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CHAPTER I

INTRODUCIION

A program is a collection of computations related to
each other with the needed of data values that are generated
and consumed. Cbviously, the execution order of the
computations is not simply stated Ly the program but rather
by the data dependencies, 1i.e., both static and dynamic
structures are vital factors which effect the program

executions, and are even more important in the parallel

computations.

The main reason for today's parallelism is obtained by

the follcwing motives(21):

1. Increase the speed of computation beyond the 1limit
imposed by technological limitatioms.

2. Reduction of turnaround time of jokbs.

3. Reduction of mEemory and time regquirements £ or
hoursekeeping chores.

4. An increase in simultaneous service to many users.

5. Improved performance in a uniprocessor multiprogrammed

environment.

Within an individual program, parallelism can exist at
several levels, i.e., the independent programs can be

processed concurrently which is synonymous With the
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conventional meaning of multiprocessing in the
multiprogrammed environment. We are considered to intra-
program parallelism as ofpposed to the inter-progranm
parallelism. Intra-program parallelism refers +to the type
of processing in which a single program c¢an be partitioned

into tasks that camn be performed in parallel.

On the other hand, natural sequences seem to have a
reqularity which is neither statistical nor analytic, but
combinatorical. In Chapter 111, a new kind of
combinatorical regularity of natural sequences of symbols,
called factoring, presented by Case & Fisher(7), is

introduced.

In this paper, we will first introduce some parallel
exXxecution algorithms (Chapter II), followed by a factoring
technique, and then give some examples to show how the
rrogram, after properly been factored, can be executed in

parallel.



CHAPTER II

PARALLEL COMPUTATION

2.1 INTRODUCTICHN

A sequential program has the statements coded serially
as if they are to be executed by a single processor one at
time. However, in this section, some schemes for parallel

executions of sequential programs will be descrited.

In a sequential program, statements can be considered
as only the following two catagories:

(i) Assignment Statements --
An assignment statement has the form of "X <-- Expr"®,
where ¥ is a variable defined by the arithmetic or
logical expression named Expr.

(ii) Branch Statements —-
A branch statement is defined Ly either "IF Cond THERXN
Statements" or "GO TO Statements", where Cond is a

conditional expression.

Therefore, any loop statements 1imn a dynamic structured
program, can be written as simple assignments and kranch

statements by iteration.



2.2 BENSTETINWN'S SCHEME FOR PARALLEL COMPUTATICY

There are some schemes for the parallel execution of a
sequential program which require a procedure to detect
Farallelism in a program befcre its execution. Here, vwe

like to introduce PBenstein's Algorithnm.

Benstein (6,22) presented a model for FORTRAN language
and a set of conditions to determine whether or not two
successive portions of a given program can be executed in
parallel and still produce the same results. He considers
two machine models, one in which every processor
communicates directly with a common main memory and one in
which each processcr has a slave memory to take care of the
information coming from or going to main =memory. The

variables are developed into four categories:

1) The location is only fetched during execution.
2) The location is only stored during execution.
3) The location which is first fetched and then stored.
4) The lccation which is first stored and then fetched.

{These are denoted as Wi, Xi, Yi, Zi sets respectively.)

If the data on successive three portions of a program

can ke satisfied by the relations:



(1) &1 { Y1 Uy 21) A (x2 U ¥2 U z2) = ¢
(2) (Xt ¢ Y1 (¢ zZz1y N (82 U Y2 (J 22y = @
(3) Xt N X2 N (W3 U ¥3) = ¢
then their relationships are independent, so the first two
Fortions can be executed in parallel.
However, these schemes have two restrictioms: (i) the

parallel executable statements share limited variable space
(ii) the processors executing them do not communicate with
each other. Ramamoorthy & leung represented a scheme which

relaxes the restrictions.



2.3 ERAMAMCORTHY & LEUNGS' SCEEME FOR PARALLEL EXECUTION

They(22) proposed a scheme having monitors which
preserve the inherent precedence relation among statements.
There are some static information about the use of variable
which will be generated before €xecution to aid the
monitoring procedure. Also, the monitoring process requires
dynamic dinformation to trace the execution order of

statements.

The precedence among statements which must Lke preserved
is related toc both the execution crder and data dependency.
They presented a monitoring process which is aided Ly two
pieces of information: (i) the reference table which
irdicates how a variable is used in the program statements,
and (ii) a stack of trace vectors which keeps track of the

execution order of statements.

Given an eXample assignment statement Dblock as

following:

S1: a(I,d) = 1.0

s2: X

X + I



every element in the table is denoted as RT(X,5i), where X
is a variable name and Si is a statement lakel, such as
RT ({,S1i) = 00, if X is not referenced in Si.

ET(X,5i) = 01, if X is read in Si.

RT (X,S1) 10, if X is updated in Si.

RT(X,5i) = 11, if X is read and updated in Si.

the reference takle for the above ¢frogram block then can be

shown as:
ST S2 S3 sS4 s5 se6

I |
A |} 10 06 00 @O 00 00
I { 01 01 11 0C 01 01 |
J ] 0t 00 00O 11 00 01 |
X { 00 11 00 00 01 00 |
¥ | 00 00 00 00 10 00 |
Z | 00 00 00 00 00 10 |

i I

Trace vectors convey two messages: {i) They show

whether a statement in the execution route has been
completed or not. {ii) They reveal the execution order of
statements. An element of the trace vector is denoted as
TV{u,Si), wWhere Si is a statement label and u indicates a
trace interval. A new trace interval is added when a
backward branch is in effect. The element TV(u,Si)=1 menas
that Si is being executed in interval u. TV{u,Si)=0 implies
the execution of Si is completed or Si does not appear in

the execution route in interval u.
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Given an example program graph:

the execution route and the possible sequence of trace

vectors will be:

trace vector of
51 s2 S3 S4 55 56
|
| T N T

*result of S2 branches to S5
Lt 0l 0] 0] t1 1

{ 13 0] 0l O] 1§ 1]

*result of S€ branches to S3

1 0i 0] O 110
0 0] 1 !
*execution of S1 in interval 1 completed
trace interval 2 0 0] 0] 0] 11 0
0 11 1 |
*result of sS4 branches to S1
0f 0] 0| O} 1] 0O
o] O 11 0 0| O
trace interval 3 1

*execution of S5 in interval 1 completed

% sb

The trace vectors will be wupdated frequently during
execution to keep track of the execution order of

Statements. Re consider three cases in updating the trace
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vectors.

(1) When a statement Si is fetched for execution, the
corresponding TV (u,Si) will be set to one. Tkere is no
change in trace interval.

(2) When a statement Sm is fetched as a result of forward
branching from statement Sl1, the statements between 51
and Sm are not covered in the execution route. Hence,
for all sl < si < Sm, TV(u,Si) will be reset to zero and
TV(u,Sm) = 1. There is no change in trace interval.

(3) A backward branch from statement SB +to0o S1 means that
some statement Sk, such that S1 < Sk < Sm, may precede
Sl in execution order. To account for this fact, a new
trace interval u+1 will be <created when S1 is fetched

for execution.

Statements in different trace intervals then can be executed

at the same tine.

By using a variable reference table and a stack of
trace vectors one can determine the execution order of
statements, and obtain the shared variable sets of
statements. One then can preserve the direct precedence

relations and execute a sequential fprcgram correctly.
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2.4 DETECTIOCN OF PARALLEL COMPONENTS
WITHIN ARITHMETIC EXPRESSIORS

Given an expression A+B+C+D*E*F+G+H, there are three
different algorithms that can be used to compute the
arithmetic expression in parallel. Those are introduced in

this section(15,21,23).

(1) Bellerman's algorithm

This algorithm(15) assumes that the input string is
written in reverse Polish notation and contains only kinary
operators. The string is scanned from left to right
replacing by temporary results each occurrence of adjacent
operands immediately followed by an operator. Those
tempcrary results will be considered as operands during the
next passes. Temporary results generated during a given
pass are said to e at the same level and therefore can be
executed in frarallel. The compilation of the given

expression listed above is shown as follows:

input strimng after temporary results during
the i-th pass the i-th pass

0 AB+C+DE*F*+G+H+

1 R1C+ R2F*+G+H+ R1 = A+B; R2 = D*E

2 R3R4U+G+H+ B3 = R1+4C; BRY = R2*F

3 R5G+H+ R5 = R3+R4

4 R6H+ R6 = R5+G

5 R7 R7 = Ré+H
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level
+ o)
R{\\
RE
w/// \\\b 3
RS
/\ 2
R3 RQ\\\
+/// C */// F 1
///BQ\\ R2
A BD E 0

(the parallel computation using Hellerman's)

The algorithm seems simple and fast. However, it is
difficult to implement for it requires the Polish notation
for input string, and it is unable to handle operators which

are not commutative.

(2) Squire's algorithm

This algorithm (23) begins with the rightmost symbol of
the input strinmg to scan, and proceeds from <rTight to left

until an operator is found whose priority is lower than that
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cf the previously scanned operator (a substring is then
formed). Then a left to right scan proceeds the same way to
search for the lower ©priority operator thing in the
substring. And the temporary result replaces a pair of
operands with one operator and leaves the others. The left
to right scans are repeated until no further temporary
result can be produced, and at that time, +the right to left

scan is reinitiated.-

The goal of +the algorithm is to form gquintuples of
temporary results of the form:
Ri (op1, operator, op2, start-level, end-level)
where start-level = max (end-level opl; end-level op2)

end-level = start-level + 1

opl = cperand 1
op2 = operand 2
The results of the Frocess with input string

"A+B+C+D*E*F+G+H" are shown as:

right to left scan left to riqgqht scan
D

*E*F+G+H R1*F+G+H
R2+G+H

A+B+C+R2+G+H R3+C+E2+G+H
R4+R3+4R2+H
R4+R5+R2
BR6+R2
R7
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quintuples opl operator op2 start-level end-level
R1 D * E 0 1
R2 F * R1 1 2
R3 A + B 0 1
R4 o + G 0 1
R5 H + R3 1 2
RE R4 + R5 2 3
R7 B2 + R6 3 4
level

4
3 \\
X J / \

///RZ R5 \
1 +

R 1 , R4

/// \\ /// \ /:\\
AY 7 '\_\

0 D E A B C G

(the parallel computation using Squire's algorithm)

21l temporary 7Tresults which have the same start-level
therefore can be ccmputed in parallel. This algorithm can
also handle substraction and division with a corresponding
increase in complexity. Another feature is that Polish
notation plays po part im either the input string or the
output quintuples. Because the algorithm requires many
scans and comparisons, it beccmes more complex as the length
of the expression and the diversity of operators within the

expression increase.
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(3) Ramamoorthy's algorithm

The first step of the algorithm(21) is to rewrite the
expression in reverse Polish form and rTeverse its order.
Starting with the rightmost symbol of the string, assign a

value to each member based on the following procedure:

Assign to symbol Si, the value Vi = Vv{i-1) + Ri, i =1, 2,
T
where Ri = 1 - Wi, given that
Wi = 0, if Si is a variable
Wi = 1, if Si is a unary operator

Wi

I
h%]
~

if si is a binary operatecr

and V1 = R1, v0 =0

Then the procedure follows ky (i) Find the first with
the highest value of a symbcl from rightmost, namely Vnm.
(ii) sStarts from Vm to left, find the first symbol which has
a value of 1, departs the string intc two sukstrings. (iii)
Consider the rightmost substring, form a new substring
consisting of the symbols within the value of Vi = 1 to the
right and to the left of Vm. Transpose this substring with
the substring to the right of it whose leftmost member has a
value of vi =1. (iv) Repeat the procedure until the initial

Vm occupies the position i = 2 in the substring. And apply



17
to the leftmost substring with the same procedure. As a
result, two branches on either side of the root node can

be executed in parallel.

Using this procedure, taking the same example with
input string in reverse order of Polish form:

"+H+G+*F*¥ED+C+BAM.

the string with value assigned as:

Rcot Vm
i: 1514 1312 11109 8 7 € 5 4 3 2 1
Si: + H + 6 | + *®* F * E D + C + B A
Yiz '\ 2 1 2 1 2 3 2 3 2 1T 2 1 2 1
initial rightmost + * P * E D + C + B A
substring 12 3 2 3 2 1 2 1 2 1

final rightmost + +
substring 1 2

{the transposed part)
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| \

2 A\
VA WAN
NN\ N

{the parallel computaticn using Ramamoorthy's)

In order to implement the techniques mentioned here for
components within arithmetic exfpressions, several features
are desirable. Schenes for detecting parallel processable
components are oriented primarily needed. Also, string
manipulation ability would be highly desiable, and an
associative memory could reduce execution +time in the

implementation of rrecedence fpartitioms.
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CHAPTER 111

FACTORING ON FINITELY INDUCTIVE SEQUENCES

3.1 INTRODUCTIOR

IF a segquence

a0,al,a2,a3,...

of letters from an alphabet A of K many letters have the
rroperty that for some fixed n >= 1, the choice of ai for

all i >= n depends only on the choices of

a{(i-n), ..., a(i-2), a{i-1.

such a sequence is called a Finitely Inductive sequence, and
the least such n is called the inductive base of the

Sequence.

A function F having the property that:
(A) the domaim of F is a set of n-tuples of letters from A,
and the range of F is contained in A,
and
{(B) for each i=n, p+t1, n+2, ..., the n-tuple
{ a{i-n), ..., a(i-2), a(i-1) ) 4is in the
domain of F

and F{ a(i-n), ..., a(i-2), a(i-1) ) = ai
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This function is defined to be an F.I. function for the
sequence, and the minimal such function to be the F.I.

function for the sequence.

Consider the following example:

A

{a,b,c,a]}
n=2

F is given by the table: ab --> c

(the left hand side bc —-> d
of each notation is cd —-> b
called implicant.) db —-> d
da --> ¢
ac =-> b

starting segment = ab

resulting sequence: abcdbd

The m@maximum number of symbols within the implicants is
called inductive base, and note that the seguence stops. If
the sequence become infinite, the pair {consisting of the
function and +the starting segment) will be called a full
F.I. ©pair; otherwise, it will be called a partial F.I.

Fair«

Case & Fisher (7) introduce a ruling as a finite
sequence of F.I. pairs in which only the last may be full,

and all wuse the same alphabet(but the inductive bases may
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differ). A factorization of an F.I. seguence (or
corresponding full PF.I. pair) is a ruling in which the
sequence generated by this ruling is the same as the F.I.

sequence.

In this sectiomn, four heuristics are discussed on
factoring an F.I. sequence (Finitely Inductive sequence).
Also, four examples are given +to eXplain the heuristics?
functions. Finally, the applications on factoring are

introdaoced.
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3.2 HEURISTICS AND EXAMPLES

(1) THE FIRST HEURISTIC

The first heuristic says that it is good to delete
(if possible) cne occurrence of some of common letters

between implicants in a function table.

Example 1. Given sequence (the vertical stroke devides

the period of the segquence) :

aababcabcd|aabalkcabed

the function takle:

d --> a

da --> a

aa —=-> b
aabh --> a *

ba --> b
bab --> ¢ *
babc —--> a *¥%

ca --> b
cab --> ¢ *
cakc --> 4 *=*

Here, the <first occurrence of those having one single
star marked implicants, and the second occurrence of
"aw "hn wyere chosen to delete for those having double

starred implicants.

the factoring shovs:

L2 a abc cdja abc cd
L1 aababcabcdjaababcabcd
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function table for 12 function table for L1
d --> a da —-> a
da --> a aa --> b
aa —-> b bakc --> a
b --> ¢ ca ——-> b
b¢ —-> ¢
cc —-=-> 4

{ a 2-4 factorization )

S50, this heuristic worked quite well at makiang the
top level have minimal base, however, it could cause the
lower level to remain with a larger base. In this
example, the top level leaves +the inductive base equals
to 2, but the inductive base in the lower level becomes

toc 4.

(2) THE SECOND HEUORISTIC

In any two level factorizatiom of an F.I. Sequence,
the second heuristic simply combines the first heuristic
with the function table having mipnimal implicants for the

lcvwest level of the factorization.

Example 2. Again, given the same F.I. sequence from the

example 1.

aababcabcd{aababcabcd
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the function table:

ca —->
cabk —-->
cabc —-->

d --> a =*

da —-> a *

aa —=-> b =
aab -=-> a

ba —-> b **

bad --> ¢
babc -=> a
b
c
d

There are five implications having lengths less than or
equal to 2. However, the second "b" in "btab --> c¢" has
already had its reflection removed in implication "aab -->
a" by removing the consequent of "aa --> LW, Also, the
second "b" in "hakc —--> a" has already had its reflection
removed in "cabc —-—-> 4" by removing the consequent of "ca
-—> bhn. Therefore, we only remove the consequents of the

implications followed by a single star (7).

the resulting 2-2 factorizaticn:

i2 akca cdj abca cd
11 aalkakcabcdjaabakcabed

function table fcr L2 function table for L1
d --> a d -—-> a
da —-> b da --> a
b —-> ¢ aa --> b
be —=> a ca —-> b
ca —--> C
ac ==> d

{ a 2-2 factorization )
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Basically, the lower level has the minimal implicants,
which is +the subset of the function table of +the original
F.I. sequence's. However, it requires an intuitive method

to decide the implicants to bhe deleted.

{3) THE THIRD HEURISTIC

This procedure starts with a trial factorization of
the type n-0-0-0 in which the top level is the given F.I.
Sequence, and the function tables in the lower levels
are empty. The principal idea of the procedure is to
"push down" implicants from the top level as far as

possible without violating the bounded base length.

Example 3. Given the same F.I. seguence as before:

dababcabcd|aababecakbcd

the starting situation is

L3 aababcabcd{aababcabcd
12 aababcabecd|aababcabcd
11 aababcabcdjaabakcakcd
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takle for L3 table for L2 table for Lt
d --> a * empty empty

da —-> a *
aa —> b ¥

aab --> a
ba ——> b **

bab ——-> ¢

kabc ——> a
ca —> Lb *

cak —-> ¢

cabc ——> 4

( a 4-0-0 factorization )

For the first step, as in example 2, the implications
that are followed by a single star will be pushed down to
the closest lower level, then we can get:

13 abca cdj akca cd

12 aababcabcd|aabakbcabced
L1 aababcabcd]aababcabed

takle for 1.3 table for L2 table for L1
d —-> a d --> a empty
da —> b da --> a
h —> ¢ aa —-> t
bec —-> a ca —-> b
ca ——> ¢
ac ——-> d

({ a 2-2-0 factorization )

Since the implicants in L3 are now equal to or less than
the inductive Dbase 2, the process 1is stopped. This
procedure is finished by pushing down all the implicants

from 12 to L1, and then all of the implicants from L3 to



(4)
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1!2.
table for 13 table for L2 table for L1
enpty d -—> a d --> a
da --> t da --> a
b —-> ¢ aa --> b
bc --> a ca --> b
ca —--> ¢
ac -—-> d
{ a proper 0-2-2 factorizaticn )
By repeating push-down process, the implicants can
be moved one level lower each time. So, a multi-level

factorization can be achieved by this heuristic, hovever

intuition is still needed.

THE FOURTH BEURISTIC

The fourth heuristic is a procedure for factoring a
given Finitely Inductive Sequence intc a nmulti-level
factorization in which each level has inductive base less
than or equal to a given number. That is, the heuristic
leads a multi-level factorization ty keeping pushing down
the implicants having inductive base less than or egqual

to a given number in each residual function table.

Example 4. Given a binary sequence of base 4 which has
only one implicant of length less than 4 but still gets a

proper factorization by using the fourth heuristic.
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the sequence:

(R1) 111100010011010§1111100010011010

the function table:

1010 --> 1
0101 --> 1
1011 —-> 1
0111 -=> 1
1111 --> 0
1110 --> 0
1100 —-> 0
000 —-=> 1 *
0001 --> 0
0010 —-> 0
0100 ——> 1
1001 --> 1
0011 --> 0
0110 -=> 1
1101 --> 0

The first step is to push down the starred implicant

which is the only one of length less than 4.

the residual after (R1):

(R2) 11110000011010] 11110000011010



the function talkle:

010 ~=> 1 *
0101 --> 1
1011 —=> 1
0111 --> 1
111 -=> 0
1110 --> 0

100 --> 0 =
1000 --> 0

10000 --> 0O
00000 --> 1

001 -=> 1 *
0011 --> 0
0110 --> 1
1101 =-=> 0

the residual after (R2):

(R3) 111000010101 11100001010

the function tatle:

010 -=-> | =*
10101 -=> 1
011 =-> 1 =*
111 —=> 0 *
110 —==> 0 =*
100 --> 0 *
1000 --> 0
0000 --> 1
001 --> 0 =
00101 -=> 0

the residual after (R3):

(R4)  1010]1010

29
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the function table:

Q --> 1

1 -->0

the result is a 1-3-3-3 factorization :

La 1 01 0t 1 01 0
L3 11100 001 010} 11100 001 010
12 1111000 001101011111000 0011010
L1 1111000100110101111100010011010

table for L4 table for L3 table for 12 +table for L1

g ~=3 010 —-> 1 010 --> 1 000 --> 1
1-=>0 011 —-> 1 100 -=> 0

111 -=> 0 061 --> 1

110 —--> 0

100 --> 0

001 -=> 0

The fourth heuristic therefore can not only factor
an F.I. sequence into a multi-level factorization, but
help the large problems to work better +than intuitive

methods.
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3.3 APPLICATIONS

Case & Fisher (7) gave an example of a piece of music,
which is a "Minute in G" by J.S. Bach, to apply the fourth
heuristic. They uses only letters and numkers to represent

the nctes and the length of notes setparately.

The sequence was started with inductive base of €5. 1In
factoring, the fourth heuristic was used, at each stage,
implicants of length less than or equal to 2 were pushed

down. The general numerical results were as follows:

sequence tase total implicants number <= 2
original 65 102 59
first residual 28 uy 35
seccnd residual i) 1" 6
third residual 2 U 4

total 104

The result is a 2-1-2-2 factorization.

In the next chapter, we will apply the heuristic to
computer programs. By factoring programs into multi-level
factorization, one can both save storage space as well as

make the time dependencies rather short.
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CHAPTER IV

PROGRAM FACTORIZATION

4.1 INTRODUCTIONW

In Chapter II, we have introduced some algorithms that
apply parallel execution of program statements. In this
chapter, we apply the factoring technique discussed in
Chapter III to programs to achieve a parallel computational

environment.

Given a program, one can take out the oferands from
every statement and construct to a sequence. If we factor a
sequence of a given program into multiple levels as a
finitely inductive sequence can be done (mentioned in
Chapter III), a program then can ke executed in parallel,
where each of the levels represent a different machine. The
objective of parallel execution will be especially useful to
large scale programs in terms of time-saving and space-

saving.
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(1)

DIFFICULT PROELENS

The first =stage

To an operand-formed seqguence, we only want +to
regenerate variables as well as constants, which are
assuming necessary roles during execution. At first, it
seens that the only statements that we need to be
ccncerned with are the assignment statements and some
input statements. Taking a static structured progran

segnent as follcws:

BEGIN
READ (radius);
area := 3. 14 * radius ** 2;
circle := 2 % 3.14 * radius;

END

the sequence cam be given as follows:

|radius area 3.14 radius 2 circle 2 3.14 radius]

The function table for this sequence is:

radius radius --> area %=
area --> 3.14 *
3.14 --> radius *

area 3.14 radius --> 2

radius 2 -=> circle *
circle --> 2 *
circle 2 --> 3.14 *

2 3.14 radius --> radius
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Using +the fourth heuristic to push down those having

stared implicants given

L2] 2 radius |
Lljradius area 3.14 radius 2 circle 2 3.14 radius]

table for L2 table for 11
2 -=> radius radius radius —--> area
radius -=-> 2 area -—--> 3.14
3.14 --> radius
radius 2 -=> circle
circle --> 2
circle 2 -=> 3.14

Therefore, a static structured program without the
condi tional statement can be factored properly to be
multi-level, and then be executed in parallel. However,
for a dynamic structured program, there 3is no way to
handle both conditional statements and iteration
statements by using the same step shown here. We then

consider the next stage.

{2) The second stage

We began by keeping a record for the reference of

variables by marking out the statement's order. That is,
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in order to keep track of every variable occurrence in a
dynamic structured prograa, we use the notation
" (variable, value, reference) ", where the value specifies
the variable's value and the reference is the referenced
statement number if there is any(otherwise, just omit

it). Consider the following example program:

BEGIW

IF u > max THEN m
IF v < pin THEN m

ELSE BEGIN
IF V > max THBEN max :
IF u < min THERN min :

i::=1i4+ 2;
END; (* while *)
IF i = n THEN
IF a(n) > max THEN max := a (n)
ELSE IF a(n) < min
THEN min := a(n):
WRITELN (max,min);

END.

We modify those statements into the following form:

statement numker

1 { min, a(1) ) <—— ( a(l) , a{(l) )
2 ( max, a(l) ) <— ( min , a(l), 1)
3 ( - 2 ) <— {( 2 ¥ 2 }
4 ( u, a(i) ) <— ( a(i), a(i), 3 )
or 4 { u, a(i) ) <—- (a(i), a(i),10)
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5 ( vea(itl) ) <= ( a(i+l),a(i+1) )}

6 ( max, a(i) ) <= ( u , a{i), 4

7 ({ min,a(i+1) ) <-- ( v, a(i+1)}, 5 )

8 ( max,a(i+1) ) <= { v, a(i+1), 5 )

9 ( min, a(i) ) <= ( u , a(i), 4)

10 { i, i+2 ) <— (i,i,3 )( 2, 2)

1 ( max, a(n) ) <= ( a{(a) ,a(n), ?)

12 ( min, a(n) ) <—- ( a(n), a(n), ? )
Since the variable a (i) in the statement 4 can be
referenced dyaamically from either statement 3 or

statement 10, a duplicate line is included which provides
bcth references. Alsa, in statements 11 and 12, vwe
cannot decide the referenced statement either. With this
approach, we still can't get a well-factoring program

sequence.

(3) The third stage

By utilizing the data structure of a program, we
found that a letter approach +would be to rewrite a
program into several program-groups by repeating its
iterations. In this stage, we did solve the problenm

related to the iteration statements.

Given a program segment as follows:



total := total + bal(i);
FCE i := 1 70 n DO
BEGIN

EERD (dw, amount);

IF dw = 'deposit!?

THEN BEGIN
kal{i) := bal{i) + amount:;
total := total + amount;
SumR := sum + amount;

ERD
ELSE BEGIN
IF bal(i) > amount
THEN BEGIN
bal{i) := bal{i) - amount;
total := total - amount;
END
ELSE BEGIN
bal (i) := 03
total := total - Ekal{i)
END;
sum := sum -amocunt;
END;

END; (* for *)
IF sum >= O THEN result

:= result + sun
ELSE result :=

result - sum;

END;

If we duplicate the iteration statements, +then the

program would be rewrited as followus:

BEGIN
total := 0; (* P1 #*)
total := total + bal{1); (* P21 *)
total := total + bal(2); {(* P22 *)

to%al := total + bal(mn); (* P2n *)

READ (dw, amount) (* E31%)
IF dw = 'deposit!
THEN BEGIRN
tal(1l) := bal(l) + amount;
total := total + amount;
sum := sum + amount:
END
ELSE BEGIN
IF bal (1) > amount

37
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THEN BEGIN
tal(1) := bal(1) - amount;
total := total - amcunt;
END
ELSE BEGIN
ral(1) := 0g
total := total - bal(t}:
END;
sSuE := sum - amount;
END;

READ (dw, amount); (¥ E32 *)
IF dw = '"deposit!
THEN BEGIHN
bal(2) := bal(2) + amcunt;
total := total + amount;
SuR := sSum + amount;
END
ELSE BEGIN
IF bal{2) > amcunt
THEN BEGIR
Yal(2) := bal{2) - amount;
total := total - amcunt;
ERD
ELSE BEGIN
bal(2) := 0;
total := total - tal(2):
END;
sum := sum - amount;
END;

RKEAD (dw, amount): (¥ P33 ¥%)

EEAD (dw, amount); (¥ P3n ¥}
IF dw = 'deposit!
THEN BEGIN
bal(n) := bal(n) + amount;
total := total + amount;
SuB := Sum + amount;
END
ELSE BEGIN
IF bal(n) > amount
THER BEGIN
ral(n) := bal(n) - amount;
total := total - amount;
ENT
ELSE BEGINW
ral(n) := 0
total == to
END;

%al - bal(n);

38
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sSum := sum - amount;
END;

IF sum >= 0 (* P4 *)
THEN result := result + sum
ELSE result := result - sum;

END;

If we split the program segment into several groups
(distinguished by Px, where x is the group number), then
the data structure turns to be a sequential flow: from
pl, P21, P22, ..., P2n, P31, P32, ..., E3n, +to P4.
Obviously, this sequential data flow can then be treated
normally using the factoring technique. Each program-
group can be treated as multiple levels in the structure
to permit the required parallelism. Hovever, after
factoring this examfple program, we found that within the
P3 groups, the problenm of deciding the conditional
branch and its factoring 1level still exist. We then

moved to the fourth stage of consideration.

(4) The fourth stage

We consider attaching a boolean symkol +to each
conditional statement. In other vwords, we rewrite the
condi tional statements in order to signal a proper tranch

in each 1level after proper factoring. He attached to
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each conditicnal statement a Fkoolean, by using the
notation "Bi (IF expression) THEN BiT (statements) ELSE
BiF (statements)" to rewrite the IF-THEN-ELSE conditiomal

statements, where i is the order of the Lkooleans.

Consider agqain the same program segment as in the
previous stage, and set the value n to ke the decimal
number two. After attaching the true-false tooleans, we

have the program as follows:

BEGIN
tctal := 0; (* P1 %)
total := total + bal(l); {(* P21 ¥*)
total := total + bal(2); ({* P22 *)
READ (dw, amount); (¥ E31 ¥*)
Bl IF dw = 'deposit?
THEN BEGIN

BIT bal(1) := bal(l) + amount;
B1T total := total + amount;
B1T sum := sum + amount;

il

ERD
EI1SE BEGIN
B2 IF bal(1l) > amocunt
THEN BEGINWN
B1F B2T bkal (1) := bal({1) - amount;
B1F B2T total := total - amount:
END
ELSE BEGIN
B1F B2F bal (1) := 0;
B1F B2F total := total - bal(l):
END;
B1F sum := sum - amounts;
END;

REATL (dw, amount); (¥ P32 *)
B1 IF dw = 'derposit!?
THEN BEGIR
B1T bal(2) := bal(2) + amcunt;
B1T total := total + amountg;
B1T sum := sum + agount;
END
ELSE BEGIN
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B2 IF bal{2) > amcunt
THE® BEGIN
B1F B2T bal(2) := Ekal(2) -amount;
B1F B2T total := total - amount;

END
ELSE EEGIN
BI1F B2F bal(2) := 0;
B1F B2F total := total - bal(2);
END;
B1F sum := sum - amount;
END;

READ (dw, amount); ({* P33 ¥%)

B3 IF sum >= 0 (* P4 *)
THEN B3T result := result + sunm
ELSE B3F result := result - suam;

END;
With this example the new sequence becomes:

|[total 0 total total bal{1) total total bal (2)
dw amount B1 dw='deposit' BI1T bal(l) Lal(tl)
amount BI1T +total total amount B1T sum sum
amount BZ kal(l)>amount EI1F B2T bal (1) bal(t)
amount BI1F B2T total total amoumnt B1F B2F
bal (1) 0 BIF B2P total total bal(l) BI1F sum
sur amount dw amount Bl dw='deposit' BIT
bal{2) bal{2) amount BiT total total amount
B1T sum sum amount B2 bal{2) >amount B1F
B2T bal (2) bal(2) amount BI1F B2T total total
amount B1F B2F Dbal¢2) O B1F B2F total total
bal(2) BIF sum sum amount B3 sum>=0 B3T
result result sun B3F result result sum|

Using the fourth heuristic of +the factoring technique to
push down those boclean branches, we then get the multi-

level sequence where each level is continuved in next

block:
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13:
L2:
Li;

L2:
Li:

5 £

Lg:

L2:
L1:

: amount Bl dw='deposit’

BIT +total total amoun
B1T +total total aumou
B1T total total amcun

B1F B2T
bal (1) >amount BI1F B2T

B2T +total total amount
B2T total total amount
B2T total total amcunt

total total bal(l)
total total bal({1)
total total bal(1) BI1F
total total bal (1) BI1F

B1T
B1 dw='deposit' BI1T

total +total amount
total total amount
total total amount

BIT bal (1) Lkal (1)

total 0 total total bal({1) total total bal(2)

dw

amount

BIT bal{1) bal (1) amount

£
t
T

B11
BI1T
BI1T
B11

bal (1)
bal (1)

BI1F B2F

B1

F B2F

B1F B2F

sSum sum
Sun sum

bal
bal

BIT
BIT
B1T
B1T

(2)
(2)

sunm
sum
sunm
sum

B1F B2T Ltal (2)
bal (2) >amcuant B1F B2T bal(2)

sum sum amount
sum suR amnount
sum sum amount
Sum sum amount
bal(l) amount
bal (1) amount
B1F
bal(1) O BIF
bal (1) 0 BIF
bal(1) 0 BIiF
amount

B2

B1F
B1F
BIF

B2F
B2F
B2F
B2F

amount dw amount

bal (2)
bal (2)

sum
sun
sum
sum

bal (2)
hal (2)

anount
amount

amount
apount
amount
apount

amount
amount

BIT
B1T
B1T

B2

BIF
B1F
B1F

42



43

14: , B1F B2F
L3:; B2T total total amcunt B1F B2F bal{(2)y 0 B1F B2F
L2: B2T total total amount BIF B2F bal{2) O BIF B2F
L1: B2T total total amount B1F E2F bal(2) 0 BIF B2F

L4: total tectal bal(2)

L3: total total bal{2)

12: total total bal({2) B1F sum sum amount

L1: total total bal(2) B1F sum sum amount B3 sum>=0

L4: |
L3s }
L2: B3T result result sum B3F result result sum|
L1: B3T <result result sum B3F result result sum|

It seems that we can run this multi-level program in
parallel with ccnditional branches, except that we don't
need to regenerate the booleans in the sequence. So, it
might be anocther thought to attach the kooleans above
certain variables to achieve the parallelism of the

factorization.

(5) The fifth stage

In order to achieve a well factored multi-level
prograr for execution, we recognize there are two

conditions:

(i) the levels skould be about equal in the number of

implicants.
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(ii) the implicants in each level should represent non-

seguential operations.

Further, vwe recognize that the dynamic structure of
the program is the representation which we must use since
it represents the actural sequence instances of the

static program structure.

For each statement in program there is an area in
the machine memory which represents or contains an
equivalent representation of the statement. The actual
Sequence represents a transition +through these areas.
However, the factoring must consider all possible
sequiences which might exist. The method of factoring the
prcgram structure is ome which now involves describing an
alphabet for each of the possible local memory areas.
The primitives of +the alphabet for factoring programs
would look l1ike the follows:

(1) Individuals: letters representing variables,
constants, and perhaps letters
representing indices in arrays.

{(2) Instructions: letters representing instructions --

unary, binary, goto's, and branches are
all considered.

{3) Relative Addresses: integers.

The relationship is shown in the following figure:
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working memory
(data & wvariables)

lines in progras
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]
I
I
I
i
"
Il
I
i

* the set of variable
used or changed by
line n.

* the relative
addresses are by
this ordering.

o

&
1]
(]
]
i
]
"
I
1]

{ figure of the whole memory )
Each instance is as follows:
(A B, C DL, B

where 2, B, €, and D are individuals, which are either
used or operated upon; I is the instruction; X and P are

relative addresses of the next instruction to be

executed:
Type (i) -—- if the instruction is neither a
"branch" nor a "goto" then ™ =3=1.
Type (ii) —-- if it is a "goto" then a=h=the

relative address of the next line
(relative to the present line).
Type (iii) -- is in the case of a krance a=1 and B

is the relative address of the next
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line {a branmch).
An implicant would append as

(21,B1,C1,D1;I1;241,31) ,(R2,B2,C2,D2;12;%2,32) yeeeys
(An,Bn,Cn,Dn;In;xn,pn) ——D (A,B,C,D;I;y,@)
It should be mnoted that in the original prograsm
these may not be in order due to "goto!s"™ and "branches".
Here the line (A,B,C,D;I;&,p) from the original ordering
is the line baving relative addresses am or bn relative
to line (An,Bn,Cn,Dn;In;en,pn). We trace back for enough

to where A, B, ¢, and D were last changed.

Pushing dcewn an implicant requires changing the
relative addresses in the residual, which "includes"Y or
"skips over" the "letter" being pushed down. So when we
are consolidating we are consolidating a family of

sequences not just one.

There are an infinite nunber of implicants
corresponding to any program with loops. This is not as
serious as it may sound. In the factoring method (7),
they achieved a "push down" by eliminating a particular
occurrence of a single letter. Here suppose one delete a
particular occurrence of a "letter", this amounts +to
pushing down an infinite set of implicants. Pushing down

a whole loops then would be pratical.
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CHAPTER V

CONCLUSION

For parallel execution(10), to determine the
appropriate order of execution, the information <can be
obtained from two sources : (i) explictly defined by the
user via machine instructiomns, and (ii) directly
determined by the computer using a hardware imstruction
lookahead scheme. We have reviewed several algorithms to
detect the rarallel components within arithmetic
expressions. Also, Benstein {€) has deviced a set of
conditions which must be satisfied kefore two
computations can be executed in parallel. Based on those
conditions, Gonzalez and Ramamoarthy (12,21) have

developed a Portran parallel paths.

Hovwever, consider to the factoring technique, Case &
Fisher (7) introduced scRre heuristics to Finitely
Inductive Sequences. AnRd we have mentioned it in Chapter

II1.

This paper then deals with +the exploition cf
parallelism in a proper-factored program. The focus is
on the development of a multi-level program by using the
factoring technique, which helps users to speed up the

execution of a rrogram in parallel. In other words, the
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agpproach, factoring programs, is derived from the
heuristic of Fols sequences to achieve parallel
computation.

The key to speed up the eXecution of a program is to
process as many sequence-levels as possible in parallel.
It remains an open question to determine whether there
exists algorithas for the speedup ratios with respect to
the number of processors available. However, our
apprroach is certainly valuable fcr an interim period due
tc the magnitude of factoring techmigue. It will also
give a clear imnsight into the proklems encountered when
designing software for the multifprocessor systen. To
prove its actual worth is much harder +to obtain. That
prograrm factoring on parallel execution will play one of
the vital roles in the future of information processing

cannot be denied.
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Whereas the goal of parallel computation is to obtain
the higher and possible performance. The factorization of a
given sequence would regenerate the same sequence as a

result.

This paper first describes several parallel computation
algorithms and a technique on factorization of Finitely

Inductive Seguences.

Then followed by an approach, which is based on the
factoring technigque, to factor programs into multiple levels
is been introduced. Examples are given to support this
approach to fulfill parallel computations on saving storage

space as well as reducing time dependencies.

In the very 1last, some conclusions and future trends

are given.



