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Abstract 

Nanostructured particles possess unique chemical and physical properties, making them 

excellent candidates for air purification, smoke clearing, and obscuration.  This research was 

conducted to investigate the aerodynamic, charging, and infrared (IR) extinction properties of 

nanostructured particles.  Specific objectives were to: (1) measure the size distribution and 

concentration of aerosolized nanostructured particles; (2) evaluate their IR extinction properties; 

(3) determine their relative chargeability; and (4) numerically model their transport in enclosed 

rooms.  

The size distribution and concentration of two nanostructured particles (NanoActive® 

MgO and MgO plus) were measured in an enclosed room.  The particles differed in size 

distribution and concentration; for example, the geometric mean diameters of NanoActive® 

MgO and MgO plus were 3.12 and 11.1 µm, respectively.   

The potential of nanostructured particles as IR obscurants was determined and compared 

with other particles.  Four groups of particles were considered: nanostructured particles 

(NanoActive® MgO plus, MgO, TiO2); nanorods (MgO, TiO2); conventional particles (NaHCO3 

and ISO fine test dust); and common obscurants (brass, graphite, carbon black).  The extinction 

coefficients of the nanostructured particles were generally significantly smaller than those of the 

other particles.  Graphite flakes had the greatest mass extinction coefficient (3.22 m2/g), followed 

by carbon black (1.72 m2/g), and brass flakes (1.57 m2/g).  Brass flakes had the greatest volume 

extinction coefficient (1.64 m2/cc), followed by NaHCO3 (0.93 m2/cc), and ISO fine test dust 

(0.91 m2/cc).   

The relative chargeability of nanostructured particles was also investigated.  Selected 

particles were passed through a Teflon tribocharger and their net charge-to-mass ratios were 



 

measured.  Tribocharging was able to charge the particles; however, the resulting charge was 

generally small.  NanoActive® TiO2 gained the highest net charge-to-mass ratio (1.21 mC/kg) 

followed by NanoActive® MgO (0.81 mC/kg) and ISO fine test dust (0.66 mC/kg).   

The transport of NanoActive® MgO plus and hollow glass spheres in an enclosed room 

was simulated by implementing the discrete phase model of FLUENT.  In terms of mass 

concentrations, there was reasonable agreement between predicted and measured values for 

hollow glass spheres but not for NanoActive® MgO plus.  In terms of number concentration, 

there was large discrepancy between predicted and measured values for both particles.  
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Nanostructured particles possess unique chemical and physical properties, making them 

excellent candidates for air purification, smoke clearing, and obscuration.  This research was 

conducted to investigate the aerodynamic, charging, and infrared (IR) extinction properties of 

nanostructured particles.  Specific objectives were to: (1) measure the size distribution and 

concentration of aerosolized nanostructured particles; (2) evaluate their IR extinction properties; 

(3) determine their relative chargeability; and (4) numerically model their transport in enclosed 

rooms.  

The size distribution and concentration of two nanostructured particles (NanoActive® 

MgO and MgO plus) were measured in an enclosed room.  The particles differed in size 

distribution and concentration; for example, the geometric mean diameters of NanoActive® 

MgO and MgO plus were 3.12 and 11.1 µm, respectively.   

The potential of nanostructured particles as IR obscurants was determined and compared 

with other particles.  Four groups of particles were considered: nanostructured particles 

(NanoActive® MgO plus, MgO, TiO2); nanorods (MgO, TiO2); conventional particles (NaHCO3 

and ISO fine test dust); and common obscurants (brass, graphite, carbon black).  The extinction 

coefficients of the nanostructured particles were generally significantly smaller than those of the 

other particles.  Graphite flakes had the greatest mass extinction coefficient (3.22 m2/g), followed 

by carbon black (1.72 m2/g), and brass flakes (1.57 m2/g).  Brass flakes had the greatest volume 

extinction coefficient (1.64 m2/cc), followed by NaHCO3 (0.93 m2/cc), and ISO fine test dust 

(0.91 m2/cc).   

The relative chargeability of nanostructured particles was also investigated.  Selected 

particles were passed through a Teflon tribocharger and their net charge-to-mass ratios were 



 

measured.  Tribocharging was able to charge the particles; however, the resulting charge was 

generally small.  NanoActive® TiO2 gained the highest net charge-to-mass ratio (1.21 mC/kg) 

followed by NanoActive® MgO (0.81 mC/kg) and ISO fine test dust (0.66 mC/kg).   

The transport of NanoActive® MgO plus and hollow glass spheres in an enclosed room 

was simulated by implementing the discrete phase model of FLUENT.  In terms of mass 

concentrations, there was reasonable agreement between predicted and measured values for 

hollow glass spheres but not for NanoActive® MgO plus.  In terms of number concentration, 

there was large discrepancy between predicted and measured values for both particles.  
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1. INTRODUCTION 

1.1 Background 

Nanostructured materials, because of their unique structure and morphology, are of 

significant interest and promise to revolutionize many key areas of science and technology 

(Powers et al., 2007; Zhang, 2003).  The electronic, magnetic, optical, and chemical properties of 

these materials have been found to be very different from their bulk forms and depend on size, 

shape, and composition (Khanna, 1997).   One important area of application is air purification.  

Metal oxide nanostructured particles have been found to be effective in inactivating a wide 

variety of chemical warfare agents, biological agents, and toxic industrial chemicals, and in 

detoxification of indoor spaces (Wagner et al., 1999; Carnes and Klabunde, 2002; Decker et al., 

2002; Koper et al., 2002).  Some metal oxide particles also have been found to be effective in 

clearing aerosol-type smokes in enclosed spaces (Yadav et al., 2008; Zhang et al., 2007).    

In regards to the global market for nanotechnology, the share of nanostructured materials 

is expected to rise from $152 million in 2005 to $569 million in 2010 at an average annual 

growth rate of 30.2% (BCC Research, 2005). This rapid increase in the market projection makes 

basic research (e.g., synthesis of different types of nanoparticles) and applied research (e.g., 

finding new applications) on nanotechnology a major research priority today in many countries, 

including the United States.   

Biswas and Wu (2005) noted that little research has been conducted to characterize the 

particle size distribution of airborne nanostructured particles.  Most of the characterization 

studies for toxicological and epidemiological studies have used the Scanning Electron 

Microscopy and the Atomic Force Microscopy techniques (Wang et al., 2003; Zhang, 2003).   
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Friedlander and Pui (2004) listed some of the key areas of research to improve physical 

characterization capabilities of nanoparticles: rapid aerosol nanoparticle measurements, detection 

and characterization in the low nanometer (<5 nm) size regime, particle standards for size and 

concentration, and charging behavior throughout the ultrafine and the nanoparticle size regimes.  

Zhang (2003) also noted that the applications of nanoparticles are not yet fully explored.   

1.2 Research Objectives 

This research was conducted to investigate the unique characteristics of airborne 

nanostructured particles, which are important in many applications including air purification, 

smoke clearing, and obscuration.  Specific objectives were to:  

(1) measure the size distribution and concentration of aerosolized nanostructured 

particles using near real-time measurement techniques.  These results are important in 

assessing the effectiveness of nanostructured particles in applications that require 

optimum concentration and sufficient coverage distribution (i.e., inactivation of 

harmful agents, detoxification of indoor air, and smoke clearing).  Results are also 

useful in toxicological investigation and in establishing standards and/or threshold 

limits for nanostructured particles.  Information such as the length of time particles 

stay airborne is also important for development of proper and safe usage and handling 

methods for these types of particles.   

(2) evaluate the infrared (IR) extinction properties of nanostructured particles and 

compare them with conventional particles. Common IR particulate obscurants used 

by the military are brass flakes and graphite flakes which are highly toxic to the 

environment and human health.  Results of this study could be used as the foundation 

for future investigations of nanostructured particles as IR obscurants. 
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(3) determine the relative chargeability of nanostructured particles. Determination of 

charge magnitude and charge polarity is crucial for predicting, monitoring, and 

improving the separation/attraction of fine particles. For example, the charging of  

airborne nanostructured particles may further enhance their smoke clearing 

effectiveness and remediation ability.   

(4) numerically model the transport of particles in enclosed rooms. Understanding 

particle-laden turbulent flow is important in solving indoor air quality problems and 

in controlling particle dispersion. 

1.3 Organization of the Dissertation 

 

This dissertation has seven chapters and an Appendix section.  This chapter summarizes 

the rationale, significance, and major objectives behind this research.  Chapter 2 reviews the 

literature related to this research.  Chapter 3 deals with real-time measurement of the 

concentration and size distribution of aerosolized nanostructured particles (specific objective # 

1). Chapter 4 focuses on the measurement of extinction properties of nanostructred particles in 

the mid-IR wavelength range (specific objective # 2).  Chapter 5 discusses the chargeability of 

nanostructured particles using tribocharging (specific objective # 3).  Chapter 6 deals with 

numerical simulation of the transport of particles in enclosed spaces (specific objective # 4).  

Chapter 7 provides the conclusions and recommendations for future work.  The Appendix 

contains information on the instruments, details of the experimental set-up, and summary of data. 
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2. LITERATURE REVIEW 

This chapter presents a summary of published information related to this research.  In   

section 2.1, important physical properties, including size and shape, that affect the fate of the 

particles are emphasized.  Section 2.2 deals with extinction properties of particles in the mid-

infrared (IR) wavelength range.  Important terms are defined and factors affecting the 

effectiveness of an obscurant are presented; Section 2.3 focuses on electrostatic charging of 

particles using the tribocharging method.  The last section (section 2.4) presents two-phase flows 

and turbulence modeling using the computational fluid dynamics (CFD) method.  

2.1 Particle Characterization  

  The behavior of particles, including nanostructured particles, in air and how they interact 

with other airborne entities depend to a large degree on their concentration, particle size 

distribution (PSD), shape, and electrostatic charge.  For example, the settling velocity of a 

particle is strongly dependent on its size.   

Nanostructured particles are agglomerates of nanoparticles.  Zhang (2003) defined 

nanoparticles as materials with size of up to a few hundred nanometers.  Their properties are 

often strongly dependent on their size, shape, and surface (Zhang, 2003).   

2.1.1 Particle size distribution 

Most ambient aerosols are polydisperse and have a wide PSD (Hinds, 1999).  

Nanostructured particles are similar to ambient aerosol particles, since they also have a wide size 

variation ranging from a few nanometers to several micrometers (Khlystov et al., 2004).   Peters 
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et al. (1993) and Hinds (1999) indicated that characterization of PSD of aerosol on an 

aerodynamic basis is critical in many aerosol-related studies. 

The PSD is most often depicted as a log-normal histogram with particle diameter on a 

logarithmic abscissa and the ordinate representing the particle concentration in a given size class 

(Powers et al., 2007).   It is often described by the geometric mean diameter (GMD) and 

geometric standard deviation (GSD).  The GMD and GSD are the counterparts of mean diameter 

and standard deviation of a normally distributed curve.  The GMD and GSD based on particle 

number are calculated using the following formulas (Hinds, 1999): 

 

(2.1) 

    

(2.2) 

 

      (2.3) 

 

where ni, di, and N are the number of particles in group i, midpoint size of each size group i, and 

total number of particles, respectively.   

2.1.2 Particle shape and size 

The settling velocity and other dynamic behavior of a particle are affected by both 

particle size and shape (Cheng et al., 1988).  Individual or primary particles can be either 

spherical or non-spherical in shape.  Liquid droplets (less than 1 mm) and some solid particles 

formed by condensation are spherical; however, most other types of particles are non-spherical.  
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particles is an important area of current aerosol research (Friedlander and Pui, 2003; DeCarlo et 

al., 2004). 

A special case of non-spherical particles called aggregates or agglomerates are composed 

of several primary particles or crushed materials and have irregular shapes (Hinds, 1999; 

Friedlander, 2000; DeCarlo et al., 2004).  Nanostructured particles are examples of aggregates 

that consist of nanoparticles.  

The shape of a particle affects its drag force, FD, and settling velocity.  For example, 

when particles are suspended in fluid, the FD on a non-spherical particle is generally greater than 

that on a sphere of the same volume moving with the same velocity (Cheng et al., 1988).  To 

account for the effect of shape on particle motion, the dynamic shape factor, χ, is applied to 

Stoke’s law.  This factor is defined as the ratio of the actual resistance force of the non-spherical 

particle to the resistance force of a sphere having the same volume and velocity as the non-

spherical particle: 

     (2.4) 

 

where µ is the viscosity, V is relative velocity of the particle with respect to the fluid, and de is 

the equivalent spherical diameter (Hinds, 1999).  Spheres have a χ value of 1.  Dynamic shape 

factors greater than 1 indicate a higher degree of deviation from a spherical shape (Cheng et al., 

1988).  A cube, for example, has a χ value of 1.08 and a compact cluster of three spheres has a χ 

value of 1.15 (Hinds, 1999). 

The common method of sizing of solid particles that are irregular or non-spherical is the 

use of an equivalent diameter.  Baron et al. (2001) defines equivalent diameter as the diameter of 

a sphere having the same value of a specific physical property as the irregularly-shaped particle 

being measured.  Two common types of equivalent diameter are the aerodynamic diameter (da) 
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and mobility diameter (dme).  The da of a particle is the diameter of a standard unit density (1000 

kg/m3) sphere having the same gravitational (terminal) settling velocity as the particle being 

measured whatever its size, shape, and density (Hinds, 1999; Powers et al. 2007).  The 

equivalent mobility diameter, on the other hand, is defined as the diameter of a sphere with the 

same mobility as the particle in question (Friedlander, 2000; Baron et al., 2001).  DeCarlo et al. 

(2004) further defines dme as the diameter of a sphere with the same migration velocity in a 

constant electric field as the particle of interest. The da depends on particle density (ρp) (DeCarlo 

et al., 2004).  The dme depends on particle cross-section. 

To convert da to dme, the following equation may be used (Hinds, 1999):  

(2.5) 

     

where Ca, Cme, and ρo are the slip correction factor for  da, slip correction factor for dme, and unit 

density (1 g/cm3), respectively.     The slip correction factor, Ca or Cme, is calculated using the 

following equation (Hinds, 1999): 

(2.6) 
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as total or respirable dust.  One major limitation of using particle mass standards is that the 

values of Cm are heavily biased towards larger particles.  The mass of a small number of large 

particles can be significantly larger than the mass of a large number of small particles.  In 

ambient environment, number concentrations of small particles are usually significantly higher 

than those of the larger particles.  Therefore, it appears that for health risk assessments, 

knowledge of Cn could be more important than knowledge of Cm (Oberdorster et al., 1994; 

Seaton et al., 1995; Li et al., 1996).  Because of this, more research efforts have been directed 

towards experimental characterization of particle number concentration (Morawska et al., 1998; 

Pomeroy et al., 2000). 

The number concentration, Cn, of particles can be converted to the mass concentration, 

Cm, using: (Hinds, 1999) 

 2.7 

  

  
where ρp and dp are density and diameter of the particle, respectively.   

2.1.4 Measurement methods 

The assessment of exposures to particles often requires instruments that provide a fairly 

rapid measurement of particle concentration by size (Peters et al., 2006).  Previous method of 
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precision is limited due to the imperfectly sharp stage collection efficiency curves and 
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al., 2004).  In several recent studies, a combination of real-time instruments, such as a Scanning 

Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer® (APS), is employed (Shi et 

al., 2001, Shen et al., 2002; Hand and Kreidenweis, 2002; Khlystov et al., 2004).  Many studies 

have evaluated the reliability of these two real-time instruments by using generated aerosols with 

known density and size (Morawska et al., 1998; Sioutas et al., 1999; Stein et al., 2003). Peters et 

al. (2006) used the APS (Model 3321, TSI, Inc., Shoreview, MN) as a reference to evaluate the 

performance of other real-time instruments such as the portable aerosol spectrometer.  The 

measurement performance of the SMPS (Model 3934, TSI, Inc., Shoreview, MN) and the APS 

(Model 3310A, TSI, Inc., Shoreview, MN ) were evaluated by Sioutas et al. (1999) to assess 

their ability to obtain Cm from near real-time Cn values.  Comparisons were made between mass 

concentrations determined from these real-time instruments and the time-averaged mass 

concentrations collected on open-faced filters, as well as with the Micro-Orifice Uniform 

Deposit Impactor (MOUDI).  Results generally showed good agreement in the mass 

concentration obtained. 

Peters et al. (1993) combined the results of a Differential Mobility Particle Sizer (DMPS) 

and an Electrical Aerosol Analyzer (EAA) with the data from an APS to obtain the mass 

distribution of sodium chloride solution from the measured number distribution.  A Low Pressure 

Impactor (LPI), a direct measurement method, was used to verify the combined results.  The 

near-real time measurements provided mass distribution data that compared favorably with that 

from the LPI.  Their study, however, did not account for the temporal change of the GMD and 

concentration of the aerosols.   

Because of different measurement principles (e.g., electrical mobility versus aerodynamic 

sizing), difficulties arise in attempts to create a single spectrum from data measured with SMPS 
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and APS (Khlystov et al., 2004).  Shen et al. (2002) approached this problem by selecting certain 

kinds of data from each instrument.  For example, the SMPS was used up to a certain size, and 

beyond that size the APS was used.  Hand and Kreidenweis (2002) first matched the optical 

particle counter (OPC) with the SMPS spectrum by finding an optimal refractive index; the APS 

data were then matched to the modified OPC spectrum by finding an effective density that would 

best fit with the OPC.  The reason for matching the APS and the OPC and directly to the SMPS 

was that the size overlap between the APS and the SMPS is rather small (Khlystov et al., 2004). 

Khlystov et al. (2004) developed a simple algorithm for combining dme and da measured 

by the SMPS (Model 3936N25) and APS (Model 3320), respectively, to create a wider size 

distribution range for ambient aerosols.  The algorithm provided a ratio of the ρp value to the χ 

value in the overlap range.  The APS was found to agree well with the SMPS in the overlap size 

range (580-720 nm). Their result indicated constant counting efficiency and close to 100% 

except for the first APS channel.  The integrated volume concentrations from SMPS-APS 

showed good correlation with PM 2.5 mass concentration obtained with a Tapered Element 

Oscillating Microbalance (TEOM).  Both the GMD and GSD showed good correlation of the 

SMPS-APS with MOUDI cascade impactor.  The size-fractionated comparison of MOUDI and 

the SMPS-APS appeared to be well-correlated.   

Congrong et al. (2005) studied indoor particle deposition rates by analyzing the number 

concentration decay curves derived from the SMPS and APS for sub-micrometer and super-

micrometer particles.   Measured deposition rates were shown to be particle size dependent.  The 

response of two OPCs in comparison with that of an APS (Model 3321, TSI, Inc., Shoreview, 

MN) was studied by Peters et al. (2006) for three sizes of monodisperse and one polydisperse 

aerosols.  Similar results were obtained from the three instruments.   
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2.1.5 Summary  

The behavior of particles, including nanostrucutred materials, in air and how they interact 

with other airborne entities depend on their concentration, size distribution, and shape.  Particle 

concentration can be expressed in terms of either number or mass. Recent methods to measure 

both concentration and size distribution involve a combination of Scanning Mobility Particle 

Sizer (for sub-micrometer particles) and Aerodynamic Particle Sizer (for the larger particles). 

2.2 Infrared Extinction Properties  

2.2.1 Infrared (IR) obscurant and extinction coefficient 

Obscurants are natural (e.g., fog, rain, dust) or manmade (e.g., smoke) airborne particles 

that can attenuate the electromagnetic energy.  Infrared (IR) particulate obscurants are IR 

absorbing particles or particles that have low IR transmission.  For obscurants to be considered 

effective, they must exhibit high extinction coefficients and at the same time not be harmful to 

human health and environment.  The extinction coefficient or extinction cross-section of an 

obscurant is a measure of its ability to attenuate the incident energy at a certain wavelength (Shi 

et al., 1998). 

Highly conducting materials (e.g., brass flakes, graphite flakes) are effective IR 

obscurants.  Materials such as salts, metal oxides, and semiconductors also have moderately 

strong molecular vibration in the IR region (Owrutsky et al., 2001).  Molecular vibrations (e.g., 

stretching and bending) and rotations of a material are indications of its IR absorption properties 

(Stuart, 2004).  Other factors that affect extinction coefficients include chemical composition, 

size distribution, number concentration, and morphology of particles (Ladouceur et al., 1997; Shi 

et al., 1998; Widmann et al., 2005).   Morphology is particularly important as it influences the 

coagulation process and removal of particles from the air (Colbeck et al., 1997).  The molecular 
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structure of the material forming the aerosol, primary particle size, and structure of the aggregate 

also affect the efficiency of obscurants (Dobbins et al., 1994; Shi et al., 1998).  Other important 

criteria for an effective obscurant are ease of deployment, availability, and cost (Owrutsky et al., 

2000).    

Infrared obscurants have played a major role in military operations because they provide 

protection of military personnel, equipment, and installation from IR seeking sensors of 

unfriendly forces (Singh et al., 1994; Butler, 1998).   Obscurants that are effective in IR have 

received renewed interest due to the increasing threat of emerging IR sensors (Farmer and Krist, 

1981; Farmer et al., 1982; Shi et al., 2003; Singh et al., 1994; Appleyard and Davies, 2004b; 

Wang et al., 2004). These obscurants can screen the potential target from threatening IR sensor 

systems (Singh et al., 1994; Ladouceur et al., 1997; Shi et al., 1998; Shi et al., 2003). 

The effectiveness of an obscurant for military applications may be represented either by 

mass extinction coefficient (extinction cross section per unit mass), σm, or the volume-extinction 

coefficient (extinction cross section per unit volume), σv, depending on how the material is 

deployed (Owrutsky et al., 2000).  Mass and volume extinction coefficients are related to one 

another by the packing or tap density (Owrutsky et al., 2000).   For military applications, the σv 

value is generally more important than the σm value because most deployment methods (e.g., 

grenade) are volume- rather than mass-limited (Owrutsky et al., 2001). 

Extinction coefficients are typically expressed as averages over the spectral band of 

interest (i.e., band-averaged extinction coefficients) (Farmer, 1991).  In military applications, the 

wavebands of increasing importance are the 3-5 µm (short) and 8-12 µm (long) wavelengths in 

the mid-IR region.  These ranges are the main “atmospheric windows” or the region in the 

electromagnetic spectrum in which IR transmission is close to 100% regardless of the presence 
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of atmospheric gases, including water vapor and carbon dioxide (CO2) (Jacobson, 1999; Bailey 

et al., 2002; Hutchison and Cracknell, 2005).    

2.2.2 Common IR particulate obscurants 

Common IR particulate obscurants include brass flakes and graphite flakes.  Of all the 

materials tested at the Naval Research Laboratory (NRL), graphite (with nominal 2 µm particle 

size) had the highest σm value (Owrutsky et al., 2000).  Also, graphite has much lower toxicity 

(rated 4 by Environmental Protection Agency (EPA) on a scale of 0-9) and environmental impact 

than brass (with EPA toxicity rating of 9).  The σm values were reported by Ladouceur et al. 

(1997) to be between 1.4 and 2.6 m2/g for graphite and 0.08 m2/g for brass; therefore, graphite 

was clearly more attractive.  However, the U.S. Army chose brass over graphite because brass 

has higher packing density, which is about three times that of graphite (Ladouceur et al, 1997).   

Carbon black was also tested and was identified as another good obscurant material (Owrutsky et 

al., 2000; 2001) although its packing density is small.    

2.2.3 Calculation of extinction coefficients     

The σm value is calculated based on Beer’s law, which relates the optical measurement to 

the mass concentration of the obscurant (Smith, 1996):  

  (2.8) 

 

       (2.9) 

      

where A is the absorbance (dimensionless), T* is the transmittance (dimensionless), λ is 

wavelength, Cm is the particle mass concentration (g/m3), and L is the path length (m).  The σv 

(m2/cm3) value is obtained by multiplying the σm value by the tap density (g/cm3): 
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                                        (2.10) 

 

2.2.4 Measurement of extinction coefficients 

  Many theoretical and experimental investigations have been conducted to determine the 

extinction coefficients of various particles.  Appleyard (2007) modeled the extinction properties 

of non-spherical particles as a function of particle orientation with respect to the incident light.  

Appleyard (2006) noted that, based on theoretical analysis, the most important property to 

maximize and manipulate in the optical properties of metal particles is conductivity.  

Additionally, structures such as thin disc flakes and thin fibers had the maximum extinction 

coefficients (Appleyard and Davies, 2004b; Appleyard, 2006).  Comparison of theoretical and 

experimental results on extinction coefficients indicated good agreement for TiO2  and SiO2 

(Appleyard and Davies, 2004a) but not for iron oxides (Owrutsky et al., 2000; 2001).  Optical 

extinction spectra for different military smokes (e.g., red phosphorus, fog oil) have been obtained 

experimentally in the 3-5, 8-13, and 0.4-2.4 µm spectral regions (Milham, 1976).  Shi et al. 

(1998) focused on the size designing aspect of the aerosol in order to find the optimum particle 

size distribution that provides the maximum band extinction per unit mass.  Three successive 

studies were conducted by the NRL in an effort to find a suitable obscurant to replace brass due 

to its toxicity.  The first study (Ladouceur et al.,1997) constructed an experimental apparatus 

using the Fourier Transform Infrared (FTIR) spectrometer and measured the extinction 

properties of readily available powders with acceptable toxicological and optical properties (i.e., 

boron nitride, boric acid).  They found good agreement between experimental and theoretical 

methods (i.e., Mie theory) for boron nitride, although brass still has higher extinction coefficient.  

The second and third studies (Owrutsky et al., 2000; 2001) focused on experimental 

measurements of several powders, including natural graphite, glassy carbon spheres, iron oxide, 

( ) ( ) ( )densitytapσσ λmλv ⋅=
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and carbon black (Owrutsky et al., 2000; 2001).  The PSD appeared to dramatically affect the 

extinction properties of the particles they studied (Owrutsky et al., 2000; 2001).  

According to Widmann et al., (2005), direct experimental measurement is the preferred 

approach to determine the extinction coefficient of particles.  This approach, however, poses a 

challenge due to difficulty in measuring the IR absorption into the particle-laden flow and the 

mass concentration corresponding to that transmission value (Owrutsky et al., 2000).   

Moreover, numerous studies on extinction coefficient determination are limited in the 

visible and near-IR regions of the electromagnetic spectrum and not in the mid-IR region 

(Appleyard and Davies, 2004a; Widmann et al., 2003).   

2.2.5 Summary 

Infrared particulate obscurants are IR absorbing particles or particles that have low IR 

transmission.  For obscurants to be considered effective, they must exhibit high extinction 

coefficients and at the same time not be harmful to human health and environment. Highly 

conducting materials (e.g., brass flakes, graphite flakes) are effective IR obscurants.  The 

effectiveness of an obscurant for military applications may be represented either by the mass 

extinction coefficient (extinction cross section per unit mass) or the volume-extinction 

coefficient (extinction cross section per unit volume).  For military applications, the volume 

extinction coefficient is generally more important than the mass extinction coefficient because 

most deployment methods (e.g., grenade) are volume- rather than mass-limited.  Direct 

experimental measurement is the preferred approach to determine the value of the extinction 

coefficient of particles.  Numerous studies of the extinction coefficient determination are limited 

in the visible and near-IR regions of the electromagnetic spectrum and not in the mid-IR region. 
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2.3 Electrostatic Charging  

Electrostatic charge is one of the three most important parameters governing aerosol 

behavior; the other two are particle size and shape. A particle with charge, q, in an electric field 

of strength, Ef, experiences a force of strength Fe = qEf.  Under normal conditions, an atom is 

electrically neutral because the positive charge of the protons is balanced by the negative charge 

of the electrons (Tianxiang, 1999).   In typical ambient conditions, aerosol particles usually carry 

only a small number of elementary charges because of the low ion densities and slow charge 

transfer kinetics (Tianxiang, 1999).       

For dry, solid materials, the charge carriers are the electrons and ions.  The electron is the 

basic element of charge.  Ions can be either positive or negative.   A particle that is charged with 

negative polarity ion must have an electron transferred to the surface.  If the polarity of charge is 

positive, electrons must then be given up by the particle (Liberto, 1994). Charging of particles 

occurs in normal atmospheres containing about 103 ion pairs/cm3 (Colver, 1999). 

2.3.1 Charge measurement 

  Several instruments (i.e., atomic force microscope, laser Doppler tracking devices) are 

capable of detecting charge interaction at the particle level; other instruments depend on some 

cumulative electrostatic effect (i.e., Faraday cage, particle anemometers, and electrostatic 

voltmeters) (Colver, 1999).  

A Faraday cage or cup consists of two conducting enclosures, one is enclosed and 

insulated from the other.  The outer enclosure serves to shield the inner enclosure.  Any net 

charge within the inner cup will induce an equal magnitude of net charge on the outer cup which 

can then be detected as a voltage or charge using a high impedance device such as an 

electrometer (ASTM Standards, 1997).  It is common practice to report triboelectric charge on a 
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charge-to-mass basis when using the Faraday cage method since net charge and mass are easily 

measured (Colver, 1999).  However, triboelectric charging is more closely related to the surface 

area of the particles rather than to volume or mass, such that the particle diameter should also be 

reported along with the charge (Colver, 1999).  A disadvantage of the Faraday cage method for 

powders containing both positive and negative charge (bipolar charge) is that only the net charge 

is indicated. 

2.3.2 Tribocharging of particles 

Solid materials are usually charged by induction, corona, and tribocharging (Higashima 

and Asano, 1998).  Colver (1999) noted that charging of solid and liquid particles is also 

associated with other phenomena including flame ionization, thermionic emission, radioactive 

emission, phase change, and particle breakup.  Only the tribocharging process is discussed in the 

following sections since it is the main interest of this research. 

 When two materials are rubbed together electrical charge is usually transferred from one 

to the other.  This phenomenon is called triboelectrification or tribocharging.  It is one of the 

oldest yet still misunderstood methods of charging (Lowell and Rose-Innes, 1980).  Matsuka and 

Masuda (2003) noted that in spite of the long history of contact charging, there are still unsolved 

problems and inconsistent experimental results.  This is likely due to the many factors affecting 

tribocharging, including the physical, chemical and electrical characteristics of the particles, and 

environmental conditions.   

  In powder tribocharging, electrons are transferred by direct physical contact with the 

surface of the powder particle (Liberto, 1994).   The spontaneous transfer of electrons or ions 

between two dissimilar contacting materials leaves the surfaces oppositely charged following 

separation (Colver, 1999).   According to Makin (1974), intrinsic charging of particles is 
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achieved to some extent when two materials of different work functions are in contact.  A 

contact potential of approximately 1 V enables alignment of the Fermi level and there is a charge 

transfer between materials (Makin, 1974). 

 The physics of tribocharging centers on the idea that under friction some materials give 

up electrons easily and that other materials readily accept electrons (Liberto, 1994).   The 

triboelectric series, which is a loose ranking of a material’s polarity after tribocharging with 

another material, is usually used.  The triboelectric series (Fig. 2.1) shows that materials that 

most easily give up electrons (donors) are at the top and those that most readily accept electrons 

(acceptors) are at the bottom.  The farther apart the materials are on the series, the more charge 

will be transferred by contact (Liberto, 1994).  One of the best acceptors in the triboelectric 

series is polytetrafluorethylene (PTFE) or Teflon.  Thus, most materials rubbed on PTFE will be 

positively charged.   If the coating material is a better acceptor than PTFE, then the resultant 

charge on the material will be negative (Liberto, 1994).   

Banerjee and Law (1995) studied the triboelectric chargeability of pecan pollen and 

lycopodium using the commercial Teflon® and nylon chargers.   The pecan pollen and 

lycopodium have bimodal size distribution with diameters of 0-15 µm or 40-50 µm and 5-10 µm 

or 20-30 µm, respectively.  Their results indicated that tribocharging is a feasible method of 

imparting charge to pollen in electrostatic pollination technology.   

2.3.2.1 Tribocharging in powder coating 

The powder coating industry is one of the commercial applications of tribocharging.  The 

electrostatic application of powder coating to the part that needs to be coated typically starts with 

fluidization or the process where the powder to be sprayed is mixed with compressed air 

(Liberto, 1994).  The fluidized powder is pumped from the container and supplied to the spray 
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guns for charging.  The charged powder then moves towards the grounded work piece and the 

electrostatic attraction makes the charged powder adhere to the part.  The spray guns are 

sensitive to powder formulation, particle size, and environmental conditions.  Because of their 

sensitivity to coating variables, the spray guns are less forgiving in operation wherein charge is 

not easily controlled by the end-user (Liberto, 1994).  Charge transfer occurs only at the small 

contact area of impact, but it is necessary to have many impacts to the gun to obtain high charge 

levels on the powder particles (Liberto, 1994).     

Nylon becomes positive Lower work function 

---   

Aluminum   

Cotton Neutral  

---   

Copper   

---   

---   

---   

PTFE (Teflon) becomes negative Higher work function 

 

Figure 2.1 An example of a triboelectric series with its corresponding relative work functions 

(Tianxiang, 1999; Liberto, 1994). 

2.3.2.2 Factors affecting tribocharging 

  According to Mazumder et al. (2006), the amount of triboelectric charge exchanged 

between two contacting surfaces depends upon their relative speed, difference in work function, 

and on the pressure between the surfaces in contact.  In their work, as the pressure increased, the 
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area or the number of contact points also increased (Mazumder et al., 2006).  Plowman (1995) 

also noted that charge depends on a number of factors such as conductivity, speed of 

separation/rubbing, pressure, and contact area.  Colver (1999) cited that tribocharging of 

contacting materials is the result of differences in surface potentials or Fermi levels, as well as, 

the physical nature of contact.  Environmental factors such as monolayers of adsorbed gases can 

also affect on charging between surfaces (Colver, 1999).   

Tianxiang (1999) investigated the particle charge and charge exchange related to 

triboelectric beneficiation of physical mixtures of fine particles (i.e., silica beads).  The 

magnitude of charge and charge exchanged was measured by the Faraday cup and laser Phase 

Doppler Particle Analyzer (PDPA).  In their experiment, charging velocity and charging duration 

were the most important factors affecting tribocharging. They also found that the charge on the 

particle surface could become saturated well below a theoretical maximum charge limit due to 

charge backflow.  

2.3.2.2.1 Work function and contact potential difference  

According to the surface theory of electrostatic charging, when two materials are in 

contact, the difference in work functions causes electron transfer between the contacting 

materials until the Fermi levels are equalized (Lowell and Rose-Innes, 1980).  Work function is 

the energy required for moving an electron from Fermi level (the highest occupied energy level 

at 0 K) to the free state.  Usually a material that is able to lose electrons has lower work function 

while materials that gain electrons have high work functions (Frese, 1979).  Work functions 

depend not only on the internal structure of materials, but also on their surface contamination.  

The drawback is for most materials, the work function values are not available (Tianxiang, 
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1999).   However, relative work functions could be predicted qualitatively if the charge polarities 

and magnitudes of contact materials are known. 

Trigwell et al. (2003) performed experiments on tribocharging (by milling with stainless 

steel beads) of various powders of different PSDs.  Results showed that the charge acquired by 

the powder could be correlated with the actual work function difference between the powder and 

the stainless steel.  Ultraviolet and x-ray photoelectron spectroscopy were performed on various 

powders used and showed that work functions increased with surface contamination and 

oxidation.  Moreover, their experiments showed that while charge acquired increased with 

particle size, the charge distribution was generally bipolar. 

When two metals of different work functions are in contact with each other, a charge 

exchange, Qc, takes places by electron tunneling. The maximum potential difference between the 

materials equals the difference in the work functions; generally, a larger difference in work 

functions can cause more electrons to be transferred (Tianxiang, 1999).  The contact potential 

difference, Vc, is given by (Mazumder et al., 1994): 

         (2.11)   

 

                 (2.12)   

where Φm1 and Φm2 are the work functions in electron volts, eV, of materials 1 and 2, 

respectively; C12 is the capacitance between the two metals; and e is the electrostatic charge.   

While the mechanisms of electron transfer between metals have been well established 

both in theory and experiments, contact charging mechanisms between a metal and a polymer 

and between two polymers are not as well understood (Mazumder et al., 1994). 
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2.3.2.2.2 Surface contact  

Surface contact is another major contributing factor in tribocharging.  The greater the 

surface contact, the greater is the resulting net charge. On the surface of a dielectric material, the 

positions of the static charges are fixed and therefore, the charge separation between either a 

metal and a dielectric or two dielectrics must depend upon the actual area of contact 

(Schnurmann, 1941).  The electrical charges at the surface of a metal are mobile, thus, the charge 

separation between two metals in direct contact is independent of the area of contact 

(Schnurmann, 1941).  

Mazumder et al. (1994) simultaneously measured the particle size and electrostatic 

charge of triboelectrically charged powder paint and other powders in the particle size range of 1 

to 65 µm using the electrical single particle aerodynamic relaxation time (E-SPART) analyzer.  

Their results showed that the magnitude of charge increased linearly with surface area of the 

particle and consequently, the charge-to-mass ratio decreased inversely with respect to 

aerodynamic size in the entire size range. 

According to Lowell and Akande (1988) and Murtomaa (2002), it is usually difficult to 

repeat the experiments in tribocharging because of the significant role of the surfaces of the 

samples in the charge transfer process where exactly similar surfaces are quite impossible to 

obtain. 

2.3.2.2.3 Surface chemistry 

Surface chemistry (e.g., surface composition, contamination and oxidation) was 

determined to control partly the amount and polarity of charge transferred between two 

dissimilar materials, such as metals and polymer powder (Trigwell et al. 2003; Sharma et al., 

2004; Mazumder et al., 2006).  When an oxidized metal is used as a charging material, it is 

speculated that the oxidized layer rather the base metal determines the charge imparted on 
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particle surfaces (Tianxiang, 1999).  It was also observed that metals with higher levels of 

contamination showed smaller increase in work function, while polymers appeared to cause large 

increase in work function with only small deviation in its surface composition (Mazumder et al., 

2006). 

2.3.2.2.4 Electrical properties of particles 

Conductivity is an electrical property of a material that indicates its ability to conduct 

electricity and is directly proportional to charge, charge density, and drift mobility.  Generally, a 

material is considered a conductor when conductivity is greater than 105 Ohm-1m-1 and a non-

conductor or dielectric when conductivity is below 10-8 Ohm-1m-1 (Tianxiang, 1999). 

Powders having a low bulk density resistivity, 107-109 Ohm-m, can be used successfully 

with electrostatic guns only for small particles (~5 µm) due to charge and particle loss, while 

resistivities > 1012 Ohm-m are desirable for use with larger particles. One rule of significant 

charging is that at least one of the materials should have a bulk resistivity > 107 Ohm-m (Colver, 

1999).  A high specific resistivity of the powder is essential to retain charge in the layer (Kleber 

and Makin, 1998). 

Permittivity is another parameter influencing the charging process between two solid 

materials.  It is a measure of the ability of the material to become polarized.  Coehn’s law states 

that when two materials are in contact with each other, the one with the highest permittivity 

becomes positive (Plowman, 1995; Tianxiang, 1999). 

2.3.2.2.5 Charge backflow and gaseous discharge 

Charge backflow is a phenomenon that happens when upon separation, some electrons 

flow back under the action of a potential difference between the materials.  Charge backflow 

results in reduced net charge on the contacting surfaces.  Charge backflow is also related to 
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relaxation time.  Fast separation or longer charge relaxation time results in lower charge 

backflow.   The charge relaxation time depends on electrical properties of contacted materials 

and the environmental conditions during contact such as surface cleaning, impurity levels, 

contact geometry, and temperature (Tianxiang, 1999).  A material of high conductivity or low 

permittivity has a short charge relaxation time, resulting in high charge backflow (Tianxiang, 

1999).     

2.3.2.2.6 Environmental factors  

Moisture adsorbed on the surface can dramatically lower the charge magnitude 

(Tianxiang, 1999).  Ambient conditions, especially humidity, can decrease the surface and 

volume resistivities of materials, and therefore affect the characteristics of tribocharging 

(Banerjee and Law, 1995).  Decrease in resistivity due to higher humidity would cause a 

decrease in tribocharging by lowering the charge decay time constant.  

2.3.2.3 Gaussian limit 

For solid particles charged by triboelectrification, the maximum charge-to-mass ratio, 

(q/m)max, attainable or the Gaussian limit is given by the equation (Banerjee and Law, 1995; 

Tianxiang, 1999): 

     (2.13)   

     

where εo is the permittivity of free space (8.85 x 10-12 F/m), Ea is the breakdown strength of air 

under normal temperature and pressure(3 MV/m), ρp is the density of the particle, and dp is the 

particle diameter.  The charge on the particle surface could become saturated well below its 

theoretical maximum charge limit possibly due to charge backflow (Tianxiang, 1999). 
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2.3.3 Charging of Nanoparticles 

Chen and Pui (1999) mentioned that because of their small cross sections, nanoparticles 

are difficult to charge, and when charged, can easily be lost within the charging device.  They 

also added that the challenge in the design of a nanoparticle charger is obtaining high charging 

efficiency while minimizing particle loss. 

Alonso et al. (2003) mentioned that it is of great interest to have a device that is highly-

efficient charger for nanoparticles, so that they can be subsequently collected by electrostatic 

precipitation.  As the particle size decreases, electrical charging becomes more and more 

difficult, as most of the particles below about 10 nm remain uncharged and thus, penetrate the 

electrostatic precipitator without being collected (Alonso et al., 2003).   Alonso et al. (2003) 

further added that the particle charging efficiency (i.e., the number fraction of originally neutral 

particles that acquire one or more electrical charges in the corona field) increases with particle 

size in such a manner that one can safely assume that all the particles larger than about 50 nm 

become charged and can, thus, can be deposited on the collecting electrode.  Another major 

limitations with nanoparticles is that the charge transport between particles is very limited 

compared to bulk single crystalline materials (Zhang, 2003). 

2.3.4 Summary  

The amount of triboelectric charge exchanged between two contacting surfaces depends 

upon numerous factors, including their relative speed, difference in work function, pressure 

between the surfaces in contact, physical, chemical and electrical characteristics of the surfaces, 

and environmental conditions.  Nanoparticles because of their small cross sections are difficult to 

charge, and when charged, can easily be lost within the charging device.   
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2.4 Numerical Simulation of Particle Transport  

  The deposition of particles on surfaces in indoor environments has significant 

implications for many areas such as indoor air quality and human health (Lai, 2004; Zhang, 

2005).  Indoor particles are usually polydisperse with size range that extends from submicron to 

larger than 100 µm in diameter.  This feature makes the transport process complicated since 

deposition is strongly related to particle size (Gao and Niu, 2007).  Gao and Niu (2007) noted 

that in order to address indoor air quality problems and control particle dispersion, understanding 

of particle-laden turbulent flow is important.  However, limited data are available on the 

dispersion and deposition of particles (Lai, 2004).  Also, the present knowledge on turbulence 

limits the further exploration of the nature of interaction between turbulence and individual 

particles (Gao and Niu, 2007).   

2.4.1 Two-phase flows 

Two-phase flows are encountered in a wide range of flow configurations.  A sub-category 

of two-phase flows is the dispersed phase flows in which one phase does not constitute a 

connected continuum like the particles in a particle-laden flow (Crowe et al., 1996).  Study of 

two-phase flows has applications to many natural systems, including environmental particulate 

pollution problems.   

The dispersed phase can be classified as either dilute or dense (Hari, 2003; Crowe, 1982).  

In the case of dilute flows, the forces exerted by the fluid control the particle motion and particle-

particle interactions become insignificant (Hari, 2003).   In a dense flow, the particle motion is 

controlled primarily by particle-particle collisions or interactions (Hari, 2003; Crowe et al., 

1996). 
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The dispersed or secondary phase is considered dilute if its volume fraction in a 

cell/domain is < 10 %.  In the dilute case, the average inter-particle distance is around twice the 

particle diameter; thus, interaction among particles can be neglected (FLUENT, 2006). 

Coupling between phases depends on particulate loading.  Particulate loading, β, is 

defined as the material density ratio, γ, of dispersed and continuous/carrier phase: 

(2.14)   

 

(2.15)   

 

 where αp, αc, , ρp, and ρc are the particulate volume fraction, continuous phase volume fraction,  

particle density, and carrier material density, respectively.  The material density ratio is generally 

greater than 1000 for gas-solid flows.  

For very low particulate loading (β << 1), the coupling between phases is one-way, that 

is, the fluid carrier influences the particles via drag and turbulence, but the particles have no 

influence on the carrier fluid (FLUENT, 2006).      

Using the parameters above, it possible to estimate the average distance between 

individual particles of the particulate phase, which is important for determining how the 

dispersed phase should be treated (Crowe et al., 1998; FLUENT, 2006): 

 

 

  (2.16)   

 

where L* is the average inter-particle distance.   For an interparticle space of about 8 (very low 

particulate loading), the particle can be treated as isolated.   
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 2.4.2 Computational fluid dynamics (CFD) 

Crowe et al. (1996) noted that numerical simulation of fluid-particle flows plays a key 

role by aiding fundamental research and complementing engineering systems design. A 

technique that utilizes numerical simulation methods, called computational fluid dynamics 

(CFD), has been widely used in predicting air flow patterns and particle transport and 

distribution in enclosed spaces and it has been proven to offer a competitive and flexible 

alternative to physical modeling (Liddament 1991; Haghighat, et al., 1992; Jones and Whittle, 

1992; Zhang and Chen, 2007).  Konecni et al. (2002) noted that CFD codes offer some 

advantages such as time and cost savings over experimental techniques in investigating fluid 

flow.  FLUENT is one of the commercially-available CFD software products that are widely 

used for modeling fluid flow and heat transfer in complex geometries.   

2.4.3 Approaches in modeling two-phase flows 

There are two approaches to model two-phase flows: Eulerian-Eulerian and Eulerian-

Lagrangian (Gao and Niu, 2007).  The selection between the two is based on the research 

objective, required computational resources (cost), and characteristics of the problem under 

examination (Loth, 2000; Gao and Niu, 2007; Zhang and Chen, 2007).   

2.4.3.1 Eulerian-Eulerian approach  

The Eulerian-Eulerian approach is also called the two-fluid model.   In this model, 

particulate phase is treated as another flow and calculated in the fixed coordinate system (Zhang, 

2005).  This is similar to solving equations for two gas species in a binary mixture, except that 

the momentum transfer between the two fluids are not the same (Zhang, 2005; FLUENT, 2006).  

Moreover, in the Eulerian-Eulerian approach, the conservation equations for the fluid and 

particle phases are independently solved, by assuming average particle phase properties (Hari, 
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2003).  The interaction between phases is modeled by means of interphase terms that are 

included in the conservation equations.   

In FLUENT, three different Eulerian-Eulerian models are available: (1) the volume of 

fluid (VOF) model for the surface-tracking designed for two or more immiscible fluids; (2) the 

mixture model designed for two or more phases (fluid or particulate); and (3) the Eulerian model 

(most complex and expensive), which solves a set of n momentum and continuity equations for 

each phase (FLUENT, 2006). 

Holmberg and Li (1998) presented two requirements for the Eulerian-Eulerian approach 

in modeling of indoor environments.  First, the particle size should be significantly smaller than 

the Kolmogorov microscale.  The Kolmogorov microscale is at the magnitude of 1 mm for 

normal ventilated room, which is several times greater than indoor particle sizes (Holmberg and 

Li, 1998; Etheridge and Sandberg, 1996; Gao and Niu, 2007).  Second, there should be a 

sufficient number of particles in each computational cell so that the particulate phase can be 

statistically assumed as a continuum (Gao and Niu, 2007). 

With the one-way coupling of flow to particles, the Eulerian-Eulerian method uses only 

particle concentration equations to couple with momentum and turbulence equations.  The 

particle phase follows the following transport equations (Zhang and Chen, 2007): 
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( )pvDρΓ +=       (2.18)   

where φ is the transported fluid property (e.g., particle concentration), t is the time, ρ is the 

density of air, xi ( i =1, 2, 3) is the three coordinates, iu  is the averaged air  velocity component 
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in three directions, Γ is the effective particle diffusivity, cS  is the particle source term, D is the 

Brownian diffusivity of particles, and pv is the particle turbulent diffusion coefficient. 

Chang et al. (2007) noted that most previous CFD work on indoor particle transport is 

mainly based on the Eulerian advection-diffusion approach which takes less computing 

resources.  However, this approach neglects the particulate nature of indoor particles and is only 

adequate for simulating gaseous pollutant or small, neutrally buoyant particles that exactly 

follow the fluid flow (Chang et al., 2007).   

2.4.3.2 Eulerian-Lagrangian approach  

In the Eulerian-Lagrangian approach, the fluid or carrier gas is considered as the 

continuum phase and the particles are considered as the discrete phase (Zhang, 2005).  After the 

fluid flow field is resolved in the domain, a number of particles are then introduced into the 

domain at appropriate locations and the path of individual particles is tracked by solving the 

particle force balance (Hari, 2003).  The interaction between the phases may or may not be 

present (Hari, 2003).  The phases may be coupled to a different extent depending on the physical 

nature of the problem under consideration (Hari, 2003).  

The Lagrangian method usually tracks a large quantity of particles transiently, where it 

first solves the transient momentum equation for each particle using the equation (Zhang and 

Chen, 2007; FLUENT, 2006): 

                                       xF
ρ

ρ)(ρg
)u(uF

dt

du

p

px

pD

p
+

−
+−=         (2.19)   

where u, up, gx, ρp, ρ, and Fx are the fluid phase velocity, particle velocity, gravitational 

acceleration, particle density, fluid density, and an additional acceleration (force/unit particle 

mass), respectively. FD is the drag force per unit particle mass equal to: 
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where µ, and Re are the molecular viscosity of the fluid and the relative Reynolds number, which 

is defined as:  

µ

|uu|ρd
Re

pp −
≡       (2.21)   

If phases are separated and the density ratio is of order 1 or if the particle volume fraction 

is low (<10%), then a single-phase turbulence model such as the standard k-ε can be used to 

represent the mixture (FLUENT, 2006).  The standard k-ε model is a semi-empirical model 

based on model transport equations for the turbulence kinetic energy (k) and its dissipation rate 

(ε). The model transport equation for k is derived from the exact equation, while the model 

transport equation for ε is obtained using physical reasoning and bears little resemblance to its 

mathematically exact counterpart.  In the derivation of the k-ε model, the assumption is that the 

flow is fully turbulent, and the effects of molecular viscosity are negligible (FLUENT, 2006).    

In FLUENT, the discrete phase model (DPM) follows the Eulerian-Lagrangian approach.  

Particle trajectories are computed individually at specified intervals during the fluid phase 

calculation.  Each trajectory represents a group of particles of the same initial properties.  

Particle-to-particle interactions are neglected (Fluent, 2006).  The use of DPM is limited to low 

volume fractions and this is the only multiphase model that allows specification of particle 

distribution or inclusion of combustion simulation.  Turbulent dispersion in DPM can be 

modeled using either stochastic tracking or a “particle cloud” model (Fluent, 2006). 

When the flow is turbulent, FLUENT will predict the trajectories of particles using the 

mean fluid phase velocity, u , in the trajectory equation (2.19) . Optionally, the instantaneous 
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value of the fluctuating gas flow velocity, u’(t), can be included to predict the dispersion of the 

particles due to turbulence: 

(t)u'uu +=       (2.22)   

 

In the stochastic tracking approach, FLUENT predicts the turbulent dispersion of 

particles by integrating the trajectory equations for individual particles, using the instantaneous 

fluid velocity along the particle path during the integration.  By computing 

the trajectory in this manner for a sufficient number of representative particles, the random 

effects of turbulence on the particle dispersion maybe accounted for (Fluent, 2006). 

Zhang and Chen (2007) compared the Eulerian-Eulerian and Eulerian-Lagrangian 

methods in predicting particle concentration distributions in ventilated spaces.  Results showed 

that both methods predicted well the steady-state particle concentration distribution (Zhang and 

Chen, 2007).  For the unsteady state condition, however, their result showed that the Eulerian-

Lagrangian method performed better than the Eulerian-Eulerian method (Zhang and Chen, 

2007).  Loomans and Lamaire (2002) claimed that the Eulerian-Lagrangian method can be more 

precise than the Eulerian-Eulerian method in predicting particle distribution in a room, although 

they did not provide sufficient evidence with experimental validation.  Riddle et al. (2004) also 

concluded that Eulerian-Lagrangian method gave better results than Eulerian-Eulerian method in 

predicting the dispersion of a gaseous pollutant around buildings. 

2.4.4 Turbulence Model  

The vast majority of natural and industrial flows are turbulent.  Multiphase flows (i.e., 

two phase flows) are turbulent or at least “pseudo-turbulent.”   The CFD modeling of turbulence 

is advantageous because of lower turnaround time, lower cost, more flexibility, and occasionally 
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higher accuracy when compared to physical modeling (Kleinstreuer, 2003).  The most common 

turbulence model, the k-ε model, has been used over three decades as the basis for turbulence 

flow computation (Crowe et al., 1996). 

The turbulence kinetic energy, k, and its rate of dissipation, ε, are obtained from the 

following transport equations (Fluent, 2006): 
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where Gk and Gb represent the generation of turbulence kinetic energy due to the 

mean velocity gradients and buoyancy, respectively; YM represents the contribution of the 

fluctuating dilatation in compressible turbulence to the overall dissipation rate; σk and σε are the 

turbulent Prandtl numbers for k and ε, respectively; and Sk and Sε are user-defined source terms. 

The turbulent (or eddy) viscosity, µ t, is computed by combining k and ε as follows 

(FLUENT, 2006): 

ε

k
ρCµ

2

µt =      (2.25)   

 

The model constants C1ε, C2ε , Cµ, σk and σε  have the following default values in FLUENT: 

C1ε  = 1.44, C2ε  = 1.92; Cµ = 0.09; σk = 1.0; σε = 1.3 

 

Small particles tend to decrease the gas phase turbulence because they follow the 

turbulent fluctuations and add mass to the fluid. Large particles do not follow the gas phase 
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turbulent fluctuations and generate turbulence in the gas phase as a result of the instantaneous 

relative velocity between the particles and the gas (Elghobashi, 1991; Zhang, 2005). 

2.4.6 Summary  

Understanding of the particle-laden turbulent flow is important in solving indoor air 

quality problems and controlling particle dispersion.  Limited data are available on dispersion 

and deposition of particles in indoor spaces.  Numerical simulation using computational fluid 

dynamics can be used to study particle transport in rooms.   There are two approaches to model 

two-phase flows: Eulerian-Eulerian and Eulerian-Lagrangian.  The selection between the two is 

based on the research objective, the required computational resources/cost, and the 

characteristics of the problem under examination. 
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3. Size Distribution and Concentration of Aerosolized 

Nanostructured Particles 

3.1 Abstract 

Metal oxide nanostructured particles have been shown to be effective in inactivating a 

wide variety of chemical warfare agents, biological agents, and toxic industrial chemicals, and in 

detoxification of indoor spaces. Such applications may require aerosolization of these metal 

oxide nanomaterials into the affected space to scavenge unwanted entities. To be effective, the 

particles must be deployed with the desired particle size distribution, concentration, and 

sufficient coverage distribution over the affected space. This research was conducted to 

characterize two metal oxide nanostructured particles (i.e., NanoActive® MgO and 

NanoActive® MgO plus), which differed in terms of size of the primary particle and specific 

surface area. Each metal oxide material was aerosolized and dispersed into an enclosed chamber 

(3.6 m x 2.4 m x 2.4 m) using a pressurized canister.  The size distribution and number 

concentration of the particles inside the chamber were monitored with a Scanning Mobility 

Particle Sizer® (SMPS) spectrometer and an Aerodynamic Particle Sizer® (APS) spectrometer.   

A Tapered Element Oscillating Microbalance® (TEOM) was also used to monitor particle mass 

concentration.  The effect of canister pressure (40 vs. 80 psig) and nominal mass (50 vs. 20 g) on 

NanoActive® MgO plus was also investigated.  Results showed that the two particles differed 

significantly in particle size distribution.  Compared to the NanoActive® MgO plus, the 

NanoActive® MgO had higher number concentration of the smaller particles (<6 µm) and 

smaller number concentration of the larger particles (>6 µm).   In addition, the NanoActive® 

MgO had a mean geometric mean diameter (GMD) of 3.12 µm (s.d. = 1.30 µm) while 
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NanoActive® MgO plus had mean GMD of 11.1 µm (s.d. = 0.68 µm).  NanoActive® MgO had 

higher GSD value (2.85, s.d. = 0.32) than NanoActive® MgO plus (1.70, s.d. = 0.061).  The 

deployment pressure (80 vs. 40 psig) had little influence on the amount deployed and percent 

deployed of NanoActive® MgO plus.  Decreasing the nominal amount of  NanoActive® MgO 

plus from 50 to 20 g, also decreased the mean percent deployed from 80% to 67%, but these 

values were not significantly different.   

3.2 Introduction 

Metal oxide nanostructured particles, because of their high surface area, unique 

morphology, and reactivity have been shown to be effective in inactivating a wide variety of 

chemical warfare agents, biological agents, and toxic industrial chemicals, and in detoxification 

of indoor spaces (Wagner et al., 1999; Carnes and Klabunde, 2002; Decker et al., 2002; Koper et 

al., 2002). Some metal oxide nanostructured particles also have been found to be effective in 

clearing aerosol-type smokes in enclosed spaces (Yadav et al., 2007; Zhang et al., 2007).  They 

can be used for mitigation of the hazards posed by aerosols or contaminated surfaces. 

Furthermore, they have a long shelf life and do not require water or mixing.  Koper et al. (2002) 

also noted that the particles are converted to harmless common minerals after several days’ 

exposure to the atmosphere.   

The above applications may involve aerosolization of the nanostructured particles into 

the affected space to scavenge unwanted particles and/or gaseous contaminants.  To be effective, 

the nanostructured particles must be deployed with the desired particle size distribution, 

concentration, and sufficient coverage distribution over the affected space (Kakumanu, 2005; 

Braley, 2005).  It is therefore necessary to characterize the dispersion and behavior of 

nanostructured particles dispersed in air. 
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Characterization of nanostructured materials is also needed for toxicological purposes.  

Short-term changes in particle concentration by size appear to be related to some adverse health 

effects.  Thus, assessment of potential particle exposure requires instruments that provide rapid 

physical characterization (Peters et al., 2006).  

Limited research has been conducted to characterize the particle size distribution of 

nanostructured particles.  Jillavenkatesa and Kelly (2002) noted that there is a need to 

characterize dispersed nanopowders and their state of agglomeration.  Most of the 

characterization studies for toxicological and epidemiological studies have used the Scanning 

Electron Microscopes (SEM) and Atomic Force Microscopes (AFM) (Wang et al., 2003), which 

require that the particles have to be collected on appropriate substrates.   

Kakumanu (2005) characterized aerosolized nanostructured particles and a conventional 

material. A cascade impactor, Tapered Element Oscillating Microbalance (TEOM), respirable 

dust cyclone, and sedimentation plates were used to measure aerodynamic particle size 

distribution, mass concentration, respirable mass concentration, and particle deposition, 

respectively. 

This research was conducted to characterize two metal oxide nanostructured particles, 

NanoActive® MgO plus and NanoActive® MgO, using real-time instruments.   The two 

particles have similar chemical composition, but differed in primary particle size and specific 

surface area.  They also differed in their effectiveness in clearing smoke in enclosed spaces 

(Yadav et al., 2008). Specific objectives were to: 

1. measure the size distribution, number and mass concentrations, and geometric 

mean diameter (GMD) of aerosolized nanostructured particles; and  
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2. determine the effect of dispersion pressures and particle mass dispersed on  

particle size distribution and concentration. 

3.3 Materials and Methods 

3.3.1 Experimental set-up and instrumentation 

All experiments were conducted inside an experimental chamber (3.6 m x 2.4 m x 2.4 m) 

(Fig. 3.1).   The chamber was equipped with a HEPA filtration system and instrumented with 

particle measuring instruments, including an Aerodynamic Particle Sizer® (APS) spectrometer 

(Model 3321, TSI, Inc., Shoreview, MN) ) with a diluter (Model 2202A, TSI, Inc., Shoreview, 

MN), Scanning Mobility Particle Sizer® (SMPS) spectrometer (Model 3936, TSI, Inc., 

Shoreview, MN ), Tapered Element Oscillating Microbalance® (TEOM) (Model 1400a, 

Thermo-Fisher Scientific, Inc., Waltham, MA), and filter samplers.  

The APS spectrometer measures the equivalent aerodynamic diameter (da) of particles 

from 0.5 to 20 µm using the time-of-flight technique. In this technique, the da of a particle is 

measured based on its velocity immediately downstream of a flow-accelerating nozzle.  As the 

particle passes through overlapping beams, it generates one signal with two crests; the time 

between the crests is used to determine da (TSI, 2005a; 2005b).  In this study, the APS was 

configured to sample the aerosol at 1 L/min (sheath flow rate of 4 L/min) every 2 min.   

The SMPS spectrometer measures the equivalent mobility diameter (dme) of a particle.  It 

consists of an electrostatic classifier, with a long differential mobility analyzer (LDMA), and an 

ultrafine condensation particle counter (UCPC).  It operates in the range of approximately 10 nm 

to 1000 nm mobility diameter.  The aerosol sample first passes through an inertial impactor to 

remove large particles (>1000 nm mobility diameter) and then through a radioactive charger in 

the electrostatic classifier.  The radioactive charger imparts bipolar equilibrium charge levels to 
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the particles.  The charged aerosol then enters the tube of the LDMA in which particles are 

selected according to their electrical mobility (Morawska et al., 1998; TSI, 2005c; TSI, 2005d).   

The effective particle size range settings of the SMPS can be modified by varying the sample 

aerosol and sheath air flow rates and the voltage setting of the electrostatic classifier.  For this 

study, a sample aerosol airflow rate of 0.2 L/min, sheath airflow rate of 2 L/min, and voltage 

range of 10-9845 V were used.  These settings gave a dme range of 19.1 to 898 nm, which 

adequately covered the number distribution of the nanostructured particles used.  The SMPS was 

configured to have a scan-up time of 2 min that provides an adequate accuracy for SMPS.  For 

example, the use of shorter scan time (e.g., 30 sec) is applicable to an aerosol that changes 

substantially during sampling while longer scan time is used if higher particle size accuracy is 

desired (TSI, 2005c; Tokonami and Knutson, 2000).   

The TEOM was used to measure particle mass concentration.  The natural frequency of a 

tapered element inside the instrument’s mass transducer depends on its mass and the change in 

frequency is proportional to the particulate mass collected.  The TEOM was operated with an air 

sampling flow rate of 16.7 L/min and a sampling interval of 1 min.  It was equipped with an inlet 

for total suspended particulates (da ≤ 30 µm).   

Two filter samplers were used to collect particles on pre-weighed filters.  The samplers, 

with an air sampling flow rate of 2 L/min each, were operated for 1 min immediately after the 

dispersion of the particles.  The mass of particles was determined by weighing the filters on a 

microbalance with a sensitivity of 0.01 mg. 
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Figure 3.1. Schematic diagram of the experimental chamber showing the instruments:  

Aerodynamic Particle Sizer® (APS) Spectrometer, Scanning Mobility Particle Sizer ® (SMPS) 

spectrometer, Tapered Element Oscillating Microbalance® (TEOM), and filter samplers.  
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3.3.2 Experimental procedure 

This study considered two metal oxide nanostructured products: NanoActive® MgO and 

NanoActive® MgO plus, herein referred to as NA MgO and NA MgO plus (Fig. 3.2), 

respectively.  The two materials were purchased from NanoScale Corporation (Manhattan, KS).  

They have high surface areas and unique crystal morphologies with numerous edges/corners and 

other reactive sites.  The two particles differed in specific surface area, individual crystallite size, 

and true density (Table 3.1).  The specific surface areas of NA MgO plus and NA MgO were 

approximately 600 m2/g and 230 m2/g, respectively; the individual crystallite sizes were <4 nm 

and 8 nm, respectively (NanoScale Corporation, 2004a; 2004b). Using a  multipycnometer, the 

true densities of NA MgO plus and NA MgO were 2.42 g/cc and 3.24 g/cc, respectively (Table 

3.1).  The two particles also differed in their ability to clear smoke in enclosed spaces.  Yadav et 

al. (2008) reported that NA MgO plus was considerably more effective than NA MgO in clearing 

glycol smoke in an enclosed space. 

The study also considered the effects of nominal mass and dispersion pressure for NA 

MgO plus.  Table 3.2 summarizes the experiments conducted.  For each experiment, there were 

three replicates.  

Experiments involved cleaning the experimental chamber by thoroughly vacuuming the 

floor and the walls and running its HEPA filtration system for at least 30 min to remove any 

unwanted particles.  The “clean” chamber had number concentrations of less than 500 and 10 

particles/cm3 using SMPS and APS, respectively.    
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(a)       (b) 

Figure 3.2 Scanning electron micrographs: (a) NA MgO plus and (b) NA MgO particles.   

 

 

Table 3.1. Properties of the two nanostructured particles. 

 

NanoActive® MgO > 230 8 0.6 3.24 3,300 0.38

NanoActive® MgO plus > 600 < 4 0.4 2.42 12,000 0.10
a
Source: Nanoscale Corp., Manhattan, KS.

b
Measured with a multipycnometer at Kansas State University, Manhattan, KS.

c
Source: Yadav (2005). The t*10 value represents the smoke-clearing effectiveness of a material.  Small values 

of t10* indicate effective smoke clearing.
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The SMPS, APS, and TEOM were operated for at least 10 min before dispersing the 

particles inside the chamber. The two mixing fans inside the chamber were also first turned on 

before dispersion to allow mixing of particles.  Particles were dispersed into the chamber using a 

pressurized canister.  Once the particles were dispersed, the fans were turned off. 
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Table 3.2. Summary of experimental design.  There were three replicates for each experiment. 

 

 

 

 

 

3.3.3 Data analysis 

3.3.3.1 Conversion from number concentration to mass concentration  

The SMPS and APS were operated using the Aerosol Instrument Management (AIM) 

software (TSI, Inc., Shoreview, MN) to obtain the number concentration, Cn, of particles.   The 

AIM software was also used to calculate the mass concentration, Cm, from the Cn values using 

the equation:  
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where ρp and dp are particle density and diameter, respectively.  The diameter used for 

calculations was the logarithmic midpoint (geometric mean) of the bin boundaries (Congrong et 

al., 2005; TSI, 2005c).  In converting from number-based to mass-based diameter, particle 

densities used were  2.42 g/cm3 and 3.24 g/cm3 for NA MgO plus and  NA MgO, respectively 

(Table 3.1). 

The AIM software also has the data correction for multiple charges and coincidence 

incurred in using the SMPS and APS, respectively.  Multiple charges occur when particles with 

multiple charges are counted as if they only have one charge and thus, classified as being smaller 

NanoActive®  MgO 50 80
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® 
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NanoActive
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® 
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than their actual particle diameter.  Coincidence occurs when particles are erroneously counted 

by the detector of the instrument (Sioutas et al., 1999; Heitbrink et al., 1991; TSI, 2005c).   

3.3.3.2 Conversion of mobility diameter to aerodynamic diameter 

The Data Merge software module (Model 390069, TSI, Inc., Shoreview, MN) was used 

to convert dme, measured by the SMPS to da measured by the APS using the following equation 

(Hinds, 1999):  

 me

o

pme

aa d
χρ

ρC
dC =      (3.2)  

 

where  Ca, Cme, χ, and ρo are the slip correction factor for da, slip correction factor for dme, 

dynamic shape factor, and unit density (1 g/cm3), respectively.   In this study, particles were 

assumed to be perfect spheres, i.e., χ=1.  The slip correction factor, C (Ca or Cme), was calculated 

using the following equation (Hinds, 1999): 
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where λp is the mean free path (6.65 x 10-8 m) and dp is the particle diameter (da or dme). 

3.3.3.3 Merging of SMPS and APS data 

The Data Merge software module was also used to merge and fit the SMPS and APS data 

files into one combined or composite size distribution.  The software also calculates a “goodness 

of fit” parameter that represents the average difference between the fitted size distribution and 

the data.  As the value of the goodness of fit approaches 0, the better is the fit.   
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3.3.3.4 Particulate matter 

The PM4 or particulate matter with aerodynamic diameter of 4 µm or less was also 

obtained from the mass concentration data using APS and SMPS.  The PM4 concentration 

provides information on respirable dust that could reach the human lungs. 

3.3.3.5 Statistical Analysis  

Data were analyzed statistically using SAS (version 9.1, SAS Institute Inc., Cary, NC).  

The PROC GLM procedure was used to determine the effects of type of particle, dispersion 

pressure, and nominal amount on size distribution and concentration.  The Tukey’s Multiple 

Comparison Method was used to compare the means at α = 0.05. 

3.4 Results and Discussion 

3.4.1 Particle Deployment 

The two particles, with the same nominal mass (50 g) and canister pressure (80 psig), 

differed greatly in terms of the mass deployed and percent deployed.  With NA MgO plus, the 

mass deployed was 40 g (80%, s.d.= 0.12%); with NA MgO, on the other hand, the mass 

deployed was only 11 g (22%, s.d.=1.6% ) (Fig. 3.3).  Similar observation was reported by 

Yadav et al. (2008).  This implies that in dispersing nanostructured particles (i.e., NA MgO), 

special attention must be given to the aerosolization method, nominal amount, and deployment 

pressure to attain the desired concentration.   

The deployment pressures (80 vs. 40 psig) had little influence on the amount deployed 

and percent deployed for NA MgO plus (Fig. 3.4). With a canister pressure of 40 psig and a 

nominal mass of 50 g, the mean value of percent deployed was 73% (s.d.=7.21%).  This was 

smaller but not significantly different from the mean percent deployed of 80% obtained from 

using a canister pressure of 80 psig and a nominal mass of 50 g.   
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The percent deployed for NA MgO plus was also not significantly affected by the 

nominal mass.  Decreasing the nominal amount for NA MgO plus from 50 to 20 g also decreased 

the mean percent deployed from 80% (40 g) to 67% (13 g), but the values were not significantly 

different (Fig. 3.5).   

3.4.2 Particle size distribution (PSD)  

The PSDs of NA MgO and NA MgO plus are shown in Figures 3.6 and 3.7, respectively.  

The merged SMPS-APS data for NA MgO and NA MgO plus had goodness of fit values of 

0.030 and 0.038, respectively, indicating relatively good fit of data from the two instruments. By 

merging the PSD, however, underestimation of SMPS data and overestimation of APS data 

could be observed.. 

The advantage of merged PSD is that it could give a good estimate of a wider size 

distribution of particles.  As shown in Figure 3.8, the two particles differed significantly in 

merged PSD.  The SMPS data showed that NA MgO had higher number concentration of small 

particles (<1000 nm) than NA MgO plus.  The APS data also confirmed that the NA MgO had 

higher number concentration of the smaller particles (<6 µm), and smaller number concentration 

of the larger particles (>6 µm) than Na MgO plus.   

Figure 3.9 shows the merged PSD of NA MgO plus for various nominal amounts and 

dispersion pressures.  As expected, the higher the mass dispersed (40 g), the higher was the 

number concentration of particles.  The canister pressure seemed to affect the size distribution of 

the NA MgO plus, especially the smaller particles.   Use of higher pressure (80 psig) showed 

higher number of submicrometer particles, possibly due to more deagglomeration of particles 

with 80 psig pressure. 
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Figure 3.3. Comparison of the two particles in deployed amount (g) and percent deployed.  Bars 

with the same letters are not significantly different at the 5% level.  Error bars represent mean of 

three replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Effect of dispersion pressure (80 vs. 40 psig) on the deployed amount (g) and percent 

deployed of NA MgO plus. Bars with the same letters are not significantly different at the 5% 

level.  Error bars represent mean of three replicates. 
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Figure 3.5. Effect of nominal amount (50 vs. 20 g) on the percent deployed of NA MgO plus. 

Bars with the same letters are not significantly different at the 5% level.  Error bars represent 

mean of three replicates. 

 

The temporal variation in the particle size distribution (number and mass concentrations) 

of NA MgO and NA MgO plus are shown in Figures 3.10-3.13.  Generally, these plots show the 

bias of number concentration to smaller particles, and the bias of mass concentration to larger 

particles.   

3.4.3 Geometric mean diameter (GMD)  

The GMD and GSD values of the two nanostructured particles at time 2 min after 

dispersion are shown in Tables 3.3 and 3.4, respectively.  The GMD and GSD values of NA 

MgO plus did not significantly change with the nominal amount and pressure used.  Using the 

SMPS, NA MgO showed higher GMD (mass-based) value of 1087 nm (s.d. = 5) compared with 

NA MgO plus, which had GMD ranging from 894 nm (s.d. = 24) to 920 nm (s.d. = 27) (Table 

3.3).  From the APS data, the NA MgO plus, had higher GMD values ranging from 10.5 µm  
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(s.d. = 1.23 µm) to 11.3 µm (s.d. = 0.28 µm) while NA MgO had lower GMD of 4.19 µm (s.d. 

=0.98 µm).  From the merged data, NA MgO had a GMD of 3.12 µm (s.d. = 1.30 µm) while NA 

MgO plus had GMD values ranging from 10.6 µm (s.d. = 1.17 µm) to 11.6 µm (s.d. = 0.33 µm), 

with mean value of 11.1 µm (s.d. = 0.49 µm).  These GMD values were slightly lower than the 

mean aggregate sizes that were specified by the manufacturer (Table 3.1).  Comparing the GSD 

values, NA MgO had higher GSD (2.85, s.d. = 0.32) than NA MgO plus (Table 3.4) which had 

GSD values ranging from 1.68 (s.d. = 0.087) to 1.74 (s.d. = 0.080).   

The change in GMD with time is shown in Figure 3.14.  The SMPS data showed that 

both particles have GMD of less than 1000 nm that stayed nearly constant and did not change 

much with time (Fig. 3.14a).  From the APS data, NA MgO plus had faster decay in GMD than 

NA MgO.  This is possibly due to the size dependence of particle decay wherein bigger particles 

settle faster (Fig. 3.14b).   

3.4.4 Decay in number and mass concentrations 

The decay in number concentration of NA MgO plus and NA MgO is shown in Figure 

3.15.  Overall, NA MgO showed greater number concentration than NA MgO plus, in both 

SMPS and APS measurements probably due to its smaller mean diameter.  Higher variability of 

number concentration values was observed in measurement using the SMPS compared to APS.   

NA MgO showed steeper slope than NA MgO plus (Fig. 3.14a) probably due to higher particle 

density of NA MgO (3.24 g/cm3) than NA MgO plus (2.42 g/cm3).  A significant fraction of 

particles remained suspended in air even 60 min after dispersion.  At t=60 min, NA MgO had 

number concentrations of 22,687 (s.d. = 12,968) and 61,133 (s.d.= 7,715) particles/cm3  using 

SMPS and APS, respectively;  NA MgO plus had 9,356 (s.d. = 11,781) and 4,483 (s.d. = 715) 

particles/cm3  using SMPS and APS, respectively.   It should be noted that the initial number 
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concentration inside the chamber before dispersion of particles was <500 and <10 particles/cm3 

for SMPS and APS, respectively.  Figure 3.16 shows the decay in mass concentration of NA 

MgO plus and NA MgO using the SMPS and APS. The mass concentration of NA MgO from 

the SMPS data showed higher values due to its large number of smaller particles (Fig. 3.16a).  

NA MgO plus showed higher mass concentration in the first 10 min from the APS data that 

shows a steep slope implying a faster mass concentration decay (Fig. 3.16b).  The mass 

concentration obtained from SMPS also represents the PM4 values of the two nanostructured 

particles since the size range measured was below 1 µm.  The PM4 values from the APS are 

shown in Figure 3.17.  NA MgO had higher PM4 value of 19.2 mg/m3 (s.d. = 3.76) at t = 2 min 

after dispersion relative to NA MgO plus (8.55 mg/m3, s.d. = 3.80).  At t = 60 min, the PM4 

values of NA MgO and NA MgO plus were 6.19 mg/m3 (s.d. = 1.48) and 1.01 mg/m3 (s.d. = 

0.20), respectively.  The threshold limit value for time weighed average (TLV-TWA) for 

respirable dust is 5 mg/m3 exposure concentration for normal 8 to 10 h workday (ACGIH, 1993).   

The mass concentration measured by TEOM, which includes particles size range up to 30 

µm, is shown in Figure 3.18.   NA MgO plus has a steeper slope compared to NA MgO.  The 

mass concentration measured by the APS and SMPS (Fig. 3.16) were considerably smaller than 

those measured by TEOM.  This could be due to the difference in the particle diameter range that 

each instrument could measure.  The three instruments did show similar trend/decay.  Figure 

3.19 compares the mass concentrations from TEOM and filter samplers measured 1 min after the 

dispersion.  The TEOM and filter samplers did not differ significantly in measured 

concentration. 
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3.5 Conclusion 

 

This research was conducted to measure the size distribution and concentration of two 

nanostructured materials, which differed in primary particle size, surface area, and effectiveness 

in clearing smoke in enclosed spaces.  The following conclusions were drawn from this research: 

1. The two particles differed significantly in particle size distribution.  The SMPS 

and APS data showed that NA MgO had higher number concentration of small 

particles (<1000 nm) than NA MgO plus.  From the merged data, the NA MgO 

had a mean GMD of 3.12 µm (s.d. = 1304) while the NA MgO plus had mean 

value of 11.1µm (s.d. = 675). 

2. The SMPS data showed that both particles have GMD of less than 1000 nm 

that stayed nearly constant and did not change much with time.  From the APS 

data, NA MgO plus had faster decay in GMD than NA MgO.  This is possibly 

due to the size dependence of particle decay wherein bigger particles settle 

faster. 

3. A significant fraction of each product stayed long in air even 60 min after 

dispersion.   

4. For NA MgO plus, the nominal amount (50 vs. 20 g) and deployment 

pressures (80 vs. 40 psig) had little influence on the percent deployed and size 

distribution.   
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Figure 3.6. Particle size distributions of NA MgO (11 g, 80 psig) at 2 min after deployment - SMPS, APS, and merged SMPS-APS 

data.  The goodness of fit of merged data is 0.030. Each curve represents the mean of three replicates.  
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Figure 3.7. Particle size distributions of NA MgO plus (13 g, 80 psig) at 2 min after deployment - SMPS, APS, and merged SMPS-

APS data.  The goodness of fit of merged data is 0.038. Each curve represents the mean of three replicates.   
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Figure 3.8. Merged SMPS and APS particle size distributions for NA MgO plus and NA MgO at 2 min after deployment. Each curve 

represents the mean of the three replicates.   
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Figure 3.9. Merged SMPS and APS particle size distributions of NA MgO plus as affected by nominal amount and canister pressure at 

2 min after deployment. Each curve represents the mean of the three replicates. The goodness of fit values for the merged data are 

0.048, 0.045 and 0.038 for deployed mass and dispersion pressure combinations of 40 g and 80 psig, 30 g and 40 psig, and 13 g and 80 

psig, respectively.
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       (b) 

Figure 3.10. Temporal change in particle size distributions of NA MgO plus measured with APS: 

number-based (a) and mass-based (b). Each curve represents the mean of three replicates. 
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Figure 3.11. Temporal change in particle size distributions of NA MgO plus measured with 

SMPS: number-based (a) and mass-based (b). Each curve represents the mean of three replicates. 
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                 (b) 

Figure 3.12. Temporal change in particle size distributions of NA MgO measured with APS: 

number-based (a) and mass-based (b). Each curve represents the mean of the three replicates. 
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        (b) 

Figure 3.13. Temporal change in particle size distributions of NA MgO measured with SMPS: 

number-based (a) and mass-based (b). Each curve represents the mean of the three replicates
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Table 3.3. The geometric mean diameters (GMD) of the two nanostructured particles at 2 min after dispersion. 

 

GMD
b
, nm s.d. GMD

b
, µm s.d. GMD

b
, µm s.d.

NanoActive®  MgO plus, 80 psig, 50 g 911 (b) 35 10.94 (a) 0.60 11.14 (a) 0.51

NanoActive®  MgO plus, 80 psig, 20 g 894 (b) 24 11.30 (a) 0.28 11.57 (a) 0.33

NanoActive®  MgO plus, 40 psig, 50 g 920 (b) 27 10.51 (a) 1.23 10.60 (a) 1.18

NanoActive®  MgO, 80 psig, 50 g 1087 (a) 5 4.19 (b) 0.98 3.12 (b) 1.30
a
The mobility diameter measured by SMPS was converted to aerodynamic diameter.

b
Column means followed by the same letter are not significantly different at the 5% level.

Particle
SMPS

a APS Merged

 

 

Table 3.4. The geometric standard deviations (GSD) of the two nanostructured particles at 2 min after dispersion. 

 

GSD
a s.d. GSD

a s.d. GSD
a s.d.

NanoActive®  MgO plus, 80 psig, 50 g 1.36 (ab) 0.04 1.66 (b) 0.07 1.69 (b) 0.02

NanoActive®  MgO plus, 80 psig, 20 g 1.40 (a) 0.01 1.64 (b) 0.05 1.68 (b) 0.09

NanoActive®  MgO plus, 40 psig, 50 g 1.35 (ab) 0.03 1.68 (b) 0.10 1.74 (b) 0.08

NanoActive®  MgO, 80 psig, 50 g 1.31 (b) 0.01 2.93 (a) 0.09 2.85 (a) 0.32

a
Column means followed by the same letter are not significantly different at the 5% level.

Particle
SMPS APS Merged
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                               (a)                                                    (b) 

 

Figure 3.14. Temporal change in geometric mean diameters (GMD) of NA MgO and NA MgO plus as measured by SMPS (a) and 

APS (b). Each curve represents the mean of three replicates.  Error bars represent one standard deviation. 
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         (a)                                                                                                                        (b) 

 

Figure 3.15. Number concentrations of NA MgO plus and NA MgO, as measured by the SMPS (a) and APS (b). Each curve 

represents the mean of three replicates. Error bars represent one standard deviation. 
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    (a)                                                                                                                     (b) 

 

Figure 3.16. Mass concentrations of NA MgO plus and NA MgO, as measured by the SMPS (a) and APS (b). Each curve represents 

the mean of the three replicates.  Error bars represent one standard deviation. 
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Figure 3.17. Temporal change in the PM4 concentration of the two nanostructured particles  

from APS. Each curve represents the mean of three replicates. Error bars represent one standard 

deviation. 

Figure 3.18. Mass concentrations of NA MgO plus and NA MgO as measured by the TEOM. 

Each curve represents the mean of three replicates.  Error bars represent one standard deviation.
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Figure 3.19. Comparison of the mass concentrations measured by TEOM and filter samplers at 1 

min after dispersion. Each curve represents the mean of three replicates.   Bars with the same 

letters are not significantly different at the 5% level. 
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4. Infrared Extinction Properties of Nanostructured and 

Conventional Particles  

4.1 Abstract 

 

The increasing threat of emerging battlefield sensors within the infrared (IR) region of 

the electromagnetic spectrum has led to renewed interest in particulate obscurants that are 

effective in the IR bands.  Brass flakes and carbon-based particulates are effective IR obscurants; 

however, they are toxic, causing respiratory problems and environmental concerns.  There is a 

need to develop or identify non-toxic IR obscurants.  This research was conducted to determine 

the potential of nanostructured particles as IR obscurants.  Three commercial nanostructured 

particles (i.e., NanoActive® MgO plus, NanoActive® MgO, and NanoActive® TiO2) and two 

metal oxide nanorods (i.e., MgO and TiO2) were considered and compared with other 

particulates, including two conventional particles (i.e., NaHCO3 and ISO fine test dust ) and 

common obscurants (i.e., brass flakes, graphite flakes, and carbon black).  Experiments involved 

dispersing a known mass of particles into the sample chamber of a Fourier Transform Infrared 

spectrometer and measuring simultaneously the IR transmission, the mass concentration, and the 

aerodynamic diameter of dispersed particles.  The tap or packing density of the particles was also 

measured.  From the measured data, the mean values of the mass extinction coefficient, σm, and 

volume extinction coefficient, σv, for the spectral bands of interest (i.e., 3-5 and 8-12 µm) were 

calculated.  Results showed that the nanostructured particles had significantly smaller σm and σv 

values than the other particles. Graphite flakes had the greatest overall mean σm value (3.22 m2/g, 

s.d. = 0.40), followed by carbon black (1.72 m2/g, 0.41), brass flakes (1.57 m2/g, 0.38), and ISO 
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fine test dust (0.74 m2/g, 0.03).  Brass flakes had the greatest overall mean σv (1.64 m2/cc, 0.39), 

followed by NaHCO3 (0.93 m2/cc, 0.12), ISO fine test dust (0.91 m2/cc, 0.03), and graphite 

flakes (0.80 m2/cc, 0.10).   

4.2 Introduction 

Obscurants in the infrared (IR) region of the electromagnetic spectrum have played a 

major role in military operations because they provide protection of military personnel, 

equipment, and installation from IR seeking sensors of unfriendly forces (Singh et al., 1994; 

Ladouceur et al., 1997; Butler, 1998; Shi et al., 1998; Shi et al., 2003). Obscurants that are 

effective in IR have received renewed interest because of increasing threat of emerging IR 

sensors (Farmer and Krist, 1981; Farmer et al., 1982; Shi et al., 2003; Singh et al., 1994; 

Appleyard and Davies, 2004b; Wang et al., 2004).  

For obscurants to be considered effective, they must exhibit high extinction coefficients 

and at the same time not be harmful to human health and the environment.  They also must be 

easy to deploy, readily available, and cost effective (Owrutsky et al., 2000).  The extinction 

coefficient or extinction cross-section of an obscurant is a measure of its ability to attenuate the 

incident radiant energy at a certain wavelength (Shi et al., 1998). It is expressed either as the 

mass extinction coefficient, σm, or volume extinction coefficient, σv (Owrutsky et al., 2000).  For 

military applications, the σv value of an obscurant is likely more important than the σm value 

because most deployment methods (e.g., grenade) are volume-limited rather than mass-limited 

(Owrutsky et al., 2001).  

Extinction coefficients are typically expressed as averages over the spectral band of 

interest (Farmer, 1991).  In military applications, the wavebands of increasing importance are the 

3-5 and 8-12 µm wavelengths in the mid-IR region.  These ranges are the main “atmospheric 
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windows” or the regions in the electromagnetic spectrum in which IR transmission is close to 

100% regardless of the presence of atmospheric gases, including water vapor and carbon dioxide 

(CO2) (Jacobson, 1999; Bailey et al., 2002; Hutchison and Cracknell, 2005).    

Many factors can influence the IR extinction properties of particles.  In general, highly 

conducting materials (e.g., brass flakes, graphite flakes) are effective IR obscurants.  Appleyard 

(2006) noted that, based on theoretical analysis, the conductivity of the particles appeared to be 

the most important property.  Salts, metal oxides, and semiconductors generally have good IR 

absorption properties, because of their moderately strong molecular vibrations in the IR region 

(Owrutsky et al., 2001; Stuart, 2004).  Other factors that affect extinction properties include 

chemical composition, size distribution, concentration, and morphology of particles (Ladouceur 

et al., 1997; Shi et al., 1998; Widmann et al., 2005).   Morphology is particularly important as it 

influences the coagulation process and removal of particles from the air (Colbeck et al., 1997).  

Structures such as thin disc flakes and thin fibers have exhibited high extinction coefficients 

(Appleyard and Davies, 2004b; Appleyard, 2006).  The molecular structure of the material, 

primary particle size, and structure of the aggregate also affect the effectiveness of obscurants 

(Dobbins et al., 1994; Shi et al., 1998).  In a study conducted by Appleyard (2006) using high-

aspect ratio particles, the optimum particle dimensions were ~ 5 µm diameter and ~ 25 nm 

thickness for flakes and ~ 10-200 nm diameter and ~ 10 µm length for fibers. 

The extinction property of an obscurant may be determined either theoretically or 

experimentally.  Appleyard (2007) modeled the extinction properties of non-spherical particles 

as a function of particle orientation with respect to incident radiation.  Comparison of theoretical 

and experimental results on extinction coefficients indicated good agreement for TiO2  and SiO2 

(Appleyard and Davies, 2004a) but not for iron oxides (Owrutsky et al., 2000; Owrutsky et al., 
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2001).  Direct measurement is the preferred approach to determine the extinction coefficient of 

particles (Widmann et al., 2005).  This approach, however, poses a challenge because of 

difficulty in measuring simultaneously the IR transmission through the obscurant and the mass 

concentration corresponding to that transmission value (Owrutsky et al., 2000).  As such, direct 

measurement typically involves use of laboratory bench scale apparatus like the Fourier 

Transform Infrared (FTIR) spectrometer in which powders are entrained in a tube or chamber for 

mass concentration measurement (Ladouceur et al., 1997; Owrutsky et al., 2000; Owrutsky et al., 

2001). 

The U.S. Army has demonstrated that brass exhibits favorable obscuration properties; 

however, it is highly toxic (rated 9 by Environmental Protection Agency (EPA) on a scale of 0-9) 

and environmentally detrimental (Haley and Kurnas, 1993; Owrutsky et al., 2000).  Graphite has 

a much lower toxicity (EPA toxicity rating of 4) and environmental impact than brass (Haley and 

Kurnas, 1993; Owrutsky et al., 2000); however, its packing density is much lower than that of 

brass (Ladouceur et al., 1997).  Carbon black, another carbonaceous material like graphite, has 

been identified by Owrutsky et al. (2001) as one of the best obscurants.  Like graphite, however, 

carbon black has a much lower packing density than brass.   

This research was conducted to evaluate the extinction coefficients of nanostructured 

particles in the mid-IR range.  The σm and σv values of the nanostructured particles were 

determined and compared with those of conventional particles and common obscurants. 

4.3 Materials and Methods 

4.3.1 Experimental apparatus 

The experimental apparatus had three major components: FTIR spectrometer (Model 

6700, Nicolet, Madison, WI), particle chamber, and powder disperser.   The FTIR spectrometer 
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was configured to provide mid-IR radiation (i.e., 1.35 – 25 µm wavelength), and was calibrated 

using monodisperse polystyrene spheres.  The OMNIC™ software was used to acquire, process, 

and analyze the spectral data (Thermo Electron, 2006).  The particle chamber (Fig. 4.1) was set 

up on top of the sampling compartment of the FTIR spectrometer.  The chamber was 40.6 cm. 

wide, 16.5 cm thick, and 63.5 cm high.  Near the bottom part at each side of the chamber were 

two holes with PVC pipes (3.81 cm diameter and 2.54 cm long) for the passage of the IR beam 

produced by the FTIR spectrometer.  Two filter samplers were placed directly above the two 

PVC pipes for time-averaged measurement of particle mass concentration.  An Aerodynamic 

Particle Sizer® (APS) spectrometer (Model 3321, TSI Inc., Shoreview, MN) was used to 

monitor the aerodynamic diameter and number concentration of the airborne particles.  The 

chamber was also equipped with a small fan for mixing, sliding doors to protect the KBr optical 

windows of the spectrometer, and a chamber extension for pressure release. 

A powder disperser, made of a plastic container with eight holes (approximately 6 mm in 

diameter) on one side, was used to aerosolize and disperse the particles inside the chamber.  A 

known mass (approximately 3 g) of particles was placed inside the powder disperser, which was 

connected to a compressed nitrogen gas tank through a hose and a nozzle.  By manually pressing 

the nozzle, the nitrogen gas (tank pressure gauge was set at 30 psig) passes through the container, 

dispersing the particles into the chamber.  
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Figure 4.1. Schematic diagram of the experimental chamber showing the instruments (not drawn 

to scale). 

 

4.3.2 Particulate obscurants 

Four types of particles were considered in the study: (1) nanostructured  metal oxide 
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conventional particles (i.e., NaHCO3 and ISO fine test dust); (3) reference obscurants (i.e., brass 

flakes, graphite flakes, and carbon black); and (4)  metal oxide nanorods (i.e., MgO nanorods and 

TiO2 nanorods).  Figures 4.2-4.5 show the scanning electron microscope images of the particles.  

Table 4.1 summarizes the surface area and chemical composition of the particles.  The brass 

flakes (Premior 505, Wolsteinholme International Inc., West Chicago, IL) had a mean size of 
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Asbury, NJ) had a mean size and primary particles size of 5.3 µm and 35 nm, respectively.  

These particles were chosen as reference particles because they are the most commonly studied 

obscurants (Owrutsky et al., 2000; 2001).  Brass is one of the best predicted attenuators of IR 

radiation (Appleyard, 2007) and the most commonly used obscurant by the military.  The 

NanoActive® metal oxide powders (NanoScale Corp., Manhattan, KS) were selected because of 

their unique morphology, large surface areas, and relatively non-toxic nature. Also, TiO2 is a 

semi-conductor and is expected to have good values of extinction coefficient.  It has an EPA 

toxicity rating of 0 (Haley and Kurnas, 1993; Owrutsky et al., 2000).   ISO fine test dust was 

selected for its good conductivity and flaky structure; NaHCO3 was selected because it is 

relatively non toxic and also is a salt. The nanorods (MgO nanorods and TiO2 nanorods) were 

synthesized in the Department of Chemistry, Kansas State University and were considered 

because of their relatively high aspect ratio and non toxic nature. 

For the extinction coefficient determination, there were three replicates for each type of 

particle.  For the aerodynamic size characterization, there were also three replicates for all 

particles except the nanorod, which had only two replicates because of the malfunctioning of the 

APS spectrometer.   

4.3.3 Experimental procedure 

4.3.3.1 Measurement of extinction coefficients and particle size distribution 

The particle chamber (Fig. 4.1) was first conditioned by flushing it with dry compressed 

air for at least 30 min to remove or reduce any water vapor inside the chamber.  A background 

spectrum (i.e., without the obscurant) was collected before dispersion of the particles into the 

chamber.  Then, the sliding door in front of the KBr optical window of the FTIR spectrometer 

was closed to protect the KBr optics from particles that might stick into it upon dispersion of 
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particles.  The mixing fan inside the chamber was turned on and particles were dispersed into the 

chamber by manually pressing the nozzle of the powder disperser.  Once particles were 

dispersed, the fan was turned off and the sliding doors were opened to let the passage of the IR 

beam through the two KBr windows. 

 

           (a)                                       (b)                                                              

Figure 4.2. Scanning electron microscope (SEM) images of the nanostructured metal oxide 

particles:  (a) NanoActive® MgO plus and (b) NanoActive® MgO.  

                       (a)                                       (b)                                                              

Figure 4.3. SEM images of the conventional particles:  (a) NaHCO3 and  (b) ISO fine test dust. 
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(a)                                            (b)                                                             
 

 

 

 

 

 

    (c) 

Figure 4.4. SEM images of the reference particles:  (a) brass flakes, (b) graphite flakes, and (c) 

carbon black. 

 

 

 

 

 

 

 

 

 

 

 
 

(a)      (b) 

Figure 4.5. SEM images of the nanorods:  (a) MgO nanorods and  (b) TiO2 nanorods. 
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Table 4.1. Physical and chemical properties of the particles. 

 

NanoActive®  particles 

     NanoActive®  MgO plus
a

white powder ≥ 600 ≤ 4 12.00 99.62% Mg 2.46

     NanoActive®  MgO
a

white powder ≥ 230 ≤ 8 3.30 95% Mg 3.44

     NanoActive®  TiO2
a

white powder ≥ 500 Amorphous 5.00 99.99% Ti 3.64

Conventional particles

     NaHCO3  (siliconized)
b

white powder -
h

- 7.70 93% NaHCO3 2.27

     ISO Fine test dust
c

reddish brown powder - - 68-76% SiO2 2.76

10-15% Al2O3

Reference obscurants

     Brass flakes
d

brass/bronze powder 1.20 - 5.00 69-91% Copper 6.54

29.5-7.5% Zinc

     Graphite flakes
e

dark gray powder 17.33 - 4.90 99.17% carbon 2.03

     Carbon black
e

black powder 36.26 - - 99.73% carbon 1.80

Nanorods

     MgO nanorods
g

white powder - - 7.2 (length) - 2.66

0.5 (width)

     TiO2 nanorods
g white powder - - 15-25 (length) - 4.80

1-3 (diameter)

c
Source: PTI Powder Technology, Inc., Burnville, MN

d
Source: Wolstenholme International Inc., Chicago, IL

e
Source: Asbury Graphite Mills, Inc., Asbury, NJ

f 
Measured using multipycnometer

g 
Source: Dept. of Chemistry, KSU, Manhattan, KS

h
No data

a
Source: NanoScale Materials, Inc., Manhattan, KS

b
Source: Amerex Corp., Trussville, AL

Major chemical composition 

(Percent by weight)
True density

f
, g/cc

Median aggregate 

size, µµµµm
Particle Appearance/color

Surface area, 

m
2
/g

Crystalline 

size, nm
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The sample spectrum was obtained through the OMNIC™ software.  The software was 

configured to scan at 2 wavenumber resolution and 16 scans lasting for about 45-50 s per 

sampling.  The software was also configured such that the sample spectrum was divided by the 

background spectrum (called “ratioing”) to account for the spectral characteristics of the 

chamber and the instrument (i.e., IR absorption due to any atmospheric water vapor and CO2) 

(Thermo Electron, 2006). 

After the first sample spectrum was obtained, the sampling pump of the filter samplers 

was started and operated for 1 min at a sampling rate of 2 L/min. After particle sampling, another 

sample spectrum was obtained.  The APS spectrometer was started from the time the first sample 

spectrum was obtained.  It sampled aerosol once a minute for 20 min after dispersion. 

4.3.3.2 Measurement of the tap density 

 The tap density of each particle was measured in accordance with ASTM Standard B 

527-93 (ASTM Standards, 2006).  The procedure involved tapping a 100 cc graduated cylinder, 

containing 50 g of powder, against a firm horizontal base. The tapping of the graduated cylinder 

was done manually at 3 mm stroke height and 110-150 taps/min.  Tapping of cylinder was 

stopped when no further decrease in volume of the powder was observed.   The tap density was 

calculated by dividing the mass of the powder by the volume of the tapped powder. 

For the MgO and TiO2 nanorods, the procedure used by Owrutsky et al. (2001) was 

adopted because of the limited mass of the nanorods.  In the Owrutsky et al. (2001) procedure,  

4-5 mL of the nanorods was placed in a 10 mL graduated cylinder.  The cylinder was tapped 

until there was no more recognizable change in volume.  The mass of the powder inside the 

cylinder was weighed and divided by the volume to obtain the tap density. 
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4.3.3.3 Data analysis 

The IR transmittance (T*) values measured by the FTIR spectrometer were converted to 

absorbance (A) values using the OMNIC software (Thermo Electron, 2006):  

                           ( )
( )







=
λ

*λ T
1logA          (4.1)  

These A values and the particle mass concentration, Cm, obtained from the filter samplers were 

then used to calculate the σm value based on Beer’s law, which relates the optical measurement 

to the Cm of the obscurant (Smith, 1996):  

                            
( )

( )

LC

2.303A
σ

m

λ

m λ
=                                         (4.2)     

where λ is wavelength and L is the path length.   

The calculated σm values “after dispersion” (i.e., t = 1 min after dispersion) and “after 

particle sampling” (i.e., t = 3 min after dispersion) were averaged to get the “mean σm” value.  

This value was considered equivalent to time 2 min after dispersion when the Cm and 

aerodynamic diameter were measured simultaneously.  The “mean σm” values for the 3 - 5 µm 

(433 readings) and for the 8 - 12 µm (1389 readings) wavebands were calculated.  The σv value 

was obtained by multiplying the σm value and the tap density: 

                                          ( ) ( ) ( )densitytapσσ λmλv ⋅=                                                   (4.3)   

In addition, the overall mean σm and σv values were obtained by averaging the “mean σm” and 

“mean σv” values for the 3 - 5 and 8-12 µm wavelengths.  

Data were analyzed statistically using SAS (version 9.1, SAS Institute Inc., Cary, NC).   

The PROC GLM procedure and correlation analysis were used to determine the effect of the type 

of particles, concentration, and diameter on extinction coefficients.  The means were also 
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compared at α = 0.05 using the Tukey’s Studentized Range and Scheffe’s Test for equal and 

unequal number of replications. 

4.4 Results and Discussion 

4.4.1 Mass extinction coefficients 

The σm values of the different particles are shown in Figures 4.6 and 4.7.  The reference 

particles (i.e., brass flakes, graphite flakes, and carbon black) showed nearly constant values of 

σm throughout the 3-12 µm wavelength range (Fig. 4.6).  This trend was similar to those in 

previous studies (Appleyard, 2006; Owrutsky et al., 2001; Wetmore and Ayres, 2000).  In 

contrast, the σm values of the nanostructured and conventional particles varied considerably with 

wavelength.  These trends were similar to those of many military obscurants, including red 

phosphorus and fog oil (Milham, 1976; Farmer, 1991).  Within the 4.1-4.4 µm wavelength range, 

the IR absorption of CO2 can be observed (Milham, 1976).  In the wavelength range between 5 

and 8 µm, the collective absorption of water vapor, CO2, and other gases can be observed as 

indicated by fluctuations in σm with wavelength (Bailey et al., 2002). The σm values of the 

nanorods as compared to NanoActive® particles are shown in Figure 4.7.   It was theoretically 

predicted that high aspect ratio particles such as nanorods would enhance the extinction 

coefficient of the materials.  This was observed for MgO but not for TiO2 nanorods.  This is 

probably due to the higher aspect-ratio (length/width) of MgO nanorods (~14) than TiO2 

nanorods (~10) (Table 4.1). 

Table 4.2 summarizes the mean values of the band-averaged σm, mass dispersed, and 

mass concentrations of the particles.   The reference particles had the greatest band-averaged σm 

values.  The mean σm values for the 3-5 µm waveband for brass flakes, graphite flakes, and 

carbon black were 1.44 (s.d. = 0.34), 3.03 (s.d. = 0.40), and 1.89 (s.d. = 0.31) m2/g, respectively; 
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those for the 8-12 µm waveband were 1.62 (s.d. = 0.37), 3.31 (s.d. = 0.41), and 1.66 (s.d. = 0.45) 

m2/g, respectively.  Wetmore and Ayres (2000) cited a σm value of 2 m2/g for both the 3-5 µm 

and 8-12 µm wavebands for graphite flakes.  Owrutsky et al. (2000 and 2001) reported smaller 

σm values for brass flakes (0.34 m2/g and 0.33 m2/g for 3-5 µm and 8-12 µm waveband, 

respectively), graphite flakes (0.74 m2/g and 0.73 m2/g for 3-5 µm and 8-12 µm waveband, 

respectively), and carbon black (0.83 m2/g and 0.62 m2/g for 3-5 µm and 8-12 µm waveband, 

respectively). Differences between the measured values in this study and to other published 

values could be due to differences in the properties of particles used (i.e., mean particle size, 

shape, morphology) and measurement methods.   

Of the nanostructured and conventional particles considered, NanoActive® TiO2 had the 

greatest mean σm value for the 3-5 µm waveband (Table 4.2).  The mean σm value of 

NanoActive® TiO2 in the 3-5 µm range (1.10 m2/g, s.d. = 0.23), however, did not significantly 

differ (α=0.05) from those of the other nanostructured and conventional particles.  As mentioned 

earlier, TiO2 is a semiconductor and was expected to exhibit good extinction performance.   For 

the 8-12 µm wavelength region, the ISO fine test dust had the greatest mean σm value (0.75 m2/g, 

s.d. = 0.03); however, the mean σm value was not significantly different from those of the other 

particles.  ISO fine test dust consists of several semiconductive elements such as silicates, 

aluminum, and iron (Vlasenko et al., 2005), and also has a flaky structure (Fig. 4.3).  The MgO 

nanorods had higher but not significantly different σm value compared to NanoActive® MgO and 

MgO plus (Table 4.2). 

Table 4.2 also summarizes the overall σm (combined σm values for the 3-5 and 8-12 µm 

wavebands). Graphite flakes had the greatest overall mean σm value (3.22 m2/g, s.d. = 0.40), 
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followed by carbon black (1.72 m2/g, 0.41), brass flakes (1.57 m2/g, 0.38), and ISO fine test dust 

(0.74 m2/g, 0.03).   

4.4.2 Volume extinction coefficients 

Figures 4.8 and 4.9 show the σv values of the particles for the 3-12 µm wavelength range.   

Table 4.3 summarizes the mean values of the band-averaged σv and tap densities of the particles.  

NaHCO3 (1.39 g/cc, s.d. = 0.001), ISO fine test dust (1.22 g/cc, s.d. = 0.00), and brass flakes 

(1.05 g/cc, s.d. = 0.006) had the largest tap densities.   

The reference particles showed near constant σv values, however, both graphite flakes 

and carbon black showed marked decreases in σv values (~75 to 78% decrease compared with 

their corresponding σm values) due to their low tap densities (Fig. 4.8; Table 4.3).  The brass 

flakes sample, on the other hand, maintained its extinction coefficient value because of its high 

tap density (1.05 g/cc).  For both the MgO nanorods and TiO2 nanorods, the values of σv were 

slightly smaller than those for similar materials in conventional nanostructured form; this may be 

due to their lower tap densities (Fig. 4.9; Table 4.3).   

For the 3-5 µm wavelength region, brass flakes had the highest σv value (1.5 m2/cc, s.d. = 

0.36) (Table 4.3). This was followed by the two conventional particles, NaHCO3 (1.01 m2/cc, 

s.d. = 0.16) and ISO fine test dust (0.87 m2/cc, s.d. = 0.02), and NanoActive® TiO2 (0.88 m2/cc, 

s.d. = 0.19).  For 8-12 µm waveband, brass flakes also had the highest value (1.69 m2/cc, s.d. = 

0.40).  The next highest σv  values were those of ISO fine test dust (0.91 m2/cc, s.d. = 0.04), 

NaHCO3 (0.89 m2/cc, s.d. = 0.13), and graphite flakes (0.82 m2/cc, s.d. = 0.10).  The 

nanostructured MgO particles had the smallest σv values for both wavebands.  For the overall σv, 

brass flakes had the greatest overall mean σv values (1.64 m2/cc, 0.39), followed by NaHCO3 

(0.93 m2/cc, 0.12), ISO fine test dust (0.91 m2/cc, 0.03), and graphite flakes (0.80 m2/cc, 0.10).  
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The extinction coefficients of the nanorods (MgO and TiO2) and the NanoActive® materials 

were generally significantly smaller than those of the reference and conventional particles. 

Figure 4.6. Mass extinction coefficients of the particles.  Each spectrum represents the mean of 

three replicates. 

 

 

 

 

 

 

 

 

 

Figure 4.7. Comparison of the mass extinction coefficients of the NanoActive® particles and 

nanorods.  Each nanorod spectrum represents the mean of two replicates. 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

3 4 5 6 7 8 9 10 11 12

Wavelength, µµµµm

M
a
s
s
 e

x
ti
n
c
ti
o
n
 c

o
e
ff

ic
ie

n
t,
 m

2
/g

Graphite flakes

Brass flakes

Carbon black

NanoActive®  TiO2
NaHCO3

ISO fine test dust

NanoActive®  MgO

NanoActive®  

MgO plus

0.0

0.5

1.0

1.5

3 4 5 6 7 8 9 10 11 12

Wavelength, µµµµm

M
a
s
s
 e

x
ti

n
c
ti

o
n

 c
o

e
ff

ic
ie

n
t,

 m
2
/g

MgO nanorod

TiO2 nanorod

NanoActive® TiO2

NanoActive®  MgO



 

 97 

Table 4.2. Band-averaged mass extinction coefficients, mass dispersed, and mass concentrations 

of particles.  Each value represents the mean of three replicates.  

Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a ]

s.d. Mean s.d. Mean s.d.

NanoActive® particles 

     NanoActive®  MgO plus 0.50 (d ) 0.05 0.15 (c) 0.01 0.23 (d) 0.01 3.04  (a) 0.01 1.7 (abc) 0.27

     NanoActive® MgO 0.67 (cd) 0.02 0.10 (c) 0.10 0.24 (d) 0.02 2.39 (a) 0.25 0.96 (bc) 0.13

     NanoActive® TiO2 1.10 (bcd) 0.23 0.23 (c) 0.05 0.43 (d) 0.09 2.50 (a) 0.41 1.6 (abc) 0.41

Conventional particles

     NaHCO3 0.76 (cd) 0.09 0.64 (c) 0.06 0.67 (d) 0.08 2.85 (a) 0.18 1.56 (abc) 0.42

     ISO Fine test dust 0.71 (cd) 0.01 0.75 (bc) 0.03 0.74 (cd) 0.03 2.50 (a) 0.05 0.76 (bc) 0.08

Reference obscurants

     Brass flakes 1.44 (bc) 0.34 1.62 (b) 0.37 1.57 (bc) 0.38 3.01(a) 0.00 2.62 (a) 0.26

     Graphite flakes 3.03 (a) 0.40 3.31 (a) 0.41 3.22 (a) 0.40 2.99 (a) 0.03 2.15 (ab) 0.38

     Carbon black 1.89 (b) 0.31 1.66 (b) 0.45 1.72 (b) 0.41 2.85 (a) 0.08 2.04 (ab) 0.45

Nanorods

     MgO nanorods 0.78 (cd) 0.12 0.57 (c) 0.31 0.62 (d) 0.21 1.19 (b) 0.17 0.51 (c) 0.43

     TiO2 nanorods 1.00 (cd) 0.14 0.23 (c) 0.05 0.41 (d) 0.06 2.63 (a) 0.07 2.57 (a) 0.62
[a] Column means followed by the same letter are not significantly different at the 5% level.

Particle 

Mass extinction coefficient, m
2
/g

Mass dispersed, g 
Mass concentration, 

g/m
3 

3-5 µm 8-12 µm Overall

 

 

Table 4.3. Band-averaged volume extinction coefficients and tap densities of particles. Each 

value represents the mean of three replicates. 

Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d.

NanoActive®  particles 

     NanoActive®  MgO plus 0.33 (cd) 0.04 0.10 (c) 0.01 0.16 (d) 0.01 0.65 (g) 0.00

     NanoActive®  MgO 0.47 (cd) 0.02 0.07 (c) 0.01 0.17 (d) 0.01 0.71 (e) 0.00

     NanoActive®  TiO2 0.88 (bc) 0.19 0.18 (c) 0.04 0.35 (d) 0.07 0.80 (d) 0.00

Conventional particles

     NaHCO3 1.01 (ab) 0.16 0.89 (b) 0.13 0.93 (b) 0.12 1.39 (a) 0.00

     ISO Fine test dust 0.87 (bc) 0.02 0.91 (b) 0.04 0.91 (b) 0.03 1.22 (b) 0.00

Reference obscurants

     Brass flakes 1.50 (a) 0.360 1.69 (a) 0.40 1.64 (a) 0.39 1.05 (c) 0.01

     Graphite flakes 0.75 (bc) 0.100 0.82 (b) 0.10 0.80 (bc) 0.10 0.25 (h) 0.00

     Carbon black 0.42 (cd) 0.070 0.37 (bc) 0.10 0.38 (bcd) 0.09 0.22 (i) 0.00
Nanorods

     MgO nanorods 0.08 (d) 0.01 0.06 (c) 0.03 0.06 (d) 0.02 0.10 (j) 0.00

     TiO2 nanorods 0.68 (bc) 0.09 0.16 (c) 0.03 0.28 (d) 0.04 0.68 (f) 0.02
[a] 

Column means followed by the same letter are not significantly different at the 5% level.

Particle 

Volume extinction coefficient, m
2
/cc

Tap density, g/cc
3-5 µm 8-12 µm Overall
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Figure 4.8. Volume extinction coefficients of the different particles.  Each spectrum represents 

the mean of three replicates. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Comparison of the volume extinction coefficients of the NanoActive® particles and 

nanorods. Each nanorod spectrum represents the mean of two replicates. 
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4.4.3 Effect of particle size distribution and concentration  

Figure 4.10 shows the particle size distributions at time 1 min after dispersion.  The 

values of GMD, GSD, mass concentration, and number concentration are shown in Table 4.4.  

NanoActive® MgO plus had the highest GMD value of 8.32 µm (s.d. = 0.25).  NanoActive®  

MgO had a wider size distribution (GSD=2.61, s.d. = 0.12) and the highest  particle number 

concentration (403,333 particles/cc, s.d. = 13051).  NaHCO3 had the highest mass concentration 

(1,777 mg/m3, s.d. = 298).Statistical analysis showed that the GMD, GSD, and particle 

concentration did not have any significant effect on values of σm and σv.   

Figures 4.11a and 4.11b present the temporal change in particle number and mass 

concentrations, respectively.  NanoActive® MgO and carbon black showed the greatest number 

concentrations (Fig. 11a).  This might be due to their small individual particle size (Table 4.1).  

Brass showed the lowest number concentration probably due to the clumping of individual, 

thread-like particles that form its flaky morphology.  For most of the particles, the concentrations 

decreased by up to 50% of their initial number concentrations at time between 3 and 5 min after 

dispersion.  The extinction measurement in this study was between time 1 and 3 min after 

dispersion.  In terms of mass concentration (Fig. 4.11b), NaHCO3 and NanoActive® MgO plus 

had the highest mass concentration but at the same time had the fastest decrease in concentration.  

Brass flakes had the lowest mass concentration, but showed the slowest decay rate.  The mass 

concentration of all particles was below 500 mg/m3 at time 5 min after dispersion. 
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Figure 4.10. Particle size distribution of the particles at time 1 minute after dispersion. Each 

curve represents the mean of three replicates, except for the curves of the nanorods which 

represent two replicates. 
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Table 4.4. Overall mean values and standard deviations of extinction coefficients, GMD, GSD, and mass and number concentrations 

of the particles at time 2 minutes after dispersion.  Each value represents the mean of three replicates. 

 

Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d. Mean
[a]

s.d.

NanoActive® particles 

     NanoActive®  MgO plus 0.23 (d) 0.01 0.16 (d) 0.01 8.32 (a) 0.25 1.65 (c) 0.05 1453 (ab) 185 123667 (ab) 19502

     NanoActive®  MgO 0.24 (d) 0.02 0.17 (d) 0.01 4.86 (cd) 0.49 2.61 (a) 0.12 423 (bc) 108 403333 (a) 13051

     NanoActive®  TiO2 0.43 (d) 0.09 0.35 (d) 0.07 4.87 (cd) 0.68 1.84 (bc) 0.01 639 (bc) 304 229667 (ab) 24502

Conventional particles

     NaHCO3 0.67 (d) 0.08 0.93 (b) 0.12 5.89 (bc) 0.13 1.74 (c) 0.03 1777 (a) 298 234667 (ab) 25697

     ISO Fine test dust 0.74 (cd) 0.03 0.91 (b) 0.03 3.73 (cd) 0.58 1.87 (bc) 0.01 403 (bc) 56 137000 (ab) 21656

Reference obscurants

     Brass flakes 1.57 (bc) 0.38 1.64 (a) 0.39 3.23 (d) 0.28 1.63 (c) 0.05 140 (c) 74 58067 (b) 11686

     Graphite flakes 3.22 (a) 0.40 0.80 (bc) 0.10 3.87 (cd) 0.35 1.92 (bc) 0.06 810 (abc) 669 190367 (ab) 158214

     Carbon black 1.72 (b) 0.41 0.38 (bcd) 0.09 7.47 (ab) 0.73 2.11 (b) 0.14 521 (bc) 60 354000 (ab) 149171

Nanorods

     MgO nanorods 0.62 (d) 0.21 0.06 (d) 0.02 2.43 (bcd) 3.26 0.94 (bc) 1.28 147 (c) 129 55750 (b) 40234

     TiO2 nanorods 0.41 (d) 0.06 0.28 (d) 0.04 4.56 (cd) 0.92 1.80 (c) 0.13 236 (c) 144 81050 (b) 42356

[a] 
Column means followed by the same letter are not significantly different at the 5% level.

Number Conc., #/ccMass Conc., mg/m
3

Particles
Overall σm Overall σv GMD, µm GSD
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         (a) 

        (b) 

Figure 4.11. Number (a) and mass (b) concentrations of the particles. Each point in the curve 

represents the mean of three replicates, except for the nanorods which represent two replicates. 
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Results in this study generally agree with published data (Owrutsky et al., 2001; 

Appleyard and Davies, 2004b; Appleyard, 2006).  Also, Appleyard and Davies (2004b) 

concluded that high-aspect ratio, highly conducting small particles (i.e., aluminum, brass) are 

excellent IR obscurants.  In this study, brass flakes had the largest σv value and the third largest 

σm value (Table 4.4).  The brass flake sample in this study has 69 – 91% copper and 29.5 – 7.5% 

zinc, which have electrical conductivity values of 100% IACS and 28% IACS, respectively.  

Aside from the high conductivity of brass flakes, the flake-like structure (~ 5 µm major diameter) 

with clumps of threadlike particles (thickness < 500 nm) (Fig. 4.4a) appears to be also important.  

These results agree with the theoretical results of Appleyard and Davies (2004b) and Appleyard 

(2006) that structures such as thin disk flakes and thin fibers have high extinction coefficients. 

In this study, graphite flakes had the highest overall σm value (3.22 m2/g), followed by 

carbon black (1.72 m2/g), and brass flakes (1.57 m2/g) (Table 4.4).  Graphite and carbon black 

are composed of more than 99% carbon and have moderate to strong molecular vibrations in the 

IR region (Owrutsky et al., 2001; Stuart, 2004), but differ in morphology.  Graphite has a flaky 

structure (Fig. 4.4a), while carbon black has a very small primary particle size (35 nm) and 

particles that seem to aggregate (Fig. 4.4c).  Owrutsky et al. (2001) measured the σm and σv 

values for several powders as new obscurant candidate materials, including salts, 

semiconductors, and oxides.  They reported that graphite had the largest value of σm but a lower 

value of σv than brass, similar to the findings in this study.   

NaHCO3 and ISO fine test dust have similar morphology consisting of smaller flat 

particles that are irregularly stacked upon each other (Fig. 4.3). The overall σm values of 

NaHCO3
 and ISO fine test dust were 0.67 m2/g (s.d.=0.08) and 0.74 m2/g (s.d.=0.03), 

respectively, which are smaller than those of the reference particles (Table 4.4).  NaHCO3 and 
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ISO fine test dust had larger packing densities and larger σv values than graphite and carbon 

black.  Based on values of σv, ISO fine test dust and NaHCO3 appear to be the most promising 

alternative to brass flakes.  By manipulating the size and/or morphology of these two particles, it 

might be possible to enhance their IR extinction performance. 

In general, the NanoActive® metal oxide particles (Fig. 4.2) had relatively poor IR 

extinction performance (Table 4.4).  And with their relatively small packing density (<0.8 

g/cm3), the numerical values of σv were even smaller than that of σm.  This agrees with the 

experimental results of Owrutsky et al. (2001); measured extinction coefficients of metal oxide 

particles, including titanium oxide, aluminum oxide, and manganese oxide were relatively small.  

It should be noted, however, that NanoActive® TiO2 had relatively high value of σm  in the 3-5 

µm waveband.  The nanorods (i.e., MgO and TiO2 nanorods), similar to the nanostructured 

particles, had relatively poor IR extinction performance, even with their rod-like structure (Fig. 

4.5).  Appleyard and Davies (2004a) indicated that particles of insulating and semiconducting 

materials that are ionic and partially ionic possess extinction spectra that are particle size 

dependent, but relatively insensitive to particle geometry.   

4.5 Conclusions 

This research was conducted to identify effective obscurants in the mid-IR range in 

comparison to the common military IR obscurants such as brass flakes, graphite flakes, and 

carbon black.  The following conclusions were drawn from this research: 

1. Graphite flakes had the greatest overall mean mass extinction coefficient (3.22 m2/g, 

s.d. = 0.40), followed by carbon black (1.72 m2/g, 0.41), brass flakes (1.57 m2/g, 

0.38), and ISO fine test dust (0.74 m2/g, 0.03).  Brass flakes had the greatest overall 

mean volume extinction coefficient (1.64 m2/cc, 0.39), followed by NaHCO3 (0.93 
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m2/cc, 0.12), ISO fine test dust (0.91 m2/cc, 0.03), and graphite flakes (0.80 m2/cc, 

0.10). The geometric mean diameter, geometric standard deviation, and particle 

concentration did not have any significant effects on the values of σm and σv.  It 

appears that high-aspect ratio (i.e., thin disk flakes, thin fibers) and high conductivity 

are the main contributing factors to high IR extinction coefficients. 

2. The extinction coefficients of the nanorods (MgO and TiO2) and the NanoActive® 

materials were generally significantly smaller than those of the reference and 

conventional particles.  NanoActive® TiO2 did have relatively high value of σm in the 

3-5 µm waveband. 

3. Based on the values of volume extinction coefficient ISO fine test dust and NaHCO3 

appeared to be the most promising alternative to brass flakes.  By manipulating the 

size and/or morphology of these particles, it might be possible to enhance their IR 

extinction performance. 
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5. Relative Chargeability of Nanostructured and Conventional 

Particles by Tribocharging 

5.1 Abstract 

The relative chargeability of nanostructured particles by tribocharging was measured and 

compared with that of conventional particles.  Particles were dispersed through a Teflon® 

tribocharger into an experimental room.  The net charge-to-mass ratios of the dispersed particles 

were measured with a dynamic Faraday-cup sampler.  Tribocharging with a Teflon® charger 

was able to charge the particles positively.    NanoActive® TiO2 gained the highest net charge-

to-mass ratio (1.21 mC/kg, s.d. = 0.07) followed by NanoActive® MgO (0.81 mC/kg, s.d.=0.12) 

and ISO fine test dust (0.66 mC/kg, s.d.= 0.13).  These net charge-to-mass ratios, however, were 

small compared to the Gaussian limit (<8%).  Results suggest that tribocharging may not a 

feasible method of imparting significant charge to the nanostructured particles. 

5.2 Introduction 

 Nanostructured particles, because of their high surface area and unique morphology, have 

several potential uses.  Metal oxide nanostructured particles, for example, have been shown to be 

effective in inactivating chemical warfare and biological agents, detoxifying industrial 

chemicals, and decontaminating indoor spaces (Stoimenov et al., 2002; Richards et al., 2000).  

By manipulating and controlling the electrostatic charge of nanostructured particles, their 

effectiveness might be enhanced.   

Tribocharging is a method that can be used to charge particles and is employed in the 

powder coating industry.  In this method, electrostatic charge is transferred from one material to 
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another when they touch or rub together (Lowell and Rose-Innes, 1980).  In general, materials 

that are able to lose electrons have lower work functions than materials that gain electrons.  A 

work function is defined as the energy required for moving an electron from Fermi level (the 

highest occupied energy level at 0 K) to the free state (Tianxiang, 1999).   Work functions 

depend not only on the internal structure of materials, but also on their surface contamination.   

The drawback is that for most materials, work function values are not available (Tianxiang, 

1999).  However, relative work functions can be predicted qualitatively if charge polarities and 

magnitudes of contact materials are known.   

Surface contact is a major contributing factor in tribocharging.  The greater the surface 

contact, the greater is the resulting net charge. On the surface of a dielectric material, the 

positions of the static charges are fixed and therefore, the charge separation between either a 

metal and a dielectric or two dielectrics must depend upon the actual area of contact 

(Schnurmann, 1941).  Surface chemistry (e.g., surface composition, contamination, and 

oxidation) was also determined to control partly the amount and polarity of charge transferred 

between two dissimilar materials, such as metals and polymer powder (Mazumder et al., 2006; 

Trigwell, 2003; Trigwell et al. 2003; Sharma et al., 2004).     

Powders having a low bulk density resistivity, 107-109 Ohm-m, can be used successfully 

with electrostatic guns only for small particles (~5 µm) due to charge and particle loss while 

resistivities > 1012 Ohm-m are desirable for use with larger particles. One rule of significant 

charging is that at least one of the materials should have a bulk resistivity > 107 Ohm-m (Colver, 

1999).  Permittivity is another parameter influencing the charging process between two solid 

materials.  It is a measure of the ability of the material to become polarized.  Coehn’s law states 
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that when two materials are in contact with each other, the one with the highest permittivity 

becomes positive (Tianxiang, 1999). 

Charge backflow is another phenomenon that happens when, upon separation in 

tribocharging, some electrons will drive back under the action of a potential difference between 

the materials.  Fast separation or longer charge relaxation time results in lower charge backflow.  

A material of high conductivity or low permittivity has a short charge relaxation time, resulting 

in high charge backflow (Tianxiang, 1999).    Another factor is the gas breakdown or gaseous 

discharge during separation and it can be in the form of sparks.  Ambient conditions, especially 

humidity, can decrease the surface and volume resistivities of materials, and therefore affect the 

characteristics of tribocharging (Banerjee and Law, 1995).  

 Trigwell et al. (2003) performed experiments on different powders of different size 

distributions tribocharged by milling with stainless steel beads.  Results showed that the charge 

acquired by the powder could be correlated with the actual work function difference between the 

powder and the stainless steel.  Using ultraviolet and x-ray photoelectron spectroscopy, 

experiments performed on various materials showed that work functions increased with surface 

contamination and oxidation.  Moreover, their results showed that while charge acquired 

increased with particle size, the charge distribution was generally bipolar. 

Tianxiang (1999) investigated the particle charge and charge exchange related to 

triboelectric beneficiation of physical mixtures of fine particles (i.e., silica beads).  The 

magnitude of charge and charge exchanged were measured by the Faraday cup and laser Phase 

Doppler Particle Analyzer.  In the experiment, charging velocity and charging duration were the 

most important factors affecting tribocharging.  Tianxiang (1999) also observed that the charge 

on the particle surface could become saturated well below a theoretical maximum charge limit 
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due to charge backflow.   Tianxiang (1999) predicted qualitatively the relative work functions of 

lunar minerals based on charge polarity and magnitude. 

Banerjee and Law (1995) studied the triboelectric chargeability of pecan pollen and 

lycopodium using commercial Teflon® and nylon chargers.   The pecan pollen and lycopodium 

have bimodal size distributions with diameters of 0-15 µm or 40-50 µm and 5-10 µm  or 20-30 

µm, respectively.  Their results indicated that tribocharging is a feasible method of imparting 

charge to pollen in electrostatic pollination technology.  

One challenge in charging nanoparticles is their small size.  Flagan (2001) mentioned that 

the probability of charging decreases with decreasing particle size and that large particles 

frequently acquire multiple charges. He also added that particles in aerosolized form usually 

carry only a small number of elementary charges. 

This study was conducted to measure the relative chargeability by tribocharging of 

nanostructured particles and compare them to conventional particles.  By manipulating the 

charge of particles (e.g., by tribocharging), their effectiveness in such applications as smoke 

clearing may be enhanced. 

5.3 Materials and Methods 

5.3.1 Test particles 

The particles tested included three nanostructured metal oxide particles (i.e., 

NanoActive® MgO plus, NanoActive® MgO, and NanoActive® TiO2), two conventional 

particles (i.e., NAHCO3 and ISO fine test dust), and an electrostatic-grade nylon powder.  The 

nylon powder (Thermoclad Company PC, Erie, PA) was used as the reference.  The size of the 

nylon particles, however, was large compared to the test particles.  Table 5.1 shows the 

properties of the particles used in the study.   
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Table 5.1. Properties of particles.  

Nanostructured particles

    NanoActive® MgO plus 8.6 5.5 2420 ≥600 Magnesium

    NanoActive® MgO 6.4 3.5 3440 ≥230 Magnesium

    NanoActive® TiO2 5.2 2.7 3640 ≥500 Titanium

Conventinal fine particles

   NaHCO3 6.3 3.8 2760 -- Sodium

   ISO fine test dust 4.4 2.9 2270 -- Silicon

Aluminum

Reference particle

   Nylon powder (Nylon 11) -- 63
b

-- -- --

a
Source: Measured using Aerodynamic Particle Sizer® (APS)

b
Source: Thermoclad Co., Erie, PA

c
Source: Measured using multipycnometer.

d
Source: Nanoscale Corp., Manhatan, KS

Major metal 

component
Particles types

Equivalent 

aerodynamic 

diameter
a
, µm

Surface 

area
d
, m

2
/g

Actual 

particle 

diameter, 

µm

True 

density
c
, 

kg/m
3

 

 

5.3.2 Tribocharger  

The tribocharger (Fig. 5.1) is the charge tube module of the commercially-available 

Nordson® tribomatic/tribogun system (Nordson Corporation, Westlake, OH).  Particles pass 

though the annulus of the charge tube module and come in contact to its corrugated surface.   

The charging tube is made of Teflon®, which is a preferred material by the powder coating 

industry since it has very low friction, wears well, and strongly resists being coated by the 

powder material (Liberto, 1994).   

5.3.3 Charge measurement 

Two charge measurement devices were developed based on the classical Faraday cup 

principle and the guidelines of ASTM Standard D4470-97 (ASTM Standards, 1997).  The first 

charge measurement device (Fig A.6) provided only qualitative data and cannot be used to 
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measure mass of particles, which is necessary to obtain the net charge-to-mass (q/m) ratio.  The 

second charge measurement device, the dynamic Faraday-cage sampler (Figs. 5.2 and 5.3), was 

used in this research.  The calibration of the device is described in Appendix B. 

The design of the dynamic Faraday-cage sampler is similar to previous designs (John, 

1980; Greaves and Makin, 1980; Tardos et al., 1984; Tucholski and Colver, 1993; Hinds and 

Kennedy, 2000; Mutomaa, 2002).  The sampler consists of an outer metal shield and an inner 

conducting metal that has a back-up metal screen at the bottom for holding the particulate 

collection filter.  The outer enclosure is connected to an electrometer (Model 6514, Keithley 

Instruments Inc., Cleveland, OH) and serves to shield the filter holder from external fields.  The 

inner metal and the back-up metal screen are electrically connected to the electrometer Hi input.  

The device is connected to a low-volume sampling pump that draws air and particles into the 

device. Particles are collected on the filter, which is weighed before and after sampling.  The 

electrometer is controlled using the Excelinx software (Keithley Instruments Inc., Cleveland, 

OH).  

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Photograph of the Teflon® charging tube. 
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5.3.4 Experimental procedure 

Experiments were conducted in a test room 3.6 m long, 2.4 m wide, and 2.4 m high.  The 

tribocharger was located at one side of the chamber).  A powder disperser with copper tube 

nozzle was used.  The tribocharger was connected to the copper tube nozzle (Fig. 5.5).  The 

powder disperser was also connected to the compressed nitrogen gas (40 psig), which was used 

to disperse the particles into the room.  The dynamic Faraday-cage sampler was positioned near 

the center of the room or about 1.0 m to 1.5 m from the particle injection point (Fig. 5.4), 

depending on how far the particle cloud was dispersed especially during the first minute after 

dispersion.  The electrometer and the sampling pump that were connected to the dynamic 

Faraday-cage sampler were started simultaneously approximately 10 sec before the dispersion of 

particles.  Charged particles were collected on the filter for 60 sec.  The temperature and the 

relative humidity inside the room were maintained at 25-26 °C and 50-51%, respectively.   

Two sets of experiments were conducted for each particle.  The first set involved the 

determination of the charge of the particles without the tribocharger.  The charge measured is 

herein referred to as background charge, which represents the charge acquired by the particles as 

they are dispersed through the copper tube.  The second set of experiments involved 

measurement of the charge of the particles with the Teflon® tribocharger in use.  For each set of 

experiments, there were three replicates. 

5.3.5 Data analysis 

The (q/m) value was calculated by dividing the maximum charge measured by the 

electrometer after sampling by the mass of particles collected on the filter.  The net q/m, (q/m)net, 

value of the particles was obtained by subtracting the background (q/m) values (i.e., without 

tribocharger), (q/m)o, from the (q/m) value of the tribocharged particles, (q/m)c. 
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The maximum (q/m) value, (q/m)max, attainable by solid particles charged by 

triboelectrification or the Gaussian limit was calculated using the following equation (Banerjee 

and Law, 1995; Tianxiang, 1999):  

pp

a0
max

dρ

E6ε
)

m
q( =      (5.1)  

 

where εo is the permittivity of free space (8.85 x 10-12 C/V-m) , Ea is the maximum electric field 

strength (or the breakdown field strength) of air, which is approximately equal to 3 MV/m, ρp is 

the particle density, and dp is the particle diameter. 

The (q/m) data were analyzed statistically using the GLM procedure of SAS (version 9.1, 

SAS Institute Inc., Cary, NC) to determine the difference in charge acquired of the particles.  To 

compare means, the Tukey’s test at α = 0.05 was used. 
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Figure 5.2. Schematic diagram of the dynamic Faraday-cage sampler for measuring the net 

charge-to-mass ratio of airborne particles. 

 

 

 

Figure 5.3. Photograph of the dynamic Faraday-cage sampler.  The top cover of outer metal 

shield was removed to show the inner conducting metal enclosure. 
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Figure 5.4. Schematic diagram of the experimental set-up (not drawn to scale). 
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Figure 5.5. Schematic diagram of the powder disperser system and the tribocharger. 

 

5.4 Results and Discussion 

 

The measured background charges of the particles are shown in Figure 5.6.  The ISO fine 

test dust showed positive background charge, while NanoActive® TiO2 showed negative 

background charge.  The other particles (i.e., nylon powder, NanoActive® MgO plus, 

NanoActive® MgO, and NaHCO3) showed almost zero (neutral) background charge. 

Figure 5.7 shows the charges as the tribocharged particles were being collected in the 

filter.  Increasing charge values during sampling indicates that the particles are being collected in 

the filter.  For the nylon powder, the measured charge was relatively small compared to the other 

particles.  This could be due to the small amount of particles (<1.2 mg) collected on the filter as a 

result of the large diameter (63 µm), and consequently, large settling velocities of the particles.  

Table 5.2 summarizes the (q/m) values of the tribocharged particles in comparison to the 

background (q/m) values.  Also shown are the (q/m)net and (q/m)max for each particle.  Nylon 

powder and ISO fine test dust had the highest positive (q/m)o values compared to the other 
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particles.  Nylon powder had a mean (q/m)o value of 0.30 (s.d. = 0.03) mC/kg while ISO fine test 

dust had a mean (q/m)o value of 0.20 (s.d. = 0.04) mC/kg.  NanoActive® MgO plus, 

NanoActive® MgO, and NaHCO3 had almost the same (q/m)o values, which were not 

significantly different.  Only NanoActive® TiO2 showed negative (q/m) value (-0.31 mC/kg, 

s.d.= 0.05).   NanoActive® TiO2 (1.21 mC/kg, s.d. = 0.07) also gained the greatest (q/m)net after 

tribocharging.  NanoActive® MgO was next with a (q/m)net value of 0.81 mC/kg (s.d. = 0.12).  

NanoActive® TiO2, which had the highest (q/m)net, was charged to only about 7.5% of its 

Gaussian limit.  NanoActive® MgO and ISO fine test dust had the next highest charge values, 

but they are equivalent to only about 6.0% and 2.8% of their Gaussian limits, respectively.  In 

the study conducted by Banerjee and Law (1995) on pollens, charging levels of up to 52-55% of 

the Gaussian limits were achieved.  Note that the diameters of those particulates were as large as 

50 µm.  The pecan pollen for example, had an average (q/m) value of +7.6 mC/kg using a 

Teflon® tribocharger.  Banerjee and Law (1995) noted that it is the actual charge acquired by the 

particulates that is important in particle trajectory control in electrostatic-assisted deposition 

processes and not the ratio of the imparted charge to the maximum charge.  

The results in Table 5.2 relatively showed small (q/m)net probably due to the small size of 

the particles considered.  This confirmed the conclusion given by Flagan (2001) that the 

probability of charging particles decreases with their size. Tianxiang (1999) also noted that the 

charge on the particle surface could become saturated much below its theoretical maximum 

charge limit (Gaussian limit) for reason that maybe related to the charge backflow.  The (q/m) 

values obtained in this research had no correlation with the size of particles used.   
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5.5 Conclusions 

 

This study was conducted to measure the relative chargeability of nanostructured 

particles and compare them to conventional particles.  The following conclusions were drawn 

from this research: 

1. Tribocharging using a Teflon® tribocharger was able to charge the aerosolized 

nanostructured particles positively.  NanoActive® TiO2 had the highest net charge 

gained (1.21 mC/kg, s.d.=0.07), followed by NanoActive® MgO (0.81 mC/kg, 

s.d.=0.12) and ISO fine test dust (0.66 mC/kg, s.d.= 0.13) 

2. The net charges gained by the particles, however, were small compared to the 

Gaussian limit (below 8%).  It appears that tribocharging may not be a feasible 

method of imparting large charge to the nanostructured particles. 

 

 

 

.    



 

 122 

 

 

Figure 5.6. Background charges of the particles, that is, the Teflon® tribocharger was not in use. 
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Figure 5.7. Charges of the particles after passing through a Teflon® tribocharger. 
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Table 5.2. Charge-to-mass ratios of the particles. 
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6. Numerical Simulation of Particle Transport in an Enclosed Room 

6.1 Abstract 

Understanding particle transport in rooms is important in solving indoor air quality 

problems and in controlling particle dispersion.  In this study, the transport of aerosolized 

particles inside an enclosed experimental chamber (3.6 m x 2.4 m x 2.4 m) was simulated by a 

computational fluid dynamics (CFD) program, FLUENT.  Two different types of particles were 

considered: hollow glass spheres and NanoActive® MgO plus, a nanostructured material.  

Experiments were also conducted to validate predicted results.  In terms of mass concentrations, 

there was reasonable agreement between predicted and measured values for hollow glass spheres 

but not for NanoActive® MgO plus.  In terms of number concentration, there was large 

discrepancy between predicted and measured values for both particles.  The lack of agreement 

between predicted and measured values can be due the invalid assumptions in the numerical 

model (e.g., initial number of particles, constant particle size). 

6.2 Introduction 

Prediction of particle transport in turbulent flow is essential in various fields, including 

dispersion of passive or reactive particles in turbulent media and in air pollution (Domgin et al., 

1997).  For example, in workplaces, residential buildings, and other indoor environments, people 

are exposed to particulate contaminants (Holmberg and Li, 1998).  Fate and deposition of these 

particulate contaminants in indoor environments has significant implications for human health, 

clean rooms, and decontamination (Lai, 2004; Zhang, 2005).  Gao and Niu (2007) noted that a 

good understanding of the particle-laden turbulent flow is important in solving indoor air quality 
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problems and in controlling particle dispersion.  Limited data, however, are available on 

dispersion and deposition of particles in indoor environments (Lai, 2004).   

The two major approaches that can be used to study the dispersion of particles in indoor 

environments are physical modeling and numerical simulation with computational fluid 

dynamics (CFD).  In recent years, CFD has been widely employed in predicting air flow patterns 

in buildings and has been proven to offer a flexible alternative to physical models (Liddament 

1991; Jones and Whittle, 1992; Haghighat et al., 1992).  Zhang and Chen (2007) noted that CFD 

is the most suitable modeling approach to study the spatial distribution of particles in enclosed 

spaces, because the transport and distribution of airborne particles are highly associated with 

airflow motion and turbulence. 

There are two methods of modeling particle transport in CFD: the Eulerian-Eulerian and 

Eulerian-Lagrangian.  In the Eulerian-Eulerian approach, the particulate phase is treated as 

another flow and calculated in the fixed coordinate system.  In the Eulerian-Lagrangian 

approach, on the other hand, the fluid or carrier gas is considered as the continuum phase and the 

particles are considered as the discrete phase.  Given the complete fluid flow field, particles are 

tracked by solving the particle force balance.  Chang et al. (2007) cited that most previous CFD 

works on indoor particle transport are mainly based on the Eulerian-Eulerian approach that takes 

less computing resources.  However, this approach neglects the particulate nature of the particles, 

and appears to be adequate only for simulating gaseous pollutants or small, neutrally buoyant 

particles that exactly follow the fluid flow (Chang et al., 2007).  Zhang and Chen (2007) 

compared the Eulerian-Eulerian and Eulerian-Lagrangian methods in predicting particle 

concentration distribution in ventilated spaces.  Their results showed that both methods can 

predict well the steady-state particle concentration distribution.  For the unsteady state condition, 
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however, their results showed that the Eulerian-Lagrangian method performed better than the 

Eulerian-Eulerian method.  Riddle et al. (2004) also concluded that the Eulerian-Lagrangian 

method gave better results than the Eulerian-Eulerian approach in predicting the dispersion of 

gaseous pollutants around buildings. 

The major objective of this study was to predict the transport of aerosolized hollow glass 

spheres and NanoActive® MgO plus in an enclosed room using the Eulerian-Lagrangian 

approach.  Specific objectives were to: 

1. predict the mass concentrations (Cm) of particles at various locations inside the 

chamber; 

2. predict the number concentration (Cn) of aerosolized particles at the center of 

the chamber at various times; and  

3. compare predicted results with experimental data.  

6.3 Materials and Methods 

6.3.1 Theoretical background  

The Eulerian-Lagrangian approach was directly implemented by using the discrete phase 

model (DPM) of FLUENT (Ver. 6.3, Fluent, Inc., Lebanon, NH).  In this approach, the fluid 

phase is treated as a continuum by solving the time-averaged Navier-Stokes equations, while the 

dispersed phase is solved by tracking a large number of particles through the calculated flow 

field (Fluent, 2006).   The governing equations used in the simulation are summarized in the 

following sections. 

6.3.1.1 Governing equations for the continuous phase 

The continuous gas-flow phase is governed by the following equations for unsteady 

compressible flow (Kleinstreuer, 2003; Zhang, 2005):  
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where ρ, t, u
r

, p, τ , E,T, keff, and effτ  are fluid density, time, fluid phase velocity,  

thermodynamic pressure, stress tensor, energy, temperature, effective conductivity, and effective 

stress tensor,  respectively. 

The most common turbulence model, the standard k-ε turbulence model, has been used 

over three decades as the basis for turbulence flow computation (Crowe et al., 1996). The 

turbulence kinetic energy, k, and its rate of dissipation, ε, are obtained from the following 

transport equations (Fluent, 2006): 
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where Gk and Gb represent the generation of k due to the mean velocity gradients and buoyancy, 

respectively; YM represents the contribution of the fluctuating dilatation in compressible 

turbulence to the overall dissipation rate; σk and σε are the turbulent Prandtl numbers for k and ε, 

respectively; and Sk and Sε are user-defined source terms for k and ε, respectively.  The turbulent 

(or eddy) viscosity, µ t, is computed by combining k and ε as follows (Fluent, 2006): 
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ε

k
ρCµ

2

µt =       (6.6)   

The model constants C1ε, C2ε , Cµ, σk and σε  have the following default values in FLUENT: 

C1ε  = 1.44; C2ε  = 1.92; Cµ = 0.09; σk = 1.0; σε = 1.3 

6.3.1.2 Governing equations for the discrete phase 

The trajectory of discrete phase is determined by integrating the force balance on the 

particle. This force balance equates the particle inertia with forces acting on the particle, and can 

be written as (Fluent, 2006): 
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where u, up, gx, ρp, ρ, and Fx are the fluid phase velocity, particle velocity, gravitational 

acceleration, particle density, fluid density, and an additional acceleration (force per unit particle 

mass), respectively. FD is the drag force per unit particle mass equal to: 
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where µ, dp, DC , and Re are the molecular viscosity of the fluid, particle diameter, drag 

coefficient, and Reynolds number, respectively.  The location of each particle, x, is tracked with 

the following equation: 

pu
dt

dx
=        (6.10)     
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The air velocity, u, in equation 6.7 consists of the time averaged component, u , and the 

instantaneous or  fluctuating velocity component, ( )tu′  ( Zhang, 2005; Fluent, 2006; Zhang and 

Chen, 2007): 

( )tuuu ′+=      (6.11)   

The u  component is computed using the Reynolds-averaged Navier-Stokes (RANS) equations 

with the standard k-ε turbulence model.  The ( )tu′  component is computed using a stochastic 

approach, such as the discrete random walk (DRW) model or eddy lifetime model.  Its value 

prevails during the lifetime of the turbulent eddy influencing the particle and is assumed to obey 

the Gaussian probability distribution (Zhang, 2005; Predicala, 2003; Graham and James, 1996).  

Using the DRW model to calculate ( )tu′ , the particle turbulent dispersion is correlated to the 

flow k (Zhang, 2005; Zhang and Chen, 2007): 

( )
3

2k
ζtu =′      (6.12)   

where the variable ζ is a Gaussian random number. 

6.3.2 Case description  

This study simulated the dispersion of aerosolized particles inside an enclosed 

experimental chamber with dimensions of x = 3.6 m long, z = 2.4 m wide, and y = 2.4 m high 

(Fig. 6.1).  A known mass of particles was injected into the chamber through a small hole (x = 0, 

y = 1.778 m, z = 1.1027 m) with a diameter of 0.0127 m.  The injection lasted for approximately 

3 s at 40 psig.   

6.3.3 Test particles 

Two different types of particles were considered: hollow glass spheres and NanoActive® 

MgO plus.  The hollow glass sphere was selected as the reference particle because of its relative 
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sphericity (Fig. 6.2a) and narrower size distribution (geometric standard deviation, GSD = 1.56, 

s.d. = 0.01).  The NanoActive® MgO plus was selected as the representative particle for nano-

agglomerates; it was irregular in shape (Fig. 6.2b) and had a wider size distribution (GSD = 1.89, 

s.d. = 0.06) than the hollow glass sphere.   

Preliminary measurements with the Aerodynamic Particle Sizer™ (APS) spectrometer 

(Model 3321, TSI, Inc., Shoreview, MN) showed that the two particles have a geometric mean 

diameter (GMD) of approximately 10 µm aerodynamic diameter.  The actual particle diameter, 

dp, was calculated using the following formula (Hinds, 1999):  

a

p

o
p d

ρ

ρ
d =      (6.13)   

where da and ρo  is the aerodynamic diameter and standard density (1000 kg/m3), respectively.  

The calculated dp’s were 9.17 µm and 6.43 µm for the hollow glass spheres and NanoActive® 

MgO plus, respectively, assuming da = 10 µm and ρp values of 1190 kg/m3 and 2420 kg/m3 for 

hollow glass spheres and NanoActive® MgO plus, respectively.   

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Schematic diagram of the experimental chamber used in the simulation. 

 

Inlet 

z = 2.4 m 

x = 3.6 m 

y = 2.4 m 



 

 134 

  (a)                                       (b) 

Figure 6.2. Scanning electron micrographs of the particles: (a) hollow glass spheres and (b) 

NanoActive® MgO plus.  

6.3.4 Geometry and mesh generation  

A single, integrated pre-processor for CFD analysis (Gambit 2.3.16, Fluent Inc., 

Lebanon, NH) was used to construct the geometry and to examine the quality of the mesh of the 

domain.  For hollow glass spheres, in determining the Cm at t=60 s, three meshing schemes were 

compared: fine, coarse, and very fine (Table 6.1).  The “fine mesh” scheme was used for the 

simulation of the velocity profile and for tracking the transport of the particles.  The “coarse 

mesh” and a “very fine mesh” schemes were considered to check the effect of mesh size on 

predicted results.  For NanoActive® MgO plus, only the coarse meshing scheme was used to 

minimize computational time. 
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Table 6.1. Description of the three meshing schemes of the geometry of chamber and its inlet for 

hollow glass spheres.  The coarse mesh scheme was used for NanoActive® MgO plus.  

coarse tetrahedral/hybrid 137,424 triangular 12

fine tetrahedral/hybrid 400,432 triangular 36

very fine tetrahedral/hybrid 1,122,336 triangular 302

Inlet

Mesh
Meshing scheme

Number of 

mesh volumes
Meshing scheme

Number of 

mesh faces

Chamber

 

6.3.5 Implementation of the CFD model 

More detailed instructions and definitions about the implementation of the DPM can be 

found in FLUENT User’s Guide (Fluent, 2006).  The reference particle (i.e., hollow glass 

spheres) was first considered.  Once satisfactory results were obtained, NanoActive® MgO plus 

was then simulated using the same general procedure and assumptions, except for the ρp and dp 

values.   

The dilute particle flow assumption was justified by the low volume fraction of the 

particulate phase (i.e., 0.53 % and 0.04 % for hollow glass spheres and NanoActive® MgO plus, 

respectively).  The assumption of one-way interaction was also satisfied by having a light (< 1) 

particulate loading (i.e., 0.25 and 0.04 for hollow glass spheres and NanoActive® MgO plus, 

respectively).  Table 6.2 shows the major assumptions for the simulation of the continuous 

phase.  A velocity magnitude of 12 m/s was specified for the inlet boundary condition.  This 

value came from the measurement of nitrogen gas flow at the inlet (without the presence of 

particles) using a hot-wire anemometer (Model 8347, TSI Inc., Shoreview, MN).  At time 4 s, 

when the injection was stopped, the inlet boundary condition was changed from velocity inlet to 

wall.   



 

 136 

Table 6.3 shows the major assumptions used in the simulation of the transport of hollow 

glass spheres (discrete phase) in the chamber.  Solid cone injection type and 100 particles 

streams or parcels were specified in the model.  FLUENT had a general guideline of 5-20 parcels 

to simulate non evaporative sprays (Fluent, 2006).  Zhang (2005) assumed 200 parcels to 

simulate nano-agglomerates using the Eulerian-Lagrangian approach in a steady-state, 

incompressible flow.  He also used a chamber geometry that has both inlet and outlet.  This 

research considered an unsteady, three dimensional, compressible flow; as such, a smaller parcel 

number (100) was used.  Larger parcel number will result in very long computational time 

(Fluent, 2006), especially with the flow assumptions (transient, three dimensional, and 

compressible) used in this study. 

The calculated dp (9.17 µm) and measured ρp (1190 kg/m3) were used for hollow glass 

spheres.  The stop and start time of injection were assumed to be 0 and 3 s, respectively.  Particle 

boundary conditions such as escape and trap were used.  The DRW model was used to predict 

the dispersion of particles due to turbulence in the fluid phase.   

In simulating the transport of NanoActive® MgO plus particles in the chamber, general 

assumptions shown in Table 6.3 were used except for the dp and ρp values.  Also, as mentioned 

earlier, the coarse meshing scheme was used to minimize computational time.  Because of 

uncertainties in the values of dp and ρp associated with the irregular shape and porous nature of 

the NanoActive® MgO plus particles, four cases were considered.  Table 6.4 shows the different 

cases and the comparison of the total flow rates used in the simulation and those obtained from 

the experiments.  In case 1, dp and ρp values of 6.43 µm and 2420 kg/m3, respectively, were 

assumed.  Case 2 considered the combination dp = 10 µm and and ρp = 400 kg/m3.  The density 

of 400 kg/m3 was considered since the NanoActive® MgO plus particles are porous (Zhang, 
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2005) (Fig. 6.2b).   Case 3 had dp and ρp values of 50 µm and 400 kg/m3, respectively.   In this 

case, the diameter was made 5 times bigger than its assumed da (10 µm) to account for particle 

agglomeration.   Case 4 was similar to case 2, except that it considered other forces (i.e., Saffman 

lift force, Brownian motion) in addition to the gravitational and drag forces.  However, by 

looking at post-processed particle trajectories of all the cases, the predicted results did not show 

agreement with experimental data.   In the experiments, right after injection of particles, the 

measured concentration was highest at the location farthest from the injection point (3.0 m).  

Predicted concentration was highest at location nearest the injection point (0.6 m).  In order to 

show a sample result from the simulation of  NanoActive® MgO plus, although there were no 

promising results, one case (case 2) was run for up to 600 s.   

 

Table 6.2. Major assumptions used in the simulation of the continuous phase. 

Solver Pressure based

     Space 3D

     Time Unsteady

Energy Equation Activated

Viscous Model k-ε (standard)

Operating pressure 101325 Pa

Operating temperature 293.15 °K

Gravitational acceleration Activated (y direction = - 9.8 m/s
2
)

Air

     Density ideal-gas

Inlet velocity inlet

     Velocity magnitude 12 m/s

     Turbulence

          Turbulent intensity 10%

          Hydraulic diameter 0.0127 m

Chamber interior

Chamber walls walls

Control volumes interior

Control surfaces walls

Material

Boundary condition

AssumptionsFLUENT parameters

Model

Operating conditions
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Table 6.3. Major assumptions used in the simulation of the discrete phase (hollow glass spheres). 

Assumptions

Model DPM Activated

Injection type    solid cone

Number of particle streams 100

Point properties

     Diameter 9.17x10
-6

 m

     Start time 0

     Stop time 3 sec

     Velocity magnitude 12 m/s

     Cone angle 5°

     Radius 0.00635 m

     Total flow 0.01 kg/s

Turbulent dispersion

     Stochastic tracking Enabled

Inert particle

     Density 1190 kg/m
3

Inlet set as "wall" after injection 

     Discrete phase boundary type

          Inlet          escape

          Chamber walls (except the floor) escape

          Chamber floor trap

Boundary condition

FLUENT parameters

Material

Injection

 

 

Table 6.4. Simulation cases and experimental parameters for NanoActive® MgO plus. 

CFD (case 1) 6.73 (actual) 2420 (true) 0.004 gravitational force, drag force

CFD (case 2) 10 (aerodynamic) 400 (bulk) 0.004 gravitational force, drag force

CFD (case 3) 50 (aerodynamic) 400 (bulk) 0.004 gravitational force, drag force

CFD (case 4) 10 (aerodynamic) 400 (bulk) 0.004

Experiment 1 (Filter samplers) 0.004

Experiment 2 (APS® spectrometer) 5.78
a
, 3.59

b
, 2.75

c
0.004

a
at t=60 s; 

b
at t=300 s; 

c
at t=600 s

Particle density, 

kg/m
3

Total flow 

rate, kg/s
Forces consideredMethods

Particle diameter, 

µm

drag force, Saffman lift force, 

Brownian motion

 

6.3.4.1 Calculation of number of particles dispersed in the chamber 

The total number of particles, N, dispersed inside the chamber was estimated by dividing 

the total mass, M, of particles injected into the chamber by the individual mass, m, of the 

particles: 
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m

M
N =       (6.14)   

 
3

pp d
6

π
ρm ×=           (6.15)   

  

The measured M during the 3 s injection of hollow glass spheres and NanoActive® MgO plus 

were 0.03 kg and 0.012 kg, respectively.   The calculated N for hollow glass spheres (9.17 µm, 

1190 kg/m3) and NanoActive® MgO plus (10 µm, 400 kg/m3) were 6.24x1010 particles and 

5.73x1010 particles, respectively (Table 6.5).  Table 6.5 summarizes the N values for the other 

cases. 

 

Table 6.5. Number of particles dispersed inside the chamber calculated using different particle 

size and density. 

Hollow glass spheres (9.17 µm, 1190 kg/m
3
) 0.030 6.24 x 10

10

NanoActive® MgO plus (6.73 µm, 2420 kg/m
3
) 0.012 3.11 x 10

10

NanoActive® MgO plus (10 µm, 400 kg/m
3
) 0.012 5.73 x 10

10

NanoActive® MgO plus (50 µm, 400 kg/m
3
) 0.012 4.58 x 10

8

Total mass 

injected, kg

Number of particles dispersed 

inside the chamber
Particles

 

6.3.4.2 Calculation of number of particles in a parcel 

Since it is impossible to track each particle in the Eulerian-Lagrangian method, the 

particulate phase was calculated based on particle parcels (Zhang, 2005).  Each parcel contained 

a certain large number of particles with the same properties and moving together in the flow field 

(Zhang, 2005).    

To calculate the number of particles in a parcel, parameters defined in the DPM 

simulation (i.e., dp and ρp, mass flow rate of injection, and time step size) were used.   For 
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unsteady, solid cone injection, the number of particles in a parcel was calculated using the 

following relationship (Fluent, 2006):  

 Particle number per parcel = Flow rate per parcel * (Time step / m)   (6.16)   

Flow rate per parcel = (Total flow rate/ Number of parcels)             (6.17) 

   

An example of calculated number of particles per parcel of hollow glass spheres with its 

corresponding time constant and time step size is shown in Table 6.6.   The time constant is the 

time being modeled in the system, while the time step size is the magnitude of ∆t to get the 

number of time steps.  For example, if the time constant is 1 s and the time step size is 0.05 s, the 

number of time steps is 20.  For each time step, a maximum iteration of 100 was set in this study 

which was above the FLUENT recommendation of 20 maximum iterations per time step for 

better convergence.  More detailed instructions about the transient flow simulation can be found 

in FLUENT User’s Guide (Fluent, 2006).     

A time-dependent problem frequently has a very fast start-up transient that decays 

rapidly.  Therefore, it is often advisable to choose a conservatively small magnitude of ∆t, which 

may then be gradually increased as calculation proceeds (Fluent, 2006).  In this simulation, a 

time step size of 0.05 s was first used to simulate the system at times 1, 2, 3, 4, 5, 6, 7, 8, 9, and 

10 s.  The time step size was then increased to 0.5 s to simulate the system at times 20, 30, 40, 

50, and 60 s.  And last, a time step size of 2 s was used to simulate the system at times 120, 180, 

240, 300, 360, 420, 480, 540, and 600 s.  The result of simulation for the period at 60 s was 

compared with experiment data, which were obtained with filter samplers.  The results of 

simulation at 60 - 600 s were compared with measured data from the Aerodynamic Particle Sizer 

(APS®) spectrometer.  
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Table 6.6. Calculated number of particles per parcel of hollow glass spheres using 100 parcels.  

1 0.01 0.05 4.8x10
-13

1x10
7

10 0.01 0.5 4.8x10
-13

1x10
8

60 0.01 2 4.8x10
-13 4x10

8

Mass of 

each 

particle, kg

No. of 

particles per 

parcel

Hollow glass spheres 

(9.17 µm, 1190 kg/m
3
)

Particle

Time 

constant, 

s

Total flow rate 

(based on 

experiments), 

kg/s

Time step 

size, s

 

6.3.4.3 Post-processing of the simulation results 

The FLUENT software provides post-processing options for displaying, plotting, and 

reporting the continuous and discrete phase parameters.   Using the fine mesh, contour plots and 

pathlines of the magnitude of velocity of the continuous phase were displayed at different times.  

The particle trajectories were also tracked at different times after the injection of particles.   

The nature of the Eulerian-Lagrangian simulation leads to track every particle parcel in 

the flow field.  As a result, every particle parcel has its location calculated at any time (Zhang, 

2005).  Each parcel that contains large number of particles is mathematically symbolized as a 

point in the Eulerian-Lagrangian simulation and is commonly represented as a dot in the post-

processed results (Zhang, 2005).   

In predicting the Cm values  at t=60 s at three different locations (0.6 m, 1.8 m, and 3.0 m 

away from injection point) inside the chamber, a control volume size of 0.4 m x 0.4 m x 0.4 m 

was used.  In predicting the Cn values at the center of the chamber at 60-600 s, three different 

control volume sizes or sub-domains were tried to count the particle parcels within the chamber 

to account for the changes with time.  The three control volume sizes were: (1) 0.2 m x 0.2 m x 

0.4 m (0.016 m3), (2) 0.3 m x 0.3 m x 0.4 (0.036 m3), and (3) 0.4 m x 0.4 m x 0.4 m (0.064 m3).  

Zhang (2005) used a C-based program that located and counted the parcels and then calculated 
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the number and mass concentrations.  In this study, the number of parcels within the control 

volume was counted manually.   Then, based on the number of parcels, the particle 

concentrations (number and mass) were determined.  

6.3.5 Experimental validation 

Two sets of experiments were conducted to validate the CFD simulation results.  The first 

set of experiments was conducted to validate predicted Cm values at three different locations 

inside the chamber (Fig. 6.3), namely, sampling locations 1, 2, and 3, which were located 0.6 m, 

1.8 m, and 3.0 m away from the injection point, respectively.  Each sampling location had a filter 

sampler that collected airborne particles during the first 60 s after particle dispersion (Fig. 6.3).   

The three filter samplers were connected to a sampling pump that supplies a sampling flow rate 

of approximately 2 L/min.  The particle Cm value was obtained by dividing the mass collected by 

the volume of air sampled for 60 s.   

In the second set of experiments, the APS® spectrometer was used to continuously 

measure the Cn value of particles at the center of the chamber (Fig. 6.4) every 60 s for a period 

up to 600 s.    The APS measures the size distribution of particles from 0.5 to 20 µm equivalent 

aerodynamic diameter.      

For both sets of experiments, a nominal mass of 50 g was used for hollow glass spheres 

and NanoActive® MgO plus.  The particles were placed in a powder disperser that was 

connected to a compressed nitrogen gas cylinder.  At a set pressure of 40 psig, the particles were 

aerosolized and injected for about 3 s inside an enclosed chamber where the particle measuring 

instruments were located.  Three replications were conducted for each type of particle per 

experiment.   
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Table 6.7 shows the total mass flow rates of the particles used in the experiments.   Table 6.8 

shows the particle properties (i.e., dp and ρp) assumed in simulation of hollow glass spheres and 

the comparison of the total flow rates used in the simulation and those obtained from 

experiments.  From experiment 2 with APS, the change in particle diameter with time was 

measured.  Table 6.4 shows the different cases used for predicting the transport of NanoActive® 

MgO plus and comparison of the total flow rates used in the simulation and those obtained from 

the experiments. 

 

 

 

 

 

 

 

 

 
 

Figure 6.3. The experimental set-up with three filter samplers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. The experimental set-up with the Aerodynamic Particle Sizer® (APS) spectrometer. 
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Table 6.7. Total mass flow rates of particles obtained from the experiments.  Each value 

represents the mean of three replicates.  

Mean s.d. Mean s.d.

Experiment 1 (Filter samplers) 0.013 0.002 0.004 0.001

Experiment 2 (APS® spectrometer) 0.011 0.001 0.004 0.001

Experiment

Total flow rate, kg/s

Hollow glass spheres NanoActive® MgO plus 

 

 

Table 6.8. Simulation and experimental parameters for hollow glass spheres.  

CFD 9.17 1190 0.010

Experiment 1 (Filter samplers) -- -- 0.013

Experiment 2 (APS® spectrometer) 8.23
a
, 6.49

b
,
 
5.82

c
-- 0.011

a
at t=60 s; 

b
at t=300 s; 

c
at t=600 s

gravitational force, 

drag force

Total flow 

rate, kg/s
Forces consideredMethods

Particle diameter 

(actual), µm

Particle density 

(true), kg/m
3

 

6.3.5.1 Data analysis 

The ASTM standard guide for statistical evaluation of indoor air quality models (ASTM, 

2003) was used to assess the general agreement between predicted concentration (Cp) and 

observed (or measured) concentration (Co).  ASTM (2003) defined the normalized mean square 

error (NMSE) as a measure of the magnitude of prediction error relative to Cp and Co.  The 

formula for calculating NMSE is as follows (ASTM, 2003): 

 

                          (6.18)    

 

In equation 6.18, oC  and pC  are average values for the measured and predicated concentrations, 

respectively, that is, 

              ∑
=

=
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                                                ∑
=

=
n
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pi
p n

C
C                                                         (6.20)    

where n is the number of observed or predicted values.  The parameter ( )2

op CC − is given by: 

                                   ( ) ( )
∑

=

−
=−

n

1i

2

oipi2

op n
CC

CC                                            (6.21)    

Based on ASTM standard guide, a NMSE value of 0.25 or lower is the general indication 

of adequate model performance (ASTM, 2003). 

6.4 Results and Discussion 

6.4.1 Predicted gas velocities 

 Figure 6.5 shows the contour plots of velocities of nitrogen gas for the periods t = 1 to 3 s 

and at t = 4 s when the injection was stopped.  The red color represents the highest velocity 

magnitude (Vmax = 12 m/s) for t = 1, 2, and 3 s (Figs. 6.5a-6.5c).  At t = 4 s, the gas velocities 

had decreased considerably, with Vmax dropping to 0.078 m/s (Fig. 6.5d).   

 The pathlines of the continuous phase inside the chamber after injection are shown in 

Figure 6.6.   Several circular motions or vortices can be observed.  At t = 10 s, distinct circular 

motions of gas were formed at the sides/periphery of the injection area (Fig. 6.6a).  At t = 60, 

300, and 600 s after injection (Figs. 6.6b-6.6d), several circular motions can also be observed 

inside the chamber and Vmax (0.060 m/sec) can be observed near the boundaries (walls and 

corners) of the chamber.  The slowest movement of air can be observed at the center of the 

chamber, but it continuously changed with time.  

6.4.2 Predicted particle trajectories  

 The particle trajectories of the hollow glass spheres are shown in Figures 6.7a-6.7d.    

The particle trajectories at t = 3 s (Fig. 6.7a) seemed to follow the gas flow as shown in Figure 
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6.5d.  Also, the particles appeared to move from the direction of injection point to the other side 

of the chamber as shown at t = 60 s (Fig. 6.7b). At t = 300 s, the particles were more evenly 

distributed inside the chamber (Fig. 6.7c), and at t=600 s, there was a great decrease in number 

of parcels (Fig. 6.7d). 

6.4.3 Comparison of predicted results with experimental data 

6.4.3.1 Hollow glass spheres 
 

Table 6.9 shows the predicted and measured mass concentrations of hollow glass spheres 

at three different sampling locations inside the chamber at t=60 s.  The simulation results were 

based on the control volume dimensions of 0.4 m x 0.4 m x 0. 4 m.  All meshing schemes 

showed good agreement with experimental data in terms of the decreasing trend in mass 

concentration with increasing distance from the injection point of the particles (Table 6.9).  The 

predicted Cm value from the very fine mesh scheme was closest to the measured mean Cm value 

at sampling location 1 (0.6 m from the injection point).  However, the fine mesh scheme had the 

closest Cm values to the measured mean Cm values at sampling location 2 (1.8 m from the 

injection point) and 3 (3.0 m from the injection point).   The use of very fine mesh gave the 

smallest NMSE value, indicating that its results had the best agreement with measured Cm 

values.  This value was lower than the 0.25 limit set by ASTM standards (ASTM, 2003).   The 

use of coarse mesh, on the other hand, gave a NMSE value of 0.27.  Depending on cost of 

computation and time required to obtain the predicted results, the use of coarse meshing scheme 

will give relatively the most cost-effective computation and less simulation time, although the 

NMSE value was above the level set by ASTM. 
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Figure 6.5. Contour plots of the velocities of the gas at various times: (a) 1 s , (b) 2 s, (c) 3 s, and 

(d) 4 s using fine mesh.  Number scale on the left represents the velocity magnitude in m/s.  

Inserts are the more detailed picture of the injection. 

 

 

(a)              (b) 

(c)                 (d) 
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            (a)                        (b) 

 

 

 

 

 

 

 

 

                                 (c)                  (d) 

 

Figure 6.6. Pathlines of the velocity of the gas inside the chamber at various times: (a) 10 s, (b) 60 s, (c),300 s, and (c) 600 s using fine 

mesh.  The plots are in the x-y plane and at the center of the injection port (z = 1.1 cutting plane).  Number scale on the left represents 

the velocity magnitude in m/sec.
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Figure 6.7. Particle trajectories of hollow glass spheres at various times: (a) 3 s, (b) 60 s, (c) 300 

s, and (d) 600 s using fine mesh and 100 parcels.  The dots in the plots represent the parcels that 

contain a large number of particles with the same properties.  Number scale on the left represents 

the particle residence time in s. 

(a)                 (b) 

(c)                 (d) 
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Predicted and measured Cn values for hollow glass spheres at the center of the chamber 

are listed in Table 6.10.  In general, there were large discrepancies between the predicted and 

measured Cn values.  Predicted values were up to two orders of magnitude larger than measured 

values.  The lack of agreement between predicted and measured values could be due to the 

changing particle size distribution with time.  This was not accounted for in the CFD simulation 

in which particle size was assumed constant. There also could be considerable error in the 

estimated numbers of particles at the inlet (Tables 6.5 and 6.6). 

 

Table 6.9. Predicted and measured mass concentrations, Cm, of the hollow glass spheres at t = 60 

s after injection at three different sampling locations.  

Predicted (coarse mesh) 348 136 91 0.27

Predicted (fine mesh) 386 96 45 0.33

Predicted (very fine mesh) 290 156 111 0.24

Cm, mg/m
3

Distance from injection point, m

0.6     

(location 1)

1.8     

(location 2)

3.0        

(location 3)

Measured (filter samplers)
247 

(s.d.=132)

84    

(s.d.=35)

19      

(s.d.=9)

NMSE

 

 

Table 6.10. Comparison of predicted and measured number concentrations, Cn, of hollow glass 

spheres at the center of the chamber. Predicted data started at 60 s for comparison to the first 

measured data which was obtained at 60 s.  

Mean
a

s.d.

60 199,841 64,175 71,546 14,200 2,946

120 598,385 289,075 182,117 2,257 486

180 526,839 173,445 234,151 3,443 2,105

240 331,713 196,571 312,201 2,440 645

300 351,226 115,630 26,017 2,647 928

360 188,621 23,126 52,033 3,067 965

420 331,713 127,193 182,117 3,910 871

480 188,621 46,252 104,067 5,430 1,104

540 260,167 92,504 130,084 5,143 1,282

600 240,655 69,378 52,033 4,893 1,279

NMSE 78 34 39
aMean of three replicates

Time, s

Cn, #/cm
3

Predicted             

(0.4m x 0.4m x 0.4m)

Predicted             

(0.3m x 0.3m x 0.4m)

Predicted                

(0.2 m x 0.2m x 0.4m)

Measured (APS
®

 spectrometer)
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6.4.3.2 NanoActive® MgO plus 

Predicted results for NanoActive® MgO plus did not agree with measured data.   Table 

6.11 shows the predicted and measured Cm values.  The measured Cm was highest at the location 

farthest from the injection point (3.0 m).  Predicted results, on the other hand, showed that 

concentration was highest at location nearest the injection point (0.6 m).   The disagreement in 

values is probably due to the irregular and polydisperse nature of NanoActive® MgO plus.  The 

NMSE value was also higher than the ASTM guideline value of 0.25.  With this type of particles 

(i.e., nano-aggregates), it appears that direct implementation of the DPM of FLUENT that uses 

the Eulerian-Lagrangian approach appeared to be not applicable.   Zhang and Zheng (2007), 

however, were able to simulate Cm of nano-aggregates at the center of a room-scale chamber.  

They achieved this by developing a collision model for a large number of particles with 

significantly different sizes and incorporate the model to the Eulerian-Eulerian approach.   They 

also used user-defined functions to account for factors such as diffusivity and source terms. 

Predicted and measured Cn values for NanoActive® MgO plus are summarized in Table 

6.12.  Similar to hollow glass spheres, large discrepancies between the predicted and measured 

Cn values were observed.  Again, this can be due to possible error in estimating the number of 

particles at the inlet (Tables 6.5 and 6.6).  In addition, this could be accounted for by the 

changing particle size distribution.   In the simulation, it was assumed that the NanoActive® 

MgO plus was spherical and monodisperse and that the size did not change with time.   
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Table 6.11. Comparison of the predicted and measured mass concentrations, Cm, of 

NanoActive® MgO plus (10 µm, 400 kg/m3) at t=60 s. Each experimental data point represents 

the mean of three replicates.  

Predicted (coarse mesh) 216 135 37 3.34

Measured (filter samplers)
153 

(s.d.=107)

505 

(s.d.=292)

707 

(s.d.=307)

Cm, mg/m
3

Distance from injection point, m NMSE
0.6     

(location 1)

1.8     

(location 2)

3.0     

(location 3)

 

 

 

Table 6.12. Comparison of predicted and measured number concentrations, Cn, of NanoActive® 

MgO plus at the center of the chamber. Predicted data started at 60 s for comparison to the first 

measured data which was obtained at 60 s.    

 

Mean
a

s.d.

60 644,576 336,877 190,985 22,533 2,574

120 531,178 190,985 190,985 7,440 400

180 483,432 159,155 95,493 6,543 1,762

240 483,432 201,596 167,112 6,437 1,855

300 346,161 53,052 119,366 6,677 1,682

360 376,003 159,155 143,239 6,510 1,762

420 483,432 169,765 143,239 6,293 1,626

480 358,098 116,713 47,746 6,147 1,635

540 298,415 137,934 143,239 5,813 1,993

600 370,034 190,985 119,366 5,700 1,613

NMSE 55 23 16
a
Mean of three replicates

Time, s

Cn, #/cm
3

Predicted             

(0.4m x 0.4m x 0.4m)

Predicted             

(0.3m x 0.3m x 0.4m)

Predicted                

(0.2 m x 0.2m x 0.4m)

Measured (APS
®

 spectrometer)
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6.5 Conclusions 

 

This study was conducted to predict the transport of aerosolized hollow glass spheres and 

NanoActive® MgO plus in an enclosed chamber using the Eulerian-Lagrangian approach. The 

following conclusions were drawn from this research:  

1. For hollow glass spheres, the predicted mass concentrations at three different 

locations inside the chamber, at t = 60 s, had relatively good agreement with 

measured values.  The very fine mesh scheme showed the smallest NMSE value that 

was within the limit set by ASTM standards.  Predicted number concentrations, 

however, did not show good agreement with measured data. 

2. For NanoActive® MgO plus, there were large discrepancies between predicted and 

measured mass and number concentrations.  Direct implementation of discrete phase 

model of FLUENT appeared to be not applicable with the irregularly-shaped and 

polydisperse nature of nano-agglomerates.  Incorporation of other models (i.e., 

collision model) and other user-defined functions might work with nano-

agglomerates. 
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7. Conclusions and Recommendations 

7.1 Conclusions 

 

The aerodynamic, infrared (IR) extinction, and charging properties of nanostructured 

metal oxide particles were investigated in this research.  The following conclusions were drawn: 

1. The two particles (i.e., NanoActive® MgO and MgO plus) differed significantly in 

particle size distribution and concentration.  For example, NanoActive® MgO had a 

geometric mean diameter (GMD) of 3.12 µm (s.d. = 1.30 µm) while the NanoActive® 

MgO plus had a mean GMD of 11.1 µm (s.d. = 0.49 µm).   

2. Brass flakes had the greatest overall mean volume extinction coefficient, σv (1.64 m2/cc, 

s.d.=0.39), followed by NaHCO3 (0.93 m2/cc, s.d.=0.12) and ISO fine test dust (0.91 

m2/cc, s.d.=0.03). Based on the σv values, ISO fine test dust and NaHCO3 appeared to be 

the most promising alternative to brass flakes. 

3.  Tribocharging using Teflon® was able to charge the particles positively; however, the 

resulting charge was generally small compared with their Gaussian limits.  NanoActive® 

TiO2 gained the highest net charge-to-mass ratio (1.21 mC/kg, s.d.=0.07) followed by 

NanoActive® MgO (0.81 mC/kg, s.d.=0.12), and ISO fine test dust (0.66 mC/kg, s.d.= 

0.13).   

4. Comparison of predicted and measured mass concentrations showed good agreement for 

hollow glass spheres, but not for NanoActive® MgO plus. Comparison of predicted and 

measured number concentrations showed large discrepancies for both particles.  
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7.2 Suggestions for Further Research 

 

The following are recommended for future studies: 

1. Investigate the effect of manipulating the size and/or morphology of ISO fine test dust 

and NaHCO3 to enhance their IR extinction performance; 

2. Measure the extinction properties of the materials using field tests.  

3. Predict the extinction properties of the materials. 

4. Increase or optimize the contact area between particles and tribocharger surface to 

increase the charge through triboelectrification. 

5. Employ a more intensive simulation using user-defined functions (UDF), different 

modeling approach (i.e., Eulerian-Eulerian), collision model and different turbulence 

models (i.e., realizable k-ε) for nano-agglomerates.   
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Appendix A - Photos of instruments and experimental set-ups 
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Figure A.1. The Aerodynamic Particle Sizer® (APS) spectrometer (Model 3321, TSI Inc., 

Shoreview, MN) with a dilution unit (Model 3302A, TSI, Inc., Shoreview, MN), for measuring 

the equivalent aerodynamic diameter of particles from 0.5 µm to 20 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. The Scanning Mobility Particle Sizer® (SMPS) spectrometer (Model 3936, TSI Inc., 

Shoreview, MN) for measuring the equivalent mobility diameter of particles from ~ 10 nm to 

1000 nm.    
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Figure A.3 The Tapered Element Oscillating Microbalance (TEOM®) (Model 1400a, Thermo-

Fisher Scientific, Inc., Waltham, MA), for measuring the mass concentration of particles. 
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Figure A.4. Experimental set-up for measuring the extinction coefficient of particles. 

 

 

 

 

 

 

 

 

 

 

Figure A.5. The powder disperser used to disperse particles in the chamber. 
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(a) 

 

 

 

 

 

 

 

    (b) 

 

 

Figure A.6. A faraday-cage device for determining the charge of deployed particles.  The device 

consists of two concentric metal cylinders.  The inner cylinder, which is insulated from the outer 

cylinder, is electrically connected to the electrometer input.  The outer cylinder is connected to 

ground and serves to shield the inner cylinder from external fields.  The device is placed directly 

in front of the particle deployment location, allowing deployed particles to pass through the inner 

cylinder.  
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Figure A.7. The Keithley 6514 Electrometer for measuring electrostatic charge. 
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Appendix B - Calibration of the dynamic Faraday cup sampler 
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Figure B.1. Schematic diagram of the circuit for calibrating the Faraday cup sampler.   

 

Table B.1. Calibration data for the Faraday cup sampler. 

 

 

 

 

 

 

 

 

 

 

 

0.001 1 1

0.01 10 10.3

0.1 100 101.3

0.001 2 2.1

0.01 20 20.8

0.1 200 200.9

0.001 3 3.1

0.01 30 31.1

0.1 300 306.2

Measured charge 

(Faraday cage sampler), 

nC

Voltage,  

V

Capacitor, 

µF
Calculated charge, nC

1

2

3
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Appendix C - Experimental data 
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Data for Chapter 3 

Table C.1. Normalized particle number concentrations of NanoActive® MgO (11 g, 80 psig) 

measured with SMPS.   

R1 R2 R3

45.1 18037.9 665.2 3992.0

48.3 14887.9 0.0 3833.9

51.7 7464.9 0.0 1716.2

55.2 5979.1 531.3 3785.9

59.1 2028.7 489.5 1060.4

63.1 1376.0 2037.0 2681.2

67.4 892.6 3231.7 2052.4

72.0 1178.4 1695.1 3448.7

76.8 1054.9 2432.0 4284.2

82.0 2058.7 4578.4 3343.4

87.5 4306.3 5383.0 7581.5

93.3 2694.5 7064.3 6589.5

99.5 2942.9 10969.4 12004.7

106.0 4025.6 17757.3 21821.9

113.0 5503.4 17546.1 21730.5

120.3 4836.0 23525.1 36468.0

128.1 5708.6 25631.0 25833.9

136.4 7329.0 33421.2 32411.2

145.2 8870.4 35097.8 21018.3

154.5 6758.3 49017.0 26954.1

164.4 17058.6 66569.0 22618.7

175.0 23494.7 100405.0 29957.9

186.1 28338.5 100680.0 54971.4

197.9 35818.0 112140.0 98721.7

210.6 64308.3 133606.0 133109.0

224.1 67192.4 130121.0 176712.0

238.5 69890.0 127171.0 202291.0

253.8 68011.0 138882.0 235054.0

270.2 67028.5 170492.0 231121.0

287.6 84006.1 221184.0 273332.0

306.2 76595.2 207088.0 300997.0

326.3 82426.9 280827.0 324278.0

347.7 93070.7 364543.0 368861.0

370.8 117061.0 430418.0 415141.0

395.5 158436.0 404089.0 399084.0

422.0 167713.0 461699.0 446445.0

450.4 217058.0 549697.0 503263.0

481.0 217558.0 583608.0 505194.0

Diameter, nm
dCn/dlogdp, #/cm

3

 

 

 

 



 168 

 

Table C.1. Cont…  

 

R1 R2 R3

513.5 250561.0 555151.0 496416.0

548.6 243085.0 537187.0 543296.0

586.6 263152.0 547527.0 555546.0

627.4 266805.0 676772.0 646838.0

671.3 271495.0 643051.0 660924.0

718.5 216391.0 599367.0 648128.0

769.2 231052.0 593678.0 669137.0

823.8 252108.0 680464.0 738298.0

882.4 240366.0 743057.0 757545.0

945.5 226283.0 675423.0 668811.0

1013.2 219455.0 582882.0 624563.0

1086.1 188258.0 549689.0 556931.0

1164.3 184631.0 472115.0 513593.0

1248.5 161468.0 435534.0 435283.0

1338.8 143647.0 379923.0 384760.0

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.2. Normalized particle number concentrations of NanoActive® MgO (11 g, 80 psig) 

measured with APS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 R2 R3

542.0 140334.0 101319.0 127096.0

583.0 187447.0 137247.0 169139.0

626.0 231655.0 170783.0 204067.0

673.0 272162.0 201258.0 234390.0

723.0 277348.0 205394.0 230008.0

777.0 254779.0 189945.0 205655.0

835.0 209670.0 157161.0 164844.0

898.0 167374.0 125448.0 128850.0

965.0 125301.0 92589.4 93772.0

1037.0 96947.0 70187.7 70731.0

1114.0 72119.4 52823.8 51992.8

1197.0 55056.7 39514.9 38873.7

1286.0 43590.8 30463.2 29994.6

1382.0 33716.5 23198.1 22800.4

1486.0 27040.4 18108.2 18004.4

1596.0 21795.3 14274.8 14686.0

1715.0 17028.6 11239.7 11810.3

1843.0 13817.6 9105.0 9658.5

1981.0 11291.9 7390.2 7739.3

2129.0 8892.8 5747.0 6264.3

2288.0 7005.3 4641.2 5152.6

2458.0 5450.9 3773.8 4310.8

2642.0 4403.1 2957.5 3519.5

2839.0 3371.0 2460.0 2845.5

3051.0 2792.8 1955.7 2471.4

3278.0 2362.4 1542.7 1952.0

3523.0 2046.1 1216.7 1631.7

3786.0 1664.3 984.9 1367.6

4068.0 1361.8 877.8 1144.2

4371.0 1125.8 696.8 921.6

4698.0 989.6 587.5 772.4

5048.0 829.0 466.7 645.2

5425.0 704.5 349.3 525.7

5829.0 585.9 275.5 449.9

6264.0 494.0 229.6 374.6

6732.0 392.1 186.7 308.7

7234.0 367.4 140.4 275.0

7774.0 343.8 112.0 211.9

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.2. Cont…. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 R2 R3

8354.0 260.9 90.3 183.8

8977.0 197.2 73.5 176.7

9647.0 137.1 70.3 132.5

10370.0 133.5 48.7 101.8

11140.0 119.4 24.1 105.5

11970.0 101.4 17.6 58.5

12860.0 89.7 10.9 63.1

13820.0 56.5 8.3 60.1

14860.0 62.8 5.5 28.6

15960.0 12.8 0.0 17.0

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.3. Normalized particle number concentrations of NanoActive® MgO (11 g, 80 psig) - 

merged SMPS and APS data. 

R1 R2 R3

44.6 18016.1 665.2 3990.9

62.5 14806.7 -- 3804.6

66.7 7441.2 -- 1759.1

71.2 5841.2 531.0 3707.4

75.9 2006.1 512.9 1119.6

81.0 1355.9 2064.0 2646.2

86.3 906.4 3174.8 2128.9

91.9 1171.5 1715.7 3494.9

97.9 1117.4 2546.7 4204.4

104.2 2214.2 4573.3 3657.7

110.9 4183.7 5465.9 7455.6

118.0 2715.1 7289.0 7089.3

125.5 3040.3 11587.6 12887.3

133.4 4168.7 17565.8 21813.1

141.6 5434.2 18029.9 23259.3

150.4 4932.6 23715.8 35291.3

159.8 5768.0 26387.5 26607.2

169.7 7489.6 33923.5 30993.0

180.1 8755.3 36349.0 21798.3

191.2 7866.4 51131.1 26354.5

203.0 17882.1 71724.7 23684.7

215.2 24167.7 99614.2 33763.7

228.5 29454.9 102301.4 60558.1

242.6 41111.9 116476.1 105801.7

257.5 64163.7 131856.7 140647.6

273.5 67965.2 129578.1 181311.9

290.4 69807.7 129115.9 208408.7

308.5 67826.2 144459.5 231293.6

327.5 69988.9 179846.5 239292.2

348.2 82100.9 220654.8 279115.1

370.3 77638.8 219671.3 306245.8

394.0 85882.6 298331.3 334405.6

419.4 97143.6 378937.0 379874.8

446.6 126447.2 424754.3 412131.7

475.8 160751.0 417768.3 410831.6

507.2 179740.5 483271.5 460401.0

540.5 263691.5 390514.7 392420.7

575.9 318282.1 437591.7 437704.2

613.3 392763.4 471991.3 494946.2

654.2 456292.0 514748.0 567948.4

698.1 498712.2 556337.8 604565.6

745.3 440967.1 563277.4 585455.4

795.9 329620.1 465447.5 492470.5

850.3 248578.9 403571.0 437611.7

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.3. Cont… 

 

R1 R2 R3

908.7 218922.2 378810.1 419024.4

971.5 203070.0 401850.9 430083.3

1038.9 180365.1 413599.7 420584.6

1111.3 159418.6 367795.6 366836.9

1189.0 144680.5 316760.9 336221.0

1272.4 122269.1 293477.8 297527.8

1361.9 114394.1 251263.1 271083.3

1458.1 98586.1 229754.3 229220.6

1561.3 85996.1 199748.8 202210.5

1674.2 24267.8 15726.8 15902.1

1797.9 19391.3 12677.3 12381.8

1931.1 15323.5 10141.1 10735.3

2072.4 12607.8 8286.7 8815.8

2226.8 9937.2 6473.2 7139.6

2392.9 8383.5 5425.2 5882.5

2571.6 6670.4 4386.4 4876.1

2763.9 5304.0 3636.4 4124.1

2970.9 4299.4 2921.4 3480.1

3193.7 3401.5 2399.1 2823.5

3433.4 2788.5 1991.5 2441.5

3691.4 2373.2 1600.2 2021.9

3969.1 2069.6 1280.6 1612.3

4268.0 1766.0 1034.3 1428.6

4589.7 1463.2 911.4 1218.2

4935.9 1201.4 762.8 1006.8

5308.5 1059.8 639.8 841.1

5709.6 930.1 552.6 734.1

6141.3 794.8 421.2 604.5

6605.9 692.5 339.6 518.0

7106.0 557.1 255.0 434.3

7644.3 500.4 236.4 371.8

8223.7 380.6 179.5 310.0

8847.3 396.2 142.6 286.9

9518.5 354.2 114.2 211.6

10240.9 269.3 93.8 195.9

11018.5 210.1 78.5 191.8

11855.5 145.9 77.6 142.7

12756.5 152.9 53.6 114.2

13726.2 134.5 26.6 119.2

14769.9 116.2 20.2 67.7

15893.4 101.8 12.5 71.6

17102.6 69.1 10.0 72.5

18404.2 78.9 7.1 36.9

19795.8 18.4 -- 23.2

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.4. Normalized particle number concentrations of NanoActive® MgO plus (13 g, 80 

psig) measured with SMPS. 

 

 

 

 

 

R1 R2 R3

45.1 9500.9 0.0 26375.3

48.3 4405.9 0.0 13678.5

51.7 4202.8 582.5 14427.6

55.2 4356.1 545.5 11141.7

59.1 1561.5 0.0 10596.2

63.1 475.3 497.2 4782.8

67.4 2788.3 0.0 1434.6

72.0 430.0 0.0 3527.2

76.8 1259.4 0.0 7005.7

82.0 0.0 0.0 4148.9

87.5 307.5 358.7 5235.2

93.3 279.6 0.0 11189.6

99.5 142.4 0.0 10100.1

106.0 1255.5 0.0 13054.0

113.0 743.4 224.5 17982.6

120.3 2138.1 654.4 20979.1

128.1 2612.8 440.7 20991.8

136.4 6635.3 762.7 25887.9

145.2 3709.0 1889.6 28786.6

154.5 5737.7 1686.5 42807.3

164.4 5451.2 3087.0 41997.4

175.0 7963.7 4281.0 61902.1

186.1 10357.5 7018.7 67042.5

197.9 9406.1 10704.3 72601.4

210.6 15112.6 10541.2 86607.7

224.1 21996.7 11887.6 91767.7

238.5 10513.0 17095.9 99358.9

253.8 14804.3 18643.1 107800.0

270.2 16900.1 15683.7 100640.0

287.6 21702.3 13116.3 99595.3

306.2 19437.7 16383.3 97607.9

326.3 14102.7 18813.1 102432.0

347.7 19418.6 20395.9 105447.0

370.8 15936.1 19679.3 103105.0

395.5 14302.5 16632.3 98126.7

422.0 13691.1 15087.7 94877.2

450.4 13471.3 17141.3 84407.2

481.0 15915.0 13700.2 91951.1

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.4. Cont… 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R1 R2 R3

513.5 14449.6 14844.4 81875.6

548.6 9438.9 13543.8 70035.1

586.6 13327.3 18164.1 80015.8

627.4 14302.9 14591.9 77971.4

671.3 11589.3 13620.0 69157.8

718.5 12891.2 10195.3 75028.6

769.2 10814.5 11174.8 59356.7

823.8 12791.7 9109.7 65491.1

882.4 13650.2 14612.6 71338.5

945.5 15457.9 10239.2 58386.4

1013.2 9419.3 12151.9 63978.1

1086.1 9190.5 13849.0 55145.6

1164.3 10001.3 12201.5 43235.8

1248.5 8182.7 10511.7 34790.6

1338.8 9383.0 6130.1 35762.2

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.5. Normalized particle number concentrations of NanoActive® MgO plus (13 g, 80 

psig) measured with APS. 

R1 R2 R3

542.0 6534.2 6514.0 11707.6

583.0 8074.0 8180.3 15332.2

626.0 9464.1 9889.2 19247.7

673.0 11026.1 11572.9 23408.8

723.0 12186.9 12442.6 25998.7

777.0 12611.1 12902.2 27592.8

835.0 12359.5 12530.8 27726.2

898.0 12473.2 12370.5 27467.1

965.0 11919.0 11862.3 25715.3

1037.0 11658.5 11260.9 24819.0

1114.0 10957.9 10579.8 23081.8

1197.0 10144.8 9852.9 21836.5

1286.0 8788.7 9142.8 20081.7

1382.0 7908.2 7797.4 17496.6

1486.0 6680.4 6928.0 15493.6

1596.0 5748.9 6039.3 13191.3

1715.0 4888.2 5218.7 11329.3

1843.0 4187.3 4596.6 9555.9

1981.0 3461.7 3949.0 8465.7

2129.0 3013.6 3301.5 7240.5

2288.0 2486.4 2702.1 5842.8

2458.0 1887.3 2084.7 4615.3

2642.0 1534.5 1606.9 3590.1

2839.0 1221.9 1220.7 2924.4

3051.0 969.9 956.7 2265.3

3278.0 781.5 761.1 1749.8

3523.0 632.9 601.0 1371.9

3786.0 584.4 553.2 1075.1

4068.0 541.7 492.4 951.6

4371.0 537.0 428.9 833.3

4698.0 550.7 437.2 781.6

5048.0 496.6 443.2 726.8

5425.0 529.5 412.4 725.6

5829.0 529.5 437.0 749.3

6264.0 513.9 426.7 746.6

6732.0 648.9 536.0 808.7

7234.0 612.2 589.2 825.8

7774.0 777.1 619.0 899.8

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.5. Cont… 

 

R1 R2 R3

8354.0 678.1 674.6 994.0

8977.0 768.4 736.0 1170.9

9647.0 749.8 755.6 1182.3

10370.0 699.2 578.2 1041.4

11140.0 553.1 477.5 955.2

11970.0 364.6 360.9 768.9

12860.0 369.5 240.0 557.3

13820.0 300.4 189.2 399.8

14860.0 175.8 132.9 311.7

15960.0 168.0 99.7 196.1

17150.0 68.4 67.8 86.6

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.6. Normalized number concentrations of NanoActive® MgO plus (13 g, 80 psig) - 

merged SMPS and APS data. 

R1 R2 R3

45.1 9500.9 -- 26375.3

48.3 4405.9 -- 13749.7

51.6 4202.8 582.5 14453.9

55.2 4356.1 545.5 11210.2

59.0 1561.5 -- 10560.4

63.1 475.3 497.2 4972.2

67.4 2788.3 -- 1520.8

72.0 430.0 -- 3435.1

76.7 1259.4 -- 6859.6

81.9 -- -- 4268.9

87.4 307.5 358.7 5163.3

93.2 279.0 -- 10857.5

99.3 145.3 -- 10090.4

105.8 1230.2 -- 12807.0

112.7 758.8 224.5 17710.4

120.0 2085.4 650.6 20529.0

127.6 2591.2 444.4 20988.8

135.8 6422.5 754.2 25376.4

144.5 3852.7 1833.6 28738.8

153.8 5582.0 1711.9 40933.3

163.6 5476.8 2982.7 42115.4

174.0 7736.7 4195.2 59427.3

184.9 10127.0 6800.1 66414.2

196.6 9513.7 10482.5 71901.1

209.1 14483.3 10462.9 84707.4

222.4 21306.5 11756.6 91099.6

236.6 11901.2 16641.2 98312.7

251.7 14213.1 18466.6 106598.4

267.8 16629.6 15982.9 101883.4

285.0 21038.3 13518.5 99866.1

303.2 19796.7 15907.1 98036.2

322.9 14932.4 18476.0 101685.0

344.0 18588.8 20174.3 104991.6

366.6 16541.3 19819.9 103600.2

390.8 14597.5 17171.8 99109.9

416.7 13803.7 15372.9 95532.4

444.5 13508.6 16753.2 86493.2

474.4 15372.7 14374.9 90403.9

506.5 14786.2 14597.7 83969.6

540.9 13956.1 15454.1 51088.5

579.0 16785.7 19157.3 58286.6

619.9 17388.9 18118.7 58936.5

663.9 13990.7 15245.2 51593.1

711.3 13175.0 12517.9 51583.0

Diameter, nm
dCn/dlogdp, #/cm

3
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 Table C.6. Cont… 

R1 R2 R3

762.3 12061.3 12173.0 44635.9

817.2 12493.6 11030.2 45954.8

876.3 12726.6 13050.4 48675.1

939.9 13447.0 11111.4 42635.5

1008.3 10617.3 11635.0 44070.1

1082.0 10073.7 12202.9 39521.9

1161.2 10203.7 11173.1 32911.1

1246.4 9029.5 10045.8 27983.4

1338.1 9072.8 7526.7 27629.3

1437.1 7845.6 7930.2 17612.0

1543.9 6910.9 6977.0 15656.1

1657.3 5902.1 6151.3 13609.8

1781.2 5095.8 5383.7 11782.0

1914.5 4378.0 4704.5 10013.3

2057.9 3685.5 4122.1 8638.4

2212.3 3146.3 3547.8 7697.7

2378.4 2762.0 3006.5 6535.4

2557.1 2221.0 2433.7 5310.2

2749.5 1723.6 1892.6 4172.1

2956.6 1416.1 1464.4 3302.8

3179.4 1114.0 1089.5 2694.6

3419.3 912.9 923.1 2098.2

3677.4 725.6 691.4 1635.5

3955.2 600.2 586.0 1293.0

4254.2 564.2 535.4 1036.6

4576.0 522.2 475.5 918.0

4922.3 518.1 416.9 813.3

5295.1 543.7 426.3 768.9

5696.3 500.8 444.5 730.8

6128.2 529.3 418.5 732.6

6593.0 537.8 435.6 752.4

7093.3 528.8 441.6 757.1

7631.7 634.6 522.5 818.1

8211.3 646.5 602.0 853.5

8835.1 775.9 640.4 921.2

9506.5 730.5 694.1 1014.0

10229.2 794.8 762.9 1198.1

11007.0 816.0 825.2 1288.0

11844.2 782.4 679.8 1171.2

12745.3 672.0 557.9 1091.8

13715.3 427.4 443.3 923.2

14759.2 416.7 286.3 678.3

15882.8 382.4 232.1 478.3

17092.3 201.7 167.8 395.9

18394.0 230.0 121.8 269.4

19795.2 114.6 111.0 143.1

Diameter, nm
dCn/dlogdp, #/cm

3
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Table C.7. Geometric mean diameters of NanoActive® MgO and NanoActive® MgO plus based 

on the SMPS and APS data. 

 

R1 R2 R3 R1 R2 R3

2 895 917 870 11598 11034 11255

6 880 870 873 9356 9822 7898

10 865 891 887 7090 7198 5285

20 875 929 875 3994 4233 3786

30 940 900 897 2824 3410 2816

60 913 866 910 2196 2326 2029

R1 R2 R3 R1 R2 R3

2 1082 1089 1091 3057 4833 4677

6 1104 1124 1118 2233 3057 2692

10 1114 1136 1153 1892 2366 1911

20 1140 1150 1131 1582 2119 1576

30 1128 1148 1144 1411 1720 1391

60 1170 1161 1183 1238 1536 1187

Geometric mean diameter, nm

Time, min

NanoActive® MgO Plus (13 g, 80 psig)

SMPS APS

Time, min

NanoActive® MgO (11 g, 80 psig)

SMPS APS
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Table C.8. Number concentrations of NanoActive® MgO plus and NanoActive® MgO measured 

with SMPS and APS. 

 

R1 R2 R3 R1 R2 R3

2 14000 13600 87700 8470 7990 16800

6 12500 12500 73100 9370 8720 13600

10 7880 7700 57200 8220 7510 11400

20 4170 6070 43200 7040 6220 9490

30 2830 5690 36500 6150 5500 8180

60 1480 3690 22900 4480 3770 5200

R1 R2 R3 R1 R2 R3

2 156000 410000 421000 110000 110000 134000

6 109000 236000 266000 105000 93700 107000

10 60500 208000 155000 100000 85600 102000

20 38400 143000 105000 87400 78500 91700

30 23700 124000 88700 77900 70200 90400

60 7960 27700 32400 59600 54300 69500

Time, min

NanoActive® MgO (11 g, 80 psig)

SMPS APS

Number concentration, #/cm
3

Time, min

NanoActive® MgO Plus (13 g, 80 psig)

SMPS APS
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Table C.9. Mass concentrations of NanoActive® MgO plus and NanoActive® MgO measured 

with SMPS and APS. 

 

 

R1 R2 R3 R1 R2 R3

2 1.1 1.2 5.4 85.7 124.0 137.0

6 0.9 0.8 4.8 67.7 80.0 68.2

10 0.5 0.5 4.0 29.0 26.6 24.7

20 0.3 0.5 3.0 11.1 10.1 10.7

30 0.3 0.4 2.8 6.6 6.8 8.0

60 0.2 0.3 1.9 3.5 3.0 3.5

R1 R2 R3 R1 R2 R3

2 26.1 70.6 73.0 28.9 33.4 37.5

6 19.9 49.6 48.4 23.8 38.7 27.5

10 12.1 46.5 32.3 20.8 26.3 20.3

20 8.4 35.3 22.3 16.4 20.9 15.9

30 5.5 29.0 20.7 13.6 16.3 14.5

60 2.2 7.1 9.3 9.1 11.1 9.7

Mass concentration, mg/m
3

Time, min

NA MgO Plus (13 g, 80 psig)

SMPS APS

Time, min

NA MgO (11 g, 80 psig)

SMPS APS
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Table C.10. Mass concentrations of NanoActive® MgO plus and NanoActive® MgO measured 

with TEOM. 

 

R1 R2 R3 R1 R2 R1 R2 R3 R1 R2

0 59.9 0.1 0.4 0.2 0.0 0.0 0.4 6.0 3.3 0.2

1 363.2 266.5 298.3 518.8 342.3 487.4 830.2 624.9 310.2 644.1

2 234.9 202.0 237.6 283.2 316.0 260.5 539.6 549.0 330.9 476.4

3 204.0 185.6 210.3 186.9 244.2 264.0 453.5 472.3 251.9 335.4

4 193.4 158.6 206.5 168.2 161.4 257.0 309.5 425.0 204.3 230.6

5 196.8 157.8 182.8 120.9 158.6 215.2 301.7 347.2 158.9 167.2

6 185.5 146.6 172.0 100.9 128.3 185.6 253.2 301.9 153.6 147.4

7 156.6 138.4 149.8 87.7 115.6 157.7 200.3 266.8 125.0 131.8

8 152.4 140.1 143.1 81.9 90.5 142.1 174.7 224.0 111.5 116.7

9 145.8 135.3 137.2 69.3 79.2 122.5 157.7 194.9 96.8 107.5

10 141.7 128.7 128.1 63.4 67.9 110.9 138.0 182.7 86.4 98.2

11 131.2 116.6 118.6 58.6 60.4 95.0 123.7 165.4 73.7 81.1

12 120.4 111.7 120.0 57.1 53.3 92.2 118.9 151.3 69.4 79.3

13 120.3 108.7 115.2 51.8 48.7 83.0 108.3 134.5 62.5 69.5

14 115.0 101.8 111.8 47.6 46.0 72.3 97.6 124.6 56.8 66.3

15 110.7 99.5 107.6 45.6 43.1 71.8 91.0 118.9 52.0 65.6

16 107.8 94.3 98.7 43.9 39.6 68.0 86.0 109.5 50.8 60.7

17 98.2 89.9 97.7 41.4 36.6 61.3 80.2 100.5 45.5 55.2

18 99.1 89.6 95.9 39.3 36.2 57.4 74.7 99.0 44.8 51.6

19 96.7 89.5 96.2 36.2 35.0 54.9 70.3 92.9 42.2 51.0

20 95.1 85.5 90.4 35.4 33.8 52.7 64.6 88.1 40.3 48.0

21 94.2 81.7 89.7 34.5 31.9 50.4 62.8 85.9 38.3 45.8

22 91.6 81.1 88.2 33.3 29.7 48.4 60.8 80.6 36.0 43.0

23 91.6 -- 83.0 30.7 29.5 46.4 58.0 76.3 33.4 42.0

24 91.6 -- 84.3 30.2 28.7 45.2 55.1 73.5 33.1 41.0

25 91.6 -- 82.6 29.7 28.2 42.9 52.2 70.6 31.5 37.2

26 91.6 -- 80.1 28.0 26.6 40.0 51.4 66.8 29.9 36.3

27 91.6 -- 78.7 27.9 25.0 39.7 48.8 64.7 29.3 34.8

28 91.6 -- 75.2 27.0 25.1 38.3 48.1 62.8 27.0 33.5

29 91.6 -- 74.5 26.4 23.7 37.1 46.3 59.4 26.8 32.6

30 91.6 -- 70.4 25.1 23.7 36.8 45.3 57.2 26.4 31.9

NanoActive® MgO plus NanoActive® MgO 
Time, 

min
(40 g, 80 psig)(13 g, 80 psig) (37 g, 40 psig)(11 g, 80 psig)
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Data for Chapter 4 

 

Table C.11. Mass extinction coefficients of the particles. 

 

3-5 µm 8-12 µm Overall 

NanoActive® MgO plus 1 0.49 0.15 0.23

2 0.46 0.14 0.22

3 0.55 0.15 0.25

NanoActive® MgO 1 0.69 0.12 0.26

2 0.64 0.10 0.23

3 0.67 0.10 0.23

NanoActive® TiO2 1 1.32 0.28 0.52

2 0.86 0.18 0.34

3 1.12 0.23 0.44

NaHCO3 1 0.82 0.70 0.72

2 0.65 0.55 0.57

3 0.81 0.68 0.71

ISO fine test dust 1 0.73 0.78 0.77

2 0.71 0.74 0.73

3 0.71 0.72 0.72

Brass flakes 1 1.29 1.46 1.42

2 1.19 1.33 1.30

3 1.83 2.06 2.00

Graphite flakes 1 2.57 2.84 2.78

2 3.32 3.55 3.50

3 3.21 3.55 3.44

Carbon black 1 2.24 2.15 2.17

2 1.74 1.28 1.39

3 1.70 1.55 1.60

MgO nanorods 1 0.69 0.79 0.77

2 0.86 0.35 0.47

TiO2 nanorods 1 0.92 0.17 0.35

2 0.92 0.25 0.41

3 1.16 0.26 0.48

Particle Rep 
   Mass extinction coefficent, m

2
/g
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Table C.12. Masses dispersed and mass concentrations of particles measured using filter 

samplers. 

 

NanoActive® MgO plus 1 3.05 1.40

2 3.04 1.93

3 3.03 1.76

NanoActive® MgO 1 2.66 1.10

2 2.35 0.96

3 2.16 0.84

NanoActive® TiO2 1 2.03 1.14

2 2.77 1.91

3 2.71 1.76

NaHCO3 1 3.06 1.39

2 2.98 1.98

3 2.72 1.40

ISO fine test dust 1 2.53 0.72

2 2.53 0.71

3 2.45 0.86

Brass flakes 1 3.01 2.70

2 3.01 2.83

3 3.01 2.33

Graphite flakes 1 2.99 2.55

2 2.96 1.79

3 3.01 2.12

Carbon black 1 2.91 1.59

2 2.75 2.48

3 2.88 2.04

MgO nanorods 1 1.04 0.20

2 1.34 0.81

TiO2 nanorods 1 2.87 2.60

2 2.78 3.18

3 2.23 1.93

Rep Particle
Mass dispersed, 

g

Mass concentration, 

g/m
3
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Table C.13. Volume extinction coefficients of the particles. 

 

3-5 µm 8-12 µm Overall 

NanoActive® MgO plus 1 0.32 0.10 0.15

2 0.30 0.09 0.14

3 0.36 0.10 0.16

NanoActive® MgO 1 0.49 0.09 0.18

2 0.46 0.07 0.16

3 0.47 0.07 0.16

NanoActive® TiO2 1 1.06 0.22 0.42

2 0.69 0.14 0.27

3 0.89 0.18 0.35

NaHCO3 1 1.14 0.97 1.01

2 0.90 0.76 0.80

3 1.13 0.94 0.99

ISO fine test dust 1 0.89 0.95 0.94

2 0.86 0.90 0.90

3 0.86 0.88 0.88

Brass flakes 1 1.35 1.52 1.48

2 1.25 1.39 1.36

3 1.91 2.15 2.09

Graphite flakes 1 0.63 0.70 0.69

2 0.82 0.88 0.86

3 0.79 0.88 0.85

Carbon black 1 0.49 0.47 0.48

2 0.38 0.28 0.31

3 0.37 0.34 0.35

MgO nanorods 1 0.07 0.08 0.08

2 0.09 0.03 0.05

TiO2 nanorods 1 0.63 0.12 0.24

2 0.63 0.17 0.28

3 0.79 0.18 0.32

Particle Rep 
   Volume extinction coefficent, m

2
/cc
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Table C.14. Number and mass concentrations, geometric mean diameters (GMD), and geometric 

standard deviations (GSD) of the particles measured with APS at time 2 min after dispersion.  

 

NanoActive® MgO plus 1 115000 1240 8.26 1.66

2 110000 1550 8.59 1.60

3 146000 1570 8.10 1.70

NanoActive® MgO 1 418000 541 5.38 2.50

2 399000 330 4.40 2.73

3 393000 399 4.79 2.59

NanoActive® TiO2 1 230000 454 4.50 1.84

2 205000 473 4.46 1.83

3 254000 990 5.66 1.85

NaHCO3 1 211000 1590 5.96 1.74

2 231000 1620 5.96 1.77

3 262000 2120 5.74 1.71

ISO fine test dust 1 157000 381 3.33 1.87

2 140000 361 3.46 1.87

3 114000 467 4.40 1.88

Brass flakes 1 53200 107 3.24 1.69

2 49600 89 2.95 1.62

3 71400 225 3.51 1.59

Graphite flakes 1 373000 1580 4.01 1.98

2 103000 370 3.47 1.86

3 95100 481 4.13 1.91

Carbon black 1 260000 452 6.84 2.06

2 526000 551 8.27 2.27

3 276000 560 7.29 2.01

MgO nanorods 1 27300 115 4.74 1.84

2 84200 180 6.17 1.87

TiO2 nanorods 1 111000 135 3.91 1.89

2 51100 338 5.21 1.7

Mass concentration, 

mg/m
3 GMD, µm GSDParticle Rep 

Number concentration, 

#/cm
3
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Data for Chapter 5 

 

Table C.15. Charge-to-mass ratios of the particles. 

 

NanoActive® MgO plus 1 0.01 0.22

2 0.02 0.31

3 0.03 0.23

NanoActive® MgO 1 0.07 0.76

2 0.03 0.84

3 0.05 0.97

NanoActive® TiO2 1 -0.26 0.86

2 -0.36 0.89

3 -0.29 0.96

NaHCO3 1 0.03 0.22

2 0.02 0.27

3 0.02 0.23

ISO fine test dust 1 0.15 0.88

2 0.20 0.93

3 0.24 0.75

Nylon powder 1 1.43 0.82

2 1.13 0.72

3 1.32 0.80

Particle Rep 

Charge-to-mass ratio, mC/kg

Background
Teflon®  

tribocharger
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Data for Chapter 6 

 

Table C.16. Mass concentrations of hollow glass spheres (predicted and measured with filter 

samplers). 

R1 R2 R3

0.6 348 386 290 135 431 172

1.8 136 96 156 79 129 44

3.0 91 45 111 15 10 30

Distance from 

injection point, m

Mass concentration, mg/m
3

MeasuredPredicted 

(coarse 

mesh)

Predicted 

(fine mesh)

Predicted 

(very fine 

mesh)

 

 

Table C.17. Mass concentrations of NanoActive® MgO plus (predicted and measured with filter 

samplers). 

R1 R2 R3

0.6 216 302 54 103

1.8 135 556 834 124

3.0 37 284 1005 832

Distance from 

injection point, m

Mass concentration, mg/m
3

Predicted 

(coarse 

mesh)

Measured

 

 

Table C.18. Number concentrations of hollow glass spheres (predicted and measured with APS® 

spectrometer). 

(0.4m x 0.4m x 0.4m) (0.3m x 0.3m x 0.4m) (0.2 m x 0.2m x 0.4m) R1 R2 R3

60 199,841 64,175 71,546 16,800 11,000 14,800

120 598,385 289,075 182,117 2,810 2,060 1,900

180 526,839 173,445 234,151 5,870 2,350 2,110

240 331,713 196,571 312,201 2,310 1,870 3,140

300 351,226 115,630 26,017 1,600 2,970 3,370

360 188,621 23,126 52,033 2,470 4,180 2,550

420 331,713 127,193 182,117 3,130 4,850 3,750

480 188,621 46,252 104,067 6,700 4,890 4,700

540 260,167 92,504 130,084 6,620 4,320 4,490

600 240,655 69,378 52,033 6,320 3,850 4,510

Time after 

dispersion, s

Number concentration, #/cm3

Predicted Measured
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Table C.19. Number concentrations of NanoActive® MgO plus (predicted and measured with 

APS® spectrometer). 

(0.4m x 0.4m x 0.4m) (0.3m x 0.3 m x 0.4m) (0.2 m x 0.2m x 0.4m) R1 R2 R3

60 644,576 336,877 190,985 21,200 20,900 25,500

120 531,178 190,985 190,985 7,710 7,630 6,980

180 483,432 159,155 95,493 4,560 7,140 7,930

240 483,432 201,596 167,112 4,580 6,440 8,290

300 346,161 53,052 119,366 4,890 6,910 8,230

360 376,003 159,155 143,239 4,800 6,410 8,320

420 483,432 169,765 143,239 4,640 6,350 7,890

480 358,098 116,713 47,746 4,440 6,300 7,700

540 298,415 137,934 143,239 3,670 6,160 7,610

600 370,034 190,985 119,366 4,030 5,820 7,250

Time after 

dispersion, s

Number concentration, #/cm
3

Predicted Measured

 

 

 

 

 

 

 


