix B: Ada-subset listings

Notes on the Ada-subset compiler

The Ada-subset compiler used is resident on a VAXll-780 at

the Rockwell Collins facility in Cedar Rapids, IA. The output of

the compiler front-end is in the form of macro instructions for a

stack machine. These macro instructions are then translated into

instructions for a particular machine, in this case the AAMP. In

order for the compiler to produce object code with Local

variables, the code must be inside a procedure within the

package. If the code is placed in the package without a

procedure, the variables will be addressed using the global

addressing mode, resulting in a considerable loss in efficiency.

Loop variables created in a program are assigned after

declared variables, thus causing them to often reside in the

Local Extended memory area. To use the more efficient Local

memory area, declare an integer variable with a different name at

the beginning of the loop and immediately assign the loop

variable's value to this new variable. This new variable is then

referenced during the rest of the loop. This is economical in

long loops which contain many loop variable references such as

the Lattice.

For each of the following three programs there is an integer

version source listing and both integer and floating-point

versions of the object listings. The reason for this is that the

source listings for integer and floating-point versions were the

same except for the type of number_system and the constants.
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Standard Widrow Source listing

with TEXT_IO, portpack;
use TEXT_IO, portpack;

Standard Widrow Algorithm

April 17, 1984

Ken Albin, Dept. of Electrical and Computer Engineering
Kansas State University, Manhattan, KS 66506

This program is based on the Standard Widrow coded in the
AAMP preliminary report.

package WIDROWI is

procedure WIDROW;

end WIDROWI;

package body WIDROWI is

procedure WIDRWO is

pragma SUPPRESS ( INDEX_CHECK)

;

pragma SUPPRESS (RANGE_CHECK)

;

The loop variable k is always an integer.
Other variables will reflect the number system.

subtype number_system is integer;

k : integer; — loop variable

f

e

number_system; — current input value
number_system; — summation value
number_system; — current error value

(filter output)
number_system; — "alarm" output

c is left out to test the compiler's optimization
c represents an expression which is constant within a loop

type values is array (1..16) of number_system;

b_array : values; — weight array
f_array : values; — sample array
e_array : values; — error array

u : constant := 1;
v : constant := 0;
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*************************************************************

begin

— initialization sequence goes here

for k in 1 . .16 loop

b_array (k)

f_array (k)

e_array (k)

= 1

= 1

= 1

end loop;

— end initialization

— begin main loop

. loop

f := adc_in;

g := 0;

for k in 1. .16 loop

g := g + b_array(k) * f_array(k);

end loop;

e := f - g;

for k in 1 . .16 loop

b_array(k) := u * b_array(k) + v * e * f_array(k);

end loop;

q := q - e_array(16) + e;

dac_out := q * q;

for k in 1. .15 loop

e_array(k+l) := e_array(k);

f_array(k+l) := f_array(k);

end loop;

e_array(l) := e;

f_array(l) := f;
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end loop;

end WIDROW;

begin

null;

end WIDROWI;
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Integer Standard Widrow Object listing

Macro/Instruction Definitions will be read from module
[TDJ. AAMP1 6 ] AAMP16 . MLB

Program Size For Counter 1 = 102 Words Decimal.

CAPS Macro Assembler listing for module WIDROWI.OBJ

IDENT.

XREF.
XREF.
XREF.
PACKAGE.
XDEF.
XDEF.
PROCDEF

Opcodes Instruction Macro

0036 { procedure header }

11 LIT4A.1 LIT.
35 5C ASNSLE ASNL.

L#1002:;
35 IE REFSLE REFL.
10 18 LIT8 LIT.

EC GR GRT.
1D5B SKIPNZI JUMPT.

'widrowi',' AAMP/ACAPS Code
Generator Version 1.6';

standard;
text_io;
portpack;
widrowi;
$init. widrowi. 0000;
widrow. widrowi. 0001;
widrow. widrowi. 0001, 54 ,12;

Macro args.

1,1; (init loop varaible k}
1,53;

1,53; (check loop variable k)

1,16;
1;
L#1001;

11 LIT4A.1 LIT. 1,1; (b_array(k) := 1}
35 IE REFSLE REFL. 1,53;

14 LIT4A.4 ASNLX 1,4;
53 LOCL

A6 ASNSX

11 LIT4A.1 LIT. l,l; (f_array(k) := 1>
35 IE REFSLE REFL. 1,53;
14 18

53
A6

LIT8
LOCL
ASNSX

ASNLX

.

1,20;

11 LIT4A.1 LIT. l,l; fe_array(k) := 1}
351E REFSLE REFL. 1,53;
2418 LIT8 ASNLX. 1,36;

53 LOCL
A6 ASNSX

3 51E REFSLE REFL. 1,53; (increment k}
11 LIT4A.1 LIT. l,l;

E4 ADD ADD. l;
355C ASNSLE ASNL. 1,53;
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2319 LIT8N
59 SKIP

L#1001
L#1003
L#1004

0000 1C REFSI
41 ASNSL.l

10 LIT4A.0
42 ASNSL.2

11 LIT4A.1
355C ASNSLE

L#1007:;
351E REFSLE
1018 LIT8

EC GR
18 5B SKIPNZI

02 REFSL.2
351E REFSLE

14 LIT4A.4
53 LOCL

DO REFSX
35 IE REFSLE

JUMP. L#1002; {go to loop check)

14 18
53

E6

LIT8
LOCL

DO REFSX
MPYI

E4 ADD
42 ASNSL.2

351E REFSLE
11 LIT4A.1

E4 ADD
355C ASNSLE

1E19 LIT8N
59 SKIP

L#1006:;
L#1008:

;

REFS.
ASNL.

LIT.
ASNL.

LIT.
ASNL.

REFL.
LIT.
GRT.
JUMPT,

REFL.
REFL.
REFLX,

REFL.
REFLX

MPY.
ADD.
ASNL.

REFL.
LIT.
ADD
ASNL.

JUMP.

1,0, portpack; {f:=adc_in>
1,1;

1,0;
1,2;

1,1;
1,53;

{g := 0}

(init loop variable k)

1,53;
1,16;
1;
L#1006;

1,2; {g := g + b_array(k) *

1,53; f_array (k)

}

1,4;

1,53;
1,20;

If

If
1,2;

1,53; (increment k>

1,1;
1;
1,53;

L#1007; {go to loop check)

01 REFSL.l REFL. 1,1; {e := f - g>
02 REFSL.2 REFL. 1,2;

E5 SUB SUB. l;

43 ASNSL.3 ASNL. 1,3;

11 LIT4A.1 LIT. 1,1; {init loop variable k)

355C ASNSLE
L#1010:

ASNSL.
•

1,53;

351E REFSLE REFL. 1,53; {check loop variable k)

1018 LIT8 LIT. 1,16;
EC GR GRT. 1;

5B SKIPNZI JUMPT. L#1009;
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11 LIT4A.1 LIT.
351E REFSLE REFL.

14 LIT4A.4 REFLX
53 LOCL
DO REFSX

E6 MPYI MPY.
10 LIT4A.0 LIT.

03 REFSL.3 REFL.
E6 MPYI MPY.

35 IE REFSLE REFL.
14 18 LIT8 REFLX

53 LOCL
DO REFSX

E6 MPYI MPY.
E4 ADD ADD.

35 IE REFSLE REFL.
14 LIT4A.4 ASNLX

53 LOCL
A6 ASNSX

351E REFSLE REFL.
11 LIT4A.1 LIT.

E4 ADD ADD.
355C ASNSLE ASNL.

2619 LIT8N JUMP.
59 SKIP

L#1009:;
L#1011:;

04 REFSL.4 REFL.
341E REFSLE REFL.

E5 SUB SUB.
03 REFSL.3 REFL.

E4 ADD ADD.
44 ASNSL.4 ASNL.

04 REFSL.4 REFL.
04 REFSL.4 REFL.

E6 MPYI MPY.
0001 54 ASNXI ASNS.

11 LIT4A.1 LIT.
35 5C ASNSLE

L#1013:;
ASNL.

35 IE REFSLE REFL.
2F LIT4B.F LIT.

EC GR GRT.
21 5B SKIPNZI JUMPT

35 IE REFSLE REFL.
24 18 LIT8 REFLX

53 LOCL
• DO REFSX

35 IE REFSLE REFL.
25 18 LIT8 ASNLX

If 1; (b_array (k) :=u*b_array (k) +

1,53; v*e*f_array(k)

}

1,4;

l;

1,0;
1,3;
1;
1,53;
1,20;

l;

1;

1,53;
1,4;

1,53; (increment k}

1,1;
l;

1,53;

L#1010; (go to loop check)

1,4; {q:=q-e_array (16) +e)
1,52;
l;

1,3;
1;
1,4;

1,4; (dac_out := q * q}
1,4;
1;
1 ,l,portpack;

1,1; (init loop variable k)

1,53;

1,53; (check loop variable k)

1,15;
l;
L#1012;

1,53; (e_array(k+l) :=

1,36; e_array (k)

}

1,53; (note: an optimization!
1,37; base+1 is calculated)
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53 LOCL
A6 ASNSX

3 5 IE REFSLE
14 18 LIT8

53 LOCL
DO REFSX

35 IE REFSLE
15 18 LIT8

53 LOCL
A6 ASNSX

3 5 IE REFSLE
11 LIT4A.1

E4 ADD
35 5C ASNSLE

26 19 LIT8N
59 SKIP

L#1012:;
L#1014:;

03 REFSL.3
25 5C ASNSLE

01
155C

9519
59

36 18
5F

REFSL.l
ASNSLE

LIT8N
SKIP

L#1005:

;

L#1000:;
LIT8
RETURN

REFL. 1,53; {f_ar ray (k+1 ) :=
REFLX. 1,20; f_array(k)}

REFL. 1,53;
ASNLX. 1,21; {note: an optimization!

base+1 is calculated}

REFL. 1,53; (increment k}
LIT. 1,1;
ADD. 1;
ASNL. 1,53;

JUMP. L#1013; (go to loop check}

REFL. 1,3; (e_array(l) := e}
ASNL. 1,37;

REFL. 1,3; {f_array(D := f}

ASNL. 1,21;

JUMP. L#1004; {go to beginning}

PROCEND. 54,0; {procedure return}

0000
00 0023

0000 23

{procedure
CALLI
CALL I

L#2000:
10 LIT4A.0

5F RETURN

PKGDEF. $init.widrowi. 0000,12;
header for package body}

CALLGS. $i ni t.textio. 0000, text io;
CALLGS. $init.portpack.0000,portpack;

PKG END. 0;

FINI
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Widrow Floating-point Object listing

Macro/Instruction Definitions will be read from module
[TDJ.AAMP161AAMP16.MLB

Program Size For Counter 1 = 120 Words Decimal.

CAPS Macro Assembler listing for module WIDROWF.OBJ

IDENT.

XREF.
XREF.
XREF.
PACKAGE
XDEF.
XDEF.
PROCDEF

Opcodes Instruction Macro

006E { procedure header }

0000
0000 8125 LIT32 LIT.

69 F7 ASNDLE ASNL.
0000
0000 25 LIT32 LIT.

6BF7 ASNDLE ASNL.
11 LIT4A.1 LIT.

6D 5C ASNSLE ASNL.
L#1002:• •

1 /

6D IE REFSLE REFL.
10 18 LIT8 LIT.

EC GR GRT.
295B SKIPNZI JUMPT.

00
0000 8125 LIT32 LIT.

6D IE REFSLE REFL.
17 LIT4A.7 ASNLX.

53 LOCL
8C ASNDX

'widrowfV AAMP/ACAPS Code
Generator Version 1.6';

standard;
text_io;
portpack;
widrowf

;

$init.widrowf .0000;
widrow. widrowf . 0001

;

widrow. widrowf .0001 ,110,12;

Macro args.

2,1.00000000;
2,105;

2,0,00000000;
2,107;
1,1; (init loop varaible k}
1,109;

1,109; (check loop variable k}
1,16;
l;
L#1001;

2,1.00000000;
1,109; (b_array(k) := 1}

2,7;

00
0000 8125 LIT32

6D IE REFSLE
27 18 LIT8

53 LOCL
8C ASNDX

LIT. 2,1.00000000;
REFL. 1,109; (f_array(k) := 1}

ASNLX. 1,3 9;

0000
0081 25 LIT32 LIT. 2,1.00000000;
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6D1E REFSLE
4718 LIT8

53 LOCL
8C ASNDX

REFL. 1/109; {e_array(k) := 1}
ASNLX. 2,71;

6D1E REFSLE
11 LIT4A.1

E4 ADD
6D5C ASNSLE

2F19 LIT8N
59 SKIP

L#1001
L#1003
L#1004

0000 1C REFSI
65 CVTSD

D9 CVTDF
41 ASNDL.l

0000
0000 25 LIT32

C3 ASNDL.3

11 LIT4A.1
6D5C ASNSLE

L#1007:;
6D1E REFSLE
1018 LIT8

EC GR
18 5B SKIPNZI

33 REFDL.3
6D1E REFSLE

17 LIT4A.7
53 LOCL

D7 REFDX
6D IE REFSLE
27 18 LIT8

53 LOCL
D7 REFDX

86 MPYF
84 ADDF

C3 ASNDL.3

6D1E REFSLE
11 LIT4A.1

E4 ADD
6D5C ASNSLE

1E19 LIT8N
59 SKIP

REFL,
LIT.
ADD.
ASNL,

JUMP.

1,109; {increment k}

1,1;
If
1,109;

L#1002; {go to loop check)

REFS.
CONVERT,

ASNL.

LIT.
ASNL.

LIT.
ASNL.

REFL.
LIT.
GRT.
JUMPT.

REFL.
REFL.
REFLX,

REFL.
REFLX

MPY.
ADD.
ASNL.

REFL.
LIT.
ADD.
ASNL.

JUMP.

1 ,0,portpack; {f:=adc_in>
1,5,0,0;

2,1;

2,0.00000000;
2,3;

1,1; {init loop variable k>

1,109;

1,109;
1,16;
l;

L#1006;

2,3; {g := g + b_array(k) *

1,109; f_array(k)>
2,7;

1,109;
1,39;

1;
1;
2,3;

1,109; {increment k)

1,1;
l;

1,109;

L#1007; {go to loop check)

L#1006:

;

L#1008:;
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31 REFDL.l
3 3 REFDL.3

85 SUBF
C5 ASNDL.5

11 LIT4A.1
6D5C ASNSLE

6D1E REFSLE
1018 LIT8

EC GR
22 5B SKIPNZI

L#1010

69 22
6D IE

17

D7

6B 22
35

I

6D IE
27 18

53

53

86

86

D7
86

6D IE
17

84

53
8C

REFDLE
REFSLE
LIT4A.7
LOCL
REFDX
MPYF
REFDLE
REFDL.5
MPYF
REFSLE
LIT8
LOCL
REFDX
MPYF
ADDF
REFSLE
LIT4A.7
LOCL
ASNDX

REFL. 2,1; Ce := f - g}
REFL. 2,3;
SUB. 2;

ASNL. 2,5;

LIT. 1,1; {init loop variable k)
ASNSL. 1/109;

REFL. 1,109; (check loop variable k}
LIT. 1,16;
GRT. 1

;

JUMPT. L#1009;

REFL. 2,105; {b_array (k) : =u*b_array (k)

+

REFL. 1/109; v*e*f_ar r ay (k)

}

REFLX. 2,7;

MPY. 5;
REFL. 2,107;
REFL

.

2,5;
MPY

.

5

;

REFL. 1,109;
REFLX. 2,3 9;

MPY. 5;
ADD. 5;
REFL. 1,109;
ASNLX

.

2,7;

6D1E REFSLE
11 LIT4A.1

E4 ADD
6D5C ASNSLE

2819 LIT8N
59 SKIP

L#1009:;
L#1011:;

37 REFDL.7
6722 REFDLE

85 SUBF
35 REFDL.5

84 ADDF
C7 ASNDL.7

37 REFDL.7
37 REFDL.7

86 MPYF
0001 54 ASNXI

11 LIT4A.1

REFL. 1,109; {increment k}
LIT. 1,1;
ADD. 1;
ASNL. 1,109;

JUMP. L#1010; (go to loop check}

REFL. 2,7; {q: =q-e_ar ray ( 16) +e}
REFL. 2,103;
SUB. 5;
REFL. 2,5;
ADD. 5;
ASNL. 2,7;

REFL. 2,7; {dac_out := q * q}
REFL. 2,7;
MPY. 5;
ASNS. 1 ,l,portpack;

LIT. 1,1; {init loop variable k}
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6D

6D

5C

IE
2F

ASNSLE ASNL.
L#1013:;

EC
21 5B

6D
47

6D
49

6D
27

6D
29

6D

6D

26

IE
18
53

]

IE
18
53

D7

8C

IE
18
53

]

IE
18
53

D7

8C

IE
11

i

5C

19
59

E4

35
49 F7

6E

00
0000

31
29F7

9P19
59

18
5F

0000
0023
23

REFSLE
LIT4B.F
GR
SKIPNZI

REFSLE
LIT8
LOCL
REFDX
REFSLE
LIT8
LOCL
ASNDX

REFSLE
LIT8
LOCL
REFDX
REFSLE
LIT8
LOCL
ASNDX

REFSLE
LIT4A.1
ADD
ASNSLE

LIT8N
SKIP

L#1012:;
L#1017:;

REFDL .

5

ASNDLE

REFDL.

1

ASNDLE

LIT8N
SKIP

L#1005:;
L#1000:;

LIT8
RETURN

REFL.
LIT.
GRT.
JUMPT.

REFL.
REFLX.

REFL.
ASNLX

REFL.
REFLX

REFL.
ASNLX

.

REFL.
LIT.
ADD.
ASNL.

JUMP.

REFL.
ASNL.

REFL.
ASNL.

JUMP.

1,109;

1/109; (check loop variable k)
1,15;
1;
L#1012;

1,109; {e_array(k+D : =

2,71; e_array(k)}

1,109; (note: an optimization!
2,73; base+1 is calculated}

1,109; {f_array(k+D : =

1,39; f_array(k)>

1,109;
2,41; {note: an optimization!

base+1 is calculated}

1,109; (increment k}

1,1;
1;
1,109;

L#1013; (go to loop check}

2,5; (e_array(l) := e}
2,73;

2,1; (f_array(l) := f}

2,41;

L#1004; (go to beginning}

PROCEND. 110,0; (procedure return}

10
5F

PKGDEF. $init.widrowf .0000,12;
(procedure header for package body}
CALLI CALLGS. $init. textio. 0000 , textio;
CALLI CALLGS. $init.portpack .0000 ,

portpack

;

L#2000:

;

LIT4A.0 PKGEND. 0;
RETURN

FINI
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Integer Standard Lattice Source listing

with portpack;
use portpack;

Standard Lattice Algorithm

April 18, 1984

Ken Albin, Dept. of Electrical and Computer Engineering
Kansas State University, Manhattan, KS 66506

This program is based on the Standard Lattice coded in the
AAMP preliminary report.

package LATTICEI is

procedure LATTICE;

end LATTICEI;

package body LATTICEI is

procedure LATTICE is

pragma suppress (index_check)

;

pragma suppress (range_check)

;

stages: constant integer := 16;

type number_system is new integer;
type values is array (1.. stages) of number_system;

loop_count: integer;
present._w: number..system;
present._e: number..system;
next_w: number..system;
next_e: number..system;

k: values;
wl: values;
v: values;

beta: constant := 1;
betal: constant := 2;
alpha: constant := 0;

begin

loop

present_w := number_system(adc_in)

;
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present_e := present_w;

for i in 1.. stages loop

loop_count := i;

next_e := present_e -

k (loop_count) * wl (loop_count)

;

next_w := wl (loop_count) -

k (loop_count) * present_e;

v(loop_count) := beta * v(loop_count) +

betal * (present_e * present_e +
wl (loop_count) * wl (loop_count) )

;

k (loop_count) := k (loop_count) + alpha *

(next_e * wl (loop_count) +

present_e * next_w) / v(loop_count)

;

present_w := next_w;

present_e := next_e;

end loop;

dac_out := integer (present_e)

;

end loop;

end lattice;

begin

null;

end latticei;
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Integer Lattice Object listing

Macro/Instruction Definitions will be read from module
[TDJ.AAMP161AAMP16.MLB

Program Size For Counter 1 = 71 Words Decimal.

CAPS Macro Assembler listing for module LATTICEI.OBJ

IDENT.

XREF.
XREF.
PACKAGE.
XDEF.
XDEF.
PROCDEF.

Opcodes Instruction Macro

0036 (procedure header}
L#1001:;

00 001C REFSI REFS.
41 ASNSL.l ASNL.

01 REFSL.l REFL.
42 ASNSL.2 ASNL.

11 LIT4A.1 LIT.
35 5C ASNSLE ASNL.

L#1004:;
3 5 IE REFSLE REFL.
10 18 LIT8 LIT.

EC GR GRT.
6A5B SKIPNZI JUMPT.

351E REFSLE REFL.
40 ASNL.O ASNL.

02 REFSL.2 REFL.
00 REFSL.O REFL.

14 LIT4A.4 REFLX.
53 LOCL

DO REFSX
00 REFSL.O REFL.

14 18 LIT8 REFLX.
53 LOCL

DO REFSX
E6 MPYI MPY.

E5 SUB SUB.
44 ASNSL.4 ASNL.

00 REFSL.O REFL.

' latticei', ' AAMP/ACAPS Code
Generator Version 1.6';
standard;
portpack;
latticei

;

$init. latticei. 0000;
lattice. latticei. 0001;
lattice. latticei. 0001, 54, 12;

Macro args.

1 ,0 , portpack; {present_w :=

1,1; number_system(adc_in)

}

1,1; (present_e := present_w>
1,2;

1,1; (init loop variable i>

1,53;

1,53; (loop count check)
1,16;
l;
L#1003;

1,53; (loop_count := i>

1,0;

1,2; (next_e := present_e
1,0; - k (loop_count) *

1,4; wl (loop_count)

}

1,0;
1,20;

1;
l;

1,4;

1,0; (next_w := wl (loop_count)
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14 18 LIT8
53 LOCL

DO REFSX
00 REFSL.

14 LIT4A.,4
53 LOCL

DO REFSX
02 REFSL. 2

E6 MPYI
E5 SUB

43 ASNSL.,3

11 LIT4A, 4

00 REFSL.
24 18 LIT8

53 LOCL
DO REFSX

E6 MPYI
12 LIT4A. 2

02 REFSL, 2

02 REFSL. 2

E6 MPYI
00 REFSL.

14 18 LIT8
53 LOCL

DO REFSX
00 REFSL.
1418 LIT8

53 LOCL
DO REFSX

E6 MPYI
E4 ADD

E6 MPYI
E4 ADD

00 REFSL.
24 18 LIT8

53 LOCL
A6 ASNSX

00 REFSL.
14 LIT4A, 4

53 LOCL
DO REFSX

10 LIT4A.
04 REFSL. 4

00 REFSL.
1418 LIT8

53 LOCL
DO REFSX

E6 MPYI
02 REFSL. 2

03 REFSL. 3

E6 MPYI
E4 ADD

E6 MPYI

REFLX. 1,20; - k (loop_count)
* present_e>

REFL. 1,0;
REFLX. 1,4;

REFL. 1,2;
MPY. 1;
SUB. l;
ASNL. 1,3;

LIT. 1,1;
REFL. 1,0;
REFLX. 1,36;

MPY. l;
LIT. 1,2;
REFL. 1,2;
REFL. 1,2;
MPY. l;

REFL. 1,0;
REFLX. 1,20;

(v(loop_count) := beta
* v(loop_count) +betal
(present_e*present_e+
wl (loop_count) *

wl (loop_count) ) }

REFLX. 1,20;

MPY. l;
ADD. 1;
MPY. l;
ADD. 1;
REFL. 1,0;
ASNLX

.

1,36;

REFL. 1,0;
REFLX. 1,4;

LIT. 1,0;
REFL. 1,4;
REFL. 1,0;
REFLX. 1,20;

MPY. 1;
REFL. 1,2;
REFL. 1,2;
MPY. l;
ADD. 1;
MPY. 1;

(k (loop_count) : =

k (loop_count) +

alpha * (next_e *

wl (loop_count) +

present_e * next_w)

/

v(loop_count) }
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00 REFSL.O
24 18 LIT8

53 LOCL
DO REFSX

E7 DIVI
E4 ADD

00 REFSL.O
14 LIT4A.4

53 LOCL
A6 ASNSX

01 REFSL.l
00 REFSL.O

14 18 LIT8
53 LOCL

A6 ASNSX

REFL. 1,0;
REFLX. 1,36;

DIV. 1;
ADD. l;

REFL. 1,0;
ASNLX

.

1,4;

REFL.
REFL.
ASNLX,

03 REFSL.3 REFL.
41 ASNSL.l ASNL.

04 REFSL.4 REFL.
42 ASNSL.2 ASNL.

35 IE REFSLE REFL.
11 LIT4A.1 LIT.

E4 ADD ADD.
35 5C ASNSLE ASNL.

70 19 LIT8N JUMP.
59 SKIP

L#1003:;
L#1005:;

02 REFSL.2 REFL.
0001 54 ASNSI ASNS.

8019 LIT8N JUMP.
59 SKIP

L#1002:

;

L#1000:;
36 18 LIT8 PROCEND

5F RETURN

PKGDEF.
0000 {procedure hea der)

00 0023 CALL I

L#2000:;
CALLGS.

10 LIT4A.0 PKGEND.
5F RETURN

20 NOP
FINI

1,1; (wl (loop_count) :=

1,0; present_w>
1,20;

1,3; (present_w := next_w)
1,1;

1,4; (present_e := next_e}
1,2;

1,53; {increment i)

1,1;
1; .

1,53;

L#1004; {go to loop check)

{dac_out :=

1,2; integer (present_e) }

1 ,1 ,portpack;

L#1001; {go to beginning)

54,0; {procedure return)
{never used)

$init.latticei.0000,12;

$init.portpack.0000,portpack;

0;
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Floating-point Lattice Object listing

Opcodes Instruction Macro

Macro/Instruction Definitions will be read from module
[TDJ. AAMP1 6 ] AAMP16 . MLB

Program Size For Counter 1 = 85 Words Decimal.

CAPS Macro Assembler listing for module LATTICEF.OBJ

IDENT. 'latticef', 1 AAMP/ACAPS Code
Generator Version 1.6';

XREF. standard;
XREF. portpack;
PACKAGE. latticef;
XDEF. $init. latticef .0000;
XDEF. lattice. latticef .0001;
PROCDEF. lattice. latticef. 0001, 112 ,12;

Macro args.

2,1.00000000;

2,105;
2,2.00000000;

2,107;
2,0.00000000;

2,109;

REFS. 1 ,0, portpack;
CONVERT. 1,5,0,0; (present_w :=

number_system(adc_in)

}

ASNL. 2,1;

REFL. 2,1; (present_e: =present_w}
ASNL. 2,3;

LIT. lflf (init loop variable i)

ASNL. 1,111;

REFL. 1,111; (loop count check)
LIT. 1,16;
GRT. 1;
JUMPT. L#1003;

REFL. 1,111; (loop_count := i}

ASNL. 1,0;

REFL. 2,3; (next_e := present_e
REFL. 1,0; - k (loop_count)

0070 {procedure header)
0000 8125 LIT32 LIT.
00

6 9 F7 ASNDLE ASNL.
0082 25 LIT32 LIT.
0000

6BF7 ASNDLE ASNL.
0000 0025 LIT32 LIT.
00

6D F7 ASNDLE ASNL.
L#1001:;

0000 1C REFSI
6 5 CVTSD

D9 CVTDF
CI ASNDL.l

31 REFDL.l
C3 ASNDL.3

11 LIT4A.1
6F5C ASNSLE

6F1E REFSLE
1018 LIT8

EC GR
6D 5B SKIPNZI

L#1004:

6F IE
40

REFSLE
ASNSL.O

33 REFDL.3
00 REFSL.O
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17 LIT4A,.7
53 LOCL

D7 REFDX
00 REFSL.,0
2718 LIT8

53 LOCL
D7 REFDX

86 MPYF
85 SUBF

C7 ASNDL.,7

00 REFSL,.0
2718 LIT8

53 LOCL
D7 REFDX

00 REFSL.
17 LIT4A,.1

53 LOCL
D7 REFDX

33 REFDL. 3

86 MPYF
85 SUBF

C5 ASNDL. 5

6922 REFDL

E

00 REFSL.
47 18 LIT8

53 LOCL
D7 REFDX

86 MPYF
6B22 REFDL

E

33 REFDL. 3

33 REFDL

.

3

86 MPYF
00 REFSL.
2718 LIT8

53 LOCL
D7 REFDX

00 REFSL.
27 18 LIT8

53 LOCL
D7 REFDX

86 MPYF
84 ADDF

86 MPYF
84 ADDF

00 REFSL.
4718 LIT8

53 LOCL
8C ASNDX

00 REFSL.
17 LIT4A. 7

53 LOCL
D7 REFDX

REFLX

REFL.
REFLX

MPY.
SUB.
ASNL

REFL.
REFLX,

REFL.
REFLX

REFL.
MPY.
SUB.
ASNL.

REFL.
REFL.
REFLX,

MPY.
REFL.
REFL.
REFL.
MPY.
REFL.
REFLX

REFL.
REFLX

MPY.
ADD.
MPY.
ADD.
REFL.
ASNLX

REFL.
REFLX.

2,7; * wl (loop_count)

}

1,0;
2,39;

5;
5;

2,7;

1,0; (next_w := wl (loop_count)
2,39; - k (loop_count)

* present_e>

1,0;
2,7;

2,3;
5;

5;
2,5;

2,
1#
2,

5;

2,
2,
2,
5;

li
2,

105;
0;

71;

107;
3;

3;

0;
39;

(v(loop_count) :=beta
*v(loop_count) +betal
(present_e*present_e
+wl (loop_count)

*wl ( loop_count) )

}

1,0;
2,39;

5;

5;

5;
5;

1,0;
2,71;

1,0; (k (loop_count) :=

2,7; k (loop_count) +alpha
* (next_e*wl (loop_count)
+present_e*next_w)

/
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86 MPYF
33 REFDL.3

35 REFDL.5
86 MPYF

84 ADDF
86 MPYF

00 REFSL.O
47 18 LIT8

53 LOCL
D7 REFDX

87 DIVF
84 ADDF

00 REFSL.O
17 LIT4A.7

53 LOCL
8C ASNDX

31 REFDL.l
00 REFSL.O

27 18 LIT8
53 LOCL

8C ASNDX

35 REFDL.5
CI ASNDL.l

37 REFDL .

7

C3 ASNDL.3

6F IE REFSLE
11 LIT4A.1

E4 ADD
6P 5C ASNSLE

73 19 LIT8N
59 SKIP

MPY.
REFL.
REFL.
MPY.
ADD.
MPY.
REFL.
REFLX.

DIV.
ADD.
REFL.
ASNLX

REFL.
REFL.
ASNLX.

REFL.
ASNL.

REFL.
ASNL.

REFL.
LIT.
ADD.
ASNL.

JUMP.

33

L#1003:;
L#1005:;

REFDL.3 REFL.
DB

DA
0001 54

8719
59

70 18
5F

0000
00 0023

CVTFD
CVTDS
ASNSI

LIT8N
SKIP

LIT8
RETURN

L#1002:

;

L#1000:;

CONVERT.

ASNS.

JUMP.

PROCEND

.

5;

2,3;
2,5;
5;
5;
5;
1,0;
2,71;

5;
5;

1,0;
2,7;

2,1;
1,0;
2,39;

v(loop_count)

}

(wl ( loop_count) :

=

present_w>

2,5; {present_w := next_w>
2,1;

2,7; {present_e := next_e}
2,3;

1,111; {increment i)

1,1;
1;
1,111;

L#1004; {go to loop check}

2,3; {dac_out :=

5,1,0,0; integer (present_e)

}

1 ,1 ,portpack;

L#1001; {go to beginning}

112,0; {procedure return}
{never used}

10

PKGDEF. $init.latticef .0000,12;
{procedure header for package}
CALLI CALLGS. $init. portpack. 0000 ,portpack;

L#2000:

;

LIT4A.0 PKGEND. 0;
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5F RETURN
20 NOP

FINI
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Integer ADATESTS Source listing

Loop Structure Test

April 18, 1984

Ken Albin, Dept. of Electrical and Computer Engineering
Kansas State University, Manhattan, KS 66506

This program attempts to test the efficiency of various
compiled structures available in Ada.

package adatests is

procedure dummy;

procedure stuff;

end adatests;

package body adatests is

procedure dummy is

Nothing goes on here - this is just to look at calling code,

begin

null;

end;

procedure stuff is

This section test various control structures found in Ada.

type number_system is new integer;

done: boolean := false;

A, B,C,D, E,F,G: number_system;

function add_seven
(
junk_in: number_system)

return number_system is

begin

return junk_in + 7;

end add_seven;

beqin
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while not done loop

done := true;

end loop;

for count in 1..5 loop

null;

end loop;

loop

null;

exit;

end loop;

The following is a test to see the reordering (if any)
performed.

A := B + C * (D + E * (F + G) ) ;

The following is a test to see if an optimization is made to
avoid storing and then immediately retrieving a variable.

First argument matches last assigned (A)

.

A := B + C;

D := A + G;

Second argument matches last assigned (B)

.

C := D + E;

B : = F + C;

Common subexpression elimination test.

A := (B + C) * D - (B + C)

;

Duplicate argument instead of fetch again.

A := D * D;

A := (D + 5) * (D + 5)

;

Removal of loop invariant expressions.

for count in 1..5 loop
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A := 1;

E := 1 + 3;

B := C + D;

end loop;

Test to see if the increment instruction is used,

A := A + 1;

Sample procedure call,

dummy.

Sample function call.

B := add_seven (A)

;

end stuff;

begin

null:

end adatests;
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Integer ADATESTS Object listing

Macro/Instruction Definitions will be read from module
[TDJ. AAMP1 6 ] AAMP16 . MLB

Program Size For Counter 1 = 68 Words Decimal.

CAPS Macro Assembler listing for module ADATESTS. OBJ

IDENT. adatests', AAMP/ACAPS Code
Generator Version 1.6';

XREF. standard;
PACKAGE. adatests;
XDEF. $init. adatests. 0000
XDEF. dummy. adatests. 0001
XDEF. stuff .adatests. 0002;
PROCDEF. dummy. adatests. 0001,0,12;

Opcodes Instruction Macro Macro args.

0000 (procedure header for dummy}
L#1000:

;

10 LIT4A.0 PROCEND. 0,0; {null procedure body}
5F RETURN

0000 {procedure header for add_seven}
00 REFSL.O REFL. 1,0; {return junk in + 7}

17 LIT4A.7 LIIT. 1,7;
E4 ADD ADD. l;

11 LIT4A.1 RETURN. 1;
5F RETURN

L#2000: •

11 LIT4A.1 PROCEND

.

0,1;
5F RETURN

20 NOP PROCDEF. stuff .adatests. 000 2, 9,1 2;
0009 {procedure header for st uff}

10 LIT4A.0 LIT. 1,0;
40 ASNSL.O ASNL. 1,0;

L#3001: •

00 REFSL.O REFL. 1 ,0; {initial ize done:=fal
05 5B SKIPNZI JUMPT. L#3002;

11 LIT4A.1 LIT. 1,1;
40 ASNSL.O ASNL. 1,0;

07 19
59

LIT8N
SKIP

JUMP. L#3001; {end loop}

L#3003:

;

L#3002:;
11 LIT4A.1 LIT. 1,1; Unit count := 1}

48 ASNSL.8 ASNL. 1,8;
L#3005:

;

08 REFSL.8 REFL. 1,8; {check count}
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15
]

07 5B

08

E4

EC

11

48

OB 19
59

LIT4A.5
GR
SKIPNZI

REFSL.8
LIT4A.1
ADD
ASNSL.8

LIT8N
SKIP

LIT. 1,5;
GRT. If
JUMPT. L#3004;

(null loop body}
REFL. 1,8; {increment count)
LIT. 1,1;
ADD. 1;
ASNL. 1,8;

JUMP.

031D SKIPI

L#3004
L#3006
L#3007

L#3009
0419

59

02
03

04
05

06
07

E4
E6

E4
E6

E4
41

02
03

E4
41

01
07

E4
44

04
05

E4
43

06
03

E4
42

02
03

E4

LIT8N
SKIP

REFSL.2
REFSL.3
REFSL.4
REFSL.5
REFSL.6
REFSL.7
ADD
MPYI
ADD
MPYI
ADD
ASNSL.l

REFSL.2
REFSL.3
ADD
ASNSL.l

REFSL.l
REFSL.7
ADD
ASNSL.4

REFSL.4
REFSL.5
ADD
ASNSL.3

REFSL.6
REFSL.3
ADD
ASNSL.2

REFSL.2
REFSL.3
ADD

L#3008:

JUMP,

JUMP,

REFL.
REFL.
REFL.
REFL.
REFL.
REFL.
ADD.
MPY
ADD.
MPY.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL,

REFL,
REFL,
ADD.
ASNL,

REFL.
REFL,
ADD.

L#3005; {go to loop check)

{begin loop)
L#3008; {exit loop)

L#3007; {end loop)

1,2
1,3
1,4
1,5
1,6
1,7
If

If
l;

if
l;

1,1

1,2
1,3
if
1,1

1,1
1,7
If
1,4

1,4
1,5
If
1,3

1,6
1,3
If
1,2

1,2
1,3
If

{ A:=B+C*(D+E*(F+G) ) )

{ A := B + C )

{ D := A + G )

{ C := D + E )

{ B := F + C )

{ A:=(B+C)*D-(B+C) )
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04 REFSL.4 REFL. 1,4;
E6 MPYI MPY. l;

02 REFSL.2 REFL. 1,2;
03 REFSL.3 REFL. 1,3;

E4 ADD ADD. l;
E5 SUB SUB. l;

41 ASNSL.l ASNL. 1,1;

04 REFSL.4 REFL. 1,4; { A := D * D }

04 REFSL.4 REFL. 1,4;
E6 MPYI MPY. l;

41 ASNSL.l ASNL. 1,1;

04 REFSL.4 REFL. 1,4; (A:=(D+5)*(D+5)

}

15 LIT4A.5 LIT. 1,5;
E4 ADD ADD. l;

04 REFSL.4 REFL. 1,4;
15 LIT4A.5 LIT. 1,5;

E4 ADD ADD. l;

E6 MPYI MPY. l;
41 ASNSL.l ASNL. l,l;

11 LIT4A.1 LIT. l,l; (init count := 1}

48 ASNSL.8
L#3011:

ASNL.
•

1,8;

08 REFSL.8 REFL. 1,8; (check count}
15 LIT4A.5 LIT. 1,5;

EC GR GRT. l;
0F5B SKIPNZI JUMPT. L#3010;

11 LIT4A.1 LIT. 1,1; {A := 1}

41 ASNSL.l ASNL. l,l;

14 LIT4A.4 LIT. 1,4; {E := 1 + 3}
45 ASNSL.5 ASNL. 1,5; {note: an optimiza

03 REFSL.3 REFL. 1,3; {B := C + D>
04 REFSL.4 REFL. 1,4;

E4 ADD ADD. l;
42 ASNSL.2 ASNL. 1,2;

08 REFSL.8 REFL. 1,8; {increment count}
11 LIT4A.1 LIT. 1,1;

E4 ADD ADD. 1;
48 ASNSL.8 ASNL. 1,8;

1319 LIT8N JUMP. L#3011; {go to check c

59 SKIP
L#3010:
L#3012:

•

•

01 REFSL.l REFL. 1,1; {A := A + 1}
11 LIT4A.1 LIT. 1,1;

E4 ADD ADD. l;
41 ASNSL.l ASNL. 1,1;
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0000 23 CALLI CALLG.

01 REFSL.l REFL.
000 4 23 CALLI CALLL.

42 ASNSL.2 ASNSL.
L#3000:;

29 LIT4B.9 PROCEND.
5F RETURN

dummy. ada tests. 0001;

1,1; { B := add_seven(A) }

add_seven. ada tests .0000;
1,2;

9,0

20 NOP PKGDEF.
0000 {procedure header)

L#4000:;
10 LIT4A.0 PKGEND.

5F RETURN
FINI

$init.adatests.0000,12;

0;
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Floating-point ADATESTS Object listing

Macro/Instruction Definitions will be read from module
[TDJ. AAMP1 6 ] AAMP16 . MLB

Program Size for Counter 1 = 83 Words Decimal.

CAPS Macro Assembler listing for module ADATESTSF.OBJ

IDENT. 'adatestsfV AAMP/ACAPS Code
Generator Version 1.6';

XREF. standard;
PACKAGE. adatestsf;
XDEF. Sinit. adatestsf .0000;
XDEF. dummy. adatestsf .0001;
XDEF. stuff .adatestsf .0002;
PROCDEF. dummy. adatestsf .0001,0,12;

Opcodes Instruction Macro Macro args.

0000 (procdedure header for dummy}
L#1000:

;

10 LIT4A.4 PROCEND. 0,0; {null body of dummy}
5F RETURN

0000 (procedure header for function add_seven}
30 REFDL.O REFL. 2,0; {arg passed on stack}

0083 25 LIT32 LIT. 2,7.00000000;
6000

84 ADDF ADD. 5; {return junk_in + 7}
12 LIT4A.2 RETURN. 2;

L#2000:

;

12 LIT4A.2 PROCEND. 0,2;
5F RETURN

20 NOP PROCDEF. stuff . adatestsf

.

0002,16 ,12;
0010 {procedure header for stuff}

10 LIT4A.0
40 ASNSL.O

L#3001;
00 REFSL.O

05 5B SKIPNZI

11 LIT4A.1
40 ASNSL.O

07 19 LIT8N JUMP. L#3001; {go to while test}
59 SKIP

L#3003:;
L#3002:;

11 LIT4A.1 LIT. 1,1; Unit loop variable}
4F ASNSL.F ASNL. 1,15;

L#3005:;
OF REFSL.F REFL. 1/15; {test loop variable}
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LIT. 1,0; {init done:=false}
ASNL. 1,0;

REFL. 1,0; {while test}
JUMPT. L#3002;

LIT. 1,1; {set done:=true}
ASNL. 1,0;



15
]

07 5B

OF

E4

EC

11

4F

OB 19
59

LIT4A.5
GR
SKIPNZI

REFSL.F
LIT4A.1
ADD
ASNSL.F

LIT8N
SKIP

LIT. 1,5;
GRT. l;

JUMPT. L#3004;
{null body of loop}

REFL. 1,15; {inc loop variable}
LIT. 1,1;
ADD. 1;
ASNL. 1,15;

JUMP.

031D SKIPI

L#3004
L#3006
L#3007

L#3009
0419

59

33
35

37
39

3B
3D

84
86

84
86

84
CI

33
35

84
CI

31
3D

84
C7

37
39

84
C5

3B
35

84
C3

33
35

84

LIT8N
SKIP

REFDL.3
REFDL.5
REFDL .

7

REFDL.9
REFDL.

B

REFDL.

D

ADDF
MPYF
ADDF
MPYF
ADDF
ASNDL.l

REFDL.3
REFDL.5
ADDF
ASNDL.l

REFDL.

1

REFDL.

D

ADDF
ASNDL.7

REFDL.

7

REFDL.9
ADDF
ASNDL.5

REFDL.

B

REFDL.5
ADDF.
ASNDL.3

REFDL.3
REFDL.5
ADDF

L#3008:

JUMP.

JUMP.

REFL.
REFL.
REFL.
REFL,
REFL.
REFL,
ADD.
MPY.
ADD.
MPY.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.
ASNL.

REFL.
REFL.
ADD.

L#3005; {go to loop test}

{beginning of loop}
L#3008; {exit loop}

L#3007; {go to loop beginning}

2,
2,
2,
2,
2,
2,
5;
5;

5;
5;

5;
2,

3

5

7

9

ll;
13;

{A:=B+C*(D+E*(F+G) ) }

1;

{C:=D+E}

2,3; {A:=B+C}
2,5;
5;

2,1;

2,1; {D:=A+G}
2,13;
5;

2,7

2,7
2,9
5;
2,5

2,B
2,5
5;
2,3

2,3
2,5
5;

{B:=F+C}

{A:=(B+C)*D-(B+C)

}
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37
86

33
35

84
85

CI

37
37

0000
20

0083
2000

86
CI

37
8325

84
37

25

84
86

CI

0000
00

0000
00

0082
4000

11
4F

OF
15

EC
1D5B

8125

CI

8125

25

84
C9

35
37

84
C3

OF
11

E4
4F

2119
59

REFDL.7
MPYF
REFDL.3
REFDL.5
ADDF
SUBF
ASNDL.l

REFDL.7
REFDL.7
MPYF
ASNDL.l

REFDL .

7

LIT32

ADDF
REFDL.7
LIT32

ADDF
MPYF
ASNDL .

1

LIT4A.1
ASNSL.F

]

REFSL.F
LIT4A.5
GR
SKIPNZI

LIT3 2

ASNDL .

1

LIT32

LIT32

ADDF
ASNDL.

9

REFDL .

5

REFDL.7
ADDF
ASNDL.

3

REFSL.F
LIT4A.1
ADD
ASNSL.F

LIT8N
SKIP

L#3011

REFL. 2,7;
MPY. 5;
REFL. 2,3;
REFL. 2,5;
ADD. 5;
SUB. 5;
ASNL. 2,1;

REFL. 2,7; (A:=D*D}
REFL. 2,7;
MPY. 5;
ASNL. 2,1;

REFL. 2,7; (A:=(D+5.0)*(D+5.0
LIT. 2,5.00000000;

ADD. 5;
REFL. 2,7;
LIT32 2,5.00000000;

ADD. 5;
MPY. 5;
ASNL. 2,1;

LIT. 1,1; (init count:=l>
ASNL. 1,15;

REFL. 1,15; (loop test}
LIT. 1,5;
GRT. 1;
JUMPT. L#3010;

LIT. 2,1.00000000; {A:=1.0}

ASNL. 2,1;

LIT. 2,1.00000000; (E:=l+3>

LIT. 2,3.00000000;

ADD. 5;
ASNL. 2,9;

REFL. 2,5; {B:=C+D>
REFL. 2,7;
ADD. 5;
ASNL. 2,3;

REFL. 1,15; (increment count}
LIT. 1,1;
ADD. 1;
ASNL. 1,15;

JUMP. L#3011; (go to loop test}
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L#3010:;
L#3012:;

31 REFDL.l REFL. 2,1; {A:=A+1.0>
0000 8125 LIT32 LIT. 2,1.00000000;

00
84 ADDF ADD. 5;

CI ASNDL.l ASNL. 2,1;

0000 23 CALLI CALLG. dummy . adatestsf . 0001

;

31 REFDL.l REFL. 2,1;

0004 23 CALLI CALLL. add_seven. adatestsf . 0000

;

C3 ASNDL.3 ASNL. 2,3;
L#3000: ;

10 18 LIT8 PROCEND. 16,0;
5F RETURN

PKGDEF. $init. adatestsf .0000,12;
0000 {procedure header)

L#4000: ;

10 LIT4A.0 PKGEND. 0; (null procedure body)
5F RETURN

FINI
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ABSTRACT

This thesis examines the architecture of Rockwell's Advanced

Architecture Microprocessor (AAMP) and predicts performance on

signal processing algorithms. Performance that can be achieved

with high-level languages is also investigated.

The Electrical and Computer Engineering Department at Kansas

State University, in conjunction with Sandia National

Laboratories, has attempted to identify processors which are

most appropriate for implementation of real-time adaptive linear

prediction in intruder detection devices. The ideal processor

would require very little power, be easy to interface, perform

multiplications very quickly and use floating-point arithmetic.

The AAMP is a CMOS/SOS microprocessor that has a stack

architecture with a 16-bit wide data path. Single and double

precision integer and fractional as well as single and extended

precision floating-point data types are supported on a single

chip. It consumes approximately 50 mW at its rated 20 MHz clock

rate and uses a single 5 volt supply.

This thesis consists of three parts. The first part is an

introduction to the AAMP's architecture, instruction set and data

structures. The second part details the investigation and

findings from the evaluation. Included in this section is a

discussion of ways to optimize the Widrow and Lattice algorithms

for the processor's architecture. The third part contains the

results and conclusions of the evaluation in a concise form.






