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ABSTRACT

Integer programming is a field of mathematical optimization that has applications across

a wide variety of industries and fields including business, government, health care and mili-

tary. A commonly studied integer program is the knapsack problem, which has applications

including project and portfolio selection, production planning, inventory problems, profit

maximization applications and machine scheduling. Integer programs are computationally

difficult and currently require exponential effort to solve.

Adding cutting planes is a way of reducing the solving time of integer programs. These

cutting planes eliminate linear relaxation space. The theoretically strongest cutting planes

are facet defining inequalities.

This thesis introduces a new class of cutting planes called multiple variable merging

cover inequalities (MVMCI). The thesis presents the multiple variable merging cover algo-

rithm (MVMCA), which runs in linear time and produces a valid MVMCI. Under certain

conditions, an MVMCI can be shown to be a facet defining inequality. An example demon-

strates these advancements and is used to prove that MVMCIs could not be identified by

any existing techniques.

A small computational study compares the computational impact of including MVMCIs.

The study shows that finding an MVMCI is extremely fast, less than .01 seconds. Further-

more, including an MVMCI improved the solution time required by CPLEX, a commercial

integer programming solver, by 6.3% on average.
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Chapter 1

Introduction

Integer programming is a field of mathematical optimization with great potential to trans-

form the world and improve people’s lives. Integer programming has applications in a wide

variety of business, technical and personal situations where finding the optimal solution to

a problem is the goal. It is easiest to explain the contributions of integer programming by

looking at how it is applied in the world today.

One area where integer programs are widely used is in various types of vehicle routing

problems. In Ankara, Turkey, there were problems stemming from the costs associated with

busing students from rural regions to schools. Once the problem was formulated as an

integer program, the researchers [3] were able to decrease the overall cost by 28% and reduce

the total miles traveled by all buses by 14%. Other benefits obtained were an increased

utilization of 27% and a decreased variation in capacity by 33%.

There are numerous other applications of integer programs (IPs). IPs have been used

to assist with cancer location and treatment [33]. IPs has also been applied to the overseas
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shipping industry [39] and facilities layout [16]. Other applications include military appli-

cations [37], sports scheduling [14], airline security [35] and criminal justice assignment [6],

which have all benefitted society.

While IPs are very useful, solving IP problems is NP hard, which means that there does

not exist a polynomial time algorithm to solve the problem to optimality, unless P = NP.

In laymans terms it means that any algorithm used to solve an IP requires exponential time.

Thus, certain concessions are typically made to the IP model, which leave open the chance

that the solution that is found is suboptimal in the real world. This means that the solution

needs to be evaluated to make sure it is implementable and that it provides benefit to the

process.

There are a few different ways to solve an IP. The most widely used algorithm is the

branch and bound algorithm. Branch and bound [32] works by solving the linear relaxation

and then branching on one of the non-integer variables. Branch and bound is a good strategy

for smaller problems, but as the problems get larger, the time to solve these problems

increases exponentially. While computers are constantly getting faster and more advanced,

there still exist IPs that cannot be solved to optimality.

One common method to reduce the IP solution time is through cutting planes. Cutting

planes help to decrease the solving time of integer programming software by decreasing

the space of the linear relaxation that the software might check. It is called a cutting

plane because it cuts off these undesirable noninteger solutions. Thus, many cutting plane

preprocessing techniques are used to help reduce IP’s solution time.

Cutting planes are valid inequalities and the theoretically strongest valid inequalities are
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called facet defining. If all facet defining inequalities are added to an IP, then its linear

relaxation solution is integer. Thus, branch and bound only requires one iteration and not

exponential effort.

This thesis focuses on a specific class of IPs called a knapsack problem. Knapsack prob-

lems are found in various settings related to pricing of items [4], defense [1], aviation security

[28] and portfolio selection [38].

A commonly used cutting plane for a knapsack problem are cover inequalities. Occasion-

ally, a cover inequality can be facet defining, but most cover inequalities can be strengthened.

Fundamentally, this thesis takes a cover inequality and strengthens it.

1.1 Research Motivation and Questions

In 2014, Hickman and Easton [24] generated inequalities by merging two cover inequalities

together. This resulted in a new class of cutting planes for the knapsack instances. Further-

more under certain conditions, these merged cover inequalities could be facet defining.

Hickman’s results could only merge covers on a single variable. That is, the covers had to

have exactly one element in common. In certain instances, Hickman and Easton’s method

would create inequalities that were weak and these inequalities could be strengthened.

The motivation for this thesis is to build on and stregthen their work. Thus, this work

sought to answer the following reseasrch questions. Can cover inequalities be merged on mul-

tiple variables? Can merging be done so that the inequalities created cannot be dominated

by an inequality of the similar form?
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1.2 Research Contributions

The primary contribution of this thesis is the development of a new class of cutting planes for

the knapsack problem that decreases the time to solve integer programs. This class is called

multiple variable merging cover inequalities (MVMCI). These inequalities merge two cover

inequalities from an existing constraint on multiple variables. They are merged with the aid

of a merging coefficient. This coefficient, α, is also the theoretically strongest coefficient that

can be obtained. Furthermore, this class of cutting planes cannot be obtained by current

methods without the consultation of an oracle.

An algorithm is also presented, which generates MVMCI from a single knapsack con-

straint. This algorithm runs in linear time, which is the theoretically best run time possible.

It also can generate facet defining inequalities, which are the theoretically strongest inequal-

ities.

To show the usefulness of MVMCIs, a computational study was conducted. The multiple

variable merging cover algorithm (MVMCA) was coded into C and added to CPLEX [10], a

commercial integer program solver, for small and medium problems, and run to completion.

The time required to solve these problems is referred to as run time. MVMCA has the ability

to decrease run times of CPLEX solver by up to 40% in this computational study on certain

instances. In addition, MVMCI was able to cut CPLEX run times by on average 6.3% on

the medium sized problems, which reduced the run time by over an hour.
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1.3 Outline

This thesis is organized as follows: Chapter 2 presents an overview of the background in-

formation that is necessary to understand the contributions of this thesis. It covers integer

programming, polyhedral theory, knapsack problems, cover cuts, and lifting examples. This

includes formal definitions, explanations and examples to aid in the understanding of the

background material.

Chapter 3 provides the theoretical basis for inequality merging on multiple variables. It

contains the theorems, explanations and conditions for validity of the merged inequality. An

example where multiple variable merging cover algorithm creates a facet defining inequality

demonstrates these concepts. The run time is discussed and it is shown that it is not dom-

inated by previous methods. Chapter three ends with an argument that these inequalities

are new and not simply a rehashing of previous work.

Chapter 4 is a computational study to show the usefulness of MVMCI. The results are

interpreted and it is shown that MVMCA can be easily implemented and the inequalities

generated can be useful in solving knapsack integer programs.

Finally, Chapter 5 is a summary of the important contributions from this thesis. It also

offers up possible areas of future research.
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Chapter 2

Background Information

Chapter 2 gives an overview of the background information necessary to grasp the contribu-

tions of this thesis. This includes an overview of integer programming as well as polyhedral

theory. The use of cutting planes to shorten the process of solving an IP is also discussed

along with lifting. Lastly an overview and example of Hickman’s inequality merging tech-

nique is discussed.

2.1 Integer Programming

An integer program (IP) is a mathematical model of the form maximize cTx subject to

Ax ≤ b, x ≥ 0 and x ∈ Zn where A ∈ Rmxn, b ∈ Rm and c ∈ Rn. Define the set of feasible IP

solutions as P = {x ∈ Zn
+ : Ax ≤ b} and the set of indices to be N = {1, ..., n}.

An important concept in solving IP’s is a linear relaxation (LR). Given an IP, its linear

relaxation is the IP with the integer requirement removed, meaning that the problem is

6



a linear program of the form maximize cT x subject to Ax ≤ b, x ≥ 0. Define the linear

relaxation space as P LR = {x ∈ R : Ax ≤ b, x ≥ 0}. The optimal solution to a linear

relaxation can be found in polynomial time [29].

Branch and bound is the most widely used and standard algorithm to solve integer

programming optimization problems [32]. This technique builds an ancestral branching tree

where the nodes have properties determined by the nodes’ lineage. This technique generates

an optimal solution, but it may take an exponential amount of time.

The branch and bound algorithm starts with the linear relaxation, called the root node.

If no noninteger variables exist, then the linear relaxation solution is optimal. If not, the

node is split on a noninteger variable (xi = f) of the LR solution. The resulting branched

child nodes each have one constraint on them xi ≥ dfe and xi ≤ bfc, the integer below and

above the noninteger xi. While there exists at least one unfathomed leaf node, the branch

and bound algorithm solves the LR of that node with its corresponding linear relaxation

solution, x∗LR and linear relaxation objective function value, z∗LR. This repeats until all

nodes have been fathomed. A node is fathomed if one of three criteria are met: the linear

relaxation becomes infeasible, the node’s linear relaxation solution is integer or the objective

function value is worse than the best integer solution found so far.

To reduce the run time of branch and bound, cutting planes are frequently applied.

The area of research that studies cutting planes is called polyhedral theory. The goal of a

cutting plane is to shrink the linear relaxation space. The next section gives an overview of

polyhedral theory.
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2.2 Polyhedral Theory

The geometry of any IP problem is important to the solution of the IP. Polyhedral theory is

fundamental to understanding this type of research. A half space is {x ⊆ Rn :
n∑

i=1

αixi ≤ β}

and a polyhedron is defined as the intersection of finitely many half spaces.

A set S ⊆ Rn is convex if and only if λx1 + (1− λ)x2 ∈ S for every λ ∈ [0, 1] and all x1

and x2 ∈ S. The convex hull of a set S, conv(S), is the intersection of all convex sets that

contain S. Clearly, a polyhedron is convex. An important result is that P LR and conv(P )

are both polyhedrons. If a polyhedron is bounded, then it is called a polytope.

An inequality
n∑

i=1

αixi ≤ β is valid for conv(P ) if every x ∈ P satisfies this inequality. A

valid inequality is a cutting plane if there exists an x′ ∈ P LR such that
n∑

i=1

αix
′
i > β. Only

cutting planes can reduce the time required to solve an IP.

Every valid inequality induces a face, F , of conv(P ) where F = {x ∈ conv(P ) :

∑n
i=1 αixi = β}. Every face is a polyhedron. Theoretically, the usefulness of a valid in-

equality is measured by the dimension of this face.

The dimension of a polyhedron equals the maximum number of linearly independent

vectors. However, an IP only has feasible points and so no nonzero vector creates a feasi-

ble direction. Due to this fact, affine independence is used to determine the dimension of

conv(P ).

Let V be a finite set of points in Rn, V = {vi ∈ Rn : i = 1, ..., w}. The points in V

are affinely independent if and only if the unique solution to
w∑

i=1

λivi = 0 and
w∑

i=1

λi = 0 is

λi = 0 for all i = 1, ..., w. Furthermore, the dimension of the convex hull of the set of V
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points is equal to the maximum number of affinely independent points minus one. In order

to define points in Rn, let ξj be the origin in n dimensions translated one positive unit in

the jth dimension, i.e. ξ2 = (0, 1, 0, ..., 0).

The larger the dimension of the face, up to one less than the dimension of conv(P ), the

theoretically stronger the inequality is. The strongest such cutting planes are called facet

defining inequalities. An inequality is facet defining if its face has dimension one less than

the dimension of conv(P ). A facet defining inequality is an inequality that defines a facet of

the conv(P ). If one could find all of the facet defining inequalities for a given problem, then

including all these facets would define conv(P ). Thus, the extreme points would be integer

and the linear relaxation solution would be an integer solution.

2.2.1 2-Dimensional Integer Programming Example

The following small example of a two dimensional IP is shown to explain these concepts.

Maximize x1 + x2

Subject to: 5x1 + 4x2 ≤ 20

x1 + 2x2 ≤ 8

x1, x2 ≥ 0

x1, x2 ∈ Z

Figure 2.1 shows a graphical representation of this problem. The set of feasible integer

points, P , are identified by large circles. The extreme points of the linear relaxation space

are shown at A, B, C and the origin. The dashed line denotes the conv(P ) and is formed by

connecting the extreme integer points in the feasible region. Note the x axis from the origin
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to (4,0) and the y axis from the origin to (0,4) are also assumed to be dashed in this picture.
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Figure 2.1: 2-Dimensional IP Example

The first step in solving this problem with cutting planes is to find the linear relaxation

solution. Once that is found, a cutting plane is added to the linear relaxation and the linear

relaxation solution is recalculated to be (x∗LR, z∗LR). This process is repeated until the

solution is an integer solution in which case z∗LR is the optimal integer objective function

value z∗IP .
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Because the objective function is simply x1 +x2, the best solution to this problem occurs

at (1.3,3.375), which is point A, and yields z∗LR = 4.675. Adding the valid inequality,

x1 + x2 ≤ 4, to the formulation eliminates the point (1.3,3.375). Thus, this valid inequality

is a cutting plane. Resolving the linear relaxation results in an optimal solution of z∗LR = 4

at the point (4, 0). Since this is an integer point, the optimal IP solution is found.

To prove x1+x2 ≤ 4 is a facet defining inequality, one must first determine the dimension

of conv(P ). The dimension of conv(P ) is 2 because it is bounded from the top by the fact

that there are 2 variables and bounded from below by the fact that there are 3 affinely

independent points in P : (0,0),(0,1) and (1,0). Combining these two statements means that

the dimension of conv(P ) is 2.

The constraint x1 +x2 ≤ 4 is valid as it does not eliminate any points in P . Furthermore,

the face F = {x ∈ conv(P ) : x1 + x2 = 4} is not conv(P ) since (0, 0) is in P and not in F .

Thus, the dimension of the face, dim(F ), is less than or equal to 1. The points (0, 4) and

(2, 2) are in P and also in F . These points are affinely independent. Thus, dim(F ) ≥ 1.

Thus x1 + x2 ≤ 4 is a facet defining inequality.

Knapsack problems are used extensively in this thesis. Whence, the next section formally

introduces knapsack problems and demonstrates them through the use of an example.

2.3 Knapsack Problems

Knapsack problems (KP) are a special class of IPs. The knapsack problem is so named by

the concept problem where a hiker needs to select which items to bring on an overnight

11



camping trip and has limited strength. Each possible item has a corresponding non-negative

weight and benefit. The purpose is to maximize the benefit the hiker receives from the items

in his knapsack subject to constraints on how much weight the hiker can carry.

To model the knapsack as an IP, let xj = 1 if item j is taken and 0 else. Then the

KP is Maximize
n∑

j=1

cjxj subject to
n∑

j=1

ajxj ≤ b, and xj ∈ {0, 1} for all j ∈ N where c and

a ∈ Rn
+, b ∈ R+. Denote the feasible solutions of a KP as P KP = {x ∈ {0, 1}n :

n∑
j=1

ajxj ≤ b}.

The multiple knapsack problem (MK) is a type of integer program with a finite number

of knapsack constraints. It is defined as Maximize cT x subject to Ax ≤ b and x ∈ {0, 1}n

where c ∈ Rn
+, A ∈ Rm∗n

+ . Define the feasible solutions of an MK to be P MK = {x ∈ {0, 1}n :

Ax ≤ b}.

Both KP and MK problems have many real life applications that many researchers have

worked on in a variety of fields and industries. These applications include project and

portfolio selection [7], production planning and inventory problems [11], profit maximization

applications [13, 36] and machine scheduling [30].

Without loss of generality, assume that any KP has the property that a1 ≥ a2 ≥ ... ≥ an.

Furthermore, in the remainder of the document, assume that every subset of N is sorted in

ascending order. Finally, assume a1 ≤ b. If not, then x1 = 0 for all feasible solutions and x1

can be removed from the problem. Given these assumptions, dim(conv(P KP )) = n because

the origin and ξi for all i ∈ N are in P KP . The conv(P MK) is full dimensional assuming

that each aij ∈ A satisfies aij ≤ bi, for all i = 1, ...,m and j = 1, ..., n.

To assist with understanding the concepts of knapsack problems an example is shown.

This example contains the classic hiker with a knapsack. This example shows the setup and
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solution to the KP problem.

A hiker considers taking 15 items on a fishing trip to Yellowstone National Park. He

can take any of the items at his own discretion, subject to the constraints. Each item has

a corresponding weight and benefit as shown in Table 2.1. Furthermore, the hiker can only

carry 40 units.

Object 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Weight 21 17 16 15 12 11 10 8 7 6 5 4 3 3 1

Benefit 30 30 16 15 1 18 14 11 10 7 9 12 7 2 4

Table 2.1: Benefits and Weights of Items

The hiker can choose to take an item in which case xj = 1, or not take the item in which

case xj = 0. The problem can be formulated as an integer programming model as shown.

Maximize: 30x1 + 30x2 + 16x3 + 15x4 + 1x5 + 18x6 + 14x7 + 11x8 + 10x9

+7x10 + 9x11 + 12x12 + 7x13 + 2x14 + 4x15

Subject to 21x1 + 17x2 + 16x3 + 15x4 + 12x5 + 11x6 + 10x7 + 8x8 + 7x9 + 6x10

+5x11 + 4x12 + 3x13 + 3x14 + 1x15 ≤ 40

xi ∈ {0, 1} ∀i = {1, ..., 15}

Solving this shows that the maximum benefit the hiker can obtain is 76 by carrying items

2, 6, 11, 12 and 13. The hiker is carrying a total weight to carry of 40 units.
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2.4 Cover Inequalities

One widely used technique for solving KP and MK problems is by adding a cover cut to

the constraints of the problem. Given a knapsack constraint, a set C ⊆ N is a cover for a

KP if
∑
j∈C

aj > b. The corresponding cover inequality takes the form
∑
j∈C

xj ≤ |C| − 1. This

inequality is valid because it is created from the original KP constraints and carrying every

element in the cover is too heavy. Thus, the hiker can carry at most one item less than the

number in the cover.

A cover C is a minimal cover if C \ {j} is not a cover for all j ∈ C. If C ⊆ N is a cover,

define an extended cover as E(C) = C ∪ {j ∈ N : aj ≥ ai,∀i ∈ C}. An extended cover has

a valid inequality of the form
∑

j∈E(C)

xj ≤ |C| − 1.

Recall the example of the hiker in Yellowstone. A cover of the weight constraint, for

example, would be {1, 2, 3} because 21 + 17 + 16 > 40 and the resulting cover constraint

would be x1 + x2 + x3 ≤ 2. This is also a minimal cover because if any element is taken

out of the cover, it ceases to be a cover. An example of a non-minimal cover is {1, 2, 3, 4}

because element 4 can be taken out of the cover and it remains a cover. Minimal covers are

the most desirable covers. In fact, a nonminimal cover inequality is dominated by a minimal

cover inequality.

In order to understand that the concepts in this thesis are new, it is important to un-

derstand different types of lifting. Lifting is similar to multiple variable merging. Thus, to

understand the difference between multiple variable merging and lifting, background infor-

mation on lifting is covered next.
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2.5 Lifting

Lifting is used to strengthen inequalities. Lifting can increase the dimension of a cutting

plane. This makes a stronger inequality by cutting off a larger linear relaxation space. Lifting

was developed by Gomory [17].

In formal terms, lifting requires a set E ⊆ N , an ordered set K containing |E| integers

and a valid inequality,
∑

i∈E αixi +
∑

i∈N/E αixi ≤ β of the restricted space on E and K.

Formally, define the restricted space of P on E and K to be P E,K = conv{x ∈ P : xi = ki

for all i ∈ E} where ki ∈ Z and K = (k1, k2, ..., k|E|). Lifting ends with a valid inequality of

conv(P ) that takes the form
∑

i∈E α′
ixi +

∑
i∈N/E αixi ≤ β ′.

The types of lifting are dependent upon the choice of E, K, α′ and β ′. There are

24 different types of lifting and include up, down, middle, exact, approximate, sequential,

simultaneous, single and synchronized.

Up lifting, the most common lifting technique, assumes each k is at the lower bound,

typically K = (0, 0, ..., 0). Down lifting assumes that all of the ki’s are forced to be the upper

bound of xi. Middle lifting is when the ki’s are set to values in between.

Exact lifting generates the strongest inequality possible given a starting valid inequality.

Thus, any increase to α′ or decrease in β ′ would make the inequality invalid. Typically exact

lifting requires solving an optimization problem. Approximate lifting has weaker α′ or β ′

values.

Sequential lifting requires |E| = 1. Thus, each variable is lifted by individually solving

an optimization problem. Simultaneous lifting requires |E| ≥ 2. In this case, numerous
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coefficients can be changed by solving a single optimization problem.

An alternate class of lifting was proposed by Bolton in 2009 [5]. Her work identified single

and synchronized lifting. A lifting algorithm is single if it creates exactly one inequality. A

lifting method is synchronized if the technique produces multiple valid inequalities.

These lifting classes are frequently combined and the most popular is exact sequential

single up lifting. The following example demonstrates how to perform this type of lifting on

a cover inequality and helps to clarify these methods.

2.5.1 Lifting Example

Consider the knapsack constraint

23x1 + 22x2 + 17x3 + 15x4 + 14x5 + 14x6 + 13x7 + 12x8 + 10x9 + 9x10+

8x11 + 7x12 + 7x13 + 5x14 + 4x15 ≤ 86

xi ∈ {0, 1} ∀ i = 1, ..., 8

Observe that C = {4, 5, 6, 7, 8, 9, 10, 11} is a cover. Thus the valid cover inequality is

x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 ≤ 7. In order to sequentially uplift x3, solve the

following IP:

z∗ = Maximize x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11

subject to 23x1 + 22x2 + 17x3 + 15x4 + 14x5 + 14x6 + 13x7 + 12x8+

10x9 + 9x10 + 8x11 + 7x12 + 7x13 + 5x14 + 4x15 ≤ 86

x3 = 1

xi ∈ {0, 1} ∀ i = 1, ..., 8
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The solution to the above IP is z∗ = 6. This means that α3 = β − z∗ = 7 − 6 = 1. The

resulting valid inequality is x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 ≤ 7.

In order to lift x2, solve z∗ = Maximize x3 +x4 +x5 +x6 +x7 +x8 +x9 +x10 +x11 subject

to 23x1 + 22x2 + 17x3 + 15x4 + 14x5 + 14x6 + 13x7 + 12x8 + 10x9 + 9x10 + 8x11 + 7x12 +

7x13 + 5x14 + 4x15 ≤ 86 and x2 = 1. The solution is z∗=5 and β − z∗ = 2. The resulting

valid inequality is 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 ≤ 7.

After this is run for x1 the result is a stronger inequality with α1 = 1. The resulting

inequality is x1 + 2x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 ≤ 7. This inequality is

facet defining.

There has been a significant amount of research into sequential exact up lifting by Cho et

al. [8], Gutierrez [22], Wolsey [40] and Hammer et. al. [23]. Approximate lifting techniques

can be found in Balas [2] Wolsey [42] and Gu, et al.[21]. Exact simultaneous up lifting

results are located in Easton and Hooker [15] and Kubik [31]. In 2009 Bolton developed

exact synchronized simultaneous uplifting (SSL) for binary knapsack problems. This thesis’

focus is not on lifting and these references merely scratch the surface of lifting results.

2.6 Inequality Merging

This thesis’ research supplies the theoretical foundations for developing a variation of merging

inequalities. Hickman and Easton [24] first introduced the concept of merging inequalities

and their work provides related background information. Merging cover inequalities requires

a knapsack constraint and two covers that overlap by exactly one index. One cover is called
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the host and the other is called the donor. Due to the related nature of their work, an

example is provided to demonstrate their method.

Consider the following knapsack constraint.

19x1 + 18x2 + 17x3 + 15x4 + 14x5 + 14x6 + 13x7 + 12x8 + 10x9 + 9x10+

8x11 + 8x12 + 7x13 + 7x14 + 5x15 + 4x16 ≤ 86

xi ∈ {0, 1} ∀ i = 1, ..., 8

Let the host cover be C1 = {1, 2, 3, 4, 5, 6} and the donor cover be C2 = {6, 7, 8, 9, 10, 11, 12, 13, 14}.

Observe that C1 and C2 are covers with a single overlapping index, 6. The two cover in-

equalities are

x1 + x2 + x3 + x4 + x5 + x6 ≤ 5

x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13 + x14 ≤ 8.

To merge these two constraints, x6 is removed from the first cover inequality and is

replaced by the left hand side of the donor cover divided its right hand side. Thus, the

merged cover inequality is

x1 + x2 + x3 + x4 + x5 + 1
8
x6 + 1

8
x7 + 1

8
x8 + 1

8
x9 + 1

8
x10 + 1

8
x11 + 1

8
x12+

1
8
x13 + 1

8
x14 ≤ 5

This work proved that a merged cover inequality is valid if the set of the host cover minus

the overlapping element union the largest index in the donor cover is a cover. It is trivially

verified that the set C1 \ {6} ∪ {14} is a cover. Thus, the merged inequality is valid.

Besides introducing this class of inequalities, their work also provided conditions for

facet defining and proved that merging creates a new class of inequalities. Furthermore, a
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computational study showed that including these cuts can reduce the effort required to solve

some integer programs.

While Hickman and Easton’s results are strong, there still remains several unresolved is-

sues. Can one merge covers that overlap by multiple variables? Does the coefficient by which

the inequality is scaled have to be one divided by the right hand side of the inequality? The

following chapter provides answers to these important questions and expands on Hickman

and Easton’s work by merging inequalities on multiple variables.
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Chapter 3

Merging Valid Inequalities on

Multiple Variables

This chapter introduces multiple variable merging of valid inequalities (MVMI) emphasizing

on the knapsack polytope and cover inequalities. A linear time algorithm, the multiple vari-

able merging cover algorithm (MVMCA), is developed to find these inequalities. Conditions

under which MVMCA can produce a facet defining inequality are presented. The chap-

ter concludes with an example that shows an MVMCI facet defining inequality and steps

through MVMCA’s process.

3.1 Multiple Variable Merging of Valid Inequalities

Hickman and Easton [24] introduced merging valid inequalities on a single variable. This

section strengthens that research by merging valid inequalities on multiple variables using
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a host inequality and donor inequality. Furthermore the type of merging introduced here

dominates Hickman and Easton’s results.

To begin the discussion of multiple variable merging of valid inequalities, consider an

IP. Let there exist a host set of indices, H ⊆ N , and a donor set of indices, D ⊆ N .

Assume that
∑

i∈H αh
i xi ≤ βh and

∑
i∈D αd

i xi ≤ βd are valid inequalities of conv(P ). A

multiple variable merged inequality (MVMI) takes the form
∑

i∈H\D αh
i xi + α′ ∑

i∈D αd
i xi ≤

βh. Several questions instantly are created from this procedure. How does one determine

an α′ where the MVMI is valid? Can an MVMI be facet defining? Does there exist useful

MVMIs?

A natural direction to begin exploring answers to these questions occurs if P is restricted

to P KP and the sets H and D are covers. Multiple variable merging of covers requires a

knapsack constraint and two covers. The two covers from now on will be referred to as a

host and donor cover. These are so named because the host cover receives the variables from

the donor cover. The donor cover provides the overlapping and non-overlapping variables.

The resulting equations are merged with a merging coefficient, α, that is multiplied by the

coefficients of the donor cover.

Formally, given a knapsack constraint and two covers Ch ⊆ N and Cd ⊆ N , a multiple

variable merging cover inequality, MV MCICh,Cd,α, takes the form
∑

i∈Ch\Cd xi+α
∑

i∈Cd xi ≤

|Ch| − 1.

Clearly, if α = 0, then MV MCICh,Cd ,0 is valid. Furthermore, this inequality is dominated

by the Ch cover inequality. Additionally, if α > |Ch| − 1, then MV MCICh,Cd ,α is invalid.

One should seek the maximum α that retains validity.
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The multiple variable merging cover algorithm determines an α that creates a valid

MV MCICh,Cd,α. The input to MVMCA is a knapsack constraint and two covers Ch ⊆ N

and Cd ⊆ N where Ch = {ih1, ih2, ..., ih|Ch|} and Cd = {id1, id2, ..., id|Cd|}. Define the overlapping

variables M = Ch ∩ Cd where M = {im1 , im2 , ..., im|M |} and |m| ≥ 1.

The basic idea of MVMCA is to determine feasible points and to adjust alpha accordingly.

The feasible points are calculated by summing the smallest counth coefficients associated

with elements of Ch and the smallest countd coefficients associated with elements of Cd. If

this sum is less than b, then a feasible point exists and an α′ value is calculated. If this α′

value is less than α, then α is replaced. At the end of the process the α is multiplied by the

donor variables to provide a valid MVMCI. Formally,

Multiple Variable Merging Cover Algorithm (MVMCA)

α←∞

countd← 1

counth← |Ch \ Cd|

sum←
∑

i∈Ch\Cd ai + aid
|Cd|

If sum ≤ b And |Ch \ Cd| = |Ch| − 1, Then α← 0.

While countd ≤ |Cd| Begin

If sum ≤ b, Then

If |Ch|−1−counth
countd

< α, Then α← |Ch|−1−counth
countd

sum← sum + aid
|Cd|

−countd
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countd← countd + 1

End If Else

sum← sum− aih
|Ch\Cd|−counth+1

If counth = 0, Then countd← countd + 1

Else counth← counth− 1

End Else

End While

Report α

Determining the computational effort required by MVMCA is accomplished through

amortized analysis. The initialization requires O(|Ch|+ |Cd|). In each iteration of the main

loop, either countd is increased by one or counth is decreased by one. Consequently, the

loop is repeated O(|Ch| + |Cd|). Each iteration of the loop trivially requires O(1). Thus,

the main loop has O(|Ch|+ |Cd|) effort. Reporting α is O(1). Therefore, the effort required

to run MVMCA is O(|Ch|+ |Cd|), which is bounded by O(n) and MVMCA is a linear time

algorithm.

Any cutting plane algorithm on a knapsack constraint requires reading in the instance,

which is Ω(n). Thus, multiple variable merging on covers is a problem that is Θ(n). Conse-

quently, MVMCA theoretically requires the least effort to generate valid MVMCIs.

The following theorem proves that MVMCA returns an α that creates a valid MVMCI.

Prior to providing this result and to simplify the notation, define Ch\Cd = {ihd
1 , ..., ihd

|Ch\Cd |}.
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Theorem 3.1 Given a knapsack constraint
∑

i∈N aixi ≤ b and two covers Ch and Cd ⊆ N

such that |Ch ∩Cd| ≥ 1. Then
∑

i∈Ch\Cd xi + α′ ∑
i∈Cd xi ≤ |Ch| − 1 is valid for conv(P KP )

for any α′ ≤ α where α is returned from MVMCA.

Proof : Let
∑

i∈N aixi ≤ b be a knapsack constraint with two covers Ch ⊆ N and Ch ⊆ N .

For contradiction, assume there exists an α′ ≤ α such that
∑

i∈Ch\Cd xi+α′ ∑
i∈Cd xi ≤ |Ch|−

1 is not valid for conv(P KP ). Therefore, there exists an x′ ∈ P KP such that
∑

i∈Ch\Cd x′
i +

α′ ∑
i∈Cd x′

i > |Ch| − 1.

Define q =
∑

i∈Ch\Cd x′
i and p =

∑
i∈Cd x′

i. Then α′p > |Ch| − 1 − q and α′ >

|Ch|−1−q
p

. During the iteration when counth = q of MVMCA, sum =
∑|Ch\Cd|

k=|Ch\Cd |−q+1
aihd

k
+

∑|Cd|
k=|Cd |−p+1

aidk
≤

∑
i∈N aix

′
i ≤ b with the last inequality due to the feasibility. Thus,

MVMCA reports an α ≤ |Ch|−1−q
p

, which contradicts α′ > α.

�

The MVMCA algorithm provides the strongest α coefficient possible. Observe that the α

returned from MVMCI is a supporting cutting plane, because there exists a feasible point that

meets this inequality at equality. The point on MVMCI’s face is
∑|Ch\Cd|

j=|Ch\Cd|−counth′+1
ξihd

j
+

∑|Cd|
j=|Cd |−countd′+1

ξij where counth′ and countd′ are the values of counth and countd that

generated the smallest α from MVMCA. Thus, any increase in α would create an invalid

inequality.

Besides finding the strongest α, MVMCA also aids in identifying whether an MVMCI

can be facet defining. The following result provides these conditions. This theorem has a

substantial amount of notation and an example can be seen later in this chapter.
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Theorem 3.2 Given a knapsack constraint
∑

i∈N aixi ≤ b and two covers Ch and Cd ⊆ N

with |Ch ∩ Cd| ≥ 1. The inequality
∑

i∈Ch\Cd xi + α
∑

i∈Cd xi ≤ |Ch| − 1 is facet defining

for conv(P KP ) if α is returned from MVMCA, MVMCA had a tie for the minimum α value

occuring from counth1, countd1 and counth2, countd2 and the following conditions are met.

i) The set S1 = {ihd
1 , ihd

|Ch\Cd|−counth1+2
, ..., ihd

|Ch\Cd|}∪{i
d
|Cd |−countd1+1

, ..., id|Cd|} is not a cover.

ii) The set S2 = {ihd
|Ch\Cd |−counth1

, ..., ihd
|Ch\Cd|−1

} ∪ {id|Cd|−countd1−1
, ..., id|Cd|} is not a cover.

iii) The set S3 = {ihd
|Ch\Cd|−counth2+1

, ..., ihd
|Ch\Cd |} ∪ {i

d
1, i

d
|Cd|−countd2+2

, ..., id|Cd|} is not a

cover.

iv) The set S4 = {ihd
|Ch\Cd|−counth2+1

, ..., ihd
|Ch\Cd |} ∪ {i

d
|Cd|−countd2

, ..., id|Cd|−1
} is not a cover.

v) Either {l ∈ N : l = argmax{ai : i ∈ N \ (Ch ∪Cd)}}∪ {ihd
|Ch\Cd|−counth+1

, ..., ihd
|Ch\Cd|} ∪

{id|Cd|−countd1+1
, ..., id|Cd|} or {k}∪{ihd

|Ch\Cd |−counth2+1
, ..., ihd

|Ch\Cd|}∪{i
d
|Cd|−countd2+1

, ..., id|Cd|} are

not covers.

Proof : Assume
∑

i∈N aixi ≤ b is a knapsack constraint with two covers Ch and Cd ⊆ N

and α is returned from MVMCA. Furthermore assume MVMCA had a tie for the minimum

α value occuring from counth1, countd1 and counth2, countd2 and conditions i), ii), iii), iv)

and v) are met.

The MVMCA returns an α value where the MVMCI is valid by Theorem 3.1. The point

x′ ∈ P KP where x′
i = 0 for all i ∈ N is feasible and it does not meet the MVMCI at equality,

thus the face generated by the MVMCI is not conv(P KP ). Hence this face’s dimension is

bounded by n−1. Consequently, it is sufficient to show that there are n affinely independent

points in P KP that meet the MVMCI at equality.
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Consider the following |Ch ∪ Cd| points:

ξihd
k

+
∑|Ch\Cd |

j=|Ch\Cd|−counth1+2
ξihd

j
+

∑|Cd |
j=|Cd |−countd1+1

ξij for k = 1, ..., |Ch\Cd|−counth1−1.

The point when k = 1 is feasible since S1 is not a cover. The remaining points are feasible

due to the sorted order of the sets and the fact that a is sorted in descending order.

∑|Ch\Cd|
j=|Ch\Cd|−counth1

ξihd
j
−ξhd

ik
+

∑|Cd|
j=|Cd |−countd1+1

ξij for k = |Ch\Cd|−counth1, ..., |Ch\Cd|.

The point when k = |Ch \Cd| is feasible due to S2 not being a cover. The remaining points

are feasible due to the sorted order of the set and the fact that a is sorted in descending

order.

∑|Ch\Cd|
j=|Ch\Cd|−counth2+1

ξihd
j

+ ξidk
+

∑|Cd |
j=|Cd |−countd2+2

ξidj
for k = 1, ..., |Cd| − countd2− 1. The

point when k = 1 is feasible since S3 is not a cover. The remaining points are feasible due

to the sorted order of the set and the fact that a is sorted in descending order.

∑|Ch\Cd|
j=|Ch\Cd|−counth2+1

ξihd
j

+
∑|Cd |

j=|Cd |−countd2
ξidj
− ξidk

for k = |Cd| − countd2, ..., |Cd|. The

point when k = |Cd| is feasible due to S4 not being a cover. The remaining points are feasible

due to the sorted order of the set and the fact that a is sorted in descending order.

The remaining n − |Ch ∪ Cd| points divide into two cases depending upon which set is

not a cover from assumption v).

Assume {k}∪{ihd
|Ch\Cd|−counth1+1

, ..., ihd
|Ch\Cd|}∪{i

d
|Cd|−countd1+1

, ..., id|Cd|} is not a cover where

k = argmax{ai : i ∈ N \ (Ch ∪ Cd)}. Consider the points
∑|Ch\Cd|

j=|Ch\Cd|−counth1+1
ξihd

j
+

∑|Cd|
j=|Cd |−countd1+1

ξidj
+ ξk for all k ∈ N \ (Ch ∪ Cd). The point when k = l = argmax{ai :

i ∈ N \ (Ch ∪Cd)} is feasible, due to the assumption of no cover for this set. All other k are

feasible since this is the maximum such a coefficient not in Ch ∪ Cd.
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Alternately, assume {k}∪{ihd
|Ch\Cd|−counth2+1

, ..., ihd
|Ch\Cd|}∪{i

d
|Cd |−countd2+1

, ..., id|Cd|} is not a

cover where k = argmax{ai : i ∈ N\(Ch∪Cd)}. Consider the points
∑|Ch\Cd|

j=|Ch\Cd|−counth2+1
ξihd

j
+

∑|Cd|
j=|Cd |−countd2+1

ξidj
+ ξk for all k ∈ N \ (Ch ∪ Cd). The point when k = l = argmax{ai :

i ∈ N \ (Ch ∪Cd)} is feasible, due to the assumption of no cover for this set. All other k are

feasible since this is the maximum such a coefficient not in Ch ∪ Cd.

These n points have just been shown to be feasible. Furthermore, each of these n points

has the property that
∑

i∈Ch\Cd xi+α
∑

i∈Cd xi = |Ch|−1, since each point either has counth1

and countd1 variables set to one corresponding to elements in Ch and Cd or counth2 and

countd2 variables set to one corresponding to elements in Ch and Cd. Thus these points are

in MVMCI’s face.

To show that these points are affinely independent, consider the first |Ch \ Cd| points

(the first two sets of points). The first k = 1, ..., |Ch \ Cd| − counth1 − 1 points are affinely

independent because each xihd
k

only has a single 1 for k = 1, ..., |Ch \ Cd| − counth1 − 1.

The next counth1 + 1 points are a cyclic permutation of counth1 consecutive ones over

counth1 + 1 columns. Since counth1 and counth1 + 1 are relatively prime, these points are

affinely independent.

The next |Cd| points (the third and fourth sets of points) are affinely independent. Ob-

serve that the first k = 1, ..., |Cd| − countd2− 1 points are affinely independent because each

xihd
k

only has a single 1 for k = 1, ..., |Cd| − countd2 − 1. The next countd2 + 1 points are

a cyclic permutation of countd2 consecutive ones over countd2 + 1 columns. Since countd2

and countd2 + 1 are relatively prime, these points are affinely independent.

Because the points (counth1, countd1) 6= (counth2, countd2), these two sets of points
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are affinely independent from each other. The final N \ (Ch ∪ Cd) points are independent

from the other points because they are the only points to have a 1 in the xk’s row where

k ∈ N \ (Ch ∪ Cd). Thus, these are n feasible affinely independent points that meet the

MVMCI at equality and its face is at least dimension n − 1. Thus the MVMCI is a facet

defining inequality.

�

The next section steps through the process of calculating an MVMCI for an example

instance, and the implementation of MVMCA. It then demonstrates that the identified

MVMCI is facet defining. The chapter concludes with changing Ch and Cd and rerunning

MVMCA.

3.2 MVMCI Example

Consider the feasible region defined by

19x1 + 18x2 + 17x3 + 15x4 + 14x5 + 14x6 + 13x6 + 12x7 + 10x9 + 9x10 + 8x11 ≤ 86

xi ∈ {0, 1} ∀ i = 1, ..., 11.

The input for MVMCA is a knapsack constraint and two covers. Observe that Ch =

{1, 2, 3, 4, 5, 6} and Cd = {4, 5, 6, 7, 8, 9, 10, 11} are covers. Thus, the overlapping variables

are Ch ∩ Cd = {4, 5, 6} and this example merges on 3 variables. The form of this merged

inequality is

MV MCICh,Cd,α x1 + x2 + x3 + α(x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 5.
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MVMCA begins by setting α arbitrarily high, countd is 1 and counth = |Ch \ Cd| = 3.

Furthermore, Ch \Cd = {1, 2, 3}, aid
|Cd|

= a11 = 8, and sum = a1 + a2 + a3 + a11 = 62. Since

|Ch \ Cd| ≤ 5, α is not set to 0.

The main loops checks whether or not sum is less than b = 86. Since sum ≤ 86 and

the condition |Ch|−1−counth
countd

= 6−1−3
1

= 2 < α, α is updated to 6−1−3
1

= 2. The reasoning

behind this step is to determine whether or not P KP has a feasible point with counth vari-

ables corresponding to elements in Ch \ Cd set to one and countd variables corresponding

to elements in Cd set to one. In this case, this requires determining whether there ex-

ists a point in P KP with 3 elements in Ch \ Cd and one element in Cd set to one. Since

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1) ∈ P KP , any α > 2 would create an invalid inequality, due to this

point. Consequently, MVMCA must return a value of α ≤ 2.

Next sum is updated to sum + aid
|Cd|

−countd = sum + a10 = 71 and countd = 2. Once

the counts have been updated, the elements corresponding to these counts have a sum of 71

which is less than 86 so α is calculated to be 5−2
3

= 1. This is less than the previous α of 2,

so α is updated to 1.

The loop repeats itself to find the next α adding in the next Cd variable. This eventually

finds an alpha for every valid combination of Ch ∪ Cd variables by taking advantage of

the sorted orders. In the next iteration, the indices {1, 2, 3} and {9, 10, 11} are tested and

sum = 83 with α′ = 5−3
3

= 2
3
. Because α′ < α = 1, α is set to 2

3
.

The next iteration has sum = 95, which is greater than b = 86. Since sum is greater

than b from the knapsack constraint, α is not updated and the smallest index in Ch is taken

out of the set, leaving counth = 2, countd = 4, equivalent to (0, 1, 1, 0, 0, 0, 1, 1, 1, 1). Thus,
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sum = 95−19 = 76. This new point is now feasible, so α is calculated again to be (5−2)
4

= 3
4
.

This process is repeated until counth = 0 and countd = |Cd|, in this case 8. This is by

definition infeasible because {4, ..., 11} is a cover and thus including all the donor variables

is infeasible.

A summary of this process is shown below in Table 3.1. This table shows every iteration

of MVMCA. The first column in Table 3.1 contains the set of host indices that are included

in the calculation of that iteration’s sum, meaning that the corresponding coefficients in

the original inequality for those variables are added to obtain sum. The second column

is counth, which is a reference to the actual values that are entered into the α′ equation.

Column 3 has the donor indices used to calculate sum. The countd column has the number

of donor variables’ coefficients and is used to calculate α′. The sum of the coefficients of the

host and donor indices is presented in the fifth column. The sixth column tells whether the

indicated point is feasible in the original inequality. The last column is the resulting α′ from

calculating (|Ch|−1)−counth
countd

. A value of N/A in the last column means that the point indicated

by that row is not feasible, and thus no α′ needs to be calculated to accommodate it.

Notice the two bolded rows. These rows have the lowest α′ values and generate the α

returned by MVMCA to create MV MCICh,Cd, 2
3
. The fact that there is a tie at α′ = 2

3

becomes important to prove facet defining later in this chapter. Thus MVMCA returns

α = 2
3

and creates MV MCICh,Cd , 2
3
,

MV MCICh,Cd , 2
3

x1 + x2 + x3 + 2
3
(x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11) ≤ 5,

which is valid by Theorem 3.1.
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Host Indices Counth Donor Indices Countd sum Feasible? α′

{1, 2, 3} 3 {11} 1 64 Yes 2

{1, 2, 3} 3 {10, 11} 2 73 Yes 1

{1,2,3} 3 {9,10,11} 3 83 Yes 2
3

{1, 2, 3} 3 {8, 9, 10, 11} 4 95 No N/A

{2, 3} 2 {8, 9, 10, 11} 4 75 Yes 3
4

{2, 3} 2 {7, 8, 9, 10, 11} 5 88 No N/A

{3} 1 {7, 8, 9, 10, 11} 5 67 Yes 4
5

{3} 1 {6,7,8,9,10,11} 6 81 Yes 2
3

{3} 1 {5, 6, 7, 8, 9, 10, 11} 7 95 No N/A

∅ 0 {5, 6, 7, 8, 9, 10, 11} 7 81 Yes 5
7

∅ 0 {4, 5, 6, 7, 8, 9, 10, 11} 8 95 No N/A

Table 3.1: Calculating MVMCA α′ Results

An obvious goal is to show that MV MCICh,Cd, 2
3

eliminates a linear relaxation solution.

The point ( 1
20

, 3
10

, 3
10

, 1
10

, 3
4
, 3

4
, 1, 1, 1, 1, 1) is in P LR, because this point requires the individual

to carry a weight of 85.95, which is less than b = 86. When this point is substituted into

the MV MCICh,Cd , 2
3
, the left hand side sums to 5.049. However, the right hand side is

|Ch| − 1 = 5. Thus, MV MCICh,Cd, 2
3

is a cutting plane and eliminates space from PLR.

Now that it has been proven that x1+x2+x3+
2
3
(x4+x5+x6+x7+x8+x9+x10+x11) ≤ 5 is

a cutting plane, proving that it is facet defining becomes important, because facet defining
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Ch \ Cd 1 0 0 1 1 1 1 1 1 1 1

0 1 0 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1

Ch ∩ Cd 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 1 0 0 0 0 0

Cd \ Ch 1 1 1 0 0 0 1 0 0 0 0

1 1 1 0 0 0 0 0 1 1 1

1 1 1 0 0 0 0 1 0 1 1

1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1 1 0

Table 3.2: Affinely Independent Points

inequalities are the theoretically strongest inequalities. To prove that MV MCICh,Cd , 2
3

is

facet defining one must show that its face has dimension 10.

The dimension is bounded by the number of affinely independent points in the face.

There are 11 such affinely independent points, because the conditions of Theorem 3.2 are

satisfied. These 11 points are given in Table 3.2. The following discussion proves these

points are in the face and are affinely independent. It also provides additional insight into

this theorem. Note that the lines in Table 3.2 are there to assist with understanding of the

different indices in the sets Ch \ Cd, Ch ∩ Cd, and Cd \ Ch.
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A critical assumption in Theorem 3.2 is that there was a tie in the smallest α value. In

this case, observe that MVMCA has two iterations where α′ = 2
3
. One case has counth = 1

and countd = 6, and the second case has counth = 3 and countd = 3. For the assumptions

of Theorem 3.2, let (counth1, countd1) = (1, 6) and (counth2, countd2) = (3, 3).

The set Si = {ihd
1 , ihd

|Ch\Cd |−counth1+2
, ..., ihd

|Ch\Cd|}∪{i
d
|Cd|−countd1+1

, ..., id|Cd|} = {1, 6, 7, 8, 9, 10, 11}

is not a cover. Thus, condition i) is true and the point in the first column in Table 3.2 is

feasible. Since a1 ≥ a2 ≥ a3, the points in the second and third column are also feasible.

Each of these points is in the face because 1 + 2
3
∗ 6 = 5, which is a direct result of choosing

counth1 variables associated with indices in Ch \ Cd and countd1 variables associated with

indices in Cd.

The set Siii = {ihd
|Ch\Cd |−counth2+1

, ..., ihd
|Ch\Cd|}∪{i

d
1, i

d
|Cd|−countd2+2

, ..., id|Cd|} = {1, 2, 3, 4, 10, 11}

is not a cover. Thus condition iii) is true and the point in the fourth column in Table 3.2

is feasible. Since a4 ≥ a5 ≥ a6 ≥ a7, the fifth, sixth and seventh columns are feasible points

also. These points all have corresponding counth = 3 and countd = 3 and thus they are in

MV MCICh,Cd, 2
3
’s face.

The set Siv = {ihd
|Ch\Cd|−counth2+1

, ..., ihd
|Ch\Cd|} ∪ {i

d
|Cd|−countd2

, ..., id|Cd|−1
} = {1, 2, 3, 8, 9, 10}

is not a cover. Thus condition iv) is true and the point in the eleventh column of Table 3.2

is feasible. Because a8 ≥ a9 ≥ a10 ≥ a11, the eighth, ninth and tenth columns in Table 3.2

are feasible points. Again these points all have corresponding counth = 3 and countd = 3

and are in the face of MV MCICh,Cd, 2
3
. Thus, these are 11 points that are feasible and on

the desired face.

The reader should observe that counth1 = 1. Thus, condition ii) is vacuously true.
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Furthermore, Ch ∪ Cd = N and condition v) is also vacuously true.

To prove that these 11 points are affinely independent, observe that the first 3 points only

have a single 1 in each of the first 3 rows. Thus, this set of points is affinely independent.

Now consider the fourth through eleventh points. The fourth to seventh points only

have a single 1 in the fourth to seventh row. The eighth through eleventh columns are all

constant except for the cyclical permutation of 3 ones over the last four rows. Since 3 and 4

are relatively prime, these points are affinely independent. Consequently, the fourth through

eleventh points are affinely independent.

Since (1,6) is affinely independent from (3,3); these two sets of points are also affinely

independent. Thus, these points are affinely independent, the face of MV MCICh,Cd, 2
3

has a

dimension of 10, and this face is a facet of conv(P KP ).

Now that MVMCA has been shown to produce a facet defining inequality, it is necessary

to show that this type of inequality could not have been obtained using any other method

currently in use and also needs to be shown that it is not simply a slight variation on an

existing strategy of finding cutting planes for the knapsack problem.

As mentioned in the introduction, Hickman and Easton’s [24] work on merging inequali-

ties was the catalyst to this research. Their method can only merge on a single variable and

could not create MV MCICh,Cd , 2
3
. Furthermore, MVMCA would generate stronger inequali-

ties even if |Ch ∩Cd| = 1. That is, MVMCA would generate an α coefficient that is at least

as large as the 1
|Cd|−1

scaling coefficient generated by Hickman and Easton’s method.

Starting with any integer inequality and performing any type of sequential lifting only
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generates integer coefficients. Thus, starting with the Ch cover inequality and lifting sequen-

tially could not create MV MCICh,Cd, 2
3
. If MV MCICh,Cd , 2

3
is multiplied by 3

2
, it becomes

3
2
x1+ 3

2
x2 + 3

2
x3 +x4+x5+x6+x7+x8+x9 +x10+x11 ≤ 15

2
. Clearly, this is not a sequentially

lifted version of the Cd donor inequality. Consequently, sequential lifting cannot generate

this MV MCICh,Cd, 2
3
.

Simultaneous lifting could theoretically generate MV MCICh,Cd , 2
3

if given the correct

initial valid inequality and the proper lifting weights. This inequality could be generated by

starting with either of the valid inequalities x1 +x2 +x3 ≤ 5 or x4 +x5 +x6 +x7 +x8 +x9 +

x10 + x11 ≤ 15
2
. Neither of these inequalities are tight and both inequalities can be trivially

strengthened to x1+x2+x3 ≤ 3 and x4+x5+x6+x7+x8+x9+x10+x11 ≤ 7. Thus, without

consulting an oracle one could not generate MV MCICh,Cd, 2
3

with simultaneous uplifting.

Finally, numerous other methods exist to find valid inequalities. Such methods as

Chvatal-Gomory cuts [9], mixed integer rounding cuts [12], superadditive cuts [18] and mod-

ular cuts [17] may be able to generate MV MCICh,Cd , 2
3
, but not without substantial effort

and possibly the consultation of an oracle. Thus, MVMCIs are a new class of cutting planes

for the knapsack polytope.

After the implementation of MVMCA on an example, it is prudent to show that MVMCA

could also be run by reversing the donor and host covers. Thus let C ′h = {6, 7, 8, 9, 10, 11, 12}

and C ′d = {1, 2, 3, 4, 5, 6}. Table 3.3 provides a summary of the loops of MVMCA.

MVMCA returns α equal to 1, thus the valid inequality is MV MCIC′d,C′h,1 =
∑11

i=1 xi ≤

7. This inequality is merely an extended cover inequality. In this particular case, little is

gained from MVMCA. However, if one reduced the right hand side of the knapsack constraint

35



Host Indices Counth sum Donor Indices Countd Feasible? α

{7, 8, 9, 10, 11} 5 {6} 1 66 Yes 2

{7, 8, 9, 10, 11} 5 {5, 6} 2 80 Yes 1

{7, 8, 9, 10, 11} 5 {4, 5, 6} 3 95 No N/A

{8, 9, 10, 11} 4 {4, 5, 6} 3 82 Yes 1

{8, 9, 10, 11} 4 {3, 4, 5, 6} 4 99 No N/A

{9, 10, 11} 3 {3, 4, 5, 6} 4 87 No N/A

{10, 11} 2 {3, 4, 5, 6} 4 77 Yes 5
4

{10, 11} 2 {2, 3, 4, 5, 6} 5 95 No N/A

{11} 1 {2, 3, 4, 5, 6} 5 86 Yes 6
5

{11} 1 {1, 2, 3, 4, 5, 6} 6 105 No N/A

∅ 0 {1, 2, 3, 4, 5, 6} 6 97 No N/A

Table 3.3: Reversed MVMCA α Results
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to 79, then the α value reported from MVMCA would have been 5
4

and it would have resulted

in an inequality that is stronger than an extended cover inequality.

To demonstrate the impact of MVMCA in more complicated examples, Chapter 4 presents

a computational study. This study performs multiple runs with several examples of MVMCA

being implemented on varying sizes of MK instances. Once the best strategy is chosen larger

problems are solved to show the usefulness of MVMCIs.
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Chapter 4

Computational Study

This section describes a computational study that is performed to demonstrate the usefulness

of MVMCA in reducing the time required to obtain the optimal integer solution. The results

show that MVMCI can improve this time an average of 6.3% with some situations yielding

up to a 40% improvement.

This computational study is performed using a PC with an Intel i7 2.6 GHz processor

and 8 GB of RAM. The study solves random knapsack instances using CPLEX 12.5 [10], a

commercial optimization software package. The instances are solved with and without an

MVMCI and the times are reported.

The random instances were generated according to standard practices [34] for benchmark

instances. Various combinations of rows and columns are created and the instances follow

the same format. The ai,j coefficients are randomly generated integers between 1 and 1,000.

The tightness ratio is set to .35 and thus bi = .35
∑

j∈N ai,j ∀ i ∈ {1, ...,m} where m is the

number of rows. The objective coefficients are cj =
∑m

i=1 ai,j + u where u is a uniformly
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distributed random integer between 0 and 200.

To begin some small instances are thoroughly studied to provide recommended settings

for more complex instances. To avoid random anomalies 15 instances of each size are created

and the average of these 15 are reported. There are four sizes of instances run in this study,

5 rows with 50 and 75 variables, and 10 rows with 50 and 75 variables.

In a first attempt, the two covers for MVMCA were sorted purely by the size of the coeffi-

cients. This strategy did not return results with an improvement to CPLEX. Gu [19] suggests

that sorting the indices based on the variables’ reduced costs leads to better computational

results.

The covers for MVMCA are generated by weighting the reduced costs by 3
2

and adding

that to the size of the coefficients of the first row. With the variables ranked, the program

adds indices in this order until a host cover is obtained. A size of overlapping variables is

selected. These overlapping variables are the largest indices in Ch. Next the program adds

indices in the weighted order to the overlapping indices until a donor cover is obtained. The

program sorts the indices of each cover in descending order by their coefficients and runs

MVMCA.

The entire process of creating a valid MVMCI is extremely fast and required less than

.01 seconds for every instance. Every instance generated an MVMCI off of the first row.

Thus, MVMCIs are abundant. The MVMCIs are added as part of a preprocessing step and

not as local cuts in the branching tree.

A primary concern is to determine whether or not to overlap the covers and if so, by how

many variables. To accomplish this, the computational study on the smaller instances was
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tested with different numbers of overlapping variables 1, 3, 5 and 10. Table 4.1 provides the

data for these instances. The first 3 columns identify the size and settings of the instance.

The next two report the average run times for the 15 replications of CPLEX with and without

MVMCA added. The last column contains the percent decrease in run time from CPLEX

to MVMCA implemented with CPLEX. Note that a negative number in this column means

that CPLEX alone ran faster than the MVMCA problem formulation.

As can be seen, the improvement in these runs range from 40% to -7.15%. On average

implementing MVMCA resulted in an improvement of 5.5%. Furthermore, the smaller the

problem is, the worse MVMCA performs. This is most likely due to the fact that adding

MVMCA, while linear in computational effort, does increase the number of constraints for

each iteration of branch and bound. Thus, the cutting plane improvement has to be some-

what sizeable to be able to improve the run time. The room for improvement is so small

because the run times themselves are so short that any improvement will be minimal at best.

As the problems become larger, the results improve.

Table 4.2 summarizes the results from Table 4.1 based upon the number of overlapping

variables. Table 4.2 shows that 3 overlapping variables provide the best results. A setting of

3 overlapping variables provides at least a 1% improvement over the other runs. On average

using 3 overlapping variables improved the solution time by 8.7%. Thus, the larger instances

are implemented with 3 overlapping variables.

To test the impact of MVMCIs on more difficult problems, instances containing 100

variables with 10 and 15 constraints were solved. Additionally, instances with 125 variables
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Constraints Variables Overlapping CPLEX Average MVMCA Average Improvement(%)

Variables (Seconds) (Seconds)

5 50 1 .64 .68 -7.2%

5 50 3 .64 .65 -2.02%

5 50 5 .64 .65 -2.02%

5 50 10 .64 .67 -4.8%

5 75 1 4.55 4.10 9.8%

5 75 3 4.55 4.50 .9%

5 75 5 4.55 4.33 4.7%

5 75 10 4.55 4.36 4.2%

10 50 1 7.70 6.49 15.7%

10 50 3 7.70 6.20 19.5%

10 50 5 7.70 6.25 18.8%

10 50 10 7.70 6.62 17.0%

10 75 1 69.53 65.58 5.6%

10 75 3 69.56 63.86 8.2%

10 75 5 69.56 65.35 6.0%

10 75 10 69.56 71.23 2.4%

Average 20.61 19.46 5.5%

Table 4.1: MVMCA Smaller Problem Runs
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Overlapping CPLEX Average MVMCA Average Improvement(%)

Variables (Seconds) (Seconds)

1 20.61 19.21 6.74%

3 20.61 18.80 8.74%

5 20.61 19.14 7.07%

10 20.61 20.72 -.53%

Table 4.2: Overlapping Variables Averages

and 10 constraints are solved. The instances with 125 variables and 15 constraints required

over a day to solve each instance. Since each class has 15 instances, a study on 125 variables

with 15 constraints was not performed. In this study, the covers are selected in the same

fashion as in the smaller instances and there are 3 overlapping variables.

The results of the larger problems are shown in Table 4.3. On average MVCMA reduced

CPLEX’s run time by 6.3%. While 6.3% may not seem like a large improvement, when

dealing with average run times of over 6,000 seconds, the total improvement is over an hour

of less run time.

Knapsack problems by nature are inconsistent and it should be noted that while perform-

ing this computational study some instances were run with 10 constraints and 101 variables.

These runs actually showed the best results with an average of 21% improvement and the

data are shown in Table 4.4. It is believed practitioners and researchers may receive more

than a 6.3% improvement by implementing MVMCA.
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Constraints Variables Overlapping CPLEX Average MVMCA Average Improvement(%)

Variables (Seconds) (Seconds)

10 100 3 1003.95 943.67 6.0%

15 100 3 6570.85 6165.75 6.1%

10 125 3 4309.15 4022.71 6.6%

Average 3961.32 3710.71 6.3%

Table 4.3: MVMCA Larger Problem Runs

The computational results show that MVMCA has the potential to reduce the time

required to solve an MK instance. To implement MVMCA, it is recommended to generate

covers based upon a combination of reduced costs and size of the knapsack coefficients.

Additionally, one should have about 3 overlapping variables between the two covers. The

next chapter reviews the main points of this thesis and discusses some areas of future research.
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Instance CPLEX(Seconds) MVMCA(Seconds) Improvement(%)

1 621.726 506.403 18.55%

2 76.517 76.501 .02%

3 392.884 348.161 11.38%

4 404.193 344.926 14.66%

5 1404.423 1274.823 9.23%

6 2826.997 2333.602 17.45%

7 1266.215 1153.874 8.87%

8 301.071 285.774 5.08%

9 338.001 310.051 8.27%

10 254.672 235.751 7.43%

11 28.093 29.628 -5.46%

12 1948.624 1140.575 41.47%

13 1780.683 1059.187 40.52%

14 104.533 94.329 9.76%

15 717.365 562.164 21.63%

Average 831.066 650.383 21.74%

Table 4.4: MVMCA vs. CPLEX on 10 Constraints, 101 Variables, 3 Overlap
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Chapter 5

Conclusion

The purpose of this thesis was to explore a new way to merge cover inequalities. Building

on the work of Hickman and Easton [24], there was opportunity to improve their work

by merging on more than one variable as opposed to only one variable. Furthermore, in

numerous instances Hickman’s method would create inequalities that were weak and these

inequalities could be strengthened. Thus, the motivation of this thesis was to remedy these

two weaknesses.

This thesis provides the base for a new class of cutting planes obtained by merging two

cover constraints on multiple variables with a merging coefficient α. This class of cutting

planes cannot be obtained through any existing method without the consultation of an oracle.

One of the biggest advantages of MVMCA is that the cutting planes it produces are obtained

using a linear time algorithm, the provably best runtime for such instances. Additionally,

these inequalities can be facet defining.

To show the value of MVMCA, a computational study implemented MVMCA with
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CPLEX solver software. CPLEX with and without MVMCA was tested on various cases.

When implementing MVMCA, one should rank the two covers on reduced costs and coef-

ficient size. The covers should overlap by about three indices when run with similiar sized

instances presented in this thesis. MVMCA can reduce the amount of time required for

CPLEX to process and solve multiple knapsack problems. Some cases reduced the solution

time by 40%. On the larger problems, MVMCI decreased the average run time by 6.3%,

which is about an hour per group of instances. This shows that MVMCA can provide pos-

itive results over CPLEX alone and in the right circumstances could aid researchers and

practitioners in solving more complex integer programs.

5.1 Future Research

The results show that MVMCA can be used to generate facet defining inequalities for the

knapsack polytope and opens the doors to significant additional research. This research can

largely be divided into computational and theoretical.

Many computational research questions related to MVMCI exist. In this research only

one MVMCI is included and a computational study to determine the optimal number of

MVMCIs may further reduce the runtime. The KP instances selected were random and

do MVMCIs perform better on real-world instances? Since any binary constraint can be

represented as a knapsack constraint through substitution, what is the effect of MVMCA on

general IPs?

MVMCIs represent a new technique to create cutting planes so much of the future research
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involves extending this methodology to create new classes of cutting planes. Theoretically,

this knowledge provides some exciting directions for future research.

Can the host cover be merged with a donor cover from a different knapsack constraint?

One would expect this type of merging to provide better computational results as the in-

equality takes into account information from more than a single constraint.

The results presented in this thesis are for MK. Can these concepts be extended to

arbitrary IPs? Since covers are merely edges in a conflict hypergraph, one could examine

hypergraphic structures to assist in answering this question.

Another possible application is to merge any two valid inequalities, not restricted to

cover inequalities. Positive results can lead to more widely applicable inequalities and better

computational results. Several possible cutting planes come to mind and merging disjunctive

cuts, Gomory cuts or other common inequalities.
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