
/A KNOWLEDGE BASED TOOL TO AID IN SOFTWARE MAINTENANCE

by

ALBERT L. NICHOL

B.S.. Kansas State University, 1984

A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan. Kansas

1987

Approved by:

Major Professor

Lb

Table of Contents

List of Figures iv

Acknowledgements vi

Chapter 1: Introduction, Hypothesis. & Review of Literature 1

Introduction 1

Hypothesis _ 2

Review of Literature 3

Chapter 2: Requirements _ 19

Introduction „ 19

Sources of Facts _ 20

History of Changes „ 25

Programmer's View of a Program 26

Chapter 3: Capabilities. Design. Environment, & Implementation 29

Introduction „ 29

Capabilities 29

Program Structure & Design 35

Implementation 39

Chapter 4: MATl's Capabilities & MAT! and the Hypothesis 41

Introduction 41

- iii -

Capabilities of MAT! 41

MAT1 and the Hypothesis 45

Chapter 5: Conclusions and Future Research _ 46

Conclusions _ _ 46

Future Research _ _ 47

Bibliography _ _ _ 49

Appendix A: Users Manual
;.... Al

Appendix B: Technical Manual _ _ Bl

Appendix C: MAT1 Source Code _ _ CI

iv -

LIST OF FIGURES

Figure 1: Documentation Display Window _ _ _ 31

Figure 2: History of Changes Display Window „ _ _ 34

Figure 3: Module Name Search Graph .".

_ ,'„,. 35

Figure 4: Variable Name Search Graph _ _ 37

Figure Al: User Prompt Window _ _ A5

Figure A2: System Prompt Window _ _............. A6

Figure A3: Documentation Window & Menu _ A8

Figure A4: Document Manuals Tedit Window „ A10

Figure A5: History Window & Menu All

Figure A6: History Manuals Tedit Window A13

Figure A7: Edit Window & Menu _ A14

Figure A8: Program View Window & Menu „ _ A16

Figure A9: Search Window & Menu _ A17

Figure A10: Functions Called Graph _ _ A18

Figure All: Variables Used Graph _ _ A18

Figure A12: History of Changes Display _ _ A20

Figure A13: Documentation Display _ _ _ A21

Figure Bl: LOOPS Class Inheritance Lattice B2

- vi

ACKNOWLEDGEMENTS

The author would like to express his gratitude to Dr. David A. Gustafson for

introducing this topic. Without Dr. Gustafson 's aid. this project would not have had

clear direction.

I would also like to thank Dr. Elizabeth A. Unger and Dr. Austin Melton for their

suggestions and input on the thesis as well.

Page 1

Chapter 1

Introduction, Hypothesis. & Review of Literature

INTRODUCTION

One of the most overlooked parts of the software life cycle is the phase know as

maintenance. Recent studies show that maintenance accounts for between forty to

eighty percent of the total cost of a software package throughout its complete life

[Mar83]. [Par82]. Yet. until recently, little attention was given to this phase. Many

data processing companies are spending increasing amounts of time and money doing

maintenance tasks. As more time is being spent on maintenance of current software,

less time can be utilized for the production of new software [Cha83], [Mar83]. In

extreme cases companies have stopped new software production just to maintain exist-

ing programs [Mar83]. This type of problem demonstrates the need for looking at new

and improved methods for doing software maintenance tasks.

The recent attention that has been given to software maintenance has mainly been

focused on how to develop maintainable software using better design techniques

[Abb83]. [Hec83]. [Mar83]. [Rom85]. This attention to design does not address the

problems that maintainers are facing today. Most software that is currently in use was

not developed with maintainability in mind. In order to solve the problems that main-

tainers face today, tools must be developed that will aid with the maintenance phase.

The need for tool development in the maintenance phase of the software life cycle

has been largely untouched as an area of study in computer science. The area of

software maintenance can be broken into three distinct parts. These parts include: 1)

Page 2

understanding what the program being maintained does and how it does it, 2) doing

the actual maintenance task, and 3) the testing the change performed for correctness.

It is in this light that I have developed a Maintenance Assistance Tool (MAT1) that

will aid maintainers in the learning portion of doing a maintenance task. The tool was

developed in the LOOPS programming environment using procedural and object-

oriented programming techniques. MAT1 uses a knowledge base to store information

about the history of changes and the documentation for the program that is being main-

tained. Information can be quickly retrieved from this knowledge base to inform main-

tainers about the program. Some information about the program is displayed graphi-

cally for ease of understanding and to help speed the learning time that maintainers

must use to become familiar with the program that they are to maintain.

HYPOTHESIS

The need for tools to aid in the maintenance phase has been recognized as one of

the areas that can provide an interesting area of study in computer science [Har83],

[Kuh85]. The use of expert systems to solve problems is becoming more popular.

Expert systems allow computers to acquire information and store it in a knowledge

base of information. This knowledge base can then be accessed by the program to help

make decisions that help solve the problem at hand [Bro85], [Dym84],

One of the major problems that maintainers face is that they did not write the

code for the original program. This means that they must learn about the functions

that the program being maintained performs. One of the best sources of information

for learning about the program is its documentation. Another source is a history of

changes from past maintenance tasks performed on the program [Kuh85], [Mar83],

Page 3

[Par82]. The learning of what a program does takes a large amount of time. If some-

thing can be done to reduce this learning phase of maintenance, some of the problems

associated with maintenance can be overcome and the high cost of software mainte-

nance reduced.

My hypothesis is that a knowledge-based tool can provide useful information

from distributed documentation including notes about the program being maintained

and the history of changes that have occurred. A knowledge-based tool is a tool that

gathers information into a knowledge base or data base for use in helping to solve the

problem at hand. Distributed documentation and history of changes are separate pieces

of information about a program that can be used to provide details about the function

of a program and about maintenance that has already been performed on it.

The development of this tool should simplify and speed the organization and

extraction of information. By providing information to the maintainer about the pro-

gram being maintained in an easy-to-read format and/or graphically. MAT1 should be

able to shorten the time needed to learn about the program. The shortening of the time

needed to learn about a program will help to make maintenance tasks less costly and

less error prone.

REVIEW OF LITERATURE

The disproportionate costs associated with software maintenance, as compared to

other phases of the software life cycle, peaked my interest in this area. Many com-

panies are spending increasing amounts of time and money in doing software mainte-

nance tasks. Because maintenance is the most costly part of the software life cycle one

would think that this area would have been studied in depth. This however, is not the

Page 4

case. The study of software maintenance and tools to aid in maintenance tasks is rela-

tively new. The review of the literature provided interesting insights into the problems

associated with software maintenance.

Two main categories of literature were reviewed for this thesis. The first category

deals with software maintenance. Software maintenance is used as the theoretical

background for development of MAT1. The second category includes expert systems,

the use of the LOOPS programming environment, the Lisp programming language, and

object-oriented programming techniques. MAT1 was developed in LOOPS which is an

environment designed for easy development of expert systems using the Interlisp-D

programming language and object-oriented programming.

Software Maintenance

The material dealing with software maintenance is important for providing the

theoretical foundation for the derivation of the thesis topic. For many years computer

scientists have realized the importance of doing software maintenance tasks [Mar83],

[Par82]. Many calls for better maintenance techniques and tools have been made, but

little actual work on developing tools to aid in maintenance tasks is documented

[Mar83]. Recent work deals with tools that are in a planning stage and so actual work-

ing tools that are used by maintainers are few in number and are not available for

review [Col85].

Stereotype Associated with Maintenance

The phase called maintenance has had a stereotype of being a beginner's task or a

task for persons on their way out [Par82]. It is evident that many persons feel that

Page 5

real programmers do not do maintenance tasks, but instead are reassigned to new

development projects leaving novices to do maintenance of programs. Maintenance is

often viewed as substandard work and many times it does not command the respect of

programmers or management personnel [Par82]. This view of maintenance of software

in itself is evidence of the possibility that problems can arise while a maintenance task

is being performed. The use of novice programmers to maintain code can cause many

problems [Par82].

Problems Associated -with Maintenance

The problems associated with software maintenance are extensive. The problems

include: 1) bad programming practices which make the software difficult to maintain.

2) novice programmers who are assigned to maintenance tasks often cause as many

problems as they solve, and 3) time and money costs which continue to climb [Par82].

The problem of increasing cost is documented extensively in the literature about

software maintenance. According to studies presented in several articles and books,

maintenance of software accounts for between forty to eighty percent of the cost of a

software package throughout its useful life [Ara85], [Kis83], [Mar83]. In 1976 it was

reported that sixty to seventy percent of the Department of Defense's software dollar

was spent on maintaining current software systems. In 1980 that figure rose to eighty

percent. Another study showed that sixty-seven percent of data processing companies'

costs were directly associated with software maintenance [Mar83].

With the rising cost of software maintenance comes increasing pressure on mainte-

nance personnel and upon management dealing with maintenance in most companies

[Bra85], [Col83]. [Mar83]. In some cases, as more time is spent on doing maintenance of

Page 6

software, less time is spent in the development of new software. This trend has

evolved to the point where some companies have gone bankrupt because they could no

longer keep up with their new software development obligations [Mar83].

The problems mentioned above show the critical need for research in the area of

software maintenance. The question of where to concentrate research dealing with

software maintenance remains unanswered. In order to understand where research

needs to be concentrated, it is necessary to look at the problem that is central to all

maintenance tasks. This problem deals with the maintainer's need to learn what a pro-

gram does and how it does it. The time needed to learn about a program is one of the

major stumbling blocks associated with software maintenance [Mar83], [Par82].

Categories of Maintenance

To understand how to best solve the problem dealing with learning about a pro-

gram, it was necessary to learn more about maintenance of software. There are many

different categories of software maintenance. MAT1 is designed to be useful while

doing any type of maintenance task. The tasks involved with software maintenance

have several different classifications.

Most articles dealing with the topic of software maintenance divide maintenance

into the three categories defined by E. B. Swanson [Swa76]. In his article Swanson

divides software maintenance into the categories named Corrective Maintenance. Adap-

tive Maintenance, and Perfective Maintenance. Corrective maintenance is performed to

identify and correct software failures, performance failures, and implementation

failures. Adaptive maintenance is performed to adapt software to changes in the data

or processing environments. Perfective maintenance is performed to enhance

Page 7

performance of the software, improve cost-effectiveness, improve processing efficiency,

or to improve maintainability.

Another categorization of maintenance tasks was proposed by John Reutter

[Reu81]. Reutter divided maintenance tasks into emergency repairs, corrective coding,

upgrades, changes in conditions, growth, enhancements, and support. Emergency

repairs are performed when immediate repair of a program is necessary to continue ser-

vice to users. Corrective coding is performed to utilize system resources or to meet the

design specifications. Upgrades are performed to adapt to the changing regulations in

the business world. Growth is performed to adapt to changes in data or in the addition

of new users or programs to the system. Enhancements are performed in response to

user requests for updates to the current system. Finally, support is performed to

explain system capabilities and to measure system performance.

Changing Attitudes Towards Maintenance

More recent publications show that the attitudes towards doing maintenance tasks

are changing. These views are expressed in the calls for more extensive research,

development of tools, and the expressed need for experts in the maintenance field.

Many of the papers written in the IEEE Conference on Software Maintenance that was

held in 1985 express a changing attitude towards software maintenance [Bra85].

[Let85], [Wed85]. People that can do maintenance tasks efficiently are becoming more

important to large corporations and to smaller businesses that use computers, as well.

The 1985 IEEE Conference on Software Maintenance breaks the study of mainte-

nance into several areas of concentration [IEE85]. These areas include production of

maintainable software through better design, development of tools for aiding

Page 8

maintainers with software maintenance tasks, development of measures and testing

techniques for maintenance, and approaching software maintenance from a managerial

point of view. All of these different categorizations offer many opportunities for study.

Development of Maintainable Software

From the material that was available, the main thrust in dealing with the problem

of software maintenance is centered in the area of developing maintainable software

[Hec83], [Mar83], [Mil83], [Rom85]. One of the topics stressed is the use of structured

programming techniques and modular code when writing the original program. The use

of standardized code will help in maintenance since the code will be known by the

maintainers and can be easily accessed for changes. Some methods associated with

standardized code include having all program code written by one person, programming

functions and storing them in a library of code so that new programs can be con-

structed using the different functions, and using automated code generators to do as

much of the programming as possible [Abb83]. The use of old code that has been

developed and maintained, for new program development is stressed in some articles

[Lan83]. By reducing human involvement in the code development process, while using

automatic code generators, better and more maintainable code can be produced [Mil83].

A critical area dealing with maintainable programs is the need for the design phase

to address maintainability [Mar83]. By designing modular programs, many of the

problems of adding and perfecting the code can be ameliorated. Programs that are not

written using modular programming techniques can not be as easily maintained as can

programs that are written using structured programming techniques. The modularity

of a program should be developed during the design phase of the software life cycle.

Page 9

Introduction of good programming methodologies during design will eventually aid the

maintainer in the maintenance phase.

Documentation

Another factor that is important to the production of maintainable software is the

need for good program documentation. When good documentation accompanies a pro-

gram, the task of maintaining that program becomes less cumbersome. When the origi-

nal programmer is not available to maintain a program, documentation becomes a vital

source of information to the maintainer. The maintainer must learn the function of the

program in order to be able to perform the maintenance task. The development of

automatic documentation generators along with automatic code generators is an idea

that many authors have proposed that will help to solve the problem involving docu-

menting a program [Col83], [Fay85]. [Hou83]. [Kuh85], [Wal85].

The fact that documentation is one of the main sources of information about a

program that is to be maintained is significant enough that I incorporated a documenta-

tion search and display feature into the tool that I developed. Documentation is a good

source of learning material and, because my tool is aimed at cutting down on the time

that necessary to learn about a program that is to be maintained, this feature was

added to the tool.

Measures of Maintainability

Another topic that is closely associated with maintainable software is the develop-

ment of measures of maintainability of program code. Measures of maintainability

include understandability of code, reliability of code, code testability, code

Page 10

modifiability. code portability, efficiency of code, and useability of program code

[MarS3]. Code that is easily understood, reliable, easy to modify, efficient, and can be

easily tested is much easier to maintain than is code that does not fit into these

categories [Kis83]. Several studies on these categories show a significant reduction in

time that is needed for maintenance personnel to do a maintenance task on code that fit

into the categories that are mentioned above. Code that does not fit into the categories

discussed previously do not score well in measures of maintainability.

Testability of code is a measure of maintainability that has already been studied

in depth. Much work has been done in the testing phase of the software life cycle, and

recent studies link the testability of code to maintainability of code [Mar83]. Many

methodologies for testing code have already been developed. If a program can easily be

tested, it is evident that maintenance work is reduced since testing of modified code is

one of the tasks associated with software maintenance [Chr83]. [Cur83], [Wal85].

Often, easily tested code is more modular in form, which is also an area that is being

stressed by maintenance experts.

The need for software quality assurance as part of a maintenance effort is stressed

in several articles [Bow83] [Day85]. Many times changes are made with the idea that

they will correct mistakes, when in fact they cause many new problems [Bow83].

Software quality assurance deals with the fact that a program does what it was

designed to do. It also deals with the correctness of the results produced by a program.

Software quality is linked to maintenance of software as well. Since maintenance

involves introduction of new code into a program, this code must still produce the

results that the programmer desires. Quality assurance is therefore necessary in

maintenance tasks as well [Day85],

Page 11

Management of Maintenance

Management personnel often view maintenance of software in a very different

perspective than maintenance personnel. Managers have to take into account the costs

and time involved in doing maintenance tasks. They must also allocate time for new

software development. Many times, managers face the question of whether to maintain

a current program or to allocate time for development of new software [Mar83].

Management personnel must also decide how maintenance fits into overall

software management. When a new system is installed, the addition of more users

could cause a need for more maintenance. Another problem that can arise is the cost of

purchasing new hardware or software when the current system no longer meets the

needs of a company. All of these problems and many more must be solved by manage-

ment when they are making decisions dealing with maintenance [Bra85], [Col83].

[Dea83].

One proposal to solve some of the problems that management has is to introduce a

better path of communication between maintenance personnel and management. The

idea of using a standardized maintenance request form that will show the need for

maintenance of software is one idea that was presented [Par82]. Other ideas are

presented in the 1983 IEEE software maintenance workshop and in the 1985 IEEE

conference on software maintenance. These ideas include better testing of code and

better quality assurance techniques. Each idea stressed the need for better communica-

tion between management and maintenance personnel.

Maintenance Tools

Page 12

The area of research dealing with tools to aid in software maintenance is relatively-

new. The many problems associated with software maintenance show the need for the

development of tools to aid in the maintenance phase. Many tools have been developed

to produce code and documentation [Bus85], [Har83], [Raw83]. This type of tool does

not aid persons doing maintenance tasks, though. The question of what other tools

need to be developed still remains.

The learning phase of maintenance is one area that has not been targeted for tool

development. This phase is important to all maintenance tasks. Maintainers must take

the time to learn the function of a program to be able to make the necessary changes to

it. The question of what are the best sources of information for use in learning about a

program needs to be examined. The answers to this question can be used to learn more

about the learning associated with software maintenance.

Sources of Maintenance Information

Documentation is one of the sources of information that can help maintenance

personnel to learn about the code that they are to maintain. The best type of documen-

tation display is an on line system that is available at the maintainers request [Fay85],

[Kuh85], [Raw83].

Another source of information that is useful comes from the history of past

changes to the program. A history feature in a tool that helps with maintenance tasks

is vital to aid in the learning process associated with maintenance of programs [Par82].

By having a history feature much of the redundancy in the learning process for main-

taining programs can be eliminated. The maintainer will not have to retrace all the

steps that was necessary to make a previous change when a history of changes is

Page 13

available for review. Also previous changes will help to identify links in the program

that can cause hidden side effects when a change is made. A history of changes will

help to reduce the time necessary to make a new update to a program. A knowledge of

a history of changes is also useful in determining which changes were successful and

which were not [Mar83].

I have included a history feature in MAT1 that will search for changes made to a

module or variable. Over time rules of thumb can be developed or recognized that pro-

duce correct results when maintenance tasks are performed. By following successful

methodologies the rules of thumb that an expert uses to make successful changes can

easily be learned by new maintenance personnel. For example, when a particular sec-

tion of code is changed and tested, the links it has with the remaining code should be

identified. A maintainer can enter this information into the knowledge base so that the

tool can inform future maintainers of these links and will therefore save time in

correcting hidden errors that may not have been clearly identified. MAT1 is designed

to reduce the time necessary for learning about the program that is to be maintained.

Other Important Maintenance Topics

Many other parts of a program are also important to doing maintenance tasks.

The information that can be learned by having these program parts available for review

is a vital part of MAT1. Variables, modules, parameters, and sections of code are

important items in learning what the program does and also learning about what effects

a change can produce elsewhere in the code [Col85]. By searching for variables used in

a program, the maintainer can see what effects a change he makes might cause elsewhere

in a program. This is also true when studying parameters that a routine uses.

Page 14

Searching for keywords and sections of code will also help a maintainer to learn about

the programming techniques that were used by the original programmer.

Programming style is closely associated to the points introduced in the articles on

designing maintainable software [Par82]. When a programmer uses a structured pro-

gramming approach module, names and parameters of modules are important along

with local variables. These parameters may cause hidden effects to a program when

they are changed. Local variables may be aliases for other variables in the program and

also could cause problems if changed. A search for these different items, their purpose,

and date of use and aliases can all provide vital information to a person doing a mainte-

nance task. Having the ability to quickly search for a module name, parameter, or vari-

able can speed the testing as well as the change process. In the testing process, hidden

side effects can be easily determined and compensated for. A search also allows the

program to worry about code location and eliminates one more concern for maintenance

personnel. MAT1 has a search facility built into it that displays information graphi-

cally. This information can be used to obtain other information about the program.

If a programmer did not use a structured programming approach, then one must

have the ability to search for just variables and their aliases. This style of program-

ming has been shown to take much more time to learn than does a structured approach

[Mar83], [Par82].

Maintenance Experts

The fact that maintenance is often performed by novice programmers can cause

many problems. Often novice programmers spend much more time in the learning

phase of maintenance than do experts. One solution to the maintenance problem is to

Page 15

have experts doing maintenance tasks.

Maintenance personnel that are able to develop successful techniques for solving

maintenance problems, are very useful to their companies. As maintenance personnel

become experts in the field of maintenance, they will be able to form methodologies for

doing maintenance tasks. These methodologies are often 'rules of thumb' that are

developed over time. As rules of thumb or heuristic knowledge is developed in the

maintenance phase, expert systems can be developed that will help to automate the

tasks dealing with maintenance.

Artificial Intelligence & Expert Systems

The second major area deals with artificial intelligence programming and problem

solving techniques. The use of a knowledge base that will allow the tool to acquire

knowledge about a task is one of the current subjects being studied by artificial intelli-

gence practitioners [Dym84], [Ste84]. Several programming environments suitable for

expert system development are available. I looked at Ops5. Personal Consultant Plus,

and LOOPS.

The use of artificial intelligence ideas and programming practices open many new

possibilities for development of tools to help in programming tasks. With the new

knowledge engineering techniques available, expert systems can be developed that can

help with most any problem.

An expert system, as defined by Clive L. Dym from the Xerox Palo Alto Research

Center [Dym84], "is a computer program that performs a task normally done by an

expert or consultant, and in so doing it uses captured heuristic knowledge". He describes

heuristic knowledge as rules of thumb or techniques that an expert develops over the

Page 16

years that are easiest for problem solution. This is the type of program that would cut

time in maintenance of software and would also be usable by both expert and novice

maintenance personnel since many decisions could be made by the expert system based

on heuristic knowledge that it has gathered.

LOOPS

LOOPS was chosen as the programming environment to be used for developing the

expert system. LOOPS incorporates four programming paradigms. These paradigms

include traditional procedural-oriented programming, object-oriented programming,

data-oriented programming, and rule-oriented programming. LOOPS allows a program-

mer to develop software that uses one or all of these paradigms.

To use LOOPS one must first learn Lisp which is used as its procedural-oriented

paradigm. Object-oriented programming is based on the idea of data abstraction.

Objects have aspects of both procedures and of data. Different "procedures" are invoked

by a message passing scheme designed by the programmer. These two paradigms, were

used for the development of MAT1.

The data-oriented approach to programming in LOOPS allows the programmer to

invoke independent processes based on actions on data. This concept allows the reading

or writing of data to invoke processes as well as updating the data value itself. The

last paradigm is rule-oriented programming. In this paradigm cause-effect rules are

developed to control program action.

Several articles by members of the Xerox PARC group explain the uses of object-

oriented programming techniques in the development of expert systems [Ste84]

[Dym84]. These articles show how to use the object-oriented paradigm to pass

Page 17

inheritance traits from higher level objects to lower ones. The message passing tech-

niques invoke methods (procedures) when messages are passed.

Object-oriented programming also allows the programmer to work in an environ-

ment in which data structures for holding and processing data do not have to be any

concern of the programmer. This allows programmers to develop programs that are not

dependent upon data structures and so allows a much more flexible approach to pro-

gramming.

Two useful features of LOOPS are the mouse and menus [Ste85]. When develop-

ing objects and relationships between the objects in the class hierarchy, one does not

have to worry about the code that is needed to create a new class or to determine the

links to other objects. The LOOPS environment produces much of its own code in most

circumstances. Only when the user needs to develop a local procedure (method) does

any writing of code take place. This frees the programmer from much of the system

dependent programming and allows new programs to be developed quickly [Bob83].

Other features that were important to the implementation of MAT1 included system

input and output and the use of the Interlisp-D window and menu facilities.

My thesis implementation makes extensive use of the window feature to display

the material that is necessary for completion of a maintenance task. The bit map

feature is also used to aid in making windows easily identifiable to users. The windows

allow menus that are mouse driven to perform the desired tasks.

Conclusions

Software maintenance has been recognized as the most expensive phase of the

software life cycle. Since maintenance has not been studied in depth, it offers an

Page 18

interesting area of study. There are many problems that must be solved in order to

reduce the costs and time necessary do to a maintenance task.

Several problems are associated with the maintenance phase. These include: 1)

increasing maintenance costs. 2) assigning novice programmers to maintenance tasks.

and 3) management and maintenance personnel viewing software maintenance from

different perspectives. If the time to do a maintenance task can be reduced, the costs

associated with maintenance can be reduced as well.

Recent study of maintenance has been centered in developing maintainable code,

development of tools to aid in the maintenance phase, and studies of how management

personnel can be helped with maintenance decisions. I feel that a major problem in

maintenance of software is associated with the amount of time necessary to learn about

a program that is to be maintained. In order to solve this problem, the development of

an expert system using the LOOPS programming environment was explored and imple-

mented. The development of a knowledge based tool will help to solve the software

maintenance problems that maintainers are facing.

Page 19

Chapter 2

Requirements

INTRODUCTION '

Not all maintenance tasks require the same information to complete them. A tool

that will aid in all maintenance categories will be most useful to maintenance person-

nel. The requirements or features that are general to all types of maintenance are

important. Each different categorization of maintenance has unique requirements or the

need for specific knowledge to solve tasks in that category.

A clarification must be made at this point. The information that MAT1 returns to

a maintainer will be called a fact about a program. Any information returned from

documentation or a history of changes associated with a program will also be con-

sidered a fact about the program. The inferences that a maintainer makes about the

facts that the tool returns to him will be referred to as knowledge learned about the

program.

Knowing what facts are needed to do maintenance of software is important. The

sources of facts about a program become critical to the development of an expert sys-

tem that must draw on a knowledge base to help to solve a problem. By learning what

sources of facts a maintainer uses to complete a maintenance task, these sources can be

incorporated into the expert system that is to aid the maintainer. After having done

maintenance work for a period of time, maintainers will develop a set of rules that

they will follow when solving maintenance problems in the future. This heuristic

knowledge can be programmed into the expert system to allow it to help the maintainer

to make decisions.

Page 20

SOURCES OF FACTS

First, it is necessary to determine what facts are needed to do software mainte-

nance. At this point the definition of software maintenance is useful in helping to

determine what facts are needed to do a maintenance task. The definition of mainte-

nance of software, as stated by James Martin and Carma McClure authors of the book

"Software Maintenance, the Problem and its Solutions". [Mar83] is: "maintenance is any

changes that have to be made to software after it has been delivered to a customer or

user". Maintenance can be categorized, according to E. B. Swanson. [Swa76] into correc-

tive maintenance, adaptive maintenance, and perfective maintenance. A person must use

knowledge and facts that are specific to each type of maintenance in order to complete

each unique type of maintenance task.

Corrective Maintenance

In the task of corrective maintenance, failures in a software package must be

corrected so that the program will do what it was designed to do. The facts that are

needed to do corrective maintenance tasks include the failure or error in the program

and also that portion of code that is causing the failure in the system. By having these

facts available, a maintainer can easily find where the error occurred and where to

make the necessary change. To gather the facts necessary to make a correction a tool

must be able to search to for variables, modules, parameters, or sections of code. A tool

that produces facts about the location of a specific item in the program code will aid the

maintainer in acquiring the knowledge needed to find the location of the problem.

The need for corrective maintenance is usually caused by a semantic or logic error

in the program code. Syntactic errors should be flagged by the compiler and so do not

Page 21

enter into software maintenance. Semantic errors are not as easily corrected. The main-

tainor must learn what the original programmer was trying to do logically during the

development of the code. Program documentation could be used as a source for obtain-

ing facts about the program that will help the maintainer to make a correction. The

maintenance personnel must use their own knowledge to correct an error in the mean-

ing or logic of the code. After having done many maintenance tasks, maintainers will

develop rules of thumb that they can use to solve a problem A tool to aid in mainte-

nance should be able to gather heuristic knowledge based on the techniques a main-

tainer used to solve the problem. By gathering this knowledge that is learned by the

maintainer, the program will be able to produce more facts about the program on its

own.

The problem of what facts are necessary, is further compounded when one realizes

that each person has their own programming style or technique. Persons doing mainte-

nance tasks must also acquire knowledge about the style or techniques used by the ori-

ginal author of the code in order to complete the job. By having a search feature avail-

able in a tool to aid in maintenance, the problems dealing with program style can also

be addressed. The search feature will help to reduce the time necessary in learning

about program style.

One method of obtaining knowledge of the style or techniques that the original

programmer used is to have available the documentation for the software being main-

tained. Good documentation can provide facts that will help maintenance personnel to

acquire knowledge about the function of a section of program code and also about the

style of programming that the author used. Documentation can therefore be used to

provide vital facts to an expert system being used to aid in the maintenance of

Page 22

software. This information could include items such as the purpose of the code, how it

was written, when it was written, internal code documentation and so will be included

in the tool being developed. If a maintainer can display documentation dealing with

specific items such as purpose of code, date written, and notes on how and why the

code was written much time can be saved by looking at facts that deal with the prob-

lem at hand. Extraneous information can be eliminated, and only important facts

displayed. MAT1 has this capability built into it.

Another method of obtaining knowledge of the style or techniques that the origi-

nal programmer used is to be able to trace through the code with the help of the tool.

This trace should be able to find variable, module, and parameter names, and should

display facts about each. The trace facility that MAT1 uses does not do a run-time

search, but only searches for items in the actual code. This type of tracing will aid in

locating variables and determining their use along with being able to identify them as

being global or local variables. Tracing will also aid in developing a knowledge of the

relationships between modules, as well.

Adaptive Maintenance

The second type of maintenance described by Swanson is that of adaptive mainte-

nance. When an environment changes, a package often must be updated in order to

adapt to the new environment. This adaptation can include many diiferent types of

changes to a software package and so many different types of knowledge must be incor-

porated when doing this type of maintenance work.

For example, if a database management system were to be implemented to replace

an existing part of a system, this would require knowledge of not only the database

Page 23

management system, but also of the system into which it was being added. Some of the

facts that are needed for this type of maintenance include: 1) a knowledge of the data

structures to be used to store the data. 2) the hardware requirements necessary to

implement the new system. 3) a knowledge of the existing system and many more too

numerous to mention. This provides for a very complex maintenance task. An easier

task from the point of maintenance work would be that of adaptation of a software

package to a new type of hardware. The knowledge that would be required to complete

a task of this type would include how the software interfaced with the hardware. This

interfacing code would be the only portion of the code that would need to be modified

if the code was modular in design. A knowledge of the hardware is therefore necessary

along with how the program accesses it. This knowledge though, is not incorporated

into MAT1. MAT1 is not designed to display facts about hardware. The second exam-

ple is less encompassing than that of adding a database management system to replace a

portion of a software system, but it still requires an extensive knowledge of the

hardware as well as the software of a system.

Most of the knowledge required to do these types of tasks is beyond the scope of

this tool. Facts about the hardware as well as the software of a system would need to

be available for a maintainer to do an adaptive maintenance task. Knowledge necessary

for doing adaptive maintenance tasks varies widely and would incorporate the need for

a very extensive knowledge base to store the facts needed to do this type of mainte-

nance. The incorporation of such a large knowledge base into an expert system could

become very cumbersome and therefore does not lend itself to this project, currently.

This however does not mean that it could not be added in the future.

Page 24

Even though the task of adaptive maintenance is very extensive in the amount of

knowledge necessary to complete it satisfactorily, the basic functions of this tool would

be very helpful. The features that this tool has will allow it to be useful when working

on an adaptive maintenance task. Being able to display and search for facts about a

large system would help to reduce the time necessary to complete the learning phase of

an adaptive task.

Perfective Maintenance

The last and most significant type of maintenance task is that of enhancement or

perfective maintenance. This type of maintenance is the most used of any maintenance

activity according to McClure and Martin [Mar83]. Most software is developed under

strict time limitations, so not all software is as efficient as it can be. By efficient I mean

that the program may not process data in the most efficient manner, or the program

may not work in a cost effective manner. In order to compensate for this lack of

efficiency the maintainers at some point must modify the program. The maintainers

must have a working knowledge of what the program does and how it does it.

McClure and Martin show that perfective maintenance can consume up to sixty percent

of all the time spent doing maintenance tasks in many companies [Mar83].

In order to do maintenance of this type, the user must find the bottleneck in pro-

cessing and examine what they feel can be done to improve the efficiency of the current

system. Some facts that could identify bottlenecks could include time to run a module,

or total lines of code. This information is currently not available in MAT1. Given this

information, maintenance personnel must develop new code and incorporate it into the

existing code in the correct position to produce the desired result which would be more

Page 25

efficient processing of data. A tool that can identify where different modules, variables,

or pieces of code are located in a program would be very useful in doing this type of

maintenance. Having these facts built into an expert system would greatly cut the time

necessary to find particular section of code that needs to be changed or locations for

insertion of new code, as the maintenance personnel would not have to keep track of

the information on their own.

HISTORY OF CHANGES

Other knowledge that would be useful for an expert system to aid in the task of

software maintenance would be a history of past changes. From the facts produced by a

history feature, maintenance personnel can acquire knowledge on what has been done in

the past to a particular program. This knowledge can be used to speed the change being

made or as heuristic knowledge on how past changes have been made. For example, if a

variable was changed in the past, links dealing with that variable in other parts of the

program could be identified. Testing of the original change should identify problems

and could be entered into a history of changes. This would help to eliminate hidden

side effects when another change was made to the same variable in the future.

A history feature could also be used to identify problems with parameters in

modules. The links between modules could be identified when a change was made.

Having this knowledge available would help a maintainer to avoid future problems

with changing values of parameters. A history of changes could also be used as a meas-

ure for doing rewrites to a section of code. For example, if some code section has been

changed a certain number of times then it could be defined as a module or section of

code that was in need of being rewritten.

Page 26

A history feature incorporated into a tool to aid in software maintenance will help

maintainers to acquire knowledge from past changes. This knowledge will help to elim-

inate duplication of methods that have been used to make changes in the past. Elimina-

tion of relearning what has already been done in the past will make it easier to imple-

ment new changes. In turn, this will cut the time necessary to learn about and to com-

plete a maintenance task.

PROGRAMMER'S VIEW OF A PROGRAM

Another important area that must be looked at when one is doing maintenance is

that of what was the original programmer's view of a program. The reason that this is

important is that programming views can aifect the amount of time that is needed to

learn about how the program is performing its functions. Did the programmer view the

program as a series of modules each performing a specific task, or did the programmer

use a 'spaghetti
-

coding technique? This view of a program could also provide facts that

could be used in an expert system being designed to aid in maintenance tasks. Newer

techniques of modular programming verses older 'spaghetti' coding approaches would

provide information on how to use a tool in either situation. If a program was written

using modular coding practices then module names would be important, along with the

parameters or arguments being passed to and from the module. The concept of global

and local variables would also be useful in gaining knowledge to do a maintenance task

when the program was written in a modular form.

On the other hand, if a non-modular programming approach was used to write the

original program, then variables become more important in locating problems in the

code and in making corrections or additions to the program. The data flow of the

Page 27

program would also be very important when non-modular programming approaches are

used.

Conclusions

Once the general information about what needs to be fixed, added, or adapted has

been determined for the specific program, the problem of how to best approach the

maintenance task becomes important. Expert systems use heuristic knowledge or rules

of thumb to help the user to complete the task at hand. For example, when a person

does a task many times, they usually find some method that they will use again and

again to produce the correct results in the easiest manner. Once this methodology has

been identified it can be programmed into the expert system so that the system be able

to draw from this information to aid the user. In order to gain heuristic knowledge,

the tool must use some kind of technique that will gather the needed facts. This must

be built in or used in the environment that will be used to develop the expert system.

To be able to assist with maintenance tasks, the tool must be able to be used many

times to maintain the same program. From each of these uses, the tool will acquire

heuristic knowledge on how to best solve each change that it is used for. MAT1 relies

on the maintainer to enter facts about the history of changes and documentation in

order to store the knowledge gained by the maintainer in a knowledge base which is

actually a file storage system. These facts will be valuable when making future

changes. The history function of the tool should be able to display facts necessary to

aid in this function. If no history of changes is available the maintainer must be able to

enter knowledge into the tool that will help to make the decisions necessary for the

specific application in the future.

Page 28

Each category of maintenance has information that is specific to that type of

maintenance task. A tool that can be used to aid a maintainer with any type of task

will be most useful to them. The diiferent categories of maintenance have one major

source of facts. This source is the documentation available for the program. Another

source of facts is a past history of the changes that were made to the program. The

programmers view of a program and code writing style are also important sources of

facts to a maintainer. Each of these sources of facts can be used to speed the learning

process that is necessary in maintenance of software. Maintained must learn the func-

tion of a program before they can modify it. MAT1 was developed with this thought

in mind.

Page 29

Chapter 3

Necessary Capabilities. Design,

Environment, and Implementation

INTRODUCTION

A tool that will aid in all categories of software maintenance needs to have several

features. Each of these features should present facts about a program to the maintainer

in a form that will be easy to understand and learn from. The goal of developing

MAT1 is to cut the time needed to learn about a programs functions. The features that

need to be incorporated into it include: 1) a documentation update and display. 2) a

history of changes update and display. 3) an edit feature, and 4) a search feature that

can be used to find specific items in the program code, documentation, and history of

changes.

CAPABILITIES

Documentation Update and Display

One of the needs of maintenance personnel that is general to all types of mainte-

nance work is that of having an on-line documentation display and update feature.

Documentation helps maintenance personnel to learn and understand how a program

was written. This will also help maintainers to see why the program was written. A
tool that is to aid in maintenance must have a documentation feature that can easily be

viewed by maintenance personnel.

Page 30

The documentation should be easily updated to accommodate changes that are

being made to the program code currently. Even if no documentation is available upon

the start of a maintenance task, the person doing the maintenance must be provided

with the opportunity to document what they have learned about the program. This is

necessary since the program may have to undergo changes in the future and the person

who did the first update may not be available for consultation. If this is the case, new

maintenance personnel must learn about the program for themselves. Documentation is

one of the best sources of knowledge about a program when the original author is not

available [Gi82]. This feature will reduce the time that is needed to learn about the

functions and execution of a program by new maintenance personnel.

The Maintenance Assistance Tool (MAT1). will have access to on-line documenta-

tion for the program that is being maintained. The documentation is broken into several

distinct parts. The first of these is notes on updates. MAT1 will be able to access

different notes found throughout the program code or in a separate note file. This will

help to eliminate searching through manuals to find what a section of program code is

doing. By keeping the documentation in small pieces, only information that is specific to

the portion of code being changed will be displayed, eliminating the need for reading

the whole manual or searching for a piece of documentation in an index.

MAT1 will also have the capabilities needed to access all on-line manuals for the

program being maintained. This means that the maintainer can read manuals if neces-

sary, although the option of only reading relevant information is available. Internal

documentation other than notes is also available for display. A MAT1 example docu-

mentation display is shown in figure 1.

Page 31

DOCUMENTATION FOR TEST1
LOOKING FOR STUFF

(?!
A
Si

T
„.5i

fl
R
S INF0 ENTERED FROM THE KEYBOARD AND PLACES

IT IN THE VARIABLE STUFF)

(PRINTIT PRINTS THE INFO THAT STUFF HOLDS)

DONE WITH DOCUMENT SEARCH

Figure 1
: Documentation Display Window

Page 32

If no documentation for a program is available. MAT1 will be useful in at least

documenting the changes that are made. The tool will allow users to enter notes that

will be incorporated with the programming code and also saved in a note file. This will

provide information on what the maintainer learned and did when they worked with

the specific program.

History of Changes Update and Display

A feature that this tool has incorporated into it that is closely related to the docu-

mentation feature is that of a history of changes. By including a history feature in a

tool to aid in software maintenance, persons maintaining the program can see what

changes have been made in the past. From this, the location of changes can be learned.

so that if someone is changing the same piece of code they can learn from past mainte-

nance activities. The history feature can keep track of what effects resulted in the

change being made. This will be invaluable for doing current changes as knowledge

learned from making past changes will provide a basis for doing the current mainte-

nance work. A history feature can help persons to make changes to the code faster, and

with less unwanted side effects. By studying successful and unsuccessful changes that

were made to a program, past mistakes in maintaining software can be avoided and

correct decisions can hopefully be made more easily.

MAT1 is able to display a history based on the purpose of the change, the date of

the change, or the type of change that was made. The purpose of a change can be used

to learn more about what each module or variable is used for and what happened when

they were changed. The date of change can help to show the order in which changes

were made. From this maintainers can see the effects that changes in the past have

Page 33

made. This will aid them in learning the methods used to make the changes. By look-

ing at the type of change, maintainers can gain a knowledge of what needs had to be

met in the past, and from them they can determine if the changes they are making

currently are relevant or will likely be successful. The history information will display

facts on what happened when a change was made. If the change was successful and no

side effects were recorded the maintainer can assume that his change to the same vari-

able or module will also be successful and will produce no hidden side effects. Testing

though, will be the only proof in this matter. A MAT1 example history display is

shown in figure 2.

Search Feature

Another feature that is necessary is a search based on the programming approach

that was used by the original author. When a modular approach to programming is

used, a search for module names i.e. subroutine or function names, will be useful.

Along with this, parameters the module uses should be identified to determine what

changes to a particular module might affect other modules based on the fact that

values in parameters are pass by reference. In other words the side effects that could be

caused by changing a value in a module must be flagged and in some manner displayed

as well. The hierarchy of the program can be learned by having a search and display

feature as well. Closely related to the program hierarchy is that of data flow.

Although MAT1 does not have a display for the data flow, a search and display feature

to perform this function could be incorporated into the tool.

If the original programmer used a non-modular approach to programming the ori-

ginal code then some method of searching for variable names must be used. The user

Page 34

; in urn* a>;n,' aSiliiiaiSUJ
LOOKING FOR STUFF

(THE VARIABLE STUFF WAS CREATED ON 04-21-1987)

(STUFF HAS NOT BEEN CHANGED)

DONE WITH HISTORY OF CHANGES SEARCH

Figure 2: History of Changes Window

Page 35

will be able to query the tool as to the location of a variable or module name. If a pro-

gram used line numbers, this could be easily displayed, as well. The search could then

be used to aid in keeping track of where changes need to be made. This will free the

user from having to remember all locations that must be changed. By incorporating this

feature into the tool much time in paging through a program source file will be elim-

inated.

MAT1 is able to display modules when a modular programming approach was

used to write the original program. In this display the purpose of the module, its

parameters (input and output variables), and date last changed are shown. This will

allow the maintainer to search for all modules using a specific variable or a specific pur-

pose. The MAT1 module search display is shown in figure 3.

When a non-modular programming approach was used to design the original pro-

gram. MAT1 is able to search for specific variable names, or code purpose (if docu-

mented). For variables MAT1 displays purpose, aliases, range of values, semantics, and

the date they were last changed. By displaying this information the maintainer can

learn what the tool knows about each item. This will help the maintainer to cut the

time necessary to learn about a program. The MAT1 variable search display is shown in

figure 4.

PROGRAM STRUCTURE AND DESIGN

The LOOPS programming environment is uniquely suited to this type of tool

because it allows gathering of hueristic knowledge from the different instances of the

classes. When an instance is created it can be stored into a knowledge base for use at a

later time. The program itself actually stores the information that the maintainer

Page 36

aiiMHIW?«WJHaW;«lTHII
DOIT

/ \

RESDIT PR I NT IT

Figure 3: Module Name Search Graph

Page 37

Figure 4: Variable Name Search Graph

Page 38

enters in a file and then accesses that file to display facts about the program.

When using the object-oriented programming approach each instance of a class

that is used in the program will inherit methods (procedures) from its supers or

parents in the inheritance lattice for the program. Each of these methods can be invoked

by using the "send super" message to a super of the current instance [Bob83]. By using

this programming approach, the messages passed to a class instance can invoke new

features without affecting the current code for the rest of the program.

Along with this approach to programming, the procedural approach is added to

complete the necessary processing. Figure 5 shows the class inheritance lattice for the

tool. This inheritance lattice shows the inheritance patterns for methods that are avail-

able in MAT1. The tool incorporates a documentation display and update feature, a

history of change feature and a search based on whether a program was written in

modular or non-modular form.

The maintenance object has a method that creates an instance of the documenta-

tion, history, or program objects based on what the maintainer wants to do currently.

This method will be the main control for the creation of instances of the different

classes that need to be used for the maintenance task. Once a selection is made, the user

will be placed into a new window to do that portion of the maintenance work. A por-

tion of the tool that is hidden from the user is the use of a knowledge base to store the

information gathered by an instance creation. This will help to gain the heuristic

knowledge that is necessary for the expert system to be able to aid in the decision mak-

ing process.

Environment

Page 39

Once the knowledge that is needed for incorporation into the system has been

defined, and the program structure has been designed, the question of what program-

ming environment best suits this type of tool development comes into play. The

artificial intelligence programming environment used for this application is the LOOPS

environment, developed by researchers at the Xerox Palo Alto Research Center. LOOPS

is designed for the development of expert systems [Bob83].

IMPLEMENTATION

MAT1 is implemented on the Xerox 1186 workstation. The program is written

using LOOPS' object-oriented programming and procedural-oriented programming tech-

niques. MAT1 requires that the program to be maintained be loaded and executed so

that all the different parts of the program can be searched and information about that

part displayed.

MAT1 has nine different classes (Figure 5). The history of changes, and documen-

tation classes each have three methods. One method is used to display the history or

documentation window. The second method is used to search for and display the docu-

mentation or history of changes, and the third method is used to enter new information

about history or documentation. The maintenance class has one method that display

the initial user prompt window and calls invokes all subclasses as necessary. The edit

class has one method that calls the changes made class which has one method. The

changes made method allows the editing of the program. The program view class has

one method which invokes the nonmodular or modular search methods in the classes of

the same name. The modular search method invokes the variable search or modular

search methods. The nonmodular search method invokes the variable search method.

Page 40

The variable search method is found in the variable names class, and the module search

method in a class called module names.

The different methods range in size from two to five pages. There are about fifty-

five lines of code per page. LOOPS itself generates approximately ten pages of code in

the program. The total number of program pages is about sixty-five. As I learned more

about loops the size of the program decreased as my programming became more concise.

Page 41

Chapter 4

MATl's Capabilities and How MAT1 Answers the Hypothesis

INTRODUCTION

The development of MAT1 evolved as I learned more about the LOOPS program-

ming environment. When the original foundation for the implementation of a tool to

aid in software maintenance was conceived and put into a planning stage, the use of

LOOPS as the environment in which it would be written was not discussed. The first

environment that was looked at was Texas Instruments Personal Consultant Plus. The

software from Texas Instruments was never obtained, so when the department

obtained the Xerox 1186 workstations, the use of LOOPS for writing the tool became

possible.

Learning the LOOPS programming environment is very time consuming. As I

spent more time working in the LOOPS environment, it became evident that it is ideal

for developing expert systems for solving problems.

As my knowledge of LOOPS expanded so did the capabilities of MAT1. The origi-

nal inheritance lattice was not like the current one. In LOOPS the inheritance lattice

can be easily changed in order to accommodate changes in design. LOOPS does much of

the code necessary for keeping the inheritance lattice in order and so a programmer does

not have to worry about changing code when a change is made to the lattice. This fact

allows easy prototyping of programs which can be modified at a later date.

CAPABILrnES OF MAT1

Page 42

The original design of MAT1 called for a documentation display and update

feature. A history update feature and display was also needed. A search feature was

needed to provide information about a program that is to be maintained using MAT1.

Finally, some method of editing the program that was to be maintained was needed,

too. Each of these capabilities was included in the final implementation of MAT1.

In addition to the documentation and history display features a search for specific

information about each was added. In order to add this feature to the tool, it was

necessary to store documentation and history text as a list in a file. This list can be

searched for only specific parts (sublists). These sublists are then displayed showing

only information about material that was requested.

All features of MAT1 are mouse driven. LOOPS and Interlisp-D provide for easy

use of the mouse in selecting items from menus. The mouse can also be used to select

nodes from graphs to obtain more information from a graph. The windows can be

easily controlled using the mouse. These capabilities include moving a window, closing

it. shrinking it into an icon, taking a picture of it and printing the window image. All

of these features are controlled by the right mouse button. The middle mouse button is

used to display all menus while using MAT1. The middle and left mouse buttons can

be used to select items from menus or from graphs displayed by MAT1.

Information displayed in graphic form seemed to be the most direct method for

displaying information about module and variable names for a program being main-

tained using MAT1. The use of graphs also allows use of the mouse to select nodes in

the graph to obtain more information about the words or figures in the nodes. The

search feature of MAT1 uses the Masterscope facility of Interlisp-D to determine which

items will be displayed in the graph.

Page 43

The Masterscope facility of Interlisp-D is very useful in determining the functions

that a program calls. Masterscope can also find all variables used by a specific function

or by a program. When Masterscope is combined with the grapher facility, the infor-

mation returned by Masterscope can be displayed in a tree or lattice form. The idea of

displaying information was originally taken from this fact.

Interlisp-D provides for easy displaying of graphs using the layoutsexpr com-

mand. This command will take a list as its input and display the contents of a list as a

graph. By using the program name as the root node and the answer from the Master-

scope questions "who does XXX call" and "who does XXX use", where XXX is the pro-

gram, name information about what functions a program calls or what variables are

used can be easily displayed.

Once the display feature had been completed, attention was focused on the docu-

mentation and history searches. As was stated previously, this information is stored in

files as a list containing other lists (sentences). The first thing that had to be accom-

plished was to store the information in the correct form. The CONS operation will

attach new information to a list but it attaches it at the beginning. This meant that the

information had to be reversed before new addition could be added to the documenta-

tion and history lists. A recursive function had to be written in order to perform the

addition of new information to the documentation and history lists.

Once the history and documentation storing conventions had been developed, it

was necessary to create a search routine that would search the information in the lists

and display only the information requested. Again a recursive function was developed

in order to accomplish this task. The function takes the CAR of the list passed to it

and searches for the item in the list. If the item to be found is a member of the list the

Page 44

whole list is displayed in the proper display window.

Because the search looked for only specific items in the list, it was also necessary

to develop a display that would print out all documentation and history information.

The most direct method of displaying files is to use a Tedit window to display the file

information. By using Tedit to display the file contents, the user can correct or add

new information to the file using this window rather than the regular input routine.

Tedit commands must first be learned by reading the manuals accompanying the 1186

workstation.

The editing feature was the next task that was addressed. The Tedit feature is

ideal for editing text, but it does not work for program editing. It was therefore neces-

sary to use the Dedit Interlisp-D editor to solve this problem. When Dedit is used on a

program a pop up menu appears asking what definition of the file name that was passed

to it should be edited. The test program that is used for demonstration purposes has

two types of definitions, a file definition and function definitions. A user of MAT1

should select the FNS (functions) option of the pop up menu to Dedit the program

code.

MAT1 also has the capability of storing its information on hard or floppy disk.

This convention allows the user to save disk space when using MAT1. The program is

also available on floppy or hard disk. Again this is for the reduction of use of disk

space.

Thirty-seven files are associated with the MAT1 program. Some of these are the

demonstration program, but most are program files. All of these files must be loaded

into the system so that the program will work correctly. To ease the task of loading

these files a tool initialization and initial startup routine was written. This information

Page 45

is contained in a file called Toolinit. This file must be loaded and then executed to load

all MAT1 files and to start the execution of MAT1. A more detailed description of how

to use MAT1 and its specific features is described in the use™ and technical manuals

found in the appendices.

MAT! AND THE HYPOTHESIS

The fact that MAT1 uses a 'knowledge base' to store pieces of information about a

program that is to be maintained helps to show that expert systems can be developed to

aid with maintenance. These facts can then be displayed when requested by a main-

tainer in order to help them to make decisions that will solve the maintenance task.

MAT1 provides the user with an environment that can be used and learned very

quickly so as not to distract from the maintenance task at hand. Because MAT1 is

mouse driven, it is very easy to use. It allows the user to search for specific informa-

tion about a program based on whether the program was written using modular or

non-modular programming styles. Documentation and history information display and

update features provide vital information to the maintainer about what the program

being maintained does and how the program performs its functions. The history

feature allows a user to determine what past changes have been made and whether they

were successful or not. By having this information available about the program being

maintained, the maintainer can learn about a program very quickly and can perform

the maintenance task easily and efficiently with less change of making errors. Thus.

MAT1 implements the idea expressed in the hypothesis. MAT1 is an example of the

kind of tools that will aid maintained in learning about the program they are to main-

tain.

Page 46

Chapter 5

Conclusions and Future Research

CONCLUSIONS

In conclusion, maintenance of software has long been overlooked. To avoid costly

maintenance bottlenecks, new tools have to be developed to help with the maintenance

phase. Tools that can access distributed documentation and notes about programs will

help to cut down the time that is necessary to learn the functions of programs that

maintainers are to change. MAT1 is a tool that can be used to help to speed the learn-

ing process that is necessary for maintenance by providing easy access to documenta-

tion, history, and searching for specific program information. Documentation and his-

tory are two major sources of knowledge available to maintainers. This tool helps

maintainers to use this knowledge to aid in the decision making process that is neces-

sary for completing maintenance work.

The LOOPS programming environment provides an excellent facility for develop-

ing tools like MAT1. The LOOPS environment allows for easy change of program

design. This fact allows programmers to easily develop prototype programs and to

expand them into working systems. The use of the different programming paradigms

allows for very flexible approaches to programming and for designing programs. The

fact that LOOPS is not well documented though, slows the learning necessary to use

the environment.

The Interlisp-D programming language also allows for many powerful features

which can easily be added to an expert system. The use of windows, menus, graphs,

and the 1186 mouse help to simplify the use of the programs that are written. The

Page 47

windows and graphs allow for easy display of information on the screen. The list pro-

cessing and file handling capabilities of Interlisp-D are critical to the use and develop-

ment of MAT1.

FUTURE RESEARCH

Features that are not general to all maintenance tasks can easily be added to this

tool when using the LOOPS programming environment. By using either the object-

oriented or data-oriented programming approaches, independent processes can easily be

added to the system without affecting the other parts of the tool that are already run-

ning. This means that new features can be added without affecting the operation of the

current version of MAT1.

Currently. MAT1 is limited to being able to work with Lisp programs. In order to

expand the use of MAT1 to other programming languages, an editor for that language

would have to be incorporated into the tool along with new search facilities (a scanner)

so that the information about the program could be displayed graphically.

The program portion of MAT1 could be developed using more LOOPS conventions.

As the program is currently written, most of the code is written using Interlisp-D. The

code could easily be changed to incorporate more of LOOPS's conventions and features.

The windows and menus could be defined as classes as could the different searches.

Also, message passing between methods could be modified. The introduction of class

and more instance variables into the system would make the code more efficient.

MAT1 has the capability of working on itself. This could provide an interesting

area of future study as well. Other features that could be added to MAT1 include a

variable alias search, module parameter identification, program listing display, and a

Page 48

language specific key word search.

I think that the area of software maintenance needs to be explored in more detail.

As costs and problems associated with maintenance continue to increase, the need for

study and expertise in this area becomes ever more evident.

Page 49

BIBLIOGRAPHY

[Abb83] Abbott. S. F.: "Standardized Code" IEEE Software Maintenance Workshop
Monterey. CA. 1983. p. 54.

[Ara85] Arango. G. Freeman. P.. and Pidgeon. C: "Maintenance and Porting of
Software by Design Recovery" IEEE Conference on Software Maintenance
Washington. D.C. 1985. pp. 42-49.

[Ban83] Bannai. K.. Suzuko. M.. and Terano. T.: "An Introduction of Maintenance
Support Facility" IEEE Software Maintenance Workshop. Monterey CA
1983. pp. 180-182.

[Bas83] Bassett. P.: "Maintenance vs. Development: Two Sides of the Same Coin" IEEE
Software Maintenance Workshop. Monterey. CA. 1983. pp. 244-245.

[Ber84] Berns. G. M.: "Assessing Software Maintainability" Communications of theACM January. 1984, Volume 27. No. 1. pp. 14-23.

[Boe83] Boehm. B.: "The Economics of Software Maintenance" IEEE Software Mainte-
nance Workshop. Monterey. CA. 1983. pp. 9-37.

[Bow83] Bowen. J. B.: "Software Maintenance: An Error-Prone Activity" IEEE
Software Maintenance Workshop. Monterey, CA. 1983. pp. 102-105.

[Bra85] Branch. M. A.. Jackson. M. C. Laviolette. M. C. and Frankel. E.: "Software
Maintenance Management" IEEE Conference on Software Maintenance Wash-
ington. D.C. 1985. pp. 62-68.

[Bre85] Brehl. A. W.: "Upgradeability: A Measurement of Quality" IEEE Conference
on Software Maintenance. Washington, D.C. 1985. pp. 227-230.

[Bro85] Brownston. L.. Farrell. R., Kant. E., and Martin. N.: "Programming Expert
Systems in OPS5: An Introduction to Rule-Based Programming" Addison-

Page 50

Wesley Publishing Company. Inc. Reading, Mass. 1985.

[Bry83] Bryan. W. L. and Seigel. S. G.: "Configuration Management of Software Test-
ing IEEE Software Maintenance Workshop. Monterey. CA. 1983. pp 61-63.

[Bus85] Bush. E.: "The Automatic Restructuring of Cobol" IEEE Conference on
Software Maintenance. Washington, D.C. 1985. pp. 35-41.

[Cha85] Chapin. J., and Faidell. G.: "Predicting Software Customer Support" IEEE
Conference on Software Maintenance. Washington. D.C. 1985. pp. 128-134.

[Cha83] Chapin. N.: "Attacking Why Maintenance is Costly" IEEE Software Mainte-
nance Workshop. Monterey, CA. 1983. pp. 251-252.

[Chr83] Christens, J. M.. Stofko. M. J., and Gonsol. S. J.: "Insights and Experience
Gained from the Development of an Internal and Independent Verification
and Validation Program" IEEE Software Maintenance Workshop. Monterey
CA. 1983. pp. 125-129.

'

[Col83] Collofello. J. S.: "A Conceptual Foundation for Measuring Software Maintai-
nability IEEE Software Maintenance Workshop. Monterey, CA. 1983 pp
253-254. ^r '

[Col85] Collofello, J. S. and Blaylock J. W.: "Syntactic Information useful for
Software Maintenance." National Computer Conference (1985). pp. 547-553.

[Coj83] Collofello. J
;

S.. and Woodfield. S. N.: "A Proposed Software Maintenance
bnvironment IEEE Software Maintenance Workshop, Monterey CA. 1983
pp. 118-119.

[Com83] Colter M. A., and Couger J. D.: "Management and Employee Perceptions of
the Maintenance Activity IEEE Software Maintenance Workshop. Monterey.
t'A. 1983. p. 130.

Page 51

[Con83] Consoles. J., Stofko, M. J., and Christens. J. M.: "Software System Change
Control" IEEE Software Maintenance Workshop. Monterey. CA. 1983. pp

[Cur83] Curtis. C. A., and DeHaan W. R.: "RXVP80: The Verification and Validation
System for Fortran" IEEE Software Maintenance Workshop, Monterev CA
1983. pp. 75-77.

'

[DaR83] Da Rocha. A. R.: "Towards Maintainability Through Specifications Quality"
IEEE Software Maintenance Workshop. Monterey. CA. 1983. pp. 246-250.

[Day85] Day. R.. and McVey, T.: "A Survey of Software Quality Assurance in the
Department of Defense During Life-Cycle Software Support" IEEE Confer-
ence on Software Maintenance. Washington. D.C. 1985. pp. 79-85.

[Dea83] Dean. J. S., and McCune. B. P.: "An Informal Study of Software Maintenance
Problems IEEE Software Maintenance Workshop. Monterey. CA. 1983. pp.

[Dem83] Dempsey. J.: "The Design. Development, and Maintenance System" IEEE
Software Maintenance Workshop, Monterey. CA. 1983. pp. 258-260.

[Dun84] Dunn. R. H.: "Maintenance and Modification" Software Defect Removal
McGraw-Hill New York. NY. May. 1984. pp. 304-323.

[Dym84] Dym. C. L.: "Expert Systems: New Approaches to Computer-Aided Engineer-
ing Xerox Palo Alto Research Center. Palo Alto, California. 1984.

[Emb83] Embry, J. D.. and Keenan. J.: "Organizational Approaches Used to Improve
the Quality of a Complex Software Product" IEEE Software Maintenance
Workshop. Monterey. CA. 1983. pp 131-133.

[Fay85] Fay. S. p. and Holmes. D. G, "Help! I Have to Update and Undocumented
frogram IEEE Conference on Software Maintenance, Washington D C 1985
pp. 194-202.

Page 52

[Foe86] Foehse. M.: "Introduction to Xerox 1186 AI Workstation" Kansas State
University 1986.

[For83] Forss. A. K.. and Lundin, R.: An Approach to Long Term Maintenance of
ATE Software" IEEE Software Maintenance Workshop. Monterey CA 1983
pp. 173-179.

[Gla85] Glagowski. T. G.: "Using a Relational Query Language as a Software Mainte-
nance Tool IEEE Conference on Software Maintenance. Washineton D C
1985. pp. 211-219.

[Gus85] Gustafson. D. A., Melton. A., and Hsieh. C. S.: "An Analysis of Software
Changes During Maintenance and Enhancement" IEEE Conference on
Software Maintenance. Washington, D.C. 1985. pp. 92-95.

[Har83] Harada. J., and Sakashita. S.: "A Documentation Tool to Visualize Program
Maintainability" IEEE Software Maintenance Workshop, Monterey CA
1983. pp. 275-280. "

[Hap83] Hartmann. P. E.. Feuling. C. L.. and Hodil E. D.: "Tools in a Large Mainte-
nance Environment" IEEE Software Maintenance Workshop, Monterey CA
1983. pp. 71-72. *

[Hec83] Hecht. H.: "Software Requirements for the Maintenance Phase" IEEE Software
Maintenance Workshop. Monterey. CA. 1983. pp. 145-146.

[Hin86] Hines. T.: "Loops: An Introductory Guide" Kansas State University. 1986.

[Hou83] Houtz. C. A., and Miller. K. A.: "Software Improvement Program - A Solu-
tion for Software Problems" IEEE Software Maintenance Workshop Mon-
terey, CA. 1983. pp. 120-124.

[How83] Howley 1P P.: "An Assessment of Software Testing Techniques for Mainte-

«V!
C%J Software Maintenance Workshop, Monterey, CA. 1983 m>261-266. ' "*

Page 53

[How85] Howley. P. P.. and Reimer, G. W.: "Software Maintenance Criteria for Small
Microprocessor-Based Systems" IEEE Conference on Software Maintenance
Washington. D.C. 1985. pp. 222-226.

[Kaz83] Kazlauski
;

F. A.: "Test Data Reduction Program: A Benchmark and Conver-
sion Tool" IEEE Software Maintenance Workshop. Monterey. CA. 1983. pp.

[Kis83] Kishimoto. Z.: "Testing Software Maintenance and Software Maintenance
from the Testing Perspective" IEEE Software Maintenance Workshop. Mon-
terey. CA. 1983. pp. 116-117.

[Kuh85] Kuhn. D. R., and Hollis C. G.: "Simple Tools to Automate Documentation
IEEE Conference on Software Maintenance, Washington. D.C. 1985. pp. 203

[Lan83] Lanergan. R. G. and Grasso C. A.: "Reusable Designs and Code: A Strategy for
Designing Software With Maintenance in Mind" IEEE Software Maintenance
Workshop, Monterey. CA. 1983. pp. 55-56.

[Leh83] Lehman. M. M.: "Survey of Software Maintenance Issues" IEEE Software
Maintenance Workshop. Monterey, CA. 1983. pp 226-243.

[Let85] Letovsky, S.. and Soloway. E.: "Strategies for Documenting Delocalized Plans"
IEEE Conference on Software Maintenance, Washington. D.C. 1985. pp. 144-

[Mar83] Martin. J., and McClure. C: "Software Maintenance: The Problem and Its
Solutions Prentice-Hall. Inc. Englewood Cliffs, N.J. 1983.

[MU83] Miller. J. C: "Planning for Maintainability: Some Precautions" IEEE Software
Maintenance Workshop. Monterey. CA. 1983. pp. 57-59.

[Min83] Minsky. N. H.: "Controlling the Evolution of Large Scale Software Systems"
Ifcbb Conference on Software Maintenance. Monterey. CA. 1985. pp. 50-61.

Page 54

[Mor83] Morgan. H. W.: The Cost of Tools - Barriers to Technology Transfer in the
Maintenance Environment" IEEE Software Maintenance Workshop Mon-
terey, CA. 1983. pp. 80-81.

[Mor79] Moriconi. M. S.: "A Designer/Verifier s Assistant" IEEE Transactions on
Software Engineering, Vol. SE-5, No. 4, July 1979, pp. 387-401.

[Mye86] Myers. Ware: "Introduction to Expert Systems" IEEE Expert 1986, pp. 100-

[Par82] Parikh. Girish: "Techniques of Program and System Maintenance" Winthrop
Publishers. Inc. Cambridge. Mass. 1982.

[Pee85] Peercy. D. E.: "A Framework for Risk Assessment of Software Supportabil-
lty IEEE Conference on Software Maintenance. Washington DC 1985 mi
120-127.

'

' *v '

[Phi83] Philips. J. C: "Creating a Baseline for an Undocumented System - Or What
Do You Do With Someone Else's Code?" IEEE Software Maintenance
Workshop. Monterey, CA. 1983. pp. 63-64.

[Pre83] Presser, L., and Hug, R.: "Change and Configuration Control Tool" IEEE
Software Maintenance Workshop. Monterey. CA. 1983. pp. 271-274.

[Raw83] Rawlings. T. L.: "A Technological Approach to Automating Software Mainte-
nance IEEE Software Maintenance Workshop, Monterey. CA. 1983. pp 147-

[Rom85] Rombach, H. D.: "Impact of Software Structure on Maintenance" IEEE
Conference on Software Maintenance, Washington. D.C. 1985. pp. 152-160.

[Rub83] Rubin a a . "Macro and Micro-Estimation of Maintenance Effort: The ESTI-MACb IbEE Software Maintenance Workshop, Monterey, CA. 1983. pp. 78-

Page 55

[Sch85] Schaefer, H.: "Metrics for Optional Maintenance Management" IEEE Confer-
ence on Software Maintenance. Washington. D.C. 1985. pp. 114-119.

[SU83] Silverman, J.. Giddings. N„ and Beane. J.: "An Approach to Design-for-
Maintenance' IEEE Software Maintenance Workshop. Monterey CA 1983
pp. 106-110.

[Smi83] Smith. G.. and Von Schantz. C: "Quality Assurance Plans for Software
Maintenance IEEE Software Maintenance Workshop. Monterey CA 1983
pp. 163-164.

[Ste83] Steifik. M.. Bobrow. D. G.. Mittal. S.. and Conway. Lynn: "Knowledge Pro-
gramming In LOOPS: Report on an Experimental Course" The AI Magazine
fall 1983 pp. 3-13.

[Ste84] Stefik. M. and Bobrow D. G.: "Object-Oriented Programming: Themes and
Variations The AI Magazine (1984). pp. 40-62.

[Stm84] Steifik M J.. Bobrow D.G.. and Kahn K. M.: "Access Oriented Programming™r * Multiparadigm Environm«"-" Intelligent Systems Laboratory. Xerox
PARC. Palo Alto. California. 1984.

[Swa83] Swanson E. B.: "A Tutorial on Application Software Maintenance" IEEE
Software Maintenance Workshop. Monterey. CA. 1983. pp. 2-8.

[Tay85] Taylor. B.: "A Database Approach to Configuration Management for Large
Projects IEEE Conference on Software Maintenance. Washington. D C 1985
pp. 15-23.

[Tou83] Touretzky D. S.: "Lisp: A Gentle Introduction to Symbolic Computation-
Harder and Row. New York. NY. 1983.

[Tur85] Turpin W.: "Personal Consultant Plus: Expert System Development Tools"
Texas Instruments. Inc. 1985.

Page 56

[Wal85] Wallace. D. R.: "The Validation. Verification, and Testing of Software: An
Enhancement to Software" IEEE Conference on Software Maintenance Wash-
ington. D.C. 1985. pp. 69-78.

[Wed85] Wedo. J. D.: "Structured Program Analysis Applied to Software Maintenance"
IEEE Conference on Software Maintenance. Washington. D.C. 1985. pp. 28-

[Wej85] Wedo. J. D.: "Systematic Problem Solving: The Link to Maintenance Solu-
tions IEEE Conference on Software Maintenance. Washington. D.C. 1985.
pp. 231-235.

[Wig85] Wiggins. D. L.: "An Automated System for Controlling Operational Program
and JCL Changes" IEEE Conference on Software Maintenance. Washington.
D.C. 1985. pp. 2-5.

[Yue85] Yuen. C. K.: "An Empirical Approach to the Study of Errors in Urge
Software Under Maintenance" IEEE Conference on Software Maintenance
Washington. D.C. 1985. pp. 96-105.

Page Al

Appendix A

USERS MANUAL

In order to be able to use the Maintenance Assistance Tool (MAT1), the user must

be familiar with: the operation of the Xerox 1186 workstation, the use of the 1186

mouse, the editors Tedit and Dedit which are used in the Interlisp-D environment, and

the hard and floppy disk drives of the 1186 workstation. All of this information can

be found in the manuals provided with the 1186 workstation as well as in the

Interlisp-D primer. If the user is not familiar with the items mentioned, one should

first read the manuals provided, for an explanation of their use.

MAT1 is designed to aid maintenance personnel in obtaining the knowledge needed

to perform a maintenance task. It provides an environment in which a maintainer can

learn about the program that is to be maintained, from either documentation or history

of changes for the program. The tool provides editing features that allow a maintainer

to update a program as needed. When a change is made, new history and documenta-

tion can be entered to note the maintenance task that was performed. A search facility

will find information about the different parts of a program and will display this infor-

mation in graph form. Further use of the graph will display information about docu-

mentation and history for a selected item in the graph.

INITILIZATION

In order to start the Maintenance Assistance Tool, one must first boot the 1186.

To do this, simply turn on the power and when the boot icons appear on the screen,

press the Fl key to load the Interlisp-D environment. The loading of the Interlisp-D

environment takes about two minutes, so be patient. While loading, the screen on the

Page A2

1186 will be black. When loading is complete a new screen will appear with a prompt

window, a tty window, a history icon, the LOOPS icon, and a logo window. The mouse

cursor will appear as an arrow located in the upper left hand corner of the screen.

When a blinking caret appears in the tty window, this shows that loading is complete

and that the user can now use the Interlisp-D environment. The first thing that must

be done is to set the time. LOOPS and Interlisp-D must have the time set before any

file operations can occur. Since MAT1 uses LOOPS and many file operations, the time

must be set for the tool to work properly. The command that is used to set the time is

(SETTIME "MM-DD-YY HH:MM:SS"). Several different formats of the date and time

can be entered, but the example will always work.

Once the time has been set it is necessary to determine of the file called

GRAPHER.DCOM is available in the library of files on the system. The command that

is used to check to see that the file is available on hard disk is (DIR

•{DSK}<LISPFILES>LIBRARY>GRAPHER.DCOM). If the name of the file is returned

the file is available on hard disk, but if the message File Not Found is returned, the file

is not available in which case it is necessary to load this file from the floppy utility

disks provided by KATO. MAT1 uses the grapher facility and so this file must be

resident on hard disk in the directory mentioned above for the tool to operate correctly.

The user should now load the program that is to be maintained into the system.

The program should then be executed so that all functions used by the program will be

available in the environment. This is critical to the use of MAT1 as it relys on the fact

that all functions of the program to be maintained are known in the tool environment.

At present, only Interlisp-D programs can be maintained by the use of MAT1.

Page A3

The next consideration that must be addressed is the one of whether MAT1 is

resident on the hard disk drive of the 1186 or if it is on a floppy disk. If the tool is

available on the hard disk drive the command (CNDIR '{DSK}<LISPFILES>AL>)

must be entered. This command connects the user to the directory called

<LISPFILES>AL> where the tool is resident. If the tool is not resident on hard disk

the command (CNDIR '(FLOPPY)) must be used. This command will connect the user

to the floppy disk drive directory and the tool can then be loaded from floppy disk.

The next step that needs to be taken is to load (MAT1) into the Interlisp-D

environment. To do this a file called Toolinit must be loaded from the hard or floppy

disk. The command (LOAD TOOLINIT) can be entered in either case as the system

will know what file to load from the CNDIR command. Once the loading of TOOLINIT

is complete, the user must enter the command (TOOLINIT). This command executes

the commands necessary to load all the files that must be available for the use of

MAT1. The TOOLINIT command will also start the execution of MAT1. The loading

of the MAT1 files will take some time and it also requires the user to press the enter

key when prompted in the tty window.

USING MAT1

When the MAT1 tool is started a logo window displaying Maintenance Assistance

Tool will appear near the bottom of the screen. Another window will also appear in

which the user is prompted to enter their first name and then the name of the file that

holds the program that is to be maintained. This file should already be loaded and

should have been executed, but if this is not the case, the user can load the program file

and execute it when the blinking caret appears again in the tty window. The user is

Page A4

prompted to move the mouse cursor tothe window in which their name and the pro-

gram to be maintained was entered. Next, the user should click the middle mouse but-

ton in order to display the menu of selections available with this window. The win-

dow is the User Prompt window. See figure Al.

Note:

When the program is first loaded it is necessary for the user to click the middle

mouse button twice in each window in order to display the menus. This is necessary

because all functions must be loaded into the system and then executed.

The maintainer can now move the mouse cursor to the menu that appears at the

top of the user prompt window. In order to determine what each of the diiferent items

in the menu will do. press and hold either the left or the middle mouse button while

the mouse cursor is pointing to one of the menu items. When the mouse button has

been held for about three seconds a message will appear in the black Prompt Window

explaining the function of each available menu item. See figure A2. If a maintainer

does not want to perform a particular item, move the cursor to the next item but do

not let up on the pressed mouse button. When the desired item that is to be executed is

found, simply let up on the pressed mouse button. This action will select that item

and will execute the selected function. As a user becomes familiar with the functions

of MAT1. simply move the mouse cursor to the desired menu item and click wither the

middle or left mouse button to select the desired function. When the user does not

want to perform any item in the menu, move the mouse cursor out of the menu and

then release the mouse button that was pressed. This explanation of the use of the

mouse in the menu pertains to all menus that are displayed by MAT1.

Page A5

QUIT
SEE-DOCUMENTATION

SEE-HISTORY
EDIT-PROGRAM

SFARCH-PRQiSRAM
USER PROMPT WINDOW
PLEASE TURN THE CAPS LOCK ON

ENTER YOUR FIRST NANEI AL

HELLO AL GLAD TO HAVE YOU ABOARD

WHICH PROGRAM WOULD YOU LIKE TO WORK ON TODAY? TEST1

WE ARE WORKING ON PROGRAM TEST1

MOVE THE CURSOR TO THIS WINDOW

PRESS THE MIDDLE MOUSE BUTTON TO DISPLAY MENU WITH SELECTIONS

Figure Al : User Prompt Window

Page A6

Figure A2: System Prompt Window

Page A7

The menu items available in the user prompt or opening window include: Quit

which is used to exit from MAT1 to the Interlisp-D environment. See-Documentation

which opens the documentation window. See-History which opens the history of

changes window. Edit-Program which opens the edit window, and Search-Program

which opens the program view window. Each item that opens a new window will

display a window that has another menu attached to it. The new menus can then be

selected from to perform the desired function.

Documentation Search, Entry, and Display Feature

The See-Documentation selection opens the documentation display window. A

user can then move the mouse cursor to this window and click the middle mouse but-

ton to display the documentation menu. See figure A3. The documentation display

menu has the following items: Quit which closes the documentation window and

redisplays the user prompt window. Documentation by Date which searches the docu-

mentation files for a specified date. The date must be entered in the form MM-YY-

19YY. When this search is invoked a new documentation display window is created

and the information about the current date is displayed.

The documentation menu also has a Documentation by Purpose item. When a

user selects this item they can search the documentation files for a specific word that

they are prompted to enter. Just as with the date search a new window is opened and

all information about the word is displayed in the new window. A Documentation

Note item works in the same manner as the purpose item except that the note is entered

in the form NOTE*?, where ? specifies a number corresponding to the desired note to be

displayed.

Page A8

i.i.imnn"#."miWIi

QUIT
DOCUMENTATION-BY-DATE

DOCUMENTATION-BY-PURPOSE
DOCUMENTATION.NOTES
DOCUMENTATION-MANUAL"" 'MENTATION

DOCUMtNTATION DISPLAY WINDOW
l

ENTER AN F 'f™^REU3ING™EFL0PPY^Sffi^E
ENTER A D IF YOU ARE USING THE HARD DISK DRIVE

ENTER DISK DRIVE SELECTION D

MOVE THE CURSOR TO THIS WINDOW

PRESS THE MIDDLE MOUSE BUTTON TO DISPLAY MENU WITH SELECTIONS

Figure A3: Documentation Window S Menu

Page A9

A Documentation Manuals item is used to display all documentation available for

the program that is being maintained. The documentation is displayed in a Tedit win-

dow in which the user can either just read the documentation or can edit the documen-

tation if desired. See figure A4.

Finally, an Enter Documentation item is available in the documentation menu.

This item allows the user to enter documentation for a program or for a change that

was made to a program. The documentation is entered in the tty window. In order to

stop the entry of a block of documentation or to stop a sentence, the user must press

the space bar and then enter a period, question mark, or an exclamation point. When

this is done the user is prompted if they want to enter more documentation or not. If

N is entered the documentation is stored in a file that has the name of the program

which was entered in the user prompt window with an extension of .DOC. If Y is

entered the user can continue to enter documentation blocks or sentences as desired.

When Enter Documentation is first selected the user is prompted to enter a Y if docu-

mentation files exist for the program being maintained for an N if no documentation

files exist. The tool then takes appropriate action. If files exist the old documentation

is displayed and new documentation can then be added to the existing file. If no docu-

mentation files exist, documentation is stored in a new file.

History of Changes Search, Entry, and Display Feature

The See-History item of the user prompt window opens a history of changes win-

dow. The user can then move the mouse cursor to the history window and can click

the middle mouse button for the history menu. See figure A5. The items in the history

menu work on the same principle as do the items found in the documentation display

Page A10

w
((T
OF
AND
DO I

KEY
PRI
THE
(TE
THE

LUJI.'....UlJ.IJMiUAM*dall^MliiJdll,ffT
EST1 IS AN EXAMPLE PROGRAM USED TO SHOW THE USEFULNESS
MAT1) (TEST1 HAS TWO SUBROUTINES READ IT
PRINTIT) (THESE SUBROUTINES ARE INVOKED BY THE ROUTINE

T) (READ IT READS INFO ENTERED FROM THE
BOARD AND PLACES IT IN THE VARIABLE STUFF) (PRINTIT
NTS THE INFO THAT STUFF HOLDS) (TEST1 USES
VARIABLES X AND Y) (TEST1 SETS X AND Y TO THE VALUE 0)

ST1 PRINTS THE VALUES OF X AND ¥ AND
N ENDS) (TEST! WAS CREATED ON 04-21-1987))

Figure A4
: Document Manuals Tedit Window

Page All

QUIT
HISTORY-BY-DATE

HISTORY-BY-PURPOSE
_ HISTORY-ALL

R-HISTORY
HISTORY OF CHANGES WINDOW
ENTER AN F IF YOU ARE USING THeTlOPPYDRIVE

ENTER A IF YOU ARE USING THE HARD DISK DRIVE

ENTER DISK DRIVE SELECTION D

MOVE CURSOR TO THIS WINDOW

PRESS MIDDLE MOUSE BUTTON FOR MENU

Figure A5 : History Window & Menu

Page A12

window mentioned above. The items in the history menu include: Quit which closes

the history display window and redisplays the user prompt window. History by Date

which works like the Documentation by Date function. History by Purpose which

works like Documentation by Purpose, History All which works like Documentation

Manuals, and Enter History which works like Enter Documentation except that history

files have the extension of .HST. See figure A6.

When a search for documentation or for a history of changes is requested by

selecting the proper menu item, the user is prompted to enter a D or an F. The entry of

this letter determines which disk drive is searched for the documentation of history

files. When a D is entered the hard disk is searched for the correct files, and when an F

is entered the floppy disk is searched. This allows flexibility in the storage of history or

documentation files.

Editing Feature

The next item available in the user prompt window menu is Edit Program. When

a user selects this item the edit program window is displayed. The user must then

move the mouse cursor to the window and click the middle mouse button to display

the edit menu. See figure A7. The edit menu has only two items available. These are:

Quit which closes the edit window and redisplays the user prompt window, and Edit

Program which allows the user to Dedit the program named in the user prompt win-

dow. A pop up menu will appear when the edit program item is selected. The user

should then select FNS from the items available. This will cause a Dedit of the pro-

gram functions in a Dedit window.

Page A13

gj3SZiIil!S33S3ES3EE35Z^SBiS
((TESTl WAS CREATED ON 04-21-1987) (THE VARIABLESTUF^JaT
CREATED ON 64-21-1987) (STUFF HAS NOT BEEN
SSt ?™2 1

THE VftRIflBLE x W«S CREATED ON 04-21-1987) (X HASNUT BEEN CHANGED) (THE VARIABLE Y WAS CREATED

WAS CRMT^nuU^fJIS! BEEN CHANGE°> (THE ROUTINE DOIT
S£,H5I5T

E9 0N B4"21--1987) (DOIT HAS NOT BEEN

PRINT^HaI SHM-S^ °" "-"-""> <™E MUTI*

Figure A6: History Manuals Tedit Window

Page A14

EDITOH STARTUP WINDOW
;0VE CURSOR TO THIS VINDOV

PRESS THE MIDOLE MOUSE BUTTON TO DISPLAY MENU WITH SELECTIONS

Figure A7: Edit Window & Menu

Page A15

Variable and Module Name Search Feature

The final menu item available in the user prompt menu is Search Program. See

figure Al. This item allows the user to search the program for module or variable

names and other information based on if the program is modular in construct or if the

program is nonmodular in construct. If the program is modular then both module and

variable names can be searched for, and if the program is not modular in construct only

variable names can be searched for.

When a user selects the Search Program item of the user prompt menu a new pro-

gram view window is displayed. The user must move the mouse cursor to the window

and click the middle mouse button to display the program view menu. See figure A8.

The program view menu has the following items: Quit which closes the program view

window and redisplays the user prompt window. Modular program which allows the

user to search for both module and variable names, and finally the Nonmodular Pro-

gram which allows the user to search for variables in the program being maintained.

When the Modular Program item is selected from the program view menu a search

window is displayed and the user can move the mouse cursor to the new window and

can click the middle mouse button to display the search menu. See figure A9. The

search menu has the following items: Quit which closes the search window and

redisplays the program view window. Search for Modules which will search for

modules called by the program being maintained, and finally Search for Variables

which determines what variable names are used by the program being maintained.

When the search for modules item is selected MAT1 will display a graph contain-

ing all modules or subroutines that the program calls as leaf nodes and the program

name as the root node in the graph. See figure A10. The user will need to select a

Page A16

WMSWgmm
QUIT

MODULAR-PROGRAM
' MODULAR.PROGRAM

PROGRAM VIEW WINDOW
MOVE CURSOR TO THIS WINDOW

PRESS THE MIDDLE MOUSE BUTTON TO DISPLAY MENU KITH SELECTIONS

Figure A8: Program View Window & Menu

Page A17

Eamai
QUIT

SEARCH-FOR-MODULES
ARCH.FOR.VARIARI FR

MOVE CURSOR TO THIS WINDOW

PRESS THE MIDDLE MOUSE BUTTON TO DISPLAY MENU WITH SELECTIONS

Figure A9: Search Window 4 Menu

Page A18

FUNCTIONS CALLED BY TEST1

Figure A10: Functions Called Graph

Figure All: Variables Used Graph

Page A19

position on the screen for the graph. This is done by moving the graph shadow to the

desired screen location and pressing the middle mouse button to display the graph.

This graph can now be used to obtain more information about the program. By

moving the mouse cursor to a desired node in the graph and pressing the left mouse

button a new graph will be displayed showing all subroutines or modules called by the

selected module. See figure A10. This new graph has the selected node as the root node

and all subroutines or submodules as leaf nodes in the graph tree. If no subroutines or

modules are called by a module then an appropriate message is displayed in the search

window.

The use of the middle mouse button to select a node from the original graph will

display all variables used by a particular node in the graph in a new variables used

graph. See figure All. If the module uses no variables an appropriate message is

displayed in the search window.

The variables used graph can now be used to obtain further information about the

program being maintained. By selecting a leaf node in the variables used graph with the

left mouse button, all history of changes pertaining to that variable is displayed in a

window that is created by this action. See figure A12. The use of the middle mouse

button in the variables used graph will display all the documentation that is available

for the variable in a documentation display window. See figure A13.

The selection of Search for Variables from the search menu will produce the vari-

ables used graph with the same options that are discussed above. See figure All. Selec-

tions of incorrect nodes in all graphs will display error messages in the correct display

windows.

Page A20

HISTORY OF CHANGES FOR TEST1
LOOKING FOR READ IT

(THE ROUTINE READIT WAS CREATED ON 04-21-1987)

(THE ROUTINE READIT HAS NOT BEEN CHANGED)

DOME WITH HISTORY OF CHANGES SEARCH

Figure A12: History of Changes Display

Page A21

LOOKING FOR TEST!

(TEST1 IS AN EXAMPLE PROGRAM USED TO SHOW THE
USEFULNESS OF MAT1)

(TEST1 HAS TWO SUBROUTINES READIT AND PRINTIT)

(TEST1 USES THE VARIABLES X AND Y)

(TEST1 SETS X AND Y TO THE VALUE 0)

(TEST1 PRINTS THE VALUES OF X AND Y AND THEN ENDS)

(TEST1 WAS CREATED ON 04-21-1987)

DONE WITH DOCUMENT SEARCH

Figure A13: Documentation Display

Page A22

The selection of the Nonmodular Program item from the program view menu will

open a nonmodular search window. The nonmodular search window has a menu associ-

ated with it that has two items to select from. These are: Quit which closes the non-

modular search window and redisplays the program view window, and Search for Vari-

ables which produces the same results as does the search for variables item in the

modular search menu. See figure All.

In all cases with any window or graph that is displayed the use of the right mouse

button will allow the maintainer the standard Interlisp-D right mouse button functions

that deal with windows. These options are discussed in the manuals for the 1186 and

in the Interlisp-D primer. MAT1 does not close all windows so the use of the right

mouse button becomes important in avoiding the clutter caused by having too many

windows being displayed on the screen at one time. Do not close the user prompt win-

dow or any window created by the user prompt menu with the right mouse button. A

user can close graph windows and documentation and history display windows with

the right mouse button, but do so only if all information in the window has been read

and understood.

INTERLISP-D CAUTIONS

Some cautions must be noted. When a user changes a floppy disk it is necessary to

enter the command (FLOPPY.WAIT.FOR.FLOPPY) in the tty window when the caret is

blinking. This command informs the Interlisp-D environment that a new disk is being

used. If this command is not entered the contents of the new (second) floppy disk may

be destroyed. At times, when you exit from MAT1 the caret may not be blinking in

the tty window. When this occurs, it is necessary to do a Control-D and then enter the

Page A23

command (TTYDISPLAYSTREAM TTY). This command will redirect the display to

the tty window. The Control-D will cause a break window to appear in Interlisp-D.

The control key is marked EDIT and is on the lower left hand portion of the 1186.

When a user needs to restart the Maintenance Assistance Tool, two commands need to

be entered to do this. The first command creates an instance of the maintenance object

and the second sends the name of the method that is to be started to the instance that

was created. These two commands are: (<- SMaintenance New 'Ml) and (<- $M1

StartUpX The case of the letters is critical in the issuance of the send commands in

LOOPS so these commands must be entered in the form that the example shows. For a

further explanation of MAT1 see the Technical manual.

Page Bl

Appendix B

TECHNICAL MANUAL

The LOOPS programming environment provides an ideal working set of functions

for developing knowledge based tools that use object oriented programming techniques.

Since LOOPS is based on the Interlisp-D programming language, all of the special

features of Interlisp-D can be incorporated into the Maintenance Assistance Tool

(MAT1). Some of the features that Interlisp-D supports include: windows and menus,

graphs, and the use of the Masterscope facility. Interlisp-D also provides logo win-

dows, easy entry of information from the keyboard, record constructs, and many built

in list handling and file handling functions that are necessary for the actions that

MAT1 performs.

INTERLISP-D FEATURES

MAT1 relies on the use of the 1186 mouse. By incorporating windows, menus,

and the mouse, the use of MAT1 is simplified almost to the point of move and click to

perform the functions provided by the tool. The Maintenance Assistance Tool uses

windows to prompt the user for information and to display messages and text. Menus

are used to display functions available while using the tool. Some information about

the program being maintained is displayed graphically. These graphs can then be used

to display more information about a program that is being maintained.

PROGRAM STRUCTURE

The Maintenance Assistance Tool uses the LOOPS class inheritance lattice shown

in figure Bl. The root object or class is called Maintenance. This class has a method

Page B2

Figure Bl: LOOPS Class Inheritance Lattice

Page B3

called StartUp which is used to display the opening or user prompt window. This win-

dow is denned by setting the variable Uwindow to the correct createw parameters. A

menu is attached to the top of the user prompt window when a user moves the mouse

cursor to the user prompt window and then clicks the middle mouse button. The pro-

gramming technique that is used to attach a menu to a window is performed by

defining a window property called button event function (buttoneventfn) using the

window property command. Normally, the button event function is Totop which

brings a window to the uppermost display level of the screen (in other words no other

windows cover it). By defining a function called Menuup to be the button event func-

tion and limiting the button on the mouse to be Only Middle, when a user clicks the

middle mouse button while the cursor is inside the correct window, the menu will be

displayed attached to the top of the correct window. This same method of attaching

windows and menus is used in each method that displays a menu on top of a window

in MAT1.

In order to define a menu in Interlisp-D, a variable is set to the correct create

menu parameters. The title of the menu determines what text is displayed in the title

block of the menu window. The items portion of the menu record determine which

items will be displayed in the menu so that the user can select them. The centerflg field

centers all menu items in the window created for the menu. The whenheld field deter-

mines what function is called when a user moves the mouse cursor to a menu item and

then presses and holds the left or middle mouse buttons.

The whenheld function that is invoked will then display information about the

item that was selected by holding the mouse button down. This information is

displayed in the prompt window. The prompt window is the black window at the top

Page B4

of the screen in the left hand corner. The command Promptprint is used to print a

message about the use of each menu item in the prompt window.

The whenselected field of a menu is used to determine which functions will be

invoked when a user clicks the middle or left mouse button while pointing to a menu

item with the mouse cursor. In this case, when a user does not want to select an item

or to display information about the menu items, move the mouse cursor out of the

menu window and release the pressed mouse button. This action will invoke the Progn

function of the whenheld or whenselected functions. The Progn functions are defined

as nil so that nothing will be done when no menu item is selected. The Progn function

is critical to the correct use of menus, because if it is omitted the last function in the

whenheld or whenselected functions are always invoked even when the mouse button

is moved out of the menu window before a mouse button is released. The menu

definition described above is used throughout MAT1 for displaying menus, their titles.

and for determining what action is taken when a user uses the left or middle mouse

buttons in the menu window.

Classes and Methods

The method StartUp not only displays an opening or user prompt window with a

menu, it also displays a logo window that is used to show the name of the tool and the

author. The logo window is a special form of the window record in Interlisp-D. The

logo window displays file folder icons along with the name in the window.

Startup also prompts the user to enter their first name and to enter the name of

the program that is to be maintained. By redirecting the tty display stream to the

correct window, information can be entered in windows other than the tty window.

Page B5

The command Ttydisplaystream is used to redirect program input from the keyboard to

the correct windows.

All messages displayed by MAT1 are printed using the Printout function. In

using this function the window that the information is to be displayed in is specified by

using the variable name that holds the definition of the window. The format item .skip

is used to provide horizontal line spacing for the messages. Finally, the message to be

displayed is inclosed in double quotes.

The method StartUp invokes new methods depending on which items are selected

from the menu provided at the top of the user prompt window. In order to invoke a

new method a message is passed to the class that contains the method creating a new

instance of the class. A message is then passed to the instance of the class telling it

which method to start. Four subclasses in the LOOPS hierarchy were developed to

accommodate the necessary methods. The classes include HistoryOfChanges. Documen-

tation. ProgramView, and EditProgram.

The function Quit.Stmenu is used to exit from the tool back to the Interlisp-D

environment. The function See.Doc is used to invoke the method DisplayDocumenta-

tion in the class Documentation. The function See.Hst is used to invoke the method

CheckHistory in the class HistoryOfChanes. The function Edit.Pgm is used to invoke

the method EditTheSelectedProgram in the class EditProgram. The function Srch.Pgm

is used to invoke the method ViewOfProgram in the class ProgramView. The Functions

Stmenu.Whenheld and Stmenu.Whenselected are used for the whenheld and when-

selected functions respectively.

The class HistoryOfChanges has three methods associated with it. These are:

CheckHistory. EnterHistory, and LookForChanges. The method CheckHistory is used

Page B6

to display the history of changes window. This window definition is associated with

the variable Hwindow and the window property button event function is set to display

the history menu when the middle mouse button is pressed as was discussed in the

opening menu explanation.

The method CheckHistory prompts the user to enter the disk drive that the his-

tory of changes files are resident on. A D is used to represent the hard disk drive and

an F is used to represent the floppy disk drive. If there is a problem with the floppy

drive the method exits and returns back to the user prompt window. The function

Quit.Hmenu will exit from the history window to the user prompt window. The func-

tion Enter.Hst calls the method EnterHistory which allows the user to enter history of

changes text into a file. The function Hst.Date prompts the user to enter a date on

which changes were made to the program being maintained. It then calls the method

LookForChanges and passes it the date to find and the name of the file to search. The

function Hst.Purop prompts the user to enter a word that defines what purpose a

module or variable has. It then calls the method LookForChanges passing the word to

look for and the name of the file to search. The function Hst.AU displays a history file

in a Tedit window. The user can read all history information and can edit the informa-

tion if it is so desired. The functions Hmenu.Whenheld and Hmenu.Whenselected are

performed when an item in the history menu is pointed to and the left or middle mouse

button is pressed and held or if the buttons are clicked on a menu item. The function

Hmenuup displays the history menu attached to the history window on the top.

The method EnterHistory prompts the user to enter an answer as to if there are

existing history files for the program being maintained. If history files exist the func-

tion Dooldhfile is invoked and if no history files exist the function Donewhfile is called.

Page B7

The function Dooldhfile reads in the old history of changes information and assigns

that information to the variable Filestuffin. This information is displayed in the his-

tory of changes window. Next, the function Inputhst is called passing it the old file

information. Inputhst calls the recursive function Omt. Omt calls the function

Readhst which reads information from the tty window that a user enters. The infor-

mation is CONSed to a list that becomes a sentence. In order to stop the input if infor-

mation the user must press the space bar and enter a period, question mark, or an exc-

lamation point. When this occurs the user is then asked if they want to enter more

history information. If a user responds with a Y the function Readhst is called again

otherwise the history information is returned to the Dooldhfile function where it is

stored on disk and redisplayed in the history of changes window.

The function Donewhfile operates in the same manner that the old history file

function does except that no old information is passed to the Inputhst function. In

either case the list of history information must be reversed since the CONS operation

adds information to the front of a list. In order for the information to appear to be in

the correct order it must be reversed or switched end for end using the reverse com-

mand.

The method LookForChanges is used to search the history files for a specified pat-

tern. The history files are stored in a large list containing sentences or blocks of infor-

mation which themselves are lists. The function Hlookatlist is called passing to it the

list to search and the pattern to search for. The CAR of the list (the first sentence) is

then obtained and this information along with the pattern to find is passed to the func-

tion Hismemberof
. Hismemberof checks to see if the pattern to be found is a member

of the list passed to it. This is accomplished by using the Eqmemb command. If the

Page BS

pattern is a member of the list the list is then displayed in the history display window

that the method creates. Hlookatlist is a recursive function that keeps calling itself

with the remainder of the history list (the CDR) until nothing is left in the list to

search.

The class Documentation has three methods associated with it just as does the

HistoryOfChanges class. Three methods are: DisplayDocumentation. EnterDocumenta-

tion. and LookForDocuments. Each of these three methods correspond to the methods

described for the history of changes class. The method DisplayDocumentation

corresponds to CheckHistory except that the documentation can be searched for by a

note number and the history cannot. The method EnterDocumentation corresponds to

the method EnterHistory. Finally, the method LookForDocuments corresponds to the

method LookForChanges. Each corresponding method operates in the same manner that

was described for the HistoryOfChanges methods.

The class EditProgram has one method called EditTheSelectedProgram. This

method displays the edit window and attaches the edit menu to the edit window. The

function Quit.Emenu closes the edit window and redisplays the user prompt window.

The function Edit.Prog invokes the method MakeChanges in the class ChangesMade.

The functions Emenu.Whenheld and Emenu.Whenselected are called when the left or

middle mouse button is either pressed and held or is clicked while the mouse cursor is

pointing to a menu item.

The class ChangesMade has one method called MakeChanges. This method is used

to prompt the user to enter an F if the program to be edited is on the floppy disk or to

enter a D of the program being maintained is on the hard disk drive. The user should

select FNS from the pop up menu that Dedit causes to appear. A Dedit window will

Page B9

then open with the function definitions for the program being maintained.

The class ProgramView has one method called ViewOfProgram. This method is

used to display the program view window and the program view menu. The function

Quit.Pvmenu is used to close the program view window and to display the user prompt

window. The function Pv.Modular is used to invoke the method ViewMod in the class

Modular. The function Pv.Nonmodular is used to invoke the method ViewNonMod in

the class NonModular. The functions Pvmenu.Whenheld and Pvmenu.Whenselected are

used to determine program action when the left or middle mouse buttons are held or

clicked, while the mouse cursor is pointing to a menu item.

The class NonModular has one method called ViewNonMod. This method is used

to display the nonmodular search window and its attached menu. The function

Quit.Nonmodsearchmenu is used to close the nonmodular search window and to

redisplay the program view window. The function Nmsearch.vars is used to invoke the

method SearchForVariables in the class VariableNames. The Whenheld and When-

selected functions act in the manner described previously.

The class Modular has one method called ViewMod. This method is used to

display the modular search window and its attached menu. The function

Quit.Searchmenu is used to close the modular search window and to redisplay the pro-

gram view window. The function Search.Mods invokes the method SearchForModules

in the class ModuleNames. The function Search.Vars invokes the method SearchFor-

Variables in the class VariableNames. Again, the whenheld and whenselected functions

act in the manner previously described.

The class ModuleNames has one method called SearchForModules. This method is

designed to use the Masterscope facility of Interlisp-D. The information returned by

Page BIO

masterscope is then displayed in graph form. The graph then becomes a 'menu' for

obtaining more information about the program being maintained. The Masterscope

command Who Does XXX Call is used, where XXX is the name of the program being

maintained. The answer returned by masterscope is a list containing all the functions

or modules that the program calls. If no functions are called by the program then an

appropriate message is displayed in the modular search window, otherwise a graph is

created using the function Layoutsexpr with the program name as the root node and

the answer to the masterscope question as leaf nodes. The graph also has left and mid-

dle mouse button functions associated with it. The graph must be moved to a desired

location on screen and the middle mouse button should be clicked to display it.

Once the graph is displayed it can now be used as a menu to display more infor-

mation about the program currently being maintained. By moving the mouse cursor to

a leaf node in the graph and pressing the left mouse button the function called Lmbfn

is invoked. This function displays another graph using the node that was selected as

the root node and the answer to the masterscope query Who Does XXX Call, where

XXX is the node that was selected from the original graph. This allows the user to

display all subroutines or functions that a module of the original program calls.

By using the middle mouse button to select a node in the original graph, the func-

tion Mmbfn is called. This function is used to display a graph that contains all the

variables used by a particular module or the program. The root node is called

Variables-used and the leaf nodes are the members of the list returned by the master-

scope question Who Does XXX Use. where XXX is the node that was selected from the

original graph.

PageBll

The variables used graph can be used to obtain more information about the vari-

ables. By selecting a leaf node in the variables used graph with the left mouse button,

the function Modnlmbfn is invoked. This function calls the history of changes display

method LookForChanges in the class HistoryOfChanges. Selection of a leaf node in the

variables used graph with the middle mouse button calls the function Modnmmbfn.

This function calls the documentation display method LookForDocuments in the class

Documentation passing it the variable name to search for.

If Masterscope returns an answer with no values i.e. nil. the program does not

display a new graph. A message stating that no variables are used or that no functions

are called is printed in the appropriate display window. If a user makes a bad selection

in the graph, the message choose another node is displayed, prompting the user to make

another node selection.

The class VariableNames has one method called SearchForVariables. This method

is used to display a graph containing the answer to the masterscope question Who Does

XXX Use. where XXX is the program name. The user can then use the left mouse but-

ton to see what modules use a variable selected from the original variables used graph.

The answer to the masterscope question Who Uses XXX , where XXX is the variable is

displayed in a new graph. The root node of the graph if Functions-That-Use and the

leaf nodes are the answer to the masterscope query described above. The left mouse

button can be used to select nodes in the function that uses graph. This will cause the

method LookForChanges in the class HistoryOfChanges to be invoked. All Changes for

the selected node will be displayed in the history window that is created. The middle

mouse button can be used to invoke the method LookForDocuments in the class Docu-

mentation. All Documentation containing the word that is the selected node will be

Page B12

displayed in a documentation window. SearchForVariables has no middle mouse but-

ton function defined for use in the original variables used graph.

The function Packfilename is used extensively throughout MAT1 to construct the

correct file name for editing and for searching history and documentation files. In all of

the mouse button functions defined for a graph, both the node that was selected and

the window that contains the graph are passed to the mouse button function. This is a

convention of Interlisp-D. In all cases of creating a graph, a window, or a menu, the

definitions must be stored in a variable using the Setq function. This action creates an

instance of these definitions that can be used over and over in the program. The use of

the if statement in Interlisp-D is like the use of the Cond statement, so it is necessary

to have an escape clause if no correct answer is found. All the correct forms of pro-

gramming statements can be found in the manuals accompanying the Xerox 1186

workstation.

Page CI

Appendix C

MAT1 Source Code

> w < a.

a w i- o
« ~o z uj~ ^
si o<".«s>u<^ ^.uj« "• I * D o: yj a uj ~i/i =
_i -^ ru<uuo juq au< "
A uj <u.aHO(-iuo< « 3 z ^
IUZ«>° a>MU 'l8«3ZJ =
-l«?£2; Q: <«IXll.UJ<QuJ£n«z£3oaa:_i*t-ooJoj< ^w
u- UJ 5pi

J-Haa.uj-3ZDiD„,^, *~

c ft 3 z^:^"2„S3
ft 5 ° »- a - 5i

2 R £« hjouihoi-oli
u £ ,-. £ Zoiiuiizouio»

£ 2 z "SwoujhjiL

— rth iujOOOOOOOOOOOOOOOoS
u — uj oo2222222200000 °°° *~
< UJ ""o

-WwwwwwwWW WW — y Q
Z 1- uj uj w CD
h Ol- h 2 f- DO O Q C t.

Page C2

ft
z

M O

r 10 c -i a
lUI-r n >
Z f> X 1 u
t mm u l. ra
E <si *A id ai *-

< « ** a wOJjjscO O O 2 i/i -.
< U. IL. www
a u uEDO

Page C3

t- CM
« a ou
our**
— 0.+* 3 a- BC

£ • 13 O

«- S - L
« 6 "0 3

O £ « T) U
*- ** C —

e «

1

1

I c

01 J
c

o a m
r 3

a
L E

s 01

•" v)
"D

\A O
X 01 £
o o
(J c 41

a a E
u c
t- oi X
ce 01

< c z
h-
VI (0 •

(0 T3
c o
ai r

OS 1*.
M £0
a >* tj -Q

£ <- C •
O 10 - L.

1 ** H * -
o « a m

x a a c >
a> £

m i- tj a ~
-~ o o o
£ * C «
I- «»i
£

ff * O
• u E *> >
K •- C

«j n o -
u o> r *-

C Ml- O
f L. *
1 B O

C M H •«*
a m « t- T3
c E 3 « c

C • C (TJ +-

« -M 01 - +.

a c • £ a d
o •- ** « a
c • « • -o •
a c- > io

o t. g C 3>* a e i o •

« *- > I E- a *- a
a *• "C w a>

n C c 3 n -- * a E a T3
B E r -a

3 • (. £
o o — « 3 E
*< O 3 M c
Ofi 5 • L

T) O E O
ai t- 6 in

MO £ « tt
3 * !-*-£.

_ o * *
« £ <*- • —
*• U CO)

u E o o ia • n c £
. D « L. TJO **

** « a at

i O Jt • x
« -D U L 3 U
i/i a i i _

• E u
a u £
•fflttj

£ * £ c
M C £ O*. a
01 * u +•

E « L
^ a c

O I E 3 o
i *- o a *•
£ Ml- a*.
i- i- ac u

• "o a — c
• H C U L 3— 3 (o ac w.

*- e

H C
a, £
L 3

C 01

o b

•1 c
U 01

C £

LO SO

c a

Z-. , >.
W — M
>Q. c~uiD 5 aZD v MOz <£
K-UJ a D
5 s

I,m z c
o • •W M w

q c
01 -

- 13

u c
c i

Page C4

r 0) 3
U ifl C
- 3 a

S|

C

is

5 u UKIU u.K • z o. r £
< i- i- £ i-

c 2w c uj z a Z a- .-.

ZBILDEu am a a "• i-

,_ a
** fis
u - wc»^ <-ZI-

1
.Cl

§ a 111 5 o a m s
.T « H Z - I Jn O

h k i- a 5 —
< z —

i

3E H UJ
u

at

*< a Z
9 J

c i ? o:£ » a Q.

h
a O Z I > „ <a uj d a i cr

u. i oo u o
W °3QS

o
a =5 OK >J-UOW £«la
a

H
_; *"A A 3 • D

i/) a. to * uj"" « s* O
r n "i^ *"" M w ul —

z « o

5 9 1 -

o U O UJ
•p « a
*i a a
U "D C .

C
r- ° 2DC o

So
la

o

6 55g

I
* 5

uj — e a
UJ~tf .

f- « w < ^wh i a "
• z > < c —

1
1- uj a a o i«*

i
— S o o a _i
D 3 t- O a «

i o u w a i z
i
— O •-« a i

i Q X i u z
if t i I- a c
•-. UJ UJ M < O3 III UJ Q iu or
Oi/)duji/i o.

> o
J Q
z Z

in *> <-

r- +> Q

a "0 <

Z « A

' * r- •
c a —
*. r h o

Page C5

a 3 c
c *
U
E

1 D
4J £ -
C ^ ai

C
c
- t_

H £
9 c *-

-
.^

d,

*^

a *
O L.

D n
11

01 c u>

*< c
o

Ji -
m L *-

£ o> D
K ^ a

pg - i.

_ 4)

ID c _
a ai

u L.

D
L
O U

c
0) ai T3

L E B

L 0) E
4> £.

a 01

c
L. L
a O

c
41 41

£ w £
C
Q

1

E O
13

L a
o

c t)

01 a>

2
(0 O C

IS

2 Z
l~ O
to —

< o o
1-3 | 111WO Z H
: *- O U. <J

JOUI
II U. _I_J

j a =

W* «• * ~

j i/l

< o cc a <
,* h O O jW H OO

Ifl X > ,
V)

ill-
t- - i ai

- I 0)

31s-

° E

£2 ?

* °
I 111

« - N Z
Q-r NO'

= 3

-I Sh>
« E K o,
a.- S °2

* 1 -1 53
O, I 2>-

s: a i»? a o
c ^ trt a

• § 1 s

41 >

SI

01 - 3cue
- 3 01

C i- E

i a 5OO <QOUJ
z z a

D 3 a ~
O O V) 0) O
1- H ~ E <
z z a <o ijj--> z a
£r a t- ® w
a a t- |

Page C6

1
I-

z

§
>
<

n q.X — (/)

1
E -
0) Q
0.

o
.. ~o

t- *5
*"

wOZ
55X > Z H
" K

-1 3 23
< ID3 (C V)o I]hU> O X W
a i- 3
a o

-1 ox

I
i

Z 1-

O UJ
a: _i

S i
(J O Q
z </i a< «K«

.gr
_J (0(j

* = X
a u
O UJ
a nil

UJ t~
« 1/)

-1 < M >UI

?s?
uj o cr
a in

a* „ * X
< O £o «t
uj O < Q UJ
a z Jz a

3 3X3
1 o o olUQQQ
a z z z -%

a.33a ,->

f>o o </> a
z"S 12

ho. ski
o z oz zz z

h a a: k o-
h d a a a

Page C7

a,
a> o>

n
O *

- !« z

no -£-*•-
C L*.COO

o e c
* - T] O
C - L L -

ifl O II *

0) U 3 C +-

c o d £ 01 c
•^ — U 0)

(Q 13 -OLE
- "O 01 01 3
C s- O £ U
..- o <- ra ** o

g 0) II - 01

01 C D z u
£1 01 C >. C

W £ t- (0

E O ~
a oi u *• m
l — m in > <-

o c — L at

i_ - *> at

a w u a * at

m hi c
a a m c **

£ iii a a
M 01 o

i_ — £ u i
o c ** o u M

a csi-i o
-» O I. O »- V)

*• U O. 3
II •
«• ** ** u c 1
C VI 10 C O £

«• 3 » -^ •>

e - e *-*
3 fl C (0 M
O 3 L. 01 *> 01

O « 0) u c —
u "i at u
£ 3 at 6 at

L U £ 3 3
U S3 01 «- U 17
*- a c o
C +• at V V
0> £ s- O

** C O 01 £
- O *- L W

«l I «- « O 9
*• E £

1 -no
«l *- C 01 £3»*£-l-

«• E fl C- 3 L 0)

(fl C
L a>

3 6
U 3
0) u
L. 3 "J
HI

£ a c
o

M M a
~

O c
S3

c ^3

01 a E
C L o

+ "D at

at 3
c a cr

c «
at £ to

I".

oi E

C o 01

TS -J

„ Eu. §

5 J

c a - 7-
o * o«.

10

£

U «
at

a *t

1 (a

m a

—
a-.
1 at

o *-

u. a

o a
C E o Ev O D V UJ 01 -1 0)

<»- UJ U M
+• *> C
c a hi m ~ C V c O
01 +* HI c o a a
E c n at - £ — £
o | O C L. S3 41

O 3 --it) - E «- EQ u w > c
H) Z 01 01 1 a> I

v-i Q fl U E ai E tu
ui — n c 3 z 3 2w v> u t. q u
<A l/l fl) Oi -m • C •< < *• a i a — O —
-J -1 « 3 cUUIHIh z r

C UJ

3

C (0

at c

M 5 0)

• M O L
C C O. L w
o « • m a c- a 3 a
~ a a c
13 O O u Oi 11

« «f £ £
C L O M *- -

5 £#••«• a
U • 4<A
O (. • L « .

;-';.;;,..:!: >,
L — C C VI O —
« l -^ a ** oi
*. c o o cco av l-
UJ »• C £ O B"« CI- k
BR) O CO
o ** — o u
C C C*n*~ u
W « O M * (II

at E - E - at

E 3 .«-* hi

C *•

O 41 01 3
* t- C U D

»— >- — OllTlo

in i-

3 at

i- a

E i- at

o at £

a t
o in

o C 01

at E
c »-

o o l~

i
^ o
u a
o z
-J ft

a 3
E 5
o
U i

CE

o <

Page C8

E
c n

u -
C i

- « o
u « a

a ai

01 O « L
u *- **

c c u *-

<- 1-3

u o <o

Q c >
Q O |*< O C

C UJ *•

o ce m
£ 41

c >•+- u
id -a c
£ w 01

0) - c

L. U £ Ifl

3
E U* L

+- 3 •
u m o r
ai c 6 «-

4-> o E o
c o o c
ai u (0

« L. A Z «- |

1- l/>

3 3b 3 a „ a u
_i ^

OOOo^Ol sQ Q > D K Q K o > - n
Z Z Z^Z - r Q
- -h Z _ CC _ u. 10 O
i j lu j a s c L. **

O <3 I Q ; Q 1- s 3 C 10

U O
*— — = 1— HZ3D D 3<3 5 njo o o o = o a

to E-
L

II 0*
HI- t- |- H Oz z z z Z X
tr tr a: cr CC Z C 01a a a a a

O L
o e 3
Q -C O
< *
uj a)

a: w c
i/i -

c z
O O o
*• <_> *

U > 01

c - c
: «'
u- > 10

"- c
01 w o
C i. u
1- 3

u a>

* ai rw L +J

«§§ *
uj OO i/i

l_
— -' z

o „ „ o3 X X u
.Soo -

1 01 — J

o u c
- CI) u

^ i/i o
O Zf H
c o ^
3 U >. in

10 U C -h

l c *- t n
3 3 **
U •*- J= C C _ O -J H w

E £ 10 0)

UJ — •'- C
1 *. — -
-. > a
UJ £ **

iX -' Tj ~
q m oi oi

i

2 (0 v) 3 i

UJ -X 3 — C
Z " *

.

- a u c
c J3 O I

o c - U I— c ca n
*- o u E c I

u - oti I

c ** *• u jt (

3 (0 <0 +- I

•*- ** C -D «

C «• C -D .

ai ai a c '

r E io a -

t- 3 * +* J

U 10 10 > t

w £ ul OJ b L
.--- > a *

01 10

c « D L. >.

i <0 0) h ID

u ^ * C 3 -
o *. U C f O Q
_1 ffl O - u. io

CO *j Q i- M u_ —
£ C Q •- 3 TJ

3
u

'-»(J (J

1 if. oi *- W 01

3 J3 c r
H >o o (j t- 0) *•

3*-
O : uJ ai (D ti o +> an w
5 fc 2 X "• c
5 - > O o o i » :0' l
C Z D (j U Oi Z — l z

O C « — ffl f
> *- *- C > 01

tO <M> o X U
z =1 W« o oi e — ai

O r>- a ZH J Oi !--£
U UJ < uj CO *j C (0 *- C
wq; a o itj m t- e a
o o Oo« « CUC

* 2 < z "J X o l. XL — o « in

Ut < u *" +- 01

o cc z o "- «l CD-
-1 1- o O H * £ •* oi —
n
X K w 4) <«

O 3 Z c — O E t) o -h c
uo < a 41 01 O C W 01

o £ 41 ii c Of . a.

OZ o * ul
3 « "D O

E +* — C
uj a 41 in n 3 — 1 —
i/i a 1/1 — l. a —

01 *» o
UJ 3 £ 01jL Oh «1«1
— a (.4)
U. 1- 41 HI

3 01 U >
UJ -C •*- O 0) —
Z « Q L u

Q 111 013 « C
ai c a. f ai

C 10 01 Z £
o 3 a— * *-

10

« c c - c
u o io a — o

C C L
o a a
- Q£ w
. a- ,-

id ra

* -a ecoca
«- ffl »

Page C9

w a t-

to o t/t ui a u h

a z o <o •<- >,
— •- D f 10^ U. * ID —
I*, u. 01 w «> a
3 C - C ifl

c H —
a ui a e o
-ill XH 3
+j _l * <J V
a - <*. o £
*. U. >. "D *
C a
a « - i u
E - XJ c c
:; £ oj o z aUlUl
O — 3 *- 1> T3

u i- d r •
S O If M

ai > t- jc o
c a*- c -
- ! * O
-£•<- O -
h *- a « i 4i

« *- T> etccu
C G C 0) C
to *- a in —

(. a q.«-
o o vi to a •*-

f -h a) n
n uvi —

c flZin-
w — o « a

«j a •

C -H O - >.
*- O 3 ** •<- -
C - O *. -

+- *- <0

E 10 C Ifl U C
S 1 4- 3 - *uuioib
o o a u
Q *• 0) <

c u r >,

x - u *- L
C 13 C

E I* I |«
£ W H C (J

U *< t. O
C P CD l>

XJ >
a c u ui -a
a a 3 l —
« .*en cm n
O i- -r- «. .p.

*> £ r -D
xj c « *-

U «- X)
(A

« L XJ -- U -

c *- 4- a
uj - o it « n

M 4- *• L -
Li. ITJ O H- £
a c e*- *
_J o L C
o "- o •«- u a "t
o *"t- l « .

Q to C m m 2*"-£> J£ O
C C t- U X)Q00 I. fl C~ E£ fl-
* 3 +* +* *l J
U U « « XJ
C O 4- v D >,
3 V O - £ l_ **

OIL]!.
— < O M

£ O O £ >, £
H - C *-

O "0

* -C £ C C £ O

z Z —

>

li- t/) "« W K
'-tr m d

c
-a oJnv] Ifl O t/l ILM Z "-r «-«

U. « I -. u. r 3a u. K to U U- h- Y-< U- : U_ O 3 = 10
IU 3 Q t-

E tthNN
: i —-io

!•
iu a. a. a. uj a a

2 tO — — ^.
«

< •* V tt — a: a: a; k- >

<

i

UIIMM -UJ WW 3

t S
• '£

z a J s u.- a o o
IL.U1Q 3 — — O O 3

a: a Q h-
'. 5 U. > z z a. i- z z vi

<

SUImn O 3 -i-,

•
z

i- a 3 *~
tO — O, O 1- 2 Z

HO * 3 z
u- u- a q u_ P

u. DDhK h

<
2
w
— W 3 3 _l
IL iLOO< J J

t-l-33 3VtMOO O
OO z Z zo

U.
OOZ Z 10
1- H-.~0 IL

jt [0 Q
o >z W 1UK a: _i 3(/iwaauoowwao. a

* 7; ^-, 5 w
S a D
C Z it 4

z * 10
m >
5 h 1/) ^
3

c a 10

< z Q O O
>
>- i/i *- ••

Page CIO

Q M
Z
« c

C *- £ 2 c
L U U E
W C L
~ 3 flj 1 X

o
(0 1/1

a v o
r k

D N *
a -
4- A IL — i-— L

If) 11

ii«- +* -iO (D a >O —
<a o O Ea +* £ d)

-
E a u

£ L
l u a
O (. « a-a-o «. a to

< • C
™5 vi in

*-> tU cN — a
: E r- r Si

E i
***; (0 T3

Z * c i>«-
Z o o

--»-«) e ™
* w £ S Q

« < +> —
- <-» *- *- «

"D U < «
Ol •*- 01 £. £
V) - t. O 4-

M L O

< I. £ «
) CO (j « 0)
• l a £

- « n a<-

_ ** a o*
1 C > O

B
r
a

o M

3 1
2 G

5 £

s° ;

" 2

f!

- - o
,, *>

01 o
£ U
~ C J

4) O
r **-
U C +-

L ««
ra « £
• i
in £

« c
O - C

c L *- * oj

E
e 5 T> O 3
3 rt V * 01
u Q W ^ L
o h son
Q *
L - M M f
o *- - £

IS u. u- • «-

M JC n £
CO«- *- a
f o o
6 j u.

c *•»•
i « >

3 * E 3
u c o 3 6 i-

o o o U°~
ri o «*-

L <- O
o a H L - £
u. ** ** O " U
Jf c o li_ s- L

« £ j: (9

E » O C •
_l 3 o o m

* U * j **

C O - *<

OQ * n » -^

o «*

£ c c
a +j ai o
** TD « E-
C 3 g 3 *•

I) C „o?h £ O t.

u p
u *
to •;
0) c
w —

t
o a <5^"

Spa" 5

S

o c I
4- 0) (T
U *" <

u - a £
C wu
3 »m-£
«- £ £ u

** X L
« -C a
> c «- u. «— a» t- m
m £ o x
L •* •< O
3 C - ~.

(0 > ffl (B r~ U- a£ (.

ifl a on^ E n «i£ «

H * — O C
< « £ £ a
x » * u u
O - £ L Z

4- 0< 4-0
u o c c -
C K 1- 01 «
3 < * 01 6 q
*- U£ ** 3 *.

*• * © C
v • a (. ai

£ £ >* a a e

Z IL
~ H
3 iU
o X

'

n q < z m z 3

;0-zj ujo zo
5 Zt/lZbO-'t/lt.

z W UJ *. 0) uj 4_

Page Cll

X
1

09

z
a:

O
u. - O

-1
O
Z m (0

c
OJ OT
£ O
3 o
U f^
a
Q M

C
CO <D

N E
CM 3
O (J— o
o

U3 C
O Oo u.

> - Xa— a
o O
U_> —1 1

EScO—

7.
u.

5 t- O U.
< O O _)

* C HI ILJh
° f.

a -x ' 3
**

o i t-
< -> a JOvt
t *

;

< OQh
z o w u t- Z _)Dot *> M (J

15* »-
*» o

y *" </) -~. SO
Q U * "*•• K
Q O "- 2 -i

a i-

A Q _ «i- O -1 ji-«
-1 z
<-» u.ui

O _1 t 3 _l

10 < O-i on ozx
IU(U>-U.I-0l-~Oj-iwz HBO

to O mKj
w

o -
" < ffl

9
US *•

CUJ C
< -i e

I

-J« E
<->u. 30.
UJw uoO Oh-~* «— OKI

Page C12

> <-

l. *-

D.M

^* —
IM

(J)

o n

>»

!1

v> c
trt Q
s O -
o X **
u •- <e
z iij *.
o 3 C

rjV-

< 3
fc •A U
z ss=
E U X V
z> r «-

O - «
o ™ a-Q 1- 1 Q> < •<• 1

t- q §
J Z M
1/1 a c d

3 O O
a U - £
K. O ffl o>
Z > +- e

< c
a -JUS
a a e •
s W 3 z
o

a o -
> o —

it

z

si

o> c
t

3 £a a
e o

a. o

is

V)
-o i
C E

JB
.S

•* c a
w u

L o
c

a
o
«

C
o

I
OJ
-

M

o C
- o

a)

• C
I 4> C
o c v .- c
D * E »- 3
c „ 3
-r- c u

J*

X o e •

Hi

a-
3

r <u

> » C C
I- 3

t. > •

a IU * B > I
a

"5 -
in - T3

c
a o> h" (0

a j: u £ Q I
O b

z u *"
c

u.
3

o — o
o

V) S O

X Sev
o Q. j a> CE V) (- M
IU 3 o m

I t- •a o K a 1^ e

<
c —
-r- U

z
a a> e
C -C 3

<s> tfl C c c
c o> Z o o

-c u. c c -o
I o •-

a.

o 5?
c «

z

>
a

c
3

u
C
3

** D jC
u a> *-

c *-

a
z

01

E *
z
o
3
D 4> >

3 01C

l/l a 3 S Z r L **
c

O 3 U D t- K c * a
a E Z! S C

u g ;
m a a> L 4) E

a a *• •*

! ^
UJ Z

o < .-^ £ o
O c M U J3

z o
3

a. tu z e
«
N o (J c

a wl c o z ^ W 01

O = l
j;
2 D *. — c

a
a.
5'

- e
v o

u- H c
*. 0) >.

a: o E c c a
o ^ a o z s 3

—

IU
i/i Si J o s 3

u
o

g l a
3 *- m

> 3 03s o u m •
x~ s HJ o DOI- L o u
o a a " r 3

B
o Z Q M <0 o £oo a 3 Z > u >.

z z o n +*

a

o
5
z

X c ii <~ Zi

— z X Q Q * - C «
* -
o s f EZ

Z>
c
o
u

X
3 a

a

hOl- L X Z
t- Q u V) > IS *«

uizfl « — 0)

3 Z D 5 c
(0

s o UJ > -CO
O o 3 Q a >- iq ** —
i- > EC U C hz a z a> ai
-. a muc
tr O a -i 1- (B f
a j a U O Q Q. w z < U 01

I- 1
_
23
c *
o

I C
u M
C

3
z

3
a

3a

z

u
o
a
a

z

a £
. V)

o c L.

o ** «

C C W

CO*
5 *
*- — M a O 4- ID

<u UJ * £
B ui z z
£ o £ o
h L D

Ih u.

Page C13

- J3

Q] JJ tU— £

*. t;

o c
at e -

oi c en

525 a: -

m c
n at >.

m 'D fl

13 D

* — O

(0 u •

HI O HI

*- o a>

E L
r ^ i«

u c

O JO x * z * _ a >a a s w - to j
_l : - : .g

QZBO S*1~SS 2 2o +* ~-o o < o <-IQ JOQQQuj-Z-OZ2 ZCC a ceZh g ~ -. a -. h-
X 6 Z 3 3 "» i i/i-Q 0hOqHq> 1 >sua z < e <ai(-».Qt-t-iui-_i * 32 D3= Da ai-OMioo ow aJhNthh i- —

(Q Z < Z Z Z Q y a w»h h liUhh .-, > a >hk o jsq: a i- s rt t-oavuaa ai-

3 3l ® CO

M " * £ < uj a Q < c —>•— *- M £
* UJ O i- « z ID — *-
Q _« o z * .-. a > lfi u_ E >

01 C £ q. o u to a +* O TO K : oil
E •- +< -1 : - : .£, CI-2I- 11 c V
3 L o E - m
U *- * z a z * o JJS e s 6 15 — 3 t. 3

10 (0 o o , 2 ** C° ° < *• < 3 £ — <
13 £ O"1 9 SQOUJ UJU.U O "ill
£ - ^-z-ozza o a •• cc 13 £

QJ U < r- z — a m m h a H £ f
£ I- <- * JEzjJw - i/) « U
*> 10 01 z to > o u o > £ <- HI

V ID £ < -. u. o a < *- 15 •*

« w 3 X jfflh^Qhl-J f J- -* W *» _l oi a
D S l_ 2 - 3 =£L a u H « E

— oi a u tft-ONJOOM l/l Q {Bj 3j 00 — O
m -c £ §

uj-Jt-MtrKK — _ 0) L
_j m z < z z q u a »rt O (o £ a

> u »-hLUJ»m> Q > w CJ -H

a ai v) < „"a o-iaai-a trt t-
id a. •». u o. a t-

1 1- 1

cc (0 a a. u n-
3 u e iA - S CD

a o z O u
a z c

u - a a . « o
o -C o u • —
Q - O < B o c *-

3 a *• u
c c - VI c

.* c •

01 3 I
£ O *. O
I 13

0) C
* O £ «-

—. +- t- J

i- £
r
Z

.*

A i

(R TJ

f

*— ** a *

Page C14

all-
O E
L. 3 (0

01 *- -o
in —

•D C

a. rr -

u- X Z

if

oo UJ
1- Z K

O
trinz

n
5 £ X
5 a h
z o

Li. a.
UJ

h
o x Z
z h>

E J
c

U ~Q 4>

o c r>

J I

o -

- u. a *• a •-

q2 w S> c

- — o £

5 Ez
- Q O-

L 3

3X32 c s
i o o o < — <IQGQul u. uj
J z z z <x o a
i -, _ _ |_ ^_ ,_ ,

3 3 3 M +- trt tQ Q a > a > i

< r < ~ i

h k i- _i J -j - jo 3 d a .. a u iO o o to MQ i

E | -

U B II

- — Ui

i a <

t z z z a O C tri

Q >—
_i * E
< £ O
3 *» <~

z a.

<t «
2 > c

> a o

-OHJhO
Z w

c -I- a.
3 U tfl

if C . it
3 O -J

> 01 **

- c u
01 »- •

Page C15

3 a

Z K £E O J _| " is
? a z a lu z - z _

. 6
D
5^

DOC PTP

E
ROM BAS PRI

FOR TPR THE PRI fAT;

a o
.
5 a a. i- a. h- z

•-a hImO(.q:iu03 •I- H-zwhioa ecu

Jl-KCTZ Z -><

„ <D

U H

u-<Ourt oOZ(r ^ °^QZHiUhDZoS
£ 1

HI
1 3 K K Z < .-. £2 ri>i>uo<<si~zXll3II10ZhS < w

£ U
u C

PC ^ 1 (J 1 Q 1 z | (/) K 3c : ZOZ ZujZ>Zo"
- M>M 3 „J S

r ,
5 hWh<hyha3»^
o <><_l<0<^Uiij_J
£r Slt^OHMOlflMZ-JZI/1Z ZQQ^z

Ui Q. Ul -. Ill „, u : 1

= ^ 5 O S > S ai/)Z3 <- 3 -- 3 < 3 HJ»0UQU UjU l-OO3 o=o oq.o z _j a:O a a Di/iO iu_iq.

C — 0- VI £ o~ 3~ J — E *
Hi d'-. <~

o
1- -l/l DO4UUJZO £ •
O. O K < M C

C

- Q O 5
{_) wz . a c (0

O -UIUQ QIUUOI- -C *— WO Q Z I 03OQ wiu
I/) uaw w 3 "1

t- q: _i ::
*

c
DC < D to < z"Oamso E 3

"-> I 1 I-Zm cz D > > O < H C I1

u

o z B in z s <
s z z z z z —

E

3 D
C £2

SOOOOhj- a c
01

IB es2 K K K K K 3 ^— < < < < U _JO)_ 3K KK K O ~ E *
?«-» OZ Z Z Z Q Z 3 o

u o
S 2 S £ EC Z o cK 3 3 3 3UJ (J "D **

Z •, « U U O U K O IDO OO O Z ECs s o q a a q iu a. ,; C

a """ w— _w ww w -. o

at « m
_ -a --

- u e
* * a

B3u*- £ 9
aj « - c
- E <o ra

0) c c

c ~ .c c
K > S

. O 3TJ
x *- c s

a) —
D «> E -
c — Q (0

•- fi u
1 <q *
- c a>

C » (0 .0

.,- > TJ O
+. (0 - *>

(0 01

*- w r a)

c c c L
0) O 11 ID

E- J=
3 +- * Ul

u a. • c
o o 3 o
z> c«-
Q 0) +•

E u
r * o c
~ O 3

h is a
r- * C
r 41 3 (0

^ C C
n_ -<- Si B
at •*- E O
a a> -o

= O
3, TJ 0) L -.

£ - * a •

*> « U L.- «« oQ * — £ Wl— « +- L.

O W W 3
£ -C C U

S 3 C

lis
o

x a n 3
•a o *< *- o
a "D c E
f) C M <m

3 •• E l a
i vac

at l u •*•

It E 51 IC

- 3 +> cliucno
.- D U CI Cl
i. (0 C
10 <U CI H) -
> 3 - w j:
- t- ai u

0) n l e —
C. > » —
K +* *• O

41 C 15

• £ 41 £ >.w *- O Z B

C c
• <«-

c *

Page C16

*

- D C
C « -
O 0) c

< I t- z *

Q > O < h

1 <D Z 3 .
Si i

5S 3°
« 5 "f
c c c

5 X **MulUff
- ? r «o
j 5 *- - w
5*" >*5
>- * » U
- 2 - •
£ a >uj

UJ X Ul a^|
h z z
z * a

111i r w * _jo 3 S

* '2

Z 9 ui

9ix
i_ Q (/)

Eg?

r-

3 tl

a
Q.

C

r- J

s c
a

o o
Q " cZ -
- ro

i w
a c

ii E

a
a

- ^
£ U
.13 o

ra a>
E

> £ i a

a
c *-

1- o

o
Q
z a *>

• S a *
C

> ... f
<t X c

u •-

a
o

a r- 1

Z BE

(A O

o **r
.,. G -
*- c

C fl
- ra ccon

0) >> o.

j= Q.

c a

> V)

- *- n

o *
3 c
z *-

a « i

^ — *

•0O l

01 u
ui -*

3 m w

r tr
** >a

aiu
m aa
« o o
a- a
E *

01LLC
a o -r-

01 3
a u. o
o <-

u 01

c C a* —

•

H. O
ra * » -a

£ - r a
0) u *- >
L * <0— TJ —
ai «c a
C « <D H

a o
* a

oc
<

a x

> UJ

a x-
a
Oj a z

z

i/> h
X 3 U

UJ _l

o a uj
z s i/>

l/l 3 uj
3 O >

DOW
O -.

> < Q
u. a. a

* S S 3=
o o o <
a a a uj
Z Z Z (X

J UO
3 0=>

D => D a n~OOOvi z o a
r- I- I- m L < O

Page C17

ll

- Ou c
: 3q :

3
Ov»C

CL tx o o

St** c "
< -J

<-> u. a

Page C18

C 01 T3
*. c 1>

c
01

H -0
fl -c

*- o
in 6 c -
n n - c
o> u ra J
C 01 E
a p
11

n C)E
u Q. C O
*. n oj c

£ fl o

>. 6 **
L. 1-

o 1! c
** * O 3

S

Is
I

: E

C I

>. o

o •<
*. m oi

« e n

*. u

M E

c «
"?
u C

1

*
u

> o

a

M >
«. I.

£ O

1 c
*

C

3 w

_J

o 2

z t-S
til z a

z
a a o a

« E D
£ a a

0) ffl

M Oil
X <-

o a >.

3 *
O

• C

U. O O 3o
O Q Oo

* z z > z

no*' D u

£ c --~~ *
(-> V V
•*- £ UJ U «O U C 01

n O U C (.

I M « a >« »I ii

UJ — 10 cV)U)UL n

< < - a m
-I _j 3 cUO X trt ~
u. u_ ~ w _

O E
>.

L- *
o m
+• z

« o

O TJ
>. o

L l- L
o o o
- •- u

c > «
UJ t-

O D
TJ *- C
o w «

~ j: d
ai ai

£ 0) C

O a

Z> «* 3
a. a o
z e <-

-. o

C ~ 01

3 <-> C
*- c *-

3
0) * «
r «-

Page C19

o «

:1

L 3
a, p

o o o
-- +* a

c 01 (0

^T3 e

B t- M —
£ O «-

* (J Q. C
E O

*. 01 O f
r- ** a

" a

li
it

o w«

C "1 3
= Z CT

<*- ao
a u
> o
»- L *-

L O
3 i a
u o

L. C

N > *

+• i
j- O
w o> —
X -c -
o ** o

o i— a l

- 6
C C t-

CO
X — o o

M *— (ft O —

- 3 *

L 01

o r x e
*. ^ £
1ft H -*-

is!
L Jt w -
o — «

i. >•

01 -> -

C <- >

u c
a «*-

U M
oi tt <*~ t.

01 f-

*. TD O
C I- *"

(0 c •-

c <- —
*. —

M C •L3S1
cor

- £

4. 01 — V,

c n c
M ** E —
31 US

r c ^
E o C. *"^ *
3 01*' O
O) c a
(_ — w "D

<«- 01

1+- m o r

vi ai H •

«*•*' a
+, * f « **
- a d

V) "D
(ft 0) £ O C
it) £ u -w oj* a a

o •*
c >.

>. U O
L *• *>
Q *J *.

« u w t:

V) C - oi

..- 3 C C
C * i-

0) 3
K C *

c 2"i
in K v
^ 3 « w
a f- -i-

m z l
1 t-i « e
ai a

~~ r
3

vj «* m a
11 Of T] R

a c a> o
*- O L/l C •-

z
o
CD 3

— (V. 01 <_> u to 1/1

£ O -r- I *
Uj UJ *j c « - - t-1

1- (- >> c
+. £ *^ LO O C *• 3 01 3 !-«.

3 3 C « >.£ O : n C t) «oo £
„ If] flj O ^S ^ > o V)

o U 3 * £ —o z 5 ~ I » - 3 -
n aX X u c x « * H L) ^ 5 ^

3 » D^ ™- W >
o a >*. C i £ X X <A — o O u
uJ UJ V) a z D -I o 9 — "-

JC T3 TJ

o c c
« H L L«. < O t^. a z m _j

J o > to ai o - lilULU- < f- CO
- z > « X wet — i^ o

Z UJ V) O 01 at v> — o a i/i o X M C "- -C

t/1 L. U L. U ~ _ f* s < z CO
3 C *• t~ U : LU <

UJ u c « « 30 a s o
•r- x- 3 CI UJ OJh" o O H

(. *- c - £ CO w UJ
IU XIhhW

a u in to re OW2Z z — _j oi -k -p

•-. C 3 0)C 3 U u I o < a
M 5 E L O I UJ
»- * 01 c o o o z o (- io

~ C Q _l B c —
UJ Ml — u
Z 01 L
O -m a oi

q n l.

c i- £

1- Oi M ~ — m uj uj or u u. UJ

S £ - O +*

OI C U
a c

C • * 3
;; O /i ,. ,.

I

i/> i/i a in

^- ** a-«- O U 1- il

+ c a S
«• C —
u c <-(j ^ t- at £

CO) <u ,.
O

j "O a) rt C •" *-

t- t: r -D o 3 *--^

r o i- a
z C (0 01

a 3 e a
i- a ai (_ m £ »- U O

O 01

• o l w a) Q-f Q3JJ * £ 5 rf

Page C20

>, m a o a)

D c (-

a m j «
« - * c
U.

" G U
~ C E a» c
BO «-m

<- * C

C « -C *
^ - H C 10- o e
E •*- *• L

13 C +- O
O) <0 O (0 *-

C 01 - E C
T- L ** L "T

a no
2{!«>l
r i- c «

. r r •+

l « E
o •*.*• C
*- c o — o

o *.

1A »• >« « C
5 4* L£w
c £ *- >.

r a x- o o

-oi -^cue
*• C ai

Hluu.
z a u.

" uj i- i- d _j a

£ u. O OZ ki O

I v (J O <*-

« *. c
a c c o «

*- o c — a
C U O -h 01

V) -- — c
£ *«** * 3 «
J 10 « ffl "0 £

V O I *.
* "a ra «• o o
a c c-

,
wwww_„ _I- « —

« o z c -
• u. w — n

X ai u. * u
Q r U. 3

' JfSOil

' £" x " U- I 3QlhUI (-1L Fh c
< U. = U. el U : W r-
UJ Z) X K «*- -C
q:i-nn H VI <N £Mw 1/) 3 a

uj a a a uj a a
a: _(- — Z t/l M M ^ •
< i-t * ac -l£ iS ho it. in (/) -UIWWD * 3W

iu '
> • -o H

3 «
z wis a z a: 3 x it S r
>-> a o o — woo 3U.UIQQ a O G h- c
U. > Z Z O. t- Z Z (/) a:DIUhh OShm
i- a * 3 — i- o 3 3 z «

«i/) wi x ,_ Z 2 u. u. i I u. > t-. 01

U. IL. U. Q W
U- -J -t- K -J D3HI-I- _i E C« (^ D D _l tu t- H D 3 3 a. o o
Hi IL U- O O < -I i/) W O O O < t/i l a

a i/i

-OCXZ Z W IL OOZZZ a 01

U_|- H« -.O 1- I- _ H •* o i-

z uj uj cr or _i 3 njuiadir j •aHi/iwaiu G O o uo a O Or

U £

* c a> c *-

u o — 4) 3 »

C i- ai <A id

o a m r
£ ^ > Dt- C
»- *3-

oi a> u a.
• r £ ai z o>

3 1 —
" O < —
3 a uj a
O z a <
C - V- UJ

ZJWlt
« I > —
X <
X t- _l f>

Da z
JOvi <
a: t- —
< Z Q O
UJ — > »-

* a w

Page C21

u «
«- C £

• o i *

^ • vi wi S«— *-

c a- oi*'
a E c H
»• o a — «-

« o c z ~
i/t + f
10 IA fl X— M E a>

*. C j: <u c
0) £ u L

~ c a fo
a)N 0) . C X c

^ %
> -

13 t-

a C M

J

UJ *-

o a

5-^

C

4)
t- D

T ? C *-

N £ m
1 £ 3)

<u -

c CI c > -

•1 z
""

""
o

o c c
TD 0)

> 41 >
u u
o o m Cft

to

M a*'
Ifl

e (A o
D

» - C
£ - 0)

+. ai P r

— - M *• £
.- | -a *
«.« •£*-«•

« £ *• o i
x-- ** £
u - c *.

O T3 O
+* « C — - V
in t- a - --

- £ u x *
r * > c •*

+* 3 **

. a, h «n

c O E -«--
**

«- o" «
£ « « a «i U
u (J - UJ —
L. CD £ C

— 10 **

o h c
_ z * r - oM £ - —
TJ [- *• » «
« 10 £ > u
n m *- *- u c
3-10 3

>•-- T3 £ £
+* +* « Of£«--«£>,

O • W O *

u « £ z a o
C - «U C

uj w o q il a ua z "J _i io a
i- < *-o lapm owzirt
> O a z -. >< uj wo a <_Jw of _|a z w q
via u imwO i uj 5 •-.

O w E vj < q

4) C

C L
CO (0

£ •

a in o
£ a u.

(J oi *
L C O

TO C
U, £ -J

5 o o
O * H
OO -

0) W »-

C" -
a x o

O T3
>, o

T) £ *
m u vi

3 ££
X

t- I- £

C <
a x B
£ o v
u o •*

L -I COI'

9 6**
O 3 M
£ *• —

E > «w £
M **

£ <-

f- 3 «
U M

3 <

ki a*-
•H C

c- a

c **

D V i/l

;o:uiwh„
[JJuj _I£Q 0.^M w a — _i

r I/) UJ <-•

5>(-I Cz

w r

L >• m C
L O I •

IB O « * £ C
+• Q *•

H « T3 -
£ — o o n

*- D « -- E
w u o *- E
M £ £ O u o
_i * n £ c <•-

i- ** 3 C
< -Q L n- --

* « a •

o « u X » >.
*> * £ L^

_i « » Oh o -

1 ac E WQ
c

u. _i^ cr to
O _1 UJH
I- ttM (Q _l

Q D < Z S

b t w c±^
s S£sK s
Sop-*- too

c f>

c c w.

*- U I

«• z o -
- n - c «- *- o
u o to O *
C •»- M N O

- * V) ^
i- — Z C U O

« 3£hL OI
£ <*- n vt —
i- — m - a o>

•t L 4< E
* £ 9«- m l uw I- > .-. a O H

Page C22

V) « f

5 »!

"I
I U

-5
SS 2

o « C

£ m je

*• £ o
* o

*- "O co

OCX'

"D « — «
« «1 > -

5
O

2

SE-

rfl PiZ* S
If o

"c 5
o s

- C i.

a >** o
r *- *
*• o o

** ** Jt
« "i o
£ ~ T) O
ffl I • —

Dan
a C 3 c
c »- *

v « • n
.* l £

-D L.nl « c]

D * c a>

a ai u
U M-r.

»* M O

£ « i
**

— MM

V) » ^. U. —

.

1- u.
a O _»
u- r h
x - 1 >
o X
O Ol-
JOIfl

_J _J 5
1- ! H <
« * I OL
£ (- 1-JWh 1/1

< "J I < 3 O < i/i

A -I _ IU i- X M
UJ "- H O H ™ O >
-J ZLJ Jullt Jh.

U. —-Wwwwww

41 £ <0 0)

£ a > jc
a
< o

u u. io a
UJ —- m c
Q in k"— CO V)

Page C23

..

—

n
x <-

* E
D <0

i (-

" 51 31

*> C L

o c
M U 01

^r
i ** c >o
« 1 L *
J T3 £ O
B o *• n
' £ • m •
o «, r - §« +- c c

x C o
o u
Q L >.

E « l..".
- * O
x «*- e

n £0.
f- « «re «

O - £* — *"

c * n
•M U I.

c « o

2

~ a
o

£
+- c

I C

O i-i

*« z

2 e
X (A 01

O H-
(J 01

> C 'D
a n o
O r £H <-l 4-

V) 1 -

Q I. 01

^ c c c
tj ** a i

31 CI

e a

- o £

it,
(J O

I i

Ifl o
01 - '

01 W N

C «. -

(0 X <

r— i

u —
o o
x a
L r
o ~

V) ^
3 C T3 L

a]

W o
Ifl Ifl

L.

>> • (0 r
L

3 c X
M 01

a u t
r

I L
01 <u

c in

ai o 3 c
e 0>

o 01

C e
p c «
o 3
r m

ifl

O (N 3
D < TJ

— > a.

~0 cro +*->
a i o a o w 3
a oz z •- - o<~.SQmZwI q-.

< n* x - o «d
to ?^_ fc L * z

i- a. t~ > (- nuj .ui<zaz i/i f-

M uj-. a -. lo«w-iaoa o joua _iq. «. uo

L •* Z D
o - o 5

1- z
w B
- C 5 S
£ | S x
V X IU 2c o — 1- O
*. 13 • Om

C X 3 (-
£ f 5 u

X c W Z
L C ^
*. >.f- 3 li.

1- X c —

O Q o
E T3

c o c
O I- —

4) 01

ai ifl a£30

O *- E

c x a
D -
*. "a a

C V)

Page C24

a <-> —
ace
r- w r

O 3 a
OOI-

n F

O

C <u

E "*"

c
D

L
3) <u

a

U UJ m

5°

- 01 U O < s -
» £ a uj e OMllNJ

z m "o 5 o* c o - < i- a u. a o
>> n 3 LjJ O < M M zI -1 o I * z * _

a. a iwwj
a. a o =

" ,., i
.. ,T3 J-, jzse ** fcl s
D t) *- o 2 -c O O < O <

r o->9 a QOQQuj
o at z «z- o z z z a
^ n <s _ Z i-i Q — — a „ k
* £ a ? 6 z 11UIJM

" ** IZIOh Ex&£>
a c S u 3 5 *
1/1 0) 10 jCD K*. r
3 £ >. a ,_ 2 _ 3 3 - d a
h (a ShpNi O O Ow

uj Jt-Na
- u a _i m z < Z Z Z Q

c in u H M L UJ

OJ flj w „« a o _i a a: a i-
-

H "D 51 fi. ». U a a ih

Sir »

r 1 1

;

X « w
o a.

v o o
5. a
in i- >•

uj a o

«# C *
.- +. c

c 1)

0) * -C

e -c •-

— v)

IB 'D >
ii c n
•o "J —

a
"D ui

4, 0) •-

0)D T3

C m
ID C

O

n • <
— L U
a « c

a a
3 a
i c

ix a.

U 3
VI O

M < UJ Q.O
3 uj Q — 2
r -i a z
a a Ul 3X

j
z 3 o 3 2 £
c - — o o «

i-J S 3 Q a uj
z - 5 z z az a -
3 E 1 3 3 i/)

r o - r r >
2 L 3 <
n 1 1- i- j

3 D 3 a
O N 3 O o in
K NJ a: k

CO Z < z z
h- — L. — >

a JK CHfm c *. u a. tf |

Page C25

o k

IS
< s

IA 8.*

c a
m <-

£ 9

"- l^ ito i > « **

H Z H a
rt +- VI- > E
ojra- a a
air — a — fc

a 3 «
£ Q. = «

f 2
u_ <
a uj

i- a.

n vi

*<-u-n< **;

a wj o a. "O j

-t/iiois>aii/> i _

vi D « a 3 jc

-a c
a 4i

or

?,OiflO^

Sail

- o a
JH O
3 Z w

Page C26

(J «

o >

> -'. -
L.

o~ c
*- — 01«- r
- i j

M

3 n

t- VI

s
c i *>

{
- o

a nj l.

.- £ o.
*- a

u —
N

*

*
« o

a c
*
H *

3
a (- a
o z
u— >

z W a
-UJ H i/llOam
1 Z E O K-< OZ Z
i I a < mfuSl a

<J Z Z
-i a

a. qj 5a sa
ij */i a Q- a "i —
»*4 W Wl £ HI l/l

3 : a o - = a o ^
I i

: _i O -I -

2 £ M VI
UJ

. 3 m
3 E O I

> 1
o £
£ ~

0. l aO Qj «•— a.« 3 —

.

3 3
uj a — V

1> £

a w — r *.x— •

1- w _| fl; C I
cc U-, J U;"IHKh £ tf«w tsi . zz = O 1- UJo z j a w - 3 ^

ui t- a: r c c
S < 3 — > ~ (U

1'

3 X Q Q. a~ f £m
1 1 JO»

_ a «->>_!(-« > >i
S uj — <o CD < 10 _) L t-

O K 3 1 l i - - o o
« u o> > > I

z

— ct a en i

i/) ">

D -i o o o a z
f-h- KKUIO i; £Mi/lHWhO
SMHMifll i) D> OHIUIli rp

^ L/)

3
n 5

a £
=i

5
z £

x e

a z

81

i- 5
< h

M <

S = c

o
Q *
z !I

1 -^

9

J
a, l -

a, ai ~
c w *-

01 c
>, w w o

« c c
ai«- o ji

j: c - e

U U (0

V- C
* 3 C
r *- o

13 "D
r- "O « ai

- c - x
- (0 u u
c • —
«• -o
. 01 - ...

0) c w
B O C U— ai o
4i tfl JT

r «i * c
.. ID C

D
q 0) c o
- l. a -
on ai

£ D JT

o E ai oi

« 0) j; i.

* C (0

q — at

<A C * C
JO o

- -C «
j3 • « *.

nj 3 oi

r- C C -
C 01 -
(0 E l>

> "0

VI V
0) 01 L 0)

£ 01 0J —
I- c * D

10 c -o
m C oj-— U U E

Page C27

•r- O
•a t-

fi •
u- B
r c

i

> Q
h u
a <
a x

> UJ
a r -.

a i-

O I

nu a

= O >

l a u. a
< —•

z *
U 3 Q VI
> O >-.

}~. > < Q

J-
I CNfNJ

O , a o

~ " Z * * .-
. Ovj c
3 r :

- owe

a u. a.

O i/i o
5 X 3OwO

<

>
a
a.
c

®i

•

r -a o

t3»

*i 5

woe z z z a * uj w
c ~

J j

Page C28

Page C29

A M

O E --
a m I do)a i l. e m yO an co o u w nx i- a m c

< a e 10 ai

Srauc

OMWUL .. <u vie] n « uj 3< < *- a kuO _I_J « 3 < _,oou a« _i _< IL U. ww o U. fl
a> ujui uj w C

Page C30

e l o

a o
C I- *

E « £
a i
t. <- •
0I3C

u *-

1 c c o

i
Oi-

K
r

it
'8

L. 3 13

« C
M « f-

3 £ X

£ »»
«

B —
o — m
— r
« ts

*"

c o
O « *

B L.

c o o

M C i-

i * "a— c
B -0 -
« K

!.»- c «
1 * **

.£ «

(.Of
u >t

si

< a «aw*"
o • «o £ -

E <u

10 ~
l a
0)i/>

v
b £
£ h-

1 -

* o See
*" z ow
a ;z>
S ui S-i
£ 3^

WZQ
O uj >
-J a. >-

U Oh-

c
a f
uj —
S 3

I, L
a. «

5 5

"3

V

B o
o -
£ •"

*
L a

O c >•

S ?. £ a * £

oi a
£

H ft

B TJ*

IS

0)13
O

u c
£ 4-

e ^ l *-

c • «-

« E <n T3
C 3 *

- 3
U C

§1

Page C31

is

_ Ul

_ -x C
-r- O O

'IZ

_i m «
UJ C E
w o
z -- *•

M !

^» * " 3E fj

HI O J
O a z

V i- E
L. * 10

O *• C

MKOO
_ £ « o
3 u a a:

3 a * ft.

a z
(0 •- u

U5

1 «1
+* 1- J

UJ X
X 3 n W UJ

5 z 3 C « =D < UJ D := i o> uj
a tt X z a I

»kco O 3 *• O 3 UJ z
o S B

£ 111
<-« +- •-

GC 3 uj 3 C

S d a a Z
uj z I

o
S oia

E O <u 01 c c
5 c oso a £1

E *• a z u nj O
a z 01 >. '. -L,

3 K — 3 L ai -Q jzO t- u. a at

s b g U w > c
10

0i

z z a z > « —
3 1

01 m 3-
o m

• E U
3 o c

0> 01
s

iu — Z
c
£ c

c — > B h IL
UJ 3 o •*- * a \0
-1 z r~ L. 01 JC Q =1
Q UJ

., id o Z h-
3
C
aQ s wo IL U

a uj

K
m

*. ai £
1 lu. _j _j o z

3 ae o 3> O a 1/1 UJ X i/>

-J G _i S H z z az z UJ Z oo ~ a> *• m c I r a
CE

- 3
.

l- - U S 3 in

o * V —
r v u a

« C JZ

O 3
w « 4- L

L. 01

DOC
Z 01 ul

UlECCi«io
*• n «<

ai C D
- OJ ra D
J3 £
(0 t- "O 41

i_ at 3
a 3 j= o
> c c E

01 0)

« 3 £ ai

o w

Page C32

Z -J

ss

9 aj

P r

o
»- V)

\A
a. ujoa

> -
o *
w

SI
Q Q
z z

mm u u.a

Page C33

il

in o
• >
o c

Q 3.

o a

i
at

B >
— I-

u a
a
Q 0)

c I-
a,

<o z
a, o

r * -o
_ 4)

.- h- >.

•Si
i]u a
c a w

o « D

s -a »

« a n <

» s w

< < *- i

_i _i «
U U I k

B Ifl ffl 01

: vi n

j a. « i

a i

J £. O I

01 19
c £
to 5

i o> 3

1 c - "

X Z. «

I u
> C 1

HOC)
:
h- a, ;

i *- c I

v ^ .

- E -

m "O *-

« n

l. o *•

o o

C E
o —
c * a-

Z « *•

- j: a
i- *- o

a a
E a>

c o c
o >- *

HI Ifl

1- < -«oSUJO £ O —UIJO Oil _l
a o a u —

- i z
tl - 3 LO *< — £ O 41
-i a 3 w a oi— z - o z c
Z - Q a. -.-JEZ — 3 _j
-iu O-
2 LJ a ™- .-»

Bhihiil "ll-'O"3 Z>3U(I
1- O N 3 U. 0. O Q <Jh-NI 1- >
mz < a a z o a

< h- ™ t-— a o -j OUKIU>
m a. *. u juih ui a

Page C3A

U

11

J ID

13
3*

o o
u- <

O 3

a <
o er hj
O a >

2 "S£
"fl a ~

2lgr

^ 3 a. a i- is 3O > > z <
0) *- hhUI aIUz
T3

"> ~ QO j
u — r.fni\ J 3 _,

O uiOu.
4i « a a a a t- — *
£ - ""-"- Z /-0 <J

seacac— >D"i<nnn j H O 2 0.
• • UJ^t- — < w

Q « ** z
£ *S*3Q2ujO zo o a < n < e ilOQOujujujiO

D * ZZZttEEZUJo
C "• KkHHnhvha u hj>n»i w u

is
hIUUJU1>uj>o WZ < 2 < uj —

0) o K t- K _l < _J —
L z r> d r> a z a c

VI ilOOOuiqviii a
V V t- t-f~ M _0 £
J= -D OZZZQOO — *.

H — (- M HI l_ > H >
H UJCEttCEHUJK-*.

• V oo.o.a.t-vii-»-w L.

z a c v>
a a >

z — o <
U. Q _|

c — ao tt W
UJ £ 4) -,— ** M Q

Page C35

M U

o > « c

y £ - a
I « > c

t- E TO 01

CT to
•> O L U c
3 l
< a o a
a. L 3
3 ia a «
o M
B MWU L
S "1 K ra ai

-* < a
o _J _J « j
O U(_> s
< u. u.
a UJ LU

tt aa

Page C36

o 3 a
u "D a
a o-

E i~

0) 10

z <- >
** £ L.

r » o

L • W
ffl 01

ai e i
n o a

L. C
**

* O H
ai

k. U D E
J! »'C ro

V) — O c
3 » 6

55
SI

x l u a
a v i- >— H)

- 3J L

^ M L

» 3 C
9 -d oi a
r- O £ O
> e*-

01 « u
o • V

aon-

-
X s

- I
> *

E >

+. » X
c a

E » T)

° I o
a oo I
< L

3 O O

3 S
C "D M

« i *
< n —

> 3 U
a 13 (.

O 10

r E 01

o c «

O K
O Z

2 o eO x au 1- L™
s UJ o~
< X ai

Q: w l •*

o — a co

o «- —
a. O O Q.
a. X I E
u. O no
o u •- -
S X >
UJ < U

a. a
> O * £

O » **

a — c
2 0. > E

U. E
a on*
a. I <- «
3 UJ OlZ
O <-> o
o > u •
> a w

a j
O oj

L t-

a. >
* e
o <o

B L

f O *
> t- -

> I!

£ o
B £
L *
01 ai

o s
L —

a 3 o
m a is uv o
d £ E c

- c
~"

" « Jl L
£ a

u c* -
» « 3
i + • tj
3 *- V) O'«E
in t- - C— i > o

** c

% % «
l_ X PI —
01 . C

,.

O E - E
i- to E nj

a t. e l

O o u o
X U 01 k

> « a m
£ £

o n
£ *• - C
*. — 3 a»

« or
E g|*
« c •

£ T3 O VI

I- *C 1
ID E

• 10 L I— £l O C

e E
H C (0

X o «
o *• k

"]l
J3 >•

a

X * *
> an
a. o

Q 3 a
•-QW

a » _j

S "2
?I2.

u X L
£ O
K D C

C t)

t — Xw 1 M

Page C37

;!
!il

,1
If.•

31
8.

?;
• :
— 5 55a
IS

a
- < w <

L a zO KQ
Q "> a -S ao

C _ a* as
« o S °- ,« o z
C ** gh M aOQ a a •"• a z

3 "• 3 , w
c -o i/t o w

</i •- a < a~
a> UJ «a'5;

w « en JwOSj
<u 3 a Z . £««
ai o ' s a o«
n E z en <a a0
«i o a. oe * a O n
VI *- .

1- i- O 1 K«
a 1*. 1- 0. O a &*-.
E « 3 _a 3 a < = —.

a. -J -j
>• t- a 1 3 M
m t- 3 ua £T Q 2— O iu *— < o
a _i -1 3 Z
in <B L- HI t- D 1 O

o. z oUlSOz a < ao > a q. ^
i- a o i

~
fc 'Oii-
OuhILJJ
_ H=> I D«
3 uO a o zo uj — < oa -I -IS Z
"• Wl-D i Owh 5 z o
3 oooa
2 3 O 3 z a.

y —

"I

Hi

u 6 Ecoo
3 i. £

5 3

a z -^

m t) w

I- <
< t-

,
o 61

o c •**

i. f- *>.

a »
T3 -

M X
3 6

a o

« a "

o o
MM t
«• a
a a

*i H m

H. QJ t3 w
o~ «--

C C
C » < 3

u *- -
«• f HI

*- W 13 £

C ** C ffl

._ 4i

4- T) £ C
C **

•o a
• "D

a> "O l «
£ tt a jc
v C u— m —
— • o u

£ *• l-

u o

- CO 3 U

D "a ai

0) « -o c

3 C
> o

C 3

51

2 c m
d <u

£ C 01

> o i L
a w

T3
a

a C
E TO

o QJ

n a c
o

b %
a r
> c c 3

41 D
0) i
r a 01

K 3
C 3
cu £ O

^- 3 1- 6

Page C38

It

>i
s»

»s

1 £

3 H

»? il

?i [Iaf z a

HI 18

3
O L
5 a

O I-
o o
o: 5
a o

sil

; ^ Q
o C
e | UJ

£ VI
o «-» 3
*. s

! o
01 S 2

L. •- O
4> > Q UJ

Z _J

J E - a
10 * Q

* <~

£ CB ^ a
*- O

L x'm
m a P £

H
a * o
e c (- VI
o * V)
u a u
a >• Oa:

ID L-i a
Si - £E :

n a 3
o « U IN
o «

T3 uj a
SI > ~
c o o *
" • i <s>

*- c
o o s *

o o
L •* O Q
<D 3 z z
o -Q

C I?
n « a a
6

| t- i-
l e => boo
4> * £ 1-

c - z z
h- T!

S a: a
* "£ a a

> * «

L. * 3

-WO

Page C39

•I
J

I- IO<->
> O z a

iu Z>

> =1

i ^
_ a
3 iD s

«5

c «--

3 C

• "a a
c o o o
** E-- «£ L
> « a
to MO— — L —
a u a
« « s
•^ - tj o
t) • C -D

T) -
o a
£

O

z

O U

a u

O CC

W(/l Z OOOm>JJai-

< S «:~ z a 5
I

>

-:>*-'
E *> a E

u
ui 01

B E
o «

— « c n

z T) ** 01
<- (11 > I D O X o

to ID W E V o N Z "> 10 L,

2 — L 10 10 — r. x x - a
a 3 • - t- > ~

X> 3
o a

u T)-UOi at
— —MB)

a O D O E I o
» 2
8 w

> — — r
< 3 Q m U L 01 « T3 *-

J o id a n) I N °
-, -3 Villi _ a, a 3 4- d

a uj — h 3 Z
-a

C C (0 c
o MH1UL 13

The

met

.

The

me

thods

t^-

close

a
3 wi ui n a o • o
O
a-

< < * aJJl 3
(J (J X t/)

2 —
X

Z
C

< U. U_ — w
UJ UJ ID

u, s—

Page C40

S3

li

£i

22
>

I

5:

II

D O

c c

-. - Q. Q
QfU. (- Hi

a >-< a «

5i:^
a u a u
O a < X ^
S < > o-,

c n

.5 1

w E i/l _i
a: iuj ai
O- CJ _l <

• KDm
z < q trO uo<«
r ^ s >~

ai iij w o o _i
.I-31LU.H
= CJ O I I z

o «

L -
j re

3 ^
Q C

Q 4J

> «

E 1-

3
I

e *

v o
4-

c
13 o

Si*"?**

1 * 3
1 z —_

- a

* d
. ai E
3 > *

3 "D

51

C E

C 01 *-

3 »
+. trt C!

(fl c

r E *•

t- c

« r o
£ -
i- -a 3

Page C41

>. V
• >

3 £ 3
C •* O

E ~
a at

- *- c
*< w
- c
f 9 I

HI O

3 C

- 3
O V
n a

a E
a a— I/)

— 1
z

H <

- -a ~
— at u
C c c
-- — 3
* £ *-

0) L
q Oi -Q "

< O
I m
Z t-

Sii

. ^ c
,
o 01

o c c
£ 3 01 0)

C £ £
o ai %

r u

d n « —
z o> r u
uj ax
s a i.

a ro at o

i. *- a l
a *" — a
> a

J u
L

C *

3 3
a =
E oi

> oi

°2 o— K 1) *

si u £

o £

§9;

3 3
O Oa a
z z

SI
i- e

C L 3
- « m n

Page C42

« X)

r ? M »

O^ ~ E
m

in **

o - z _O u. —

.

So z*
o — UJ 3
z o >5

. ul Z

Ci if
§s eg

1'

ww , C
M "-

nj

L E

•a
3 C
o -

I 6

n01

UJ z
* t- o

C - "D D H

OB 3
U 6 ju.
£ IO*
J- C 0) Q „

o cc
3 h
z vi

1 z o
J UJ >
J a k

" Z w.

si
10

in a — w

«*ei o a
>- T3 * i «
a uj v i +>— u — ^-
3 1 m > > u
o a a im- l
c o <j aox o
z c « i-

o w a.
wi z o
uj — «
l/l (/> U t-

I0U1 It t
< < *- aJJ«3
U U 3 U)

O 01

s z

> •D g
o >

O L i
fl C <-

a - o o
C 3 z *-

O tJ >
z o * £
i i *» — u
« c * > l-

•* o — a
> z * D <u

.— » o *
L — £Z
a *. C
- V a; m
3 e U
fi c
~ *

lr.

5 «

< 8

E M

at ** o
£'•**'

VI c c
10 01 3

E*-

*, 01 Q
- *< O
+* C L.

or Q

Page C43

£ a. a

a, 0)

o _)

= o5
id m o
» H "

•a 3
S o
H E

E C
or 4*

E C

UJ 3 l £
z cr 3 cr

o uj o z ifl

3 E u. uj e
O 1 E Z

x r acU Q w Z
3 BC ct E O
O < < z —
a UJ UJ

z 10 vi Z ^J
o z

J s h >- 3
V) < M t- U_

5 -J D U w
z 3 5 z

o — 3 1

D o
*** Z S UJ — z

uj 2 z o IQ
_i cr O D

1
UJ

a lo z o Z 1-

a e : v,U u- u
M Z 5 uj

s 1 |U- -J -I

2 ec
> o UJ i/) uj X <A

-i a -1 1 K Z Z
z z 1- UJ Z
O -i X X— i f- m O X 3 -

o
AME)

(MOU:

then reate

w **

It -
a c 5 *
3 •* z o
3 4-. Q
Z a i z
UJ 4*

1 35 D a 3
ui a< 3 Z
E * 3 UJ

u * 0)

l_ 4-

ID 01+* <-

01 —
N * T3 3

L 01 C
L D if, U
ra +* 3 E— c
: i) 9i it

B u 1-

o ra tz

£ 0> o
jC io a

C H- C 3
O
c •- D
D 4* ai

jC C C O

O • "G
** » L

C » ** O
O "0 u
*- T3

— l- OJ J,

C 1 HI
«• C
m- ifl 4) Ij

fti E C C
-q a> z ra

41 - "0 b
r c ai

.- 3 '3 «.

C V)

B HO II

— 8— t
o ii a
c C ai

* « U.

4* cm
t! *

13 C «
01 (a 01 C
w -co:*•-*

C 4*

ifl 01 • 3
— £ t; j3

UJ L. - 3
s « 0. o
a me
(O 1*1 -

C
a o
z c

41 — *> T)— 3 -c-

j3 5 3 E
« O C
— X 0) L.

i- E o
(0 c
> 01 4*

Z JC 4-

01 4* «

he-
» W C £w > Z 4*

Page C44

I

11
C

it

i:

:|

* c

3 I

> I

i
oi 5
H c

ui C on

si »

g| 52
9? 3~

55
» E 9 u us

l£ Si 5 *
o o
Q Q

C 6-D
a* 0)

*- 01 >.

m in

ffi U TJ

Page C45

Is

uj H-

*» O «
o £

. -q - a *. _
gc in • -
n <o o "D — c »*

G +* « - a i
a** >. a
o o •> to a l. c
«. o c - a o
a >- o a c +•

a ** « O TJ *
3 »**c i 3l£ 3DH «£* a 3 3
a >a a <u

" II- « M
L • « « O 3
O 3 £ | — o
m c g a: a e
E o E i o a
i* u E -
i_ +- 0> 01 L —
o u - • n -oOCDI->u
L 3D »Q m
a*--; C TJ E

E -^ r
CD £

>**- c c o e *•

J] — 1 O £ O— * « u -a
TD 15 *- *J *. Q
a u«- 3 £ a- v n +> *— •- f- • «£ • K D —
U •* • M O £

* n * « >
C 3 •*• + -

« l- C — V *. c— o i - u -'

2 t- £ ai a
D +* £ fl — i.

O £ -*- 0) O
e a c a in «-"H£C
L L U *- - C HI

o 01 -- *j ai ai

*- L I U £ 0)CO ft * c£•*•»- a
U 3 D « C £
L D Q V) (0 U

» a c u
a >*£ >> *-

« dk «a l a—
a,

o a 'Oi m >•*—«»* C >.]L .

2 » - c o aOW h 4* 0> ** TJ
V +* U £ • O
n « n h- t- - c
3 h r "» «

<D a a *.onwcEaa
- sm. o L £
« a >.- o t *-
£ m m *. a

L u « a
o C — -fi

n o
» c c

£ M O
4J *< 0)

a * c
E £ 3 -
O *- £ E
u a
k C 1 U- g c
o |—
*> « E *
u >• £

a at >.

in « - c

• «* u t
3 D * £ 3 Q.

C £ rt -
j- 3 a *•
a*. io - *

E VI UJ O
v a

Z E M X
• a w n— Z B «
3 w— 9
TJ — U C
o 3 n
a d wi £

o w o
Vlffl
uj - nw l/l (J L

< < *- a
-I -I « 3UUIVI

O E
u. m
£ Z
u 01

a do z o
OJ .«£
z — **
« 3

i- * am i -
o «i £ c au.«« — *- h. c a>

£ i- > a o D
u <o n c x^«
« vi - en >v 3 a
a « «- -o a n £uiE«l»- «

o a — a v
o c — V) I

3 O

O U O O *- CteC <- >. «i a)£ 3 *) M z - EHCkiyl 3
* £i D c ai u*£303V£0

u en
c ® oi c
3 CB£ O
*. tU It

» *J

« « C O
» o ce* 3

C ** H-

o t» u
v ** C
*- a z to

O— M- £
C <- *
3 Q M
i+. o - oiJL£«
3 Q.** m
« Q-moo
« c

M

£ (8 D D
Z « 41

« >tn
« c « 3son
o *• 0. in

£ * <

0i £ L
£ £ (0

a-** c *•

a o m

rCE«
D o o E

i- u I
O - C C

V 3 D -
V x- C 3
<n AD
3 « O
£ E

W ** 13
T- O -

•*- C 10

z - c

(0 c 0>

-E >— —:cel
o o

oi s i
£ £ o n «
h HT} n-

io c oi -
» L -T- u uj— o x a u

Z °3JD"Jooo

— a LU h
uj z m w

3 Q M < —
o OI -1 _J

a 2 O
o z s
Z M O iu

3 ~ 3 Z Cl
s o o
O U £ U
U 2 u W

2 Z Ml *. a
o 0) UJ

o *- h
z O K — 1/1

1- z <
Z " -i 2
"" O Ow

o UJ O <t

o Q Z _! Wl
o - a z

3 z i z <

Page CA6

c a
a-
(o

**

L. M 10

-Q 0) 41

m 3

H O 01

a c
_ 4) —
u r e
h- -H o
10 u
L *-• C
m « *

I £ c
. * at

IL " z *j L. (.

q < 01 o
2 ~ UJ L « *•

to uj 3

•> £ 3 to <*- £
1 o at u

1 5,
w o C J= L
W i o * ra

tfl 1 9 e!^
•*- at

X <
.- c o

LJ — < a
C E **

o Z 3 ~o
£

> M
d a o

o S-iJ «u2in

UJ L/l u -
O c -

M o BO «
a m < 3 1 - E
o i _j oo- « "
z 3 hi w a — r u «
O Z Q r-i Z _l *- c z
Z M O _/ -'-m 3 -H
- I Z M m j < > X*SO Z < V) _l n Dour -J Q - 0) c
U Z U -1 Q t-r O.C 3
z -. *. m Z 3 E «i- o- „ < ,oz <C *. _i Oi-n. T3 •

O 1- w Q "J Z U_ a: C <f>

1- Z Z — i-. o o a-
Z M _J a: > to *- a-OBO a q > L «
UJ Q < UJ wO <a z _i ~- (0 _j 0)

O « Q c — az 3 z a V to 3 J3

o £ 0) •ooo — " id a W T3 JZ

t-l-h > ,- « +*

J s u
-, a. Q a

s :»s - n^<
~o -, o
i O !_ O
9 Z «*

< 9 P; <
j c z

u. o z
5£ D O
U O U

,2U3[
m a K Q K uJjS* z

3la |4*»tuw£

I w c
z C

a
s c

•
c C Tj

3
M
ai

u a> L.

c C
3 «
* L.

E (a

0)

J= i. «

E O

se C47

a e
5 o
t <- "^^2

Z O O -
O D D Z
u o a

«. a c
O (0 3

(- o
>. a *•

L
o V w

— a
z — z

- 5*
S £

< t/i z a o
j| t »,

v
5

2 = 5= -

Z *-'•"• UJ —

CN UJ (M - 3 3 s a v
i/i .j a. o iu O < o =

ujO.mq.Qq ^ w Z 03

_J -1 U. M Z -> O.,* * * ~ >3^ — LU <
ILlrt >^Wj HO s — t- u

a - 35 —i~ w< u- O Z
> o a - z * 5 53ttSi-3 IQjujO z u Ooo o o wo a < « < = li- < — ^,

QhQHflUJiuujujSo
ZiflZXZl-atrazUj ar« _ « _ Z k wH J —3ISU3UJV) ifl

</l </) X V) : > UJ > O
,_ UJ h- < £ < UJtit fc _)<_) —
3j-3ij»d azo. co Oho rtowa 1!

r u. I- i- m -. o rZ i-, Z Q Z QOQ —M •"" i-« > t- >a u. cc < cr i- tu i- *.
Q- a a k «i k -

z u. o ;

u- * = c

o e «.

2 5 Oj

L. >.

c
O o c

L
a ui en

— C
c JZ r -r-

3 Q E
M OP

£ U

« J= £ Q Q

Page C48

D U 13

oi oi c
** >• C

a,
— -c— a at

- u
a a

c
O 01

£ I- O

1
>. Ifl

o- c
£ o

3 Ifl *
3 C

m ffl <u

- o z
C 3 O
J Ct(_i

U I

a
> c I

w s z « o

SO Z «

O U £
<J Z u -I £
^ — 4- CO i

M 3) <

"ODO
iu a < oj
a z -j —

10 i/l </l .^

J Z O Q
"h an-az V
a u. >~0 «

C 9) "
- w £
C 3
- Oi

«E£
C *
o - *

Q
Ifl

oi i

—

>. c o> at

in o> £ u
* l +- «
D a a
o o «
f £ i_

a «t

D >Q 01 ifl

a> <- T) c
« a a o

M 01 *- 3
-— u £•
— oi

z o — «
u. u a a
m » 3
S Ifl o
X C C E

o a
c • £ «
o *< *- -
«- u D
*• C C D
U 3 » —
C * u E
3
<*- - I- T3

a oi c
ai c w (0

£ t 3
(- 01 *>

-*3
i- O
D 1

Z <
< a

u- 3 ~

z °
3 £Z 2

ZOOw * -1

O D 3 Z ^S W
UO O so 10

5
5
5

UJ J
a o
Q

O
>

3 3 O
O Z

z s ^
z < Z a.

o Z C m

s c i B uj a
•— Wl „, uj o
3E £ i/i Z
WfcS t- : X

*ii
3 o : z>
o C o t- "0

5Ih* a:
< Z uj z 3 z Z O -I

3SI
o a ^

u O-QuJ
SJ a o 1- UJ z to
a. i- a « <
> 30 a .j

3
z 03 Z (J uj

£ -.- CZQ
UJ Z - O

5
5
z

w w S Z
3 3 2 O
12 O O U £

E U Z u
z Z - *l

i/) uJ -i v3 _l On.
a o (- —
O 1- z

o W Z -i _l
h a m o a

5
uj a <

•> a z _i
i/i o « a
UJ z s z

Page C49

C J

e U 01

3 c
A
V >.

c <n

1 a a
E c M

M
£» n
C E

1
01 L
a 0)

£ L c
a o

b
tj) a>

£ 3
a

a
ai «

e X 3
(0 O
1

c
E

(0 V

o D
•** a

o < c
5 _i :

o c— z -

Q 2

^ 5 3OO O— a £
-. z ~z
j -i M , —
H cd j „ tr

C < Wl z Q.

a z 3zc
uj Zo *S u

a *
E so o
i- C

D «
0) c

U

a U
s •
o -
a: «

U *

* S* ul *
"*

3 ,„ O O o
3 S Q z Q k

O W O O

a ,_ a q— U. — Q
-1 2

9 j:

9) C +- Ul

** 3 C
10 L £

a* ** 3

«. X) -
o i-m
h a «

C M <rt

O 3 3 *
*- E Q
*• no
u E z. c
a « (-

« <- c
01 X

M «
f- L. i.

»- i <-

a* m ai

• r c £

O 2
IX o
a u

u <
a ce l

s o-OS y
: q o <j

) Z~ -

UJ 01-1 ,«

° " u a
". o

i r
o a.

& <
z a
- S
3 S
to o

z s owi o to

3 * O a o

i/i u a s (/>

Page C50

zoo~
O D => Z

o s

-hlflO
-J >

Page C51

ffl X *— O ffl

a r~
M Id U

oi"- o
C TJ - «
— — M
• C — <B

• X
£ « C

6 ** - C O
a £ o —
1 Q a f x

O (0 L D -m

I. IB £t C
a £ > »

id v e
• <- * M 3
£ 01 C 3 U
- o « o o

fc
ET3

a <a

E E
a o «

oi a o

a..

3 U C
C O
3 -

,.
• « +* o -

3 * 9 *
J a >.o a o~ BC ££
, I M IH «
" • • Sp .-

— *• o X
fl D

d£ *
J-
Ox C

« > « ** 3 o
c ° **
e _ n *j

c - • v a 3

B • a 3 3

t - i. »- o E m
Li, o *• £ 3w

*- « a. a o
> - E

r £ tj
a > a u oi

to c a -

—

L « L £T3

a o

oj-o

on o
n **

« a m
£ <Z- * r
Dcon

vi E M
a o -^

ac
h o
-j >

- 3 £ **
" 13 13 U fl]

« V o L -
* +. I a a
E «- 0) E
a -a 1/1 a>Z E hi 13
» a n- Z W I Ifl T>C tl in VI 01 O
i — n e £
-- A — a fl ~
"- «u c Z 01«~ a 4) E> U M c

a n u JD J
«i > a fl 01w - H - z
trt «flu L L
V) V) « (0 #
< <*- a > —J J a 3
<J US (A X
li- U- wV 1-

« u. C
01 £— u >.

£ L. fl

H a
«- 01 a
L w
a
> H a
L. O o

E h
U. fl

c z o
u o, TD

1- - C
a £
a m X
n ~-

• L.

w n

h 01

«1

n —
z
* a-
£> C

a «- is
• « a c— **•£«
a o

**

«

o c oi—
« o cX +. -r- O
O U H **

u a— « -a
3 O (D L 01

o i a i
« M «— *- c xa

oi oi u a

£) E C £ O

O "D 3 • *.

u. O Do
£ £ • »-

U * £ C
L. « K 0) hi

Q E £ ai

0) +* W—
Irt « £ C -

£ Q. C Q 4)

D H B £ T3
O I- U U O
£ • O C- T3 £ «.

« a Q. Q -
EC a a

*- c u >.£
« fl - Ol L +«

£ « o
K C E M x £" «• Ifl**
• 5 £ £ ~ »-

w E 4*|-£ S

• £ C
n a A
3 U
o i-EQD
*# X o

a c +-—

.

- 3 •

<a £> m
0) >
£ » s a*>•*-

a 3 a
c — o M
a E--

£ 111 -Q

**

o - C
T3 V O
a TJ T3 —
m c •-: x
3 fl E u

C -
O U £
r C «Q
X O £ fl

c •** o
3 U •
n- c a «

H « l> S
a o

• £ M L
wt- 3 4-

Page C52

a
a b e

1&I&

:°g5!
O uj

o <
5 -j

5 QW Z

:oztz
3

z vi J°2
_ S UJ Z (D i/i

,
,
Q M < «WO S _J _|

=J Z (J uj _gO ZQ

,R O U £ U
12 u z u w

HOD-
uj a <az jw
o = q zZ 3 z <
OOOO

UJ o
rc
z

< a

it
> 5
-1

w < I
?K -

""> < H M
a>cc z n
O. < 3 .

> Ik

woo*

a) a u

o w w

- a. lij — — , j-

WM > » QC
* "t > :

- t/i or « uj c

(A £

>.T3 a

•)**- o

ZJviSIJI
- > m > >
X < i < uj< t

>-l -I IJl
< a uj o_ >- ' »

-I 1/1 I V) Wjh —f- Q w H

o o B
- I- o

Q..C

ff is« Z 3

1

03

- 81
.. gm
CO M H

X w a
< o w
£ Is

SO u. O < O.HI- I- I-
, < Z z Z UJ z

C w
J= 4>

u. a c < So
m r j > z w
SI- A

_J

z <
c ai A z

C O L </l

O i'J
-- UJ CO

-1 s
- u in * -J
u c a — u. z
C 3 - CL
3t-"0 l/l

"" 3 _J

01 ca a TJ z
I J£ 01

(- *• W *
01 H VI

• C * (0 awW « Q. —

Page C53

T

> o

L "C O G
o> * +* —

V) *-

id in -h to

£ (0 n *-

*- a: c <-•

X 0)

C v) EX
-^ (0 -h 3 O*f u tl
c o c
O *> W "D *
m (D i) X
*. £ VI

3 -h tn r x

o tj <o n
D C C

£

e x c -t a

a q- a. IUh -^r-
< ~ W) M >* a©* UJ * 2> 2
i/i ui _J 1/1 a: < uj a
UJ • a _i h w
_J fl. «

o

a _ a o * V) >3S--Z u_ z z z w... £ 51a -. — W Q ~l SZ» z* 2* Q — Z
5> o> h > IQIU Q
a < .- < < < a < < *i e _,> _i

i
—

i

r- -JN ujuj «p< Q. <a z a- *- a a: a z *"

JUlV.^ UJ «fl Z K— H Q —a -. z ~ 2 — UIW i/lV)OuQ no : > uj > O
£ s u < E « UJQH St O H _l < _J —
- D <-> D 5 3 a. z a
i o o o o i/i a to q:

Z x Z O OO —
J)- -
« Or-

r * o i
z — ° uj - m OO}

• ai

^ « r l. u
0) in +j 0) O
L <D - i".

a L cJ o * < =2 > c o e «

Z Z UJ W1- -J^-.^Ohq« a -, _. (fl -M +*

-, _ 3 O L.

+- r -o o
ro c u a> *

z 4-mZZ3 ZI
c E « a. c
« 3 « E O

i-.o«<__^o < _c u w o —
P *. J OOh-z 2 xo l *;

oz wqujuj z^a ~o - a (5

1- « Z WW 1- UJ f_z * j a x w
Q CO *^

ai « r c
hOBO Q- (- > o *- EUJ Q < UJ •— o <Q Z -J— o j > "D L. 3
O m o C w a c i- o a* u
z i z a toO £ n —

' O C ifl

*. +- a ta

(SETQ (SETQ (SETQ

(if

(t
els

[TTVD

- n E i 0)

j: r j=

z o « (**

ij- £.

X i/l c
S C HI 0) 3
z o o

c *- o *-

o u u w
^ c c -
* 3 C O
u v o -- •
c •»*« —
3 W ** 10 '-

,_ •*- u *-> *
£ C C
H 3 oi ai

c t- E J=

K • 3 **
m m u

- s r o *-

i 1 1- -D <-<

50
5?

Page C54

UJ > u_-
z n—
Z ta

ra 3

c

m a
L E
a o
5 <-

t a

. o z
: zio

z u. o z
u. * D Ouou

M O 0) <
c

o z — a u
(- m z~
Z 3 _i
« om o
UJ Q < uj
Q Z J w
O >-• Q
z *z a

o
o oa^

1 < r (0 rt

jZ c
*- o

L *•

ai u
w c
3 3

0)

£ *

£
«-. *
a
E 0)

5 c
L. "-

a *
o

a c
<- V)

• a
H "1

3 t
0)

— X
4)

; oa < q. O

'ZZl
. o
- < 2 z ;

i*. JZ o
a r

c n 2

** > c
V) Q.

at » mEn-
*• 01

u
« c «
a s>

3 £ >-
m a

m -
o 'o a
o c VI

U 3 -
O "D

s
•4- C

-J <— -1

z a

2 M
> Q
a a
h h
1/! (fl

Page C55

D> J- |3

a o =i-3 „
(D «
— _i

o 5oo
VI

i —
a

in
VI z
- o
X u
1- —

•UJ a -.

i _J

CO
<

< ~z
> ffl

i X -J

t- z
a

rs a
X

a uj
.-. i/i

w b
•o
>

Q <
z _»

< IU
> Ol-h

z o
o ^ O 3 _i

u. w wz
(3 «. 'e V) ?^£Z uj 01 UJ Oi uj j.

3 -j5 5

a o
a

ac - «
< <->z
UJ UJ <
vi \n
1 < UJ

a: KOulO

M
•

o

o

UJ - UJ
°

i*is
> I
< a
-i <a a

s?
r

h i/i

O
WIND)

AVWIN

UOTE

T

(QU

UJ

=3

o UJ —
t- -J

M —
< z

> ~i OV> 3 m
< a — —
_J V) _t

a
J * <

w a a 0.

w uinxo
I

-< OlO O <s> to zDKUU1 u t/> <DlrtD => c —
1£ *

3 O tr Oa i- B UJ
o < o

1

< Z K O o o —
_i a « iu <

1-

1/1 —o a x i/i i l/> 1

o — fl

X > (0

—, p (_
-I a i-
« X >z OX

ct <
* a uj 1

o<J a a
< < (-
CO _J > tA O
Irt -t (- >z z a < (0< Cl _i

z^-aOU V)
> 3
a —

-Fhq O
u _j

-I> i- —
U. UJ K z z

o •-

s
a

*3
a- uj
< -i
_J w
u u. a
Ufwp

Page C56

uuouuuouuuuyuyySSSu

, iifIfilf Ilil 1111
"fflKUffltofflffloiDoinaiff-

u o o o o —
Tl O O U J

>J O O t~ -
>t o o z z
I o o o —

itiiiliiiiiiisitti
Slilliiiiilillllll

ililiSsisssiiiillll.
illiisslssiiliilliii
iliiiisiiiiiliflllll

Page C57

$•%%&&

*-> a.

Page C58

JUI- |5
fig

^ 1

^ X >

$
< -1 1-

X z

z o a

?5?
ggs

-
1-

z a a
uj uj
X I£ < X w

-J a

M
to J~ (S ~

Z
z M C*

u.
vi a

»* Z
a a

IXm 1-
»- (/> Q Z K
t . <

3
o

QS O
t- t- a a o l-H

l/l

— z>z> aZOOu
Z z X> => =1

O O

t- o < Z Z M- ™ u. u. u.
H OO Z Z

o zOh
a a a uj

- S a a o
W UJ

a o
o ££ a n

<t u. V) _la w iu H
CC Q 1-

Page C59

-I
8,0.
ra

.

a, >->

a
oi

3
co

<o

r.0,
CO o

43
M
O
Un

£
O
u
<0

01

oi

a
c

0) u

a

o

a h
0)

<0

«co <o

C O 6
OJ V4 —' It]

tt~ c
P flj «o oi xt

ci oi-h
h hi) g u»OOHi
U] M-l C Xl 0)
3 rH >

-C 01 01 X. ohuhhoeC U X1UH
x> to oj to xi

0) X! -H x. t/i

01 01 XI u 01 3
3 <o oi eco xi > a
rH C-r(V,H (0 *u 13 01 O
"0 01 C X! 01

x» io oj a
xi oi •.

10 XI 01 01 01 OJ£C0JHU£
•u si oi 3 atxCO g ~
XI » 10 o oh c x; g m •>
_ O O AC
O *H U O
XI XI UH 0^3

nl 0<u O'O
"5 xi Xi 01" c >, 6 xi .*

_ Xt io oi u
s o u b o
3 XI C» 3w O 01 O 01U O-H U£ U

<0 "O £ XhEh XI

t x:
> o
) co

«H 01
O 01

-O
•V
C 0IH3
<o oi £ c

x: xi «j
3 4J
o oi 6
o 01 J ci
c u o x>
•H C >-H
3 O C

H 3
•S c
Q.—. o 01

e a xi ic
Xi o> •» XI
Qi g "O O

01 01
XI 01 >, XI
01 XI 10 XI
01 XI iH O
3 D.O

O, 01
01 3 -H 01

.c "Ox:
xi oi XI

c cOh oi O
XI U OI XI

XI XI
Xi XI
O 01 o

01 XI to 01
xi xi u
3 C 3
O 3 O
XI C

01 XI 01 01C 3 gxl
XI X) XI

3
Z
w
E
Eh
01

DO

3
O

q

••Ji> >,
> XI
01 XI

01

xs
e-i

3
O
a
c

X> & 0h
6 —xi oi

01 O 3 X!
01 14 «•% O XI
3 a 3

01 01
B xi "j x; xi

01 C XI Xl
01 rH 01 •H (0H En 3 3 01 xiOo g 01

C 01
CI Xl

•H x: C 3 O
H B xi •H XI Oo C 01 Q
Xl Xl 01 01 Xl
0<xi xi Oi CJ

01 Oct]
XI xi 01 01 a]
Un H OJ oi x;
Oi X K Xi '

f~t 01 Xl On D-H
01 o z oi Z x>
XI XI W • HO
XI s 01 S ca eh O EH 3
.* 01 CO rH CO tx|

o 01 o .

•H 3 Eh Eh 0)
rH M O H X!

01 D C Eh
•H a <o a —

Eh Q— U
— C
in .2

S O
c

•M 3
UH

01 01

x, x;
3 01 Eh
xi oi —

•

(0 o»
01 c -«
>XI 10 H 01

. -c Ehx;
>i O <; Eh

01

x;
Eh

O
>0

e

o.

O

O

01

Xi
3

3
O
T3
C
•H 01

3 x;
XI XI
a
io >o

uj 01

10 S —
rH UH
Q, O •« —
01 OH
•h >, Eh
*0 Xt 01 <
„, ° "2
"3 xi 3
C 01 XI UH
(0 «H (0 o

XI 01

>i >xi 41
u 01 XI
XI X! >i3
C XI nj XI
01 rH (0

01 Pi oi
C XI 01 UH

Xl -H
•r| 10 "O Oi
XI XI c
10 01 -O «H
xi c XI
C Eh (0 *H
01 Ul «o
g S3 >.0I
3 • H
O W xl 01

o w ex:
•O W 01 xl

OI 01 Xl

C 01
•H 01 01 01
x: io xi oi 3

XI c
Xl 01 *H 01

io >i c uh x;
01 (0 *H OI XI
01 rH -O

Oi E C
01 01 01 Q 01

XI -H Xl W Xi
xi "O -H Eh 3u
01 Q XI W 01
xi i-3 o iJ ^
xi W 10 w o
nl BJ 01 U) >
xi Z Z C
01 W xi H -h

S s xi s oO • 3 • xi
rlD S
• Z uh z CSHOWOUS S-h

CK Eh C Eh XI
CO CO O CO O

•H C
C C XI C 3
O O Xh O Uh
•H -H -H «H
XI XI Xl XI XI
O O
C C 01 C -H
3 3 01 3 XI
uh uh «a UH ^

xi XI
01 01

C 01

3 01 3
UH XI O

xi B
01

XI >i 0)

Eh m XI
~T4 XI
a— 01 XI

3-H x>
C "O-H
01 3
B O

XI rrj

Cm 01

3tl^
xi 01 O
Xl 01 >r|

10 3 rH
xi o
0] 01H 01
OJ -H
XI 0.
XI D C
- D °
B Z xi
O tXl xi
Xi S 3
UH X)

I 01

3 "OX!
01 (0

Oh 01 -H
a 3 xi

D io
Z xi 01 >
W 0) -n
S oi oi— 3 D XI

Z Eh
-« 01 M —
3 XI S
O XI Eh —
"O CO 3
CUH CH O 01 01

3 rH g
OiXl

xi o io a
0|X>.r| 3
B xi xi

01 (0 Xt

U XI > (0
CUxi xi

01 01
xi ox;
01 xi Eh 01

01 ~"XI
3 3 XI
C --~

OI 01 3 UH
XI B O O

X)
01 c c

C Xl-rl O
•H XI 3-H

xi
X XI XI -H
OUftC
oi nj E -rl

XI xi o uh
3 x) Xl oi

O (0 D<T3

Page C60

14

J3

3
O

c

•V
01

o

oi

B

01 0)

aa

01

O
o oH Q

z
oi m

li-l C 01

O 0>H
/ -O

C iH (0

O-H
•H O Mu £< 10
•rt >

• C CI

•H O 01
<u c c
01 (0 frl

"O 4J w
01

I O --I —

.

a oi c
4-1 01 01

< 01
01 uHDD
O O 01
•u C
oi m oi

„ c -c
01 4J

4J 4J
B <4-l

T3 -H O
01 flj

01 X S
3 O

01 4J
01 >,4J
•HflOH XI
O 0.
U 01 01

o-h a
J T3 4-1

0)

4-1

D> C
C u
•H 3

ft T>
01 TD
•H -H
iH

.-H
S

4-» 01 ••-* 01

Q..H 3 J36^ 4-)

o oi -u
U 4J •r-t c
a, 11

o. ax:WOO 3
ai k a
"1P.Z0,
3 a M n
o a n

01 Q 5 z
J= 2 w
4J M 3 Sa o
«M HJ c
O Oi c o
c -H —4

C -rt 3 4-1

O 4J o
•H 4J 0) cU 01 J= 3HOJ illU
c —
•M O OI
tw « 4J XI
01 3 4-1

•O O "Oo 01 i-H

01 c >.H
JC-H 13

•u » e O

ro

B
01

_ o
S 4J
a
1-. T?WO C

> (tl

u o
O.B 3

o
11 O *U .BUCCU
4J «H 01 01

W 3 Oi l-i

M HJ 01 O -H
01 O 01 4J o
01 3H114I c3 01 f= J3 £B 01 O 4JTJ
ot ni £ u oi 4J£ C*i OiNffl o
*» « 3 01 01

01 01 ti H ,-| ,_|

01.G.UOIQ401.QO!
4-l4JOi0101-HnJcn
Oi B p-rt -H
6 TD O -O X u OOCUl M <a 4Jw "o o«j3 o e< >
Oi 4-1 4J -O

01 O 01 01 010l601OCrHX:01
o c flj jj nj —

i

kiln o|
y* »> o 3 w — -h

oi-H Hoims
c 01 ~- u > o QH £ 3 01 -ouCW-OtlDCtiH T3 3 x: -H O
BoicoiB— 3
01 4J.H 3 >,«u c ns o oi «4J tn
. D-U 6H 34J i

J>
c -a c s

x: O-H oi*o oi aicj& -u g J3 ,-H b x: ^w B J-> B iiH

Page C61

w rH
-» 03 Eh
Eh in 01M WO 0] Eh

b Q »
O Z

W H *^
01 z OS o
01 H PiW eh az a eh a
i4 O M j
P 03 Eh <
6j z s>

-hU M h
OI 33 03 H

«=> tn o. 33

^a £ ~ Eh

cm en —> O
En h Eh ^^

~_ Q m r-
23: M a » CO
"2 s F en
in33 O «1 Q iH
Soifn >'HZ W

Z
<

1

<JO Q M J (N
Eh a; m X |

r,„ W W W < H»

Jq « a K h m n
1 W 3 Eh 05 W En

O
>*ioi 3 oi u a z
S Z Id OJ^HZKB rH »H Q
SBlr'^ajEHEHSHW

rtts a Eh Eh 0] 01 Eh.oo a q WHO
grj2 S 2 S Z ^£k <n a a m —— < a.

go. a m w
"J 01 a Eh Eh

u——X-W UZH 01 >H tn
EhJ o u Q Gu «c
tno. 3: 63 njQostgStHOlOMOZ
5 .. H fe u * ™ .-(

,jX 01 33 Z < W Eh<W S £< H J 6h x a CO
&h J HI

y>& b a 01 <£ EhW< ,-(-^Q Q EH U £i v_»

B Eh Eh < Z
Eoi 01 M a <

oi J
ra wfcHWEm; Eh a, 33 01w En Z Q < M Eh Q•M — M Eh 03

•JEh 03M a IsEn < 01
,-jn~ Oh Q o > Eh
SiWH < PQ O Z 2
intHHQMXfclllH LJQ— tf Z 03 W— S < —

«

Z 33 03 33M H ft Eh

Page C62

60 CO
« en

CH O
tO p)

3 c
o

p*

4 2

Cn
C
io

jc
o

tj

ci

a>

jc
Eh

Eh

01

g
I H OJ -u
oo nj g

_,-H D\rH -H
.«>M 3 0,•OB JJ

« 5 JS 3 .H (0

«,._CMft(i
B 0.*0 -H 01 >hD oj oi b oi ai
W-u > J3 3-h njhh c jcH nj o m .wo
"i-u > ni o ai
pic/i aj 3 o jj u

JJ 10 0J

5 "* e
p. o

•H 00
JJ CI TJUHOl
C I o>
3 *]• c
•m o n

1 B
a r* o£ o
Eh jj— c 01

(TJ

p» >o
00 0) 0]
oi cn ioH C 3

1 Q
2! •? *
' Ph

nj

01

11

en
c
<0

jc
o

Z 01 01 rH
S O (0 EH 01 en<HgCJ!<li c It
S 10 3; nj .H
SCO. c Cm a a oj Ot o oj<JJ JJ.H 0.^ 0)» C UHiJaiJl
-•h nj x: u c
a fo aj 3 (o ai oi"S co jj B io
e/1 • 01 CO JCWO 01 0J • |4Jo o o> oi oj a
HJ3 c C CO z£-u 10 10 C-H Ww at c jc to oi seMS 0J o C C Eh
•J JJ OJ O w
_0) C >,JJ o •

ffiC-H C C Eh
cofcH (0 (0 *H O Mo—a B io jj a

w
g H K

to
01

T3 10 C
JJ 3 O
C Eh JJ
10 en o
jc as jj c

• oi 3W nj x-i
JJ UH
01 C CO 01
ID O 01 JC

^T, S S** cO O 3 — O
01 01 -rt .H
to enjj a; ^-* 4J

3 C O U p. o
10 C O. 00 ca £ 3 • Ol 3Z OUH EH rHOjW H ISu (UD^j OJ

Eh 01 JC W o jcw <o eh i e!
• rt — c P- —

Eh OOm oi ^.h —

.

a 2 r^ jj c p.O 3 CO o O CO
*"•_, OI C OI

^O I IU OJ I

oi a *r &fQ>
JJ "O OJ c oEW I jc ra i

•h w r» £-, jc p.jjiso-uo

(0 JJ
•") 01

10
OJ rH
X
Eh 01— 10

3

01 Q
0J w
6 Eh
•H CJ
4J W

•4
•H W
io c co
K O Z
01 W
> oi aj
oj io 5 a"13.2

a wO TJ Z 2
Oj oi cq Eh
>h ens; to
0) C Eh
JJ 10 CO 01H JC rt
ra O C XI

O 10
C 01*H <H
01 10 JJ M
01 3 O 10a c >a 3
01 ij 0-1 01
10 W jc
JC W 01 Eh

_ fi -c —
S EC

s^p?W • ~^COZ a r* oiW Z CO H
Hoi is r4 -a*•Piea co ^ iz op.

W 4J
| O

X <ar-HJ30C
CO JJ O

c
o

•o
o
en
c
10

JC
o

01

10

3

o
(J
o

c
O

•o
0J

en
c
10

JC
o

a eh
10 01

•H flj 01
U 3M
io ja
> S io

oi S \h
JC Z 10
Eh M >

a oi

r* jc
P» 01 Eh
COrH ~-
OI XI
i-1 nj ^-*

I *H p*• U COO 10 OI
I > rH
CN |

PI 01 TJ«

JCO
C EH I—p.

O «O —- ^
0) p- C p.
U co o co
01 OI OI« H "O M
rt I m i

io v cn^o c o
ra I (0 I

5>r- jc p-
3 o o o

Page C63

Eh

O
z

Cm

E
D
01

CuCQ
<

-Io>
^ M

00 t-i

ss
=.z

H°M Q
"|
J<
Cgg
_]S»

w .

Eh

WW

I

z »
U o Q
W w
CP Z Eh

, o<
.Eh W
Q 03

Z U u
Eh

ui «* 01
<a«;was
u

Ch >h
Cx U]
O < WhSJ
oi m— x <:M—« 03
r~ J 2
co tn >
a\ <;
rH M M
1 « 33
H 3 Eh
<N > —

< W

Eh S
O
a
w
zM
Eh

D
o
a:

w
va
Eh

w
z
t-H

Eh

D
O
a
ca

Eh

I

•a- M —o 33 Q
Eh W

Z —aO Z
a axWHO
Eh U
< Z Z
W «fi w
« 3 w
o u tn

z
o

z a— w u
Q W Eh
u pa <o w
Z Eh CS
< O O
3 z
ej oi

en <2<S
W 3
W Eh
CQ Eh H
H Q

EH O <Q W
z —a
tn -^w^2n co h

o> Eh
X rt D— I O

in 03

r- I H
co t 33
en o Eh
(H —
1 Z

.-H O —
(N Q

i a m
** w uo Eh Z
z w a
O 03 U
O

—O
Q
U Z
o o
z
aw-O Eh —
Z 8 W
W 03 o
W U Z

01 33
Eh <* UOS
Z Z

Eh W
01 M W< Eh CD
3 Z
M Eh

Eh 03 OM Oh Z
a
< w oi

03 M 3
Eh

63 D Eh
Z O m
H D3 Eh
Eh Z
n w h
O 33 03
03 Eh 0.

A KNOWLEDGE BASED TOOL TO AID IN SOFTWARE MAINTENANCE

by

ALBERT L. NICHOL

B.S.. Kansas State University, 1984

AN ABSTRACT OF A MASTER'S THESIS

Submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan. Kansas

1987

ABSTRACT

One of the most overlooked parts of the software life cycle is the phase called

maintenance. Until recently, little attention has been given to this task. The attention

that has been given to this phase focused mainly on how to develop maintainable

software by using better software design techniques. Attention focused on the design

of software, to aid in maintenance, does not address the problems that maintainers are

facing today. Maintainers need tools that will aid them while they are performing a

maintenance task. Tools that will help to speed the learning portion of maintenance

must be developed. Documentation and a history of changes for the program being

maintained are the best sources for gaining the knowledge needed to do a maintenance

task.

This thesis describes a tool that will aid in the learning portion of maintenance.

The tool is called Maintenance Assistance Tool or MAT1. The tool uses a knowledge

base to obtain information about the program being maintained. MAT1 was developed

using the LOOPS programming environment and object-oriented programming tech-

niques. A documentation and history of changes search and display, along with graphic

representation of program parts is used to provide a learning environment in which a

maintainer can learn the functions of the program being maintained quickly and easily.

The program can also be edited using MAT1. The use of the LOOPS environment

allows for easy and efficient expansion of MAT1 for future use.

