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Abstract 

Due in large part to changes in land management practices, eastern redcedar (Juniperus 

virginiana L.), a native Kansas conifer, is rapidly invading onto valuable rangelands. The 

suppression of fire and increase of intensive grazing, combined with the rapid growth rate, high 

reproductive output, and dispersal ability of the species have allowed it to dramatically expand 

beyond its original range. Based on its abundance and invasive nature there is a growing interest 

in harvesting this species for use as a biofuel. For economic planning purposes, density and 

biomass quantities for the trees are needed. Three methods are explored for mapping eastern 

redcedar and quantifying its biomass in Riley County, Kansas. First a comparison of plot-

regression versus individual tree based techniques is conducted to determine the optimal 

approach for characterizing redcedar tree canopy using LiDAR (Light Detection and Ranging). 

Second a hybrid approach is utilized to characterize redcedar canopy biomass using LiDAR and 

high-resolution multispectral imagery. Finally, to explore alternative methods of characterizing 

the three-dimensional structure of redcedar canopy a comparison of “Structure from Motion” 

photogrammetric techniques and LiDAR is conducted. These methods showed promising results 

and proved to be useful in the forestry, range management, and bioenergy industries for better 

understanding the potential of invasive redcedar as a biofuel resource. 
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Chapter 1 -  Characterizing the Invasion of Eastern Redcedar and 

Mapping its Biomass1 

In recent decades, woody tree invasion has become a serious problem in the tallgrass 

prairie region of Eastern Kansas (Bragg & Hulbert, 1976). Due to rapid human settlement, 

overgrazing, and fire suppression, woody species have invaded sites that were once healthy 

tallgrass prairies (Briggs, et al., 2002).  Among the most invasive of these woody species is 

Juniperus virginiana, commonly known as eastern redcedar (Figure 1.1). 

 

 

Figure 1-1 Eastern redcedar encroaching in a pasture near Russell, KS. 

                                              

1 Chapter Co-Authored with and Reprinted with Permission from David Burchfield 
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1.1 Species Description 

Eastern redcedar (known hereafter as “redcedar”) is the only juniper species native to the 

state of Kansas (Pease, 2007). It is a species characterized by its rapid growth and high 

reproductive output (Briggs, et al., 2002). Redcedar is a coniferous species that has sharp, scaly 

leaves that perform photosynthesis (Stevens, et al., 2005) (Figure 1.2). Unlike deciduous trees 

that lose their leaves during autumn, redcedar retains its leafy material throughout the year. 

Redcedar is a dioecious species—female redcedar can be identified by the presence of small, 

round, waxy blue seed cones (often called “berries”) during certain times of the year (Van 

Haverbeke & Read, 1976; Stevens, et al., 2005).  

 

 

Figure 1-2 Eastern redcedar foliage. 

 

The range of redcedar is extensive, spanning the eastern half of the United States from 

the Atlantic to the High Plains and from Texas in the south to Ontario in the north (Figure 1.3). 
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Isolated patches of redcedar have also been reported in Oregon. In Kansas, eastern redcedar 

grows primarily in the eastern two-thirds of the state where conditions are humid enough to 

support it (Stevens, et al., 2005). It is also widely planted as a “backbone” windbreak species in 

Kansas (Strine, 2004). Due in part to these windbreak plantings across the state, the current range 

of redcedar exceeds its historical range (Owensby, et al., 1973). 

 

Figure 1-3 Range of eastern redcedar in the United States (derived from Little, 1971). 
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Figure 1-4 An example of redcedar (dark areas on the images) expansion in Riley County, 

KS, 1962 (top) to 2012 (bottom). (Images courtesy of USDA NAIP Program and KSU 

Historical Aerial Photo Archive) 
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1.2 Species Ecology and Human Factors 

Eastern redcedar is a pioneer invader species that will readily spread over a short period 

(Van Haverbeke & Read, 1976). Prior to European settlement in Kansas, woody species 

(including redcedar) were primarily located in stream bottoms (lowlands) in the Flint Hills 

region (Bragg & Hulbert, 1976). The Spanish explorer Coronado wrote in 1541 as he travelled 

through the region, “There is not any kind of wood in all these plains, away from the gullies and 

rivers, which are very few” (Bragg & Hulbert, 1976). Before settlement occurred in the region, 

as woody species would spread into upland areas, they were naturally controlled by periodic 

wildfires. Dendrochronological dating methods have shown that, prior to European-American 

settlement, these fires burned in the Flint Hills every four years on average (Allen & Palmer, 

2011). Within the historic range of redcedar European-American settlers fragmented the 

landscape, constructing artificial barriers to fire (primarily roads) that have halted the natural 

progression of prairie fires (Briggs, et al., 2002). Poor land management and plantings of 

redcedar in windbreaks have further accelerated its spread (Owensby, et al., 1973). These factors 

have caused redcedar to become established in upland tallgrass prairies. 

        Redcedar’s invasiveness has become a problem in the Flint Hills region where many 

absentee landowners have acquired land as an investment or for hunting (Kindscher & Scott, 

1997). These landowners may often be unwilling or unable to take the necessary steps—such as 

conducting annual prairie burns—to properly manage their property. As redcedar has spread into 

the uplands due to a lack of fire to control it, it has often turned into dense stands that crowd out 

warm-season (C4) native tallgrass prairie grasses and forbs (Gehring & Bragg, 1992) (Figure 

1.4). Many of these species are important forage plants for grazing animals in Kansas. Valuable 

rangelands can be converted into closed-canopy redcedar stands in as little as 40 years (Briggs, et 

al., 2002). Beef cattle ranching, an important industry in Kansas representing $8.5 billion of the 

$13.4 billion agricultural industry in the state (USDA, 2011), is being threatened by the spread of 

redcedar into rangelands. 

 Another major concern with redcedar is its encroachment into populated areas. Redcedar 

foliage contains flammable volatile oils, and dense stands of redcedar located in urban and 

suburban areas can increase the risk of a wildfire affecting populated areas (Ward, 2013) (Figure 

1.5) (Figure 1.6). 
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Figure 1-5 Eastern redcedar trees catching fire during a prairie burn. Image courtesy of 

the Kansas Forest Service. 
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Figure 1-6 Area of concern in Manhattan, KS, where a neighborhood borders a large 

redcedar stand (outlined in yellow). Redcedar stands encroaching in developed areas pose a 

high risk due to greater wildfire potential. Image courtesy of the USDA NAIP program. 

 

1.3 Redcedar Uses 

Eastern redcedar has been shown to be a useful species in industry and agriculture. It is 

commonly harvested for construction of pencils and wood chests, and it is also chipped into 

mulch for use in landscaping and gardening (Van Haverbeke & Read, 1976) (Figure 1.7). 

Redcedar oil has also been extracted for use in the essential oil industry (Gawde, et al., 2009; 

CAFNR news, 2008; Semen & Hiziroglu, 2005). It has also been shown to contain a high 

amount of energy for heating. Large individual trees have been shown to contain over twelve 

million British Thermal Units (BTUs) of energy, equivalent to around 106 gallons of heating oil, 

or 0.6 tons of anthracite coal (Strauss, et al., 2011; Slusher, 1995). One proposal is to harvest 

redcedar for use as a biofuel, providing an inexpensive, locally-obtained fuel source for Kansas. 
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Redcedar wood can be converted into biodiesel, wood chips for wood burning boilers, or 

“biochar,” a charcoal soil amendment (Teel, 2012; Starks, et al., 2011). 

 

 

Figure 1-7 Eastern redcedar logs and mulch processed for gardening use near Pratt, 

Kansas. Image courtesy of Larry Biles. 

 

1.4 Mapping of Redcedar Using Remotely Sensed Data 

To facilitate economic planning and the development of an eastern redcedar biofuel 

industry in Kansas, redcedar cover and biomass estimates are needed on a detailed level. The 

purpose of this thesis is to explore methodologies and address questions regarding the use of 

remotely sensed data for measuring redcedar biomass and cover.  

The initial objective of this thesis is to identify the best method for assessing redcedar 

biomass using Light Detection and Ranging (LiDAR). A second objective is to classify redcedar 

cover on the landscape using high spatial resolution (1-meter) National Agriculture Imagery 

Program (NAIP) imagery to identify redcedar canopy within a heterogonous canopy height 

model derived from LiDAR. A third objective is to map redcedar biomass across a large area 

(e.g. a county) using a fusion of satellite imagery, LiDAR data, and high spatial resolution color-

infrared aerial photography. The fourth and final objective is to explore advances in structure 
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from motion photogrammetry (SfM) and how these advances may provide an alternative to 

LiDAR for 3D modeling of redcedar. 

In chapter two I will explore two methods of characterizing the height and canopy of 

redcedar using LiDAR and evaluate these two methods for feasibility and accuracy. Chapter two 

and three will also include discussion on the methods applied to identify redcedar in a 

heterogeneous canopy height model by applying a mask derived from classified aerial imagery. 

In chapter three I will apply what is learned in chapter 2 to extract canopy metrics from the 

redcedar height model and use those to produce a predictive model to map redcedar biomass. I 

will also evaluate the accuracy and limitations to the biomass model. In Chapter four I will 

explore how a structure from motion derived surface model compares to data derived from 

LiDAR and how this newer technology might be applied for mapping redcedar canopy. 
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Chapter 2 -  A Comparison of Methods for the Assessment of 

Redcedar (Juniperus virginiana L.) Canopy Height Using LiDAR 

2.1 Introduction 

For over 50 years, the invasion of woody plant species into rangelands throughout the 

tallgrass prairie and surrounding regions has been a concern to ranchers and conservationists 

(Owensby, et al., 1972). Among the most prominent of these species is Juniperus virginiana L.; 

often called eastern redcedar (Owensby, et al., 1973; Norris, et al., 2001) (Figure 2.1). Eastern 

redcedar has a large range encompassing most of the eastern United States. (Norris, et al., 2001) 

The species is fast-growing and birds can transport its seeds over many miles. (Briggs, et al., 

2002) Historically, before the widespread suppression of fire in the area, periodic burning of the 

prairie prevented eastern redcedar overexpansion. (Briggs and Gibson, 1992; Briggs, et al., 

2002) Anthropogenic fire suppression has now resulted in the drastic expansion of its range. 

Throughout much of the Great Plains redcedar expansion has resulted in major economic losses 

due to a reduction in rangeland available for cattle grazing. In addition to economic losses, 

environmental impacts include loss of plant and animal community diversity and changes in 

nutrient cycling. Closed-canopy redcedar forest also presents a wildfire danger in areas where 

invasion occurs near suburban areas. 

 

Figure 2-1 Eastern redcedar encroaching in a pasture near Russell, KS. 
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A potential solution to the problem of already-invaded areas is to find a large-scale 

commercial use for its biomass. Since eastern redcedar is a plentiful species that is “out of place” 

(Blatchley, 1912) in the prairie ecosystem, there is interest in harvesting redcedar stands for a 

variety of uses. Traditionally, redcedar wood has been used in fence posts and furniture, and it is 

commonly processed into mulch for gardening use. The wood can also be chipped and burned in 

wood-burning stoves or boilers, and methods are being developed to convert redcedar material 

into liquid biofuel products (Hemmerly, 1970; Lam, 2012; Ramachandriya, et al., 2013). 

Before redcedar can be harvested as a bio-fuel, it must be determined if there are enough 

dense stands in an area to make the establishment of infrastructure cost-efficient. In order to be 

cost efficient, it is best that large numbers of trees be clustered tightly together within an 

economically sustainable distance of processing facilities. While estimates of the overall scope 

of redcedar invasion and general estimates of biomass exist, there is little information on the 

spatial distribution of redcedar biomass within Kansas. 

2.1.1 Assessment of Forest Biomass Using LiDAR 

Studies have shown that Light Detection and Ranging (LiDAR) is a powerful tool for 

assessing forest biomass due to its ability to generate multiple returns (height measurements) 

within a single pulse when that pulse penetrates gaps in tree canopy (Figure 2.2). 
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Figure 2-2 Illustration of multiple returns from a LiDAR pulse within a tree canopy. From 

Stoker (date unknown). 

As a result, LiDAR data have been used extensively in surveys of native or highly 

managed forest stands. In 2003, Drake, et al. conducted a study where plot-level mean height of 

median energy derived from waveform LiDAR was combined with a linear regression technique 

to model aboveground biomass in neo-tropical forest. Popescu and Wynne (2004a) utilized a 

method of individual tree extraction based on a local maxima variable window approach. This 

method also utilized spectral data to differentiate between coniferous trees and deciduous trees 

when calculating window size based on a canopy-size-to-height ratio of the two tree types. In 
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2005, Bortolot and Wynne used an individual tree-based approach to estimate the biomass of a 

forest in Virginia. These studies all focused either on estimating biomass of single species in 

homogenous forest, or on estimating total aboveground biomass within a heterogeneous forest.  

When an estimate of the biomass of a single tree species within a heterogeneous area is 

necessary, it is advantageous to combine LiDAR with multispectral imagery to differentiate 

biomass of different species. Recently, multiple attempts have been made to use LiDAR in 

conjunction with multispectral or hyperspectral imagery to map the biomass of invasive woody 

species in a mixed landscape. Swatantran, et al. (2011) found that incorporating hyperspectral 

classification improved their ability to predict biomass of a specific species when using 

waveform LiDAR in the Sierra Nevada. Another study utilized a data fusion of LiDAR and leaf-

off ATLAS imagery to improve the performance of individual tree delineation and biomass 

estimation of deciduous and coniferous trees (Popescu & Wynne 2004b). These studies showed 

that the fusion of LiDAR and multispectral imagery can be beneficial for accurate biomass 

estimation of target species and tree types. 

While a preponderance of the evidence points to a hybrid approach of using LiDAR and 

multispectral data to assess biomass of heterogeneous tree canopy, few studies have used this 

method on a large scale. Most studies have been on a stand level and not at larger county, region, 

or state levels. I found it beneficial, therefore, to conduct a preliminary investigation on which 

methods and approaches were most effective when mapping redcedar biomass at the county 

level. In order to determine the best method, it was initially decided to evaluate both a plot-level 

regression-based approach and an individual tree-based moving window approach. Along with 

the evaluation of these two approaches I endeavored to establish a methodology for integrating 

LiDAR data with multispectral data using available software and hardware resources. 

A primary goal, therefore, was to compare the plot-level regression approach and the 

individual tree based approach to determine which method better predicted redcedar biomass 

using LiDAR. A secondary goal was to further confirm the efficacy of including multispectral 

imagery to better model the height of a target species (redcedar). 
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2.2 Methods 

2.2.1 Study Area 

Riley County, Kansas was selected as the study area for this project. The funding agency 

identified Riley County as a county of concern because of its high rate of redcedar 

encroachment. An unpublished study estimated a 23,000% increase of redcedar cover in Riley 

County between 1965 and 2005 (Grabow and Price, 2010). 

Riley County lies within the Flint Hills ecoregion. Portions of the county are 

topographically rugged, with steep stream banks punctuating rocky upland areas. The native 

vegetation consists of tallgrass prairie species - primarily big bluestem (Andropogon geradii), 

Indiangrass (Sorghastrum nutans), and little bluestem (Andropogon scoparius) in the uplands - 

and trees—including hackberry (Celtis occidentalis), American elm (Ulmus americana), green 

ash (Fraxinus pennsylvanica), and black walnut (Juglans nigra) along the stream bottoms. The 

elevation ranges from 298 meters in the Kansas River Valley to 464 meters in the west-central 

portion of the county. Tuttle Creek Reservoir (along the Big Blue River) is a dominant feature in 

the county. Manhattan, the county seat and home of Kansas State University, is the largest city.  

2.2.2 Collection of in-situ ground-reference data 

Data collection, image classification, and canopy model assessment workflow is outlined 

in Figure 2.4. Seventeen ground-reference plots were selected throughout Riley County, Kansas 

across a redcedar cover and biomass gradient (Figure 2.3). Plots were approximately 15-meters 

by 15-meters for an approximate total area of 225 m2 per plot. A GPS position was collected for 

the center of each plot and the four corners were measured out and situated at NE, NW, SE, and 

SW compass directions. The plots were digitized in ArcGIS® to facilitate extraction of percent 

cover metrics, derived from classification of multi-spectral imagery, and height metrics, derived 

from LiDAR, for each plot. 

To characterize height, five trees were selected in each plot and height was calculated for 

each using a clinometer. The trees were selected using a modified point-center quarter method. 

In each plot, the tree closest to the center point and the trees closest to each of the four midpoints 

between the center and the four corners, were selected for height estimation and their locations 

within the plot were noted (Mitchell, 2010) (Figure 2.5). Tree age was also estimated for the 

selected trees by taking core samples using an increment borer. Densiometer measurements of 
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canopy density were taken in each of the four cardinal directions from each of the four 

midpoints. Densiometer measurements were averaged for each site. Biomass measurements were 

also collected for each site using diameter at breast height as a proxy. Site characteristics are 

summarized in Table 2.1.

 

Figure 2-3 Map of Riley County, Kansas showing study plot locations in red. 
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Figure 2-4 Redcedar Classification and Canopy Model Assessment Workflow.
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Table 2-1 Summary of site measurements for each ground reference plot 
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Figure 2-5 Aerial schematic of the modified point-center quarter sampling method at a 

study site. 

 

2.2.3 LiDAR pre-processing 

LiDAR data were obtained from the Kansas GIS Data Access Support Center (DASC) in 

.LAS format which contains the raw xyz coordinates of each point along with the return number. 

The dataset had been processed from its raw form which contains XYZ information along with 

sensor orientation, scan direction and range into LAS format projected in NAD 83 UTM Zone 

15N by the vendor. Data were also classified into bare-earth returns versus all other returns by 

the distributer, however no further classification had been performed. Nominal point spacing was 

between 1.0 and 1.4 meters and vertical accuracy was approximately 18 centimeters. The LiDAR 

data were collected in spring of 2010. 

 LiDAR LAS files were processed using the Merrick® Advanced Remote Sensing 

software package (MARS®) provided to us for temporary use by Merrick Inc. The MARS® 

software has several different methods for raster interpolation from an LAS point cloud. 

(Merrick and Company, 2013) One method interpolates raster cell values from a triangulated 

representation of the point cloud generated as an intermediary. It was decided that this method 

was too computationally intensive and time consuming to be used. The other method uses a 

binning process to assign grid cell values from point values. When more than one value is 
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present the software allows the user to select whether to use a minimum, maximum, or average 

value. Gaps of less than 1-meter are then filled using a linear interpolation. Bare-earth and first-

return rasters were created using this procedure, bare-earth returns were identified using the 

classification codes provided by the distributer, with the averaging option being selected for cells 

with multiple values. Both raster files were exported in the ESRI® grid format for import into 

ArcGIS®. Each was gridded at 1.0-meter per pixel resolution. 

2.2.4 Classification of multispectral imagery 

Two types of multispectral imagery were used to assess the range and density of redcedar 

for masking non-target species in the LiDAR derived canopy height model. Initially, a coarse 

(30-meter spatial resolution) Landsat classification was used to identify areas of redcedar cover. 

This classification ensured that areas of significant closed-canopy redcedar cover would be 

identified. It also provided a means of delineating the areas to be classified within the higher 

resolution data. The second round of multispectral classification involved the hybrid use of U.S. 

Department of Agriculture National Agricultural Imagery Program (NAIP) 4-band (NIR-R-G-B) 

data and LiDAR. Within areas already identified as containing redcedar based on the coarser 

Landsat classification, a second classification was derived from the higher resolution NAIP data. 

This allowed for a more accurate estimate of redcedar density. The resulting 1.0-meter spatial 

resolution classification of redcedar was subsequently used to identify the target species in a 1-

meter LiDAR-derived canopy height model (Figure 2.6). 
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Figure 2-6 1.0 Meter NAIP color-infrared orthoimagery showing spectral distinction 

between decidious and redcedar tree canopy. 

2.2.4.1 Unsupervised classification of Landsat Imagery 

A multi-temporal classification technique was performed using cloud-free Landsat TM 

images from January 5, 2011 and August 1, 2011, representing winter and summer dates, 

respectively. Six bands from each image (omitting the thermal band) were stacked using ERDAS 

Imagine© software. The resulting 12-band image (see Figure 2.7) was used as the input in the 

ISODATA unsupervised classifier tool in ERDAS Imagine. An Output settings were set to 50 

clusters with a confidence interval of 0.95. The resulting 50 spectral clusters were manually 

interpreted by comparing them with ground truth data and high-resolution NAIP imagery. A 

modified Anderson Level I classification scheme (Anderson, 1976) was to classify each cluster. 

The Level I “forest land” class was split into “deciduous forest land” and “evergreen forest land” 

as indicated in level 2 of the Anderson scheme. This separation was preferred since evergreen 

forest in the study area is almost exclusively comprised of eastern redcedar, the target land cover 

type.  

The clusters that were interpreted to include redcedar cover were identified and extracted 

using ISODATA. An iterative process known as “cluster busting” was used to further refine the 

redcedar classification (Jensen, 2005). During cluster busting, the analyst identifies the clusters 

that include or that are most spectrally similar to the target land cover type. All other clusters are 
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masked out, and ISODATA is performed a second time. This application of this process often 

reveals “hidden” spectral information that can reveal other land cover types in the image that 

were not evident in the initial ISODATA classification. Multiple iterations of cluster busting are 

sometimes necessary to accurately extract a particular land cover type, as was the case in 

extracting redcedar cover. For this study, two iterations were necessary to separate redcedar from 

other cover types. After redcedar was accurately classified, the classification accuracy was 

assessed using a simple random sampling scheme to visually compare the classified Landsat 

pixels with high resolution NAIP imagery in which redcedar cover was more obvious. 
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Figure 2-7 False-color composite (4-3-2) Landsat TM images of Riley County, Kansas from 

January 5, 2011 (top) and August 1, 2011 (bottom). 
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2.2.4.2 Classification of higher spatial resolution NAIP Imagery 

USDA NAIP 4-band data from 2008 were obtained from the Kansas Data Access 

Support Center (DASC). NAIP data were not available with a near-infrared band in the raw 

format for the same period as the LiDAR collection and therefore, a decision was made to use 

the closest possible collection. The spatial resolution of the data was 1.0-meter and the data had 

been orthorectified Multispectral data were co-registered to the LiDAR canopy models to ensure 

proper alignment (RMS error less than one pixel). Prior to classification of NAIP data, all areas 

within the imagery corresponding with areas in the canopy height model below 0.5 meters were 

masked out. This removed any remaining water pixels and shadow on the ground, both of which 

were easily confused with dark shadowed redcedar spectral values in the data. An unsupervised 

classification was then conducted for all areas classified as redcedar in the initial Landsat 

classification. 

Once again, the ISODATA classification algorithm was used to produce 50 clusters. 

Clusters were visually interpreted and assigned to redcedar and non-redcedar classes. User’s 

accuracy was calculated using 100 randomly selected validation samples that were evaluated 

using a combination of site survey and imagery interpretation. Percent cover by redcedar was 

calculated from the classified NAIP data for each of the 17 study sites using the ArcGIS® zonal 

statistics tool. 

2.2.5 Redcedar canopy model development 

Development of a canopy model representative of redcedar only necessitated the removal 

of other aboveground structures and tree species from the canopy height raster. This was 

accomplished using a 1.0-meter resolution redcedar binary mask created from the classified 

high-resolution image data. The application of this mask resulted in a canopy height model 

representative of only redcedar canopy height. 

2.2.6 Comparison of Individual Tree Based Approach versus Plot-Level Regression 

for Assessment of Redcedar Biomass 

The two LiDAR-based methods of assessing redcedar biomass were compared to ground 

reference data to determine which produced a better predictive model. 
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To test the plot-level regression approach, the ArcGIS® zonal statistics tool was used to 

calculate the summary statistics of the canopy height model for each of the 17 study sites: sum of 

canopy height, mean canopy height, median canopy height, maximum canopy height, minimum 

canopy height, and standard deviation of canopy height. Zeros were not included in the 

calculation of zonal statistics pertaining to the canopy height model. The exclusion of zeros 

allowed for the calculation of a more accurate measure of mean canopy height. 

Testing the individual tree-based approach proved more challenging. This method 

involves passing a moving window through the derived canopy height model to identify 

individual trees (Popescu and Wynne, 2004a). A circular window with a variable radius is used 

to identify local maxima which are identified as tree tops. The corresponding local minima are 

identified as the base height. The window size is calculated using an equation based on the 

relationship between tree height and canopy width. The allometric equation, developed using 

data collected at the study sites, is illustrated in Figure 2.8. To test this method, the moving 

window algorithm was evaluated using a subset of the 17 study plots. It was decided to use a 

subset because of the computational intensity of the process and the need to determine if the 

method yielded accurate tree level statistics before testing it on a larger area. This was 

accomplished using the Canopy Maxima algorithm implemented in the Fusion software provided 

by the US forest service. This algorithm is like that reported in Popescu and Wynn (2004b). 
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Figure 2-8 Allometric equation, developed from field data collected at our study sites, 

relating redcedar canopy width to tree height. This equation was used as an input for the 

local-maxima based individual tree filter. 

 

2.3 Results 

2.3.1 Plot-Level Regression Model 

The relationship between the plot-level mean height of the redcedar canopy height model 

based on LiDAR data and the mean tree height of selected trees in ground reference plots can be 

seen in the graph in Figure 2.9. The model is precise (r2 = 0.77, p < 0.05) however there is 

considerable bias y-intercept > 4 meters. The Root Mean Squared Error of the model was 

calculated to be 0.74 meters. While a bias is present and some error exists the precision of this 

relationship suggests that LiDAR be used to model redcedar canopy height if the bias is 

considered. 
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Figure 2-9 Redcedar canopy height model (LiDAR) vs. mean redcedar height in ground 

reference plots. 

2.3.2 Individual Tree Based Model 

As indicated in Figure 2.10 the moving window individual tree-based method produced 

mixed results in identifying single trees. In circumstances where the trees were physically 

separated from surrounding trees the model identified tree tops with a reasonable degree of 

accuracy. When the canopies of multiple trees coalesced, however, the tree tops were not reliably 

identified, resulting in an overall under-representation of the number of trees. 
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Figure 2-10 Results of individual tree identification model, the points represent individual 

tree tops identified by the model. Points are superimposed over CIR NAIP imagery used in 

classification. Subsets show model results with somewhat separated trees vs. coalescent 

canopy. 

 

2.4 Discussion and Conclusions 

2.4.1 Optimal Method for Assessment of Redcedar Biomass and Canopy 

Characteristics 

The results presented in this chapter indicate that a plot-level regression approach is 

favorable for accessing redcedar biomass and canopy characteristics. This is mostly due to the 

computational intensity of an individual tree-based approach and the inability of such an 

approach to properly characterize the canopy characteristics of redcedar. The computational 

intensity of the individual tree-based approach alone prevents it from being practical for county 

or region-wide assessment. 
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2.4.2 Sources of Error and Potential for Improved Models 

2.4.2.1 Error in the Individual Tree Based Model 

One potential source of error is the point spacing of the LiDAR as well as the 

complexities of redcedar canopy structure. Coalescent redcedar canopy and a wide variety of 

canopy geometries across redcedar specimens may have played a role. As the technology 

improves, however, tighter point spacing will become feasible at lower costs. Tighter point 

LiDAR spacing could allow for better characterization of crown shape, thereby allowing the re-

evaluation of individual tree-based approaches for certain applications. Another potential source 

of error are the incongruences between collection time of field data and of remotely sensed data. 

Factors such as growth of the trees between data collection or removal of trees could have 

contributed to error. 

Future work includes expanding the study to other areas prone to redcedar encroachment, 

improving model accuracy by simultaneous collection of ground reference and remotely sensed 

data, and exploring other LiDAR-based forest inventory techniques, such as individual tree 

extraction. 

2.4.2.2 Error in the Plot-Based Regression Model 

The bias in this relationship could be related to the inherit accuracy of the LiDAR data 

which has a vertical RMSE of +/- 0.18 meters combined with the three year gap between LiDAR 

and ground/multispectral data acquisition. Sense the plot-based regression approach summarizes 

the height of all grid cells within a plot given a single number it is possible that there will always 

be some bias sense lower level canopy returns will reduce the height estimate. A more robust 

model might incorporate the variability of the canopy height model within the plot. 

Although there is some error in the plot-based regression approach when it comes to 

height estimation the accuracy of the final biomass model, discussed in depth in chapter 3, was in 

line with previous studies using LiDAR to model tree biomass (Drake et al., 2003). Having a 

root-mean squared error of approximately 35 megagrams (metric tons) per hectare, the model 

results support the use of a plot-level regression-based approach for accessing redcedar biomass 

and canopy characteristics. 
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Chapter 3 -  Assessment of Eastern Redcedar (Juniperus virginiana) 

Biomass Using LiDAR and Multispectral Imagery2 

3.1 Introduction 

For over 50 years, the invasion of woody plant species into rangelands throughout the 

tallgrass prairie ecoregion has been a serious concern to ranchers and conservationists (Owensby, 

et al., 1973). Among the most prominent of these species is Juniperus virginiana L., often called 

eastern redcedar (Owensby, et al., 1973; Norris, et al., 2001) (Figure 3.1). Eastern redcedar has a 

large range encompassing most of the eastern United States. (Norris, et al., 2001) The species is 

fast-growing, and birds can transport its seeds over many miles (Briggs, et al., 2002). 

Historically, prior to the widespread suppression of natural prairie fires in the region, periodic 

burning of the prairie prevented eastern redcedar overexpansion (Briggs and Gibson, 1992; 

Briggs, et al., 2002). Anthropogenic fire suppression has now resulted in the drastic expansion of 

its range (Strine, 2004; Owensby, et al., 1973). In much of the Great Plains, this expansion has 

become an economic threat to the cattle ranching industry due to the loss of rangeland available 

for cattle grazing (Schmidt, 2002). Along with economic impacts caused by redcedar expansion, 

there are also environmental impacts, including losses in plant and animal community diversity 

(Chapman, 2004; Horncastle, 2005; Briggs, et al., 2002). Closed-canopy redcedar forests also 

present a wildfire danger where redcedar expansion occurs near urban areas (Ward, 2013). 

A potential solution to the problem of redcedar invasion is to find a large-scale 

commercial use for redcedar biomass. Since eastern redcedar is a plentiful species that is “out of 

place” (Blatchley, 1912) in the prairie ecosystem, there has been interest in harvesting redcedar 

stands for a variety of uses. Traditionally, redcedar wood has been used in fence posts and 

furniture, and it is commonly turned into mulch for gardening use. The wood can also be chipped 

and burned in wood-burning stoves or boilers, and methods are being developed to convert 

redcedar material into liquid biofuel products (Hemmerly, 1970; Lam, 2012; Ramachandriya, et 

al., 2013). Redcedar oil has also been utilized in the essential oil industry and reportedly has 

                                              

2 Chapter Co-Authored with and Reprinted with Permission from David Burchfield 
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antibacterial and anti-cancer properties (Gawde, et al., 2009; CAFNRnews, 2008; Semen & 

Hiziroglu, 2005). 

 

 

Figure 3-1 Eastern redcedar in Riley County, Kansas. 

 

Before redcedar can be harvested for use as a biofuel or other product, it must be 

determined if there is enough redcedar biomass in an area to allow a harvesting industry to be 

economically viable in that area, especially considering the costs of transporting the trees from 

harvest locations to a refinery. For harvesting to be cost-effective, it is best that large numbers of 

trees be clustered tightly together within an economically sustainable distance of processing 

facilities. While estimates of the overall scope of redcedar invasion and general estimates of 

biomass exist (Grabow and Price, 2010; Moser, et al., 2008), there is little information on the 

spatial distribution of redcedar biomass within Kansas. Currently available redcedar biomass 

information, collected using a random ground sampling technique (Bechtold & Patterson, 2005), 

has been shown in many cases to be inaccurate at a county level. 
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Considering eastern redcedar’s detrimental environmental and economic impacts, as well 

as its potential commercial benefits, two major objectives were identified for this project. The 

primary objective was to establish an allometric equation using various plant metrics (diameter at 

breast height and tree height) to predict redcedar biomass at the individual tree and study plot 

(225m2) levels. The secondary objective was to use LiDAR imagery, along with multispectral 

image data, to classify redcedar stands and estimate redcedar biomass across a large area (e.g. 

county). 

3.1.1 Use of LiDAR and multispectral imagery in forest inventories 

While there are general volumetric and areal estimations of redcedar invasion, there is 

little information on the exact spatial extent and density of biomass. To determine the cost-

benefit of redcedar harvest, there must be accurate estimates of standing biomass within areas 

under consideration for harvest operations. Multispectral imagery has been used in the past to 

assess redcedar extent and biomass. Wylie et al. (2000) used Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) data to map eastern redcedar in the Nebraska sand hills. Starks, et al. 

(2011) found a strong correlation between derived metrics from high-resolution satellite imagery 

(0.42 m/pixel) and aboveground redcedar biomass.  

In addition, studies have shown that Light Detection and Ranging (LiDAR) is a powerful 

tool for assessing forest biomass due to its ability to generate multiple returns (height 

measurements) within a single pulse when that pulse penetrates gaps in tree canopy (Figure 3.2). 

Thus, LiDAR data have been used extensively in surveys of native or highly managed forest 

stands. In 2003, Drake, et al. conducted a study where plot-level mean height of median energy 

derived from waveform LiDAR was combined with a linear regression technique to model 

aboveground biomass in neo-tropical forest. Popescu and Wynne (2004a) utilized a method of 

individual tree extraction based on a local maxima variable window approach. This method also 

utilized spectral data to differentiate between coniferous trees and deciduous trees when 

calculating window size based on a canopy-size-to-height ratio of the two tree types. In 2005, 

Bortolot and Wynne used an individual tree-based approach to estimate the biomass of a forest in 

Virginia. These studies all focused on either estimating biomass of single species in homogenous 

forest, or estimation of total aboveground biomass within a heterogeneous forest. When an 

estimate of the biomass of a single tree species within a heterogeneous area is necessary, it 
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becomes advantageous to combine LiDAR with multispectral imagery to differentiate biomass of 

different species. Recently, multiple attempts have been made to use LiDAR in conjunction with 

multispectral or hyperspectral imagery to map the biomass of invasive woody species in a mixed 

landscape. Swatantran, et al. (2011) found that incorporating hyperspectral classification 

improved their ability to predict biomass of a specific species when using waveform LiDAR in 

the Sierra Nevada. Another study utilized a data fusion of LiDAR and leaf-off ATLAS imagery 

to improve the performance of individual tree delineation and biomass estimation of deciduous 

and coniferous trees (Popescu & Wynne 2004b). These studies showed that the fusion of LiDAR 

and multispectral imagery can be beneficial for accurate biomass estimation of target species and 

tree types. 

 

Figure 3-2 Illustration of multiple returns from a LiDAR pulse within a tree canopy. From 

Stoker (date unknown). 

 

For this project, a plot-based regression technique utilizing LiDAR-derived canopy 

height, together with a classification derived from multispectral data, was chosen rather than an 
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individual tree-based approach. The reasons for this hybrid methodology include the relatively 

sparse point spacing of the available LiDAR data (1.4 meters) and the variable nature of redcedar 

tree crown shape. Window size calculations necessary for individual tree extraction require 

knowledge of crown structure and differ by tree species. Redcedar trees can show a wide variety 

of crown structures (e.g. ranging from conic or columnar), making individual tree extraction 

problematic when attempted over large areas. 

3.2 Methods 

3.2.1 Study Area 

The project study area, Riley County, Kansas, was identified by the Kansas Forest 

Service as a county of concern due to its high rate of redcedar encroachment. An unpublished 

study estimated a 23,000% increase of redcedar cover in Riley County between 1965 and 2005 

(Grabow & Price, 2010). Riley County lies within the Flint Hills ecoregion. Portions of the 

county are topographically rugged, with steep stream banks punctuating rocky upland areas. The 

native vegetation consists of tallgrass prairie species—primarily big bluestem (Andropogon 

gerardii), indiangrass (Sorghastrum nutans), and little bluestem (Andropogon scoparius)—in the 

uplands. Trees, including hackberry (Celtis occidentalis), American elm (Ulmus americana), 

green ash (Fraxinus pennsylvanica), and black walnut (Juglans nigra) are found along the stream 

bottoms (Owensby, 2014). The elevation ranges from 298 meters in the Kansas River Valley to 

464 meters in the west-central portion of the county. Tuttle Creek Reservoir (along the Big Blue 

River) is a dominant feature in the county. Manhattan, the county seat and home of Kansas State 

University, is the largest city. The total area of the county is 1611 km2 (U.S. Census Bureau, 

2013), most which is utilized for cattle grazing and crop production. The climate in Riley County 

is classified as humid continental (Köppen Dfa) (Peel, et al., 2007). 

3.2.2 Collection of in situ ground reference data 

Data collection, image classification, and biomass assessment workflow is outlined in 

Figure 3.3. In situ data from 17 ground reference plots was collected throughout Riley County, 

Kansas across a redcedar cover and biomass gradient (Figure 3.5). Plots were approximately 15 

by 15 meters for an approximate total area of 225 m2 per plot. A GPS position was collected for 

the center of each plot and the four corners were measured out and situated at NE, NW, SE, and 
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SW compass directions. The plots were digitized in ArcGIS® to facilitate extraction of percent 

cover metrics (derived from classification of multispectral imagery) and height metrics derived 

from LiDAR for each plot. 

 

Figure 3-3 Redcedar classification and biomass mapping workflow. 

 

 

Biomass was estimated for each tree within the plot using diameter at breast height 

(DBH) as an input into an allometric equation based on our own data and data collected by the 
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students of the Kansas State University Natural Resources and Environmental Sciences capstone 

course (Strauss et al., 2011). DBH has been found to be a reliable predictor of individual tree 

total aboveground biomass when it is not possible to weigh each tree, as illustrated in Figure 3.4. 

A similar equation was used by Norris, et al. (2001) to estimate redcedar biomass. Total biomass 

estimates for each plot were calculated by summing the estimated biomass of every tree with a 

DBH of greater than two inches. The two-inch threshold was chosen because trees with DBH 

smaller than two inches were considered to have negligible biomass from a harvest standpoint 

and were also considered too small to be easily detectable in the aerial image data used in this 

project (1.0-meter spatial resolution). Age and height estimates of five trees in each plot were 

also collected to further characterize the sites and for validation of remotely sensed height 

models. These trees were selected using a modified point-center quarter method. In each plot, the 

tree closest to the center point and the trees closest to each of the four midpoints between the 

center and the four corners were selected for height and tree age estimation and their locations 

within the plot were noted (Mitchell, 2010) (Figure 3.6). Height was calculated using a 

clinometer, and tree age was estimated for some sites by taking core samples using an increment 

borer. (It was quickly realized that tree age would not improve biomass prediction, so average 

ages were not calculated for all sites.) Canopy density was measured using a densiometer facing 

each of the four cardinal directions from each of the four midpoints. Densiometer measurements 

were averaged for each site and used to help validate remotely sensed percent cover estimates. 

Site characteristics are summarized in Table 3.1.
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Figure 3-4 Allometric equation relating diameter at breast height (DBH) to biomass  

developed using data collected at our study sites as well as data from the NRES capstone 

course the year prior. 
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Table 3-1 Summary of site measurements for each ground reference plot. 
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Figure 3-5 Map of Riley County, Kansas showing study plot locations  in red. 
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Figure 3-6 Aerial schematic of the modified point-center quarter sampling method at a 

study site. 

 

3.2.3 LiDAR pre-processing 

LiDAR data were obtained from the Kansas GIS Data Access Support Center (DASC) in 

.LAS format which contains the raw xyz coordinates of each point along with the return number. 

The dataset had been processed from its raw form which contains XYZ information along with 

sensor orientation, scan direction and range into LAS format projected in NAD 83 UTM Zone 

15N by the vendor. Data were also classified into bare-earth returns versus all other returns by 

the distributer, however no further classification had been performed. Nominal point spacing was 

between 1.0 and 1.4 meters and vertical accuracy was approximately 18 centimeters. The LiDAR 

data were collected in spring of 2010. 

 LiDAR LAS files were processed using the Merrick® Advanced Remote Sensing 

software package (MARS®) provided to us for temporary use by Merrick Inc. The MARS® 

software has several different methods for raster interpolation from an LAS point cloud. 

(Merrick and Company, 2013) One method interpolates raster cell values from a triangulated 

representation of the point cloud generated as an intermediary. It was decided that this method 

was too computationally intensive and time consuming to be used. The other method uses a 

binning process to assign grid cell values from point values. When more than one value is 
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present the software allows the user to select whether to use a minimum, maximum, or average 

value. Gaps of less than 1-meter are then filled using a linear interpolation. Bare-earth and first-

return rasters were created using this procedure, bare-earth returns were identified using the 

classification codes provided by the distributer, with the averaging option being selected for cells 

with multiple values. Both raster files were exported in the ESRI® grid format for import into 

ArcGIS®. Each was gridded at 1.0-meter per pixel resolution. 

3.2.4 Classification of multispectral imagery 

Two types of multispectral imagery were used to assess the range and density of 

redcedar. Initially, a coarse (30-meter spatial resolution) Landsat classification was used to 

identify areas of redcedar cover. This classification ensured that areas of significant closed-

canopy redcedar cover would be identified. It also provided a means of delineating the areas to 

be classified within the higher resolution data. The second round of multispectral classification 

involved the hybrid use of U.S. Department of Agriculture National Agricultural Imagery 

Program (NAIP) 4-band (NIR-R-G-B) data and LiDAR. Within areas already identified as 

containing redcedar based on the coarser Landsat classification, a second classification was 

derived from the higher resolution NAIP data. This allowed for a more accurate estimate of 

redcedar density. The resulting 1.0-meter spatial resolution classification of redcedar was 

subsequently used to identify the target species in a 1-meter LiDAR-derived canopy height 

model. 

3.2.4.1 Unsupervised classification of Landsat Imagery 

A multi-temporal classification technique was performed using cloud-free Landsat TM 

images from January 5, 2011 and August 1, 2011, representing winter and summer dates, 

respectively. Six bands from each image (omitting the thermal band) were stacked using ERDAS 

Imagine© software. The resulting 12-band image (see Figure 3.7) was used as the input in the 

ISODATA unsupervised classifier tool in ERDAS Imagine. Output settings were set at 50 

clusters with a confidence interval of 0.95. The resulting 50 spectral clusters were manually 

interpreted by comparing them with ground truth data and high-resolution NAIP imagery. A 

modified Anderson Level I classification scheme (Anderson, 1976) was to classify each cluster. 

The Level I “forest land” class was split into “deciduous forest land” and “evergreen forest land” 

as indicated in level 2 of the Anderson scheme. This separation was preferred since evergreen 
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forest in the study area is almost exclusively comprised of eastern redcedar, the target land cover 

type.  

The clusters that were interpreted to include redcedar cover were identified and extracted 

using ISODATA. An iterative process known as “cluster busting” was used to further refine the 

redcedar classification (Jensen, 2005). During cluster busting, the analyst identifies the clusters 

that include or that are most spectrally similar to the target land cover type. All other clusters are 

masked out, and ISODATA is performed a second time. This process often finds “hidden” 

spectral information that can reveal other land cover types in the image that were not evident in 

the initial ISODATA classification. Multiple iterations of cluster busting are sometimes 

necessary to accurately extract a particular land cover type, as was the case in extracting redcedar 

cover. For this study, two iterations were necessary to separate redcedar from other cover types. 

After redcedar was accurately classified, the classification accuracy was assessed using a simple 

random sampling scheme to visually compare the classified Landsat pixels with high resolution 

NAIP imagery in which redcedar cover was more obvious. 
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Figure 3-7 False-color composite (4-3-2) Landsat TM images of Riley County, Kansas from 

January 5, 2011 (top) and August 1, 2011 (bottom). 
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3.2.4.2 Classification of higher spatial resolution NAIP Imagery 

USDA NAIP 4-band data from 2008 were obtained from the Kansas Data Access 

Support Center DASC. NAIP data were not available with a near-infrared band in the raw format 

for the same period as the LiDAR collection and therefore a decision was made to use the closest 

possible collection. The spatial resolution of the data was 1.0-meter and the data had been 

orthorectified. Multispectral data were co-registered to the LiDAR canopy models to ensure 

proper alignment (RMS error less than one pixel). Prior to classification of NAIP data, all areas 

within the imagery corresponding with areas in the canopy height model below 0.5 meters were 

masked out. This removed any remaining water pixels and shadow on the ground, both of which 

were easily confused with dark shadowed redcedar spectral values in the data. An unsupervised 

classification was then conducted for all areas classified as redcedar in the initial Landsat 

classification. 

Once again, the ISODATA classification algorithm was used to produce 50 clusters. 

Clusters were visually interpreted and assigned to redcedar and non-redcedar classes. User’s 

accuracy was calculated using 100 randomly selected validation samples, which were evaluated 

using a combination of site survey and imagery interpretation. Percent cover by redcedar was 

calculated from the classified NAIP data for each of the 17 study sites using the ArcGIS® zonal 

statistics tool. 

3.2.5 Redcedar canopy model development 

Development of a biomass prediction model for redcedar first necessitated the removal of 

other aboveground structures and tree species from the canopy height raster. This was 

accomplished using a 1.0-meter resolution redcedar binary mask created from the classified 

image data. The application of this mask resulted in a canopy height model representative of only 

redcedar canopy height. 

The ArcGIS® zonal statistics tool was used to calculate the following summary statistics 

of the canopy height model for each of the 17 study sites: sum of canopy height, mean canopy 

height, median canopy height, maximum canopy height, minimum canopy height, and standard 

deviation of canopy height. Zeros were not included in the calculation of zonal statistics 

pertaining to the canopy height model. The exclusion of zeros allowed for the calculation of a 

more accurate measure of mean canopy height. 
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3.2.6 Biomass predictive model and map development 

Development of a predictive statistical model for biomass began with the extraction of 

metrics for each sample plot from both the canopy height model and the redcedar classification. 

These metrics included: percent cover by redcedar derived from the high-resolution NAIP 

classification map, sum of canopy height, mean canopy height, median canopy height, maximum 

canopy height, minimum canopy height, and standard deviation of canopy height. Stepwise 

linear ordinary least squares regression was used to determine the most accurate model for 

biomass prediction using these parameters. Models were evaluated on Root Mean Squared Error, 

Bayesian information criterion, and coefficient of determination. 

After a predictive equation was developed, a map of redcedar biomass was calculated 

using ArcGIS® spatial modeler. First, the ArcGIS® block statistics tool was used to calculate 

percent cover of redcedar within a 15x15 meter window. The same procedure was also used to 

calculate mean canopy height within a 15 x15 meter window. A weighted overlay was then used 

to calculate a 15-meter resolution biomass raster. The resulting map was resampled to 30-meter 

and 60-meter resolution in both short (imperial) tons and metric tons for dissemination to 

interested parties. 

3.3 Results 

3.3.1 Redcedar Canopy Model 

Figure 3.4 shows the resulting equation relating diameter at breast height (DBH) to tree 

biomass. This equation was used to calculate biomass for each ground control site. Statistics 

include average tree age, maximum tree age, and mean tree height of selected trees as well as 

percent cover by redcedar (calculated from densiometer readings) and biomass (calculated as a 

sum of tree biomass for each site derived from diameter at breast height and the allometric 

equation).  
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Figure 3-8 Allometric equation, developed from field data collected at our study sites, 

relating redcedar canopy width to tree height. 

The relationship between the plot-level mean height of the redcedar canopy height model 

based on LiDAR data and the mean tree height of selected trees in ground reference plots can be 

seen in the graph in Figure 3.8. The model is precise (r2 = 0.77, p < 0.05) however there is 

considerable bias y-intercept > 4 meters. The Root Mean Squared Error of the model was 

calculated to be 0.74 meters. While a bias is present and some error exists the precision of this 

relationship suggests that LiDAR be used to model redcedar canopy height if the bias is 

considered. There was a strong relationship (r² = 0.81, P = 0.05) between the percentage of 

redcedar cover as calculated from the classified NAIP data and the percentage estimated on the 

ground using densiometer readings (Figure 3.9). 
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Figure 3-8 Aerial percent cover vs. ground canopy cover (measured with densiometer). 

 

3.3.2 Biomass Predictive Model 

Stepwise model selection using a forward and backward model selection with Akaike 

Information Criterion (AIC) as the selection criterion was used to identify the optimal LiDAR 

derived canopy height metric for prediction of biomass. Mean canopy height derived from 

LiDAR, and percent cover derived from classified imagery, were identified as the best predictors 

of redcedar biomass. This model also produced the lowest residual sum of squares and 

subsequently the lowest root mean square error (RSME). 

Results of accuracy assessment of the final model are provided in Table 3.2. The final 

model was developed and tested in the Weka® data mining software and a jackknife approach 

(k-folds cross-validation) was used to test model accuracy due to the limited size of the dataset. 

The model’s root-mean squared error calculated using the cross-validation approach was 

approximately 35 megagrams (metric tons) per hectare. It should be noted that the model shows 

a considerable bias in the model with a y-intercept of –676 Megagrams/hectare. The model was 

produced using LiDAR mean height values ranging from 0.91 meters to 7 meters and percent 
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cover values from 11% to 81%. Values outside this range for either metric may produce 

unreliable or problematic results. 

 

Table 3-2 Accuracy assessment summary of the redcedar biomass prediction model. 

Showing Biomass as a function of Percent Cover and Mean Canopy Height 

Equation R-Squared Root Mean Square Error 
P-
Value 

Biomass = 3655.48 * Percent Cover 
+ 602.02 * Mean Canopy Height - 
676.03 0.72 

35 Megagrams/Hectare or 
792 kg/ 225 square meter 
Plot < 0.05 

 

 

3.4 Discussion and Conclusions 

The combined use of LiDAR and multispectral remotely sensed data was again shown to 

be an effective method of assessing the biomass of a target species within a heterogeneous 

landscape. It is therefore well-suited for monitoring the encroachment of undesirable woody 

species. Model error, as measured by root mean square error, was within the range of previous 

models using LiDAR data to predict biomass (Drake et al., 2003).  

3.4.1 Sources of Error 

A possible source of error includes the incongruence between the dates of collection for 

remotely sensed and ground reference data. Another potential source of error is the coarse point 

spacing of the LiDAR which is approximately 1-meter, a denser point spacing could result in a 

more detailed model of redcedar canopy and therefore a better estimation of biomass. The 

vertical accuracy of the LiDAR should also be considered; vertical accuracy was stated by the 

vendor to be approximately +/- 0.18 meters which could account for some inaccuracy in the 

model. The propagation of errors associated with the remotely sensed data along with any errors 

in the DBH biomass model, used as a proxy for in-situ biomass measurements, could all 

contribute to the overall accuracy of the final model. 

Even given these sources of error it should be noted that the Root Mean Square Error for 

the model of 35 Megagrams/hectare was in line with previous studies using LiDAR to model tree 

biomass (Drake et al., 2003). 
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3.4.2 Future Work 

Future work includes expanding the study to other areas prone to redcedar encroachment, 

improving model accuracy by simultaneous collection of ground reference and remotely sensed 

data, and exploration of other LiDAR-based forest inventory techniques such as individual tree 

extraction. Tighter LiDAR point spacing could allow for better characterization of crown shape 

and for the use of individual tree-based approaches. 

Based upon the findings of this study it is feasible for the biofuels industry to use a 

hybrid approach of imagery classification and LiDAR canopy height classification in areas 

where these data are available to identify landscapes of sufficient redcedar biomass for harvest 

and processing as biofuel. There is however always room for improvement, future studies should 

be conducted to determine if higher density LiDAR data could improve model accuracy. 
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Chapter 4 -  Exploring New Potential for the Use of Structure-from-

Motion Photogrammetry as an Alternative to LiDAR for 

Modeling of Redcedar Canopy Height. 

4.1 Introduction 

For over 50 years, the invasion of woody plant species into rangelands throughout the 

tallgrass prairie ecoregion has been a serious concern to ranchers and conservationists (Owensby, 

et al., 1973). Among the most prominent of these species is Juniperus virginiana L., often called 

eastern redcedar (Owensby, et al., 1973; Norris, et al., 2001) (Figure 3.1). Eastern redcedar has a 

large range encompassing most of the eastern United States. (Norris, et al., 2001) The species is 

fast-growing, and birds can transport its seeds over many miles (Briggs, et al., 2002). 

Historically, prior to the widespread suppression of natural prairie fires in the region, periodic 

burning of the prairie prevented eastern redcedar overexpansion (Briggs and Gibson, 1992; 

Briggs, et al., 2002). Anthropogenic fire suppression has now resulted in the drastic expansion of 

its range (Strine, 2004; Owensby, et al., 1973). In much of the Great Plains, this expansion has 

become an economic threat to the cattle ranching industry due to the loss of rangeland available 

for cattle grazing (Schmidt, 2002). Along with economic impacts caused by redcedar expansion, 

there are also environmental impacts, including losses in plant and animal community diversity 

and increased soil erosion (Chapman, 2004; Horncastle, 2005; Briggs, et al., 2002). Closed-

canopy redcedar forests also present a wildfire danger where redcedar expansion occurs near 

urban areas (Ward, 2013). 

A potential solution to the problem of redcedar invasion is to find a large-scale 

commercial use for redcedar biomass. Since eastern redcedar is a plentiful species that is “out of 

place” (Blatchley, 1912) in the prairie ecosystem, there has been interest in harvesting redcedar 

stands for a variety of uses. Traditionally, redcedar wood has been used in fence posts and 

furniture, and it is commonly turned into mulch for gardening use. The wood can also be chipped 

and burned in wood-burning stoves or boilers, and methods are being developed to convert 

redcedar material into liquid biofuel products (Hemmerly, 1970; Lam, 2012; Ramachandriya, et 

al., 2013). Redcedar oil has also been utilized in the essential oil industry and reportedly has 
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antibacterial and anti-cancer properties (Gawde, et al., 2009; CAFNRnews, 2008; Semen & 

Hiziroglu, 2005). 

Before redcedar can be harvested for use as a biofuel or other product, it must be 

determined if there is enough redcedar biomass in an area to allow a harvesting industry to be 

economically viable in that area, especially considering the costs of transporting the trees from 

harvest locations to a refinery. For harvesting to be cost-effective, it is best that large numbers of 

trees be clustered tightly together within an economically sustainable distance of processing 

facilities. While estimates of the overall scope of redcedar invasion and general estimates of 

biomass exist (Grabow and Price, 2010; Moser, et al., 2008), there is little information on the 

spatial distribution of this biomass within Kansas. Currently available redcedar biomass 

information, collected using a random ground sampling technique (Bechtold & Patterson, 2005), 

has been shown in many cases to be inaccurate at a county level. 

Considering eastern redcedar’s detrimental environmental and economic impacts, as well 

as its potential commercial benefits it is necessary to establish cost-effective methods to map its 

extent and biomass distribution. This chapter explores the potential for Structure from Motion 

(SfM) photogrammetry as an alternative to LiDAR for mapping redcedar height in order to 

determine whether the method is a feasible alternative. Sense structure from motion 

photogrammetry requires less expensive hardware than LiDAR to obtain data it could be a viable 

alternative in some circumstances. 

4.1.1 Structure from Motion Photogrammetry 

In recent years, a new methodology for collecting three-dimensional data over large areas has 

become more widely available. Originating from the computer vision community in the 1990s, 

Structure-from-Motion or SfM photogrammetry differs from a traditional photogrammetric 

approach in that the technology allows for the automated extraction of the 3D coordinates of 

objects without the need for manual input of tie points. This is accomplished through the 

automated extraction of features within multiple overlapping images followed by the application 

of and iterative bundle adjustment procedure (Snavely, 2008). The capabilities of this technique 

were demonstrated by the application of structure from motion techniques to overlapping photos 

downloaded from community websites to produce three dimensional models of well-known 

world architectural sites (Goesele, 2007). More recently the technology has widely been used 
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with aerial imagery collected from Unmanned Aerial Vehicles (UAVs) for the construction of 

high resolution, high accuracy three dimensional models. In a study conducted on coastal erosion 

using SfM an accuracy of 25-40 mm was achieved using a multi-rotor UAV flying at 40 meters 

above ground level at low speed (Harwin and Lucieer, 2012). With the advent of commercial 

software packages such as Agisoft® PhotoScan and Pix4D® Mapper and the increased 

prevalence of greater computing power at a decreased cost Structure from Motion has now 

become easily accessible and will open up many opportunities for the generation of three-

dimensional data at lower costs. 

4.1.1.1 Structure from Motion Workflow 

The SfM workflow consists of data collection, SfM processing, and post processing. For 

the data acquisition step images are acquired using a traditional metric camera or consumer grade 

camera from either a manned aircraft or a Small Unmanned Aerial System. For measurement and 

correct geo-referencing of the resulting data to be possible without considerable ground control 

the GPS location of the camera when the image was taken is recorded in the photo metadata 

through a process called geo-tagging. (Figure 4.1). Ground control points or reference 

measurements may optionally be collected for additional correction of scale and position of the 

resulting dataset.  

Feature extraction can be accomplished using several algorithms with one of the most popular 

being the SiftGPU algorithm described in which has been shown to generate a robust set of 

feature descriptors for image features extracted from different viewing angles (Lowe, 1999). 

Following identification of individual image features the features are then matched between 

images based upon distinct feature characteristics. For the purposes of SfM features much be 

matched within a minimum of three images to be held as a keypoint. Through the triangulation 

of matched keypoints image orientation and three-dimensional positon of image points can be 

calculated. This is followed by an iterative bundle adjustment process which further optimizes 

the calculation of image positon (Triggs et al., 2000). At this point any geolocation or orientation 

information collected with the images can be used for further calibration of the model.  This 

process results in a sparse point cloud which contains points representing the 3D coordinates of 

the matched image features (Figure 4.3). At this point the density of the sparse point cloud may 

optionally be increased using one of several dense two-frame stereo correspondence algorithms, 

which take advantage of redundant information among individual image frames, may be used to 
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reconstruct the 3D geometry of areas between matched features that may be texture-less or 

occluded (D. Scharstein and R. Szeliski, 2002). Both the sparse and dense point clouds can be 

colorized using the original pixel values from the individual images or based upon relative or 

absolute elevation values for visualization (Figure 4.4). Finally, a digital elevation model (DEM) 

can be generated from the point cloud by the construction of a triangulated irregular network 

(TIN) or interpolation. Orthoimagery can then generated by mosaicking of the original images 

after they are orthorectified to correct for geometric distortions due to camera lens geometry, 

camera look angle and topographic relief. These factors can be calculated using the data 

generated during the bundle adjustment step of the SfM process along with the 3D surface model 

generated from the SfM point cloud (Figure 4.5). 
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Figure 4-1 Geographic locations of individual photos overlaid on a web map. 

During SfM processing keypoints are extracted through identification of unique features in 

individual images that can be used to determine image correspondence (Westoby, 2012) (Figure 

4.2). 
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Figure 4-2 Locations of keypoints extracted from an image displayed as orange markers 

(Pix4d Mapper). 

  

 

 

Figure 4-3 Individual image keypoint marked by a purple marker (top right) and vectors 

triangulating its 3D position from multiple images (left). The estimated accuracy of its 3D 

position is displayed as a circle around the marker in the bottom right image  (Pix4D 

Mapper). 
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Figure 4-4 Dense point cloud. 
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Figure 4-5 TIN mesh surface generated from the point cloud and colorized using image 

values (top) and planimetrically corrected orthophoto overlaid on Mapbox basemap 

imagery to show georegistration. 

.  
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4.1.1.2 Structure from Motion as an Alternative to LiDAR 

Until recently the computational intensity of the SfM process meant that the technology 

was limited to very small areas. Recent advances in computer processing capabilities and 

improvements to algorithms has begun to change this (Westoby, 2012). 

SfM has been shown to compare to LiDAR in the ability of the technology to produce 

three-dimensional data products.  Research by Westoby and Brasington (2012) found that a 

digital elevation model (DEM) produced from SfM compared to the decimeter scale vertical 

accuracy of terrestrial LiDAR over a range of complex topographies and cover types. In 2013 

Fritz reported a “promising potential for UAV-based 3D-reconstruction of forest stands” using 

SfM photogrammetry (Fritz, 2013). 

One of the major benefits of Structure from Motion technology when compared to 

LiDAR is the relative cost of collecting data. LiDAR sensors often run in the range of $250,000 

and up when taking all necessary components into account. Most require expensive twin-engine 

aircraft or helicopters to carry the sensor. Structure from motion data on the other hand can be 

collected using a variety of off-the-shelf cameras from small unmanned aircraft that can be 

bought for $1000 or small manned aircraft which are much less expensive than their larger twin-

engine counterparts. 

Given these new developments and the knowledge that an SfM based estimation of 

redcedar height would be much cheaper than using LiDAR I decided that an exploratory study be 

conducted to determine the feasibility for using SfM technology to measure the height of 

redcedar. The objective of this study was to compare height models generated using SfM to those 

produced using locally available LiDAR and to determine if accuracies of data collected using 

SfM could approach those of LiDAR with respect to calculating tree height. 

4.2 Methods 

4.2.1 Study Area 

The project study area, an approximately 16-hectare (40-acre) site in Johnston Iowa, was 

selected due the existence of a preexisting dataset collected by AgPixel LLC., and funded by 

GTG Companies for company proprietary purposes. Permission was obtained from GTG and 

AgPixel to use the dataset for this thesis research. The site presented an opportunity to analyze a 
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SfM dataset containing a variety of cover types including manmade structures, impervious 

surfaces, an open field, and various tree species including eastern redcedar (Figure 4.6).  

 

Figure 4-6 Orthoimagery showing the study site overlaid on a Mapbox® basemap. 

 

4.2.2 Aerial Imagery Collection 

Imagery for the project were collected as part of a commercial operation by AgPixel LLC 

under their FAA Section 333 exemption in February of 2016. During flight preplanning it was 

determined that the site was outside of the restricted airspace around Des Moines International 

Airport and therefore an additional Certificate of Authorization from the Federal Aviation 

Administration was not necessary (Figure 4.7). A notice to airman was filed the day prior to the 

flight and a licensed pilot was present per the Section 333 requirements laid out by the Federal 

Aviation Administration. 
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Figure 4-7 Map showing the study site (Fuchsia Pin) relative to the 5 mile no fly radius 

around the DSM airport (Red Circle). 

4.2.3 Collection of in-situ ground-reference information 

Ground control points were not collected due to the scope of the original project. An 

RTK GPS was not available to collect additional ground control so it was decided that several 

reference measurements be collected for data calibration and testing purposes. Time constraints, 

access to private property, and safety concerns working on public streets limited the number of 

these points. Permission could be obtained from the staff of the Hilton hotel on the site to collect 

measurements so all measurements were taken on that property. Table 4.1 shows the ground 

reference measurements collected using a clinometer including the hotel, road, and three 

redcedar trees selected using an opportunistic random sampling method. 
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Table 4-1 Measurements of objects collected on the ground for testing and calibration 

purposes 

Object and Dimension Measurement (meters) 

Hotel height 22.3 

Road width 11.98 

Redcedar 1 height 4.12 

Redcedar 2 height 4.33 

Redcedar 3 height 8.42 

 

4.2.4 SfM Data Processing 

The imagery was processed by AgPixel LLC. using Pix4D mapper and a proprietary, 

automated workflow to generate derivative products including colorized surface models, contrast 

enhanced orthoimagery, and a point cloud product converted to work with a web based viewing 

software that allows for direct measurement of area, distance, and height profiles within the point 

cloud. The use of the road width and hotel height was considered as a means of increasing the 

relative accuracy of the model using the capability of the Pix4D software to use a scale constraint 

to calibrate the model’s scale. It was decided not to conduct this procedure due to the ground 

measurements of the hotel and road deviating from the measurements collected from the 

uncalibrated SfM model by less than one percent. 

4.2.5 Accuracy Assessment of the Model and Comparison to LiDAR Data 

The SfM data were compared to LiDAR data collected in 2012 and accessed from the 

University of Northern Iowa’s GeoTree data portal. The comparison consisted of a visual 

comparison of point cloud and digital surface model (DSM) data products as well as a regression 

analysis of data collected from the LiDAR and SfM DSM models at 2000 random points 

identified using the ArcGIS random points tool (Figure 4.8). It was determined that high spatial 

autocorrelation was likely among the random points and within the source data and therefore it 

was decided that this should be explored and accounted for in the comparison of the two 

datasets. 
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Figure 4-8 Random points for coinciding areas of LiDAR and SfM datasets.  

 

Height and length measurements of multiple objects including redcedar trees, roadways, 

and buildings were extracted from the SfM point cloud using AgPixel’s point cloud web viewer 

(Figure 4.9). The percent error was calculated for each object as well as the total Root Mean 

Square Error for both eastern redcedar trees and other objects including structure and roadways. 
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Figure 4-9 Images of AgPixel web point cloud analysis tool showing measurements for both 

the Hilton hotel (Top) and one of the eastern redcedar trees (Bottom). 
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4.3 Results 

4.3.1 Comparison of SfM Data with LiDAR Data 

Figure 4.10 shows a comparison of the LiDAR and SfM digital surface models at a 

location with three redcedar trees present. The LiDAR dataset was capable of producing a digital 

surface model with a ground sampling distance of 1.0-meter while the SfM dataset was 

processed at 10 centimeters. The native resolution of the SfM dataset was approximately 2 

centimeters, but it was decided that the dataset be resampled to a coarser spatial resolution to 

minimize file size and processing time. The regression results of the two surface models can be 

seen in figure 4.11. The two datasets were shown to be correlated with an r-squared value of 0.76 

and a p-value significantly below 0.05 (2.2e-16).  

Given the nature of the sample points it was decided that the effects of spatial 

autocorrelation should be explored. The effects of spatial autocorrelation of the residuals were 

calculated using Moran’s I and the residuals were found to be spatially auto correlated (P << 

0.05). Variograms and spatial plots were also constructed to explore the spatial effect of 

residuals, but did not seem to indicate the same relationship. Figure 4.12 shows a spatial plot of 

residuals which seems to indicate little to no spatial autocorrelation with values showing a 

systematic and not repeating pattern. Figure 4.13 shows Semivariograms which indicate a pure 

nugget effect model in the 45 and 90 degree directions and a power law relationship in the 0 and 

135 degree directions. These would tend to indicate no spatial autocorrelation and a complex 

scale-free relationship respectively. 

 

Figure 4-10 Comparison of LiDAR (Left) and SfM (Right) digital surface models in the 

same area with orthoimagery for reference (Right). 
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Figure 4-11 Graph showing the relationship between the SfM and LiDAR derived digital 

surface models (units in meters above sea level).  
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Figure 4-12 Spatial plot of residuals showing a strong effect of spatial autocorrelation. 

 

Figure 4-13 Semivariograms plot showing strong autocorrelation in N/S and SE directions  
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4.3.2 Comparison of SfM Derived Height Measurements with In-Situ Ground 

Measurements 

A comparison of height and length dimensions extracted from the SfM point cloud using 

AgPixel’s web based tool against the dimensions measured for those objects on the ground 

shows that there is a strong agreement between the two modeling methods. The root mean 

squared error for the tree height estimates was approximately 0.36 m and for all other objects 

was about 0.33 m. The percent of disagreement averaged around 6 percent for trees and 4 percent 

for all objects (Table 4.7). It was not possible to reliably extract individual measurements from 

the LiDAR surface for any objects other than the Hotel due to the coarse nature of the LiDAR 

dataset.
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Table 4-2 Comparison of ground based height measurements and SfM height measurements with percent disagreement. 

Structure from motion +/- error estimated using the accepted error for SfM data stated by the software developer which is 

approximately 1-2 pixels without ground control. 

Object Ground 

(meters) 

SfM (meters) LiDAR 

(meters) 

Disagreement with 

Ground (meters) 

Disagreement  

with Ground 

(percent) 

Road width 11.98 12.13 (+/- 4cm)  0.15 1.2 

Hotel height 22.3 22.7 (+/- 4cm) 19.59 

(+/- 0.18) 

(SfM) 0.4 

(LiDAR) 2.94 

(SfM) 2.0 

(LiDAR) 13.0 

Lamp post Height 4.11 3.95 (+/- 4cm)  0.16 3.8 

Redcedar 1 Height 4.12 3.9 (+/- 4cm)  -0.22 5.0 

Redcedar 2 Height 4.33 4.9 (+/- 4cm)  0.57 13.0 

Redcedar 3 Height 8.42 8.54 (+/- 4cm)  0.12 1.0 

    RMSE Trees: 0.36 

RMSE All: 0.33 
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4.4 Discussion and Conclusions 

4.4.1 Comparison of LiDAR and SfM 

There was a correlation between the SfM and LiDAR models and the two showed a fair 

amount of visual similarity. There were several outliers in the model that could be due to 

differences in the collection dates of the LiDAR and SfM datasets and changes to the surface 

including construction, excavation, erosion and tree growth. There was of course a greater 

difference in the absolute difference in the elevations between the two models. This is likely due 

to the lack of RTK ground control points that would have increased the absolute accuracy of the 

SfM model although it is not unreasonable to assume some inaccuracy in the absolute values of 

the LiDAR dataset. A prior study by Javier in 2015 found that the absolute accuracy of be 

significantly improved using ground control and it is estimated to be possible to obtain a two-

pixel absolute accuracy or better. When the spatial arrangement of objects in the two models was 

compared, it was clear that much greater detail could be seen in the SfM model due to higher 

spatial resolution of the SfM surface model. Collection of LiDAR with this resolution would be 

extremely expensive and cost prohibitive for an area of similar size to our study site. The 

increased spatial resolution of the SfM modeling technology enhances the potential for the 

success of automated tree canopy identification algorithms described in chapter two and greatly 

increases the possibility for direct manual measurement of objects within the point cloud. 

Collecting data for SfM for a drone over an area the size of a county is of course not practical 

and therefore a manned platform would need to be used. Future work needs to be done to 

determine if the accuracy of such a collection would compare favorably to LiDAR.  

Given some of the inconsistencies in the analyses of spatial autocorrelation in the LiDAR 

to SfM comparison it may be prudent to explore this relationship further. Some factors affecting 

the spatial relationships might include the presence of relatively little topographic variation 

across the site and the presence of a large building and multiple small buildings. The presence of 

the large building may have something to do with the power law relationship seen in several of 

the variograms. 
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4.4.2 Accuracy Assessment of SfM Data Using Ground Control 

The in-situ ground elevation measurements of object compared favorably with the 

measurements extracted from the SfM point cloud. It should be noted that the percent errors for 

the solid objects was generally lower than the percent error for the trees. This is likely due to the 

difficulty of precisely identifying the tree tops, both on the ground and in the 3D model, but 

could also be due to movement of the tree by wind during aerial data collection. It is worth 

mentioning the ease of use of the web-based profiling tool for extracting measurements from the 

point cloud. Such a tool could allow for easy measurement of trees within an area of interest. A 

RMSE of 0.36 meters is slightly higher than the estimated vertical accuracy of 0.18 meters for 

the LiDAR data used in previous chapters, but it should be noted that individual trees could not 

be consistently identified in that dataset. Introduction of RTK ground control has the potential to 

significantly improve this number. 
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