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INTRODUCTION

Usual servo design procedure primarily emphasizes stability analysis and

then improves servo performances by use of compensation techniques. In this

study, the admissibility problem is considered first; this permits the servo

to be viewed as an approximate identity operator. Improvement of the approx-

imate identity is obtained using Newton (l) and Halley (2) processes. Transient

behavior is analyzed from the pole and zero aspect and a root-locus-like

technique enables prediction of performances of higher order systems generated

by a Newton process.

A parallel to King's (5) zero error coefficient theory in linear conti-

nuous system design can be constructed for linear sampled-data systems.

Therefore, the concept of approximate identity is readily extended to sampled-

data systems. Admissibility and performance improvement are then accomplished

in a similar manner to the continuous systems.

LINEAR SERVO DESIGN - APPROXIMATION TO THE IDENTITY

1. King's Criterion and an Algorithm*

The first problem in feedback control theory is to find a one-input,

one-output system such that for a given input, the output is asymptotically

equal to the input signal. Such a device is called a servo for the given

input. It should be stressed that a servo can be attained only for a specific

input or set of inputs. Not every linear feedback device possesses the servo

property! It is convenient to designate the test which distinguishes general

feedback devices (controllers) from servos by special nomenclature.

Definition: A feedback device is admissible into the servo class if it

satisfies King's criterion.

* A proof for this algorithm is given in appendix A.
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Kind's (3) criterion applies only to polynomial inputs and requires that

the first p successive error coefficients of the transfer function be zero.

Error coefficients of the transfer function of a feedback device are exhibited

in Appendix A. A simple admissibility algorithm can be found for this

criterion. If the transfer function of a feedback control system can be

written in the form

2 m
a + a_.s + a.s + ... + a_s

b +bn s + b.s + ... + b s
o 1 2 n

t(s) - 5 u;

where m and n are integers with m<n, then the admissibility algorithm states:

if T(s) is a stable transfer function, a servo will have no position, velocity,

acceleration and in general no up to (d/dt)P error if T(0) - 1 and \ = \
for k - 1, 2, 3, ... p with p^m.

For instance, if

a + bs

T(s) - 2" (2)

a + bs + cs

then the system having this transfer function is a position and velocity

servo because it has neither position nor velocity steady-state errors for

inputs of the type a +/3t. Furthermore, this transfer function will be called

an approximate identity operator. If the first p successive pairs of coeffi-

cients of s are equal, then the order of the approximate identity is p. It

will be convenient to denote an approximate identity of order p by I . A

k order approximate identity operator will be realized by a device having

a transfer function of the form

2 k-1
a + a, s + a.s + . . . + a, ,s

m/ N
~1 2 k-1 / v

T(s) -
2 kH k (3)

and noted as

a + a.s + as + ... + a, ,s + a,s

k '
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2. King's Criterion in Ordinary Servo Design.

Since the first goal is to design a stable device which will follow the

given input as closely as possible, King's concept will be applied systemat-

ically to ordinary servo design.

Notation « The Laplace transform of a time function x will be denoted as x.

(a) The Approximate Identity of First Order. It corresponds to a no-

position error servo. A typical realization as shown in Pig. 1 has the

control equation

y =(k/s) (x - y)

whose solution is y - k/(k + s) x (4)

- t -
The solution can be written symbolically, y = I , x.

(b) The Approximate Identity of Second Order. It corresponds to the

no-position and no-velocity error servo. The following typical realization

shows that a velocity servo can be achieved: (a) without integrator elements

contrary to accepted beliefs; (b) without unity in feedback link. It is an

undetermined coefficient method.

Consider the block diagram Fig. 2, the closed loop transfer function is

„/ n a/(l + bs)
T ( s > " 1 J (a/a))(l +/3s)(l + bs)

a + a/3 s

T(s) - r- (5)

1 +(a/ct)+ (j3+ b) s +/3bs

The coefficients of the feedback path transfer function are determined

so that the overall transfer function T(s) be a second order approximate

identity operator. This yields

a = 1 + (a/ a )
J
a = a/(a - l)

1 (6)
a/3=/3+ b IS - b/(e- 1)
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t& k/s

FIG#I First Order Approximate Identity
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l + bs

FIG.2 Second Order Approximate Identity
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Under the condition a> 1, we obtain the relation

ah
a + — r- s a

y = aT"""^ b? 2 * - t 5 (7)
a + rTT s + a"TT s

This second order system structure is particularly interesting as en analog

simulation can show. This system' s damping is controlled uniquely by the

coefficient a, while b controls the speed. A simulation of this second

order system where "a" was held constant and "b" varied gave the unit step

and unit velocity response curves shown in Fig. 3 and 4« These curves

exemplify the previous statement since the three transfer function outputs

have the same damping but different rise time.

(c) The Third Order Approximate Identity. It corresponds to a no

constant-position, no constant-velocity and no constant-acceleration errors

system. Its realization can be attained by an undetermined coefficient

process.

The block diagram will be of the form shown in Pig. 5« The reduced'-,

form of the closed loop transfer function is

O 2a + aps + ays
T ( s ) . . _

( 8 )

(1 + a/a ) + (b +/3)s + (/+ b/8)s + bys-'

Identification of parameters a , /3 »y yields

a = a/(a - l)

- b/(a - 1) (9)

y = b
2
/(a - l)

2

Thus, under the condition a>l, the system response is

y -
J

3
5c (10)

Kote that in this form, parameters a and b are still to be determined.
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Performance improvement constraints will force attention to the transient

response.

Using the admissibility criterion for servo design, it has been shown

how servos to unit step, unit velocity and unit acceleration inputs are

realized systematically and without integrators.

(d) Application of King's Criterion to the "Linear Adaptive" Servo

Structure. The "linear adaptive" servo structure of Pig. 6 has been established

by Campbell (4) at Cornell Aeronautical laboratories. Later, Carlson (5)

used it as a basic extension of approximate identities to the realization of

a model transfer function, M(s). A is the controlled element which must

follow the behavior of the model M, through the help of the feedback element

B which is more or less empirically adjusted by the usual procedure. The

control equation of the system is

y - A x - B(y - MSE) (ll)

The system response is

/-, ™\ A - [l + EH
y - 0- + ai

> ttab x [1T1 Mac (12)

This "adaptive" control system structure corresponds to a canonical feedback

system to which a filtering by the transfer function (l + BM) has been added;

on the other hand one can adopt the viewpoint that the goal is to make

L +
- ^ ^ an approximate identity and therefore the structure should

be called a controller model.

Let us consider the following problem: Suppose a given system has the

overall transfer function of an approximate identity of the first order; it

is desired to realize a servo to a velocity signal. This problem can be solved

by the "linear adaptive" structure: the analyzed system is the controlled

element; the model transfer function is 1; the goal is servo design;
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1 +£s+ys2

s a

I* bs

y »9

FIG- 5 Third Order Approximate Identity

M modal

FIG-6 Canonical Form of Feedback Controller

('Linear Adaptive' Servo)



- 10 -

What should be the form of the feedback transfer function B ? The controlled

element has the form

A . 1/(1 + as)

The transfer function of the"adaptive" structure

reduced to the form

y =[(1 + B)/(l + B+ as)] x (H)

where by using an elementary integrator in feedback: B - Qt/s, a second

order approximate identity

y «[(a+ s)/(a+ s + as
2
)] x - l

2
x (15)

is obtained

Figure 7 summarizes the use of the 'linear adaptive" servo structure for

increasing the order of an approximate identity. Generalization of this

property is going to be made.

Consider a system with an approximate identity of (n - l)th order

A(s) = ~ with a - 1 (16)N ' n , oZk
k=0

It will be shown that an integrator in the feedback loop of the adaptive

servo structure whose solution is

n-1 n

V k V k

*-<*» —B—H?

—

:
(l7)

1 + B Z *** L ^ s

k=0 k=0
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X 1 V
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FIG-7 First Iterate of Initial Approximate Identity
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th
generates the n order approximate identity

n - 1 .

k n
sa+

Y,
(ak-i

+ °
k>

$ +a
»-1

tri 5 m)
k n n+1s+a.s+as

k
_

1
_ « n-1 n

a+ I (\.i +

if B = a/s.

So the "linear adaptive" servo structure gives a systematic solution to the

problem of generating the next order approximate identity; the only required

element for this process is an integrator. Note that the coefficient of the

integrator term is an arbitrary term which can be used for adjusting the

stability of the system.

In the previous pages, it has been shown how flexible servo design
,

procedure can be by use of King's criterion. The concept of approximate

identity operator was introduced clearly and this concept will be used as a

fundamental tool in a future study of multivariable servos.

However, before going any further, a general- physical realization of the

approximate identity is going to be derived which employs iterative processes

for approximate identity operators.

PERFORMANCE IMPROVEMENT

1. Existence of an Iterative Process.

The first system considered is the common integrator with unity feedback

servo of Pig. 8; it is known that it will perform an approximate identity of

the first order because

y - [l/(l + r a)] x (19)

For simplicity of notation, normalized variables will be used; any change
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J
Vl/TS

FIG.8 First Order Approximate Identity

0.5
l + S

yS)
2

y *
1 + S

FIG.9 First Improvement of Initial Approximate Identity

2+2S ./
2 +2S+ S2 1/^

[ 9 2 + 2S y fcy— ^
2 +2S + S2

8 + l6S+l2S2+4S3

8+l6S + l2S2+4S3+S4

R6»I0 Second Improvement of Initial Approximate Identity

which is Integrator Free
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can be initiated by replacing s by ts. The first order system is

y - [l/(l + s)] x - T
x
X (20)

Now, a second order approximate identity is desired. To realize it, use is

made of L directly available as a component, and the block diagram Fig. 9

gives the next higher order approximate identity with the following control

equation

2 + 2s - , .

7 = p x (21)
2 + 2s + s

Note that this second order system has a damping coefficient l/V^» the most

interesting in physical systems, and furthermore, that replacing s by T s

does not affect the damping factor.

Proceeding in the same fashion, the next higher order system is generated as

shown by the block diagram Pig. 10, which gives

8 + 16s + 12s
2
+ 4s^ - ,

N

y = 2— 5 1 x ( 22 )

8 + 16s + 12s + 4s-* + s
4

Note that this process generates systems of order 2
n

, n being the number of

iterations applied.

A general formulation of the process can now be stated. For sake of convenience,
v..

the notation is changed as follows

f - -
y= I

1
x to y=A

Q
X

y = i
n+1

x to y = A
n
x

The starting point is A
q

= l/(l + s), the simplest approximate identity.

Then

*1 - 2 A
q
/(1 + A

Q

2
) (23)

a
2

= 2 yd + Al
2

)

k*L ' 2 V* 1 + A
n
2
) (24)
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Assuming that A generates
|

, an induction proof that A .. generates
A 2

2

/ .\, establishes the generality of the process. A is written

2 (2n-l)
a + a., s + a.s +...+a/^n . N s

x' '
,,

a „-2 I 2 (2
n-l) N / 2 c\

a
o

a
l

S +a
2
S + **• + a

(2n-l)
+a2n s

A
n+1 - 2 An/l + A

n
2

) (26)

= 2 H/P 2 N3)

1 +(lI
2
/D

2
)

=

N
2
+ D

2

on ?n
D - N + a2n s^ = N + Z, z = a

2ll
s^

A _ 2N (N + Z)
=

2K
2

+ 2NZ ,
2?

v

n+1=
(N + Z)

2
+ N

2
2N

2
+ 2NZ + Z

2

The highest order term in the numerator is given by 2NZ and is of order

(2 -l) +2=2 -1. The highest order term in the denominator is

Z
2

. 2
n
+ 2

n
. 2

n+1
and

V1
. d

(s) 7VV S) (2a)

Note that the general process A . = -,)?
( k -.y. \ is the inverse of the

Newton approximation to^/l.

(a) Newton Process. What is meant by Newton approximation to^/1 ?

o
Consider the function f(x) = x - 1, if x is a first estimate to the root,

a better approximation x. is obtained by applying the Newton process,

x
2 -l

*! - \ - —
o

(* A 0) . (29)
2x

o

x
x

= (1/2) (x
q

+ 1/x
q ) (30)

Note also that if x is an estimate tov l, l/x is an equally accurate

estimate provided that the error is small.
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If instead of number elements operators are considered and A is an operator

estimate to -Jl, then l/A , = (l/2) (A + l/A ) is a more accurate one.

Since, as mentioned earlier, A , and l/A .. are equally accurate estimates,

the iteration formula for an improved operator to «/l and "by the same way to

1 is written

2A /(l + A
2
) (3Dn+1 n' * n

The latter form is preferable because physical transfer functions have the

degree of the numerator smaller than the degree of the denominator.

In other words, if an approximate identity of the n order is used in

the previous process, a higher order approximate identity is obtained. This

is realized physically using the servo structure shown in Fig. 11 where the

forward transfer function is 2A , the feedback element being (l/2)A .

It is interesting to note that the Newton process applied to the approx-

imate identity operator generates approximate identities of order 2
n

, where

n is the number of iterations of the process. The next questions which arise

are, "Would there exist a process similar to Newton's, but which would increase

more rapidly the order of the approximate identity and what would its physical

counterpart be in terms of servo structure ?'* These questions are answered

by xhe Halley process for */l which is realized by the 'linear adaptive*' servo

structure.

(b) The Halley Process. A third order process to evaluate J\ is the

Halley improvement

x, = x
1 o

*o +5

5x
o

2
+ 1

(32)
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^® >

FIG»II Newton Process for Approximote Identity

Improvement

FIG* 12 Generalized Controller Canonical Form
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In the operator domain, a given approximate identity A , subjected to the

Halley process yields an approximate identity of higher order. Its physical

counterpart is the "linear adaptive" servo as shown by the block diagram in

Pig. 12. The general form of controller's transfer function is

y = < c + M
> it-ab 5 (55)

which by identifying with the Halley process takes the canonical form shown

- 2 £ —
in Fig. 15. Writing the Halley process as y = (3 + A ) —s x enables

1 + 5A

easy identification of the different elements of the "linear adaptive"

structure. The structure thus obtained reveals an entirely different meaning

to the "linear adaptive" servo.

Given a system A which is a servo to a unit step, the structure defined

in Pig. 15 is a servo to a unit step, to a unit ramp and unit acceleration

inputs. Apply the Halley process to the first order system A = l/(l + s),

*(e) - ^M^ A
1 + 3A

T(s) = ^ + 6s + ^ (34)

4 + 6s + 3s + s

which is a third order approximate identity practically realized by an

"adaptive" structure shown in Pig. 14. Thus, a high performance servo is

obtained easily, from the simplest approximate identity.

The use of Halley process is rather interesting in that it opens wide

the field of 'linear adaptivd' servo since the usual procedure in this field

was a cut and try method, where given a system, for a desired model to be

followed, the feedback loop was adjusted more or less empirically. If improved

performances to polynomial type inputs are wanted, then well-determined

structures exist. However, if the idea that approximating processes to */l
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Fi 6 • 13 Halley Process for Approximate Identity Improvement

FIG* 14 Example of an Approximate Identity Improvement

Using Halley Process
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generate approximate identities in the operator domain, then higher order

processes need to be investigated.

(c) General Approximate Identity Improvement Process. The Newton and

the Halley processes possess the property that the numerator and denominator

polynomials have coefficients which are respectively the odd and even

2
coefficients of the binomial expansion of (l + A) for Newton process and of

(1 + A) for Halley 1 s. This leads to the theorem: Given an approximate

P
k

(s) m
identity of the form A, =

p
^ r \ with x, =a, s and deg P = m - 1

then

n-1

A, - K ^ Pv 1
(s)

r=0,2,4

with deg x, -. = n n, deg P. , = m n - 1

Indeed this theorem gives completion to the previous processes.

Proof:

\+l
-

n

n-1 „ n-1

fekl^
( 36 )

r=0,2,4 r=0,2,4

Expanding (P+x) yields

g
1

(

n)pn-r J (

r
} p

r-m
x
m

'£'

m r^i^ a=o
(37)

k+1 n r .

m

r=0,2,4 m=0
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£1.3.5 m-0
(38)Ti+l n r

r-> /ns r-» /rs _n-n m

I y I y ? x

r=0,2,4 m=0

Commuting summation according to the schematic of Pig. 15 yields

n-1 n-1

. m=0 odd r=m
(39)k+1 n n

v p
n-n

x
m v (

R
) (

r
)/ ) ^r' vm'

m^D even r=m

Using the relation

(

n
)(
r
) - (

n
) (

n_m
)v r/vmy xmy ^r-m' (40)

odd r = m means r = 1,1,5,3,5,5,

even r = m means r = 0,2,2,4,4,6,6

when m = 0,1,2,3,4,5,6

The next form is obtained

n-1 n-1

Y pn-m m (

n
) V C'™)

j>
msO oad r=m

k+1
=

n n-1

£ *™ , Q £ (-)
m=0 even r=m

(41)

Considering the relations

a^r1
= y

1

(
n-x

) = 2*-1
. (42)

and

e?> + <£i> - o (43)
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yields
n-1

k-0,1,2,3

(
n-l

}

k-0,2,4 k=0

(44)

n-1

k^.,3,5
© "

2
n-1

and also

k=0,2,4

n-1

(45)

(46)

The two different cases m odd and m even are denoted by m and m , for the case
o e

of even n.

n-1

<r;o) = (^ 2<
n-v1Vi

( ) -<
/

x r-m' ^
odd r=m

r-m nr
^T*] o oodd r=m

o

(47)

©
n-1

odd r=(m +1)x e '

(

n"m
e) - (

n
) 2^me-l)

n-1

(

n
) y (

n-m
) j

even r=m

r) Vm' / 'r-m • *m
o t—

i

t , \ o o
even r=(,m +1;

(

n-m
o) = (

n
) 2

(n-D°-1 )+ 1

(48)

n
n

) V >ns (n-me-l)
x r-m y vm y

e *—

•

e eeven r=m
e

The upper form of equation (47) is equal to the upper form of equation (48)

and the lower form of equation (47) is equal to the lower form of equation (48)

This proves that the relation (41) can be written as follows
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n-1

xB l?-
m

Li

\+i- a (49)

B P x + x
m=»0

where B represents one of the coefficients evaluated here above depending

on the nature of m and n. The same proof can be extended to odd n. Therefore,

the binomial expansion generates iterative process for realizing approximate

identity operators.

(d) Interrelationship of Kewton and Halley Processes. If B (s) is the

transfer function of a n order approximate identity derived by iteratives of

Kewton and Ealley processes from an initial A(s), then B (s) is a ratio of

even part to odd part of (l + A(s) ) . This can be formulated succinctly

as

1 - B (s)
n N '

1 + 3 (s)

1 - A(s)

,1 + A(s)

which is a Newton process for even n and a Halley process for odd n. A

(50)

formula for adjacent B (s) shows the relationship of Newton and Halley

processes; such is derived from

1 + B
n+1U)

" 1 + A(s) 1 + B
n
(s) lW

yielding

A(s) + B (s)

W'J-rnro^py C52)

This form is a special case of Richards' equation for a positive real function.

The improvement structure shown in Pig. 16 gives the physical counterpart of

this result.

Because of its simplicity and generality, the structure in Pig. 16 is a
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m=

FIG* 15 Summation Commuting Diagram

FIG* 16 Approximate Identity Improvement Canonical

Form for any Newton Process Iterate

n*i , B(s) = A (s)
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canonical form for approximate identity improvement. It is the reality

behind the term, "linear adaptive servo". Moreover, the accepted "linear

adaptive servo" is a model for a controller. One can only conclude that

"linear adaptive servo" is an imprecise misnomer and recommend that the

term be dropped.

TRANSIENT EEUAVIOB.

It has been shown in the previous sections how synthesis of servos is

accomplished with the concept of approximate identity. Newton processes and

their physical realization as servo structures have been used to this end.

However, this synthesis technique is based on steady-state behavior;

nothing is known about the transient performances of such developed systems.

The next step will be to analyze the transient behavior of certain approximate

identities. It is rather difficult to derive general rules about the effect

of Newton or Halley processes on performance - this limitation arises from

the non-linear nature of the transformation and transient performance has to

be investigated for specific cases. Position of the poles and zeros of a

system determines transient behavior. A graphical method analogous to Evans'

root-locus technique (6) is developed to find the poles and zeros of a system

given the poles and zeros of the original system. Attention is called to the

fact that the term, "root-locus", is used, but this locus differs from the

root-locus ordinarily encountered in servo design and the rules of construction

are broadly similar though different in detail.

1. Properties of ITewton Process.

Limited and relative stability criteria are easily effected by South'

s

array which is Euclid's algorithm for finding highest common factors.
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Fundamentally, stability analysis is of secondary importance in our study

since it will be shown that given an initially stable system, any other system

generated from that initial system is stable. The problem is solved by

proving that the transformation 0.5 A + (l/A) yields a positive real function

if A is a positive real function. (The transformation 0.5 (A+A ) is known

as the Joukowski transformation in airfoil theory). Analysis of mapping

properties of f(z) - l/2 (Z + (l/z) ) when

Z = p e^ = x + j y (53)

X + jY - 1/2 (pe^ + (l/p ) a"**) = f(Z)

gives the equation of a hyperbola

2 2

-£ - —
2

- 1 (54)
cos <p sin

<f>

Figure 17 shows the results of the mapping of the (x, y) plane into the

(X, Y) plane through the Newton process. It is readily seen that the right

half plane is mapped onto itself so the Newton process yields a positive real

function. Knowing that a positive real function of a positive real function

is a positive real function, Newton processes, A , = 0.5 A + (l/A ) ,

generate positive real functions if the initial one was such. Since a positive

real function has neither pole nor zero in the right half plane, all transfer

functions generated are stable. The same statement applies to the trans-

formation of A into B defined by
n J

1 - B
n

1 + B
n

1 - A
n

n = 2,3,4,
.1 + A.

and the proof is by simple conformal mapping arguments. Of course, the case

n » 2 is the Newton process and the case n = 3 is the Halley process.

Distribution of the poles and zeros of transfer functions generated by

Newton processes is investigated next.
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FIG. 17 Mapping of o.5(z + i/z)
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2. Distribution of Poles and Zeros.

The Newton process is defined as follows: given A , A . = 2A /(l+A )
o n+1 n'

x n '

where A„ is an approximate identity operator. A can be written as

N
n
(s)/D

n
(s) where K (s) and D (s) are polynomial functions of s. The Newton

process operation then gives

2N D
A
n+1- 2

n
2 (55)n+

N + D
n n

From this expression of A . it is seen that the zeros of the generated

system are the same as the poles and zeros of the initial system. The poles

o
of A , are the solution of the equation l+A (s) = or

A
a
(s) - i jl (56)

which is satisfied if the following conditions are met

|A
a
(s)|- 1 (57)

Arg A
n
(s) - (2k + 1) tt/2 (58)

where k « 0,1,2,3, all integers.

Let us consider A (s) in a general form and not assume as before, that it is

an approximate identity, it is written as

K (s+z
x ) (s+z

2
) ... (s+z

n)

A
n
(s

>
=

(s+Pl ) (s+p
2

) ... (s+pn)
^9)

where K is an undetermined constant. The previous equations are then

written

ft
1

lu + ^l
KH- K r~z ;r

al (60)

ft l

Cs + p )|

3-1 J

Arg [A (s)] - 2^ Arg (s+z ) - > Arg (s+p.) - (2k+l) ^/2
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2
These two relations lead to a root-locus and the zeros of 1 + A are

obtained by finding, by trial and error, the points satisfying K = a on the

locus, where a is the value of the constant corresponding to the original
-

servo system.

liules for the construction of the loci of the roots of the system of

equations (60) and (6l) where K is a parameter, are derived.

(a) The problem is to find the roots of

A
n
(s) = + j 1

(62)

U (s) = - j 1

A (s) - - o 1 or

This statement of the problem shows that the loci are symmetrical with respect

to the real axis; so it will be sufficient to determine only the upper-half

of the loci; the other part is deduced by symmetry.

(b) The root loci start at the poles of A(s) given by

ft
|(s+z

i )|

The starting points of the loci are at K =

(c) The end points of the root loci corresponding to K =00 are the

zeros of A (s)

.

nx '

(d) The number of loci is equal to the number of poles of A is) having

previously made the restriction that deg of numerator < deg of denominator.

(e) For large values of s, the root loci are asymptotic to straight

lines. Determination of these asymptotes proceeds as follows:

A (s) has the form
n

m-1 m\/ m-x m\ .,(a + a,s + ... + a n s +as)K
A (s) - -2—1 2=1 m-1 (64)nN ' m-1 m n x '

a +a,s + . .. + a .s +a s +... + S
o i m-1 m
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which is an (m+l) order approximate identity. Introducing the parameter

K for the construction of the root loci, equation (64) is written

K
A (a) = (65)n ' m n > ''

a + a, s + . . . + a s + . . . + s
o 1 m

ma + a., s + . . . + a sOl El

Performing the synthetic division, the following form is obtained for the

2
solution of 1 + A =0

n
a

(l/a
m
)s
n"m

+ (a
n_1

- -Si.) (i/a ) s^" 1
) + ... . Z e^^2

(66)
m

Since determination of asymptotes is sought, only the highest powers of s

are considered and the equation of the asymptotes is given as

°™ (Vr ViAJ •Cn
"""1)

- *• •
3(a*1) w/2

(«0

Let us call a - m = H the difference in degree between denominator and

numerator, or the difference between the number of poles and zeros N - P-Z.

Equation (67) is then written

Define b » a ./a
m m-1' m

s [l (a
n-1

- b
m
)/s] V* = K'

1^ ji**)*/**
{6$)

The factor £l + (a
n_1

- b
m
)/s

J
' is expanded in infinite series and if

terms higher than the second order are neglected, the following form

3
[
1 + <an-l " \W*

] " K '
lA eJ(2k+l) V2N

(70)

is obtained.

Equation (70) in the s-plane is recognized as the equation of a straight line

<T* jw + (a
n_1

- b
m
)/N = K'

1^ eJ (2k+1 ^ V» (71)
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Identification of real and imaginary parts yields the following result

tan
(2k+l) 7T

2H
cr+ (a . - b )/NN n-1 m"

Equation (72) has the form

w = m(o~ -o~
)

an equation of a straight line, where m is the slope and o~ the point of

intersection with the real axis.

Recalling from the theory of equations the following results

a
n-1 = ^ poles of A

n( S )

(72)

(73)

/ zeros of A (s)
(74)

A (75)

b a ,/am m-1' m

it can be stated that the angles of the asymptotes with the real axis are

(2k+l) W /2H and their intersection with the real axis is

o~, - - / poles of A (s) -) zeros of A (s)

(f) Breakaway pointst these should occur only when the initial system

has multiple poles, and the root loci must approach and leave breakaway

point on the real axis at an angle of 90 deg/n apart, where n is the number

of root loci approaching and leaving the point.

(g) Angles of departure from poles and angles of arrival at zeros of

the root loci. These angles are readily obtained from the fact that

2^Arg (s+z.) - 2_Ar2 ( S+P-) ( 2k+1 ) ""V2 (76)

To get the poles of the transformed servo, the points satisfying K=a

corresponding to A (s) being an approximate identity, have to be found. This

is obtained, by graphical trial and error, by finding the points s for which

the ratio of the magnitude of the vectors respectively to the poles and zeros

is equal to a.

The spirule is of great help in the graphical detenaination of the
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root-locus; however, it should be remembered that in this case, a point to be

part of the locus should have an argument of (2k+l) 7r/2, which will be read

on the spirule either rr/2 or Jtt/2.

Axl example is now given. Suppose a system transfer function is given

to be A,(s) = _, an approximate identity of the second order. Use of

the Newton process generates the higher order approximate identity.

A
2
(s) -

2 + 8s + 10s' + *s
l , (77)

2 + 8s + 10s + 4sP + s*

Transient behavior of this system is determined by the position of its poles

and zeros. It is known that its zeros are the poles and zeros of A,(s) so

Z, - - l/2 is a zero of order 1 and Z. - 1 is a zero of order 2. The poles

are obtained by constructing the root-locus for ./L(s). The following results

concerning the loci are obtained using previously established rules:

The starting points of the loci are at s = - 1, double pole of A_(s); one

of the loci ends at s - l/2, the other terminates at infinity; the angles

of departure at the breakaway point s = - 1 are 45 and 155 J the angle of

the asymptotes is (2k+l) tt/2 and the intersection with the real axis is

o-
1

- - (2 - 1/2) . - 1.5

The upper part of the root-locus is then easily drawn with the spirule as

the rectangular strophoid in Jig. 18. The points satisfying K » 2 are found

by trial and error; these points and their complex conjugates are the poles

of A (s) which are

- 0.55 - j 0.1

- 1.45 - j 2.1

Complete knowledge of the system with transfer function A (s) is obtained

and its response to a unit step is shown in Pig. 19. This example shows the

excellent transient behavior of a fourth order system generated by a Newton
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3
process which is without steady- state error up to (-rr) and is very rapidly

obtained from the pole and zero distribution. Note that the simplicity of

the method comes partly from the fact that to determine the poles of a 2n

order system, a root locus for a n order system only needs to be constructed.

Another example with particularly interesting properties is now given.

A first order system A - a/(a+s) with a pole at - a, transforms into

2a (a+s^
\ - 2 2

whicil nas a P^r of complex poles at s = - a i j a. It is
(s+a) + a

noted that the real negative part of the poles is unchanged. Prom the root-

locus technique developed, it is predictable that systems obtained by Newton

processes from initial systems of the form of A and A^ will have all their
o 1

poles and zeros with real parts unchanged. This is proved by noticing that

for such systems, the asymptote and the root locus are the same. Such a

configuration though apparently unrealistic presents an ideal system with

all time-constants equal. One might note too that applying the Newton process

several times leads to oscillatory type of systems; the poles being pushed

further from the real axis (see Fig. 20) toward the j-axis. This implies

that the Newton process should be used once.

J. Comparison of Newton Processes and other Optimization Criteria

Approximate identity performance improvement generated by Newton

process and analysis of the transient behavior by a root-locus technique

are the basis for the servo synthesis procedure given in this report.

Although, the distribution of the poles and zeros of the system is known and

can be accepted as a performance criterion, a comparison test is made with

other optimization criteria. Schultz and Rideout (7) give a comparative

analysis of optimization criteria justifying their existence often-times

on their ease of application and on the fact that each is a metric; under this
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last condition, performance can be measured by a single number, a rather

presumptuous situation. All these accepted criteria use an integral as

measure of system error and the system which causes the integral to be a

minimum ia the best system. The actual error of the system is defined as

the difference between the input and output of the system,

e(t) - x(t) - y(t) (78)

The metric proposed by Hall (8) is defined by

roo ?
E - / e"(t) dt (79)

'o

the integral of square of error (I S E). Another measure of error is the

integral of error

E - / e(t) dt (80)
•'o

Kims (9) criticizes the use of this control area criterion on the basis that

in the case of an oscillatory response, the control area will have both

positive and negative portions. The negative area, therefore, subtracts from

the final value of the integral to yield a false value of the over-all error.

Kims then proposed a "weighted control area" as shown by

.CO

E =
J

t e(t) dt (81)

Another criterion which created a great deal of interest is the integral of

time multiplied by absolute error denoted I T A E; it was introduced by Graham

and Lathrop (10) and is defined as

.00

*o

As an example of testing by these accepted criteria, consider an

/.CO

J
t |e(t)| dt (82)

approximate identity of the fourth order or in other words a servo system

without error of the order (&£} . Its transfer function is given in the
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general form

T(s)

2 3
a +a,s + a„s + a, s
o Z± 2 2

2 3 4
a + a. s + a s + a, s + a. s
o ^L 2 3 4

(83)

The input signal considered is a unit step x(s) = l/s. Under these assumptions

the Laplace transform of the error function is given by

5(s)

a. s'

,3
(84)

a + a., s + a
?

s
3

or in a general form

5(s) .
- s

5/D(s) (85)

Let us analyze this form and try to draw some conclusions about performance

criteria. First, consider the limit of the error as s approaches zero.

v s
3

lim ? -v

s-oO ^ S>

.00

lim
s->

/
€"8t e(t) dt

/e(t) dt

(86)

(87)

Consider equation (85) and take the derivative with respect to s and then

pass to the limit as s approaches zero to obtain

lim —
_ ds

8->

s
5

Lis
lim "3—

s->0
ds f>€

-St
e(t) dt

00

t e(t) dt =

(88)

(89)

The same operation of differentiation can be reapplied and the following result

is obtained
CD

J t
2

e(t) dt = (90)

th
It is readily seen that in general for an n order approximate identity, the

(n-l) first moments of the error function are null. So the "deviation area",

and the "weighted control area" criteria fail because no matter what the coeffi-

cients of the transfer function are, equations (87) and (89) are satisfied.
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Consider the integral square error criterion

.00

E - / e(t)
2

dt (91)

o

The Laplace transform of e(t) is e(s) and U3ing Parseval's theorem equation

(91) is written

,00
-

J •(») •(-») ds
-

(92)E
-00

e(s) being a rational form, e(s) = c(s)/d(s)

• r
-co

c(-s) c(s)

d(-s) d(s)
ds (95)

Integrals of the form of equation (93) have been computed (ll) and results are

given as function of the coefficients of c and d. Then E can be minimized by

finding the values of c. and d. such that r^ = and t-[ =0.

Now let us consider the fourth order servo introduced at the beginning

of this section; the integral square error criterion yields the minimization

of

\ W a
2 - a

o
a
5

}

2 (a
x

a
2

a
5

- a
1 ^ -

3E

2x
a a* )

3

(94)

Minimum E is obtained by setting ^ = 0. This leads to the following

conditions

2a
l

a
3
a
4

a
l

a
2 " a

o
a
4

- 2a
l

a
4

(2a
o &1 a

2

(95)

a^ a.., + a a. a.
o x 4

- a
2 2 2 2n

a
3

" *1 " a
2

} = °

2a
1

a
2
(a

1
a
2

- 2a
Q

a,) + 2a
Q

2
a^

2
-
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This system yields the following results
f

a
o

a
3

" X

(96)

a
1

a
2

= 1

If normalized values are considered, the transfer function of the system

under study takes the form

T(s) -
X + s * s' +

^ r (97)
1 + s + s + s + a. s

4
A simple stability analysis by the Itouth array shows that whatever non-

zero value a. takes, the system with the transfer function T(s) (97) is

unstable. It is evident that the usual optimization criteria, deviation

area, weighted control area, integral square error, do not lead to consistent

parameter identification and the presumed best system's existence is doubtful.

This points out the advantage of this report method which yields a "good"

system, the stability of which is known and can be controlled by a root-locus

technique. Linear continuous servo synthesis is realized by block diagram

manipulation, improvement of a known system is made by the Newton process;

stability and performance measures are controlled by a root-locus technique;

this method leads to an almost pure algebraic realization of a good system.

SAMPLED-MTA SEiiVOS

An admissibility algorithm will be derived for sampled-data servos.

The following notation will be adopted: if f(t) is a function of time, its

Laplace transform is ?(s) and its z-transform is Z f f(s)j = f(z) where

—Ts
z - e and T is the sampling period.

The final value theorem in the z-transform domain is

lim f = lim (l - z) f(z)
n-OQ) 11

(l-z)-i>0
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provided the radius of convergence is 1 . The transfer function of the

sampled-data feedback system is T(z) = -^pr . As for continuous servos,

a sampled-data system is a servo for polynomial inputs if ultimately the

output of the system follows its input. Before presenting a general theory

of approximate sampled-data identities, let us approach sampled-data servos

through a counterexample.

Given a linear continuous servo and assume that the input signal is

sampled. It is then necessary to add to the forward link a hold filter which

will keep the signal constant between samples; such a system is given in

Pig. 21; note that originally (see Pig. 9) this servo could follow unit step

and ramp inputs. The sampled output signal is

(1 - e"
ia

) Z (-7~t)
zy = J ^ Zx (98)

1 + (1 - e~
1S

) Z (-rrbYo)

Calculation of system output yields

zy- 2z(
^

- e
"T)

-
T

2z2(e
2

T

\(
2T)

oT
~ z* (99)

1 - z(Te - 1 + 3e ) + z (Te + 2e - e )

Applying the final-value theorem for unit step and unit velocity inputs shows

that the system is a servo for a unit step but that there exists a velocity-

error coefficient which is a function of the sampling interval. So, the

continuous servo structure does not remain valid when the transition to

sampled-data systems is made. The time delay introduced by the sampler and

holding filter seem to be the cause of this discrepancy.

Thus, no reliable theory can be built for sampled-data systems starting

from an already existing theory for continuous systems. A completely inde-

pendent theory of sampled-data approximate identities shall be established.
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1. Sampled-Data Approximate Identities.

A sampled-data system has a transfer function of the form T(z) » w '

y .

Only polynomial inputs: unit step, velocity, acceleration, etc., will be

considered. For a unit step input, the final value of the error is

lim (1-z)
z-ol

1

1-z (t) 1-z
D(l) - N(l)

D(l)
(100)

For the sampled-data system to be a servo for a unit step, the relation

should be

B(l) - N(l) with D(l) ^
(10i)

or in other words

£ «k - Y \ (102)

k=o k=o

d, and n, are respectively the coefficients of the denominator and numerator

polynomials of T(z).

This servo should eventually have no error for a unit velocity input.

Final value of the error to a velocity input is

Tz IT(z) Tz
lim (1 - z)

z-o 1 (1-z)
2

D(a) (1-z)
2

(103)

D(_z) - K(z)
E - lim —

~

-*—
', an indefinite form, the limit of which is obtained by

using L 1 Hospital's rule

z=l
E - H'(z) - D'(z)

A no-velocity error system is obtained if

N'(l) - D'(l)

or

n

\ \

(104)

(105)

(106)
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In the same manner, it can be shown that a sampled-data "system would have

no error of order (t+) if

\ I
k=o

«k

Z *»* ° I- kd
k

k**o k=o
(107)

1 k(k-l) ... (k-p+l) r^ - ) k(k-l) ... (k-p+l) o^

k=o k=o

The following induction proof gives a justification to the previous

statement and yields an algorithm similar to the linear continuous case.

Assume that a given sampled-data feedback device has zero error for polynomial

inputs of the (tt) order, what is the condition that the system follows a

unit (4r)
P type of input signal ? The given assumptions can be written as

lA
k
'(l) - !T

k
)(l) for any k such that 0<k<p-l.

The error is written as

Here, use is made of Criswell's (12) result that

D-l

Ki) ^ A (a)

where

sP ; " (p^iyr tjtzTp

V z) (1" z) fe
(z A

P-i
} + (p-1} z Vi

Pinal value of the error is

mP-1
lim (l-z) E(z)
z->1

(p-iyr
lim
z-t> 1

A(*)
I)(z) -N(z) » V 8 ^ ,..-*

i( z ) lrf7p-J
(111)

(108)

(109)

(no)
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lim (l-z) E(z)
z-o 1

lim
z-> 1

rpP-1 lim

z A (z)
P

lim
z->

D(z)
T
y

1
D(z) (l-1)P

D(z) - N(z)

(112)

(113)
- 3)(z) (l-z)P

z-> 1 * ' > '

The first limit follows from a result of Criswell (12) that

A
p
(l) - (p-l)l P> 2.

To obtain the second limit, L'Hospital's rule should be applied p times

because of the hypothesis that IT
k
'(l) = l^

k
'(l) for k = p-1, then the limit

of error is

(114)E - ^ D(p) (z) - N(p )( Z

_[(l-z)P D(z)]
J Z=l

Applying Leibniz 1 rule on differentiation of products to the denominator, the

final answer

jP-i D(p) q) - ^d)
2

D(iy (115)

is obtained.

A zero error system is then obtained if

D(p) (l) „ N(p) (l) (116)

Therefore, an approximate identity operator of order (p+l) for sampled-data

servos is realized by a system which has a transfer function T(z) » rr?

such that

D(l) = N(l)

ip(l) (l) = N^U) (117)

i(p) (i) - n(p>(i)

2. Approximate Identity and Sampled-Data Design.

A practical example making use of previous principles, showing their

method of application and possible limitations, is now given. Consider the
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system in Pig. 22 where the forward path is composed of a sampler, a hold

filter with transfer function (l-e~ )/s and a plant with transfer function

k/s(s+a ); the feedback link consists of a compensator with transfer function

l/(l+ rs). This system is analysed and use is made of the previous results

to determine the coefficients so that a second order approximate identity is

obtained.

The transfer function of the forward link of this sampled-data feedback

system is g(s) and its feedback transfer function is h(s). The output signal,

sampled at the same rate as the input, has the form

7z s L ,Zy " 1 + Z(g E)
Zx

In this case

Zg
K (l-e-

Ta
)

s (s+a )

z(g h) - Z
K (l-e-

Ts
)

s (s+a )(1+ts)

Calculation of the z-transforms of these expressions yields

where

zy

L

M

S

E

P

G

H

(Lz + Hz
2
+ Hz? )(l - TC K

E + Pz + Gz
2
+ Hz5

Zx

Ojp _ 1 + e
-aT

1 - e

-(a+r)T
e v

A + 1

(1+aT) + e"
T
(l-aT) - e

"(a+r)T

(1+offi) - e
-TT

_ /, -aT -rT>.
B -(1+e +e )

n -(a+r)T -off -tT
C + e x ' +e +e

D - e
-(a+r) T

(118)

(119)

(120)

(121)

(122)

(125)
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nd
FIG»22 Candidate for 2 Order Approximate Identity
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+ d - 2c

and
A - K [o - b(l-ra)J

B - K ((1-Ta)[a+ b(e
_aT

+ e"
1
^)]

C = K (c - 2d (ra-1) [b e
^a+rK a(e"

aT
+ e"^)]

)

2 - K [d + (1-ra) a e
- (a+T>T

]

Finally, a, b, c, d have been defined for convenience of calculations

fa. - (1 + Ta- r1 a
2

)

b . (1 -r 2 a 2
)

c = (1 - t4 a
2

)

, / 4 2 -aT -tTsd=(r rae - e )

(124)

(125)

No matter what the coefficients are, a servo for a unit step is obtained

since K(l) - D(l)« For this feedback device to follow a unit ramp, identifi-

cation of the parameters has to be made so that N'(l) = D'(l). This yields

the following relation between a ,Tand 1L

K(ra- 1) (ra) 2
= l (126)

The product (to) is to be determined as function of K; in turn determination

of K can be made from a stability analysis of the system. An approximate

solution of equation (126) is

Tai K4 + 12K^ + 48K
2

+ 75K + 56

K
4 + UK5 + 39K

2
+ 51K + 16

(127)

This sampled-data servo admissibility problem has been solved by

undetermined coefficients. It should be noted that the algebraic calculations

are complex and that nothing is inferred about transient performance which

will be considered in the next two sections.
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3. Equivalence of Approximate Identity and Zero Error Coefficients.

In the continuous case, the approximate identity was derived from King's

zero error coefficient criterion whose proof is given in appendix A. For

sampled-data servos, the approximate identity has been established; and

similarly to the continuous case a zero error ooefficient theory will be

derived which will facilitate the performance improvement calculations.

Instead of the variable z, (l-z) will be used to establish the zero error

coefficient criterion for sampled-data transfer functions.

Consider the transfer function

a + a, (l-z) + a_(l-z) + ... + a (l-z)

T(l-z) = -* Ji-J 2i_J- i L (128 )

b + K(l-z) + b (l-z) + ... + b (l-z)
o I s

' 2
X

' n v
'

It has been proved that given a sampled-data system with a transfer function

P(z) - ') ( , an approximate identity of order p is obtained if IT '(l) => D '(l)

with k 0, 1, ... , (p-1).

These results applied to the form T(l-z) yield the following conditions for T

to represent a p order approximate identity:

1(0) - 1

JT'(O) = (129)

T^tO) =

These conditions can also be written as a =b,a, - b, . ... a ,=b n .
o o 1 1' p-1 p-1

So an algorithm similar to the one established for continuous systems has been

derived by considering the error coefficients of the transfer function expanded

in (l-z).

The next step is to show that given the transfer function P(z), the

expression T(l-z) can be obtained easily. Consider, for ease of calculations,
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a polynomial of the fourth order

A(z) =
% A

a + a. z + a_ z + a, z + a. z (150)
o 1 £ 2 4

the corresponding form B(l-z) is sought

B(l-z) - b
Q
+ b

1
(l-z) + b

2
(l-z)

2
+ b

5
(l-z) 5 + b

4
(l-z) 4 (131)

Use of the Taylor series expansion of A(z) at z*l, leads to the expression

A(l-z) - A(l) + A.(l)(l-z) +^ (1-z)
2
+ ^11 (1.2) 3 +

A^Xll
(l.z)

4

(152)

The values of A(l), A 1 (l), ... , A^'(l) are then computed to he

A(l) - a
Q
+ a

1
+ a

2
+ a

5
+ a

4

A^(l) = a
1
+ 2a

2
+ 3a

?
+ ^

(2)
A

2 ,

(l)
= (2a

2
+ 6a

3
+ 12a

4
)/2 (135)

«igai- (6a
3
+ 24a

4
)/6

4^ *v*
Identification of the b' s can be made and yields the following result

m

4 4

\ = a
3
+ ^4

b
2

= a
2
+ 5a

5
+ 6a

4 ^
154^

b
x

= a
x
+ 2a

2
+ 5a

5
+ 4^

b = a + a, + an + a, + a,
J. 2 5 4

.
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If these equations are rewritten as a double entry table,

a °1 a
2 *3 a

4

l

1 4

1 3 6

1 2 3 4

1 1 1 1 1

(135)

the pattern of a vertical Pascal triangle appears. In order to generalize this

result, the previous table is presented in the following form

a
<% a

2
a a

4

*
(?) (D

^) (?) (*)

ti fl (>) ($>

(°) # (J) # #
The coefficient b can then be written as

m

sb

k
k - m \

(136)

(137)

where n is the degree of the polynomial involved. It is necessary to assume

that (-) - 1 and ( *) =0. An induction proof in complete form could be

given but would involve heavy algebraic manipulations unnecessary to the

purposes of this report. One can verify easily the exactness of the general

form of b .
m
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So, given a sampled-data system of transfer function

m
\ a. z

P(z)
1=0

i v3

j=o
the corresponding transfer function

V b. (l-z)
1

t(i-z) - pS
r

£ V1

j=o

is readily obtained using the relations

>
t -£ IDs (158)

k=o

k=o

Conditions for approximate identities are the same as in the continuous case,

the coefficients of numerator and denominator of T(l-z) must be equal pair by

pair.

4. Performance Improvement.

Use is made of the similarity between the form of the approximate identity

in the continuous problem and the sampled-data. If the system transfer function

is written as a function of (l-z), the performance improvement problem is

nothing but obtaining one or two more pairs of numerator and denominator

coefficients equal. So in the same manner as for continuous systems Newton

processes will solve the performance improvement problem.

The procedures of the sampled-data servo problem are then summarized and

a simple example is given.
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(a) Find the transfer function of the initial system T(z).

(b) Calculate the transfer function T(d) of this system in the d-plane, here

d is defined by d = 1-z, using the relations (138) and (139 ) established

between the coefficients of T(z) and T(d).

(c) Proceed to improve the system in the d-plane using Newton processes,

B(d) . MiL_ (140)
1 + T^(d)

(d) Improved system transfer function in z-transform is obtained, going back

into the z-domain under the transformation d «= 1-z. So from an initial, m

approximate identity T(z), the improved 2 m order approximate identity B(z)

is obtained, n being the number of times this iterative process is applied.

As an example, an initial system is supposed given with the transfer

function T(z) = -f— . In the d-domain it takes the form T(d) = r^r . It
<i+z 3~d

is an approximate identity of the first order; a second order approximate

identity is obtained using Newton process

B(2) . 18- <(!.,) . 12 + 6.
(141)

18 - 6(l-z) + (1-z) 13 + 4z + z

Given an initial system, performances are improved and the transfer

function of a better system is obtained using the procedure given above.

Physically, improvement is realized by a digital controller added either in

the forward or feedback links. Its transfer function is determined so that

the overall system has the trr-nsfer function given by the Newton process.

ka. example of the arrangements possible with digital controllers is now

given. Consider the system in Pig. 23; its transfer function has the form

T(z) - G(z)/ [l + G(z)] (142)

where

G(z) - Z [fi(s) M(s)J (I43)
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x +> >l b z Holding

Filter

Plant Y fc

>

FIG.23 A Sampled-data Feedback System

Dtzj H M 2*

FIG»24 A Sampled-data Servo Resulting from Approximate

Identity Improvement Process

D(2) is the Series Digital Compensator
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H(s) being the transfer function of the holding filter and M(s) the transfer

function of the controlled element. Performance improvement yields the transfer

function B(z) for the improved system. Compensation is then added in the

initial system as a forward digital controller as shown in Pig. 24 and its

transfer function D(z) is determined so that Zy = B(z) Zx where

D(z) is found to he

Performance improvement has been exhibited for sampled-data servos as

a steady-state problem and no information has been given about the possible

control of the transient behavior of the system. It is not possible to solve

the problem in every detail here but a procedure similar to the one adopted

in the continuous case is easily developed.

In the z-domain the boundary of stability is the unit circle; the inside

constitutes the unstable region; in other words, a sampled-data system is

stable if its poles lie outside the unit circle. In the d-domain, the

boundary is easily found to be the unit circle centered at +1. The equation

of the circle in the z-plane is z e J
, mapping into the d-plane yields

d«a+jb = l-z = l- cosQ - j sinQ

Identifying real and imaginary parts gives

a - 1 a - cos 6

b a - sin 8

(a-1)
2
+ b

2
- 1

equation of a circle of radius 1 centered at the point of abscissa +1. So,

in the d-domain, the transient behavior problem is solved by knowing the

distribution of the poles and zeros with respect to the unit circle centered

at +1.
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Recalling the performance improvement procedure, T(d) is evaluated and

2Q?( d^
then Newton process is applied to obtain B(d) -

1 + T
2
(d)

Using the analogy between the problem in the d-domain and the continuous

case, it is readily seen that, knowing the distribution of the poles and zeros

of the initial system T(d), a root-locus technique will give the distribution

of the poles and zeros of the improved system and will give control of transient

behavior. This completes the performance improvement problem.

As pointed out in the introduction, although sampled-data system

theory is completely unrelated to continuous systems, similar concepts and

methods have been established which enable a systematic algebraic solution

to the sampled-data servo problem. The concept of a sampled-data approximate

identity will be a tool necessary for the analysis of multivariable sampled-

data servos. The study of linear continuous multivariable servos made by

the approximate identity operator and the approximate annihilator, the latter

being an extension of the no-pass filter developed previously by H. S. Lin (14)«

To complete the fundamental tools for multivariable sampled-data servos, the

sampled-data approximate annihilator should be investigated. Annihilators

have been considered by J. P. L. Ho and C. A. Halijak (15) in their paper

entitled "Functions Annihilable by Sampling". A solution of the problem is

given in appendix B.
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CONCLUSION

A departure from the usual servo design procedure has been made by-

considering admissibility to be of primary importance and stability to be

of secondary importance. This concept views linear, continuous and sampled

servos as approximate identities. The basis for approximate identity is a

zero error coefficient criterion. Performance improvement is gained by a

Newton process and the transient behavior of the system is controlled by a

root-locus technique. These concepts have solved the linear, continuous and

sampled-data servo problems in an almost algebraic fashion.

The frequent use of approximate identity operator in this paper and

further application to multivariable servos have led the author to propose

that "approximate identity" be shortened to "aidentity".

Furthermore , the root-locus technique employed in this report can be

distinguished from Evans 1 root locus technique by the term "square root locus",
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APHBfDIX A

Zero Error Coefficient Algorithm for Continuous Systems.

Given a stable transfer function of the form

2 m
a + a, s + a„ s +... + a s

Kb) « -*—3- fc-y-i a-- (u6)
b + b, s + bn s + ... + b s
o 1 2 n

where m< n. If only polynomial inputs are considered, then the system will

have no position, velocity, acceleration and in general up to (t*) errors

if T(0) " 1 and a, - b for k 1, 2, ... , p with p<m.

The steady-state response to an input of the form t ~ /(r-l)l can be

found by evaluating the Laplace-transform inversion integral of —j T(s)

about s - 0. The first forms corresponding to r 1, 2, 5» are evaluated,

before exhibiting the result for the general case.

For a unit step input, the steady-state output is

27T j
<f

- T(s) e
8t

ds

"s-0
8

T(s)
st

J s=0

T(0)

If T(0) = 1 or a = b , the system is a position servo.

For a unit velocity input, similarly the output is obtained.

f*I /.^w e ds
[ds

T(s) e
st

soO

= T'(0) + tT(0)

Since T(0) 1, the error coefficient is readily seen to be T'(o).

For a unit acceleration input, response of the system is obtained as

277-j

&3

/ J, K.) .'*«..
§7 [s-0 fc

T(2) (0) + 2t T
(l)

(0) + t
2

T(0)|

d „/- \ St

IP ?(s) e

6=0

(147)

(148)

(149)

(150)

(151)
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The output signal can be written as (t /z) + E where E is the error expressed

as E - [l/2 ll T(2) (0) + 2t T
(l)

(0)

For a general polynomial input t
*" /(r-l)l, the output is calculated

r-1

£* / K T(s) e
St

27Tj
ds iAti cb «•> *

st
(152)

s-0

Leibniz' rule on differentiation of products yields

&>**[*•> °
st f I-

1
)
*«(.) c.")^ (155)

and if, for ease of calculations, the case r=5 is developed, the output is

obtained

ic T(s) e
St

dt = ^7 T(4) (0) + 4t T(3) (0) + 6t
2

T(2) (0)

+ 4t5 T
(l)

(0) + t
4 T(0)

s=0

or

y(t) = (t
4
/4!) + E

where the error is

E »[l/4!J T(4) (0) + 4t T(5) (0) + 6t
2

T
(2)

(0) + 4t3 T
(l)

(0)j

The goal of zero error coefficients is attained in the general case if

(154)

(155)

(156)

,(2), ,(r),
T(0) - 1 and T

(l)
(0) - T^'(O) Tvr; (0) - 0.

A Kaclaurin series expansion of T(s) yields

T(s) - T(0) + s T
(l)

(0) + fy
T(2) (0) + ...

fjj
T
(n)

(0) + .,

Also synthetic division yields

(157)

T(s) - 1 + C, 8 + C„ 8 + ... + C s + ...
2 n

(158)
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where the error coefficients c. are computed as

w - V

< °r (a
2

- b
2

) - ( 0l
b
x
)

: p-

1

(a - b ) - > c, b .

p p fcl
k P~k

(159)

Equating corresponding coefficients of equations (158) and (159) yields

T(0) - 1

T
(l)

(0)- c
x

- a
1

- b
x

T(2) (0)« o
2

- b
2

- ( C;L
b
x ) (160)

T(p) (0)- c
p

-

To set T* '(o) - T^ '(0) - ••• - T^P'(o) - is equivalent to 0- - ©_

o - or the set of conditions
P

*1 - b.

a
2

- b
2

a - b
P P

(162)

An algorithm to make the successive error coefficients zero has been

proved! It yields the simple algebraic solution, numerator and denominator

coefficients of the transfer function are equal pair by pair.
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APPENDIX B

Sampled-Data Approximate Annihilator.
1 - B

The formula . ~ «

1 + B
n

1 + (1 - z)
(162)

has interesting properties that are now investigated. First of all, although

it appears similar to the aidentity improvement process (equation 50), no

relation exists because (l - z) is not an approximate identity. The interest

aroused by this form is that it generates approximate discrete convolution

identity forms B where the coefficients of corresponding powers in numerator
n

and denominator are equal. An approximate discrete convolution identity

2
approaching the ideal form 1 + Oz + Oz + ... is thu3 obtained analytically.

The stability of B ensuring convergence to zero of the annihilator is

investigated. Calculation of

1 - B (z)
n'

1 + B (z) " U - z
n

(163)

B
n( Z ) - -^f- *fc

yields

12 - zj

The poles of this transfer function are given by the solution of

(165)

z - 1 o tan (6/2) (166)

with the imaginary part never zero, whatever the number of iterations is,

the approximate identity so obtained is stable since
|
z|> 1.

z J6
2 - z

" e

where # = (2k + l) 7r/n

which yields
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An n order approximate annihilator operator is defined as the difference

between one and an approximate discrete convolution identity B (z)

nU) - 1 - B
n
(z)

( 167 )

°n<
z
> " l ' [%$ I £ (168)

°n<«> ~ Z
2S n

'

(169)
^2-z; + z

In the case of n even, numerator and denominator are of the -same degree; in

case of n odd, the denominator is of one degree less than the numerator^

An example for the case n = 3 yields

°3(z) "
~ —'

(170)
^ 8 - 12z + 6z

Synthetic division provides the series expansion (0 + 0z + Oz + 0.25 z' +

0.375 z
4

+ 0.375 z
5
+ 0.28 z

6
+ 0.14 z

7
+ z

8
- 0.12 z

9 - 0.17 z
10

- 0.17 z
11

- 0.13 z
12

+ z
12

+ z
15

+ 0.10 z
14

+ ... )
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Usual servo design emphasizes stability analysis; later, servo performance

is improved by compensation techniques. This study places admissibility

first, and views the servo as an approximate identity operator. This latter

concept is based on a zero error coefficient criterion and applied to linear

continuous systems and sampled-data systems.

Improvement of performance is realized by Newton processes and servo

structures are established. A root-locus technique, similar to Evans', is

developed. It locates the poles and zeros of a system generated by a Newton

process. All these procedures are established, in a parallel fashion, for

linear continuous and sampled-data servos. This study enables systematic

and algebraic design of continuous and sampled-data servos problems.


