TRAMSMLSSION EXPERIMENTS INVOLVING POSSIBLE INSECT VECTORS OF THE VIRUS, MARMOR VIRGATUM VAR. TYPICUM MCKINNEY, WHICH CAUSES WHET YELLOW STREAK MOSAIC

by
TOMAX LARKIN HARVEY
B. S., Kansas State College of Agrioulture and Applied Science, 1950

A THESIS
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Entomology, and Department of Botany and Plant Pathology

KANSAS STATE COLLEGE
OF AGRICULTURE AND APPLIED SCIENCE
Dock-
mints
LD2668
I Mme.TATE OF CONTENTS
REVILE OF THE LITERATURE. 1
MATERIALS AND METHODS 5
Materials 5
VIrus. 5
Inserts 6
Plants. 6
Greenhouses 6
Cages 7
Macellanoous Equipment 10
Methods. 12
Collecting, Rearing and Identifying Insects 12
Transmission Experiments 12
(1) Large numbers of insects on a row of infected and a rom of healthy wheat plants in field cages 12
(2) Groups of insects caged on several infected wheat plants and subse- quently transferred to several hoalthy what plants. 4
(3) Groups of insects collected in Riley County and caged on infected and healthy plants simultaneously 15
(4) Insects collected on mosaic infected wheat fields in Western Kansas and cased directly on healthy wheat plants. 16
(5) Individual insects aacod on Indi- vidual wheat plants 17
RESULTS. 19
Insects Collected on What. 19
Trensmission Rxperiments. 25
Large Mumbers of Insects on a Row of infected and a row of healthy whoat plants in field cages 25
Groups of Insects Caged on Several Infected Wheat Plants and subaequently Transforred to Seversl Bealthy Wheat Plants 27
Groups of Insects Collectod in Piley County and Caged on Infected and Foalthy Plants Simultaneously 31
Insects Collected on Mosaic Infected
Whoat Flelds in Western Kansas and
Caged Directly on floalthy Wheat Plants. 44
Individual Insects Caged on Individuel Whoet Plants. 54
DISCUSSION. 57
SURMARY。 62
ACIHONLEDGEMEITSS 64
GITERATURE CITED. 65

INARODUCTION

Wheat mosalc, although it was first observed in kaasas in 1929, has only recently becomo recognized as an lmportant factor In the production of wheat in the western one-third of the state. The disease was particularly wide spread and severe in 1949, and serious damage oocurred again over wide areas in aeveral Vestern Kansas counties in 1951. It was estlmated that the disease oused a loss of $15,500,000$ bushels to the 1949 orop. (Hansing et. al., 1949.)

In view of the economic importance of wheat mosaic in Kansas and the lack of evldence concernlng the natural spread of the disease, it seemed important to study the possiblilty of Insect transmisslon.

The purpose of this work was to determine whether any lasects were vectors of the causative virus and to provide information about the insects that are not vectors under the conditions of the experiments.

RBVIE OF THE LITERATURE

Komalos of wheat occur in many widely separated and varied reglons of the world, and are apparently caused by several distlnctly different viruses. In the Unlted States, such diseases have been reported from Kansas, Nebraska, Colorado, Oklahoma, Tezas, South Dakota, ILlinols, Indiana, Maryland, Virginia, and North Carolina. Outside of the United States,
wheat mosalc has been described from Russla (Lazhurllo and Bitnikova, 1939), Japan (Wada and Fukano, 1937), and Egypt (Melchers, 1931).

The wheat moselos which ooour in the eastern part of the United States are known to be spread by means of infested soll. (WeKinney, 1923. 1925). The wheat mosalos whloh oceur In Russla are known to overwinter in apeciflc insect vectors. One of these Viruses is transmitted to healthy wheat plants by a leafhopper, Paamotettix striatus (1.) (Zazhurilo and Sitnikova, 2940), and a distinctiy different virus is tranamitted by a Fulgorld, Delphax strlatella (Fall) (Sukhov and Petlyuk, 1940).

Unllke the wheat mosalos of the Eastern United States and russia, the method of transmission of the wheat mosalc which occurs in fiestern Kanses ls unknown. Slince the virus has been demonstrated to be nelther soll-borne (ickinney, 1937) nor seedborne (Atkinson, 1949; Haskell and Wood, 2923), it appears most likely that sone linsects must serve as vectors in nature.

Several reports have suggested that an aphid is a vector. nocording to Haskell and wiood (2923) Peltler at Lincoln, Nebrasia, flrst reported the tranofor of a wheat mosaic virus by means of an unidentifled aphid. Ie transferred aphids from infected wheat plants in the fleld to young healthy oorn plants in the greenhouse. a sllght infection was produced on one plant. Later Moininney (1937) transmitted one of the wheat mosalos colleoted at Sallna, Kansas, by means of an unidentifled aphla. The virus was elther Marmor

Virgatum var. typloum MoK. or K. Virgatum var. Vlride KcK. The unidentified aphids were present on infeoted wheat plents shlpped in the late apring to Wokinney at Arlington Fara in Virginia from Kansas. MoKinney transferred the aphids to healthy wheat plants, for feeding, and one plant developed mosalc.

A more positive statement was made by Atkinson (1949) conceraling the transmission of wheat mosalo in Colorado by means of the aphid, Toxoptera eraminum (Rond.). In regard to this Atkinson (1949) stated,

In the greenhouse, western wheat mosalo was transmitted by the grain aphid, Toxopetera pramineum (sic.). Single virullferous aphlds were isolated and implanted on pots of 10 healthy wheat plants. In every pot, 30 to 50 per oent of the plants had mosalo symptoms. Non virullferous aphlds falled to produce symptoms of mosalc although they wore allowed to feed on the wheat until the plants died.
Atkinson does not elve the conalitions of his experiments, and apparently no one has ever been able to dupllate them. it least 25 experiments using T. graminum and an additional 60 usling 5 other speoles of aphlds were made at Manhattan, Kansas, by Dr. R. H. Painter and Dr. Hurley Fellows during the fall and winter of 1949. No tranamission of the virus ocourred in any of these experiments (unpublished report).

It would seem unlikely that I. graminum ould serve as an efficient vector of a virus since it causes such a violent
reaction ia the plant on which it feeds; it was deflaltely proved to be a vector of sugar cane mosalc by Ingram and Summers (1938). They gave it an efficiency rating of 12 per cent after it had transmitted the virus 21 times out of 172 trials. Johnson (1945) tested several insects for the possibility that they might transmit the soll-borne wheat mosale virus, Marmor tritiol Mok. The insects that he worked with were Psammotettix striatus (1.). Agalla eanguinolenta Prov., Agalla constrlota (Van D.), Delohacodes campestris (Van D.), and Toxaptera eraminum (Rond.), but in no ase did he find that any of the insects transmitted the virus. It seems possible that no insect vectors exist for thls virus since it readily passes in nature in infested soll.

The Eussians have apparently made considerable progress toward the complete understanding of how the wheat mosaios in Russia are transmitted. They not only have reported the specifio vectors involved, but have determined many of the interrelationshlps between the viruses, thelr vectors and host plants. (Sukhov and Sukh Jva, 1940; Zazhurllo and Sitnikova, 1941).

The wheat mosalcs in Russia are unique, as far as wheat aosales are concerned, in that they can not be transmitted by the expressed julce from infected plants. Considering thls difference, they may not be olosely related to any of the wheat mosalos which are known to ocour in the United States. Oman
(1949) stated that if the mosaic of winter wheat in Russia is a true mosaic, its transmission by leafhopper is unusual.

MUTEAIALS AND LESTHODS

Materlals

Virus. The virus used in this study is commonly known as Wheat Yellow 3treuk-Kosaic virus or Wheat Virus 7 Moxinney. The sclentific name applied to it is Marmor Virgatum var. typlcum McK. It was isolated from wheat collected at Sallna, Kansas, in 1933 and has shown no materlal loss in virulence in the past 18 years.

In regard to the host range and physical properties WoKinney (1944) stated that the virus induces typical chlorotic mottling, streaking, and dwarfing in the following hosts: Trlticun aestivun L., To timopheevi Zhuk., To tureidum L., T. durum Desf., T. spelta Le, To dicoocum Schrank, To polonicum L., To monococcum L., Liordeun vulgare L., ivena byzantina C. Kooh, to gatlva I., Ao gativa var. orlentalls (Schrob.), A. Drevis Roth, A. strigosa Schreb., and Zea mays L.

The physiaal properties given shomed that the symptoms were expressed over a relatively wide range of temperatures, fros $15.6^{\circ} \mathrm{C}$. to summer temperatures, apparently depending largely on the optimum requirements for the host. The virus Is Inactivated in plant juice npar $55^{\circ} \mathrm{C}$. In 10 minutes, after about 7 months in tissue frozen near $-17^{\circ} \mathrm{C}$. and after 34 to 40 days in dry tissue at room temperature. The dilution-end-polnt for the Firus is aear 5000 J.

The oaly knowa wey in which this virus is readlly transmitted 13 by laoculation with Julce from Infeoted plants. In these experiments the inoculum was prepared by extracting julce fron the leaves of Infected plants. The julce was then diluted with water and mixed with carborundum dust. Inoculation was accoaplished by gently rubbing the leaves between an Index ilnger and thumb which had been dipped into the inoculum.

Insects. The only inseots used in these experiments were those which were known to feed on wheat plants. The number of different species of Inseots, both adult and Immature, known to feed on wheat is large enough go that all of them could not be used.

Since the ingects bearing plercing and sucking type mouth parts have most often been found to be the vectors of viruses, the emphasis in these experiments was primarily on those insects whoh feed on wheat through plercing and sucking type mouth parts.
plants. Gestar wheat 1 a particularly susceptible to the mosalc virus. It was the only variety of wheat used in the transmission experiments lnvolving insects.

Healthy and infected plants of varlous ages were made avallable through weekly plantings. The infected plants were obtalned by inoculating the young wheat seedilngs with the expressed julce from infected plants using the carborundumviplag method.

Greentouses. One greenhouse was used only for the insect transalssion work. In thls house, the plants were malntalned under cages at all times.

The plaats used in each experlment were moved to a second greenhouse for observation just as soon as the insects were dead or removed from the plants. The plants were also malntalned In this greenhouse before they were used in the experiments. This house was not screened and, durling the wam months when the windows were open, it afforded almost no protection against contomination from insects outslie of the experiment.

The dally temperature iluctuated greatly but averaged about $75^{\circ} \mathrm{F}$. during the winter months. In the spring and fall months temperatures durlng the day were often around 100° F. even though the houses were heavily shaded with white wash. A high aumidity was malntalned by keepling the benchez and floor molstened.

Cages. The fleld oages were of two slzes as may be seen In Plate I. The dimensions of the larger cage were $24 \times 20 \times 38$ laches as compared with $24 \times 18 \times 18$ inches for the smaller cage. The smaller aage was the more practical of the two slzes for thls work. The main features of the auges were the wood frame covered with a 36×36 mesh "Lumite" screen, the wide boards for the base to facilltate setting the cage in the ground, and the removable top. $4 l l$ joints were fllled with strips of cheese oloth and securely cllached with sorews.

The cages used in the greenhouse were malnly of two types.

The aage used to oover several wheat plants in a 6 Inch pot (Plate II, Fig. 1) was approximately 5 Inches in dlameter and 13 Inches long. The maln features of the cage were the metal frame covered with 36×36 mesh "Lumite" screen, the wide band of metal forming the base to facilltate setting the oage 1a the soll, and the removable top which was a sectlon of cheese cloth held in place by a rubber band or atring. Strips of cheese oloth were used to make the seal between the soreen and the frame.

The cages used to cover individual wheat plants (Plate II, Fig. 2) were 6 inch sections which had been cut from 42 mm . glass tubing. The tube was held in place over the plant by a wire loop, and covered by a section of cheese cloth held in place by a rubber band.

Miscellaneous Equipment. The plants in the greenhouse were placed in a glass transfer chamber while insects were belng removed from them. Thls ohamber was large enough to accomodate a caged 6 inch pot, leaving enough room to perform the operation of collecting the insects with an aspirator. Fhen an insect escaped from 1ts aage during the transfer, the chamber prevented Its further escape into the greenhouse, and made its recovery relatively easy.
a tiventy cublo-centimeter plpette was used as an asplrator to make the transfers of individual leafhoppers. A rubber tube was attached to the mouth plece of the plpette, with a plece of screen covering the opening between the plpette and rubber
EXPLANATION OF PLATE II
Fig. 2. Cage used to oover several wheat
plants in a six inoh pot.
Fig. 2. Cages used to cover Individual
wheat plants in a six Lnch pot.

Fig. 1
Fig. 2
tublag. By lahaling a breath of als through the rubber tube, the leafhoppers were drawn into the bulb of the plpette; and by exhaling the breath they were expelled from the pipette. This type of an aspirator was described by Severin (1930).

A cylinder of carbon dioxide gas fitted with pressure valves and rubber tubing was used to anesthetize the insects while they were belng ldentifled. A flow of gas was directed into a dish contalning the insects under magnification.

Collecting, Rearing and Identifylng Insects. Nost of the lasects used in this work were collected by sweeping wheat with an insect net. The exceptions were some of the inseots which appeared on wheat rather sporadically and were more easily collected on other plants. For example, Aphls maldis Fitch was more common on corn, Hysteroneura setarlae (Thos.) was more common on "love grass", Aphis COssippl Glov. was more camon on melon vines, and Macrosiphum plsi (Kalt.) was more easily colleoted on alfalfa. Nost of the leafhoppers of the species Sndria Inlaloa (Say) that were collected in Riley County during the spring of 1951 were taken on brome grass, and a few other leafhoppers and Fulgorid species were collected on grasses bordering on wheat fields.

Three speoles of aphids - Maoroslphum granarlum (Klrby), Phopalosiphum prunifollae (Fitch), and Toxantera gramlnum (hond.) - and two species of leafhoppers, - Macrosteles divisus (Uhler) and Psammotettix ap. - were maintained in colonies in the greenhouse through the winter. At least two other species of leafhoppers, Exitlanus exitlosus (Uhler) and Endrla Lalmloa (Say) will reproduce on wheat and possibly could be malntalned is colonles.

Insects which were recovered after they were used in the experiments were usually sent to specialists in the varlous groups for identification. Later in the course of these
experlaents, it was found to be possible to anesthetize the insects with carbon dioxide and identify some of them before they were used in the experiments. However, until more accesalble characters than the internal male genitalia are known for some of the leafhoppers, it will continue to be impossible to make specific lđentifications previous to experimentation. This is particularly true, among the leaShoppers collected on wheat, of the Agallifnl, and of the genera Kesosteles, Psammotettlx, Bmpoasca, and Deltocephalus.

Transmisslon Experiments.
(1) Large numbers of insects on a row of infected and a row of healthy wheat plants in fleld cages.

The type of cage used in these experiments may be seen in Plate I. Two rows of wheat, each row about two feet long, were planted under each age with a space of one foot between the rows. One of the two rows was inoculated when the plants were about three weoss old. A few days after the plants were inoculated each cage and its contents was thoroughly wetted with a 1 to 500 solution of alcotine sulfate and oovered for several hours. ipproximately ten days after one of the rows had been lnoculated, the lasects were placed in the cage. The Insects to be used in each experiment were caged on Infected plants in the greenhouse for at least one day before being used in the eages in the fleld. The pot of infeoted plants containling the insects was plaoed between an infected and
healthy row of wheat in the fleld cage. Thls reduced the possiblilty that some of the insects might go directiy to the unlnoculeted row and not be exposed to the virus.

The Insects used were collected in R1ley County. About 50 to 100 aphlds were orlginally introduced Into each field aage on the infected plants. In the case of the Clcadellids, approximately 250 individuals including several species were placed in each agge.

Toxoptera praminum (fond.) and other aphlds managed to galn entrance to most of the cages, and in some of the cages it was necessary to fumigate to prevent foraminum from kllling the plants.

In the late fall when the Lnsects had been laactivated by freezing temperature, leaf samples were taken from both the test row and the inoculated row of each eage. Each of the leaf aamples taken were used to inoculate healthy teat plants. In addition, plants from each test row were brought to the greenhouse to be observed for the appearance of mosaic symptoms.
(2) Groups of insects oaged on several infeated wheat plants and subsequently transferred to several healthy wheat plants.

As soon as the insects were collected from the fleld they were separated into groups and eaged on infected plants as 1llustrated in Plate II, FIg. 1. In a few of the experiments performed during the spring of 1951, the insects were
anesthetlzed and ldentifled when possible to spectes under magnification before they were caged on the lnfected plants. The insects were allowed to feed on the infected plants over a perlod of from 1 to 60 days. They were then immediutely ceged on healthy plants. The insects remained on the healthy plants either until they died, or were removed, but ordinarlly no inseots were removed untll after they had been on the healthy plants for at least 10 days.

During the spring of 1951 an attempt was made to recover and preserve the insects remalaing in the cage at the time of removal. In this way a second check could be made upon the identification of the species of inseat involved in the experiment. after the insects were removed, the plants were periodically observed for symptoms of mosaic. Inoculum was prepared from the leaf tissue of plants whlch appeared to have mosalc symptoms. This materlal was then used to inoculate healthy test plants. If the test plant developed symptoms, it was then conoluded that the symptoms were oaused by the mosaic virus.
(3) Groups of insects collected in filley County and eaged on lnfected and healthy plants simultaneously.

Three different types of experiments were performed that oame under thle general heading. These three types were designated by the letters A, B, and C.

The type A experiments were made under the klod of oages Hlustrated in Plate II, Fig. 1. Bach six inch pot contalned
about elght wheat seedlings and was divided Lato two equal parts, each half contalalng four plants. The plants in one half of the pot wers infected with the mosalc virus, while the plants in the opposite half of the pot were allowed to remain healthy. fis soon as the insects were collected from the fleld, they were divided into groups and saged on those pots containing both Infected and healthy plants. The lasects were left on these plants over a perlod of from 4 to 70 days, but usually untll the insects died. After the Insects were removed, the plants on the healthy slde of the pot were observed for symptams of mosalc.

The type B experlmeats were made under a large fleld eage of the type plotured in Plate I. The cage was sltuated on a bench in the greenhouse. Six inch pots containing only healthy wheat plants were placed under the cage beslde other slx inch pots containlag only infected wheat plants. after the insects to be used In the experiment had been separated into groups, they were then caged on infected plants for at least one dey before they were placed in the large cage with both the infected and the healthy plants. Thls made it more certain that the insects would feed on infeoted plants before they would feed on the healthy plants. The lasects were left on the plants from 5 to 45 days. After the insects were removed, the healthy plants were observed for symptons of mosaic. Inoculum was prepared from the leaf tissue of plants whlch appeared to have mosalo symptoms, and was used to inoculate healthy plants. If
the healthy plants laoculated developed symptoms, it was concluded that the symptons were oaused by the mosalc virus. No oages were used for the type C experisent. In these experiments, about 20 army cutwora larvae, Chorizagrotis auxillaris (Grote), of Farlous Instars were used. The larvae were starved a few days before each experiment was attempted. The procedure then was to place the larvae on the infected wheat plants. When a larva was observed to have eaten a small area from an Infected leaf it was lmmediately tranaferred to a bealthy wheat plant. Each healthy plant had a larva transferred to it from an infocted plant at lesst three times. The same larvae were used in all of the type C experlments.
(4) Insects collected on mosalo infected wheat flelds in Restern Kansas and oaged directly on healthy wheat plants.

The insects were collected princlpally from wheat fields previously reported by Fellows and McKlnney to be nearly 100 per cent infected with mosaic. The insects were collected in a net by sweeplng the moselo infected wheat. The insects, resoved from the net with an aspirator, were anesthetized with ourbon dioxide obealned from a bottle oontuining dry lce, and ldentlifed under a blnooular nioroscope. As the insects were sorted Into known groups, they were caged on healthy wheat plants, es Lliustrated in Plate II, Fig. 1.

The back sekt of a 1946 model Ford seden was converted into a small fleld laboratory by removing the seats and replacing
them with a table, eaged wheat plants, binocular microscope, anesthetizing bottie, and other equipment as may be seen in Plate III. It was posslble to carry 18 caged slx inch pots of wheat in the back seat without overorowding.
(5) Individual insects caged on Individual wheat plants. The lasects, priaclpally leafnoppers oollected in the fleld or reared, were caged on infected wheat plants for several days before they were transferred individually to single wheat plants, as 1llustrated in Plate II, Hig. 2. After a perlod of about two weeks on the healthy plants, the inseots were removed, killed, mounted on points and ldentifled. When an insect died in the cage it was removed as soon as possible to prevent it sras beling destroyed by mold.

PLATE III

RLSULTS

Insects Collected on wheat

Slace a llst of the Insects which feed on wheat in Kansas would essentlally be a list of the possible vectors of wheat mosalc, an attempt was made to prepare such a list. CollectLons were made on wheat in Riley County during the summer and fall of 1950 and the spring of 1951, and Ifve colleotions were made In several of the Western Kansas countles durling the same period.

No species of aphlds were collected that had not previously been collected on whoat in Eansas. Leafhoppers belongling to 17 different genera were collected. Some Indication of the relative abundance of the more common species is given in Table I. This table suggests that Nesosteles $3 p$. and possible psamnotettix sp. are more common In Wertern Kansas than they are In Eastern Kansae. Since these collections varled in the number of sweeps per collection and as to the exact location it is probably valid to consider only large differences as Indiaative of relative abundance. For example, froa Table 2 it should be safe to conclude that Exitianus exitlosus (Uhler) was more comon in Western Kansas In August than was Endrla Inlmica (Say), but that the reverse was true in June.

Osborn (1912) 11sted seven species of leafhoppers that he had observed making serious attacks on wheat. These were

Endria InImlea (Say), Hacrosteles divisus (Unler), Exitianus exltlosus (Uhler), Paraphlepsius irroratus (Say), Deltocephalus balli Van D., Draeculacephala mollipes (Say), and Draeculacephala retloulata (SIgn.). sithough Osborn's statement was for North America as a whole, it agreed for the most part with the collections made in Kansas. The more common species of leafhoppers collected in Kansas are listed in Table 1.

In addition to the aphids and leafhoppers, members of 10 insect orders and 2 families of mites have been colleoted on wheat.

The following is a partial list of insects and mites collected in the fleld or greenhouse on wheat in Kansas, including especially those insects which have been, or should be used in transmission experiments with wheat mosaic:

```
*Collembola
    Poduridae
        Achorutes armatus (N10)
        Achorutes sp.
    Isotomidae
    Isotome Vlrldis Bourlet
    T0lsomla sp.
    Sminthuridae
    Sninthurinus aureus (Lubb.)
Orthoptera
    *icrldidae (several species)
```


Corrodentla

Pterodelldae
Laches111a nub111s (Aaron)

Thysanoptera

```
*mripldae
*Prosopothrips cognatus Hood Srankiniella rusca (ininds) Anaphothrips sp.
aeolothripldae
feolothrips blcolor HInds Reolothrlps fasclatus \(L\).
```

Hensiptera
Miridee
*Haltlous bractoatus (Say)
Leu002000 114 abolasciata Heuter criconotylus ruficornls (Ceorfroy) Ceratocansus Fuscosienatus Nalght Farthenlolis Bp.
*ygus obllneatus (say)
Plesmidae
Plesma ofnera (Say)
Coreldae
*Afefus 1apressio0111s Stal
Lygaeldae
Nyslus raphanus Howard

* Blissus leuconterus (Say)
*Pantatonidae

Romoptera

*Delphacidae
Delphacoies proplaqua (Fleb.) Delphacodes campestris (Van D_{0}) Delphacodes furcifer (iferv.) DeLphacoses consimilus (Van D.) Ferlerinus maldis (ash.) Inburniella ornata (3tal) Stobaera tricarnata (Say) Kelesia salina BulL
Table 1. Relatlve abundanoe of the more common species of Cloadellidae collected on wheat at different periods of the during the fall of 1950 and the spring of 1951 in Eastern and Wostern Kansas

Name of Claadellid ${ }^{2}$	$\begin{aligned} & \text { Aug } \\ & \text { : wes } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { May } \\ & \text { wes } \end{aligned}$: Oct : eas :	Jun eas	:Total
$\frac{\text { Macrosteles }}{\text { divisus }}$	53	292	6	23	8	43	55	8	488
divisus (Uh2er)									
\$xithanus									
exttiosus (Uhler)	172	31	26	0	1	8	9	11	258
Endria (Eay)									
InImIo, (5ay)	8	42	0	1	134	23	36	2	246
Vesosteles sp.	79	14	0	2	33	0	1	0	128
Psammotettix 8 p .	5	26	20	19	42	0	1	6	119
Deltocephalus	13	17	5	0	1	3	12	0	51
ABQ1111.nd Totals	5	60	13	0	5	0	7	0	90
	334	482	70	45	224	77	121	27	1380

Only large differences should be considered as indicative of relative abundance.
The peamotettix sp. probably were mostly p. strlatus (L.). The N Nosteles sp.
probaly wore probably
mostly D. sonorus Ball and D. Vlavicosta (Stal). The ngallini were probably
3 West Kansas lncludes the followlag countles: Norton, Scott, Lane, Finney, Wallace, Ness, Greeley, Hodgeman, Reno, Edwards, Rush, Decatur, Kearny, and Hamliton. Jast Kansas Includes only filiey and Pottawatomle counties.

Transmission Experiments

立rge Nurabers of Insects on 브 Row of Infected and a Row of Realthy 期eat Plants in Flold Cazos. These experiments are llated in Table 2. There was a total of 11 separate experiments or oages started on three different dites. The Leaf samples taken from the bealthy row of plants in each cage demonstrated that only the healthy row of wheat in oage 2a had been infected with the virus. The plants fram this row that were brought into the greenhouse to grow did not develop mosale symptoms, nor cild symptoms appear on any of the plants taken from the healthy rows in the other aages.

The insect originally introduced into cage 2 a was the Crown or Subterranean aphld, Phopaloslohum subterraneum Mason. Other aphids including Toxoptera gramlnum (Rond.) entered into the experiment through contamination, but no leafhoppers were seen in the cage at any time. Attempts to establish colonies of \mathbb{R}. subterraneum on wheat have not been successful in the greenhouse; consequently, this aphld has not been adequately tested. The only other experiment involving R. subterraneum is shown in Table 5. In this experiment the aphids were aaged on healthy plants direct fram the fleld without having fed on plants that wero definitely known to bave mosala. The results of thls experiment were negative.
Table 2.
1n-

[^0]Groups of Insects Gazed on Severul infected Wheat Plants and subsequently Transferred to Several Healthy Hheat Plants. These experiments are listed with the facts concerning them in Table 3. There was a total of 97 separate experinents; these are sumarlzed in Table 6 along with the experlments ilsted in Tables 2, 4, and 5. At least one of the healthy test plants beoame infected in 5 of these experiments. There were 30 experiments involving unknown species of leafhoppers, and four of these resulted in a transfer of the virus. The experinents in which a transfer of the virus occurred may be referred to in Table 7 under the identifleation marks C, F, R, and L3-10.

The other positive experiment was one involving the wheat stem maggot adult, Meromyza americana Fitch. This experiment is listed in Table 7 under the identification mark L15-4. Four other experiments involving M. americana whioh are ilsted in mable 3 were nezative.

The detalls concerning the positive experiments designated by the identification marks $C, F, R, L 3-10$ and L15-4, in addition to beling given in table 7, are described below.

The learhoppers used in experlment C were collected at the mosalc nursery at Manhattan, Kansas, and caged on lafected plants on Ootober 4, 1950. On October 6, 1950, about 20 of these leafhoppers were transferred to healthy plants in pot C. On October 25. 1950, all of the leafhoppers were removed. The leafhoppers were on the infected plants two days and on the healthy plants
for 19 days. Symptoms were flrst observed on a plant in pat C on November 23, 1950. Inoculum was prepared fron the plant in pot C bearing mosaic symptoms, and was inooulated to healthy plants in four pots. after a period of three to four months the plants in two of the four pots Geveloped mosale symptoms while the other two remalned nealthy. This may have been oused by a concentration of virus in the inoculum, approaching the dilution ond polht. A dupllate group of 29 leaphoppers collected at the same time and in the same place as the leaphoppers used in experiment C was preserved and Identifled. These leafhopper speoles are listed in Table 8. Apparently Hacrosteles alvisus (Uhler) and Endria Inlmica (Say) were the spocies most likely involved in the transmisaion.

The leafhoppers used in experlment F were onllected on the mosale nursery at Manhattan, Kansas, and caged on Infected plants on Soptember 27, 1950. On October 2, 1950, about 10 of these leafhoppers were transferred to healthy plants in pot P. On October 25, 1950, all of the learhoppers were removed. The leashoppers were on the infected plants 5 days and on the healting plants for 23 days. Symptoms were flrst observed on a plant in pot F on Herch 3, 1951. The Lnooulum prepared from the plant In pot Y bearing mosaic symptoms caused symptoms to appear on healthy plants to whioh it was inoculated after 14 days. A duplicate group of 54 leafhoppers oolleated at the same time and in the same place as the leafhoppers used ia experinent F was
preserved and ldentlfled. The only learhoppers in this duplloate collection were Macrosteles divisus (Unler). Kndria Inimioa (Say), and Exitlanus extilosus (Unler). These leafhoppers are ilsted in Table 8.

The leafhoppers used in experiment B were collected at Casement Ranch at Manhattan, Kansas and caged on Infected plants on October 20, 1950. On October 26, 1950 four of these leafhoppers that were superflelally slmilar in appearance to Endrla Ininlica (Say) were transferred to healthy plants ia pot R. On November 15, 1950 when the cage was removed all of the learhoppers were dead of misslag. The leafhoppers were on the infected plants for 6 days and on the healthy plantis not longer than 20 days. Symptons were IIrst observed on a plant in pot \mathbb{R} on Decomber 7, 1950. Inoculum was prepared from the plant in pot R bearing mosalo symptoms and inoculated to healthy plants in four pots. After a perlod of less thas one month all of the plants in the four pots had developed mosalc symptoms. A duplicate group of 19 leafhoppers collected at the same time and in the same place as the leafhoppers caged on the infected plants used in experiment R was preserved and leentifled. The most common learhopper in thls dupllcate collection was Endria Inimlea (Say) according to the data in Table 8.

The applle grain aphid, Rhopaloslphum prunlfollae (Fitch) had infested the plants on pot R through contamination. The glant was fumlgated with nicotine on November 15, 1950 when the cage was removed.

The leafhoppers used in exper t L3-10 were coll cted at Manhattan, Kansas and caged on infected plants on November 18, 1950. On November 24, 1950 six of these leafhoppers were transferred to healthy plants in pot $43-10$. By December I4, 19:0 all of the adult leafhoppers were dead, but their progeny was present on the plant as nymphs. On January 5, 1751 all of the nymph leathoppers were removed. The leafhoppers were on the infected plant 6 days and on the healthy plant not longer than 20 days. Symptoms were first observed on a plant in pot L3-10 on April 25, 1951. Inoculum was prepared from the plant in pot L3-10 bearing mosaic symptoms and inoculated to soveral healthy test plants. Mosaic symptoms developed on the test plants after a perlod of less than two weeks. No duplicate collections were preserved for this experiment, but Macrosteles divisus (Uhler) was probably the chief leafhopper involved.

The apple grain aphid, Fhopalosiphum prunifoliae (Fitch) was present on the plants in pot L3-10. The plant was fumigated on January 5, 1951 when the cage was removed.

The Meromyza americans Fitch adults used in exporiment L154 Wre collected from volunteer wheat being used in connection With other experiments in the greenhouse on Februery 14, 1951. After being caged on an infected plant for 3 days about 12 sdults ware transferred to the healthy plants in pot L15-4. All of the flles were dead by March 21, 1951. Symptoms were first observed on a plant in pot $\mathrm{Ll5-4}$ on April 25, 1951. Inoculum was prepared
from the plant in pot Ll5-4 bearing the moselc symptoms and inoaulated to several healthy test plants. Kosaic symptoms developed on the test plants after a period of less than two weeks. The M. amerleana adults were on the infeoted plants for 4 days and on the healthy plants not longer than 32 days.

Groups of Insects Collected In Flley County and Caged on Infected and Healthy flants Slmultaneously. The data from these experiments are listed in Table 4. There was a total of 30 separate experlments; these are summarized in Table 6 along with the experiments 11 sted in Tables 2,3 , and 5. There were 6 experlments involving unknown species of learhoppers, and three of these resulted in a transfer of the virus. The experiments in which a transfer of the virus ocourred may be referred to in table 7 under the identlifeation maris M, L1- 7 , and L1-8, and the detalls pert talning to each experiment are described below.

Experiment 4 was a "type B^{n} experiment whioh is described on pages 15 and 16. The learhoppers used in experiment \mathbb{H} were colleoted on several dates durlag October at Manhattan, Kansas. is the leafhoppers were colleoted they were placed in a large eage contalning severs pots of infeoted plants and pots M and N were removed from the cage. Symptoms of mosalo were first noted on a plant in pot in on November 25, 1950.
Table 3. Tranamission experimeats involving groups of inseots oaged on several infected to several healthy wheat plants.

int
Rlley

Cloadellldae ${ }^{4}$

Cloadellldae
Heltious bractontus (Say)
H $\frac{\text { Trigonotylus }}{\text { cufloornle }}$ (Gossery)
J cicadellidee
cicadellidae
Table 3. (Cont.)

$\begin{aligned} & \text { Fot } \\ & \text { Mark } \end{aligned}$	Name of ingeots ${ }^{\text {l }}$,	:Varear of ; infected :	D-ants:	Trseati ${ }^{\text {removed }}$	insects ${ }^{3}$	पouncy inove oollocted
$\frac{1}{8}$	Cloadellidae	Oot. 16	Oct. 21	Nov. 14	25	Wallace, Greeley
0	Clcadellidae	Oct. 20	00t. 26	Nov. 15	10	Riley
p	Clcadellldae	Oct. 11	Oct. 25	Nov. 15	10	Riley
Q	Cicadellidae	Oot. 12	00t. 26	Nov. 15	10	Riley
8	Cloudellldae ${ }^{4}$	Oct. 20	Oct. 26	Nov. 15	4	Riley
5	$\frac{\text { Halticus braoteatus }}{(\text { Say })}$	Oot. 20	0ct. 26	Nov. 29	50	Riley
T	Cloadellidae	Oot. 4	0ct. 26	Nov. 15	10	Rdley
U	$\frac{\text { Trleonotylus }}{\text { rufloornls }} \text { (Goffery) }$	Sep. 20	Sep. 26	Nov. 15	10	Riley
U	$\frac{\text { Hiltous braoteatus }}{(\text { say) }}$	Sep. 20	Sep. 26	Nov. 15	5	Klley
V	Clcadellldae	Oct. 27	Nov. 7	Nov. 29	10	Rlley
W	Claadellidae	Oct. 20	Oct. 26	Nov. 29	3	kliey
Σ	Cladellidae	Oct. 12	Oot. 15	Nov. 29	20	Riley
\underline{Y}	Toxontera graminum $\frac{\text { (tond.) }}{\text { gren }}$	Oct. 20	0ct. 17	Deo. 7	5	Rlley

Table 3. (Cont.)

Table 3. (cont.)

	Name of Insects ${ }^{1}$	$\begin{aligned} & \text { :पaser din } \\ & \text { : Infected } \end{aligned}$	$\frac{\text { nladcs }}{\text { healthy }}$	Inse0ts removed ${ }^{2}$	$\begin{aligned} & \text { No. } 113 \\ & \text { insects } \\ & \hline \end{aligned}$	Coulthy waere collected
14-1	Cicadellidae	Nov. 21	Nov. 24	Nov. 28	14	Gray, Haskell, Stevens
L4-2	Cloadellidae	Nov. 21	Nov. 24	Nov. 28	16	Scott
L-4-3	Psammotettix sp.	Nov. 21	Nov. 24	NOV. 28	2	Gray, Haskell, Stevens
L4-4	Clcadellidae	Nov. 20	Nov. 24	Nov. 28	14	Gray, Haskell, Stevens
L4-5	$\frac{\text { Halticus bracteatus }}{\text { (Say) }}$	Nov. 21	Nov. 24	Dec. 20	1	Gray, Haskell, Stevens
L4-6	$\text { Chorizagrotis axilaris } \frac{\text { (Grote) }}{\text { (G) }}$	Nov. 28	Nov. 29	Dec. 20	1	Riley
L4-7	$\frac{\text { Macrosiphum }}{} \frac{\text { granarium }}{\text { (Kirby) }}$	Nov. 30	Dec. 7	Jan. 5	3	Marshall
L6-20	$\frac{\text { Toxoptera }}{} \frac{\text { graminum }}{\text { (Rond.) }}$	Dec. 7	Dec. 21	Jan. 13	3	Riley
L8-17	Thripidae	Dec. 11	Jan. 11	Feb. 4	50	Riley
L.9-8	$\frac{\text { Macrosiphum }}{} \frac{\text { granarium }}{\text { (Kirby) }}$	Nov . 16	Dec. 26	Jan. 23	5	Riley
L10-1	Cioadellidae	Jan. 5	Jan. 12	Feb. 28	13	Riley

Table 3. (Cont.)

YOt Mark	Name of Insects ${ }^{1}$	$\begin{aligned} & \text { Uagea on } \\ & \text { infected } \\ & \hline \end{aligned}$	pranta	$\begin{aligned} & \text { Insects } \\ & \text { removed } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ina. or } 3! \\ & \vdots \\ & \hline \end{aligned}$	Wranty waere collected
L10-2	Cicadellidae	Nov. 15	Jan. 5	Feb. 28	10	Riley
L10-3	Cicadellidae	Jan. 12	Jan. 13	Mar. 15	12	Riley
L10-4	Cicadellidae	Jan. 5	Jan. 27	Mar. 15	12	Riley
L13-5	$\xrightarrow{\text { Macrosteles }} \frac{\text { divisus }}{\text { Uhler })}$	Jan. 10	Feb. 13	Mar. 15	11	R1ley
L-14-1	Thripidae	Jan. 4	Feb. 4	Feb. 28	50	Riley
L14-9	$\frac{\text { Chorizagrotis }}{(G r o x i l a r i s}$	Nov. 21	Jan. 18	Apr. 28	8	Finney, jeott
L14-10	$\xrightarrow{\text { Macrosteles }} \frac{\text { divisus }}{(\text { Uhler) }}$	Jan. 5	Jan. 31	Feb. 9	50	Riley
L15-1	$\xlongequal{\text { Macrosteles }} \frac{\text { divisus }}{(\text { Unler })}$	Jan. 5	Feb. 13	spr. 7	12	Riley
L15-2	$\xrightarrow{\text { Macrosteles }} \frac{\text { divisus }}{\text { Uler })}$	Jan. 5	Feb. 6	Feb. 15	10	Riley
Llf-4	$\text { Mermoyza } \frac{\text { americana }}{}{ }^{4}$	Feb. 14	Feb. 17	Mar. 21	12	Riley
L15-5	$\frac{\text { Trialeurodes }}{\text { veporariorum }} \text { (Westwood) }$	Feb. 20	Feb. 22	Feb. 28	50	Riley

> Table 3. (Cont.)
Table 3. (Cont.)

FOt Mark	Name of insects ${ }^{2}$	$\begin{aligned} & \text { cajed } \\ & \vdots \text { nfecte } \\ & \hline \end{aligned}$	$\frac{\text { plants }}{\text { healthy }}$	Insects removed ${ }^{2}$ \qquad	insects 3 \vdots	county wiere collected
L30-2	Meromysa $\frac{\text { americana }}{\text { Fitch }}$	May 11	May 14	May 25	16	Riley
L30-3	Nesosteles sp.	May 11	May 14	May 25	30	Rlley
L30-4	Nesosteles sp.	Viay 11	May 14	May 25	30	Hiley
L30-5	Endria inimica (Say)	May 11	May y 14	June 8	26	kiley
L30-6	Endria inimica (Say)	May 17	May 25	June 8	10	Riley
L30-7	Endria inimica (Say)	Mej 17	May 25	June 8	10	miley
L31-7	Nesosteles sp.	May 15	May 18	June 8	10	Riley
L31-8	Endria $\frac{\text { Inlmica }}{\text { nymphs }}$ (Say)	30 cky 17	May 18	June 8	10	Riley
L31-9	$\frac{\text { Trigonotylus }}{\text { ruficornis }} \text { (Goffery) }$	May 15	May 18	May 25	15	Riley
L32-2	Endria $\frac{\text { Inimica }}{\text { nymphs }}$ (Say)	May 20	May 23	July 2	10	Riley
L32-3	Endria Inimlca (Say) nymphs	May 20	May 25	July 2	10	miley
L32-4	Lndria inimica (lay)	Thay 20	May 28	July 2	18	Riley
L32-5	Endrla inimioa (say	May 17	May 23	July 2	12	Riley

Table 3. (Cont.)

Table 3. (Concl.)

Pot : Name of insects ${ }^{1}$	Caged on plants infected healthy Insects \vdots
L34-5 Endria inimica (Say)	Nay 29 June 5 June 1414 Riley
The inseots listed as Clcadellidae were usually groups of several specie Psammotettix sp. probably were mostly p. striatus (I.). The Nesosteles sp. pro	
2 In some cases the ins It is not valid to calculate plants from the date the ins removal.	had died at a time previous to the date of removel. number of days a group of insects were on the healthy were placed on the healthy plant and the date of
3 The figures indicatin approximations. 4 A transfer of the vir	number of insects used in each experiment were s obtained in these experiments.

On December 11, 1950 the virus was transferred to healthy plants In four pots. Symptoms of moseio never appeared on the plants in pot N although they apparently had been subjected to the same oonditions as were the plants in pot M.

Experiments Ll-7 and Ll-8 were "type B" experiments which are described on pages 15 and 16. The leafhoppers used in these experiments were collected at Manhattan, Kansas on November 15, 1950. The leafhoppers, after remaining on infected plants for a day, were placed in a large aage containing several pots of infected plants and pots Ll-7 and Ll-8 containing healthy plants. On December 20, 1950 pots Ll-8 and Ll- 7 were removed from the cage. Symptoms of mosalc were first noted on both pots Ll-7 and Ll-8 on April 25, 1951, and the virus was transferred to healthy plants from plants in both pots.

On January 11, 1951 the healthy plants in pots L8-16 and L4-9 were placed in this same cage with the same infected plants and also all of the same leafhoppers, or their progeny, that were still alive. The virus was not transferred to the plants in these pots.

No duplicate oollections were made for these experiments, but some of the same leafhoppers were later used in tests with Individual leafhoppers. The great majority of these proved to be Wiacrosteles divisus (Unler) but Exitianus exitiosus (Uhler), Deltocephalus sonorus Ball, and some Delphacis were also represent--d.
Table 4. Transmission experiments involving groups of inseots collected in Riley County and caged on infected and healthy wheat plants simultaneously. See footnote number 4.

Pot : Mark :	Name of insects ${ }^{2}$	$\frac{\text { Date }}{\text { applied }}$	$\frac{\text { Inseots }}{\text { removed }}$	$\begin{aligned} & \text { :No. of } \\ & \text { insects } \\ & \text { : } \end{aligned}$: Type of : experiment :	Results
M	Cloadellidae	Oct. 1	Nov. 15	250	B	positive
N	Cicadellidae	Oct. 1	Nov. 15	250	B	negative
L1-7	Clcadellidae	Nov. 16	Dec. 20	150	B	positive
LI-8	Clcadellidae	Nov. 16	Dec. 20	150	B	positive
L4-9	Cicadellidae	Jan. 11	Jan. 23	150	B	negative
L8-16	Clesdellidae	Jan. 11	Jan. 23	150	B	negative
113-2	$\text { Chorizagrotis } \frac{\text { auxilaris }}{\text { (Grote }}$	Feb. 28	Mar. 9	6	A	negative
L13-4	aphis maidis Fitch	Feb. 22	Mar. 28	500	4	negative
L13-18	Acrididae nymphs	Feb. 13	Mar. 21	4	A	negative
113-19	morididae nymph	Jan. 27	Apr. 7	1	A	negative
L16-2	$\text { Macrosteles } \frac{\text { divisus }}{\text { (Uhler) }}$	Feb. 21	Mar. 21	100	B	negative
1.17-1	$\text { Macrosteles } \frac{\text { divisus }}{\text { (Uhler) }}$	Feb. 21	Mar. 21	100	B	negative
L17-2	Chorizagrotis $\frac{\text { auxiliaris }}{(\text { Grote })}$	Feb. 28	Feb. 28	20	C	negative

Table 4. (vont.)

Table 4. (Cont.)

Pot: Mark :	Name of insects ${ }^{2}$			$\frac{\operatorname{lnsects}}{\text { removed }}$		erts_{3}		θ of riment	:	Results
L2) -1	Psammotettix sp.	Apr.	9	Apr. 14		10		B		negative
L31-5	Endri= 1rimica (Say)	May	18	June 8		50		B		negative
L31-u	Endria $\frac{\text { inimica (Say) }}{\text { nymphs }}$	May	18	June 8		50		B		nesativo
L32-8	Endria $\frac{\text { inf 1ca }}{\text { nymphs }}$ (say)	May	23	June 14		50		B		negat I ve
L32-10	Endria $\frac{\text { Ininica }}{\text { nymphs }}$	May		June I4		50		B		nezative

$$
\text { eeriments of tyoe } B \text {, the insects were caged on infectod }
$$

In most cases insects listed by the famil name such a s Cicadellidae or AcriAlise were rouos of severnl unidentified species. The Psammotettix sp. probably were apsbly $\frac{\text { Psa otettix striatus (L.). }}{3}$
The fifures of 50 or more, indicatine the number of insects used in oactiosperiment, are approximations.

$$
\begin{aligned}
& \text { only about a two bour period. }
\end{aligned}
$$

Insects Collected on Mosaio Wheat Fields in Western Kansas and Caged Direotly on Healthy Wheat Plants. The data pertaining to these experiments are listed in Table 5, and the method used in carrying them out is described on pages 16 and 17.

There was a total of 46 separate experiments, these are summarlzed in Table 6 along with the experiments that are listed in Tables 2, 3, and 4.

The insects were placed on the healthy test plants in the majority of these experiments on one of the following dates: June 4, 5, 6, 9, or 10,1951 . None of the plants in these experlments had developed symptoms of mosaic by July 7, 1951; but, it would not be safe to assume that none of them will develop mosalc symptoms, since probably more than a month has been requilred for symptoms to appear on plants that may have been Inooulated by inseots.

Plants listed in Table 5 by the pot marks L34-11, L34-12, L34-13, L34-14, L34-17, L34-18, L35-6, and L35-8 were subjected to a cold shock of 40° F. from June 15, 1951 to June 18, 1951. These plants were exposed to the following insects which had been collected on mosalc infected fields: Miscellaneous insects including Iygaeldae, Pentatomidae and others, Empoasca sp., Nososteles sp. Endria inimica (Say), Meromyza americana Fitch, Delphacidae, Agalliini, and Endria Inlmica (Say). This cold shook treatment apparently has not enhanced the development of mosalc symptoms.
Table 5.

wheat ilelds in western Kansas and caged directly on healthy plants. All
20ter inseots

Pot 1	Name of insects ${ }^{2}$	$: \frac{\text { Date }}{\text { applied }}$	insects removed	No. of Insects ${ }^{3}$	County where collected ${ }^{4}$
I	Cicadellidae	Oct. 18	Nov. 14	25	Greeley
L1-10	cicadellidae	Nov. 21	Nov. 24	50	Kearny
L1-11	$\frac{\text { Toxoptera }}{} \frac{\text { graminum }}{\text { (Rond.) }}$	Nov. 20	Nov. 24	15	Morton and Finney
L1-12	$\frac{\text { Rhopalosiphum }}{\text { Subterraneum Mason }}$	Nov. 20	Dec. 9	10	Morton, Finney Stevens
L23-5	Clcadellidae	Apr. 3	Apr. 9	35	Ness
L23-6	Cioadelildae	Apr. 3	Apr. 9	35	Lane
Le3-7	Cicadellidae	Apr. 3	Apr. 9	35	Lane
L23-8	Cloadellidae and Delphacidae	Apr. 4	Apr. 9	30	Pinney
L23-9	Cicadellidae ${ }^{5}$	Apr. 4	Apr. 9	50	Finney
L24-9	Cicadellidao and Delphacidae	Apr. 27	May 1	20	Finney, Wiohita, Soott and Greeley
L2 5-8	Endria inimica (Say)	June 9	July 2	52	Same as L34-14 and L35-1, L35-2, L35-8

Table 5. (Cont.)

Table 5. (Cont.)

Pot | mark |
| :--- |
| : Name of insects |

Table 5. (Cont.)

Table 5. (Concl.)
${ }^{3}$ Figures given indicating the number of insects used in each of the first ten
experiments are approximations.
4 In this column a reference to a pot mark, ($134-18$) indicates that the insects
in question were transferred from the plant or plants bearing that pot mark.
Table 6. A condensation of the transmission experiments in the field and greenhouse
Jpecies $\quad:$ No. of : 4pproximate

48
48
29
12
6
5
N HANHAN
$2,3,4$, and 5 . Tables
in $\frac{\text { sects that are listed }}{\text { Species }}$

[^1]Table 6. (Cont.)

Group	Species ${ }^{1} \quad \vdots$:	No. of experiments	Approximate no. of insects
Aphldidae	Rhopalosiphum prunlfollae (Fitch)	3	350
Aphididae	Macrosiphum granarium (Kirby)	4	38
Aphididae	Rhopalosiphum subterraneum Mason	2	60
Aphididae	Hysteroneura setariae (Thos.)	1	20
Aphididae	Aphis gossyoil Glov.	2	90
sphididae	Macrosiphum pisi (Kalt)	1	20
Miridae	Halticus bracteatus (Say)	5	100
Miridae	Trigonotylus ruflcornis (Goffrey)	4	49
Mridae	Lygus pratensis (Say)	1	3
Pentatomidae	Undetermined	1	2
Lygaeldae	Undetermined	1	2
Alegrodidae	Trialeurodes vaporariorum (Westwood)) 1	50
Delphacidae	Several	7	150
Thripidae	Several	4	100
Thripldae	Prosothrips cognatus Hood	1	32
Collembola	Undetermined	1	3

Table 6. (Concl.)

Table 7. A comparison of the transmission experiments in which a transfer of the

2 All of the numbers used to indicate the numbers of insects used in each exper-
iment were approximations except in the cases of experiments $\mathrm{R}, \mathrm{L} 3-10$ and L15-4.
Table 8. Representative samples of cloadellidee from collections used in the

Individual Insects Caged on Individual Wheat Plants.

The names of the insects and the number of experiments tried with each is given in Table 10. The varlous combinations of time in days that the more common species of leafhoppers were allowed to feed on infected and healthy plants in these experiments is shown by Table 9. The procedure for these experiments is described on page 17.

A total of 280 separate experiments with at least 10 different species of leafhoppers, and 12 additional experiments with other inseots had been completed by July 7, 1951.

Some of the plants developed symptoms that appeared similar to those caused by the mosalo virus. Inosulum was prepared from 29 of these plants and inooulated to healthy plants, but none of these were found to have mosaic. Possibly the symptoms observed were oaused by a nutritional deficleney or perhaps a reaction to the feeding of the leafhopper used in the experiments.

In the first 74 experlments the leafhoppers were oaged on the individual plants on November 28, 1950. About two weeks Later, on December $13,1950,48$ of these insects were still allve and were transferred to a new set of healthy plants. On January 12, 195136 of the original 74 leafhoppers were still alive. This procedure was designed to give some indication of the incubation period of the virus in the insect, if one existed. No transmission of the virus occured, but it did show something of the viability of the leaphoppers under the conditions of the experiments.
Table 9.
Various combinations of time in days on infected and healthy wheat plants
for the common species of Cioadellidae used in the transmission experi-
$\frac{\text { Insects caged on Individual wheat planta, }}{\text { Cicadellidae }}$
Maorosteles divisus
Deltocophalus sonorus Ball

Table 10. A compilation of the transmisaion experiments involving individual insects caged on individual wheat plants.

Group	Species	No. of experiments
Cioadellidae	Macrostelos divisus (Uhler)	85
Cladellidae	Psammotottix sp.	47
ciordellidae	Psammotettix striatus (L.)	1
cradellidae	Exitlanus oxitiosus (Uhler)	41
Cisadellidae	Endria inimica (Say)	28
Cladellidae	Deltocephalus sonorus Ball	12
Cicadellidae	Aceratagallia uhleri (Van D.)	1
Cioadellida	Nesosteles sp.	8
Ciaadellidae	Empoasoa sp.	2
$\begin{aligned} & \text { Cicadelildae } \\ & \text { Agallilni } \end{aligned}$	Unknown	17
cladellldae	Unknown	38
Coredae	Aufoius impressicollis Stal.	1
Delphacidae	Delphacodes propinqua (Fieb.)	1
Delphacldae	Unknown	3
Aorlaldae	Unknown nymphs	4
Chioropldae	Moromyza americana Fitch	3
Total		292

${ }^{1}$ All insects listed by family name only, either eacaped from their cages or died and decomposed before they could be identified more speolflcally. The pammotettix sp. probably were mostly Psammotettix striatus (L.). The Nesosteles sp. probably were mostly Nesosteles neglectus (Del. \& D.) None or the Empoasca were Identilied to species. The Agalillni were all probably Aceratagallia sp, mostiy Aoeratagalle uhleri (Van D.) and Aceratagalla Iongula (Van D.).

DISCUSSION

The previous work done on the inseot transmission of wheat mosaic in the United States is quite soanty. Most of the publications concern work done in Russia with a virus which is probably not closely related to the viruses which cause wheat mosalc in the United Stetes.

Atkinson's (1949) conclusion that the green bug, Toxoptera graminum (Rond.), was a vector of wheat mosalc has not been conflirmed by this work, or by that done by Painter and Fellows as mentioned previousiy. If the green bug is a vector of this virus it must transmit it only under certain conditions not used in these experiments.

The results of thls work do not justify naming any specific insect as a vector, at best they offer only more assurance that a vector does exist. There ware nine separate experiments in which transmission of the virus oocurred. Seven of these positive experiments involved learhoppers that were not identified to speoles. All of the experiments in which known species of learhoppers were used were negative. It seems likely that the species involved in these experiments were responsible for at least some of the transmission of the virus. The conditions of the experiments make more definite conolusions impossible.

Mo adequate means was provided for insect control in the greenhouse. Since the greenhouse was not soreened the plants were exposed to insects from outside all during the warm months.

Even during the winter, between fumigation periods, the plants frequently beoame infested with aphids, thrips, and mites. Also the soll used in these experiments was not sterillzed to prevent the remote possiblility of soll-borne infection. In addition to these hazards, there was the possibility that the experimental plants could be accidentally infeoted as a result of handling or wounding. Under these circumstances it seems that only decidedly consistent results could be regarded as signifioant.

The consistency that could be noted in the results was that seven of the nine positive experiments involved leafhoppers and that these seven experiments were all inltiated between Ootober 6, 1950 and November 15, 2950.

Perhaps the vector is one of the common leafhoppers used in the experiments but it is capable of aoting as a vector for only a period of two months or less during the fall. The leafhoppers Endria Inimica (Say) was probably the only insect used In one of the positive experiments which took place during Ootober 1950, (see experiment R, page 29), but 48 experiments involving about 750 of these leafhoppers which were made during the spring of 1951 were negative on July 7, 1951. Kunkel (1937) found that Macrosteles divisus (Uhler) did not transmit aster yellows during the summer months because the inereased temperature inectivated the virus.

If the vector is active and viruliferous in nature only during October and November, there is a slight possibility that
the experimental plants may have been infocted by these insects in the unsoreened greanhouse. Field observations suggest that in all probability most of the transmission of the virus to wheat in nature osourred during the fall. On the other hand since the disease has not been prevalent in the Bastern part of the state, the simplest explanation is that the insect vector is also not prevalent in Eastern Kansas. The maln difference in the insect populations in Eastern and Western Kansas that was shown by the collections was that species of the leafhopper genus Nesosteles, were more cammon on wheat In Western Kansas. Fourteen experiments in which Nesosteles spp. were used were negative.

Several of the less common species of leafhoppers that were colleoted on wheat were not tried in experiments with known species of leafhoppers. The possibility remalns that one or more of these may have been responsible for the seven oases of tranamission.

When it is considered that almost every wheat plant in Large fields over wide areas in western Kansas have become infected with the virus, and that all of this transmission must ocour within a fow months time; it seems almost essential that the vector elther be quite abundant on wheat or be an extremely efficient veetor or both .

All of the more common leafhoppers and aphids colleated on wheat were used in what was thought to be a considerable number of experiments. Evidently it may take many more experiments

WIth larger numbers of insects involved actually to demonstrate transaission. Diakson et. al. (1951) reported that the melon aphid, Aphis gossypil Glover, has an efficiency of 1 in 1,600 In transmitting the citrus quilok-decline virus. Considering the great abundance of some species of leafhoppers and aphlds on wheat, it is concelvable that they could serve as low efficiency vectors and etill bring about 100 per cent infections of the plants in wheat fiolds.

A vector with an efficiency as low as 1 in 1,600 probably would not readily be discovered by experiments involving small numbers of insects. The total number of Endrla inimioa (Say) involved in all experiments was only about 750 and this was more than twice that of any other slagle species of leafhopper.

Probably the best evidence derived fram these experiments to support the hypothesis that there is a leafhopper veotor for the wheat mosalc virus; was the fact that plants in two different pots, subjected to the same experimental conditions, became infected with the mosalo virus. These two pots (Ll-7 and L1-8, page 40) were both placed in the same cage with a large number of learhoppers and infected plants. It seems unlikely that insects outside of the experiment would heve been responsible for the infection in these two partioular cases, since only nine known instances of transmission occurred in the hundreds of exposed plants in the greenhouse.

If insects outside of the experiments were responsible for these nine known eases of transmission it is difficult to explain why they transferred the virus only to those plants which had been used in the insect transmission experiments. Hundreds of healthy wheat plants used in other experiments were utillzed as cheoks by belag observed for mosalc symptoms. These plants were exposed to the lasects in the greenhouse, but none of these plants became infected with the mosaic virus. On a few occaslons symptoms similar to mosalo did appear on these plants, but each time when inoculum was prepared from the suspect and inoculated to healthy plants no symptoms developed.

Nevertheless, when it is considered thet only one virus is known whloh has been transmitted by mechanical inoculation and also by leafhoppers, perhaps less oonslderation should be given to the leafhoppers as possible veotors.

In addition to the seven positive experiments involving leafhoppers, one case of transmission resulted from a greenhouse experiment with the wheat stem maggot, Meromyza amerioana Fitch, and another from a fleld eage experiment with the crown or subterranean aphid, Rhopalosiphum subterranoum Kason.

The wheat stem maggot adult, M. americana, has sponging type mouth parts and apparently is poorly equipped to feed on plant tissue. However, some of the anlmal-feeding Diptera that have spongling type mouth parts are able to lacerate the skin of of thelr hosts. It is not known if any of the plant-feading

Diptera feed in thls maner. Slace this ease of transmission ocourred during February or March 1951, it was isolated in time from the other positive transmission experiments. Seven other experiments with \underline{M}. amerlcana 1 nvolving about 90 illes were negative. The abundance and life cyole of this insect seems to fit what might be expected of a vector of wheat mosalc. The oase of transmission in a fleld cage in which R. subterraneum was orlginally introduced is far from conclusive, since other aphlds entered the cage of this experiment. Also In this type of experiment there is probably an increased chance that the hoalthy plants could become infected by the direct contact of rubbling against plants in the infected row.

Very 11 ttle is known about the life history of this insect; but it is abundant enough on wheat, especially in the fall, to satisfy this probable requirement of a vector of wheat mosalc. Slnce it is difficult to rear this aphid in the greenhouse, perhaps some correlation between Its abundance in the field and the prevelence of mosaic will be observed.

Considering even the lack of relinement in these experiments, it seems that one deduction can be made. is vector or wheat moselo was present at Manhattan, Kansas during the fall of 1950.

SUMMARY

Thls work was an atterpt to determine how wheat yellow streak-mosaic virus is transmitted in nature. It seemed likely that some wheat feeding insect served as its vector. One of the first objectives was to prepare a list of insects which live on wheat. This list consisted of various members of ten orders of insects and two famliles of mites. Since the wheat-feeding aphids were previously well known, amphasis was placed on the leafhoppers. Leafhoppers belonging to 17 different genera were oollected, but on 1 y about 7 species or groups could be consldered as common.

A total of 189 experiments involving approximately 6,178 inseots and 292 experiments in which individual insects were used were campleted or earried through to the polnt of observing the experimental plants for symptoms. This involved the utilization of all the fleld collected insects in as many different types of experiments and different combinations of time and numbers of insects as were possible in a year's work.

Symptoms developed in healthy plants which were used in nine experiments. These symptoms were proved to be caused by the mosalo virus. While it may not have been proved that the transfer of the virus was caused by the insects used in the experiments, it seemed highly probable that the experimental insects were responsible for most of the transmission that oocurred.

The ingects used in seven of the nine positive experiments were leafhoppers. All seven of these cases of transmission took place between October 6, 1950 and November 15, 1950. The specific identification of the leafhoppers used in these experiments is not definitely known, but probably the only leafhoppers used in one of the experiments was Bndria inimlca (Say).

In addition to the seven positive experiments involving leafhoppers, one case of transmission resulted from a greenhouse experiment with the what stem maggot, Meromyza americana Fitch and another from a field experiment with the crown or subterranean aphid, Rhopalosiphum subterraneum Mason. The conditlons and time of tranamission in these two experiments made it seem more likely that accidental transmission occurred here than in those experiments involving leafhoppers. It will be necessery to use these two species of insects in more experiments before thelr ability to transmit the virus can be determined.

This work indicated that the vector or veetors of wheat Jellow atreak-mosaio virus was present at Manhattan, Kansas, during the fall of 1950, and that the veotor is most likely a leafhopper.

AGKNOWLEDGMENTS

The writer expresses sincere appreciation to Drs. R. H. Painter and Hurley Fellows for their suggestions and guidance in this work, and acknowledgment of thelr direct help both in the oarrying out of these experiments and in the final preparation of this thesis.

Thanks are due Dr. Roger C. Smith, Head, Department of Entomology, for his interest and encouragement in the work and for his reading of the tentative oopy of this thesis.

Acknowledgment is made to Professor L. E. Melchers, Head, Department of Botany, and Dr. B. D. Hansing for thelr suggestions and interest in the problem.

Indebtedness is acknowledged to the following men for the ldentifioation of Insects and mites: R. H. Beamer, Cicadellidae and Fulgoroldea; J. B. Kring, Aphldidae; S. F. Balley, Thysanoptera; and C. F. W. Muesebeck and staff of the Bureau of Entomology and Plant Quarantine, varlous groups of inseots and mites.

Atkinson, R.E.
Western wheat mosaic in Colorado and its transmission by the grain aphid Toxoptora graminoum (sic.). Phytopatholoey 39
(1):2. January, 1949. (abstract)

Dickson, R. C., R. A. Flock, and M. McD. Johnson. Insect transmission of citrus quick-decline virus. Jour. Econ. Ent. $44(2): 172-177$. April, 1951.

Hansing, E. D., L. E. Melchers, H. Fellows and C. O. Johnson Kansas Phytopathological notes. Trans. Kansas Acad Sci. 53(3):344-354. September, 1950.

Haskell, R. J. and J. I. Wood. Diseases of cereal and forage crops in the United States in 1922. U. S. Dept. Agr., Bur. Plant Indus., Plant Disease Bul. Sup. 27. 164-226. 1923. (Mimeographed).

Ingram, J. W. and E. M. Suwmers.
Transmission of sugar cane mosaic by the green bug, Toxoptera Graminum (Rond.). Jour. Agr. Res. 56(7): 537-540. April, 1938

Johnson, Folke.
Epiphytology of winter wheat mosaic. Ohio Jour. Sci. 45(3): 85-95. May, 1945.

Kunke 1, L. O.
Effect of heat on abllity of Clcadula Sernoiata (Fall.) to transmit aster yellows. Amer. Jour. Bot. 2 $4(5)$: 316-327. May, 1937.
McKinney, H. H.
Investigations of the rosette disease of wheat and its control. Jour. Agr. Res. 23(10):771-800. March, 1923.

McKinney, H. H.
A mosaic disease of winter wheat and winter rye. U. S. Dept. Agr. Bul. 1361. 11p. 1925.

Melchers, L. E.
Wheat mosaics in Egypt. Science. (n.s.) 73(1882):95-96. January, 1931.

Oman, Paul Wilson.
The nearctic leafhoppers. Mem. Ent. Soc. Wash. No. 3. 253 p. 1949.

Osborn, Herbert.
Leafhoppers affecting cereals, grasses, and forage crops. U.S. Dept. Agr. Bur. Ent. Bul (n.s.) 108. 1-123. 1912.

Severin, Henry H. $\mathrm{P}_{\text {. }}$
Life-ifstory of the beet leafhopper, Eutettix tenellus (Baker) in California, Univ, of Calif. Pub. in Ent. $5\left(2_{4}\right): 37-$ 88. January, 1930.

Sukhov, K. S. and P. T. Petlyuk.
Delohax striatella Fallon as vector of the virus diseaso zalkukilvanie in grains. Acad. des Sci. U.R.S.S. Compt. Rend. (Dok.) 26(5):483-486. 1940.

Sukhov, K. S. and K. N. Sukhova.
Interrelations between the virus of a new grain mosaic disoaso (zakuklivanio) and its carrier Dolohax striatolla Fallen. Acad. des Sci. U.R.S.S. Compt. Rend. (Dok.) 26(5): 479-482. 1940.

Viada, Eitaro and Hiroshi Fukano.
On the difforence and discrimination of wheat mosaics in Japan. Japan Imp. Agr. Expt. Sta. Jour. 3(1):93-128. p1. 8-15. March, 1937. (English summary 124-127).

Zazhurilo, V. K. and G. M. Sitnikova.
Mosaic of winter wheat. Acad. des Sci. U.R.S.S., Compt. Rend. (Dok.) 25(9):778-801. 1939.

Zazhurilo, V.K. and G. M. Sitnikova.
Natural ways of transmission of the winter wheat mosaic virus. Acad. des Sci. U.R.S.S. Compt. Rend. (Dok.) 29(5-5):429-432. 1940.

Zazhurilo, V. K. and G. M. Sitnikova.
Interrelations between mosaic disease virus of winter wheat and its vector, Deltocephalus striatus. Inst. Zashch. Rast. (Lenin Acad. Agr. Sci., U.S.S.R., Inst. Plant Protect.) Doklady p. 27-29. 1941.

TRANSIISSION EX TRIILSPS IINOLVING POSSIBLAS INSNCT VEGIORS OF TIIS VIRUS, IARIDOR VIRCATUS VAR. TYPICUH MCKIIRIEY, WIICH

by

TOINX LARKIN HARVEY
B. S., Kensas State Collego
of Agriculture and Applied Science, 1950

ABSLRACT OF TIESIS

submittod in partial fulfillment of the requirements for the degroe

MASIER OF SCIENCE

Department of Entomology and

Dopartment of Botany and Plant Pathology

KANSAS STATE COLIEGE
OF AGRICULMURE AND APPLIRD SCIENCE

Wheat yollow stroak-mosaic virus has rocently boen rocognizod as an important factor in the production of wheat in the western one-third of Kansas and noor by states. The purpose of this work was to dotermine how the vimus is transmitted in the fiela.

Soll and seed borne transmission had been considered and rejected in early publications. Since the possibility of insect transmission had not been given adoquate attention, it seomed important to study the wheat-fooding insects as possible vectors of the virus.

A Iist of insects and mites found on wheat was prepared from collections. This list included various mombers of ten orders of insects and two families of mites. Particular attention was given to those insects which have piercing and sucking type mouth parts. The whoat-feoding aphids had beon previously studied; therefore, emphasis was Eiven to the leafhoppers. Leafhoppers belonging to 17 difforent Eenora wore collected. The following seven species or exoups were the most common leafhoppers teken in the collections: Macrostoles divisus (Unler), Exitianus exitiosus (Unler), Endria inimica (Say), Mesostoles spp., Psammotottix spp., Deltocephalus spp., and Acallinni including Aceratarallia spp.
$\Lambda 11$ of the fleld collected insects were utilized in as many different experiments and under as many different conditions as possible in a year's worls. There were several types of experiments, but in each type insects were exposed to diseasod and healthy plants either simultanoously or alternately. The healthy plants were then observed for symptoms.

A total of 189 experiments involving approximately 6,178 insects and 292 experiments in which individual insects were used were completed or carried throuch to the point of observing the experimental plants for symptoms. This made up a combinod. total of 431 experiments and 339 of theso involvod leafhoppers.

Symptoms, later proved to be caused by the mosaic virus, developed in hoalthy plants which vere used in nino experimonts. While it may not have boen proved that the transfer of the virus was caused by the insects used in the oxperiments, it soomod probable that the experimental insects were responsiblo for most of the transmission that occurred.

The insects used in seven of the nino positive experiments vere leafhoppers. All seven of these cases of transmission took place between October 6, 1950 and November 15, 1950. The spee cific idontification of the leafhoppors used in these experiments is not definitely known, but probably the only leafhoppers used in ono of the experiments was Endria inimica (Say).

In addition to the seven positive experiments involving leafhoppers, one case of transmission resulted from a freenhouse experimont with the wheat stem maccot, Meromyaa amoricana Fitch, and tuother from a field experiment with the crow or subterranean aphid, Rhovalosiphum subterreneum Mason. It will bo necessary to use these two insects in more experiments before their ability to transmit the virus c an be determined.

This work indicated that the vector or vectors of wheat yellov streak-mosaic vimus was present at Manhatton, Kansas, during the fall of 1950, and that the vector is probably a leafhopper.

[^0]: Whe Glomdellidee lnoluded several speoles. Contamination with aphlds was ommon. Leaf samples were collected on Dec. 1 from the healthy rows and inoouleted to

[^1]: Cicadellidae
 Cicadellidae
 Cicadellidae
 Cicadellidae
 Cicadellidae
 Cloadellidae
 Agallinin
 Cicadellidae
 Heealini
 Cioadellidae
 Cicadellidae
 Cleadellidae
 Aphididae
 Aphididae
 Aphididae

 ## Toxoptera graminum (Rond.)
 Aphis maldis Fitch

 ## Undetermined

 Exitianus exitiosus (Unler)Deltocephalus sp .

 Brmpoasca sp.
 Several
 Several
 Endria inimica (Say)
 Macrosteles divisus (Unler)

 ## Nesosteles sp.

 Psammotettix sp.
 Several

