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CHAPTER L
INTRODUCTION

The scheduling problem arises whenever J jobs have to be processed
on M machines in a specified technological requirement. The problem
consists of finding the sequence of J jobs on M machines so that a
certain criterion is optimized. The formulation of a scheduling
problem usually takes the form of a mathematical model whose
constituents are: (1) criteria, (2) parameters and variaBles; and
(3) assumptions,

In general there are two types of criteria as stated in [20].
The first type includes those which do not distinguish among individual
jobs. This indicates that such a criterion 1s a function of the
seqﬁence of jobs, taken as a whole. Examples of this type are the
minimization of the schedule time, i,e,, the minimization of the
total processing time of all jobs on all machines, the maximization
of overall profit. Thé second type 1ncludes those which distinguish
among the individual jobs, This indicates that such a criterion is

'a function of the individual jobs in the sequence., An example of
this type is the minimization of the total tardiness of Jobs. In
this case, the tardiness of an individual job is considered.
Tardiness of a job is the positive difference between the completion
time of the job and its due-date. The criterion considered in this
thesis is the minimization of schedule time,

The formulation of a scheduling model depends, among others, on

the behavior of job-arrivals., A deterministic model is applied to



a situation in which sé;eral Jjobs arrive simultaneously in a
shop that is idle and immediately available for work, However,
a stochastic model is applied to a situation in which several
jobs arrive continuously at random intervéls.

The scheduling models, in practice, are usually of stochastic
nature. The stochastic models, therefore, are of practical value,
However, the deterministic models have an inherent interest of
their own, because they can be considered as a prelude to the
stochastic medels due to the following reasons as stated in [30 ]:
(1) The deterministic models provide an approach to handle the more
complex stochastic models; and (2) The knowledge gained from work
on the deterministic models may be directly applicable to the
stochastic models. The study of the deterministic models is also
interesting as an example of combinatorial problems and the solution
techniques may be applicable to other combinatorial problems such
as line balancing and travelling salesman problems, It is therefore
worthwhile to study the deterministic models,

Most research workers have investigated simple models by imposing
geveral assumptions. Among the assumptions imposed are: (1) Each
operation once started must be performed to completion, (2) Each
machine can process only one job at a time, (3) There is only one
machine of each type; and (4) Processing times include set up aﬁd
transportation times between machines, if any,

In gsearching for the optimal solution, one should enumerate and
evaluatelthe possible sequences. However, the number of possible

sequences increases very rapldly with the inecrease in the number of



jobs or machines because of the combinatorial nature of the scheduling
problem. For a problem of two jobs to be processed on three machines,

the number of possible sequences is (J!)M or.(2!)3 = 8, Whereas, for

a (6x3) problem, the number of possible sequences is (6!)3 or 373,328,000.
Thus it is evident that the complete enumeration method is highly imprac-
tical except for trivially small problems. Consequently; other approaches
such as combinatorial analysis, mathematical programming, and simulation

are used to solve the scheduling problem,

1.1 Problem Formulation*

There are two types of shop, depending on the order in which various
machines perform a particular job. They are referred to as flow-shop and
job-shop. 1In flowﬂshop'problems, each job is performed on a certain set
of machines in an identical order. Whereas, in job-shop problems, the
machine-ordering for each job may be different. This research is concerned
with job-shop problems.

In formulating a scheduling problem, a job 1s designated by aﬁ integer
i and a machine by an integer m. An bperation of job j on machine m is
represented by a node (jm).

Since it will be necessary to conslder permutations of the job-sequence
on a particular machine, permutations of the machine-order for a particular
job and even the permutations of both the job-sequence and the machine-order,
the following sét of operations are defined. First, the operation of a job
in the kth sequence-position on machine m is designated by (jmk). Second,
the operation of a job j on & machine in the ﬂth order-position is designated

by (jmz). Finally, a specific operation involving a particular job j, and a

*Adapted from Ashour, S,., Introduction to Scheduling, John Wiley & Sons,
Inc¢., in Press




particular machine m, is denoted by (jkmﬁ)'
The machine-ordering for a particular job j is designated by a row

vector such that
My = [jml Jmy v jmp ij],
4= 1, 25 &+ » ma Fe

These machine ordering vectors, one for each job, may be combined in a

(JxM) matrix called the machine ordering matrix, denoted by M. TFor example,
consider a problem having two jobs to be processed on three machines. Let
the jobs be j = 1, 2 and the machines be m = 1, 2, 3. The machine ordering

matrix of this problem is shown below

Im Im 1m 11 13 12

M 2m, 2m. 2m.| |22 21 23

This matrix indicates that job 1 must be processed on machine 1 first,
machine 3 second and machine 2 last. However, job 2 must be performed on
machine 2 first, machine 1 second, and machine 3 last. It should be noted

that the machine m, in the element 1lm. is not necessarily the same as machine

1 1

my in the element 2m1. In this machine ordering matrix, operation or node
(11) proceeds operations (13) and (12), and operation (11) directly proceeds

operation (13).

Associlated with each operation (jm£), there is a processing time, tjm -
L

that is, the time required to perform job j on a particular machine m,.

£

For convenience, the processing times for job j on all machines are designated



The above set of processing time, one for each job, may be combined in a
(JxM) matrix, referred to as the processing time matrix and denoted by

The processing time matrix of the above example is shown below

The above processing time matrix indicates that to perform job 1 on machines

ml, m2 and m3,

job 2 requires 2, 1 and 3 time units to be completed on machines ml, m, and

m, respectively. It is obvious that if a job is not to be processed on a

it requires 5, 4, 1 units of time respectively. Similarly,

particular machine, a zero processing time can be placed in the corresponding
élement in the processing time matrix.

Sometimes it is necessary to determine the completion time of an gperation.
The completion time of an operation is the sum of the processing times and
idle times, if any, of all the preceding operations and those of the operation
considered. S8imilar to the machine-ordering and processing time matrices, the
initial completion time matrix of the above example can be shown as below

®im Cim

C(jm) = 1 2 3| =
2m



This completion time matrix is formed regardless of any conflict between
the two jobs.

Whenever two or more jobs have their operations on the same machine
durlng & common time interval, a conflict exists. This conflict can be
shown using a Gantt chart, as shown in Figure 1.1. The qperations in the
conflict set on a certain machine are shown by horizontal hattching. For
example, it is obvious from Figure 1.1 that jobs 1 and 2 have conflict on
machine 1 during the time interval between 2 and 3. Whenever there is a
conflict on a certain machine, it can be resolved in favor of one of the
jobs in the conflict set on that machine. The Gantt chart shown.in Figure

1.2 shows the resolving of the conflict in favor of node (11).

1.2 Literature Review

Various basic approaches have concentrated on selecting smaller and
smaller subsets of schedules from the larger set of possible schedules.
One of the approaches is that the set of feasible schedules 1s obtained by
sélectiné each time an operation at random frqm the set of schedulable
operations. The operations which aré available for scheduling immediately
without contradicting any precedence relationshlp are called the schedulable
operatiﬁns. The feasible schedule obtained by selecting the scheduable
operations at random does not guarantee optimality. Therefore, in another
approach, a certain procedure called left-shift may be used to obtain a
better set of schedules, known as active schedules., A left-shift operation
consists of jumping to the left of an operation over another cperation
if there is sufficient idle time to accommodate the processing time
of the operation to be shifted. An active schedule is the one in

which left-shift is not possible. Clearly, the set of active schedules
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is smaller than the complete set of feasible schedules, Such a set
of active schedules contains the optimal sequence(s). In another
appreoach, a subset of schedules, known as non-delay schedules, is
generated from the set of active schedules. Delay is defined as
machine idle time incurred while a job is available for processing.
It should be pointed out that the set of non-delay schedules may not
always contain the optimal solution. It is obvious that in all the
above approaches an attempt is made to obtain smaller and smaller
subsets of better schedules from a larger set of possible schedules,
Such an approach will be referred to as microsimulation approach.
Several investigators have worked on the above approaches,
Heller [28] has originally developed an algorithm, based on the linear
graph theory, for the construction and evaluation of feasible sequences,
In the -linear graph theory, an operation of job j on machine m for
ith return is represented by node (mji). The algorithm selects one
of the schedulable operations at random., When one of the scheéulable
operations is selected, a new set of schedulable operations is again
formed. Since the random procedure in selecting the schedulable
operations, one at a time, does not guarantee a good schedule, Heiler
and Logemann [29] have incorporated in their algorithm the featuré
that selects one of the schedulable operations using the first-come,
first-served rule. If a tie is encountered, it is broken randomly.
Ashour [15] has-modified the algorithm to suit the assumption that no
job is processed more than once by any machine and also for the
construction of feasible sequences for job-shop problems, To summarize,
this approach produces feasible schedules, sometimes referred to as

semi-active schedules,



Giffler and Thompson [23] have developed an algorithm to obtain

the set of active schedules, As mentioned earlier, the set of

active schedules is relatively smaller than the complete set of
feasible schedules and contains the optimal solution., They have
obtained the complete set of active schedules by resolving the
conflicts in all possible ways., However, the complete set of active
schedules also becomes too large even for problems of small size,

As an example, for a (6x5) problem, Giffler, Thompson and Van Ness [24]
have observed that the complete set of active schedules obtained by
using the nonnumerical program consists of 84802 schedules, while

the complete set of feasible schedules is (6!)5 or about 8 million, In
a nonnumerical program all operation times are assumed to be unity.
It is, therefore, obvious that there are about 100 feasible sequences
corresponding to each active schedule, The size of the problems
solved using this program varies between one and five machines, the
number of jobs being fixed at 6. Since they have found that there
~exlsts an enormous number of active schedules even for trivially small
problems, they have concluded that it is necessary to sample from

the set of active schedules. In this sampling procedure, they have
resolved conflicts at random. The size of problems solved varies
from 4 to 200 jobs and 1 to 25 machines. From these experiments,

they have concluded that such a set of optimal solutions, even though
a very small sﬁbset from the complete set of active schedules, increases
very rapidly as the size of the problem increases, They have also
computed the probability of cobtaining an optimal schedule in a certain

number of trials.
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Fisher and Thompson [21] have reported their computational
experience about the probabilistic learning combinations of local
job-shop scheduling rules. The local scheduling rules are the omes
that can be applied by machine operator and these require only the
knowledge of the work waiting to be processed on his machine., They
have selected two rules, the shortest imminent operation rule, SIO,
selecting that job with the shortest operation time and the longest
remaining time rule, LRT, selecting that job with the maximum
remaining processing time, They have modified thése two rules
such that an operation is not scheduled if a job of higher priority
presently being processed on another machine, will arrive prior to
the expected completion of the highest priority operation in the
queue, If such a situation occurs, the machine is held idle until
the new operation arrives. However, an operation is not delayed because
of the possible arrival of a higher priority operation now walting
in some other queue. The basic principle of using the learniﬁg
processes 1s that the computational experimentation can produce learning
of some systematic way in which the frequency of the use of the above
two rules is varied, For example, for a particular problem, the
computational experience may be such that the SIO rule should be used
initially and the LRT rule should be used later, Theilr experience
has showed that the combined rule invariably does much better than
any of the loéal rules taken singly. The criterion used is the
minimization of schedule time., They have applied four types of learning
using modified SIO and LRT rules, One type of learning is characterized

by an unbiased starting position at which the probability of selecting
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each decision rule is equal, whereas, in:another type of learning,
the probabiiity of selection may be biased, The sizes of the
problems solved vary from 6 to 20 jobs and 5 to 10 machines.

From the computational experience, they have concluded that learning
is possible and an unbiased combination of scheduling rules is
better than any of them taken separately,

Nugent [30] has modified Heller's algorithm to generate the set
of non-delay schedules which form a subset of active schedules. As
defined earlier, delay is the machine idle time incurred while a job
is available for processing. He has generated the non-delay schedules,
using the probability dispatching rules such as the first—come, first-
served rule, FCFS, the most work remaining rule, MWKR, the shortest
operation rule, SHOPN, and the random rule, RANDOM. While using the
FCFS, the ties, 1f any, are broken randomly. However, when other
rules such as MWKR and SHOPN are used, the ties are broken using the
FCFS., The basic principle in ﬁsing the probability dispatching rules
is that a probability is assigned to each job in a particular set.
Such a set consists of jobs available to be processed on a certain
machine at a time when the machine is avallable for processing. He has
conducted experiments on two different kinds of sets of problems, One
such kind includes 8 sets of jobs generated internally, The sizes of
such problems vary from 20 to 100 jobs, with number of machines eQual
to 9, Another kind includes 7 sets of'jobs obtained extenally. The
sizes of such problems vary from 6 to 100 jobs and 3 to 10 machines.
The purpose of conducting experiments on externally obtained sets of

jobs 1s to compare these results obtained using the probability
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dispatching rules with those obtained by the previous researchers,

The criteria used are minimization of the schedule time and minimization
of the mean flow time, In general, he has obéerved that the non-delay
schedules produced using the probability dispatching rules are generally
better than those produced by previous methods.

Ashour [15] has developed decomposition approach for scheduling
problems. The approach consists of decomposing the original problem
into a number of smaller subgroups. This approach attempts to minimize
the computational time, The computational experience shows that the
mean and minimum of the schedule times obtained by decomposition
method is smaller than that obtained by complete or partial enumeration.
The mean and minimum schedule time increases as the number of jobs in
each subgroup decreases, The size of the problems solved varies from
6t040j®sam13t010mmmhm&

The branch-and-bound approach generates an optimal solution after
the generation of only a small subset of possible sequences. Land and
Doig [8] have first developed the basic concepts of this approach, It
has been named by Little et, al [10] while solving the travelling
salesman problem., Ignall and Schrage [7] have used this approach to
the two- and three-machine flow-shop problem using their lower bound.
Brown and Lomnicki [4] have extended the branch-and-bound algorithm
to any number of machines. McMahon and Burton [12] have developed a
new lower boﬁnd, referred to as the composite-based bound and have
applied the technique to three—macﬁine problem, Ashour and Quraishi {2]
have presented a mathematical analysis and comparative evaluation of

various lower bounds for the solution of the flow-shop problem,

et
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In dynamic situations, macrosimulation approach is used. Conway
et al. [19] have used this approach for the stochastic models to
compare the performance of several priority rules,

For the mathematical formulation of the scheduling problem, see

Ashour [16].

1.2 Proposed Research

In this paper, a branch-and-bound algorithm for the job-shop
problem‘will be.developed. In addition, two new lower bounds, referred
to as composite-based bounds LB I and LB II, will be developed and
presented in a mathematical form and rigorous notation. For comparison
purpose, a mathematical analysis in rigorous notation of some other
existing lower bounds will alsc be presented, One of the existing
lower.bounds, referred to as bounding procedure LB 1V, is modified by
incorporating a new feature. The computation of lower bounds by
each of the bounding procedures will be illustrated by a sample problem,
Furthermore, a more general computational algorifhm will be illustrated
by the same sample problem, using the composite-based bound LB I,

Many experiments have been conducted using IBM 360/50 computer in

~order to obtain a fair comparison among the various bounding procedures.
The solutions‘obtained by different bounding procedures are compared
with reference to the following: (1) the number of nodes explored, (2)
the computational time; and (3) the efficiency of the solution obtained
without backtracking. Statistical analysis is carried out to compare
the maximum, minimum, mean and standard deviation for the number of
nodes explored and the efficiency of the solution obtained without

backtracking,
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CHAPTER II
DEVELOPMENT OF A BRANCH-AND-BOUND TECHNIQUE

The branch-and-bound technique is an enumerative approach which
consists of a systematic generation of a smaller subset of optimal
solutions from a larger set of feasible solutions. The basic principle
of branch-and-bound technique, when applied to job-shop problems is
that it obtains an optimal solution from a set of schedules, known as
active schedules, As mentioned in chapter I, Giffler and Thompson [23]
have originally developed an algorithm to generate the set of active
schedules, Beenhakker [17] has given a mathematical analysis, related
to this algorithm, in rigorous notations, especially 1n checking for
a conflict, He has used the algorithm to generate schedules which are
optimal with a certain probability with respect to several criteria
such as the minimum schedule time, maximum production rate, and minimum
total idle time of machines. Brooks and White [4] have modifiéd this
algorithm by imbedding a bounding procedure, as a criterion for
resolving the conflicts. However, they have reported on their
computational experience that this procedure is too long to adopt on
medium size computers, even for problems of moderate size, They have
compared the results obtalned by using lower bound as the criterion
for resolving the conflicts with those obtained by using shortest
operation timelrule and longest remaining time rule, The criteria used
for optimality are minimizing lateness and minimizing total schedule
time. The size of the problems solved varies between 7 and 10 jobs,

and 10 and 18 machines. For minimizing total schedule time, the results
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obtained by using lower boundhave been better than those obtained by
using other rules such as shortest operation time and longest remaining
time,

This chapter is devoted to the discussion of a branch-and-bound
algorithm, in which one of the two lower bounds developed in this
thesis, is imbedded. In addition, a mathematical analysis and modifi-
cation of some other existing lower bounds are presented. The branch-
and-bound algorithm is 1llustrated by a sample problem and is summarized

in formal steps.

2.1 Basic Concepts

This branch-and-bound technique is developed on the basis of two
principal concepts: (1) the use of a controlled enumeration technique
for considering all potential solutions; and (2) the application of a
bounding procedure for the identification of a subset containing the
optimal solution, The search for the subset of optimal solutions is
systematically carried out through branching and bounding processes
which may be easily discussed by using a scheduling tree. (Figure 2.9)

The scheduling tree is initialized by a node (ALL) representing
the set of all feasible solutions. This node is branched into nodes
at the first conflict level, each node representing an operation of
a job on a certain machine. As defined earlier, when two or more jobs
have their operations on the same machine during a common time interval,
a conflict exists. The set of such jobs at a level is called a conflict
set, The conflict level index increases by one whenever a conflict
is resolved in favor of one of the jobs comprising the conflict set at

that level. In other words, one of the jobs at a conflict level is
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selected for further branching. Consequently, a set of nodes is
generated at the next level, This process of generating a new set of
nodes at a level from a node at the preceeding level is referred to
as the branching process., This process guarantees an optimal solution
by generating all nodes of the scheduling tree.

As discussed above, for job-shop problem, each level represents
a conflict among a set of jobs on the same machine, and the total
number of conflict levels represents the number of conflicts resolved
to obtain a schedule time resulting from the corresponding branch.
Thus, for a particular problem, the number of conflict levels for
different schedule times may be different. In general, the larger
the schedule time the higher is the number of conflicts resolved for
obtaining that schedule., This is due to the fact that idle time is
inserted as a conflict is resolved. Thus, the number of conflicts
resolved for obtaining the shortest schedule time should be smaller
than that for obtaining a longer one. However, the schedule time is
also a function of idle time inserted as a result of resolving a
conflict. Furthermore, the amount of the idle time is a function of.
the processing times, It is worthwhile to note that for job-shop
problems, the number of conflict levels varies from one problem to
another, However, for flow-shop problems, the total number of levels
is equal to the number of jobs in the problem. Another outstanding
difference is that for flow-shop problem, the number of new nodes at
any level L, emanating from each node at the preceding level, L-1, is
equal to (J-I+1) and thus, the number of these new nodes increases as

one moves down the scheduling tree along a particular branch. Whereas
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for job-shop problems, the number of nodes at any level depends on
the number of jobs in the conflict set at that level,

As mentioned earlier, whenever a conflict is encountered it can be
resolved in faver of one of the jobs in the conflict set, If the
conflict is resolved in all possible ways, the size of the scheduling
tree increases rapidly. The bounding process therefore helps select
a particular node at a level for further branching and thus makes it
possible_to achieve a reduction in the generation of nodes at each
level, 1In this process, a lower bound on the schedule time is computed
for each node at a certain level and the node with the least lower
bound, referred to as an active node, is selected for further branching,
All other nodes at this level are thus discarded, The lower bound for
a node is the sum of the completion time of the scheduled operations
and the total processing time of the unscheduled operations for a
particular job or machine, It has the property that it does not exceed
the schedule time of the associated complete sequence. Thus, tﬁe
bounding procedure enables one to look for the possibility of
recognizing the optimal solution by exploring the least number of nodes.
However, in many cases it is necessary to explore more nodes for ob-
taining an optimal solution. The size of the scheduling tree does not
become too large if the lower bounds computed are as high as possible.
Therefore the efficiency of the branch-and-bound technique depends
greatly on the quality of the bounding procedure,

At the end of the scheduling tree and for a particular branch,
the schedule time is obtained by resolving the last conflict, This
solution may be greater than the lower bounds for some of the unexp! red

nodes, and thus the solution obtained may not be optimal. 1In order to



guarantee optimality, a backtracking process has to be embedded in

the branch-and-bound technique, In this process, the scheduling

tree is traced back along the same branch until an unexplored node with
a lower bound less than the previous solution is found. In a similar
manner branching and bounding processes are repeated until a better
solution is obtained. The previous solution is, therefore, updated

by this solution, Bowever, some branches may be terminated at a level
where all nodes have lower bounds equal to or greater than the previous
solution. The optimal solution is reached when there is no unexplored

node with lower bound less than the updated solution.

2.2 Bounding Procedures.

The basic purpose of using bounding procedures in the branch-and-
bound technique is to reduce the number of nodes explored and thus to
improve the efficiency of the technique by decreasing the computer
time required to solve the scheduling problem, As defined earlier,
the lower-bound on the schedule time for a node is defined as the sum
of the completion time of the scheduled jobe and the total processing
times of the unscheduled jobs. The more powerful a bounding procedure
the closer are the lower-bounds produced to the schedule-time, Such
a bounding process produces the lower-bounds considering the idle times
due to both the scheduled and unscheduled operations. In gemeral, the
idle times among the scheduled operations can be considered. However,
it is difficult to determine the idle time among the unscheduled
oﬁerations since their sequence is not known. |

This section is devoted to the discussion and analysis of two

composite-based bounds LB I, and LB II, developed in this thesis. The

18



composite-based bounds consider the maximum of both machine-based and
job-based bounds., The difference in the computation of lower bounds is
illustrated by a sample problem. The problem ié of job-shop type with
four jobs and three machines. The machine ordering matrix and the

processing time matrix are shown below,

(12 13 11) (4 2 3

91 48 9 8 4 5
M = T =

33 31 32 6 3 9

(41 42 43 7 6 2

In each bounding procedure, the computation of the lower bounds is
illustrated for only one‘node, at each of levels 1 and 2, The lower
bound for each node, the minimum lower bound for the unexplored
nodes, at each level and the solutions for each bounding procedure
for the above sample problem are given in Tables 2,1, 2.2, 2.3, 2.4 and
2.5,

In order to discuss the various bounding procedures, the following

common notation is considered.

L conflict level index

n set of scheduled operations

n set of unscheduled operations

c?mz completion time of node (jmf? at level L
BL(jmz) lower bound for node (jmz? at level L

BL minimum lower boﬁnd on schedule time at level L

5 conflict set at level L.
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Composite-based Bound LB I

The composite-based bound is expressed as the maximum of the job-
based bound and the machine-based bound. In mathematical terms, the
lower bound on the schedule time for the node (jmt) at level L is
expressed such that

LB I = max [LB IIL, LB V]
where

LB III is the job-based bound, and

LB V 1s the machine-based bound.

First, the bounding procedure LB III has been suggested in [19],
This lower bound will be presented in this thesis in a mathematical
form and rigorous notation, This bounding procedure, referred to as
the job-based bound, determines the lower bound by the total processing
time on each job in the conflict set, at level L, sL.

The lower bound for node (jmt) at level L, BL(jmz), can be

stated such that

r h!
M M
L L
B (Jmﬂ) = max ijﬂ s=%+1 tjmz s mix cjmﬂ + 5§n timA (L)
D iesL
| i#j J

where

for job i, m, = mp
It should also be pointed out that mp represents a particular machine.
The value of this lower bound is the maximum of two expressions. The
first expression gives the bound for job j, which consists of two

terms:
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cL the completion time of the job j on machine m,,
jmp £
at level L; and
M
ten the sum of the unscheduled operations of job j.
s=p+1 M

The second expression gives the maximum of the bounds for
remaining jobs, i.e., other than job j, in the conflict set, at level L,

sL It also consists of two terms:

c?m the completion time of the job j on machine Wos at
L
level L: and
M
z tjm the sum of the unscheduled operations of job i
4=n 4

including its operation on machine mk_which is the

same machine as m, .
Second, the bounding procedure LB V has also been suggested in
{19). This lower bound will be presented in this thesis in a
mathematical form and rigorous notation. This bounding procedure,

referred to as the machine-based bound, determines the lower bound

by the total processing time on each machine,

The lower bound on the schedule time for node (jmﬂ) at level L,

BL(jgﬂ), is expressed such that

L - L
B~(jmy) = max < + ) ot |,

mt iEI—:l im
m=m£
max L J
o m%n [cim - tim] + Z tim
m¥m£ i i=1
ien
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In this bounding procedure, the earliest time at which an un-
scheduled operation can be started is found fqr each machine, The
sum of the processing times of the unscheduled operations which
require this machine is added to the earliest time at which unscheduled
operation can be started on this machine,

The first expression gives the bound on machine mp. It consists

of two terms:

L

ij the completion time of job j on machine
£

m, , at level L, This is also the
earliest time at which an unscheduled
operation can be started on machine Wp,
because the operation of another job in
the conflict set, at level L, sL, can be
started on machine mp immediately after
the completion of the operation, jmp; and

_Z_ By the sum of the processing times of the

;izi unscheduled operations of jobs (other
than job j) which require the machine m
which is the same as machine myp,

The second expresslon gives the maximum of the bounds on the

machines other than machine mps It consists of two terms:

min [cim - tim] the earliest time at which an unscheduled

ien
job i can be started on machine m; and

the sum of the processing times of un-~

[ s 48
r

o o

scheduled jobs which require machine m

(m # mp).



In order to illustrate the composite-based bound LB I we consider

the same sample problem presented earlier and compute the lower bounds

23

for only one node at each of levels 1 and 2., First, let us compute the

lower-bounds using the job-based bound, LB TII,

At level 1, there are two nodes (13) and (33). 1In other words
the conflict set, at level 1, sl, consists of job 1 and 3, It is
interesting to illustrate the conflict among jobs 1 and 3 on machine
3, using the Gantt chart shown in Fig 2.1. The completion time
matrix at level 1 temporarily updated for resolving conflict in favor

of node (13) is such that

[ 4 6 9)

1 8 12 17
€ (13) =

12 15 24

L7 13 15

This becomes evident from the Gantt charts shown in Fig 2.2. The
lower bound for node (13) at level 1 is computed such that

sl(13)

1.
B™(jm,)
r 1 X
max [clB + tll]’ max [cl3 t (tyg + ty, + t32))
\

;
= max |(6 + 3), max [6 + (6 + 3+ 9)J

Y

wox . 24

24

Let us now compute the lower bound for node (41) at level 2 as shown
below:

At level 2, the conflict set, 52, consists of three nodes (21), (31)
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and (41), This is also illustrated using Gantt chart shown in
Fig 2.3,
The completion time matrix temporarily updated for resolving conflict

in favor of node (41} is such that

[ 4 g 11)
9 15 19 24
c™(41) =
6 10 19
| 7 13 15§

This becomes evident from the Gantt charts shown in Fig 2.4.

The lower bound for node (41) at level 2, B2(41) is such that

Bz(ﬁml) = 8%@a1)
c2 + (t,. +t. . *t..)
2 41 21 "23 "22
= max |c,. + (t42+t43), max ,
¢ T (Eggtegy)
7 + (8+4+5)
= max |7 + (6+2), max
7+ (3+9)

= max [15, max (24, 17]]

= max [15, 24]

= 24
Next illustrate the machine-based bound LB V, using the same

sample problem for.one node at each of levels 1 and 2, At level 1,
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the lower bound for node (13) can be computed as shown below. The
completion time matrix at level 1, temporarily updated for resolving

the conflict in favor of node (13) is such that

(4 6 9

1 8 12 17
C(13) =

12 15 24

t 7 13 15J

This aléo becomés evident from the Gantt chart shown in Fig 2.2,
The conflict set at level 1, sl, consists of nodes (13) and (33) as
illustrated using the Gantt chart shown in Fig 2,1, The unschedule&
operations at a conflict level have their completion time equal to
or greater than the minimum of the completion times of the jobs
in the conflict set, For example, the set of unscheduled jobs at
level 1 for machine 3 consists of jobs 2, 3 and 4.

The lower bound for the node (13) at level 1, 31(13), is -
computed such that

B (my) = B1(13)

(1
= max [cl3 + (t23+t33+t43)],

r

3

1 1 1 1
min [(Cll“tll)’(czl“tzl)’(°31’t31)'(°41"t41)]

+ (t11+t21+t31+t41)

max

1 1 1
i [(sz"tzz)'ccsz”t32)’(Caz"tazﬂ

eyttt o)




= max {6 + (4+6+2)J,

N

min [(ll~3),(8~8),(9-3),(7~7)] + (3+8+3+7)]

max

min [(17-5),(18-9),(13—6)] + (5+9+6)J

max (18, max [21,27]]

max (18,2?]

= 27
At level 2, the conflict set, 32, consists of three nedes (11), (21),
and (41), as illustrated using Gantt chart shown in Fig 2.5, The’

completion time matrix at level 2, temporarily updated for resolving

the conflict in favor of node (41) is such that

[ 4 6 10)
) 15 19 24
C7(41) =
12 15 24
| 7 13 15

This is also evident from the Gantt chart shown in Fig 2,6,
The lower bound for node (41) at level 2, Bz(ﬁl), is computed such

that

30
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32 (41)

[

B2{4m1)

(

2
[“41 T (t11+t21+t31)}'

max

] 4

in

max
.

2

( t

min

LN

in

max [7 + (3+8+3)], max

min

f
max

21, max [27,18}]

\

[
max

21,27}

\

2 2 2
|(eagtap) s (e3pmt 3505 (eppmtyy)

]+(t

(24-5),(24=9) , (13-6)

|

(19-4),(12~6) ,(15-2)

|

33

227 E39% 9

2 2
©23” 23)’(°33“t33)'(°43‘t43)] + gt s

+ (5+9+6)

+ (4+6+2)

Now let us compute the lower bounds for nodes (13) and (41) at

levels 1 and 2 respectively, using the composite-based bound LB I,

We can compute the lower bounds by using job-based bound LB III and

machine-based bound LB V, as illustrated earlier and take the maximum

of them as the composite-based bound,

At level 1, the lower bound for

node (13) can be computed using composite-based bound LB I such that

Bl(13) max [LB III, LB V]

max [24, 27]

27

b

)

)

}
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Similarly at level 2, the lower bound for node (41) is computed such
that

B2(41)

max [LB III, LB V]

Il

max [24, 27]

27

Composite-based bound LB IT

This bounding procedure is expressed as the maximum of the job-
based bound and the machine-based bound. In mathematical terms, the
lower bound on the schedule time is expressed such that

LB IT = max [LB IV, LB V]
where |

LB IV is the job-based bound; and

LB V 1is the machine-based bound.

First, the bounding procedure LB IV has been developed in [4 ],
This lower bound is presented in this thesis in a mathematical form
and rigorous notation. This is also referred to as the job-based
bound since the lower bound is determined by considering the total
processing time on each job.

In this bounding procedure, the conflict among the last operation
of all jobs is resolved. In other words, the idle time created by
some of the unscheduled operations 1s considered. As mentioned
earlier, a powerful bounding procedure considers the idle time due to
the unscheduled operations and thus, produces the lower bounds as high
as possible, Therefore it can be expected that this bounding procedure
will produce more realistic lower bounds.

In order to consider the idle time created by the last operation

for each job, it is necessary to know the machine on which each job



has its last operation. In other words, we can check all machines
from 1 to M to know how many jobs have their last operations on a
particular machine,

It is necessary to know the completion time of the operation
just preceding the last operation in order to resolve theIEOnflict
among the last operations of all jobs. The completion time of the
operation just preceding the last operation can be computed as shown
below.

For job i in the conflict set at level L, sL, except the job j around
which the conflict is resolved, the completion time of the operaticm

just preceding the last operation, c?mM s 1is computed such that

-1
L M-1
ey = C + Eyn
M-1 L 4=t s
where
Tn = Ty
For all other jobs not in the conflict set at that level, and the job j
around which the conflict is resolved, the completion time of the
operation just preceding the last operation remains the same as in the
previous completion time matrix, Thus, these completion times are
known,
Let r be the number of jobs which have the last operation on a
particular machine. Arrange the completion times, c§ , of such r
-1
jobs in ascending order, and store them temporarily in a vector U
such that
U= [U), Upyy vuy U]

Also, store temporarily, the corresponding times on the last machine,

35
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t » in a vector V such that

Jmy
V= [V, Vo een, Vr]
Let D, = cL
_ i :LmM
Dl = Ul + Vl
D, = max [D,, U2] + v,
Dr—l = max [Dr—2’ Ur—ll + Vr-l
Dr = max [Dr-l’ Ur] + Vr

There are two special cases of the above situation: (1) when there is
no job having its last operation on a particular machine; and (2) when
there is only ;ne job having its last operation on a particular machine,
It is not necessary to‘consider the former case since there is no job
having its last operation on a particular machine. In the latter case,
however, the completion time of the last operation of the only job i

is computed such that

L L
c = max |c , max

-
" c "
AWy me1  p [P“'M-l My
where
my for job i is the same machine as My for job p.
This special case is considered in this thesis. The lower bound developed
in [ 4 ] has been modified in this thesis by incorporating this feature.

Thus, we know the completion time of the last operation of all jobs,
L
cimM,

for each job.

obtained by resolving the conflict among the last operations



The lower bound on the schedule time for the node (jmﬂ) at level
L, BL(ij) is computed such that

L L
B (jmp) = max [c ) i=1,2, ..., J
* i\ ify

Second, the bounding procedure LB V has already been discussed
under composite-based bound LB I, |

In order to illustrate the composite-based bound LB II, let us
consider the same sample problem presented earlier and compute the
lower bounds for only one node at each of levels 1 and 2, First, let
us compute the lower bounds using the job-based bound, LB IV,

At level 1, the conflict set, sl, consists of two nedes (13) and
(33), This conflict is éhown using the Gantt chart in Figure 2,1,
The completion time matrix at level 1 temporarily updated for resolving

in favor of node (13) is such that

[ 4 6 9)

i g8 12 17
C(13) =

12 15 24

7 13 15

b

This becomes evident from the Gantt chart shown in Figure 2.l. The
completion time of the operation just preceding the last operation for

job 3 in the conflict set can also be computed such that

c1 - cl
3m2 31
= 1 + (t.,., + t..)
€13 33 " 31
=6+ (6 + 3)
= 15

For other jobs, which are not the in the conflict set, and for job 1,

around which the conflict is resolved, the completion time of the

3T



operation just preceding the last operation remain the gsame as in the
previous completion time matrix.

Let us check machines from 1 to 3,

For machine 1, the only job which has its last operation on this par-
ticular machine is job 1. The completion time of last operation of

job 1 is computed such that

cl - C1

lm3 11
m 1 max cl + t
& €130 31 11

max [6, 15] + 3

]

15+ 3

= 18
The number of jobs having their last operation on machine 2 is 2,
i.e., r = 2,

The vectors U and V are formed such that

1
= %23 ©31

= [12, 15] - and

V= [tzs’ taz)

=[5, 9]..
Cl |
17 %
=y +V

=12+ 5

c
|

1

= 17
1

2 = €32
= max (Dl, UEJ + V2

max [17, 15] + 9

38
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=17 + 9
= 26
The only job having its last operation on machine 3 is job 4.
The completion time of the last operation of job 4 is computed such

that

cl = max cl max cl cl + t '
42° 13° 713 43

L}

max [13, max [6, 12]) + 2

max [13, 12] + 2

13 + 2

= 15
The conflict among the last operation for each job can be resolved
using the Gantt chart as showﬁ in Figure 2,7,
The lower bound for node (13) at level 1, Bl(13), is computed

such that

]

3l(13)

N N
max 1C13» C220 ©320 %43

L]

max [18, 17, 26, 14]

= 26 |
At level 2, the conflict set, 52,.consists of nodes (21), (31) and
(41). The completion time matrix at level 2, temporarily updated

in favor of node (41), is such that

[ 4 8 11

; 15 19 24
co(41) =

6 10 19

7 13 15
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This becomes evident from the Gantt chart , shown in Figure 2,3.

From the above completion time matrix, we get the updated
completion time of the operation, just preceding the last operation,
for each job.
The completion time of the operation, just preceding the last operation,
for job 2 and 3 can also be computed such that

2 2
2m, €23
' = c2 + (t + t'
41 21 23
7+ (8 + &)

)

it

19 ; and

L]
~4
+
L%

10

I

For job 1, which is not in the conflict set and for job 4, around
which the confliet is resolved, the completion time of the operation
just preceding the last operation remain the same as in the previous
completion time matrix,

Let us check machines from 1 to 3,
For machine 1, the only job having its last operation on this par-
ticular machine is job 1. The completion time of the last operétion
of job 1 is computed such that

2 2 2 4 m
11 T max [c;q, max |Cgy 11

c

max [8, 10] + 3



]

10+ 3

13

The number of jobs, having the last operation on machine 2 is 2 i.e,
r= 2,

The vectors U and V are formed such that

(2 2
b= [c31’ c23]

= [10, 19] 3 and

B® [t32' tzzJ

- [99 5].

%~ g2
= max [Dl, UZ] +V,
= max [19, 19] + 5
= 24
The only job having the last operation on machine 3 is job 4, The
comﬁletion time of the last operation of job 4 ig computed such that
2 1.2 2 2
Cug = WAX | Cpo, MAX [°13* C13} LY
= max [13, max [8, 19]} + 2
= max [13, 19] + 2
=19 + 2

= 21



The conflict among the last operation for each job can be
resolved using the Gantt charts shown in Figure_Z.S.

We have already 1llustrated the machine-based bound LB V, using
the same sample problem.

Now let us compute the lower bounds for nodes (13) and (41) at
levels 1 and 2 respectively, using the composite-based bound LB II,
As illustrated earlier, we can compute the lower bounds by using job-
based bound LB IV and machine-based bound LB V and take the maximum
of the two, as the composite-based bound.

At level 1, the lower bound for node (13), Bl(13) can be computed
using the composite based bound LB II such.that

B1(13) = max [LB IV, LB V]

L]

max [26, 27]

il

= 27
Similarly at level 2, the lower bound for node (41), 32(41) can be

computed using the composite-based bound LB II such that

B2(41) = max [LB IV, LB V]

I

max [29, 27]

29

2.3 Sample Prcblem

In order to demostrate the branch-and-bound technique, the same
sample problem, consisting of four jobs and three machines presented
earlier, is solved using the computational algorithm that shall be
described in formal steps in section 2.4, For convenience, the

machine ordering and processing time matrices are reproduced below,

43
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(12 13 11 (4 2 3

21 23 22 8 4 5
M= T=

33 31 32 6 3 9

41 42 43 7 6 2

Refer the scheduling tree shown in Figure 2.9 and the séheduling
table shown in Table 2,6 throughout all the steps in order to follow
the solution easily.

Step 1. Set conflict level L = 1 and initial schedule time
To(s) = =, The initial completion time matrix, Cl(jm), regardless

of any conflict is constructed as follows:

(4 6 9]
3 8 12 17
C (jm) =

6 9 18

7 13 15

Construct fhe schéduling table as shown in Table 2,6, Enter the
completion time of the first operation of each job, i.e., ciz, c%l, c§3
and cil equal 4, 8, 6 and 7, respectively under the appropriate nodes.
According to step 1,5, find 7 such that

1 1 1 1 }

= o (“12’ €210 €330 C4u
Jm

= min [4, 8, 6, 7]
= 4, |
Step 2. In machine blocks 1 and 3, there is no completion time
equal to 1. In machine block 2, there is only one completion time,
i.,e., ciz, equal to T. Therefore there is no conflict existing.

According to step 2.2, go to step 7,



k6

Step 7., According to step 7.1, enter the next operation of job 1,
whose completion time, ci3, is 6.

7, 1.e., 4, is not the highest number at level 1 in the scheduling
Table 2.6, Therefore according to step 7.2,1, set 1 = 6 where 6 is
the next higher value at level 1 in the scheduling Table., . Go to
step 2, |

Step 2, In machine blocks 1 and 2, there is no eﬁtry equal to T.
However, in machine block 3, the completion time of node (13) and
node (33} are equal to 7.

Check for conflict:

4+t 33 Gee., 64681256

337 %3
According to step 2,1, a conflict exists and therefore go to step 3

Step 3. Compute the lower bounds for nodes (13} and (33) in the
conflict set at level 1, sl, using the bounding procedure LB I such that

Node (13) (33)

Lower-bound 27 27

Step 4. Search for the unexplored node(s) with the minimum lower
bound at level 1, The minimum lower bound at level 1, Bl, is such that

Bl = min [27, 27]

= 27 for nodes (13) and (33)

Step 5. B1 is less than TO i.e, 27 18 less than «, Therefore,
according to step 5.1, go to step 6.

Step 6. Since a tie exists for the minimum lower-bound, according
to step 6.1, break the tie by Left Hand Rule in favor of node (13).

Sot o= 1+ L = 2 and update the cowpletion time matrix such that
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[ 4 6 9)
) 8 12 17
c“(13) =

12 15 24

|7 13 15

Step 7. The completion-time of node (13) is equal 7, i.e. cis = 6,

According to step 7.1, enter the completion time of the next operation

2
11°

According to step 7.2.1, set T = 7 since previous T is not the highest

of job 1, i.e., ¢

entry at level 2 and go to step 2.
Step 2. In machine block 1, there is one job with completion
time equal to T and two jobs with completion time greater than T.

Check for conflict:

2

T+t >cll i.eo’ 7+3=10>9

2
T+ tyy ? 5y

According to step 2.1, conflict exists and therefore, go to step 3.

i,e,, 74+ 8=15> 8

Step 3. The lower-bounds are computed for each node in the
conflict set at level 1, sl, by bounding procedure LB I such that

Node (11) (21 (41)

Lower-bound 35 32 27

Step 4. At level 2, search for minimum unexplored node(s). The
minimum lower-bound at level 2, Bz, is such that

B2 = 27 for node (41)

Step 5. Since B2 is less than T, i.e. 27 is less than «, according

0
to step 5.1, go to step 6.

Step 6. A tie does not exist for the minimum lower-bound, Set

L =2+ 1=3 and update the completion time matrix at level 3, 6?41),
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such that
[ 4 6 10)
3 15 19 24
c’(41) =
12 15 24
(7 13 15

Step 7. The completion time of node (41) is equal to 1. Therefore
enter the completion time of the next operation of job 4 {i,e, ciz.
According to step 7.2.1, set 1 = 10 and go to step 2,

Step 2. Under machine block 1, there are two nodes, one with
completion time equal to T and the other with a completion time higher
than T,

Check for conflict:

. T + t21 > cgl
According to step 2.1, the conflict exists and go to step 3.

i.e. 10+ 8=18> 15

Step 3. Compute the lower~bounds for each node in the conflict
set at level 3, 33, using bounding procedure LB I such that

Node (11 (21)

Loéer-bounds 27 27

Step 4. Searching for the minimum unexplored node(s) at level 3,
we find that tﬁe nminimum lower-bound, BS, is such that

33 = 27 for nodes (11) and (21)

Step 5, Since B3 1s less than TO’ i.e. 27 ig less than =,
according teo step 5.1, go to step 6.

Step 6. A tie exists for the minimum lower-bound. According

to step 6.1, break the tie by Left Hand Rule in favor of node (11)

Set L = 3+ 1 = 4 and update the completion time matrix such that



[ 4 6 10

4 18 22 27
ct(1l) =

12 15 24

| 7 13 15

Step 7. Since node (11) is the last operation of job 1, go to
step 7.2,1
According to step 7.2.1, set T = 12 and go to step 2

Step 2. Since there is only one job with completion time equal
to 1 in machine block 3, there is no conflict existing. Therefore
according to step 2,2, go to step 7

Step 7. According to step 7.1, enter the completion time of
the next operation of job 3, i.e., cgl
According to step 7.2.1, set T = 13 and go to step 2,

Step 2. Since there is only one job with cgmﬂ = 1 in machine

block 2 and no other job with has‘c4 > 1, there is no conflict

m,
existing. According to step 2.2, go to step 7.

Step 7. According to step 7.1, enter the completion time of

the next operation of job 4, i.e, ciB'

According to step 7.2.1, set T = 15 and go to step 2.

_Step 2, In machine block 1, there are two entries with Cim =%
£
Check for conflict:
4
T 4+ t21 > €y i,e, (5+ 8= 23 > 18

According to step 2.1, conflict exists and therefore go to step 3.
Step 3. The lower bounds for each node in the conflict set at

level 4, 54, are computed by using bounding procedure LB I such that
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Node (21) (31)

Lower bounds 35 32

Step 4. Search for the minimum unexplored node(s) at level 4,
Node (31) has the minimum lower bound such that

BY = min [35, 32]

jmﬁ
= 32

Step 5. Since 34 is less than To(s) i.e., 32 is less than =,
go to step 6

Step 6. For the minimum lower bound, there is no tie existing,
Therefore branch from node (31) and set L. =L + 1 = 4+ 1 =5, Update

the completion time matrix at level 5 such that

[ 4 6 10

. 23 27 32
¢ (31) =

12 15 24

L 7 13 15

Step 7. The completion time of node (31) is equal to 1. According

to step 7.1, enter the completion time of the next operation of node (31)

5
32

According to step 7,2,1, set T = 23 gince 15 is not the highest entry

i,e., ¢

at level 5., Go to step 2

Step 2. There is only one node in machine bock 1 Wiﬁh completion
time equal to 1, no conflict exists,
According to step 2,2, go to step 7.

Step 7. The completion time of node (21) 1Is equal to t. Therefore
accgrding to step 7.1, enter the completion time of the mext operation

5
of node (21) i.e. o3
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Acecording to step 7.2,1, set v = 24,
Go to step 2

Step 2. In machine block 2, there is only one entry with
completion time equal to T. Siﬁce there is no other entyry with c5

)

no conflict exists. Therefore according to step 2,2, go to step 7.

2T

Step 7. The completion time of node (23) is equal to 1. Therefore
according to step 7.1, enter the completion time of the next operation
of node (23) 1i.e. cgz.
According to step 7.2.1, set t = 32 since 27 1s not the highest entry
at level 5. Go to step 2,

Step 2. In machine block 2, there is one node (22) with completion
time equal to 1. Since there is no other node with c§m£ > 1, no
conflict exists.. Therefore, according to step 2.2, go to step 7.

Step 7. The completion time of node (22) is equal to 1, There
is no next operation of node (22).

T 1s the highest number in the scheduling table at level 5. Therefore
according to step 7.2,2, set To(s) = 1 = 32 and go to step 8.

Step 8. Back-track along the same branch of the scheduling tree;
setting L =L -1 =5~ 1= 4, Compare the lower-bounds of unexplored
node(s) with the updated solution To(s). There is no unexplored node
at this level with lower-bound less than TO(S). Therefore, according
to step 8.2, go to step 9

Step 9. Since L > 1 i.,e. 4 > 1, according to step 9.1, go to
step 8.

Step 8. Backtrack along the same branch of the scheduling tree

by setting L =L - 1 =4 - 1 = 3, and compare the lower bound of the
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unexplored node(s) with the updated solution To(s). The unexplored
node (21) has lower bound 27 which is less than To(s) or 32,

Therefore, according to step 8.1, set 1T = min [c?m ] = min [10, 15] = 10;
" :

and go to step 4. Jes

Step 4. At level 3, the minimum lower bound for unexplored node(s),
3, is 27 for node (21)

Step 5. According to step 5.1, go to step 6 since B3 is less than
To(s) i,e, 27 is less than 32,

Step 6. Since there is no tie existing, according to step 6.2,

set L= L+ 1=3+ 1= 4 and update the completion time matrix such

that
(4 6 18
4 15 19 24
c (2L =
12 15 24
| 7 13 15

Go to step 7.

Step 7. There is no node with gbmpletion time equai to T.
According to step 7.2.1, set t = 12 and go to step 2,

Step 2, The node (33} is the only node with completion time equal
to 1, There is no other node in machine block 3, with ij 3;T.
According to step 2.2, go to step 7 since no conflict exisﬁs.

Step 7. The completion time of node (33) 1s equal to 1. Enter

CA
31

According to step 7.2.1, set T = 13 since previous T is not the highest

the completion time of the next operation of node (33) i.e.

number at level 4 and go to step 2

Step 2. The node (42) in machine block 2 has the completion time

equal to 1. There 1s no other node in machine block 2 with cgm‘ > T

£
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According to step 2,2, there is no conflict existing, Therefore, go
to step 7.

Step 7. The completion time of node (42) is equal to 1. Enter
the completion time of the next opération of node (42) i.e. CZB
According to step 7.2.1, set 1 = 15 since previous 1 is not the highest
number at level 4 and go to step 2,

Step 2, In machine block 1, there are three operations with

4

c >

jm£ =
Check for conflict:

Ta

L}

T+ t > cgl i.e., 15+ 8

21 23 > 15

T4+ t >c4 18 > 15

31 31
According to step 2,1, conflict exists and therefore go to step 3.

i.e., 15+ 3

Step 3. The lower bounds for each node in the conflict set at
level 4, sa, are computed by using bounding procedure LB 1 such that

Node (11) (21) (31)

Lower bounds 35 32 . 32

Step 4, Search for the minimum unexplored node(s) at level 4,
The minimum lower bound at level 4 is such that

B* = 32 for nodes (21) and (31)

Step 5, B4 is equal to To(s) i,e., 32. Therefore, according
to step 5.2, go to step 8.

According to step 8, the backtracking process is continued along
the same branch of the scheduling tree, by setting L =L - 1 = 4 - 1 = 3,
At level 1, the unexplored node (33) has lower bound less than the

updated schedule time To(s). The branching, bounding and backtracking

processes are carried out till an updated solution Tl(s), Loy 27
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is obtained. The backtracking process is again continued to find an
unexplored node with lower bound less than the updated solutionm, Tl(s).
It is found that there is no unexplored node with lower bound less
than the updated solution, Tl(s). Hence,.the schedule time, Tl(s)

or 27, is the minimum schedule time. The number of nodes explored

is 24. TFigure 2-10 shows the Gantt chart of the solution.

2,4 Computational Algorithm

The branch-and-bound algorithm discussed above is stated in formal
steps below:
Step 1: Inditialize the sche&uling table,
1,1. Set level index L = 1, and schedule time T(s) = o,
1.2. Compute the initial completion time matrix regardless
of any conflict, Cl(jm).
1.3, Construct the scheduling table.
1.4, Enter the completion time of the first operation of
each job at level L, cjm

1.5. Find the minimum completion time at level L such that

T = min [cgm]
jm
Step 2: Check for conflict, within each machine block,between job
ending at time 1 and those with cL > T
jmf_ -

2,1, If a conflict exists such that

L
T+ tjm£ > cjm£

2.2, If there is no conflict such that

, 0 to step 3.

T +t < ¢ o to step 7.
jm£ ] g P

L
Step 3: Compute the lower-bounds at level L, for each node under conflict,

BL(jmﬂ), by a particular bounding procedure.



Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Find the unexplored node(s) which has the ninimum lower-bound
at level L, such that

BY = min [BL(jmz)]
jm£

Check the minimum lower bound at any level L:
5.1, If BL < T(s), go to step 6.
5.2, If BY > T(s), go to step 8.

Branch from an unexplored node with the minimum lower bound:

6.1, If a tie exists, break it by a particular rule., Set

L =L+ 1 and update the completion time matrix CL
(jm‘e) *
Go to step 7.
6.2, If a tie does not exist, branch from that node. Set
L =1L+ 1 and update the completion time matrix,
ijmt). Go to step 7.
Update the scheduling table
L

7.1. Enter the completion time, c
jmﬁ

the jobs with completion time equal to t.

of next operation of

7.2. Check 7!
7.2,1, If 1 is not the highest number at level L, set
T = 1' where 1' is the next higher number at
level L and go to step 2.
7.2.2, If v is the highest number at level L, set
T(s) = 7 and go to step 8.

Backtrack along the same branch of the scheduling table by

55

gsetting L = L - 1, Compare the lower bounds for all unexplored

nodes at this level:

8.,1. If there exist one or more nodes with a lower bound such



Step 9:

B (4my) < T(s),
set T = min (ch ) and go to

L

jes

8.2, 1f all unexplored nodes

B“(3mp) > T(s), go

Check for an optimal solution:

9.1, If L> 1, go to step 8

step 4.

have lower bounds such that

to step 9.

9.2, If L =1, T(s) is an optimal schedule time,

56
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TABLE 2,1 . SOLUTION OF THE SAMPLE PROBLEM USING
COMPOSITE~BASED BOUNDING LB I

Back- Conflict Node Lower Bounds Lowez Minimum Schedule
k Level Boun Lower Time
rrac LB III LBV 1B II Bound
L L
i L (sz) B (jm) B’ | 7
1 (13) 24 27 27 27
(33) 18 27 27
2 (1D 26 35 35
(21) 23 32 32
(41) 24 27 27 27
3 - (1) 27 27 27 27
(21) 24 27 27
4 (21) 30 35 35
0 (31) 32 29 32 32 32
3 (11) 27 By . oy .
(21) 24 27 27 27
4 (11) 35 35 35
(21) 27 32 32
(31) 32 29 32
1 (13) 24 27 27
(33) 18 27 27 27
2 (21) 23 31 31
(31) 26 29 29
(41) 24 27 27 27
3 (11) 28 27 28
(21) 27 27 27 27
(31) 27 27 27
4 (11) 30 33 33
(31) 27 32 32
3 (11) 28 27 28
(21) 27 27 27

(3D 27 27 27 27



TABLE 2,1, SOLUTION OF THE SAMPLE PROBLEM USING
COMPOSITE-BASED BOUNDING LB I (continued)

Back- Conflict Node Lower Bounds LeHRE Minimum Schedule
track Level LB 111 Lv oouwnd Lawer Time
LB II Bound
L L
4 (11) 30 27 30
(21) 27 27 27 27
5 - (32) 27 30 30
1 (42) 22 27 27 27 27




TABLE 2,2, SOLUTION OF THE SAMPLE PROBLEM USING
COMPOSITE~BASED BOUNDING LB II

Back- Conflict Node Lower Bounds Lower Minimum Schedule
track Level Bound Lower Time
LBIV LBV LB II Bound
L L.
i Iy (”i) B(w%) B i
1 (13) 26 27 27 27
(33) 23 27 27
2 (11) 29 35 35
(21) 26 32 32
(41) 29 27 29 29
3 (11) 29 27 29 29
(21) 29 27 29
4 (21) 35 35 35
0 (3D 32 29 32 32 32
3 (11) 29 27 29
(21) 29 27 29 29
4 (11) 35 35 35
(21) 32 32 32
(3L) 32 29 32
1 (13) 26 27 27
(33) 23 27 27 27
2 (21) 25 31 31
(31) 26 29 29
(41) 24 27 27 27
3 (11) 28 27 28
(21) 32 27 32
(31) 27 27 27 27
4 (11) 30 27 30
(21) 27 27 27 27
3 (32) 27 30 30

b (42) 27 27 27 o ”7




TABLE 2,3, SOLUTION OF THE SAMPLE PROBLEM USING LB III

No. of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
‘ L L
i L (Jmc) B (,jmt) B T,
1 {13} 24
(33) 18 18
2 (21) 23 23
(31) 26
(41) 24
3 (11) 26 26
(31) 26
(41) 27
4 (31) 29 29
(41) 30
5 (22) 26 26
(32) 28
6 (32) 34
0 (42) 36 34 34
5 (22) 26
(32) 28 28
6 (22) 37
(32) 31 31
(42) 36
7 (22) 36
(42) 34
4 (31) 29
(41) 30 30
5 (32) 38
1 (42) 33 33
3 (11) 26
(31) 26 26
(41) 27

61



TABLE 2,3, SOLUTION OF THE SAMPLE PROBLEM USING LB ILI (continued)

No. of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level _ Lower Bound Time
. . L, . L
i L (Jmt) B (sz) B Ti
4 (11) 29
(41) 26 : 26
5 (22) 26
(32) 25 25
6 (22) 34
(32) 28 28
(42) 33 ’
7 (22) 33
2 (32) 31 31 31
5 (22) 26 ; 26
(32) 25
6 (32) 34
(42) 33
4 (ll) 29 29
(41) ?6
5 (22) 26
{32) .25 25
6 (22) 33
(42) 32
5 (22) 26 26
{32) 25
6 (32) 34
{42) 36
3 (11) 26
(31) 26
(41) 27 27
4 (22) 25 25

(42) 26
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TABLE 2,3, SOLUTION OF THE SAMPLE PROBLEM USING LB III (centinued)

No. of Cbnflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i L (ﬁ%) B(M&) B Ti
5 (11) 30
(31) 27 27
6 (32) 35
(42) 32
5 (11) 30 30
(31) 27
6 (32) 38
(42) 32
4 {(22) 25
(42) 26 26
5 (11) 30
(31) 27 27
6 (22) 35
(32) 35
(42) 30 30
7 {(22) 35
(32) 35
5 (11) 30 30
{(31) 27
6 (22) 35
(32) 35
2 (21) 23
(31) 26
(41) 24 24
3 (11) 28
(21) 27 27

(31) 27 27
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TABLE 2,3, SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No. of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i L (m%) B(ﬁ%) B Ty
4 (11) 30
(31) 27 27
5 {(22) 33
(32) 32
4 {11) 30 30
(31) 27
5 (22) 33
(32) 35
3 (1) 28
(21) 27
(31) & 27
4 (11) 30 )
(21) 27 27
5 (32) 27
3 (42) 22 22 27
2 (21) 23
(31) 26 26
(41) 24
3 (11) 28
' (21) 32
(31) 26 26
(41) 33
4 (11) 29
(21) 32
(41) - 33
1 (13) 24 24
(33) 18
2 (11) 26
(21) 23 23
(41) 24
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TABLE 2.3, SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No, of Conflict Node Lower Bounds Minimum Schedule
"Backtrack Level Lower Bound Time
L
i L (gmg)  B“(4my) B Ty
3 (1) 26
(41) 23 23
4 (23) 30
(43) 24 24
5 {11) 33
(31) 30
(41) 27
3 {11) 26 26
(41) 23
4 (23) 30
(33) 24 24
5 (31 30
(41) 30
2 (11) 26
{21) 23
(41) 24 ' 24
3 {11) 27
(21) 24 24
4 (11) 35
(21) 27
(31) 32
2 (11) 26 26
{21) 23
(41) 24
3 (21) 32
(31) 32

(41) 33



TABLE 2,4 . SOLUTION OF THE SAMPLE PROBLEM USING LB IV

No. of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i L (Jmp) B (ymp) B T,
1 (13) 26
(33) 23 23
2 {21) 25
(31) 26
(41) 24 24
3 (11) 28
(21) 32
{31) 27 27
4 (11) 30
(21) 27 27
5 (32) 27 27
(42) 27
6 (22) 35
0 (42) 30 30 30
5 (32) 27
1 (42) 27 27 27
2 (21) 25 25
(31) 26
(41) 24
3 (1) 26 26
(31) 26
{41) 27
4 (31) 29
(41) 30
3 (1) 26
(31) 26 26
(41) 27
4 (11) 29

(41) 26 26



TABLE 2.,4. SOLUTION OF THE SAMPLE PROBLEM USING LB IV (continued)

No. of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i L (Jmp) B (Jm,) B T,
5 (22) 26 26
(32) 26 '
6 (32) 34
(42) 27
5 (22) 26
(32) 26 26
6 (22) 34
(32) 28
(42) 33
2 (21) 25 :
(31) 26 26
(41) 24
3 (1) 28
s (21) 34
(31) 26 26
(41) 33
- 4 (11) : 29
' (21) 32
(41) 33
1 (13) 26 26
(33) 23
2 (11) 29
(21) 26 26
(41) 29
3 (11) 26 26
(41) 26 26
4 (23) 30
(43) 29
3 {11) 26

{41) 26 26
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TABLE 2.4, SOLUTION OF THE SAMPLE PROBLEM USING LB IV (continued)

No, of Conflict Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i L B
(Jmt) (.jmt) B T
4 (23) 30

(33) 29



TABLE 2,5, SOLUTION OF THE SAMPLE PROBLEM USING LB V

No. of Conflict Node

Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
. L : L
i L (sz) B (,jm‘e) B Ty
1 (13) 27 27
(33) 27
2 (11) 35
: (21) 32
(41) 27 27
3 (1) 27 27
(21) 27
4 {(21) 35
0 (31) 29 29 32
3 (1) 27
(21) 27 27
4 (1) 35
(21) 32
(31) 29 29
5 (11) 30
(21) 29 29
5 (11) 30 30
(21) 29
1 (13) 27
(33 27 27
2 (21) 31
(31) 29
(41) 27 27
3 (11) 27 27
(21) 27
(31) 27
4 {(21) 36
1 (31) 28 28 31
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TABLE 2.5. SOLUTION OF THE SAMPLE PROBLEM USING LB V (continued)

No, of Confliet Node Lower Bounds Minimum Schedule
Backtrack Level Lower Bound Time
L L
i | L (,jmz) B (jmﬂ) B Ti
3 {11) 27
(21) 27 27
(31) 27
4 (11) 33
‘ (31) 32
3 (11) 27
(21) 27
{31) 27 27
4 (11) 27 27
2 o (21) 27 30
) 4 (32) 30
3 (_1_12) 27 27 27

70
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CHAPTER IIIL
COMPUTATTONAL EXPERIMENTS

The branch;andwbound algorithm for job-shop problems, discussed
in Section 2.4, has been programmed in FORTRAN IV language. The two
composite-based bounds LB I and LB II, devgloped in this thesis, are
imbedded as subroutines. Three othe; lower bounds, referred to as
LB IIT, LB IV and LB V, are also imbedded as subroutines for
comparison purpose., In order to compare the performance of the
various bounding procedures, a considerable number of experiments
have been conducted on IBM 360/50 computer;

The performance of these lower bounds 1s compared on the basis of the
following factors: (1) the number of nodes explored, (2) the compu-
tational time required to obtain the optimal solution; and (3} the
efficiency of the solution obtained without backtracking, In addition,
various statistics such as the minimum, maximum, mean and standard
deviation for all the above three factors are computed.

The sizes of the problems vary between 3 to 12 jobs and 3 to 5
machines. The number of experiments conducted 1s 18, The number of
problems in each experiments is 25. However, due to‘computation time
limitations, in some experiments it has not been possible to s§lve all
the 25 problems. The objective in selecting the problems of above
sizes is to Investigate the effects of changes Iin both the number of
jobs and the number of machines. The processing times are generated
randomly from a uniform distribution with interval 1 and 30, both
inclusive, The entrles of the machine ordering matrices are also gen-

erated randomly,
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The v.sults of experiments I through XVIIi in terms of the number
of nodes explored, the computational time required to obtain the
optimal solution and the efficiency of solution without backtracking
are shown in Tables 3.1 through 3.3. The performance of the various
bounding procedures will be evaluated and compared with the help of
these results, A number of significant observations, obtained from
the analysis of these results for different bounding procedures, are

discussed below,

1. Number of Nodes Explored, The number of nodes explored to obtain

the optimal solution increases very rapidly as the number of jobs
increases. The obvious reason for this rapid increase is: the higher
the_number of jobs the larger the number of conflicts to be resolved,
gnd consequently, the greater the number of nodes to be explored,
However, this factor varies greatly for different bounding procedures
for the same experiment. As observed in Table 3.1, in almostlall
gxperiments, the number of nodes explored for the composite-based
bounds LB I, LB II is relatively very small as compared to other
lower bounds LB III, LB IV and LB V, In general, a powerful bounding
procedure produces lower bounds as high as possible and recognizes
the optimal solution by exploring a small number of nodes. Otherwise,
the optimal solution will be reached after a number of backtrackings
which, in turn, increase the number of nodes explored. Thus, it is
obvious that the composite-based bounds LB I and LB II are more
powerful than any of the other lower bounds LB III, LB IV and LB V.
Although the results obtained using the composite-based bounds LB I

and LB II are fairly close to each other, LB IL gives slightly better
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results than 1B I, This is because the job-based bound LB IV im-
bedded in composite-based bound LB II is more powerful than the job-
based bound LB III imbedded in composite-based bound LB I.

The number of nodes explored to obtain an optimal solution in-
creases as the number of machines increases. However, in some éxPeri-
ments such as II and III for all bounding procedures, aﬁd VII and
VIII for LB II and LB V as observed in Table 3,1, the number of nodes
decreases as the number of machines increases. The decrease in the
number of nodes explored also depends on the quality of the bounding
procedure, A decrease in the number of nodes may be expeéted by a
reasoning similar to that for the increase in the number of nodes.

For different problems of the same size for a particular bounding
procedure, the number of nodes explored varies greatly., This variation

is due to the random generation of the elements in processing time and
machine ordering matrices and the lower bound on the schedule time

aepends on these eléments. Table 3.1 shous another significant obser-
yatibn that the change in the numﬁer.of.hodeé explofed is due more to the
chénge'in the number of.jbbs than the change in the number of machines.
For example, as observed in’experiments I, IV and IT for LE I in Table
3.1, the mean number of nodes explored changes from 9,32 to 33.32 when the
number of jobs changes from 3 to 4, whereas, it changes from 9.32 to

13,44 when the number of machines changes from 3 to 4,

2. Computational Time. Since the computational time depends on the

nodes explored, the computational time required to obtain an optimal
solution increases rapidly with the increase in the number of jobs.

As explained earlier, this is because the increase in the number of
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jobs leads to more number of conflicts and consequently, more number
of nodes have to be explored. As observed for all experiments except
II, III, V and VI in Table 3,2, the computational time required to
obtain the optimal solution; using composite-based bounds LB I and

LB II, is less than that, using the other lower bounds LB III, LB IV
and LB V. For small problems like (3x3) and (4x3), the computational
time for composite-based bounds is almost the same as that for some
of the other lower bounds, even though the number of nodes explored
using the former ig less than that using the latter. TFor example,
Table 3,2 sghows that; on the average 1.87 seconds are required by

IB I and LB IV to explore 9.32 and 10.60 nodes respectively., Thus

LB 1V spends more computational time in computing a lower bound

for each node than that by LB II. However, in all experiments except
the above, the composite-based bounds give better results since

they recognize the optimal solution by exploring a small number of
nodes,

The computational time increases as the number of machines in-
creases, However, in some experiments such as V and VI for LB III
'and LB IV, the computational time decreases as the number of machines
increases. This is because there is a decrease in the number of
nodes explored with the increase in the number of machines for the
above experiments, as observed in Table 3,1. It is interesting to
note that the change in the computational time due to change in the
number of machines is relatively more for the composite-based bounds
LB I and LB II, and also for the machine-based bound LB V than that
for the job-based bounds LB III and LB IV. This is because the in-

crease in the numher of machines causes an increase in the number of



bounds since the lower bound for each node using any of the former
lower bounds is computed as the maximum value of the bounds for all
machines,

The variation in the computational time from one problem to
another with the same size and for a particular bounding procedure
is due to the random generation of the entries in processing time
and machine ordering matrices., On the average, the composite-based
bounds LB I and LB II take less computational time. Therefore,
these bounding procedures are more efficient than any of the job-
based or machine-based bounds LB III, LB IV and LB V, However, in
general, the composite-based bound LB I gives slightly better results
than LB II because the computational time required to compute the
lower bound using the former is more than that using the latter.

3, Efficilency of Solution Obtained Without Backtracking., It is

interesting to find out how close the solution obtained without
backtracking is to the optimal solution, In experiments I
through XVIIT, the efficiency of such solution is fairly good as
observed in Table 3,3, The overall variation in this factor is about
10 percent. Also, unlike the number of nodes explored andthe
computational time, this factor does not vary much with the increase
in the size of the problem, TFor some experiments such as IV and V,
Table 3.3 shows an increase in the efficiency for an increase in.the
number of machines for all bounding procedures except LB V, Whereas,
for some other experiments such as VII and VIII, there is a decrease
in the efficiency for an increase in the number of machines for all
bounding procedures except LB III, The efficiency of the solution
obtained without backtracking depends on the quality of the bounding

procedure: the more powerful a bounding procedure the higher the

76
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efficiency of the solution obtained without backtracking. From

Table 3.3, it becomes evident that the composite-based bounds

LB I and LB II give a higher efficlency than any of the bounding
procedures LB III, LB IV and LB V and are; therefore, more powerful,
Although, the results obtained using the composite-based bounds

LB I and LB II are fairly close to each other, LB II gives slightly
better results than LB I, The reason for this slight variatibn is
that the job-based bound LB IV imbedded in composite-based bound LB I

is more powerful than the job-based bound LB III imbedded in composite-

based bound LB TI.
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CHAPTER IV
SUMMARY AND CONCLUSIONS

The basic objective of this thesis is to develop a branch-and-
bound algorithm for job-shop problems. The branch-and-bound approach
generates an optimal solution after the generatibn cof only a small
subset of possible sequences. The basic concepts of this approach
which consists of the branching, bounding and backtracking processes
are discussed, using a scheduling tree. The process of generéting a
new set of nodes at a level from a node at the preceeding level is
referred to as the branching process. This process guarantees an
optimal solution by generaﬁing all nodes of the scheduling tree., The
bounding process helps select a particular node at a level for further
branching and thus makes it possible to achieve a reduction in the
generation of neodes at each level. A backtracking process has to be
embedded in the branch-and-bound technique to guarantee optimality. The
efficiency of the branch-and-bound technique depends on the quality of
the boundlng procedure.

A mathematical analysis, in rigorous notation, of the five bounding
procedures is presented. The composite-based bounds, referred to as LB I
and LB II, are developed in this thesis. The other three bounding
procedures, referred to as LB ITII,LB IV and LB V, are analyzed fof compari-
son purposes, The computation of the lower bounds, using these bounding
procedures, 1s illustrated with the help of a sample problem. The computa-
tional algorithm for the branch-and-bound technique is summarized in formal
steps. The sample problem, presented earlier, is solved to i1llustrate the

computational algorithm.
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In order to study the performance of the various bounding
procedures, a considerable number of experiments has been conducted
on IBM 360/50. The sizes of the problems vary between 3 to 12 jobs and
3 to 5 machines. The total number of experiments conducted is 18 and
the number of problems in each experiment is 25. The elements in both
ﬁrocessing time and machine ordering matrices are generated randomly.
The performance of the various bounding procedures is compared on the
basis of the numBer of nodes exp;ored, the computation time and the
efficiency of solution without backtracking. Also, various statistics
such as the minimum, maximum, mean and standard deviation for all the
above three factors are computed.

The most‘significant results obtained from the computational
experiments are as follows:

‘1, The number of nodeérexplored increases with the increase
in the size of the problem, rThis is because tﬁe increase in the
size of the problem leads to more'number of conflicts,

2, The computétional time required to obtain the optimal
solution depends on the number of nodes explored. TFor composite-
based bounds LB I and LB II and machine-based bound LB V, the
éomputational time to explore a node using the wmachine-based bound
depends on the number of wachines because the lower bound for each node
is computed as the maximum value of the bounds for all machines.

3. Unlike the number of nodes explored and the computational time
required to obtain the optimal solution, the efficiency of sclution
obtalned without backtracking does not vary much with the iﬁcrease in the
size of the problem, However, it depends on the quality of the bounding

procedure: the more powerful a bounding procedure the higher the
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efficiency of the sclution cbtained without backtracking. It is observed
that the composite-based bounds LB I and LB II, on the average, give a
higher efficiency than any of the bounding procedures LB III, LB IV and LB V.

4, The composite-based bounds LB I and LB II are, on the average,
more powerful in terms of the number of nodes explored and the computational
time required to obtain the optimal solution and the efficiency of the
solution obtained without backtracking than any of the lower bounds LB ITI,
LB IV and LB V. The results obtained using the composite-based bounds LB I
and LB IT are falrly close to each other. However, the composite-based bound
LB I gives slightly better results in terms of the number of nodes explored
and the efficiency of the solution obtained without backtracking. This is
because the job-based bound LB 1V, embedded in composite-based bound LB II,
is more powerful than the job-based bound LB III, embedded in the composite-
based-boﬁnd LB I. The composite-based bound LB I gives better results in
terms of the computer time required to obtain the optimal solution than LB II
bécause the computational tlime required to explore a node using the former
is léés than that using the latter.

5. In ranking the five bounding procedures, as shown in Tables 4.1,
24.2 and 4.3, it appears, on the average, that the composite-based bound LB I
ranks first froﬁ the point of view of computational time, Whereas, the
‘éomposite—based bound LB II ranks first according to the number of nodes
'explored to obtain the optimal solution, and the efficiency of solution
obtained without backtracking.

In conclusion, the composite-based bound LB I, which consists of the
job-based bound LB III and the machine-based bound LB V, is recommended

as the powerful lower bound.
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Table 4.1 Rank of Bounding Procedures Based on the Number of Nodes

Explored,
Exp. Size of RANK
No. Problem 1 2 3 4 . 5
I (3x3) LB II LB I LB 1V LB v LB III
11 (3x4) LB II LB I LB Iv LB III LB V
- I1X (3x5) LB II LB I LB IV LB IIT LB V
v (4x3) LB II LB I LB VvV LB III LB IV
Vv (4x%4) LB II LB I LB V LB IV LB III
VI (4x5) LB II LB IV LB I LB III LB V
VII (5x3) LB I LB 11 LB IV LB III,v - -
VIII (5x4) LB II LB I LB V LB IV LB III
IX {5x5) LB II LB I LB Vv LB IV LB 111
X (6x3) LB II LB I LB V LB IV LB III
XI (6x4) LB I LB II LB Y kel %
. XII (6x5) LB II LB I LB V LB IV ®
XIII (8x3) LB II LB 1 LB V * *
Xlv (8x4) LB I LB I1I LB V ¥ :
XV (10x3) LB II LB I LB vV * *
© XVI {10x4) LB II LB 1 LB V . *
XVII (12x3) LB I LBII - LBV - . % *

*
Due to Computer time limitations, the optimal solution was not obtained
for the remaining bounding procedures. ' '
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Table 4.2 Rank of Bounding Procedures Based on Computational Time

Exp. Size of RANK
No. Problem 1 2 : 3 4 5
1 (3x3) LB I,IV LB II LB IIL,V - —
11 (3x4) LB II1,IV LB I,II LB V - -
III (3x5) LB III LB I LB IV LB II LB V
v (4x3) LB II LB I LE v LB IV LB III
' (4x4) LB III LB I LB II,IV LB V -
Vi (4x5) LB III LB IV LB I LB I1I LB Vv
VII {5x3) LB I LB II LB V LB IV LB III
VIII {5x4) LB II LB I LB 1V 1B V LB III
IX (5x5) LB I LB IV LB III LB 1I LB V
X (6x3) LB I LB II LB V LB III LB IV
X1 (6x4) LB I LB II LB V * *
XII (6x5) LB I LB I1I LB V LB IV *
XITI (8x3) LB I LB V LB I1I * *
XIv (8x4) LB Vv LB I LB II * *
XV (10x3) LB I LB V LB II * *
Xvi (10x4) LB I,II LB V ¥ * *
Xvil (12x3) LB V LB I LB II * *

*
Due to Computer time limitations, the optimal solution was not obtained
for the remaining bounding procedures.
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Table 4.3 Rank of Bounding Procedures Based on Efficiency of Solution
(Without Backtracking)

Exp. Size of RANK
No. Problem 1 2 3 4 5
I (3x3) LB I LB II LB IV LB III LBV
11 : (3x4) LB II LB I LB I1I LB IV LB V
I11 (3x5) LB IT LB I LB 1V LB III LB v
v (4x3) LB II LB I LB III LB IV LB v
v - {4x4) LB II LB I LB III LB IV LB V
VI (4x5) LB II LB 1 LB IV LB III LB Vv
VII (5x3) LB II LB I LB 1V LB TII LB V
VIII (5x4) LB I LB 1V LB II LB 111 LB V
IX (5x5) LBI LBV LB IV LB II LB III
X (6x3) LB IT LB I LB V LB IV LB III
XI (6x4) LB I LB II LB V LB IV LB III
XII (6x5) LB 11 LB I LB 1v LB V LB III
XIII (8x3) LB IV LB I1 LB I LB v LB III
X1V ' (8x4) LB IV LB II LB III LB I LBV
xv (10x3) LB Iv LB II LB I LB vV ‘ LB III
XVI (10x4) LB III LB IV LB I LB II LB V

XVII (12x3) LB I LB II LB IV LB V LB III
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FORTRAN IV G LEVEL 1, MOD 4 MAIN DATE = 69336 95 14,

X X BRANCH-AND-BOUND ALGORITHM Rk

E g

-

Ll FOR JOB-SHOP PROBLEMS ok

PROGRAMMED BY
Se Re HIREMATH

(R A EEBEEE AR EEERENERES LR RE R R R E RS AR ER SRR EEERENERSEREIESJJIXEERJE}E ¥,

I AR E RN NEEESEEAEEN R SRR SR AR NENEEE RN LSRR REENES ERNER N NEZENEJNIENE NN NN I N

THE BRANCH ANMD BOUND ALGORITHM DESCRIBED IN SECTION 2.4
IS PROGRAMMED IN FORTRAN IV

THIS PROGRAM CONSISTS OF MAIN PROGAM AND FIVE BOUNDING
PROCEDURES AS SURROUTINES. IN ADDISON IT ALSO CONSISTS
OF THREE MORE SUBROUTINES.

“

LA R E N ENE AR EEREEREEREERNEREENENRESERESRIEJMNSEIERH:EJMN®ESJNENENRIEJMRZEZSBI S EREENSERENE NI IR

(EE RN NEREANEEESENEENFERE L BAREENERERRER R R RN RN RN EEEREER R NERNXENNNRENNERE NI

o e o e o VARIABLES Nkt 4 A e
¥ 1T PROCESSING TIME
MM MACHINE ORDERING
g JCT COMPLETION TIME
MACH TOTAL NUMBER OF MACHINES OR OPERATIONS FDR
. JOBS TOTAL NO. OF JOBS
A JGB
LA ENTRY IN THE SCHEDULING TABLE
10P OPERATION
JJ JOB IN THE CONFLICT SET
) N NO, OF JOBS IN CONFLICT SET AT A LEVEL
ILB LOWER BOUND FOR A NODE
NILB MINe LOWER BOUND AT A LEVEL
) ISTMIN SCHEDULE TIME
JACTIV ACTIVE NODE AT A LEVEL
4 LR BN N NN I N AN BN A N R R L I I N N AN N N NN RN R R NI NN NN
: {READ.FQe O GENERATING DATA (MACHINE-ORDERING AND
PROCESSING TIME MATRICES)

IREADeNE«O READ DATA CARDS FOR BOTH MATRICES

IF IPRINTLEQ.0O PRINT DETAILS
IF IPRINT.NE.O. DO NOT PRINT DETAILS

IF 1ICARD.EQ4O NO CARD OUTPUT DESIRED
IF ICARDaNEWD CARD QUTPUT DESIRED

LIMITLELIMITR THE LIMITS OF INTERVAL FOR PROCESS-
ING TIMES

P LG HDOBR G N O DIOGTD RGN IO PRI IEESOISA DDV OBBO0 AL ENERDBIE PRGOS AT SR

MATIN PROGRAM



FORTRAN [V G LEVEL 1, MOD 4 MAIN VDATE = 69336 96 14,

" 0001 COMMON IT(15,15)4MACH,MMIL15415),4JCT(L15415)4LA{90,15,15)
. 0002 COMMON I0P(90,15)4JJ{90,15},ILB(90,15),J0DS+ISTMIN
. 0003 COMMON N{9O)}sNILB(S0) 4 JACTIV(90),IPRINT,IB
0004 DIMENSION IRAND2150)
, 0005 READ(Ls1)r MACH JOBS,LIMITL,LIMIT2,NPRGB,NFLB, NLLB,!REAU,ISKIP
LIPRINT,ICARD,IX,1Y,IB
" 0006 1 FORMAT(1114,218,14}
- 0007 0O 32 NP=1,NPROB
. 0008 WRITE (3,33) NP
0009 33 FORMAT{1HO,10X,' PROBLEM NUMBER = *,13)
. 0C10 IF{IREADeEQe0) GO TO 600
c
c READ PROCESSING TIME MATRIX
- c
: 0011 DD 9 legJDBS
0012 "9 READ(1+42) (IT{J,1),1=1¢MACH)
© 0013 2 FORMAT(1015)
0014 GO TO 77
c
c GENERATE PROCESSING TIME MATRIX
c
0015 600 PO 211 M=1,MACH
0C16 DO 211 J=1,J0BS
= 0017 211 IT(JsMI=RANDNOCIV)*(LIMIT2-LIMITL+1)+LIMIT]
0018 77T WRITE (3,82)
0019 82 FORMAT{IH ,10X, YPROGCESSING TIME MATRIX')
0020 : DO 11 J=1,J0BS
0021- 11 WRITE (3,4) (IT{Js1)41=1,MACH)
0022 4 FORMAT{1H ,10X,1214%)
0023 IF(IREAD.EQ.0) GO TO 698
c
o READ MACHINE~ORDERING MATRIX
: C
0024 DO 3 J=1,J0BS
0025 3 READ(1,2) (MM(Jy1)sI=1,MACH)
- 0026 GO TO 76
C .
C GENERATE MACHINE ORDERING MATRIX
i C
0027 698 DO 235 J=1,J08S
0028 DD 231 #M=1,MACH
© 0029 231 IRANDZ(M)=M
0030 M1=MACH
0031 232 IRAN=RANDNO(IY)*M1+1
“0032 MM(J,M1}=TRAND2(IRAN)+100%J
0033 IF (IRAN +EQ. Ml) GO TO 234
0034 _ Ml=M1-1 ;
" 0035 IF (M1 FQe 0O) GO TD 235
0036 DO 233 M2=TRAN, ML
0037 -233 IRANDZ2(M2)=IRANDZ2(M2+1}
0C3R GO TD 232 '
0039 234 IF (M1l LFQe 1) GO TO 235
0040 Ml=M1-1
0041 GO TO 232
- Q042 235 CONTINUE
L0043 76 DD 96 J=1,J08S
0C4n - DO 96 1=14MACH

0045 96 MM{JyTI=MMIJ,1)~d%100
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0046
. 0047
. 0048
0049
. 0C50
0051

0052
- 0053
.0C54
0C55
- 0056
- 0057
0058
- 0C59
0060

0061

- 0062
0063
0064
0065
0066
0067
- 0068

0069
0070
S 0071
0072
0073
0074
0075
0076
C 0077

0c78 -

0075

0080
ocal
_oes2
Qca3
OCR4
0085

T 0086
0087

81

B

35
C
c
c
10
B3
13
C
c
C
C
S |
40
41
¢
L
c
50
C
C
c
51
84
7
C
o
C
551

85

1, MOD 4 MAIN DATE = 69336 97

WRITE (3,81)

FORMAT(1H 410X, ' "MACHINE ORDERING MATRIX')
DO 8 J=1,JNBS

WRITE (344) (MM(J,1},I=1,MACH)

WRITE (3,35} IB

FORMAT(1HO,10X,* BOUNDING PROCEDURE',I3)

FORM COMPLETION TIME MATRIX

PO 1G J=1,J0BS

JCT Oy 1)=1T0d,y 1)

DO 10 [=2,MACH

JCT(J,1)=dCTLJ,I-1)+1T(J, 1}

CONT INUE

IF(IPRINT«EQe0) GO TO 21

WRITE (3,83) -

FORMAT(1H 410X, VCOMPLETION TIME MATRIX')
0O 13 J=1,J0BS '

WRITE (3,2) (JCT(J,1),1=1,MACH}

INITIALIZE
SET UP SCHEDULING TABLE

DO 40 LV=1,90
DO 40 I=1,MACH
D0 40 J4=1,J08S
LA(LV,I,J)=0
DO 41 LV=1,90
DO 41 J=1,J08S
IOP(LV,J)=1

ENTER FIRST OPERATIONS OF EACH JOB

T=0.

ISWTCH=0
ISTMIN=999G9
Lv=1

NEBKTRK=0
NNODES=0
NCNFLT=0

CALL TIME(NTL)
Do 50 J=1,J0BS
F=MM(J,1)
LA(LsMyJ)1=JCT(Jdy1)

FIND SMALLEST T AND MEXT HIGHER T

CALL SMALLT(T,LV)

IF(IPRINTC.EQesO0) GO TO 22

WRITE (3,84)

FORMAT(IH ,10X, YSCHEDULING TABLE")
WRITE (317} ((LA(LV,K[J]:J=11JOBS)'K=1'MACH’
FORMAT(IH ,10X,30104)

CHECK FOR CONFLICT

WRITE (3,85)
FORMAT (1 ,10X,* JOB MC LV JCT*)

lay
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" 0088
~0CR9
_ 0090
0091
. 0092
0093
0C94
+ 0095
.0C96
0097
. 0098
0100

<0101
0102
0103

“0104.

-0105
0106
‘0107
0108
0109
0110
0111

0112 -

0l13
‘0114

0115
0116
0117

‘0118
0119

0120

“0121
0122

0123

0124

0Y25 «

0126
0127

0128 -

0129

0130

0131
,0132

0133

OO0

YO0

OO0 0O

22

99

68

65
&9

72
70

89

75
80

719

16

980

1001

1003

1, MOD &  MAIN - _ DATE = 69336

DO 70 K=1,MACH

DO 72 U=1,J0BS
IF(LA(LV,K,J)+NEsT) GD TO 72
N(LV)=0 ‘

DO 69 JM=1,J0BS
TF(LA{LY, Ky JH)eGEST) GO TO 68
GO TO 69

N(LVI=NILV)+]

JILLVNILY) y=dM
IF{IPRINT.EQ.0) GO TO 69
WRITE (34651 JU(LV NILVY] K4 LVaLALLY K, M)
FORMAT(1H 410Xy414)

CONT INUE

DETERMINE LOWER BOUNDS AND RESOLVE CONFLICT

TFIN{LV)eGTel) CALL CONFLT{T,K,LV,NNODES,NCNFLT,£&110)

‘GO TO 70

CONTINUE
CONTINUE

UPDATE THE ARRAY AND ENTER NcXT OPERATION

CO 80 K=1,MACH
DO 80 J=1,J0BS
IFILA(LV.sKyJ)4NEeT} GO TO 80

IFCIOP(LV,J)eGT«MACH) GO TO 75

KK=MMILJ,IOP(LV,J}}

LAILV KKy JI=JCT LIy IOP{LV4d))
GO TC 80
IDP(LV.J}=10P{LV.J)-1
CONTINUE

CHECK FOR T
IF T IS THE HIGHEST ENTRY A SOLUTION HAS BEEN FOUND
ODTHERWISE FIND NEXT HIGHER T

DO 16 M=1,MACH

DO 16 J=1,J08BS

[F{TabLTeLA(LVyM,J}) GO TO 51

CONT INUE

IF{Te«GE.ISTMIN} GO TO 110

ISTMIN=T

WRITE (3,6) ISTMIN

FORMAT(IH ' A SOLUTION ',16)
FORMATI{LHO, 10X, * COMPUTATION TIME =*,Fl2.%4)
LEVEL=LV-1

WRITE{3,1001) LEVEL .

FORMAT(1IH ,' NO OF CONFLICT LEVELS FUOR SOLN?,16)
[SHTCH=ISWTCH+]1

NBKTRK=NBKTRK+1

IF{ISWTCHLEQs1l) NEKTRK=0

TF{ISHWTCHaMNELL) GO TO 110

IFLICARDs EQ,0) GO TO 110

WRITE (2,1003) ISTMIN

FORMAT (I8

98
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e

- 0134
0135

- 0136
- 0137
0138
* 0139
- 0140
0141
0142
0143
0l44
* 0145
s 0l46
0147
0148
0149
0150
0151
0152
0153
0154
~ 0155
0156
" 0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
C 0167
0168
0169
" 0170
0171
0172
0173
0174
0175
0176
0117
0178
0179
0180
0181
0182
0183
0104
- 0185
0186
, 0107
o018

. 0189

C

c

110

95

501
23
120

300

360

310

350

48
24

585
580
583

400
509

T8
13

1, MOD 4 MAIN DATE = 69336
BACKTRACK ING

DO 95 I=1,MACH

DO 95 J=1,40BS

LATLVyMMUJy 1) d)=0

Lv=LV-1

IF(IPRINTLEQ.Q) GO TO 23

WRITE (3,501) LV

FORMATIIH o' LEVEL',15)

NLV=N{LV}

PO 300 NL=1.NLV
TFIJJILVyNLIo NEL JACTIVI(LY)) GO TO 300
NK=NL -

CONT INUE

DO 360 NL=1,NLV
IFIJJILVaNL)oEQeJACTIV(LV)]) GO TO 360
IF{ISTMINGLESTLBILVNL)) GO TC 360
IFLILBILV NLTSLTANILB(LV)) GO TO 360
IFITLBILV NL)1.GTNILB(LV)) GO TO 310
IF{NL+GT+NK) GO TO 310 Ao emen et
CONT INUE

IF(LV-1)400,400,110

JL=JJ(LV, 1)

IL=TOPILY+JL)

ML=MM({JL, IL}

TgLA(LVgML'JL)

DO 350 NL=24NLV

J2=JJ(LVsNL}

[2=10P(LV,J2}

M2=MM(J2,12)

IF{LAILVyMZ24J2)ebLTeT) T=LA(LV,M2,J2)
CONT INUE

IF{IPRINTL.EQsQ) GO TU 24

WRITE (3,48) T

FORMATI(1H ,' T%',F8s1)

DD 583 J=1,J408S

DO 580 I=1,MACH

M=MM{J,1)

IF(LA(LV,MyJ}aEQe0) GO TO 585

JCTUSs T=LA(LV,My )

GO TO 580 .

JCT (S II=dCT U, I-1)+IT (I, I}

CONTINUE

COMT INUE

CALL SMLILBI(LV) .

GO TO 22

WRITE (3,509) ISTHMIN

FORMAT{1HO,10X," OPTIMAL SCHEDULE TIME = ',16)
WRITE {3,73) NNODES

WRITE [(3,74) NCNFLT

WRITE {3,78) NBKTRK

CALL TIME(NTZ)

COTIME=(NT2-NT11/100.

WRITE(3,980) COTIME

IFCICARD. FQeO) GO TO 32

WRITE(2,902) NHNODES dNCNFLT G NBRTREKZCOTIME, ISTMIN
FORMAT(IHO, 10X, " NUMBER OF BACKTRACKS =',112)
FORMAT(1HO,10Xe* NUMBER OF NOUES EXPLORED ='4,112)

99

14,
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T 0190
. 0191
. 0192

0193
0194

74
902

32
100

1, MOD 4 MAIN DATE

FORMATU(LIHOy 10X, ' NUMBER UOF CONFLTS =*,112)
FORMAT(3112,F11a3,110)

CONTINUE

STOP

END

69336

100
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0001 FUNCTION RANDNOLIY)
0002 IY=1Y*¥65627

0C03 IF{IY)54646

0004 S IY=1Y+2147483647+1
0005 6 RANDNO=1Y*,4656613E-9

0C06 RETURN
0007 END
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FORTRAN IV G LEVEL 1, MOD 4 SMALLY DATE = 69336 102 ) A

0001 SUBRDUTINE SMALLTI({T,LV)
C
C.--.....-..I.U'....l.............l‘l.l.‘..l..llﬂ‘.l’..ﬂ....0...‘l.'..
C
C THIS SUBROUTINE FINDS THE SMALLEST NUMBER IN THE SCHE-
C DULING TABLE AT LEVEL ! IN THE BEGINNINGe EVERYTIME,
C IT UPDATES THE VALUE OF T TO THE NEXT HIGHER VALUE IN
C THE SCHEDULING TAELE AT A LEVEL LV.
C
C.l......!.'OO...“I.G.I..O...C'.00....0'.ﬂ.......l.'.‘..D‘I...!...5
c
0coz2 COMMON IT(15415)yMACH,MM(15415),JCT(15,15),LA{90,15,15)
0C03 COMMON INP(90,15),JJ(90,15},ILB(G0,15),JOBS, [STMIN
0004 COMMON N{90)4NILB{90)+JACTIV(90},IPRINT,IB
. 0005 ISWTCH=0
0006 DO 20 M=1,MACH
0007 DO 20 J=1,J0BS
0008 IF{LA(LV,MyJ)eLE.T) GO TO 20
0009 ISWTCH=ISWTCH+1
- 0C1o0 IF(ISWTCHeFEQal) TS=LA(LV,M,J)
0011 10 TF(LA(LVyMyJ)alTeTS) TS=LA(LV,sMsJ)
0103 B 20 CONTINUE
0013 T=TS
- 0014 IF(IPRINT.EQ.0Q) GO TO 25
0015 WRITE {3,502) T
coleé 502 FORMATI(1H ,* T *4FBal)
0017 25 RETURN

0018 END



FORTRAN IV G LEVEL 1, MOD 4 CONFLT DATE = 69336 103 14

0C01

oQo2
0003
0004
0005
0006

0007
0008
0009
0010
0011
- 0012
0013
0014
0015

- 0016
0017
00l8
0Cl9
0020
0021

- Q022
0623
cC24
0025
g026

0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037

SUBROUTINE CONFLT (TyKyLVyNNODES,NCNFLT,*)
[FEE X EREEREEENERRRRRRNE NN RRNNREAE N R ENE NS EE N EN A A RE NEN RN ENENENERNERE-RNEN NI

THIS SUBROUTINE CHECKS FOR CONFLICTe IF A COUNFLICT
EXISTS, THE LOWER BOUNDS FOR THE NODES IN THE CONFLICT
SET ARE COMPUTED USING ONE OF THE LOWER BOUNDS.

YRS E R REEEEEN R RN R REENENNNEE R NN NNFE R NE NNREEE R E R E S RN N RN ERENENNNE NI

zReleEsleslgRuEgEy)

COMMON IT(15415),MACH,MM(15,15),JCT(15415)4LA(90,15,15)
COMMON I0P(90415),JJ(90,15),ILB(90,15),JOBS,ISTMIN
COMMON N{90)}4NILB{90),JACTIV(90),IPRINT,IB

NLV=NILV)

L=0

c CHECKING FOR CONFLICT USING BEENHAKKERS FORMULA.

DD 40 KL=1,NLV

32=JJ{LV,KL)

12=10P(LV,J2)

M2=MM(J2,12)

IF(LAILV,M2,J2).EQeT) GO TO 39

TF((T+IT{J2,12))eLE«JCT(J2,12)) GO TO 40
39 L=L+1
40 CONTINUE

IF(LsLEel) GO TO 35¢: fe luiy-

IF COMNFLICT EXISTS, ONE OF THE BOUND SUBROUTINE IS
CALLED TD COMPUTE THE LOWER BOUNDS FOR THE NODES IN
THE CONFLICT SET AT A LEVEL,

o000

GO TO(91,92,93494,95),18

91 CALL BOUNDL(T,K,sLV)
GO TD 96

92 CALL POUND2(T,KsLV)
GO TO 96

93 CALL BOUND3(T,K,sLV)
GO TO 96

94 CALL ROUND&{T,K,LV)
GO TO 96

95 CALL BOUNDS(T,K,LV)

96 NILB(LV)=ILB(LV,1}

DETERMINE THE NODE WITH MINIMUM LNWER BOUNDe IF A TIE
EXISTS, IT IS BROKEN USING THE LEFT HAND RULE.

OO0

NNODE S=NNNNDES+N{LV)
JACTIVILV)I=JJ(LV, 1)

- DO 10 NL=24NLV
IF(NILB(LV)eLEsILBI(LV,NL)} GO TO 10
NILBILVI=TLBILV,NL}
JACTIVILVI=JJILV, bl

10 CONTINUE
IF(NILBILYI-ISTMIN]21,22,22
21 LV=LV+1
NCHFLT=NCNFLI+1
DO 20 M=1,MACH



FORTRAN IV G LEVEL 1, MNOD 4

0038
0039
0040
0041
C042
€043
0044
0045
0046

0047
0048
0049
0C50
0051
0052
0053
0C54
0C55
0C56
0057
- 0058
0Cs9
0060
0061
0062
0063
0064
0065
0066

OO0

20
30

14
15

83

22

e

CONFLT DATE = 69336 g,

DO 2C J=1,J40BS

LACLV My d)=LAILV=14M,J)

00 30 J=1,J0BS

I0P(LVyJ)=10P(LV=~1s4)
[A=I0P(LVJACTIV(LV=-11})

L=N(LV=-1)

DO 15 NL=1,L

IF(JI(LV-1,NL)EQa JACTIVI(LV=-1}) GO TO 15
J1=JJ(LV=-1,NL)

UPDATE THE COMPLETION TIME MATRIX IN FAVOR OF THE NODE

11=10P({LV,J1)

JCT(JL, 11 1=JCTLJACTIVILY=1), TAI+IT(J1,11)
M=MM{J1,11)

LACLY, My J1)=JCT(J1, 11}

IK=11+1

IF(IKeGTe MACH) GO TO 15

DD 14 IC=IK,MACH
JCTLJL,IC)=JCTIJL,IC-1)+IT(JL1,41IC)

CONT INUE

IF{IPRINT.EQ.O) GO TO 35

WRITE (3,83)
FORMAT (1HO, 10X,
DO 16 J=1,J0BS
WRITE (3,4) (JCT(JsI)yI=1,MACH)
FORMAT{LH ,10X,1214)

GO TO 35

NCNFLT=NCNFLT+1

RETURN 1

RETURN

END

YCOMPLETION TIME MATRIX®')

Le



FORTRAN IV G

0001

0002
0003
0004
0005
0006
0007
0Co8
0009
0010
0011
0012
0013

- 0014
0015
0016
0017
0018
0019
0020
0021
0022
0Cc23
0024
0025
0026
0027
0028

. 0029
0030
0031
0032
0033
0034

- 0035
0036
0037

- 00348
0039
0040

" 0041
0042
0043

© 0044
0045
0046

0047
0043

LEVEL 1, MOD 4 BOUND1 CDATE = 69336 105 14,

OO0 000

SUBROUTINE BOUNDI (T,K,LV}

B8 20 020 P OO OO RGID OISO RAIORBPOTEI NP RS OSSO D IO DA RERRPIS PR RS N g,

THIS SUBRDUTINE COMPUTES THE LOWER BOUND USING THE
COMPOSITE-BASED BOUND LB I. THE LOWER BOUND FOR A NODE
IS COMPUTED AS THE MAXIMUM OF THE JOE-BASED BOUND
LB IIT (BOUND 3)&THE MACHINE~BASED BOUND LBV (BOUND 5)

I EE R R N ENERNSNENE NNESENNERSNENNENNENMNESEENRMENJENMENSENIEERNE:SESNEEJBERBSENESEREJ; N NS

COMMON IT(15,15),MACH,MM(15,15),JCT(15,15)4LA(S0,15,15)
COMMON I0P(9C,15),JJ0904151,ILB{30,15),J0BSyISTMIN
COMMON N{90)},NILB(90)4JACTIVI(90),IPRINT,IB
DIMENSION GREAT(10)GRAT(10),GRT(Y0),DIF(10}
IF{IPRINTLEQeO) GO TO 60
WRITE (3,85)

86 FORMAT(1HO,10X," ILB Nt)

60 NLV=N(LV)
DD 20 Nl=1.NLV
J1=JJ(LV,N1)}
I1=10P(LV,J1)
M1=MM(Jl,11}
DO 11 J=1,J0OBS

11 DIFtJ}=0.
DO 10 N2=1,NLV
J2=JJ LV, N2}
12=10P(LV,J2)
[IFIN2.EQsN1) DIF({J2)=0
[IFIN2.,EQeN1) GO TO 10
DIF(J2)=JCT(JLl,I1}+IT(J2,12)-3CT(J2,12)

10 CONTINUE
JGRT=JCT(J1,411)
0O 9 J=1,J0BS
IF{J1.EQeJ) GO TO 9
DO 8 I=1,MACH
KC=MM({J,1)
IFIKCeNEsK) GO TO 8
IF{LAILY Ky J) e NEe Os ANDeLAILVKyJ}eLTeT) GO TO 8

6 JGRT=JGRT+IT{Js1)

8 CONTINUE

9 CONTINUE
GREAT(K)=JGRT
DO 40 L=1,MACH
LL=0
IF(Ke.EQsL) GO TO 40
00 39 J=1,J08S,
DO 38 I=1,MACH
KE=MM(J,1)}
IF{KE«NEsL) GO TO 38
IP=1-1
IF(IP.EQsO) GO TO 35
IF(JCT(J, 1}aLTLT) GO TO 38
Li=btL+1
GRAT(LL)I=JCT(J,IP)+DIF(J)
GO TO 38

35 JGPP=JCT(J,1}
[F{JGPPLLT&T) GO TO 38



FORTRAN [V G

0049
0050
0051
0052
0053
0054
0€55
0056
0057
0658
0C59

. 0060
0061
0062
0063
0064
€065
0066
0067
0068
0069
0070
0071
00712
0073
0074
0075
0076
0077
0078
0079
0080

. 0081
0082
0683
0084
0085
0086

0087
0Cs8
0C89
0090
0091
0092
0093
0C94
0C95
0096
0097
0098

" 0C99
0100
0101

0107
0103
0164
0105
0106

LEVEL

38
39
29

27

48
50

26

30

40

900
12

15

59
65

80

10

75

1, MOD 4 BOUND1 DATE = 69336

LL=LL+1

GRAT{LL }=0-

CCNTINUE

CONT INUE

IF(LL-1)26,28,29

JGP=GRATI(1)

DO 27 LR=2,LL

IF{GRATI(LR)4LT+JGCP) JGP=GRAT(LR)
CONTINUE

JGPR=JGP

GO TD 7

JGPR=GRAT (1)

DO sC J=1,J0BS

DD 48 l=1,MACH

KG=MM(J,1)

IF(KGeNEsL) GO TO 48
TF(LA(LYyLyJ} e NEa O ANDeLA(LY,LyJ)eLTeT) GO TO 48
JGPR=JGPR+ITI(J,1}

CONT INUE

CONTINUE

GREAT(L}=JGPR

GO TO 40

NT=LA(LV,L,1)

DO 30 J=2,J0BS
IF(LACLVsLsJ)aGTeMT) NT=LA(LV,L,J)
CONTINUE

GREAT (L )=NT

CONT INUE

IF(IPRINTLEQeD) CO TO 12
WRITE(3,900)} (GREAT(MQ),MQ=1,MACH)
FORMAT(1IH ,4F8e1)
ILB{LV,NL)}=GREAT(1)

DO 15 I=2,MACH
IF(TILBILVyN1)«GE.GREAT(I)) GO TO 15
ILB(LV,NL}=GREATI(I)

CONT INUE

IF(IPRINTLEQsC) GO TO 65

WRITE (3,59} ILBILV,N1),N1
FORMAT{1HGQ,10X,215)
JXPL=TLB(LV,NL)

DO 80 MI=1,NLV

GREAT(MI)=0.

J1=JJ{LV,N1)

I11=10P(LV,J1)

DO 70 N2=1,NLV

J2=JJ(LV,yN2)

[2=10P{LV,J2)

IF{N2EQeN1) GRFAT{NZ2)=JCT{J2,MACH}
IF(NZ2.EQaMN1) GO TO 70
KIF=JCT(J1l, 100417 (J2,12V=dCT(J2,12)
GREAT(NZ2)=JCTIJI2,MACH) +KIF

CONT IMUF

ILBILV,NL)=GREATI(1)

DO 75 I=2,NLV
IF{ILR{LVsN1)aGESGREATI{I))Y GO TO 75
ILRILV,NL)=GREAT(I)

CONTINUE

IT{IPRINTLFQe0) GO TO 66

106
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0107 WRITE (3,59} TLB(LV.NL},N1
0108 66 JXP2=1LB{LV,N1)

. 0109 IF{JUXP2-JXP1161,461,62
0110 61 ILB(LV,N1l}=JXP1
0ll1 IFCIPRINT.EQ.O) GO TO 20
ollz WRITE (3,59) ILB(LV4N1),N1
0113 GO TO 20
Oll4 62 TLB{LV,NL)=JXP2
0115 IF(IPRINT,.EQsO0) GO TQ 20
0llé WRITE (3+59) ILBILVyNL},N1
0117 20 CONTINUE

- 0118 RETURN

0119 END



FORTRAN IV §

0001

" 0002
0003
0004

- 0005

0006
oco7
gQos
0009
- Q010
0011
0012
0013
. 0014
0015
0016
0017
0018
0019
0020
0021
" 0022
- 0023
0024
0025
D026
o027
0028
: 0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
. 0039
0040
0041
0042
0043
0044
0045
~pC4b
0047

LEVEL 1, MOD 4 BOUNDZ2 DATE = 69336 108 b 5
SUBROUTINE BOUMDZ (T,KyLV)

..-'...l.....l.....l......l’.......t...l.‘.'......Q......l.‘....'..‘

THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
COMPOSITE-BASED BOUND LB Ile THE LOWER BOUND FOR A
NODE IS COMPUTED AS THE MAXIMUM OF THE JOUB-BASED BOUND
Lt IVI (BOUND 4)E&THE MACHINE-BASED BOUND LBV (BOUND 5)

I A E R N AN EENBEENYEEENEEENEE NS EREEEENRENEENRNESERES N RS ENNERRRHNRESR;NBRJESJNJEEJNER:EJN NI

OO0

COMMON IT(15,15) ,MACH,MM{15,15)sJCT{15,15),LA(90415,15)
COMMON I0P{90,15),JJ(90,15},ILB{90,15),J0BS, ISTMIN
COMMON N{90)}NILB(9O},JACTIVIGO),IPRINT,IB
DIMENSION GREAT(10),GRAT(10),GRT(10)4DIF(10)},I1Z{10},SMALL(10},
1GRETE(10}
IF(IPRINTL.EQ.Q) GO TO 999
WRITE (3,86}
86 FORMAT{1HO,10Xs* ILB NY )
999 NLV=N({LV)
DO 20 N1=1,NLV
J1=JJ(LVeN1)
I1=10P(LV,J1)
DO 10 N2=1,NLV
J2=JJ (LVyN2)
12=10P({LV,+J2)
IFIN2.EQaNL) GREATINZ)=JCT(JZ,MACH=-1)
IF{N2.FQeN1} GO TO 10
KIF=JCT{JLl, IL}+IT(J2,12)-4CT(J2,12]
GREAT(N2)=JCT(J2,MACH=-1)+KIF
10 CONTINUE
N2=NLV
DO 30 J=1,J0BS
NN=1
9 IF{JJILV,NN).EQsd} GO TO 30
NN=NN+1
IF{NNeGT«NLV) GO TQ 4G
GO TO 9
40 N2=N2+1
GREAT(N21=JCT{J,MACH-1)
JJILVN2Y=J
30 CONTINUE
DO 600 KX=1,MACH
L=0
DO 502 NN=1,N2
J3=JJ(LV4NN)
M3=MM(J3, MACH}.
IF(M3,.,NE.KX) GO TU 502
L=L+1
- GRAT(L)=GREAT{NN)
1Z(L)=NN
MR=NN
502 CONTINUE
IF(L.EQ.0) GO TO 600
lr(l.oGTOI' GO TG S1luo
LL=0
DU 210 IK=1,N2
Ja=JJ{LV, 1K)
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0048
0049
- Q050
0051
0052
0053
0C54
0C55
= 1056
0057
0C58
" 0C59
D060
0061
0062
0063
0064
0065
0066
0067
" 0C68
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
-0081
0082
0083
0084
0085
0086
Q087
0088
0089
0090
0091
0092
‘0093
0C9%
0095
0096
. 0097
0098
“0c99
0100
0101
0102
» 0103
, 0104
o105

LEVEL

210

220

510

690

&81

700
580

600

15

59
65
21

47

11

1, MOD 4 BOUND2 DATE = 69336 109
IF (MM (J4y MACH-1)eNEJKX) GO TO 210
LL=LL+1

IF{LL.EQel) JGRT=GREAT(IK)

CONT INUE

[F(LL.E0.0) GD TO 580

J5=JJ(LV,MR)

IF(JGRT.GE.GREAT(MR)) GO TO 220
GRT(MR)=GREAT (MR) +IT (J5,MACH)

GO TO 600

GRT{MRI=JGRT+IT{J5,MACH)

GO TO 600

DO 700 M=1,L

SMALL (M)=GRAT (1}

MN=T1Z(1)

KP=1

DO 690 KS=2,L

IF(GRATIKS)aGEe SMALL(M)) GO TO 690

SMALL (M)}=GRAT (KS)

MN=1Z(KS)

KP=KS

CONT INUE

GRAT(KP)=9999

J6=JJ LV, MN)

IFIM.GTs1) GO TO 691

IF(MeEQel) GRT{MN}=SMALLIMI+IT(J6,MACH)
IF{MeEQal} GRETE(M)=SMALL{M}+IT(JI6,MACH)
GO TO 700

IF(SMALL(M) o LE4GRETE(M=1)) GRT(MN)=GRETE(M-1)+IT(J6,MACH}
IF(SMALL{M) 4 LES.GRETE(M-1)) GRETE(M)=GRETE(M-1}+IT(J64MACH)
IF{SMALLIM) oGToGRETE(M=111} GRT(MN)I=SMALL{MI+IT(J6yMACH)
IF{SMALL{M)4GTo GRETE(M-1)1) GRETE{M)=SMALLIM)I+IT(J64MACH)
CONTINUE

GO TO 600

JT=JJ (LV, MR)
GRTIMR}=GREAT (MR} +1T (JT4MACH)

CONTINUE |
ILB(LV4¢NL)=GRTI(1)

PO 15 IX=2,N2

IF(ILBELVY,N1)«GELGRT(IX)) GO TO 15
ILBILY,NL)=GRT{IX)

CONTINUE

IF(IPRINT.EQ,0) GO TO 65

WRITE (3,59) ILBULV,N1),4N1
FORMAT (1HO, 10X, 215)

JXP1=TLB(LV,NL}

DO 47 L=1,10

GREAT(L)=04

GRT(L)=0.

GRATI(L)=04

NLV=N(LV)

J1=JJ (LV,N1)

11=10P(LV,J1)

M1=MM{J1,11)

oo 11 J=1,J08B%

DIF(J)=0,

DD 41 N2=1,NLV

J2=JJ(LV,N2)

12=10P(LV,J2)

l‘?l’
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0106
0107
. 0108
0109
cllo0
0111
0112
0113
« Oll%
0l1s5
0ll6
0117
0118
0119
0120
0121
.0122
0123
0124
0125
- Q126
o127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
- 0139
0140
0l41
0142
0l43
0l44
+ 0145
0l4b
0147
0l48
0149
0150
0151
0152
0153
0154
0155
0156
" 0157
0158
0159
0160
0161
0i62
0l63

41

25

38
39
29

27

48

44

26

45

43

1, MOD 4

IF(NZ2.EQeN1) DIF(J2)
IFINZ2.EQaN1) GO TO 4

BOUNDZ2

=0
1

DATE = 69336

DIF(J2)=JCT(JL, ILI+IT(J2,12)-JCT(J2,12)

CONTINUE
JOGRT=JCT{J1,11}

DO 42 J=1,J40BS
IF{J1.EQeJ) GO TO 42
DO 8 I=1,MACH
KC=MM(J, 1}
IF{KCeNEsK) GO TO 8

TF{LAILVyKyJ) o NE.Oa ANDJLAILVyKyJalToT) GO TO 8

JOGRT=JGRT+[T{J,1)
CONTINUE

CONT I NUE
GREAT (K )=JGRT

DO 43 L=1,MACH

LL=0

IFIKsEQeL) GO TOD 43
00 39 J=1,4085

DO 38 TI=1,MACH
KE=MM(J,1])
IF(KELNELL)Y GO TO 38
IP=1-1

IF(IP-EQs0) GO TO 35
IF(JCTLS,I1eLTLT) GO
LL=tL+1
GRAT(LL)=JCT{d,1IP)+D
GO TO 38
JGPP=JCT(J,: 1)

TO 38

IF(J)

IF{JGPP.LT,.T) GO TO 38

Li=LL+1

GRAT(LL)=0.
CONTINUE

CONTINUE
IF(LL-11264,28,29
JGP=GRAT(1}

DO 27 LR=2Z,LL
IF{GRATILR)eLTs JGP)
CONT INUE

JGPR=JGP

GO 10 7
JGPR=GRAT (1)

DO 44 J=1,J408S

DO 48 1=1,MACH
KG=MMLJ,T1}
IF(KGeNEsL) GO TO 48

JGP=GRAT(LR)

IF(LA{LVyLyJ)aNEaOANDoLAILV,LsJ)}alLTeT) GO TO 48

JOPR=JGPR+IT{J,1)
CONTINUE

CONT INUE

GREAT IL)=JGPR

GO TO 43
NT=LA{LVsL,y1)

DO 45 J=2,J085
IFCLACLY, Ly J}aGTeNT}
CONT INUE

GREAT (LI=NT
CONTINUE

NT=LA{LV,L,J)

110

1</
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0l64 IF(IPRINT.EQ.0) GO TO 52
0165 WRITE(3,9300) {(GREAT(MQ),MQ=1,MACH)
0166 900 FORMAT(1H ,4FE.1)

0167 52 ILB{LV,N1)=GRCATI(1)

0168 DO 46 [=2,MACH

0169 IF{ILBILV,N1)GELGREAT(I}) GO TO 46
o170 ILB{LVyNL 1=GREAT(I}

Ccl71 46 CONTINUE

cli2 IF(IPRINT.EQ.0) GO TO 66
0173 WRITE {(3,59) ILEB{LVyNL1},NL
0174 66 JXP2=1LBILV,NL])

0175 IF{JXP2-dXPl)61y61,62

0176 61 TLBILV.NL}=JXP1

0177 IF{IPRINT.EQsO) GO TO 20
0178 WRITE {3,59) ILB(LVsNLl)sNL
0179 GO T0O 20

0180 62 ILB(LV,N1}=JXP2

o018l IF{IPRINT«EQeO) GO TO 20
0182 WRITE (3459) ILB(LVsNL}sN1
0183 20 CONTINUE

0184 RETURN

0185 END
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0001 SUBROUTINE BOUND3 (T,K,.LV)
c
C.......I.........I....‘..........‘b.‘...hﬁ........I-.‘.'..l.........
C THIS SUBROUTINE COMPUTES THE LOWER BUOUND USING THE
C JOB-BASED BOUND TIl. SUGGESTED BY CONWAY ET Al.
C.".C.............'.'.‘.Q'.‘.....‘.........'.‘..'..l.....'.‘.I.‘...
C
0G¢02 COMMON IT(15,15)yMACHsMM{15,415),JCT(15,15},LA(90,15,15)
0003 COMMOM TOP(G0¢15)4JJ(90+15),1LB(90,15)yJUBS,[STMIN
0004 COMMON N[90),NILE(90)JACTIVII0),IPRINT,IB
€005 DIMENSION GREAT(10)
0Co6 IFIIPRINT.EQ.O0} GO TO 60
aooT WRITE (3,86)
0008 86 FORMAT(1IH ,10X,' ILB NY)
0Co9 60 NLV=N(LV)
o010 DO 26 Nl=1,4NLV
0011 J1=JJ(LVyN1}
polz2 ' [1=T0PILV,J1)
0013 DO 10 N2=14NLV
0014 J2=JJ(LV,N2)
0015 12=10P{LV,J2]}
CClé6 IF(N2+.EQeN1} GREATI(NZ2)=JCT{J2,MACH)
0017 IFIN2.EQsN1) GO TO 10
0018 DIF=JCT(J1,11)4IT(J2,12}-dCT1J2,12)
0019 GREAT(N2)=JCT(J2,MACH}+DIF
0020 10 CONTINUE
0021 TLBILV,NL}=GREATI(1}
Q022 DO 15 1=2¢NLV
0023 IF{TLBILV,yN]1)«GE«GREAT(I)) GO TO 15
0024 ILB(LV,NL)}=GREATI(I}
0025 15 CONTINUE
0026 IF(CIPRINTLEQ.O) GO YO 20
0027 WRITE {3,50) ILB(LV,;N1}4N1
- 6028 50 FORMAT(1H ,10X,2[5)
0029 20 CONTINUE
0C30 RETURN

0031 END
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0001

0002
0003
0004
0005
0606
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0C19
0020
0021
0022
0023
0026
0025
0026
0027
0028
0029
0030
c031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0C44
0045
0046
0047
0048
0049
0050
0051
0052

C

BOUND4 DATE = 69336

SUBROUTINE BOUMD4

C...t.."'..‘.lI...U.I‘.O.‘....'.Q........O...‘l.O.....D...'l'o‘....

THIS SUBRDUTIME COMPUTES THE LOWER BOUND USING THE
JOB-BASED BOUND IV , SUGGESTED BY'BROOKS AND WHITE®

C.'l..-.....‘...‘-..-.---l-.-.lll....‘.‘..I.O....l........".....ii‘l.,

C
c

C

COMMOMN IT(15,15),MACH,MM(15,15),JCT{15,15)4LA{(90,15,15)
COMMON JOP(90415),JJ(30,15),ILB(S0415),JUBS,ISTMIN

COMMON N{90)

+NILB(90),JACTIV(IS0) s IPRINT,IB

DIMENSION GREAT{10},GRAT(10),1(10),GRT{10),SMALL{10),GRETF(1Z)
IF(IPRINT.EQ.O) GO TO 999

HRITE (3,86)

86 FORMAT(1HO,10X,* [ILB N*)

396 NLV=N{LV)

DO 20 N1=14NLV

J1=JJ(LV,N1)

11=10P(LV,J1)
DO 10 N2=1,NLV

J2=JJLV,N2)

12=10P(LV,4d2)

IF(N2eEQsaNL)
IF(N2.EQeN1)
DIF=JCTIJL, I

GREAT(N2)=JCT(J24MACH=-1)
GO TO 10
11+IT0J2,12)-dCT(J2,12)

GREAT(N2)=JCT(J2,HACH-1)}+DIF

10 CONTINUE
N2=NLV

DO 30 J=1,J08BS

NN=1
9 IF(JJULVyNN)
NN=NN+1

«EQ.J} GO TO 30

IF(NNeGTo NLV) GO TO 40

GO TO 9
40 N2=NZ2+1

GREAT(N21=JCT(J,MACH-1]

JJ{LV,N2)=J
30 CONTINUE

DD 600 KX=1,

L=0

DO 502 NN=1,

J3=JJ (LVyNN)

MACH

N2

M3=MM(J3, MACH)

IF{M34NEe KX)
L=L+1

GO TO 502

GRAT({LI=GREAT(NN)

T(L)=NN
MR=NN
502 COMTINUE

IF(LLFQa.0) GO TO 600
IF(L.GTel) GO TO 510

LL=0
DO 210 IK=1,
Ja&=JJ (LY, 1K)

N2

[F(MM{J4, MACH=-1)eNEsKX) GO TO 210

LL=LL+1

IF(LLLFQs1)
210 CONTINUE

IF{LLeEQ. Q)

JGRT=GREAT(IK)

GO TO 580
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0053
0C54
0055
0CS56
0057
0058
0Cs59
0060
0061
0062
0063
0064
0065
0066
0Ce7
0068
0069
0070
0071
0072
- 0073
0074
0075
0076
0077
Q078
0079
0080
0csl
0Cs?2
0CB3
0Cas
0C8as
0086
0C87T
0CE8
0089
0090
0091
0092
0093
0094

220

510

650

691

700
580

600

15

50
20
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J5=JJ LV, MR])
IFIJGRTGESGREATIMR)} GO TO 220
GRT{MR}I=GREAT {MR)+IT{J5,MACH}
GO TO 600
GRTUIMR}=JGRT+IT(J5,MACH]

GO TD 600

DO 700 M=1,L

SMALL (M)=GRAT({1)

MN=T (1)

KP=1

DO 690 KS=2,L

IF{GRAT(KS)aGEs SMALL(M}} GO TO 690
SMALL (M}=GRAT (KS)

MN=1{KS)

KP=KS

CONTINUE

GRAT (KP1=9999

J6=JJ(LVy MN)
IF(MsGT41) GO TO 691

IF(MeEQu1) GRT(MHMI=SMALL(M)+IT(J6,MACH)

IF(MsEQel) GRETE(MI=SMALL{MI+IT(J6,MACH)

GO TO 700

[F(SMALLIM) oLEGGRETE(M=1)) GRT(MN)=GRETE(M=-1}+IT{J6,MACH)
IFCSMALLE{M) o LE4GRETE(M=1)) GRETE(M)=GRETE(M-1)+IT(J6,MACH)
TF(SMALL(M) ¢ GTaGRETE(M=1)1 GRT(MN}=SMALL (M} +IT(J6yMACH)
TF(SMALLIM) ¢GTLGRETE(M~1)) GRETE(M)=SMALL{M)+IT (J6,MACH}
CONT INUE

GO TO 600

JT=JJ LV, MR)

GRT{MRI=GREAT (MRI+IT{JT,MACH)

CONT INUE

TLBILV,NL1=GRTI1)

DO 15 IX=2,N2

IF{ILB(LV,NL)4GE.GRT(IX)) GO TO 15

ILBILV,N1)1=GRT{IX)

CONT INUE

IF(IPRINT.EQ.0) GO TO 20

WRITE (3,500 ILB(LV,NL},NIL

FORMAT(1HO, 10X, 215}

CONT INUE

RETURN

END

14/
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poCol SURRDUTINE BOUNDS (T,K,LV)
¢
C...G..‘...I..l..l!!"lh‘..l.li.l'.ll"!‘.l..“.".l..ﬂ.‘."l.l.....,
c THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
C MACHINE-BASED BOUND LB V, SUGGESTED BY CONWAY ET AL,
C..GO.DI'.GQ.O...O..l.l..lt..‘c....ll..l.!.l‘tl.I'il...‘.lﬁi.t..t.tu
C
0002 - COMMON IT(15,15),MACH,MM(15,15),JCT{15,15),LA090,15,15)
0003 COMMON JDP(904+15),JJ(90,15),ILB(90,+15),JDBS,ISTMIN
0C04 COMMON N(I0),NILB{90),JACTIV(90),IPRINT,IB
0005 DIMENSION GREAT(10),GRAT{10),GRT(10)4DIF(10}
0C06 IF{IPRINT.SQ.0) GO TD 60
0CcoT7 WRITE (3,86)
0C08 86 FORMAT(1HO,10X,* ILB Nt )
0009 60 NLV=N(LV)
0019 DD 20 N1=1,NLV
0Cl1 J1=JJ LV, M)
0012 I1=10P(LV,J1)
0013 M1=MM{J1,11)
0014 DO 11 J=1,J408S
0015 11 DIF{JI=0,
0016 DO 10 N2=1,NLV
0017 J2=JJ (LV,N2)
0018 12=10P(LVsJ2)
0019 IF(N2.EQesN1) DIF(J42)=0
0020 . IFINZLEQ.N1Y GO TO 10
0021 DIF(J2)=JCT(JLI,I1)+IT{J2,121-JCT{J2,12)
0022 10 CONTINUE
0023 JGRT=JCT(J1,I1)
0024 DO 9 J=1,J08S
Qo025 1FlJ1.EQ.JY GO TO 9
0026 DO 8 I=1,MACH
0027 KC=MM(J,1)
0028 IF(KCeNEo.K) GO TO B
0029 IF(LA(LY KyJ) e NEaOe ANDLLAILV K, J)elLTLT) GO TO 8
0030 6 JGRT=JGRT+IT(J, 1) ‘
0031 8 CONTINUE
0032 9 CONTINUE
0033 GREAT(K)=JGRT
- 0034 DO 40 L=1,MACH
0035 LL=0
0036 IF{K.EQetL} GO TO 40
0037 : DO 39 J=1,J08S
0038 DO 38 1=1,MACH
0039 KE=MM{J,1)
0040 IF{KE«NEsL) GO TO 38
0041 1P=1-1 .
0042 IF(IP.EQ. Q) GO TO 35
0043 IF(JCT(J,[)elTaT) GD TO 38
0044 < Li=tL+]
0045 GRATI(LLY=JCT(J,IP)I+DIF{J)
" 0046 GO TO 38
0C47 35 JGPP=JCT(J,s 1)
00438 IF(JGPP.LTWT) GO TO 38
0049 LL=L1+1
0050 GRAT(LL)=0.
0051 38 CONTINUE

" 0c52 39 CONTINUE
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0053
0054
0055

0056 -

0057
0058
0C59
0060
0C61
0062
0063
0064
0065
0066
0067
0068
0069
co70
0071
0C72
0073
0074
c075
0076
0077
po78
0079
0080
o8l
0082
0083
0084
0CB85
0086
0087
0088
0089
0090

29

27

48
50

26

30

40

900
12

15

59
20
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IF(LL=-1)26,28,29

JGP=GRATI(1)

DO 27 LR=2,LL

IF{GRAT(LR)LT&JGP) JGP=GRATI(LR)
CONTINUE

JGPR=JGP

GO T0 7

JGPR=GRAT{1}

DD 50 J=1,J0BS

DG 48 I=1,MACH

KG=MM(J,1)

IF{KG.NEsL}Y GO TO 48
TFILAILYsLyI) s NEsGaANDeLA(LV Lo J)ualLTL T} GU TO 48
JGPR=JGPR+TIT{J,1)

CONT INUE

CONTINUE

GREATI(L}=JGPR

GO 1O 40

NT=LA(LV.L,1)

D0 30 J=2,J08S
IF{LACLVsLyJ)oaGTeNT) NT=LA{LVL,J)
CONTINUE '
GREAT(L}=NT

CONTINUE

IF{IPRINT.EQ.Q} GO TO 12 ‘
WRITE(3,900) (GREAT{MQ),MQ=1,MACH]
FORMATI1IH ,4F8s1)
ILB{LV N1 )=GREAT(1)

DO 15 I=2,MACH
IF(ILBILV:N1)}eGE-GREATI(I}} GO TO 15
ILB(LYyNY}=GREATI(I}

CONTINUE

IF{IPRINTLEQsOQ) GO TO 20

WRITE (3459} ILBILV,N1},Nl
FORMAT(1HO, 10X, 215)

CONTINUE

RETURN

END

las
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ocol
0002
0003
0004
0Cos
0006
ocov
0008
. 0009
0010
0C11
0012
0C13
0Cl4
- 0015
0gle6
ocL7
0018
0019
0020
<0021
0022
0023
C024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
- 0040
0041
0042
D043
0044
0045
0046
0047
0048
0049
0050
0051
" 0052
0C53
0054
0C55
0056
. 0057

120

300

11
12
10
21

20
30

14
15
8
13

35
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SUBROUTINE_SMLILE(LV)

COMMDN IT(15,15)yMACHyMM(15,15),JCT(15,15),LA(90,15,15)
COMMON 10P(90,15),3J(90,15),1LB(90,15),J06S, [STMIN
COMMON N{ 901 4NILB{90), JACTIVI90) 4 IPRINTI8

NLV=N{LV)

DO 300 NL=1,NLV

TF{JJ(LV,NL) o NESJACTIVILV) ) GO TO 300

NK=NL

CONT INUE

ISWTCH=0

NLV=N(LVY)

CO 10 NL=1,NLV

TF(JJ(LVyNL)oEQaJACTIVILY)) GO TO 10
TF(ISTMINSLFE,ILB(LV,NL})) GO TQ 10
TFITLB{LV o NLI=-NTLBILY)}10,8,9

IF(NLeLTeNK) GO TO 10

ISWTCH=ISWTCH+1

TF(ISWTCH=1111,11,12

NT=TLB{LV.NL}

NTL=NL

GO TO 10

IF{ILB(LVNLY«GESNT} GO TO 10
NT=TLB(LV,NL)

NTL=NL

CONTINUE

NILB(LV)=NT

JACTIVILYI=JJ(LV,NTL)

LV=LV+1

DO 26 M=1,MACH

DD 20 J=1,J0BS

LA{LV,MyJ)=LALY=1,M,4)

DO 30 J=1,J0BS

10P(LV,J)=10P(LY=-1,J)
IA=10P(LV,JACTIVILV=1))

L=N(LV-1)

K=MM{JACTIV(LV-1),1A)
JCT{JACTIVILY=1),IA}=LA(LV=1,K,JACTIVI(LYV-1)}
DD 15 NL=1,L

TF(JJILV-14NL}«EQa JACTIV{LV=1)) GO TO 15
J1=JJ{LV-1,NL)

11=10P(LV,J1)

JCTUJ1, 111 =JCT(JACTIVILY=-1) LAY +IT(JL,11)
M=MM(J1,11)

LACLY oMy J1)=JCTLIL,11)

TK=11+1

IF(IK.GT«MACH} GO TO 15

DO 14 I=IK,MACH

JCT{IL e 1N =JCTHIL, I-1)+1T(J1, 1)

CONTINUE

IF(IPRINT.EQ.0) GO TO 35

WRITE {3,88)

FORMATULHO. 10X, *COMPLETION TIME MATRIX%')
DO 13 J=1,J0BS

WRITE (3,4} (JCT(J,y1},I=1,MACH)}
FORMAT{IH 415X41214)

RETURN

END

1Y
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LEVEL 1, MDD 4 MAIN DATE = 69336 11 167

¥k BRANCH-AND-BOUND ALGORITHM Aok
Lkt FOR JOB-SHOP PROBLEMS ok

PROGRAMMED BY
Se Re HIREMATH

I E R BB RN NS EERENEENENENE LN EEENERER RN EENEEERNYEERRESENELEREERERERNE SRR EEEEEENEENEEREERN

IR RN EEEN RN REEEBE RN NS R ER S ENENNERENER AN S EREFENERRNENRENEIENSESNENSER-E R IW

THE BRANCH AND BOUND ALGORITHM DESCRIBED IN SECTION 2.4
IS PROGRAMMED IN FORTRAN [V

THIS PROGRAM CONSISTS OF MAIN PROGAM AND FIVE BOUNDING
PROCEDURES AS SUBROUTINESa. IN ADDISON IT ALSD CONSISTS
OF THREE MDRE SUBROUTINES.

[ E X E N EREEBSENEERERNENEEENRERENRENNERNESNESNEERRERSEEREZSNEHSREHMBHRSE;SR}RMEMRHERJMNHNHERH-RIEZHNHSH;NINERZ}NNNN NN

I A BN R REE S AR EREEE R R R NN SR R EENEREEEE R SRR RN AR RERNEEE RN NEREN YN ENESRERRERSZSNNNN

e e e VARIABLES TR A
IT PROCESSING TIME
MM MACHINE ORDERING
JCT COMPLETION TIME
MACH TOTAL NUMBER OF MACHINES OR OPERATIONS FOR
JOBS TOTAL NO. OF JOBS
A 408
LA ENTRY IN THE SCHEDULING TABLE
IopP OPERATION
JJ JOB IN THE CONFLICT SET
N NOs OF JOBS IN CONFLICT SET AT A LEVEL
ILg LOWER BOUND FOR A NODE
NILB MINe LOWER BOUND AT A LEVEL
ISTMIN SCHEDULE TIME
JACTIV ACTIVE NODE AT A LEVEL

 EE E RS EERENEEFERENEEERNREREE R RN N R R SRR SRR RN R RN R R AR R E AN EE REEERERERESHS

IREADEQe O GENERATING DATA (MACHINE-ORDERING AND
PROCESSING TIME MATRICES)
IREAD«NE.D READ DATA CARDS FOR BOTH MATRICES

IF TPRINT.EQ.O PRINT DETAILS
IF TPRINTeNEWO DO NOT PRINT DETAILS

1F ICARDEQWO NO CARD OUTPUT DESIRED

IF ICARDaMELD CARD OUTPUT DESIRED
LIMITIELIMITZ THE LIMITS OF INTERVAL FOR PROCESS-
ING TIMES

AP B I LAD PPN BRSO NI B ODNIOBIED ORI NODLIGE R PIIROOIEPDOEROPAPTROREs BN

MATN PROGRAM



FGRTRAN

0001
0002
0003
0004
0005

0006
~ 0007
0008
0C09
. 0010

0011
0Cl2
. 0013
0014

0015
0016
0017
0018
" 0019
0020
0021
0022
0023

0C24
0c25
0026

0027
0C28
. G029
0030
0031
0032
0033
0034
G035
0036
. 0037
0038
0C39
0040
- 0Cal
0042
. 0Cad
0C44
- 0045

IV G

LEVEL 1, MOD 4 MAIN DATE = 69336 L4/

OO

OO

aNe R

YOO

1

33

N D

600
211

77
82

698

231

232

233
234
235

16

56

120
COMMON IT(15415)MACHsMM{15,15),JCT(15,15),LA(90,15,15)
COMMON TOP(90+15)4JJ(90,15),ILB(F0415),40BS,ISTMIN
COMMON N(SO),NILRI{OO) »JACTIVIGO)»IPRINT,I[B
DIMENSTON [RAND2(50)
READ(1y1) MACH,JOBS,yLIMITL,LIMIT2,NPROB,NFLB,NLLB,IREAD,ISKIP,
LIPRINTLICARD,IXsIY,IB
FORMAT{11I4,218,414)
00 32 NP=1,NPRDB
WRITE (3,33} NP
FORMAT(1HO,10X," PROBLEM NUMBER = %,13)
IF(IREAD.EQ.0) GO TO 600

READ PROCESSING TIME MATRIX

DO 9 J=1,J0BS

READ(142) (IT{JsI)sI=14MACH)
FORMAT(1015)

60 TO 77

GENERATE PROCESSING TIME MATRIX

0o 211 M=1,MACH

DO 211 J=1,J0BS5
IT(JeMI=RANONQOIY Y = (LIMIT2-LIMITI+L)+LINMITL
WRITE (3,82}

FORMAT(1H 410X, "PROCESSING TIME MATRIX')
DG 11 J=1,J08S

WRITE (3,4} (IT(JsI}sI=1,MACH)

FORMAT(1H ,10Xs1214)

IF{IREADsEQs0}) GO TO 698

READ MACHINE-ORDERING MATRIX

DO 3 J=1,J08S
READ(142) (MMUJy1),4I=1,MACH]
GO TO 76

GENERATE MACHINE ORDERING MATRIX

DO 235 J=1,J0RS

DO 231 M=1,MACH

IRAND2 (M) =M

M1=MACH
IRAN=RANDNDO (1Y) %M1+l
MM{J;ML)=TRANDZ(IRAN)+100%J
1F (IRAN «EQe M1) GO TO 234
Ml=M1-1

1F (M1 L.EQ. 0) GO TO 235

DO 233 M2=TRAN,M1
IRAND2{M2)=TRAND2(M2+1)

GO TH 232

IF (M1 «FQ. 1} GO TO 235
Ml=M1-1

GO TO 232

CONT INUE

00 96 J=1,J408S

DO 96 I=1,MACH

MM{J, IY=MM(J, 1)=J%100
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0046 WRITE (3,81)
0047 81 FORMAT(1H ,10X, YMACHINE ORDERING MATRIX?')
0C48 DO 8 J=1, JOBS '
0049 B WRITE (344) (MM(JyI)eI=1yMACH)
0050 WRITE (3,35) IB
© 0051 35 FORMAT(1HO0,10X," BOUNDING PROCEDURE',13)
c
o FORM COMPLETION TIME MATRIX
o
0052 DO 10 J=1,J08S
0C53 ‘ JCTlJs1)=ITldyl}
0654 00 10 [=2,MACH
0055 JCT(JyII=JCTUI, I=-1141IT LYY 1)
0C56 10 CONTINUE
0057 IF(IPRINTLEQ.0Q) GO TO 21
0058 WRITE (3,83)
0C¢59 83 FORMAT(LIH 410X, YCOMPLETION TIME MATRIX')
0060 0O 13 J=1,J0BS
0061 13 WRITE {352) (JCT(JsT1),1=1,4MACH}
C .
c INITIALIZE
C SET UP SCHEDULING TABLE
c .
0062 21 DO 40 LV=1,90
0C63 DO 40 I=1,MACH
0C64 DO 40 J=1,J0BS
0065 40 LA{LV,I,J)=0
0066 DO 41 LV=1,90
0067 DD &1 J=1,J0BS
0068 41 I0P(LV,J)=1
C
c ENTER FIRST OPERATIONS OF EACH JOB
c
0069 T=0.
0070 I1SWTCH=0
0071 ISTMIN=99999
0072 LV=1
0073 NBKTRK=0
0074 NNODES=0
0075 NCNFLT=0
0076 CALL TIMEINTL)
0077 DO S0 J=1,J0BS
0078 M=MM(J,y1)
0079 ‘50 LA(1,M,J)=JCT{J,1)
' c
C FIND SMALLEST T AND NEXT HIGHER T
c
. 0080 51 CALL SMALLTI(T,LV)
0081 IF(IPRINT4EQ.0) GO TO 22
0082 WRITE (3,84)
00873 84 FORMAT(1H 41CX, *SCHEDUL ING TABLE')
0084 WRITE (3,7) ((LA(LV,K,J),J=1,J0BS)K=1,MACH)
' 0085 7 EORMAT(1H ,10X,3014)
. (o
& CHECK FOR CONFLICT
C

“oC86 551 WRITE (3,85)
0087 85 FORMAT{1H ,10X,' JOB MC Ly  JCT')



IARTRAN 1V G LEVEL

00ES8
0089
0030
0091
0e92
0093
0C94
"0C95
0Ca6
coa7
0698
0039
0100

0101
0102
0103
0104

0105
0106
0107
0108
0109
0110
0111
0112
0113
0l14

0115
0116
0117
o118
01t9
0120
0121
0122
0123
0124
0125
ol26
0127
0128
0129
0130
0131
0132
0133

QOO

OO0

OO0

22

99

68

65
69

12
70

89

75
80

79

16

380

1001

1003
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D 70 K=1,MACH

DO 72 J=1,J08S

[FILA(LV Ky J)aNEL.T)} GO TO 72

N(LVI]=0

DO 69 JdM=1,J0BS

IFILA(LVyKsJIM)eGELT) GO TO 08

GO TO 69

N{LV)=N{LVI}+1

JJILVNILV)Y)=JM

IF{IPRINT.EQ.O) GO TO 69

WRITE {3465} JJILV,NILV) ) sKyLVsLA(LV,KyJdN)
FORMAT(IH ,10X,414)

COMT INUE

DETERMIMNE LOWER BOUNDS AND RESOLVE CONFLICT

IF(MILV)eGTal) CALL CONFLTI(T,K,LV,NNODESyNCNFLT,6110)
GO TO 70
CONTINUE
CONTINUE

UPDATE THE ARRAY AND ENTER NEXT OPERATION

D0 B0 K=1,MACH

DO 80 J=1,J0BS
TF(LA{LV,KeJ}eNEsT) GO TO 80
IDPILV,J)=10P{LV,J}+1
IF{IOP(LY,J}aGT.MACH} GO TO 75
KK=MM{J,T0P{LV,J}}

GO TO 80

IOP(LV,J)=10P(LV,d])~1

CONTINUE

CHECK FOR T
IF T IS THE HIGHEST ENTRY A SQLUTION HAS BEEN FOUND
OTHERWISE FIND NEXT HIGHER T

DO 16 M=1,MACH

DO 16 J=1,J0BS

IF{TeLTJLALLV,M,d) )} GO TD 51

CONMT INUE

IFIT.GEL,ISTMIN) GO TO 110

ISTMIN=T

WRITE (3,6) ISTMIN

FORMAT({IH ,' A SOLUTION 1*,1I6)
FORMAT(IMHO,10X, ' COMPUTATION TIME =',Fl12.4)
LEVEL=LV-1 '

WRITE(3,1001) LEVEL

FORMATI(LIH o' NO OF CONFLICT LEVELS FOR SOLN®*,16)
ISWTCH=TSWTCH+1

NEKTRK=NBKTRK+1

IF(ISWTCHaEQal) NBKTRK=D

IF{ISWTCHaNELL) GO TO 110

IF(ICARD.EQe0D) GO TO 110

WRITE (2,1003) ISTMIN

FORMAT{IR)
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0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0l44
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0le3
0l64
0165
0l66
0167
0lé68
0169
0170
0171
0172
0173
Cl174
0175
‘0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
01a7
0188
0189

LEVEL

C
c

110

g5

501
23
120

300

360

310

350

48
24

585

580

583

400
509

78
T3
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BACKTRACK ING

DO 95 I=1,MACH

DO 95 J=1,J0BS

LACLV MM{Ja 1) ,J)=0

Lv=LV~-1

IF{IPRINT.EQs0) GO TN 23

WRITE (3,501) LV

FORMAT(1H ' LEVEL",I5)

NLV=N(LV)

DO 300 NL=1,4NLV
IF(JJILV,NL) s NEsJACTIVILV}) GO TO 300
NK=NL

CONT INUE

DO 360 NL=1,NLV
IFLJJELV,NL)«EQ.JACTIV(LV)) GO YO 360
IFITISTMINGLESILB(LV,NL)) GO TO 360

CIFUILB{LV NL)LTSNILB(LV)) GO TO 360

IF{TLB(LV s NL)«GTNILB(LV)} GO TO 310
IF{NL.GT.NK} GO TO 310

CONT INUE

IF(LV~1}400,400,110

JL=JJ(LVsyl)

IL=10P{LV,JL)

ML=MM(JL, IL)

T=LA(LVMLsJL)

DO 350 NL=24NLV

J2=JJILVsNL)}

12=10P(LV,J2)

M2=MM{J2,12)

IF(LALLY s M2,02)eLTeT) T=LAILViMZ2,J2)

CONTINUF

IF{IPRINT.EQ.Q) GU TO 24

WRITE (3,48} T

FORMAT(1IH ' Tx',F8e1)

DO 583 J=1,J08S

DO 580 1=14MACH

M=MM{J, 1) )

IF(LA(LV,MyJ}aEQe0) GO TO 585

JCTUJe D)=LAILV M d}

GO TD. 580

JETUd e IV=JCT(Jse I-1)+IT(J, 1}

CONTINUE

COMNTINUF

CALL SMLILB(LV}

GO T0D 22

WRITE (3,509) ISTMIN

FORMATI{1HO, 10X," OPTIMAL SCHEDULE TIME = *,I6)
WRITE (3,73) NNODES

WRITE (3,74} NCNFLT

WRITE (3,78} NBKTRK

CALL TIME(MTZ2)

COTIME=(NT2-NT1)/100.

WRITE{3,980) COTIME

IF(ICARD.EQ.C) GO TO 32

WRITE(Z2,9072} NNDDES MNCNFLT NBKTRK,COTIME,ISTMIN
FORMATLLHO, 10X " NUMUBER OF BACKTRACKS =',112}
FORMATCLIHO, LOX, ' NUMBER OF NODES EXPLORED =t'4112)
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cl90 74 FORMAT{1HO,10X,*' NUMBER OF CONFLTS =',112)
0191 902 FORMAT(3I12,F1143,110)

0192 32 CONTINUF

0193 100 SsTOP

0194 END
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0001 FUNCTION RANDNOI(IY)
0002 IY=1Y*65627

0co3 IF{IY)5,6,46

0004 5 IY=1Y+2147483647+]
0005 6 RANDNO=1Y*44656613E-9
0CO6 RETURN

ocov END
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0001

0002
0Co3
0004
0005
0006
0007
0008
0CO9
0Cl10
0011
0012
0013
0014
0015
0016
0017
oola

SUBROUTINE SMALLT{T,LV)
900 0 P02 PP P PEPPORTOOORRBVNAQP RS ET D P TE R RIR LSRRI NEEIBEYRER

THIS SUBROUTINE FINDS THE SMALLESTY NUMBER IN THE SCHE-
DULING TABLE AT LEVEL 1 IN THE BEGINNINGe EVERYTIME,
IT UPDATES THE VALUE OF T TO THE NEXT HIGHER VALUE IN
THE SCHEDULING TABLE AT A LEVEL LV, '

[ FEE RN EEBRE NN RSN EENENEEREFEE SRR SRR R R E AR RN R RN S R E R REEREEEE R ESENESNRN]

OO0 OO0

coMMny IT(15,15) y MACH,MM({154,15),JCT(15,15)4sLAl90,415,15)
COMMON JOP{90,15),JJ(30415),1LB(9D,15),J0BS,ISTMIN
COMMON N(90)4NILB(90) JACTIV(S90),IPRINT,IB
ISWTCH=0
DO 20 M=1l,MACH
DO 20 J=1,J0BS
IF(LA(LV,MsJ}oLEsT} GO TO 20
ISWTCH=ISWTCH+1
ITFIISWTCHeEQal) TS=LA(LV:M,Jd)
10 IF{LA(LVyMsJ)oLTTS) TS=LA(LV¢M, J)
20 CONTINUE :
T=TS
IF(IPRINT.EQsO) GO TO 25
WRITE (3,502} T
502 FORMATI(LH o' T ',FB8.1)
25 RETURN
END
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0001

0002
0003
0004
0005
0006

0007
0008
0009
0clo0
0011
0cC12
0013
0014
0015

0Cl6
0017
o018
0019
0020
0021
0022
0023
0G24
0025
0c26

0027
0Gc28
0cz9
0030
0031
0032
0033
0034
0035
0036
0037

SUBROUTINE CONFLT (TeKeLVyNNODES¢NCNFLT,*)
I F A N R R N R R N R N RN RN NN R R A N AR N A N R R R R R R R N RN R R B NN NN N NN

THIS SUBROUTINE CHECKS FOR CONFLICT. IF A CONFLICT
EXISTS, THF LOWER BOUNDS FOR THE NODES IN THE CONFLICT
SET ARE COMPUTED USING ONE OF THE LOWER BOUNDS.

I A E R R EEEENNES IERENESE AN SR EN R NEE RN N NS BERNERSRRNERENENNNENERERERZSERIENHSENSNNETJREXY

OO0

COMMON IT(15415) yMACHysMM(15,15}),JCT(15,15)+LA(90,15,15)
COMMDN I0P(90415),dJ(90,15)4ILB{90+15),J0BS,yISTMIN
COMMON N{S0),NILB(S0},JACTIV(90),IPRINT,IB

NLV=N{LV]

L=0

~CHECKING FOR CONFLICT USING BEENHAKKERS FORMULA.

OO0

DD 40 KL=1,NLV
J2=JJ (LV,KL)
12=10P(LV,J2)
M2=MM(J2,12)
IF(LA(LV,M2,J2)1.EQeT} GO TO 39
IF((T+IT(J2,12))eLEJCT(J2,12}) GO TO 40
39 L=L+1
40 CONTINUE
IF(LeLEsl) GO TO 35

IF CONFLICT EXISTSy ONE OF THE BOUND SUBROUTINE IS
CALLED TO COMPUTE THE LOWER BOUNDS FOR THE NODES IN
THE CONFLICT SET AT A LEVEL.

aAOO0O0

GO TD(91492+93¢94+95)+18B

91 CALL BOUNDLIT,K,LV)
GO TO 96

92 CALL ROUND2({TsK.LV}
GO TO 96

93 CALL BOUND3({T.K,LV)
GO TO 96

94 CALL BOUND4{TsK,.LVI
GO TO 96

95 CALL BOUNDS({T.K,LV)

96 NILB(LVI=ILB(LV,1)

DETERMINE THE NODE WITH MINIMUM LOWER BOUND. IF A TIE
EXISTSy, IT IS BROKEN USING THE LEFT HAND RULE.

OO0

NNODES=NNODES+N{LV)
JACTIVILVI=JJ(LV,1)
= DO 10 NL=2,NLV

IF(NILBILV)aLE,ILB(LV,NL)) GO TO 10
NILBILVI=ILB(LV,NL)
JACTIVILV)Y=JJILV,NL)

10 CONTINUE

" IFI(NILB(LV)-ISTMIN])Z21,22,22

21 LV=LV+1
NCNFLT=NCNFLT+1
DO 20 M=l ,MACH
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po3s
0039
0040
0C41l
0042
0043
0C44
0045
0046

0047
00438
0C49
0050
0C51
0C52
0053
0054
0C55
0C56
0057
0058

0C59

0060
0061
0062
0063
0064
0065
0066

OO0

20

30

14
15

83

22
35

00 20 J=1,J0BS

LATLVyMyJd)=LA(LVY=-1)M,yd)

DO 30 J=1,J0BS

IOP{LV,J)=10P(LV=-1,J])
TA=T0P{LV,JACTIVI(LV-1))

L=N(LV-1)

DO 15 NL=1,L

IFIJJILV=-1sNL)EQa JACTIVILV~ lll GO T0 15
Jl= JJ(LV—I;NLI

UPDATE THE COMPLETION TIME MAIR[X IN FAVOR DF THE NODE

I1=10P(LV,J1)

JCT(JL, 11 ) =JCTIJACTIVILY=1) 4 TAI+IT(JL,11)
M=MM(J1,11)

LA(LV,MyJ1)=JCT(J1,11)

IK=11+1

IF(IK.GTe MACH) GO TO 15

D0 14 IC=IK,MACH

JCTUJLLIC)Y=JCT(JL1,IC-1)+1IT(J1,IC)
CONTINUE

IF{IPRINT.EQeO) GO TO 35

WRITE (3,83)
FORMAT(1HO,10X,
DO 16 J=1,J0BS
WRITE (3,4) (JCT(J4,+1),I=1,MACH)
FORMAT(IH ,10X,1214}

GO TO 35

NCNFLT=NCNFLT+1

RETURN 1

RETURN

END

*COMPLETION TIME MATRIX*t)

14,
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0001

0002
0003
0004
0005
0006
.0007
oQos8
0cCco9
0010
0011
0012
0C13
0Cl4
0015
0016
0017
0018
00ls
0020
0C21
0022
0023
0024
0025
0026
0027
0028
0029
0030
003}
0032
0033
0034
0035
0036
0037
o038
0039
0040
€041
0042
0043
0044
0C45
po4s
0047
-0C48

OO0

SUBROUTINE BOUNDL (TyK,LV}

BOUNDL

DATE = 69336 129

lay/

LA R R AR AR RER R XA RN EAE N RS RE AR ERNE R REENEESERRNERERERENLNEN N TS

THIS SUBRDUTINE COMPUTES THE LOWER BOUND USING THE

COMPOSITE-BASED BOUND LB Ie THE LOWER

BOUND FOR A NODE

IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
LB III (BOUND 3)ETHE MACHINE-BASED BOUND LBV (BOUND 5)

LA RN AR RS RENEEEE S REERREIE RSB ENENRER X ENERESREREEREEENEERENERENERENERERNY

86
60

11

10

O ;>

35

COMMON IT(15,15),MACH,MM(15,15),JCT(15,15},LA{90,15,415)
COMMON [OP{90,15),JJ(904+15),ILB[(90,151,J08S,ISTHMIN
COMMON N(90},NILB(90),JACTIV(S0),IPRINT,IB

DIMENSION GREAT(10),GRAT(10),GRT(10},DIF(10)

IF{IPRINT«EQ.0) GO TC 60

WRITE (3,86)
FORMAT(1IHO,10X,? ILB
NLV=N(LV) .

DD 20 N1=1.:NLV
JiI=JJ{LVyN1)
I1=I0P{LV,J1"
Mi=MM({J1l,1I1)
DO 11 J=1,J08BS
PIF(J)=0.

DD 10 N2=1,NLV
J2=JJ(LV,N2)
12=10P{LV,J2)

IF{N2.EQeN1)} DIF(J2)=0

IF(N2.EQeNYl) GO TO 10

DIF(J2)=JdCT{J1l,12}+IT{J2,12)-3CT(J2,12)

CONTINUE
JGRT=JCT(J1,11}

DD 9 J=1,J0BS
IF(J1.EQsJ) GO TO 9
00 8 I=1,MACH
KC=MM{J,1)
IF{KC.NEs.K) GO TO 8

IF(LA(LVyKyJ)eNEa O ANDaLA(LV4+KyJ)eLTaT) GO TO 8

JGRT=JGRT+IT(J, 1}
CONTINUE

CONTINUE

GREAT (K}¥=JGRT

DO 40 L=1,MACH

LL=0

IF(KeEQeL) GO TO 40
DO 39 J=1,J0B8S.

DD 38 I=1,MACH
KE=MM({J,1)
IFIKE«NEsL) GO TO 38
IP=1-1

IF(IP.EQ.C) GO TO 35

IFLJCT(Jy 1)elLTLT) GO TO 38

Li=LL+1

GRAT(LL)I=JCT{J,IP)+DIF(J)

GO TO 38
JGPP=JCT(d, 1)

[IFCJGPP.LT.T) GO TO 38
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0049
0050
0051
0052
0053
0C54
0055
0C56
0C57
0c58
0C59
0060
0C61
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
ocas
0084
0c8s
0086
0087
0css
0089
0090
0091
0092
0093
0094
‘0C95
0096
0C97
0098
0099
0100
0101
0102
0103
0104
‘0105
0106

38
39
29

27

48
50

26

30

40

900
12

15

59
65

80

70

75

1, MDD 4 BOUND1 DATE = 69336

LL=LL+1

GRAT(LL)=0.

CONT INUE

COMNT INUE

IF(LL-1126+28,29

JGP=GRATI(1)

DO 27 LR=2,LL
IFIGRATI(LR)&LTeJGP) JGP=GRAT{LR)
CONTINUE

JGPR=JGP

GO TO 7

JGPR=GRAT (1)

00 50 J=1,J0BS

DO 48 I=1,MACH

KG=MM(J, )

IF{KG.NE.L) GO TQO 48

IF{LACLVyL +J} e NFa Qs ANDQLAILV,LyJ)elLTaT) GO TO 48

"JGPR=JGPR+IT{J,1)

CONT INUE

CONTINUE

GREAT(L)=JGPR

GO TO 40

NT=LA(LVeL,y1)

D0 30 J=2,J0BS

IFTLAGLVYyLsJ)aGTeNT) NT=LA(LV,L,J)
CONTINUE-

GREATILI=NT

CONTINUE

IF(IPRINTCEQsO) GO TOD 12
WRITE(3,900) (GREAT(MQ).MQ=1,MACH)
FORMATI{1H ,4F8,1])
ILBILV+N1l)}=GREAT(l}

DO 15 I=2,MACH

IFTILB(LVY N1}«GELGREATI(I)) GO TO 15
ILBILVyNY}=GREATI(I)

CONTINUE

IFIIPRINT.EQsQ) GO TO 65

WRITE (3,59) ILB(LV,N1),N1
FORMAT(1HO,10X,215)

JXP1=ILB(LV,4N1)

CO 80 Mi=1,NLV

GREAT(MI) =0,

J1=JJ(LV,yN1)

I1=10P(LV,J1)

DO 70O N2=1,4NLV

J2=JJ(LVeN2)

[2=10P(LV,J2}

IFIN2.EQaNY) GREAT(N2)=JCT(J2,MACH)
IFIN2+sEQsN1) GO TO 70
KIF=JCTIJLl,I0)+1T(J2,12)=JCT(J2412)
GREAT(N2)=JCT{J2,MACH)+KIF

CONTINUE

ILBULV4NL)=GREATI(])

0D 75 I=24NLV

IF(TILBRILV NL)YGELGREATI(I)Y) GO TO 75
TLB{LVNLI=GREAT(])

CONTINUE

IF{IPRINTLEQeQ) GO TO 66

130

147
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0107 WRITE (3,59) TLBILVsNL}4N1
0lo8 ; 66 JXP2=ILB(LV,N1]}

0109 IF(JUXP2-JXP1)61961462

0110 61 ILBULV.NL)=JXP]

0111 IFLIPRINT.EQ.0) GO TO 20
0112 ~ WRITE (3,59) ILB(LV,N1}sNl
0113 GD TO 20

0l1l4 62 TLBILV,NL)=JXP2

0115 IF{IPRINTLEQ.O} GU TO 20
0116 WRITE (3,59} ILBt{LV4NL),N1
0117 20 CONTINUE

0118 RETURN

0l1s END
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0001

0002
0003
0004
0005

- 0C06
0007
0cos
0009
0010
0011
0012
0013
0014
0015
0Q0l6
0017
o018
0019
0020
0¢21
0cz22
0023
0024
0025
0026
0027
0028
0¢29
0030
0031
032
0033
0034
0035
0036
0037
0038
0039
0040
. 0041
0042
0043
Q044
0045
T 0046
- 0047

SUBROUTINE BOUND2 (TyK,LV)
AR N R RS A R RN Y R A R A R S B R A R R N R N A R R R R R R L A RN Y NN

THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
COMPOSITE-RASED BOUND LB Ils THE LOWER BOUND FOR A
NODE IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
LB IVI (BOUND 4)&THE MACHINE-BASED BOUND LBV (BOUND 5}

(A EENEEENNENEERENEAENSEERNEEEE R RS EER RN EARERESE ERENENEREEREREZSHNS S BINESENENNREY

OO0 OO0O0O

COMMON IT(15415}4MACH,MM{15415)9JCT(15,15)4LA(90415,15)
COMMDN IDP{904+15)4JJ{90y15),ILB(90,15},JOBS,ISTMIN
COMMON N(90),NILB(90),JACTIV(90),IPRINT,IB
DIMENSTON GREAT(10C),GRAT(10),GRT({10),DIF(10),12(101},SMALL(10},
1GRETE(10)
IF{IPRINT.EQ.C) GO TO 999
WRITE (3,86)
B6 FORMAT(1HO,10X,*' 1ILB N')
999 NLV=N(LV)
DO 20 Nl=1,NLV
J1=JJ(LVsN1)
11=I0P{LV,J1)
DO 10 N2=1,NLV
J2=JJ{LVe N2}
12=10P(LV,J2)
IFIN2sEQeN1) GREATI(N2)=JCT{J2,MACH-1)
IFIN2+EQeN1) GO TO 10
KIF=JCT(J1,I1)+IT(J2,12)-JCT(J2,12)
GREAT(N2)=JCT (42, MACH-1)+KIF
10 CONTINUE
NZ2=NLV
DO 30 J=1,J08BS
NN=1
9 IF(JJI(LV,NN}.EQed)} GO TO 30
NN=NN+1 '
IF{NNsGTaNLV} GO TO 40
GO TO 9
40 N2=N2+1
GREAT (N2)=JCT(J,MACH-1)
JJILVyN2Y=J
30 CONTINUE
DO 600 KX=1,MACH
L=0
DO 502 NN=1,N2
J3=JJ(LV,NN)
M3=MM(J3, MACH).
IF(M3.NEsKX) GO TO 502
L=L+1
- GRAT{L)I=GREAT{NN)
1Z{L)=NN
MR=NN
502 CONTINUE
IFIL.EQsO} GO TO 600
IF(LaeGTel) GO TO 510
Lt=0
DO 210 IK=1,N2
Ja=JJ LV, IK}
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0048
0049
Q0S50
0051
0052
o053
0C54
0GC55
0056
0057
0Cs58
0C59
0060
0061
0C62
0063
0064
0065
0066
0067
0Ce8
0069
0070
0071
Q0072
- 0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
oagss
- 0086
- 008T
0088
0089
0090
0091
0092
. 0093
0094
0095
0096
0097
- 0098
. 0699
0100
0101
0102
0103
0104
* 0108

210

220

510

690

691

700
580

600

15

59
65
21

47

11
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IFIMMT{J4y MACH-1)sNEo.KX]) GO TO 210
LL=LL+1

IFILLeEQe 1) JGRT=GREAT(IK)
CONTINUE

IFILL.EQ.Q} GO TD 580
J5=JJ(LVy MR}
IF{JCGRTLGE4+GREAT(MR)) GO TO 220
GRT{MR)I=GREAT(MR}I+1IT{J5,4MACH)
GO TO 600
GRT{MRI=JGRT+IT(JI5,MACH]

GO TD 600

DO 700 M=1,L

SMALL (M)}=GRAT(1}

MN=1Z(1)

KP=1

DD 690 KS=2,L

 IFIGRATIKS)GE«SMALLI{M)) GO TO 690

SMALL {M)=GRAT(KS)

MN=TZ(KS}

KP=KS

CONTINUE

GRAT(KP)=9999

Jé=JJ (LVyMN)

IF(MaGTel) GO TO 691

IF{M,EQel} GRT(MN}=SMALL{M)+IT{J6,MACH)
IF{MeEQsl) GRETE(M}=SMALL{MI+IT{J6,MACH)
GO TO 700

IF(SMALLU{M) e LE4GRETE{M~1)) GRT{MN)=GRETE(M~1)+IT{J6,MACH)}
IF{SMALL{M} LE.GRETE{M-1)) GRETE{(M)=GRETE(M~1)+IT(J&6,MACH)

IF(SMALL(M)eGT4GRETE(M-1}) GRT{MN)=SMALL(M}+IT{J6,MACH)
IF{SMALL{M)oGT«GRETE{M=1)) GRETE(M}=SMALL(M)+IT{J6,MACH]
CONTINUE

GO TO 600

JT=JJ LV MR}
GRT{MR}=GREAT(MR}+IT{J74MACH)

CONT INUE

ILB{LV,N1)=GRT (1)

DD 15 IX=24N2
IF(ILBILVyN1Y.GELGRT(IX)) GO TO 15
ILBILV N1 )=GRT(IX)

CONTINUE

IF{IPRINT.EQs0) GO TO 65

WRITE (3,59) ILB{LV,N1},N1

FORMAT (1HO,10X,215)
JXPL=ILB(LV,N1}

DO 47 L=1,10

GREAT (L }=0.

GRT(L1=0,.

GRAT (L }=0,

NLV=N(LV]

Jil=JJ LV, N1}

I1=TOP{LV,J1}

M1=MM{J1l,I1)

DD 11 J=1,J40B8S

DIF{J)}=0a

DO 41 NZ2=1,NLV

J2=JJ (LVy,N2)

[12=10P(LV,J2)

L4/
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0106

o107

0108
0109
0110
0111
0112
0113
0ll4
0115
0116
0117
0118
0li9
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0l40
0l4l
0l42
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155%
0156
0157
0158
0159
0160
0l61
0162
"0l63

41

35

38
39
29

27

48
44

26

45

43
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IFINZ2JEQeN1) DIF(J2)=0
IFINZSEQs N1} GO TU 41
DTF{J2)=JCT(JLl,10)+IT(J2,12)=-UdCT{J2,12}
CONT IMUE

JGRT=JCTL{JL,I1)

DO 42 J4=1,J0BS

IF{(J1.FQeJ} GO TO 42

CO 8 I=1,MACH

KC=MM(J|I’

IF{KCeNE, K} GO TO B
IFILATLVyKyJd) e NEsCoANDeLAILV4K4J)eLTLT) GO TO 8
JOGRT=JGRT+IT(J, 11

CONT INUE

CONTINUE

GREAT(K)=JGRT

DO 43 L=1,MACH

LL=0

IF{KeEQeL) GO TO 43

DO 39 J=1,J0BS

DO 38 1=1,MACH

KE=MM{J,I)

IF{KE«NEsL) GO TD 38

IP=1-1

IF{IP.EQ.0) GO TO 35

IF{JCT(Jy T)alTeT) GO TO 38
LL=LL+1

*GRAT(LL}= JCT(J:IPI+DIF(J)

GD TO 38

JGPP=JCT(J, 1)

IF{JGPP.LT.T} GO TO 38

LE=LL+1

GRAT(LL)=0.

CONTINUE

CONT INUE

IF{LL-1)26+4284+29

JGP=GRAT(1)

DO 27 LR=2,LL
IFIGRATILR)«LTaJGP) JGP=GRATI(LR)
CONT INUE

JGPR=JGP

Go 1O T

JGPR=GRAT(1])

DO 44 J=1,J0BS

DO 48 I=]1,MACH

KG=MM{J, 1)

IF{KGsNEsL) GO TO 48
IF{LA{LV,LyJ)eNEsCe AND» LA(LVaLoJ) LT«T) GO TD 48
JGPR=JGPR+IT(J,I)

CONT INUE

CONTINUE

GREAT(L)=JGPR

GD TO 43

NT=LA{LV,L,1)

DO 45 J=2,J08S ;
IF(LA{LVyL+J)aGTaNT) NT=LA(LV,L,J)
CONT INUE

GREAT (L )I=NT

CONTINUL

134

14/

r
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0lé64
0165
0léé
0167
0l68
0169
0170
0171
0172
0L73
0174
0175
0176
0177
0178
0179
‘0180
0181
0l82
o183
0184
0185

900
52

46

66

61

62

20

1, MOD 4 BOUND2

IF(IPRINT.EQ.O) GO TO 52
WRITE(3,900) (GREAT{MQ),MQ=1,MACH)
FORMAT(1H ,4F8.1)
ILB(LV,NI I =GREAT(1)

DO 46 1=2,MACH
IF(ILB{LVyN1)«GEGREATII)) GO TO 46
ILBILV,N1 }=GREAT(I]

CONTINUE

IFIIPRINTLEQeQ) GO TO 66

WRITE (3,59} ILB(LV,N1),N1
JXP2=1LB(LVeNL)

ILBILVyNL}=JXP1l

IF{IPRINTLEQ.Q) GO YO 20

WRITE (3,59) ILBILV,N1],N1

GO TD 20

ILBILV,NL }=JXP2

TF(IPRINTLEQaC) GO TO 20

WRITE (3459) ILBILV,NL)sN1

CONTINUE
RETURN
END

DATE

-
-

69336

435
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0001 SUBROUTINE BOUND3 (T,K,LV)
C
c.......t....‘..C...C..“..'..‘-'.Ql.'.‘.‘......l".l'l.’bﬁ...l'.
c THIS SUBROUTINE COMPUTES THc LOWER BOUND USING THE
C JOB-BASED BOUND II1, SUGGESTED BY CONWAY ET AL.
c.'............-...bI.l...lC.I............'......'..l....I.......
c

0002 COMMDN IT(15,15) 4MACH,MM(15415),JCTIL15,1514LA(S0,15,15}

0003 COMMON IDP(90,15),JJ190,15)1,ILB{90,15)+J0BS,IS5TMIN

0004 COMMDN N(90),NILB(90),JACTIV(90),IPRINT,IB

0005 DIMENSION GREAT(10}

0006 IF{IPRINT.EQesQ) GO TO 60

0gQo7 . WRITE (3,86)

0008 86 FORMAT(1H ,10X,* ILSB N*)

0009 60 NLV=NI(LV)

0010 DO 20 N1=1,NLV

0011 CJ1=JJ{LV,y N1

polL2 I11=10P(LV,J1)

0013 DO 10 NZ=1,NLV

0Cl4 J2=JJ LV, N2}

0015 [2=10P(LV,J2)

00lé IFIN2eEQeN1} GREAT(NZ}I=JCT(J2,MACH)

-0017 IFINZ.EQeN1) GO TO 10

ocl8 DIF=JCT(JL,I1}+IT(J2,[2)1-dCT(J2,12)

0019 GREAT(N2)=JCT(J2,MACH)+DIF

0020 10 CONTINUE

0021 TLRILV,N1)=GREAT(1)

0022 DO 15 I=2,NLV

cc23 " TF(ILB(LV,N1).GE.GREATI(I}} GO 70 15

0024 ILBILV,N1)=GREAT{1)}

0025 15 CONTINUE

0026 IFCIPRINT.EQs 0} GO TO 20

0027 WRITE (3,50) ILB{LV,N1l],Nl

0028 50 FORMAT(1H ,10X,215)

oc29 20 CONTINUE

0030 RETURN

0031 END
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0Co1 SUBROUTINE BOUND4
' c

c............‘......‘-.‘.........‘I‘.........'."‘..‘II...b..'...‘.‘.
c THIS SUBROUTINE CGMPUTES THC LOWER BOUND USING THE
C JOB—-BASED BOUND IV , SUGGESTED BY'BROOKS AND WHITE®
_cl............."................‘...‘..."...........‘.....‘...‘.0.
c

0002 COMMON IT(15415)yMACHsMM(15415)4JCT(15,15)4LA(90,415,15) :

0003 COMMON T10P{90,15),JJ190,15),I1LB(90,15),J0BS,ISTMIN

0004 COMMOMN NIUGO},NILB(90),JACTIV(S0),IPRINT,IB

0CO05 DIMENSION GREAT(10),GRAT(10),1(10),GRT(LO},SMALL{LC),GRETE(1D)

0006 IF(IPRINTLEQ.O) GO TO 999

0007 WRITE (3,86) _

0008 86 FORMAT(1HO,10X,* 1ILB N')

0009 999 NLV=N(LVI

0010 DO 20 Nl=1,NLV

0011 J1=JJ(LVyNL}

00l2 I1=10P(LV,J1)

0013 DD 10 N2=14NLV

0014 J2=JJLVeN2}

0015 12=I0P(LV,J2]) ,

0016 IF(NZ2+EQsN1) GREAT{(NZ2)=JCT(J2,MACH~-1)

0017 IF(N2,EQeNLl) GO TD 10

ool DIF=JCT(JL,I1+1IT(J2,12)=-JCT{J2,12)

0019 GREAT(N2)=JCT(J2yMACH-1)+DIF

0020 10 CONTINUE

0c21 NZ2=NLV

0C22 DO 30 J=1,J0BS

0023 NN=1 :

0024 9 IF(JJ(LV,NN}.EQed} GO TO 30

0025 AN=NN+1

0026 IF(NN.GTs NLV) GO TO 40

0027 GO TO 92

0028 40 N2=N2+1

0029 GREAT (N2)=JCT{J,MACH-1]

0030 JJ(LV,N2)=J

0031 30 CONTINUE

0032 DO 600 KX=1,MACH

0033 L=0

0034 DD 502 NN=1,N2

0035 J3=JJ(LV,NN)

0036 M3=MM(J3, MACH)

0037 ‘ - IFI(M3,NE. KX} GO TO 502

0038 L=L+1

0039 GRAT (L}=GREAT {NN}

0040 I(L}=NN

0041 MR=NN

0042 502 CONTINUE

0043 IF{LaEQsO} GO TO 600

0Q44 " IF(L.GTs1} GO TO 510

0045 LL=0

0046 00 210 IK=1,N2

0047 Ja=JJ{LV, [K)

0048 TF(MM{J4y MACH=L)sNEeKX) GO TO 210

0049 LL=tL+]

0050 IF(LLeEQs 1) JGRT=GREAT(IK)

0051 210 CONTINUE :

- 0052 IF(LLsFQs0) GO TO 580
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0053
0054
0055
Co56
0057
0058
0C59
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0C73
0074
0075
0076
0077
o078
0079
ocso
0081l
0082
0C83
0084
0085
0086
0087
0088
o089
0090
0Ccol
0092
0093
0C94

220

510

690

691

700
580
600

15

50
20
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J5=JJ{LV,MR)

IF{JGRTGE.GREAT{(MR)) GO TO 220
GRT{MR}=GREAT (MRI+IT(J5,MACH)

GO TO 600

GRT{MR}=JGRT+IT(J5,MACH)

GO TO 600

DO 700 M=1,L

SMALL {M)}=GRAT(1)

MN=T(1)

KP=1

DO 690 KS=2,L

IF{GRAT(KS)eGE4SMALL (M}) GO TO 690

SMALL (M)=GRAT (KS)

MN=T (KS)

KP=KS

CONT INUE

GRAT(KP)=9999

J6=JJ (LVe MN)

IF(M.GTe1) GO TO 691

IF(MsEQal) GRTIMN})=SMALL({M}+IT(J6,MACH)
IF(MeEQel) GRETE(M)=SMALL(M)+IT(J6,MACH)
GO TOD 700 '
IF{SMALLIM)2LE«GRETE(M~1}} GRT{MN}=GRETE(M-11+IT{J6+MALH)
IF(SMALL(M) o LEeGRETE{M-1)) GRETE(M}I=GRETE(M-11+IT{J6,MACH)
IFISMALL{M}oGT«GRETE{M-1)) GRTIMN}=SMALL{M)+IT{J64MACH)
IF(SMALL(M)aGT.GRETE{M—~1)} GRETE(M}=SMALL(M)+IT{J6,MACH)
CONT INUE

GO TO 600

J7=JJ(LV, MR)
GRT{MR}=GREAT{MR}+IT{JT,MACH)

CONTINUE

ILB(LVsN1}=GRT(1)

DD 15 IX=2,N2

IF(ILBILVyN1}aGE-GRT(IX)) GO TO 15
ILBILVyN1)=GRT(IX)

CONT [NUE

IF{IPRINT.EQ.0) GO TO 20

WRITE (3,50} ILB(LV,N1J),NL
FORMAT(1HO, 10X, 215}

CONT [NUE

RETURN

END
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0001

0002
0co3
0004
0005
0006
0007
0008
0009
0010
0Cl1
0012
0013
0014
0015
OClé
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0c33
0034
0035
0036
0037
0038
0039
0040
0041
QC4s2
0043
0044
0045
- 0046
0047
0048
0049
0050
0051
0C52

c

SUBRODUTINE BOUNDS (T,K,LV)

CQ.......-......l...l..hb.‘b..........i....".00..'..'..iﬁ.'ﬁﬁ"i]..\

c
c

THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
MACHINE-BASED BOUND LB V, SUGGESTED BY CONWAY ET AL.

Coo...oootootoo  EEEERE R RN EENENEENERENENENXENESE N ENENHENSEJLIRESH:EZS RS E I

c

COMMON IT{15415}sMACH,MM(15,15)4JCT(15,15)3LA(90,15,415)
COMMON 1D0P{90,15),JJ190,15),ILB(90,15),J0BS,ISTMIN
COMMON N{90} ,NILB{S0) ,JACTIVISO),IPRINT,IB
DIMENSION GREAT(10),GRAT{10),GRT(10),DIF(10)
IF(IPRINTLEQ.O} GO TO 60
WRITE (3,86)
86 FORMAT(1HO,10X,* ILB N')
60 NLV=N{LV)
DO 20 Nl=1,NLV
CJ1=JJ1LV, N1}
[1=I0P{LV,J1)
M1=MM{Jl,11)
DO 11 J=1,J0BS
11 DIF(J)=0.
DO 10 N2=1,NLV
J2=JJd (LV,N2)
[2=10P{LV,J2)
IFINZLEQeNY1)Y DIFtJ2)=0
IF(N2sEQeN1) GO TO 10
DIF(J2)=dCTIJLs 11} +TIT(I2,12)-3CT(J2,12)
10 CONTINUE
© JGRT=JCTIJ1,11)
D0 9 J=1,J0BS
IF{J1.EQeJd) GO TO 9
DO 8 I=1,MACH
KC=MM1J,1)
IF(KCeNE.K) GO TO 8
IF(LA(LVyKyJ) aNEaGCoANDSLA{LV,KyJ)elTT) GO TO 8
6 JOGRT=JGRT+ITI(J,1)
8 CONTINUE
9 CONTINUE
GREATI{K }=JGRT
DO 40 L=1,MACH
LL=D-
IF(KeEQ.L)} GO TO 40
DO 39 J=1,JO0BS
DO 38 I=1,MACH
KE=MM{J,1)
IF{KEsNEsL) GO TDO 38
Ip=1-1 .
IF(IP.EQ.0) GO TD 35
TFLJCTIJ,1)alTLT) GO TO 38
LL=LL+1
GRATILLYI=JCT(J,IP}+DIF{J)
GO TO 38
35 JGPP=JCTI(J,1)
IF{JCPP.LT.T) GO TO 38
LL=LL+1
GRAT{LL)=0.
38 CONTINUE
39 CONTINUE
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0053
0054
0055
0056
0057
6058
0C59
0060
0061
0062
0063
0064
0C65
0066
0067
0C68
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090

LEVEL
29

27

48
50

26

30

40
900
12

15

59
20
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IFILL=-1)26,28,29

JGP=GRAT(1)

D0 27 LR=2,LL :
IF(GRAT(LR}oLTeJGP1 JGP=GRAT{LR}
CONT INUE

JGPR=JGP

GO TO 7

JGPR=GRAT (1}

00 50 J=1,J08S

DO 48 I=1,MACH

KG=MN(J,T1)

IF{KGsNEaL) GO TO 48
JGPR=JGPR+IT{J,I)

CONTINUE

CONT INUE

GREAT{L}=JGPR

GO TO 40

NT=LA(LVsL,1)

DO 30 J=2,J0BS
FFILA(LV,L4J)oGTeNT) NT=LA(LV,.L4J)
CONTINUE

GREAT{L)=NT

CONTINUE

IF(IPRINTLEQaQ) GO TO 12
WRITE(3,900) (GREAT(MQ},MQ=1,MACH]}
FORMAT(1H ,4FBs1} v
ILBILV,N1}=GREAT(1}

DO 15 [=2,MACH
IF(ILBILYyN1).GE.GREAT(I)) GO TO 15
ILB{LVyNY}=GREAT(I)

CONT INUE

IF(IPRINT.EQs0) GO TO 20

WRITE (3,59) ILB{LV,N1),N1
FORMAT{1HO,10X,215)

CONT INUE

RETURN

END

140 .
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0001
0002
0003
0004
0005
0006
0007
0008
0C09
0010
0011
0012
0C13
0014
0015
0016
0017
ccls
oQlL9
0620
ooz1
0022
0023
0C24
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0C51
0052
0053
0054
0C55
0056
0057

120

300

Nolie o]

11
12
?0
21

20

30

14
15

88
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SUBROUTINE SMLILB(LV)

141

COMMON IT(15415)¢MACH,MM(15415),JCT(15,15),LA190,415,15)

COMMON I0OP[90,15},JJ(90,15),4ILB(90,15),J0BS,ISTMIN

COMMDN N(SO0},NILB{G0),JACTIVI(90),IPRINT,IB
NLV=N(LV)

DD 300 NL=1,NLV
IFIJJ{LVyNL)eNESJACTIVILV)) GO TO 300
NK=NL

CONTINUE

ISWTCH=0

NLV=N(LV)

DO 10 NL=1.NLV
IF(JJILVyNLI«EQ.JACTIVILYV)) GO TO 10
IF(ISTMINSLE.ILB(LV,NL)) GO TO 10
IF{ILB{LVyNL)-NILB(LV))10,8,9
IF{NLsLTeNK]} GO TO 10

ISWTCH=ISWTCH+1

[FtISWTCH-1}11,11,12

NT=TILB(LV,NL}

NTL=NL

GO TO 10

IF(ILB(LV4NL}+GE.NT) GO TO 10

NT=ILB(LV,NL)

NTL=NL

CONTINUE

NILB(LV)=NT

JACTIV(LVI=JJ(LV,NTL)

LV=LV+1

CO 20 M=1,MACH

b0 20 J=1,4J0BS

LA(LVyMyJt=LA(LV=1,M,J}

DO 30 J=1,J08S

IOP(ILV,J)=T0P(LV=1,J)
TA=TOP(LV,JACTIVILV-1)}

L=N{LV-1)

K=MM{JACTIV(LV~-1),IA)

JCT{JACTIVILV=1) s TA}=LA(LV=-1,K, JACTIVILV-1]))

00 15 NL=1,L
IFIJJILV-14NL).EQaJACTIV(LV=1)) GO TO 15

Ji=JJLV=-1,NL}

I1=10P(LV,J1)

JCTIIL,TI1)=JCT(JACTIVILV=-1),IA)+IT(JL,I1)
M=MM(J1,11)

LACLV M J1)=UCT(J1,11)

IK=T1+1

IF{IKeGT« MACH) GO TO 15

DO 14 [=IK,MACH

JCTUUL,1)=J0CT(JL, I-1)+IT{J1, 1)

CONT INUF

IF{IPRINT«EQaO) GO TO 35

WRITE (3,88)
FORMAT(1HO, 10X,

00 13 J=1,3088

WRITE (344) (JCT(Jy1)s1=1yMACH]
FORMAT(IH 415X,1214)

RETURN

END

'COMPLETION TIME MATRIX%')

14/
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PROBLEM NUMBER = 1
PROCESSING TIME MATRIX
21 20 25 19 27
1 20 26 24 5
22 24 12 4 16
25 30 22 16 15
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5 28 16 1 3
13 22 16 15 19
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The scheduling problem with which this thesis is concerned consists
of determining the sequence of J jobs to be processed on M machines so
that the schedule time is minimized,

In this thesis, a branch-and-bound technique for job-shop problems
is developed. This technique generates an optimal solution after the
generation of only a small subset of possible sequences. The basic
concepts of this approach consist of the branching, bounding and back-
tracking processes. The branching process penerates a set of new
nodes from a nodé at the preceeding level. The bounding process helps
select a particular node at a level for further branching and thus,
makes it possible to achieve a reduction in the generation of nodes at
each level. The backtracking process guarantees an optimal solution.

In this thesis, two new lower bounds, referred to as composite-based
bounds LB I and LB 11, are developed. Three other existing lower
bounds, referred to as bounding procedures LB III, LB IV and LB V, are
analyzed in a mathematical form and rigorous notation for comparison
purposes., A considerable number of experiments has been conducted on
IBM 360/50 computer, The results are obtained in terms of thg number
of nodes explored and the computational time required to obtain the
optimal solution and the efficiency of solution obtained without back-
trécking.

The various lower bounds are compared with the help of the above
results, It is found that the number of nodes explored and the compu-
tational time to obtain the optimal solution increase rapidly with
the increase in the size of the problem. In general, the performance
of the composite-based bounds LB I and LB II is better than any of the

bounding procedures LB III, LB IV and LB V,





