A BRANCH-AND-BOUND ALGORITHM FOR JOB-SHOP PROBLEMS

by 1265

SANGAYYA RACHAYYA HIREMATH

B.E. (Mech.), Karnatak University

Dharwar, Mysore-State, India, 1967

A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

1970

Approved by:

Major Professor

LD 2668 TH 1970 H57

ACKNOWLEDGEMENT

I am greatly indebted to my Major Professor, Dr. S. Ashour, for his valuable guidance and the personal interest taken in the preparation of this Master's Thesis. I am also thankful to Dr. F. A. Tillman, Head, Department of Industrial Engineering, Dr. L. E. Grosh, Department of Industrial Engineering and R. O. Turnquist, Department of Mechanical Engineering for their kind patronage.

I appreciate and thank Sudesh Kumar for his assistance in the initial stage of programming. I also acknowledge and thank S. V. Gadad, Pathare and other friends for their help in proof reading, preparing drawings etc. Lastly, I thank Mrs. Jirak for her assistance in typing.

TABLE OF CONTENTS

		·	Page	
ACKNOWLEDGEMENT				
LIST OF	TABLE	ES ,	ii	
LIST OF	FIGURES		iii	
CHAPTER	I.	INTRODUCTION	1	
	1.1	Problem Formulation	3	
	1.2	Literature Review	6	
	1.3	Proposed Research	13	
CHAPTER	II.	DEVELOPMENT OF A BRANCH-AND-BOUND TECHNIQUE	14	
	2.1	Basic Concepts	15	
	2.2	Bounding Procedures	18	
	2.3	Sample Problem	43	
	2.4	Computational Algorithm	54	
CHAPTER	III.	COMPUTATIONAL EXPERIMENTS	72	
CHAPTER	IV.	SUMMARY AND CONCLUSIONS	86	
BIBLIOGR	APHY		92	
APPENDIX A:		COMPUTER PROGRAM	95	

LIST OF TABLES

		Page
Table 2.1	Solution of the Sample Problem Using Composite- Based Bound LB I	58
Table 2.2	Solution of the Sample Problem Using Composite- Based Bound LB II	60
Table 2.3	Solution of the Sample Problem Using LB III	61
Table 2.4	Solution of the Sample Problem Using LB IV	66
Table 2.5	Solution of the Sample Problem Using LB V	69
Table 2.6	Scheduling Table for Sample Problem Using Composite Based Bound LB I	71
Table 3.1	Mean Number of Nodes Explored to Obtain the Optimal Solution	78
Table 3.2	Mean Computational Time Required to Obtain the Optimal Solution	79
Tab1e 3.3	Efficiency of Solution Obtained Without Backtracking	80
Table 3.4	Results Obtained by Branch-and-Bound With and Without Backtracking Using LB I	81
Table 3.5	Results Obtained by Branch-and-Bound With and Without Backtracking Using LB II	82
Table 3.6	Results Obtained by Branch-and-Bound With and Without Backtracking Using LB III	83
Table 3.7	Results Obtained by Branch-and-Bound With and Without Backtracking Using LB IV	84
Table 3.8	Results Obtained by Branch-and-Bound With and Without Backtracking Using LB V	85
Table 4.1	Rank of Bounding Procedures Based on Number of Nodes Explored	89
Table 4.2	Rank of Bounding Procedures Based on Computational Time	90
Table 4.3	Rank of Bounding Procedures Based on Efficiency of Solution (Without Backtracking)	91

LIST OF FIGURES

			Page
Figure	1.1	A Gantt Chart Depicting the Conflict Between Nodes (11) and (21)	7
Figure	1.2	A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (11)	7
Figure	2.1	A Gantt Chart Depicting the Conflict Between Nodes (13) and (33) at Level 1	24
Figure	2.2	A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (33) at Level 1	25
Figure	2.3	A Gantt Chart Depicting the Conflict Among Nodes (21), (31), and (41) at Level 2	27
Figure	2.4	A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (41) at Level 2	28
Figure	2.5	A Gantt Chart Depicting the Conflict Among Nodes (11), (21) and (41) at Level 2	31
Figure	2.6	A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (41) at Level 2	32
Figure	2.7	A Gantt Chart Depicting the Resolving of Conflict Among the Last Operation for Each Job at Level 1	40
Figure	2.8	A Gantt Chart Depicting the Resolving of Conflict Among the Last Operations for Each Job at Level 2	44
Figure	2.9	The Scheduling Tree for the Sample Problem Using Composite-Based Bound LB I	57
Figure	2,10	A Gantt Chart Depicting an Optimal Schedule of the Sample Problem	57a

CHAPTER I

INTRODUCTION

The scheduling problem arises whenever J jobs have to be processed on M machines in a specified technological requirement. The problem consists of finding the sequence of J jobs on M machines so that a certain criterion is optimized. The formulation of a scheduling problem usually takes the form of a mathematical model whose constituents are: (1) criteria, (2) parameters and variables; and (3) assumptions.

In general there are two types of criteria as stated in [20]. The first type includes those which do not distinguish among individual jobs. This indicates that such a criterion is a function of the sequence of jobs, taken as a whole. Examples of this type are the minimization of the schedule time, i.e., the minimization of the total processing time of all jobs on all machines, the maximization of overall profit. The second type includes those which distinguish among the individual jobs. This indicates that such a criterion is a function of the individual jobs in the sequence. An example of this type is the minimization of the total tardiness of jobs. In this case, the tardiness of an individual job is considered.

Tardiness of a job is the positive difference between the completion time of the job and its due-date. The criterion considered in this thesis is the minimization of schedule time.

The formulation of a scheduling model depends, among others, on the behavior of job-arrivals. A deterministic model is applied to a situation in which several jobs arrive simultaneously in a shop that is idle and immediately available for work. However, a stochastic model is applied to a situation in which several jobs arrive continuously at random intervals.

The scheduling models, in practice, are usually of stochastic nature. The stochastic models, therefore, are of practical value. However, the deterministic models have an inherent interest of their own, because they can be considered as a prelude to the stochastic models due to the following reasons as stated in [30]:

(1) The deterministic models provide an approach to handle the more complex stochastic models; and (2) The knowledge gained from work on the deterministic models may be directly applicable to the stochastic models. The study of the deterministic models is also interesting as an example of combinatorial problems and the solution techniques may be applicable to other combinatorial problems such as line balancing and travelling salesman problems. It is therefore worthwhile to study the deterministic models.

Most research workers have investigated simple models by imposing several assumptions. Among the assumptions imposed are: (1) Each operation once started must be performed to completion, (2) Each machine can process only one job at a time, (3) There is only one machine of each type; and (4) Processing times include set up and transportation times between machines, if any.

In searching for the optimal solution, one should enumerate and evaluate the possible sequences. However, the number of possible sequences increases very rapidly with the increase in the number of

jobs or machines because of the combinatorial nature of the scheduling problem. For a problem of two jobs to be processed on three machines, the number of possible sequences is $(J!)^M$ or $(2!)^3 = 8$. Whereas, for a (6x3) problem, the number of possible sequences is $(6!)^3$ or 373,328,000. Thus it is evident that the complete enumeration method is highly impractical except for trivially small problems. Consequently, other approaches such as combinatorial analysis, mathematical programming, and simulation are used to solve the scheduling problem.

1.1 Problem Formulation*

There are two types of shop, depending on the order in which various machines perform a particular job. They are referred to as flow-shop and job-shop. In flow-shop problems, each job is performed on a certain set of machines in an identical order. Whereas, in job-shop problems, the machine-ordering for each job may be different. This research is concerned with job-shop problems.

In formulating a scheduling problem, a job is designated by an integer j and a machine by an integer m. An operation of job j on machine m is represented by a node (jm).

Since it will be necessary to consider permutations of the job-sequence on a particular machine, permutations of the machine-order for a particular job and even the permutations of both the job-sequence and the machine-order, the following set of operations are defined. First, the operation of a job in the kth sequence-position on machine m is designated by (jm_k) . Second, the operation of a job j on a machine in the ℓ^{th} order-position is designated by (jm_ℓ) . Finally, a specific operation involving a particular job j_k and a *Adapted from Ashour, S., Introduction to Scheduling, John Wiley & Sons, Inc., in Press

particular machine \mathbf{m}_{ℓ} is denoted by $(\mathbf{j}_{k}\mathbf{m}_{\ell})$.

The machine-ordering for a particular job j is designated by a row vector such that

$$M_{j} = [j_{m_{1}} j_{m_{2}} ... j_{m_{\ell}} ... j_{m_{M}}],$$

$$j = 1, 2, ..., J.$$

These machine ordering vectors, one for each job, may be combined in a (JxM) matrix called the machine ordering matrix, denoted by M. For example, consider a problem having two jobs to be processed on three machines. Let the jobs be j = 1, 2 and the machines be m = 1, 2, 3. The machine ordering matrix of this problem is shown below

$$M = \begin{pmatrix} M_1 \\ M_2 \end{pmatrix} = \begin{pmatrix} 1m_1 & 1m_2 & 1m_3 \\ 2m_1 & 2m_2 & 2m_3 \end{pmatrix} = \begin{pmatrix} 11 & 13 & 12 \\ 22 & 21 & 23 \end{pmatrix}$$

This matrix indicates that job 1 must be processed on machine 1 first, machine 3 second and machine 2 last. However, job 2 must be performed on machine 2 first, machine 1 second, and machine 3 last. It should be noted that the machine m₁ in the element 1m₁ is not necessarily the same as machine m₁ in the element 2m₁. In this machine ordering matrix, operation or node (11) proceeds operations (13) and (12), and operation (11) directly proceeds operation (13).

Associated with each operation (jm_{ℓ}) , there is a processing time, $t_{jm_{\ell}}$; that is, the time required to perform job j on a particular machine m_{ℓ} .

$$T_{j} = [t_{jm_{1}} \quad t_{jm_{2}} \quad \dots \quad t_{jm_{\ell}} \quad \dots \quad t_{jm_{M}}],$$

$$j = 1, 2, \dots, J.$$

The above set of processing time, one for each job, may be combined in a (JxM) matrix, referred to as the processing time matrix and denoted by .

The processing time matrix of the above example is shown below

$$T = \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} = \begin{bmatrix} t_{1m_1} & t_{1m_2} & t_{1m_3} \\ t_{2m_1} & t_{2m_2} & t_{2m_3} \end{bmatrix} = \begin{bmatrix} 5 & 4 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$

The above processing time matrix indicates that to perform job 1 on machines m_1 , m_2 and m_3 , it requires 5, 4, 1 units of time respectively. Similarly, job 2 requires 2, 1 and 3 time units to be completed on machines m_1 , m_2 and m_3 respectively. It is obvious that if a job is not to be processed on a particular machine, a zero processing time can be placed in the corresponding element in the processing time matrix.

Sometimes it is necessary to determine the completion time of an operation. The completion time of an operation is the sum of the processing times and idle times, if any, of all the preceding operations and those of the operation considered. Similar to the machine-ordering and processing time matrices, the initial completion time matrix of the above example can be shown as below

$$C(jm) = \begin{pmatrix} c_{1m_1} & c_{1m_2} & c_{1m_3} \\ c_{2m_1} & c_{2m_2} & c_{2m_3} \end{pmatrix} = \begin{pmatrix} 2 & 6 & 7 \\ 5 & 6 & 9 \end{pmatrix}$$

This completion time matrix is formed regardless of any conflict between the two jobs.

Whenever two or more jobs have their operations on the same machine during a common time interval, a conflict exists. This conflict can be shown using a Gantt chart, as shown in Figure 1.1. The operations in the conflict set on a certain machine are shown by horizontal hatching. For example, it is obvious from Figure 1.1 that jobs 1 and 2 have conflict on machine 1 during the time interval between 2 and 3. Whenever there is a conflict on a certain machine, it can be resolved in favor of one of the jobs in the conflict set on that machine. The Gantt chart shown in Figure 1.2 shows the resolving of the conflict in favor of node (11).

1.2 Literature Review

Various basic approaches have concentrated on selecting smaller and smaller subsets of schedules from the larger set of possible schedules.

One of the approaches is that the set of feasible schedules is obtained by selecting each time an operation at random from the set of schedulable operations. The operations which are available for scheduling immediately without contradicting any precedence relationship are called the schedulable operations. The feasible schedule obtained by selecting the schedulable operations at random does not guarantee optimality. Therefore, in another approach, a certain procedure called left-shift may be used to obtain a better set of schedules, known as active schedules. A left-shift operation consists of jumping to the left of an operation over another operation if there is sufficient idle time to accommodate the processing time of the operation to be shifted. An active schedule is the one in which left-shift is not possible. Clearly, the set of active schedules

Figure 1.1

A Gantt Chart Depicting the Conflict Between Nodes (11) and (21)

Figure 1.2

A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (11)

is smaller than the complete set of feasible schedules. Such a set of active schedules contains the optimal sequence(s). In another approach, a subset of schedules, known as non-delay schedules, is generated from the set of active schedules. Delay is defined as machine idle time incurred while a job is available for processing. It should be pointed out that the set of non-delay schedules may not always contain the optimal solution. It is obvious that in all the above approaches an attempt is made to obtain smaller and smaller subsets of better schedules from a larger set of possible schedules. Such an approach will be referred to as microsimulation approach.

Several investigators have worked on the above approaches. Heller [28] has originally developed an algorithm, based on the linear graph theory, for the construction and evaluation of feasible sequences. In the linear graph theory, an operation of job j on machine m for ith return is represented by node (mji). The algorithm selects one of the schedulable operations at random. When one of the schedulable operations is selected, a new set of schedulable operations is again formed. Since the random procedure in selecting the schedulable operations, one at a time, does not guarantee a good schedule, Heller and Logemann [29] have incorporated in their algorithm the feature that selects one of the schedulable operations using the first-come, first-served rule. If a tie is encountered, it is broken randomly. Ashour [15] has modified the algorithm to suit the assumption that no job is processed more than once by any machine and also for the construction of feasible sequences for job-shop problems. To summarize, this approach produces feasible schedules, sometimes referred to as semi-active schedules.

Giffler and Thompson [23] have developed an algorithm to obtain the set of active schedules. As mentioned earlier, the set of active schedules is relatively smaller than the complete set of feasible schedules and contains the optimal solution. They have obtained the complete set of active schedules by resolving the conflicts in all possible ways. However, the complete set of active schedules also becomes too large even for problems of small size. As an example, for a (6x5) problem, Giffler, Thompson and Van Ness [24] have observed that the complete set of active schedules obtained by using the nonnumerical program consists of 84802 schedules, while the complete set of feasible schedules is (6!) or about 8 million. In a nonnumerical program all operation times are assumed to be unity. It is, therefore, obvious that there are about 100 feasible sequences corresponding to each active schedule. The size of the problems solved using this program varies between one and five machines, the number of jobs being fixed at 6. Since they have found that there exists an enormous number of active schedules even for trivially small problems, they have concluded that it is necessary to sample from the set of active schedules. In this sampling procedure, they have resolved conflicts at random. The size of problems solved varies from 4 to 200 jobs and 1 to 25 machines. From these experiments, they have concluded that such a set of optimal solutions, even though a very small subset from the complete set of active schedules, increases very rapidly as the size of the problem increases. They have also computed the probability of obtaining an optimal schedule in a certain number of trials.

Fisher and Thompson [21] have reported their computational experience about the probabilistic learning combinations of local job-shop scheduling rules. The local scheduling rules are the ones that can be applied by machine operator and these require only the knowledge of the work waiting to be processed on his machine. They have selected two rules, the shortest imminent operation rule, SIO, selecting that job with the shortest operation time and the longest remaining time rule, LRT, selecting that job with the maximum remaining processing time. They have modified these two rules such that an operation is not scheduled if a job of higher priority presently being processed on another machine, will arrive prior to the expected completion of the highest priority operation in the queue. If such a situation occurs, the machine is held idle until the new operation arrives. However, an operation is not delayed because of the possible arrival of a higher priority operation now waiting in some other queue. The basic principle of using the learning processes is that the computational experimentation can produce learning of some systematic way in which the frequency of the use of the above two rules is varied. For example, for a particular problem, the computational experience may be such that the SIO rule should be used initially and the LRT rule should be used later. Their experience has showed that the combined rule invariably does much better than any of the local rules taken singly. The criterion used is the minimization of schedule time. They have applied four types of learning using modified SIO and LRT rules. One type of learning is characterized by an unbiased starting position at which the probability of selecting

each decision rule is equal, whereas, in another type of learning, the probability of selection may be biased. The sizes of the problems solved vary from 6 to 20 jobs and 5 to 10 machines. From the computational experience, they have concluded that learning is possible and an unbiased combination of scheduling rules is better than any of them taken separately.

Nugent [30] has modified Heller's algorithm to generate the set of non-delay schedules which form a subset of active schedules. As defined earlier, delay is the machine idle time incurred while a job is available for processing. He has generated the non-delay schedules, using the probability dispatching rules such as the first-come, firstserved rule, FCFS, the most work remaining rule, MWKR, the shortest operation rule, SHOPN, and the random rule, RANDOM. While using the FCFS, the ties, if any, are broken randomly. However, when other rules such as MWKR and SHOPN are used, the ties are broken using the FCFS. The basic principle in using the probability dispatching rules is that a probability is assigned to each job in a particular set. Such a set consists of jobs available to be processed on a certain machine at a time when the machine is available for processing. He has conducted experiments on two different kinds of sets of problems. One such kind includes 8 sets of jobs generated internally. The sizes of such problems vary from 20 to 100 jobs, with number of machines equal to 9. Another kind includes 7 sets of jobs obtained extenally. The sizes of such problems vary from 6 to 100 jobs and 3 to 10 machines. The purpose of conducting experiments on externally obtained sets of jobs is to compare these results obtained using the probability

dispatching rules with those obtained by the previous researchers.

The criteria used are minimization of the schedule time and minimization of the mean flow time. In general, he has observed that the non-delay schedules produced using the probability dispatching rules are generally better than those produced by previous methods.

Ashour [15] has developed decomposition approach for scheduling problems. The approach consists of decomposing the original problem into a number of smaller subgroups. This approach attempts to minimize the computational time. The computational experience shows that the mean and minimum of the schedule times obtained by decomposition method is smaller than that obtained by complete or partial enumeration. The mean and minimum schedule time increases as the number of jobs in each subgroup decreases. The size of the problems solved varies from 6 to 40 jobs and 3 to 10 machines.

The branch-and-bound approach generates an optimal solution after the generation of only a small subset of possible sequences. Land and Doig [8] have first developed the basic concepts of this approach. It has been named by Little et. al [10] while solving the travelling salesman problem. Ignall and Schrage [7] have used this approach to the two- and three-machine flow-shop problem using their lower bound. Brown and Lomnicki [4] have extended the branch-and-bound algorithm to any number of machines. McMahon and Burton [12] have developed a new lower bound, referred to as the composite-based bound and have applied the technique to three-machine problem. Ashour and Quraishi [2] have presented a mathematical analysis and comparative evaluation of various lower bounds for the solution of the flow-shop problem.

In dynamic situations, macrosimulation approach is used. Conway et al. [19] have used this approach for the stochastic models to compare the performance of several priority rules.

For the mathematical formulation of the scheduling problem, see Ashour [16].

1.2 Proposed Research

In this paper, a branch-and-bound algorithm for the job-shop problem will be developed. In addition, two new lower bounds, referred to as composite-based bounds LB I and LB II, will be developed and presented in a mathematical form and rigorous notation. For comparison purpose, a mathematical analysis in rigorous notation of some other existing lower bounds will also be presented. One of the existing lower bounds, referred to as bounding procedure LB IV, is modified by incorporating a new feature. The computation of lower bounds by each of the bounding procedures will be illustrated by a sample problem. Furthermore, a more general computational algorithm will be illustrated by the same sample problem, using the composite-based bound LB I.

Many experiments have been conducted using IBM 360/50 computer in order to obtain a fair comparison among the various bounding procedures. The solutions obtained by different bounding procedures are compared with reference to the following: (1) the number of nodes explored, (2) the computational time; and (3) the efficiency of the solution obtained without backtracking. Statistical analysis is carried out to compare the maximum, minimum, mean and standard deviation for the number of nodes explored and the efficiency of the solution obtained without backtracking.

CHAPTER II

DEVELOPMENT OF A BRANCH-AND-BOUND TECHNIQUE

The branch-and-bound technique is an enumerative approach which consists of a systematic generation of a smaller subset of optimal solutions from a larger set of feasible solutions. The basic principle of branch-and-bound technique, when applied to job-shop problems is that it obtains an optimal solution from a set of schedules, known as active schedules. As mentioned in chapter I, Giffler and Thompson [23] have originally developed an algorithm to generate the set of active schedules. Beenhakker [17] has given a mathematical analysis, related to this algorithm, in rigorous notations, especially in checking for a conflict. He has used the algorithm to generate schedules which are optimal with a certain probability with respect to several criteria such as the minimum schedule time, maximum production rate, and minimum total idle time of machines. Brooks and White [4] have modified this algorithm by imbedding a bounding procedure, as a criterion for resolving the conflicts. However, they have reported on their computational experience that this procedure is too long to adopt on medium size computers, even for problems of moderate size. They have compared the results obtained by using lower bound as the criterion for resolving the conflicts with those obtained by using shortest operation time rule and longest remaining time rule. The criteria used for optimality are minimizing lateness and minimizing total schedule time. The size of the problems solved varies between 7 and 10 jobs, and 10 and 18 machines. For minimizing total schedule time, the results obtained by using lower boundhave been better than those obtained by using other rules such as shortest operation time and longest remaining time.

This chapter is devoted to the discussion of a branch-and-bound algorithm, in which one of the two lower bounds developed in this thesis, is imbedded. In addition, a mathematical analysis and modification of some other existing lower bounds are presented. The branch-and-bound algorithm is illustrated by a sample problem and is summarized in formal steps.

2.1 Basic Concepts

This branch-and-bound technique is developed on the basis of two principal concepts: (1) the use of a controlled enumeration technique for considering all potential solutions; and (2) the application of a bounding procedure for the identification of a subset containing the optimal solution. The search for the subset of optimal solutions is systematically carried out through branching and bounding processes which may be easily discussed by using a scheduling tree. (Figure 2.9)

The scheduling tree is initialized by a node (ALL) representing the set of all feasible solutions. This node is branched into nodes at the first conflict level, each node representing an operation of a job on a certain machine. As defined earlier, when two or more jobs have their operations on the same machine during a common time interval, a conflict exists. The set of such jobs at a level is called a conflict set. The conflict level index increases by one whenever a conflict is resolved in favor of one of the jobs comprising the conflict set at that level. In other words, one of the jobs at a conflict level is

selected for further branching. Consequently, a set of nodes is generated at the next level. This process of generating a new set of nodes at a level from a node at the preceding level is referred to as the branching process. This process guarantees an optimal solution by generating all nodes of the scheduling tree.

As discussed above, for job-shop problem, each level represents a conflict among a set of jobs on the same machine, and the total number of conflict levels represents the number of conflicts resolved to obtain a schedule time resulting from the corresponding branch. Thus, for a particular problem, the number of conflict levels for different schedule times may be different. In general, the larger the schedule time the higher is the number of conflicts resolved for obtaining that schedule. This is due to the fact that idle time is inserted as a conflict is resolved. Thus, the number of conflicts resolved for obtaining the shortest schedule time should be smaller than that for obtaining a longer one. However, the schedule time is also a function of idle time inserted as a result of resolving a conflict. Furthermore, the amount of the idle time is a function of the processing times. It is worthwhile to note that for job-shop problems, the number of conflict levels varies from one problem to another. However, for flow-shop problems, the total number of levels is equal to the number of jobs in the problem. Another outstanding difference is that for flow-shop problem, the number of new nodes at any level L, emanating from each node at the preceding level, L-1, is equal to (J-L+1) and thus, the number of these new nodes increases as one moves down the scheduling tree along a particular branch. Whereas for job-shop problems, the number of nodes at any level depends on the number of jobs in the conflict set at that level.

As mentioned earlier, whenever a conflict is encountered it can be resolved in favor of one of the jobs in the conflict set. If the conflict is resolved in all possible ways, the size of the scheduling tree increases rapidly. The bounding process therefore helps select a particular node at a level for further branching and thus makes it possible to achieve a reduction in the generation of nodes at each level. In this process, a lower bound on the schedule time is computed for each node at a certain level and the node with the least lower bound, referred to as an active node, is selected for further branching. All other nodes at this level are thus discarded. The lower bound for a node is the sum of the completion time of the scheduled operations and the total processing time of the unscheduled operations for a particular job or machine. It has the property that it does not exceed the schedule time of the associated complete sequence. Thus, the bounding procedure enables one to look for the possibility of recognizing the optimal solution by exploring the least number of nodes. However, in many cases it is necessary to explore more nodes for obtaining an optimal solution. The size of the scheduling tree does not become too large if the lower bounds computed are as high as possible. Therefore the efficiency of the branch-and-bound technique depends greatly on the quality of the bounding procedure.

At the end of the scheduling tree and for a particular branch, the schedule time is obtained by resolving the last conflict. This solution may be greater than the lower bounds for some of the unexplored nodes, and thus the solution obtained may not be optimal. In order to

guarantee optimality, a backtracking process has to be embedded in the branch-and-bound technique. In this process, the scheduling tree is traced back along the same branch until an unexplored node with a lower bound less than the previous solution is found. In a similar manner branching and bounding processes are repeated until a better solution is obtained. The previous solution is, therefore, updated by this solution. However, some branches may be terminated at a level where all nodes have lower bounds equal to or greater than the previous solution. The optimal solution is reached when there is no unexplored node with lower bound less than the updated solution.

2.2 Bounding Procedures.

The basic purpose of using bounding procedures in the branch-and-bound technique is to reduce the number of nodes explored and thus to improve the efficiency of the technique by decreasing the computer time required to solve the scheduling problem. As defined earlier, the lower-bound on the schedule time for a node is defined as the sum of the completion time of the scheduled jobs and the total processing times of the unscheduled jobs. The more powerful a bounding procedure the closer are the lower-bounds produced to the schedule-time. Such a bounding process produces the lower-bounds considering the idle times due to both the scheduled and unscheduled operations. In general, the idle times among the scheduled operations can be considered. However, it is difficult to determine the idle time among the unscheduled operations since their sequence is not known.

This section is devoted to the discussion and analysis of two composite-based bounds LB I, and LB II, developed in this thesis. The

composite-based bounds consider the maximum of both machine-based and job-based bounds. The difference in the computation of lower bounds is illustrated by a sample problem. The problem is of job-shop type with four jobs and three machines. The machine ordering matrix and the processing time matrix are shown below.

$$M = \begin{pmatrix} 12 & 13 & 11 \\ 21 & 23 & 22 \\ 33 & 31 & 32 \\ 41 & 42 & 43 \end{pmatrix} \qquad T = \begin{pmatrix} 4 & 2 & 3 \\ 8 & 4 & 5 \\ 6 & 3 & 9 \\ 7 & 6 & 2 \end{pmatrix}$$

In each bounding procedure, the computation of the lower bounds is illustrated for only one node, at each of levels 1 and 2. The lower bound for each node, the minimum lower bound for the unexplored nodes, at each level and the solutions for each bounding procedure for the above sample problem are given in Tables 2.1, 2.2, 2.3, 2.4 and 2.5.

In order to discuss the various bounding procedures, the following common notation is considered.

L conflict level index

n set of scheduled operations \bar{n} set of unscheduled operations $c_{j}^{L}m_{\ell}$ completion time of node (jm_{ℓ}) at level L $b_{j}^{L}(jm_{\ell})$ lower bound for node (jm_{ℓ}) at level L $b_{j}^{L}m_{\ell}$ minimum lower bound on schedule time at level L $c_{j}^{L}m_{\ell}$ conflict set at level L.

Composite-based Bound LB I

The composite-based bound is expressed as the maximum of the job-based bound and the machine-based bound. In mathematical terms, the lower bound on the schedule time for the node (jm_{ℓ}) at level L is expressed such that

where

LB III is the job-based bound, and

LB V is the machine-based bound.

First, the bounding procedure LB III has been suggested in [19]. This lower bound will be presented in this thesis in a mathematical form and rigorous notation. This bounding procedure, referred to as the job-based bound, determines the lower bound by the total processing time on each job in the conflict set, at level L, s^L.

The lower bound for node (jm_ℓ) at level L, $B^L(jm_\ell)$, can be stated such that

$$B^{L}(jm_{\ell}) = \max \left\{ \begin{bmatrix} c_{jm_{\ell}}^{L} + \sum_{s=\ell+1}^{M} t_{jm_{s}} \\ \vdots \\ \vdots \\ i \neq j \end{bmatrix}, \max_{\substack{i \in s^{L} \\ i \neq j}} \begin{bmatrix} c_{jm_{\ell}}^{L} + \sum_{s=\ell}^{M} t_{im_{s}} \\ \vdots \\ i \neq j \end{bmatrix} \right\}$$
(1)

where

for job i,
$$m_n = m_\ell$$

It should also be pointed out that me represents a particular machine. The value of this lower bound is the maximum of two expressions. The first expression gives the bound for job j, which consists of two terms:

 c_{jm}^{L} the completion time of the job j on machine m_{ℓ} , at level L; and

 $\sum_{\delta=\ell+1}^{M} t$ the sum of the unscheduled operations of job j.

The second expression gives the maximum of the bounds for remaining jobs, i.e., other than job j, in the conflict set, at level L, \mathbf{s}^{L} . It also consists of two terms:

 c_{jm}^{L} the completion time of the job j on machine m_{ℓ} , at level L; and

the sum of the unscheduled operations of job i including its operation on machine m, which is the same machine as m, .

Second, the bounding procedure LB V has also been suggested in [19]. This lower bound will be presented in this thesis in a mathematical form and rigorous notation. This bounding procedure, referred to as the machine-based bound, determines the lower bound by the total processing time on each machine.

$$B^{L}(jm_{\ell}) = \max \left\{ \begin{pmatrix} c_{jm\ell}^{L} + \sum_{i \in n} t_{im} \\ i \in n \end{pmatrix}, \\ \max_{m \neq m} \left\{ \min_{i} \left(c_{im}^{L} - t_{im} \right) + \sum_{\substack{i=1 \ i \in n}} t_{im} \right\} \right\}$$

In this bounding procedure, the earliest time at which an unscheduled operation can be started is found for each machine. The sum of the processing times of the unscheduled operations which require this machine is added to the earliest time at which unscheduled operation can be started on this machine.

The first expression gives the bound on machine m_{ℓ} . It consists of two terms:

 $\mathbf{c}_{\mathtt{jm}_{\ell}}^{\mathrm{L}}$

the completion time of job j on machine m_{ℓ} , at level L. This is also the earliest time at which an unscheduled operation can be started on machine m_{ℓ} , because the operation of another job in the conflict set, at level L, s^L , can be started on machine m_{ℓ} immediately after the completion of the operation, jm_{ℓ} ; and the sum of the processing times of the unscheduled operations of jobs (other than job j) which require the machine m_{ℓ} .

 $\sum_{\substack{i \in \overline{n} \\ m=m} \ell} t_{im}$

The second expression gives the maximum of the bounds on the machines other than machine m_{ℓ} . It consists of two terms:

 $\underset{\mathbf{i} \in \mathbf{n}}{\text{min}} \left(c_{\mathbf{im}}^{L} - \mathbf{t}_{\mathbf{im}} \right)$

the earliest time at which an unscheduled job i can be started on machine m; and

 $\sum_{i=1}^{J} t_{im}$

the sum of the processing times of unscheduled jobs which require machine m $(m \neq m_{\ell})$.

In order to illustrate the composite-based bound LB I we consider the same sample problem presented earlier and compute the lower bounds for only one node at each of levels 1 and 2. First, let us compute the lower-bounds using the job-based bound, LB III.

At level 1, there are two nodes (13) and (33). In other words the conflict set, at level 1, s¹, consists of job 1 and 3. It is interesting to illustrate the conflict among jobs 1 and 3 on machine 3, using the Gantt chart shown in Fig 2.1. The completion time matrix at level 1 temporarily updated for resolving conflict in favor of node (13) is such that

$$c^{1}(13) = \begin{cases} 4 & 6 & 9 \\ 8 & 12 & 17 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

This becomes evident from the Gantt charts shown in Fig 2.2. The lower bound for node (13) at level 1 is computed such that

$$B^{1}(jm_{2}) = B^{1}(13)$$

$$= \max \left\{ \left(c_{13}^{1} + t_{11} \right), \max \left(c_{13}^{1} + (t_{33} + t_{31} + t_{32}) \right) \right\}$$

$$= \max \left\{ (6 + 3), \max \left(6 + (6 + 3 + 9) \right) \right\}$$

$$= \max \left(9, 24 \right)$$

$$= 26$$

Let us now compute the lower bound for node (41) at level 2 as shown below:

At level 2, the conflict set, s^2 , consists of three nodes (21), (31)

A Gantt Chart Depicting the Conflict Between Nodes (13) and (33) at Level 1

Figure 2.1

A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (33) at Level 1

and (41). This is also illustrated using Gantt chart shown in Fig 2.3.

The completion time matrix temporarily updated for resolving conflict in favor of node (41) is such that

$$\mathbf{C^2(41)} = \begin{cases} 4 & 8 & 11 \\ 15 & 19 & 24 \\ 6 & 10 & 19 \\ 7 & 13 & 15 \end{cases}$$

This becomes evident from the Gantt charts shown in Fig 2.4. The lower bound for node (41) at level 2, B^2 (41) is such that

$$B^2(4m_1) = B^2(41)$$

$$= \max \left\{ c_{41}^{2} + (t_{42}^{+}t_{43}^{2}), \max \left[c_{41}^{2} + (t_{21}^{+}t_{23}^{+}t_{22}^{2}) \right] \right\}$$

$$= \max \left\{ 7 + (6+2), \max \left(\frac{7 + (8+4+5)}{7 + (3+9)} \right) \right\}$$

$$= \max \left(15, \max \left(24, 17\right)\right)$$
$$= \max \left(15, 24\right)$$

= 24

Next illustrate the machine-based bound LB V, using the same sample problem for one node at each of levels 1 and 2. At level 1,

A Gantt Chart Depicting the Conflict Among Nodes (21), (31) and (41) at Level 2.

A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (41), at Level 2.

the lower bound for node (13) can be computed as shown below. The completion time matrix at level 1, temporarily updated for resolving the conflict in favor of node (13) is such that

$$c^{1}(13) = \begin{cases} 4 & 6 & 9 \\ 8 & 12 & 17 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

This also becomes evident from the Gantt chart shown in Fig 2.2. The conflict set at level 1, s¹, consists of nodes (13) and (33) as illustrated using the Gantt chart shown in Fig 2.1. The unscheduled operations at a conflict level have their completion time equal to or greater than the minimum of the completion times of the jobs in the conflict set. For example, the set of unscheduled jobs at level 1 for machine 3 consists of jobs 2, 3 and 4.

The lower bound for the node (13) at level 1, $B^1(13)$, is computed such that

$$B^{1}(jm_{2}) = B^{1}(13)$$

$$= \max \left\{ \left(c_{13}^{1} + (t_{23} + t_{33} + t_{43}) \right), \right.$$

$$\left. \begin{array}{l} \min \left((c_{11}^{1} - t_{11}), (c_{21}^{1} - t_{21}), (c_{31}^{1} - t_{31}), (c_{41}^{1} - t_{41}) \right) \\ + (t_{11} + t_{21} + t_{31} + t_{41}) \\ \min \left((c_{22}^{1} - t_{22}), (c_{32}^{1} - t_{32}), (c_{42}^{1} - t_{42}) \right) \\ + (t_{22} + t_{32} + t_{42}) \end{array} \right\}$$

$$= \max \left\{ \left\{ 6 + (4+6+2) \right\}, \right.$$

$$\max \left\{ \min \left\{ (11-3), (8-8), (9-3), (7-7) \right\} + (3+8+3+7) \right\} \right\}$$

$$\min \left\{ (17-5), (18-9), (13-6) \right\} + (5+9+6) \right\}$$

$$= \max \left\{ 18, \max \left\{ 21, 27 \right\} \right\}$$

$$= \max \left\{ 18, 27 \right\}$$

$$= 27$$

At level 2, the conflict set, s², consists of three nodes (11), (21), and (41), as illustrated using Gantt chart shown in Fig 2.5. The completion time matrix at level 2, temporarily updated for resolving the conflict in favor of node (41) is such that

$$\mathbf{c}^{2}(41) = \begin{cases} 4 & 6 & 10 \\ 15 & 19 & 24 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

This is also evident from the Gantt chart shown in Fig 2.6. The lower bound for node (41) at level 2, $B^2(41)$, is computed such that

A Gantt Chart Depicting the Conflict Among Nodes (11), (21) and (41) at Level 2

Figure 2.5

A Gantt Chart Depicting the Resolving of Conflict in Favor of Node (41) at Level 2.

$$B^2(4m_1) = B^2$$
 (41)

$$= \max \left\{ \left[c_{41}^{2} + (t_{11}^{+}t_{21}^{+}t_{31}^{-}) \right],$$

$$\max \left\{ \min \left[(c_{22}^{2}-t_{22}^{-}), (c_{32}^{2}-t_{32}^{-}), (c_{42}^{2}-t_{42}^{-}) \right] + (t_{22}^{+}t_{32}^{+}t_{42}^{-}) \right\}$$

$$\min \left[(c_{23}^{2}-t_{23}^{-}), (c_{33}^{2}-t_{33}^{-}), (c_{43}^{2}-t_{43}^{-}) \right] + (t_{23}^{+}t_{33}^{+}t_{43}^{-}) \right\}$$

$$= \max \left\{ \left[7 + (3+8+3) \right], \max \left[\min \left[(24-5), (24-9), (13-6) \right] + (5+9+6) \right] \right\}$$

$$= \max \left\{ 21, \max \left[27, 18 \right] \right\}$$

$$= \max \left\{ 21, 27 \right\}$$

Now let us compute the lower bounds for nodes (13) and (41) at levels 1 and 2 respectively, using the composite-based bound LB I.

We can compute the lower bounds by using job-based bound LB III and machine-based bound LB V, as illustrated earlier and take the maximum of them as the composite-based bound. At level 1, the lower bound for node (13) can be computed using composite-based bound LB I such that

$$B^{1}(13) = \max [LB III, LB V]$$

$$= \max [24, 27]$$

$$= 27$$

Similarly at level 2, the lower bound for node (41) is computed such that

$$B^{2}(41) = \max [LB III, LB V]$$

= $\max [24, 27]$
= 27

Composite-based bound LB II

This bounding procedure is expressed as the maximum of the jobbased bound and the machine-based bound. In mathematical terms, the lower bound on the schedule time is expressed such that

where

LB IV is the job-based bound; and

LB V is the machine-based bound.

First, the bounding procedure LB IV has been developed in [4]. This lower bound is presented in this thesis in a mathematical form and rigorous notation. This is also referred to as the job-based bound since the lower bound is determined by considering the total processing time on each job.

In this bounding procedure, the conflict among the last operation of all jobs is resolved. In other words, the idle time created by some of the unscheduled operations is considered. As mentioned earlier, a powerful bounding procedure considers the idle time due to the unscheduled operations and thus, produces the lower bounds as high as possible. Therefore it can be expected that this bounding procedure will produce more realistic lower bounds.

In order to consider the idle time created by the last operation for each job, it is necessary to know the machine on which each job

has its last operation. In other words, we can check all machines from 1 to M to know how many jobs have their last operations on a particular machine.

It is necessary to know the completion time of the operation just preceding the last operation in order to resolve the conflict among the last operations of all jobs. The completion time of the operation just preceding the last operation can be computed as shown below.

For job i in the conflict set at level L, s^L , except the job j around which the conflict is resolved, the completion time of the operation just preceding the last operation, $c^L_{im}_{M-1}$, is computed such that

$$c_{im_{M-1}}^{L} = c_{jm_{\ell}} + \sum_{s=r}^{M-1} t_{im_{s}}$$

where

$$m_{r} = m_{\ell}$$

For all other jobs not in the conflict set at that level, and the job j around which the conflict is resolved, the completion time of the operation just preceding the last operation remains the same as in the previous completion time matrix. Thus, these completion times are known.

Let r be the number of jobs which have the last operation on a particular machine. Arrange the completion times, c_{jm}^L , of such r jobs in ascending order, and store them temporarily in a vector U such that

$$u = [u_1, u_2, ..., u_r]$$

Also, store temporarily, the corresponding times on the last machine,

$$t_{jm_{M}}$$
, in a vector V such that
$$V = [V_{1}, V_{2}, ..., V_{r}]$$
Let
$$D_{i} = c_{im_{M}}^{L}$$

$$D_{1} = U_{1} + V_{1}$$

$$D_{2} = \max [D_{1}, U_{2}] + V_{2}$$

$$\vdots$$

$$D_{r-1} = \max [D_{r-2}, U_{r-1}] + V_{r-1}$$

$$D_{r} = \max [D_{r-1}, U_{r}] + V_{r}$$

There are two special cases of the above situation: (1) when there is no job having its last operation on a particular machine; and (2) when there is only one job having its last operation on a particular machine. It is not necessary to consider the former case since there is no job having its last operation on a particular machine. In the latter case, however, the completion time of the last operation of the only job i is computed such that

$$c_{im_{M}}^{L} = \max \left(c_{im_{M-1}}^{L}, \max_{p} \left(c_{pm_{M-1}}^{L} \right) \right) + t_{im_{M}}$$

where

 m_{M} for job i is the same machine as m_{M-1} for job p. This special case is considered in this thesis. The lower bound developed in [4] has been modified in this thesis by incorporating this feature. Thus, we know the completion time of the last operation of all jobs, $c_{im_{M}}^{L}$, obtained by resolving the conflict among the last operations for each job.

The lower bound on the schedule time for the node (jm_{ℓ}) at level L, $B^L(jm_{\ell})$ is computed such that

L,
$$B^{L}(jm_{\ell})$$
 is computed such that
$$B^{L}(jm_{\ell}) = \max_{i} \begin{pmatrix} c_{im_{M}}^{L} \end{pmatrix} \qquad i = 1, 2, ..., J$$

Second, the bounding procedure LB V has already been discussed under composite-based bound LB I.

In order to illustrate the composite-based bound LB II, let us consider the same sample problem presented earlier and compute the lower bounds for only one node at each of levels 1 and 2. First, let us compute the lower bounds using the job-based bound, LB IV.

At level 1, the conflict set, s¹, consists of two nodes (13) and (33). This conflict is shown using the Gantt chart in Figure 2.1. The completion time matrix at level 1 temporarily updated for resolving in favor of node (13) is such that

$$c^{1}(13) = \begin{cases} 4 & 6 & 9 \\ 8 & 12 & 17 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

This becomes evident from the Gantt chart shown in Figure 2.1. The completion time of the operation just preceding the last operation for job 3 in the conflict set can also be computed such that

$$c_{3m_{2}}^{1} = c_{31}^{1}$$

$$= c_{13}^{1} + (t_{33} + t_{31})$$

$$= 6 + (6 + 3)$$

$$= 15$$

For other jobs, which are not the in the conflict set, and for job 1, around which the conflict is resolved, the completion time of the

operation just preceding the last operation remain the same as in the previous completion time matrix.

Let us check machines from 1 to 3.

For machine 1, the only job which has its last operation on this particular machine is job 1. The completion time of last operation of job 1 is computed such that

$$c_{1m_3}^1 = c_{11}^1$$

$$= \max \left(c_{13}^1, \max \left(c_{31}^1 \right) \right) + t_{11}^1$$

$$= \max \left[6, 15 \right] + 3$$

$$= 15 + 3$$

$$= 18$$

The number of jobs having their last operation on machine 2 is 2, i.e., r=2.

The vectors U and V are formed such that

$$U = \begin{pmatrix} c_{23}^{1}, & c_{31}^{1} \end{pmatrix}$$

$$= [12, 15] ; \text{ and }$$

$$V = \begin{pmatrix} c_{23}^{1}, & c_{32}^{1} \end{pmatrix}$$

$$= [5, 9] ...$$

$$D_{1} = c_{22}^{1}$$

$$= U_{1} + V_{1}$$

$$= 12 + 5$$

$$= 17$$

$$D_{2} = c_{32}^{1}$$

$$= \max \begin{pmatrix} D_{1}, & U_{2} \end{pmatrix} + V_{2}$$

$$= \max [17, 15] + 9$$

$$= 17 + 9$$

= 26

The only job having its last operation on machine 3 is job 4.

The completion time of the last operation of job 4 is computed such that

$$c_{43}^{1} = \max \left(c_{42}^{1}, \max \left(c_{13}^{1}, c_{13}^{1}\right)\right) + t_{43}^{2}$$

$$= \max \left[13, \max \left[6, 12\right]\right) + 2$$

$$= \max \left[13, 12\right] + 2$$

$$= 13 + 2$$

$$= 15$$

The conflict among the last operation for each job can be resolved using the Gantt chart as shown in Figure 2.7.

The lower bound for node (13) at level 1, B^1 (13), is computed such that

$$B^{1}(13) = \max \left(c_{11}^{1}, c_{22}^{1}, c_{32}^{1}, c_{43}^{1}\right)$$

$$= \max \left[18, 17, 26, 14\right]$$

$$= 26$$

At level 2, the conflict set, s^2 , consists of nodes (21), (31) and (41). The completion time matrix at level 2, temporarily updated in favor of node (41), is such that

$$\mathbf{c}^{2}(41) = \begin{pmatrix} 4 & 8 & 11 \\ 15 & 19 & 24 \\ 6 & 10 & 19 \\ 7 & 13 & 15 \end{pmatrix}$$

A Gantt Chart Depicting the Resolving of Conflict Among the Last Operation for Each Job at Level 1

This becomes evident from the Gantt chart, shown in Figure 2.3.

From the above completion time matrix, we get the updated completion time of the operation, just preceding the last operation, for each job.

The completion time of the operation, just preceding the last operation, for job 2 and 3 can also be computed such that

$$c_{2m_2}^2 = c_{23}^2$$

$$= c_{41}^2 + (t_{21} + t_{23})$$

$$= 7 + (8 + 4)$$

$$= 19 ; and$$

$$c_{3m_2}^2 = c_{31}^2$$

$$= c_{41}^2 + t_{31}$$

$$= 7 + 3$$

For job 1, which is not in the conflict set and for job 4, around which the conflict is resolved, the completion time of the operation just preceding the last operation remain the same as in the previous completion time matrix.

Let us check machines from 1 to 3.

For machine 1, the only job having its last operation on this particular machine is job 1. The completion time of the last operation of job 1 is computed such that

$$c_{11}^2 = \max \left[c_{13}^2, \max \left[c_{31}^2 \right] \right] + t_{11}$$

$$= \max \left[8, 10 \right] + 3$$

$$= 10 + 3$$

 $= 13$

The number of jobs, having the last operation on machine 2 is 2 i.e. r = 2.

The vectors U and V are formed such that

$$U = \begin{pmatrix} c_{31}^2, & c_{23}^2 \end{pmatrix}$$

$$= [10, 19] \qquad ; \text{ and}$$

$$V = \begin{pmatrix} t_{32}, & t_{22} \end{pmatrix}$$

$$= [9, 5].$$

$$D_1 = c_{32}^2$$

$$= U_1 + V_1$$

$$= 10 + 9$$

$$= 19$$

$$D_2 = c_{22}^2$$

$$= \max \{D_1, U_2\} + V_2$$

$$= \max [19, 19] + 5$$

$$= 24$$

The only job having the last operation on machine 3 is job 4. The completion time of the last operation of job 4 is computed such that

$$c_{43}^2 = \max \left(c_{42}^2, \max \left(c_{13}^2, c_{13}^2 \right) \right) + t_{43}$$

$$= \max \left(13, \max \left[8, 19 \right] \right) + 2$$

$$= \max \left[13, 19 \right] + 2$$

$$= 19 + 2$$

$$= 21$$

The conflict among the last operation for each job can be resolved using the Gantt charts shown in Figure 2.8.

We have already illustrated the machine-based bound LB V, using the same sample problem.

Now let us compute the lower bounds for nodes (13) and (41) at levels 1 and 2 respectively, using the composite-based bound LB II.

As illustrated earlier, we can compute the lower bounds by using job-based bound LB IV and machine-based bound LB V and take the maximum of the two, as the composite-based bound.

At level 1, the lower bound for node (13), B^{1} (13) can be computed using the composite based bound LB II such that

$$B^{1}(13) = \max [LB IV, LB V]$$

$$= \max [26, 27]$$

$$= 27$$

Similarly at level 2, the lower bound for node (41), B^2 (41) can be computed using the composite-based bound LB II such that

$$B^{2}(41) = \max [LB IV, LB V]$$

= $\max [29, 27]$
= 29

2.3 Sample Problem

In order to demostrate the branch-and-bound technique, the same sample problem, consisting of four jobs and three machines presented earlier, is solved using the computational algorithm that shall be described in formal steps in section 2.4. For convenience, the machine ordering and processing time matrices are reproduced below.

A Gantt Chart Depicting the Resolving of Conflict Among the Last Operations for Each Job at Level 2

$$M = \begin{pmatrix} 12 & 13 & 11 \\ 21 & 23 & 22 \\ 33 & 31 & 32 \\ 41 & 42 & 43 \end{pmatrix} \qquad T = \begin{pmatrix} 4 & 2 & 3 \\ 8 & 4 & 5 \\ 6 & 3 & 9 \\ 7 & 6 & 2 \end{pmatrix}$$

Refer the scheduling tree shown in Figure 2.9 and the scheduling table shown in Table 2.6 throughout all the steps in order to follow the solution easily.

Step 1. Set conflict level L = 1 and initial schedule time $T_0(s) = \infty$. The initial completion time matrix, $C^1(jm)$, regardless of any conflict is constructed as follows:

$$\mathbf{c^{1}(jm)} = \begin{cases} 4 & 6 & 9 \\ 8 & 12 & 17 \\ 6 & 9 & 18 \\ 7 & 13 & 15 \end{cases}$$

Construct the scheduling table as shown in Table 2.6. Enter the completion time of the first operation of each job, i.e., c_{12}^1 , c_{21}^1 , c_{33}^1 and c_{41}^1 equal 4, 8, 6 and 7, respectively under the appropriate nodes. According to step 1.5, find τ such that

$$\tau = \min_{jm} \left(c_{12}^{1}, c_{21}^{1}, c_{33}^{1}, c_{41}^{1} \right)$$

$$= \min \left[4, 8, 6, 7 \right]$$

$$= 4.$$

Step 2. In machine blocks 1 and 3, there is no completion time equal to τ . In machine block 2, there is only one completion time, i.e., c_{12}^1 , equal to τ . Therefore there is no conflict existing. According to step 2.2, go to step 7.

Step 7. According to step 7.1, enter the next operation of job 1, whose completion time, c_{13}^1 , is 6.

 τ , i.e., 4, is not the highest number at level 1 in the scheduling Table 2.6. Therefore according to step 7.2.1, set τ = 6 where 6 is the next higher value at level 1 in the scheduling Table. Go to step 2.

Step 2. In machine blocks 1 and 2, there is no entry equal to τ . However, in machine block 3, the completion time of node (13) and node (33) are equal to τ .

Check for conflict:

$$\tau + t_{33} > c_{33}^1$$
, i.e., $6 + 6 \neq 12 > 6$

According to step 2.1, a conflict exists and therefore go to step 3

Step 3. Compute the lower bounds for nodes (13) and (33) in the conflict set at level 1, s¹, using the bounding procedure LB I such that

Node (13) (33)

Lower-bound 27 27

Step 4. Search for the unexplored node(s) with the minimum lower bound at level 1. The minimum lower bound at level 1, B^1 , is such that $B^1 = \min [27, 27]$

= 27 for nodes (13) and (33)

Step 5. B^1 is less than T_0 i.e. 27 is less than ∞ . Therefore, according to step 5.1, go to step 6.

Step 6. Since a tie exists for the minimum lower-bound, according to step 6.1, break the tie by Left Hand Rule in favor of node (13). Set L=1+1=2 and update the completion time matrix such that

$$c^{2}(13) = \begin{cases} 4 & 6 & 9 \\ 8 & 12 & 17 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

Step 7. The completion-time of node (13) is equal τ , i.e. $c_{13}^2 = 6$. According to step 7.1, enter the completion time of the next operation of job 1, i.e., c_{11}^2 .

According to step 7.2.1, set τ = 7 since previous τ is not the highest entry at level 2 and go to step 2.

Step 2. In machine block 1, there is one job with completion time equal to τ and two jobs with completion time greater than τ . Check for conflict:

$$\tau + t_{11} > c_{11}^2$$
 i.e., $7 + 3 = 10 > 9$
 $\tau + t_{21} > c_{21}^2$ i.e., $7 + 8 = 15 > 8$

According to step 2.1, conflict exists and therefore, go to step 3.

Step 3. The lower-bounds are computed for each node in the conflict set at level 1, s^{1} , by bounding procedure LB I such that

Step 4. At level 2, search for minimum unexplored node(s). The minimum lower-bound at level 2, B^2 , is such that

$$B^2 = 27$$
 for node (41)

Step 5. Since B^2 is less than T_0 i.e. 27 is less than ∞ , according to step 5.1, go to step 6.

Step 6. A tie does not exist for the minimum lower-bound. Set L=2+1=3 and update the completion time matrix at level 3, C(41),

such that

$$c^{3}(41) = \begin{cases} 4 & 6 & 10 \\ 15 & 19 & 24 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

Step 7. The completion time of node (41) is equal to τ . Therefore enter the completion time of the next operation of job 4 i.e. c_{42}^3 . According to step 7.2.1, set τ = 10 and go to step 2.

Step 2. Under machine block 1, there are two nodes, one with completion time equal to τ and the other with a completion time higher than τ .

Check for conflict:

$$\tau + t_{21} > c_{21}^3$$
 i.e. $10 + 8 = 18 > 15$

According to step 2.1, the conflict exists and go to step 3.

Step 3. Compute the lower-bounds for each node in the conflict set at level 3, s³, using bounding procedure LB I such that

Node (11) (21)

Lower-bounds 27 27

Step 4. Searching for the minimum unexplored node(s) at level 3, we find that the minimum lower-bound, B^3 , is such that

 $B^3 = 27$ for nodes (11) and (21)

Step 5. Since B^3 is less than T_0 , i.e. 27 is less than ∞ , according to step 5.1, go to step 6.

Step 6. A tie exists for the minimum lower-bound. According to step 6.1, break the tie by Left Hand Rule in favor of node (11) Set L=3+1=4 and update the completion time matrix such that

$$\mathbf{C}^{4}(11) = \begin{pmatrix} 4 & 6 & 10 \\ 18 & 22 & 27 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{pmatrix}$$

Step 7. Since node (11) is the last operation of job 1, go to step 7.2.1

According to step 7.2.1, set $\tau = 12$ and go to step 2

Step 2. Since there is only one job with completion time equal to τ in machine block 3, there is no conflict existing. Therefore according to step 2.2, go to step 7

Step 7. According to step 7.1, enter the completion time of the next operation of job 3, i.e., c_{31}^4

According to step 7.2.1, set τ = 13 and go to step 2.

Step 2. Since there is only one job with $c_{jm}^4 = \tau$ in machine block 2 and no other job with has $c_{jm}^4 \ge \tau$, there is no conflict existing. According to step 2.2, go to step 7.

Step 7. According to step 7.1, enter the completion time of the next operation of job 4, i.e. c_{43}^4 .

According to step 7.2.1, set τ = 15 and go to step 2.

Step 2. In machine block 1, there are two entries with $c_{jm}^4 \ge \tau$ Check for conflict:

$$\tau + t_{21} > c_{21}^4$$
 i.e. $(5 + 8 = 23 > 18)$

According to step 2.1, conflict exists and therefore go to step 3.

Step 3. The lower bounds for each node in the conflict set at level 4, s^4 , are computed by using bounding procedure LB I such that

Node (21) (31)

Lower bounds 35 32

Step 4. Search for the minimum unexplored node(s) at level 4.

Node (31) has the minimum lower bound such that

$$B^4 = \min [35, 32]$$
 $j^m \ell$
= 32

Step 5. Since B^4 is less than $T_0(s)$ i.e., 32 is less than ∞ , go to step 6

Step 6. For the minimum lower bound, there is no tie existing. Therefore branch from node (31) and set L = L + 1 = 4 + 1 = 5. Update the completion time matrix at level 5 such that

$$c^{5}(31) = \begin{cases} 4 & 6 & 10 \\ 23 & 27 & 32 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

Step 7. The completion time of node (31) is equal to τ . According to step 7.1, enter the completion time of the next operation of node (31) i.e. c_{32}^5

According to step 7.2.1, set τ = 23 since 15 is not the highest entry at level 5. Go to step 2

Step 2. There is only one node in machine bock 1 with completion time equal to τ , no conflict exists.

According to step 2.2, go to step 7.

Step 7. The completion time of node (21) is equal to τ . Therefore according to step 7.1, enter the completion time of the next operation of node (21) i.e. c_{23}^5

According to step 7.2.1, set τ = 24. Go to step 2

Step 2. In machine block 2, there is only one entry with completion time equal to τ . Since there is no other entry with $c_{jm}^{5} \geq \tau$, no conflict exists. Therefore according to step 2.2, go to step 7.

Step 7. The completion time of node (23) is equal to τ . Therefore according to step 7.1, enter the completion time of the next operation of node (23) i.e. c_{22}^5 .

According to step 7.2.1, set τ = 32 since 27 is not the highest entry at level 5. Go to step 2.

Step 2. In machine block 2, there is one node (22) with completion time equal to τ . Since there is no other node with $c_{jm}^{5} \geq \tau$, no conflict exists. Therefore, according to step 2.2, go to step 7.

Step 7. The completion time of node (22) is equal to τ . There is no next operation of node (22).

 τ is the highest number in the scheduling table at level 5. Therefore according to step 7.2.2, set $T_{0}(s) = \tau = 32$ and go to step 8.

Step 8. Back-track along the same branch of the scheduling tree, setting L = L - 1 = 5 - 1 = 4. Compare the lower-bounds of unexplored node(s) with the updated solution $T_0(s)$. There is no unexplored node at this level with lower-bound less than $T_0(s)$. Therefore, according to step 8.2, go to step 9

Step 9. Since L > 1 i.e. 4 > 1, according to step 9.1, go to step 8.

Step 8. Backtrack along the same branch of the scheduling tree by setting L = L - 1 = 4 - 1 = 3, and compare the lower bound of the

unexplored node(s) with the updated solution $T_0(s)$. The unexplored node (21) has lower bound 27 which is less than $T_0(s)$ or 32. Therefore, according to step 8.1, set $\tau = \min_{j \in S} [c_{jm}^3] = \min_{j \in S} [10, 15] = 10;$ and go to step 4.

Step 4. At level 3, the minimum lower bound for unexplored node(s), 3, is 27 for node (21)

Step 5. According to step 5.1, go to step 6 since B^3 is less than $T_0(s)$ i.e. 27 is less than 32.

Step 6. Since there is no tie existing, according to step 6.2, set L = L + 1 = 3 + 1 = 4 and update the completion time matrix such that

$$c^{4}(21) = \begin{cases} 4 & 6 & 18 \\ 15 & 19 & 24 \\ 12 & 15 & 24 \\ 7 & 13 & 15 \end{cases}$$

Go to step 7.

Step 7. There is no node with completion time equal to τ . According to step 7.2.1, set τ = 12 and go to step 2.

Step 2. The node (33) is the only node with completion time equal to τ . There is no other node in machine block 3, with $c_{jm}^4 \geq \tau$. According to step 2.2, go to step 7 since no conflict exists.

Step 7. The completion time of node (33) is equal to τ . Enter the completion time of the next operation of node (33) i.e. c_{31}^4 According to step 7.2.1, set $\tau=13$ since previous τ is not the highest number at level 4 and go to step 2

Step 2. The node (42) in machine block 2 has the completion time equal to τ . There is no other node in machine block 2 with $c_{jm}^4 \geq \tau$.

According to step 2.2, there is no conflict existing. Therefore, go to step 7.

Step 7. The completion time of node (42) is equal to τ . Enter the completion time of the next operation of node (42) i.e. c_{43}^4 According to step 7.2.1, set τ = 15 since previous τ is not the highest number at level 4 and go to step 2.

Step 2. In machine block 1, there are three operations with $c_{jm_{\rho}}^{4} \geq \tau.$

Check for conflict:

$$\tau + t_{21} > c_{21}^4$$
 i.e., $15 + 8 = 23 > 15$
 $\tau + t_{31} > c_{31}^4$ i.e., $15 + 3 = 18 > 15$

According to step 2.1, conflict exists and therefore go to step 3.

Step 3. The lower bounds for each node in the conflict set at level 4, s^4 , are computed by using bounding procedure LB I such that

Node (11) (21) (31)

Lower bounds 35 32 32

Step 4. Search for the minimum unexplored node(s) at level 4.

The minimum lower bound at level 4 is such that

 $B^4 = 32$ for nodes (21) and (31)

Step 5. B^4 is equal to $T_0(s)$ i.e., 32. Therefore, according to step 5.2, go to step 8.

According to step 8, the backtracking process is continued along the same branch of the scheduling tree, by setting L = L - 1 = 4 - 1 = 3. At level 1, the unexplored node (33) has lower bound less than the updated schedule time $T_0(s)$. The branching, bounding and backtracking processes are carried out till an updated solution $T_1(s)$, i.e., 27

is obtained. The backtracking process is again continued to find an unexplored node with lower bound less than the updated solution, $T_1(s)$. It is found that there is no unexplored node with lower bound less than the updated solution, $T_1(s)$. Hence, the schedule time, $T_1(s)$ or 27, is the minimum schedule time. The number of nodes explored is 24. Figure 2-10 shows the Gantt chart of the solution.

2.4 Computational Algorithm

The branch-and-bound algorithm discussed above is stated in formal steps below:

- Step 1: Initialize the scheduling table.
 - 1.1. Set level index L = 1, and schedule time $T(s) = \infty$.
 - 1.2. Compute the initial completion time matrix regardless of any conflict, $C^{1}(jm)$.
 - 1.3. Construct the scheduling table.
 - 1.4. Enter the completion time of the first operation of each job at level L, c_{im}^L
 - 1.5. Find the minimum completion time at level L such that

$$\tau = \min_{jm} [c_{jm}^{L}]$$

- Step 2: Check for conflict, within each machine block, between job ending at time τ and those with $c_{jm_\rho}^L \geq \tau$
 - 2.1. If a conflict exists such that

$$\tau + t_{jm_{\ell}} > c_{jm_{\ell}}^{L}$$
, go to step 3.

2.2. If there is no conflict such that

$$\tau + t_{jm_{\rho}} \leq c_{jm_{\rho}}^{L}$$
, go to step 7.

Step 3: Compute the lower-bounds at level L, for each node under conflict, $B^{L}(jm_{\ell})$, by a particular bounding procedure.

Step 4: Find the unexplored node(s) which has the minimum lower-bound at level L, such that

$$B^{L} = \min_{jm_{\ell}} [B^{L}(jm_{\ell})]$$

- Step 5: Check the minimum lower bound at any level L:
 - 5.1. If $B^L < T(s)$, go to step 6.
 - 5.2. If $B^{L} \geq T(s)$, go to step 8.
- Step 6: Branch from an unexplored node with the minimum lower bound:
 - 6.1. If a tie exists, break it by a particular rule. Set $L = L + 1 \text{ and update the completion time matrix } C_{(jm_{\ell})}^{L}.$ Go to step 7.
 - 6.2. If a tie does not exist, branch from that node. Set L = L + 1 and update the completion time matrix, $C^{I}(jm_{\rho})$. Go to step 7.
- Step 7: Update the scheduling table
 - 7.1. Enter the completion time, c_{jm}^L of next operation of the jobs with completion time equal to τ .
 - 7.2. Check τ:
 - 7.2.1. If τ is not the highest number at level L, set $\tau = \tau'$ where τ' is the next higher number at level L and go to step 2.
 - 7.2.2. If τ is the highest number at level L, set $T(s) = \tau$ and go to step 8.
- Step 8: Backtrack along the same branch of the scheduling table by setting L = L 1. Compare the lower bounds for all unexplored nodes at this level:
 - 8.1. If there exist one or more nodes with a lower bound such

$$B^{L}(jm_{\ell}) < T(s),$$

set
$$\tau = \min_{j \in S^L} (c_{jm}^L)$$
 and go to step 4.

- 8.2. If all unexplored nodes have lower bounds such that $B^{L}(jm_{\ell}) \geq T(s), \text{ go to step 9.}$
- Step 9: Check for an optimal solution:
 - 9.1. If L > 1, go to step 8
 - 9.2. If L = 1, T(s) is an optimal schedule time.

The Scheduling Tree for the Sample Problem Using Composite-Based Bound LB I

Figure 2.9

A Gantt Chart Depicting an Optimal Schedule of the Sample Problem

TABLE 2.1 . SOLUTION OF THE SAMPLE PROBLEM USING COMPOSITE-BASED BOUNDING LB I

Back-	Conflict	Node	Lower B	ounds	Lower Bound	Minimum Lower	Schedule Time
track	Level		LB III	LB V	LB II	Bound	TIME
i	L	(jm _L)		2 4 12 15 16 1	B ^L (jm _ℓ)	B ^L	T _i
	1	(13)	24	27	27	27	
	•	(13) (33)	18	27	27	27	
	2	(11)	26	35	35		
		(21)	23	32	32		
		(41)	24	27	27	27	
	3	(11)	27	27	27	27	
		(21)	24	27	27		
	4	(21)	30	35	35		
0	7	(31)	32	29	32	32	32
* * N De C	8						JL
	•	(7.1)					
	3	(11)	27	27	27		
		(21)	24	27	27	27	
	4	(11)	35	35	35		
		(21)	27	32	32		
2		(31)	32	29	32	* ₆₁	
	1	(13)	24	27	27		2
Ti.		(33)	18	27	27	27	
g M	2	(21)	23	31	31		
	2	(31)	26	29	29		
9		(41)	24	27	27	27	
ν,	3	(11)	28	27	20		
	3	(21)	27	27	28 27	27	
		(31)	27	27	27	41	
	4	(11)	30	33	33		
		(31)	27	32	32		
	3	(11)	28	27	28		
		(21)	27	27	27		
		(31)	27	27	27	27	

TABLE 2.1. SOLUTION OF THE SAMPLE PROBLEM USING COMPOSITE-BASED BOUNDING LB I (continued)

Back- track	Conflict Level	Node	Lower 1		Lower Bound LB II	Minimum Lower Bound	Schedule Time
i	L	(jm _k)			B ^L (jm _l)	B^{L}	^T i
	4	(11) (21)	30 27	27 27	30 27	27	
1	5	(32) (42)	27 22	30 27	30 27	27	27

TABLE 2.2. SOLUTION OF THE SAMPLE PROBLEM USING COMPOSITE-BASED BOUNDING LB II

Back- track	Conflict Level	Node	Lower I	Bounds LB V	Lower Bound LB II	Minimum Lower Bound B ^L	Schedule Time
i	L	(jm _l)			B ^L (jm _l)	В	$\mathtt{^{T}_{i}}$
	1	(13)	26	27	27	27	
		(33)	23	27	27	10	
	2	(11)	29	35	35		
		(21)	26	32	32		*
		(41)	29	27	29	29	30 W
	3	(11)	29	27	29	29	
		(21)	29	27	29		
	4	(21)	35	35	35	W.	
0	422 1 1	(31)	32	29	32	32	32
		3 2					
	3	(11)	29	27	29		
	J	(21)	29	27	29	29	
	,		0.5	0.5	0.5		
	4	(11)	35	35	35		
		(21) (31)	32 32	32 29	32 32		
		(31)	32	23	32	*	
			V4457-21		75.00		
	1	(13)	26	27	27		
		(33)	23	27	27	27	
	2	(21)	25	31	31		
		(31)	26	29	29		装
		(41)	24	27	27	27	
*	3	(11)	28	27	28		
	J	(21)	32	27	32		
		(31)	27	27	27	27	
				c-	*	ē	
×	4	(11)	30	27	30	0.7	
		(21)	27	27	27	27	
	5	(32)	27	30	30		
1		(42)	27	27	27	27	27
· · · · · · · · · · · · · · · · · · ·							~/

TABLE 2.3. SOLUTION OF THE SAMPLE PROBLEM USING LB III

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _l)	B ^L (jm _ℓ)	B ^L	T _i
	1	(13)	24		
		(33)	18	18	
	2	(21)	23	23	
61		(31)	26		
	W	(41)	24		
	3	(11)	26	26	
		(31)	26		
		(41)	27		
	4	(31)	29	29	
		(41)	30		
	5	(22)	26	26	
		(32)	28		
	6	(32)	34		
0		(42)	36	34	34
				(3)	
	5	(22)	26		
		(32)	28	28	
	6	(22)	37		
		(32)	31	31	
		(42)	36		
	7	(22)	36		
20		(42)	34		
	4	40200			a
	4	(31)	29	20	
		(41)	30	30	
_	5	(32)	38		
1		(42)	33		33
			~	···	
	3	(11)	26	97	
		(31) (41)	26 27	26	
		(41)	41		

TABLE 2.3. SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _l)	B ^L (jm _ℓ)	B ^L	T _i
¥	4	(11)	29	5.0	
		(41)	26	26	
	5	(22)	26		
		(32)	25	25	
	6	(22)	34		
	80	(32) (42)	28 33	28	
			998	ia.	
2	7	(22)	33 31	31	31
		(32)		31	31
	5	(22)	26	26	
		(32)	25	k.	
	6	(32)	34		
		(42)	33		
•		(11)		30	
	4	(11) (41)	29 26	29	
	_		2	*	
	5	(22) (32)	26 25	25	
	_		((*))	1.5%	
	6	(22) (42)	33 32		
		(,42)			
Ø	5	(22)	26	26	
	•	(32)	25		
	6	(32)	34		
		(42)	36		
39		2.00.0		102	
	3	(11)	26		
		(31) (41)	26 27	27	
	4	(22)	25	25	
		(42)	26		

TABLE 2.3. SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _ℓ)	B ^L (jm _ℓ)	B ^L	T _i
	5	(11) (31)	30 27	27	
	•				
	.6	(32) (42)	.35 32		
	5	(11)	.30	-30	
	_	(31)	27	30	
	6	(32)	38		
		(42)	32		
æ %	4	(22)	25		
		(42)	26	26	
	5	(11)	30		
		(31)	27	27	
	6	(22) (32)	35 3 5	•	
	8	(42)	30	30	
100	7	(22)	35		
원.		(32)	35		
	5	(11)	30	30	
	, ,	(31)	27	30	
	6	(22)	35		
		(32)	35		
	2	(21)	23		
	_	(31)	26		
		(41)	24	24	
	3	(11)	28		
		(21) (31)	27 27	27 27	

TABLE 2.3. SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _L)	B ^L (jm _l)	B ^L	T _i
	4	(11) (31)	30 27	27	
	5	(22) (32)	33 32		
	4	(11) (31)	30 27	30	
	5	(22) (32)	33 35		
	3	(11) (21) (31)	28 27 27	27	
	4	(11) (21)	30 27	2.7	ar.
3	5	(32) (42)	27 22	22	27
	2	(21) (31) (41)	23 26 24	26	
	3	(11) (21) (31) (41)	28 32 26 33	26	
		(11) (21) (41)	29 32 33		,
	.1	(13) (33)	24 18	24	
	2	(11) (21) (41)	26 23 24	23	

TABLE 2.3. SOLUTION OF THE SAMPLE PROBLEM USING LB III (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _L)	B ^L (jm _ℓ)	B ^L	^T i
	3	(11) (41)	26 23	23	
	4	(23) (43)	30 24	24	
	5	(11) (31) (41)	33 30 27		
	3	(11) (41)	26 23	26	
	4	(23) (33)	30 24	24	
	5	(31) (41)	30 30	2 4	
	2	(11) (21)	26 23	as .	n
1000)	N 8 2 2	(41)	24	24	¥
	3	(11) (21)	27 24	24	
×	4	(11) (21) (31)	35 27 32	e e	
	2	(11) (21) (41)	26 23 24	26	
is K	3	(21) (31) (41)	32 32 33	e	

TABLE 2.4. SOLUTION OF THE SAMPLE PROBLEM USING LB IV

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _L)	B ^L (jm _l)	B ^L	T _i
	1	(13)	26		
		(33)	23	23	
	2	(21)	25		
		(31)	26	0.1	
	e (4)	(41)	24	24	
	3	(11)	28		
		(21)	32		
		(31)	27	27	
	4	(11)	30		
		(21)	27	27	
	5	(32)	27	27	
	<i>2</i>	(42)	27	-,	
×=	6	(22)	35	22	
0		(42)	30	30	30
	E	(22)	27		
1	5	(32) (42)	27 27	27	27
		(12)			- ·
	2	(21)	25	25	
	-	(31)	26		
	zi	(41)	24		
	3	(11)	26	26	
	(s =	(31)	26	- X	
		(41)	27		
	4	(31)	29	ė.	
	T.	(41)	30		
		· · - /	1000°		
	3	(11)	26		
	V(3 63)	(31)	26	26	
		(41)	27		
	4	(11)	29		

TABLE 2.4. SOLUTION OF THE SAMPLE PROBLEM USING LB IV (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _l)	B ^L (jm _ℓ)	${}^{\mathbf{B}^{\mathbf{L}}}$	T _i
	5	(22)	26	26	
		(32)	26	199	
	6	(32)	34		
		(42)	27		
8			*		
	5	(22)	26		
		(32)	26	26	
		**	0.7	18. 10	
	. 6	(22)	34 28		
		(32) (42)	33		
		(74/	J J		
	2	(21)	25	N	
		(31)	26	26	
(.)		(41)	24		
	3	(11)	28		
*	<u> </u>	(21)	34	0.0	Ŷ
		(31)	26 33	26	
8		(41)	33	8) 3)	19457 2 5
T. A.	4	(11)	29		
		(21)	32	W	
		(41)	33	3) = 3)	
	1	(13)	26	26	
	بل	(33)	23	20	
95	2	(11)	29		
	-	(21)	26	26	2
		(41)	29	NO - MODELE	
	3	(11)	26	26	
20		(41)	26	26	
	4	(23)	30		
		(43)	29		
	3	(11)	26	102	
	,	(41)	26	26	

TABLE 2.4. SOLUTION OF THE SAMPLE PROBLEM USING LB IV (continued)

No. of	Conflict	Node	Lower Bounds	Minimum	Schedule
Backtrack				Lower Bound	Time
i	L	(jm _e)	B ^L (jm _ℓ)	B ^L	T _i
	4	(23) (33)	30 29	e	

TABLE 2.5. SOLUTION OF THE SAMPLE PROBLEM USING LB V

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jmė)	B ^L (jm _l)	-B _T	T _i
	1	(13) (33)	27 27	27	
	2	(11) (21) (41)	35 32 27	27	
	3	(11) (21)	27 27	27	
0	4	(21) (31)	35 29	29	32
	3	(11) (21)	27 27	27	
er.	4	(11) (21) (31)	35 32 29	29	
	5	(11) (21)	30 29	29	
	5	(11) (21)	30 29	30	
	1	(13) (33)	27 27	27	
	2	(21) (31) (41)	31 29 27	27	
	3	(11) (21) (31)	27 27 27	27	
1	4	(21) (31)	36 28	28	31

TABLE 2.5. SOLUTION OF THE SAMPLE PROBLEM USING LB V (continued)

No. of Backtrack	Conflict Level	Node	Lower Bounds	Minimum Lower Bound	Schedule Time
i	L	(jm _l)	B ^L (jm _l)	$\mathtt{B}^{\mathbf{L}}$	T _i
	3	(11)	27		
	-	(21)	27	27	
		(31)	27	 6	
9	4	(11)	33		
48	19	(31)	32		
	100	***	00-500-00 85 - 54	es B	æ
	3	(11)	27		
		(21)	27		
		(31)	27	27	
	4	(11)	27	27	
2		(21)	27		30
n n		H			
15	4	(32)	30		
3		(42)	27	27	27

TABLE 2.6 SCHEDULING TABLE FOR SAMPLE PROBLEM USING COMPOSITE-BASED BOUND LB I.

Solu- tion	, Ţ			380	32									Z.	
(87)	(1)			15	12	¥	15			15				15	
Machine 3	(55)	*9	12	3 5	12	12	15	* 0	و و	9	,	<i>ه</i> د	9	٥	
Mach (23)	(63)			80 (A)	27					16				22	ž.
(13)	(57)	* 9	91	ص م	9	91	9	* 0	ထထ	ω		∞ ∞	000	œ	
(27)	(46)		(T 7	13	13	13		13	13		13	13*	13	
Machine 2	135				· 42			: ::				10	16.	22	39
Mach (22)	(55)				32,							10 S	- !	21	
(12)	(75)	J	. # -	ব শ	· 4	.	‡	্ব-	7	#	į	<u>ــــ</u>		#	
	/#7/	7	*	- L	- 1-	-	-	r i	<u>~</u>	7		<u></u>	- t- - 1	-	
ne 1	77()			15*	12	1	15	- 	10*	18	**************************************	* 01 10	9	01	8
Machine 1	/52/	æ	* t	18* *	23	15*	15	ထင်	15*	15	Today	1.0% 1.0%	18	18	
	1		**	201	70	10*	18		11*	18	•	7 7 7 8 7	1 ದ :	72	
Conflict Level L	3	н	00	m .#	ľ	m-	- ‡	rt (n m	ন		m-≠	· W/	٥	
Back- track	4				0								,	-1	

* The jobs in the conflict set at a level.

^{*} The job around which the conflict is resolved.

CHAPTER III

COMPUTATIONAL EXPERIMENTS

The branch-and-bound algorithm for job-shop problems, discussed in Section 2.4, has been programmed in FORTRAN IV language. The two composite-based bounds LB I and LB II, developed in this thesis, are imbedded as subroutines. Three other lower bounds, referred to as LB III, LB IV and LB V, are also imbedded as subroutines for comparison purpose. In order to compare the performance of the various bounding procedures, a considerable number of experiments have been conducted on IBM 360/50 computer.

The performance of these lower bounds is compared on the basis of the following factors: (1) the number of nodes explored, (2) the computational time required to obtain the optimal solution; and (3) the efficiency of the solution obtained without backtracking. In addition, various statistics such as the minimum, maximum, mean and standard deviation for all the above three factors are computed.

The sizes of the problems vary between 3 to 12 jobs and 3 to 5 machines. The number of experiments conducted is 18. The number of problems in each experiments is 25. However, due to computation time limitations, in some experiments it has not been possible to solve all the 25 problems. The objective in selecting the problems of above sizes is to investigate the effects of changes in both the number of jobs and the number of machines. The processing times are generated randomly from a uniform distribution with interval 1 and 30, both inclusive. The entries of the machine ordering matrices are also generated randomly.

The results of experiments I through XVII in terms of the number of nodes explored, the computational time required to obtain the optimal solution and the efficiency of solution without backtracking are shown in Tables 3.1 through 3.3. The performance of the various bounding procedures will be evaluated and compared with the help of these results. A number of significant observations, obtained from the analysis of these results for different bounding procedures, are discussed below.

1. Number of Nodes Explored. The number of nodes explored to obtain the optimal solution increases very rapidly as the number of jobs increases. The obvious reason for this rapid increase is: the higher the number of jobs the larger the number of conflicts to be resolved, and consequently, the greater the number of nodes to be explored. However, this factor varies greatly for different bounding procedures for the same experiment. As observed in Table 3.1, in almost all experiments, the number of nodes explored for the composite-based bounds LB I, LB II is relatively very small as compared to other lower bounds LB III, LB IV and LB V. In general, a powerful bounding procedure produces lower bounds as high as possible and recognizes the optimal solution by exploring a small number of nodes. Otherwise, the optimal solution will be reached after a number of backtrackings which, in turn, increase the number of nodes explored. Thus, it is obvious that the composite-based bounds LB I and LB II are more powerful than any of the other lower bounds LB III, LB IV and LB V. Although the results obtained using the composite-based bounds LB I and LB II are fairly close to each other, LB II gives slightly better

results than LB I. This is because the job-based bound LB IV imbedded in composite-based bound LB II is more powerful than the job-based bound LB III imbedded in composite-based bound LB I.

The number of nodes explored to obtain an optimal solution increases as the number of machines increases. However, in some experiments such as II and III for all bounding procedures, and VII and VIII for LB II and LB V as observed in Table 3.1, the number of nodes decreases as the number of machines increases. The decrease in the number of nodes explored also depends on the quality of the bounding procedure. A decrease in the number of nodes may be expected by a reasoning similar to that for the increase in the number of nodes. For different problems of the same size for a particular bounding procedure, the number of nodes explored varies greatly. This variation is due to the random generation of the elements in processing time and machine ordering matrices and the lower bound on the schedule time depends on these elements. Table 3.1 shows another significant observation that the change in the number of nodes explored is due more to the change in the number of jobs than the change in the number of machines. For example, as observed in experiments I, IV and II for LB I in Table 3.1, the mean number of nodes explored changes from 9.32 to 33.32 when the number of jobs changes from 3 to 4, whereas, it changes from 9.32 to 13.44 when the number of machines changes from 3 to 4.

2. Computational Time. Since the computational time depends on the nodes explored, the computational time required to obtain an optimal solution increases rapidly with the increase in the number of jobs. As explained earlier, this is because the increase in the number of

jobs leads to more number of conflicts and consequently, more number of nodes have to be explored. As observed for all experiments except II, III, V and VI in Table 3.2, the computational time required to obtain the optimal solution, using composite-based bounds LB I and LB II, is less than that, using the other lower bounds LB III, LB IV and LB V. For small problems like (3x3) and (4x3), the computational time for composite-based bounds is almost the same as that for some of the other lower bounds, even though the number of nodes explored using the former is less than that using the latter. For example, Table 3.2 shows that, on the average 1.87 seconds are required by LB I and LB IV to explore 9.32 and 10.60 nodes respectively. Thus LB IV spends more computational time in computing a lower bound for each node than that by LB II. However, in all experiments except the above, the composite-based bounds give better results since they recognize the optimal solution by exploring a small number of nodes.

The computational time increases as the number of machines increases. However, in some experiments such as V and VI for LB III and LB IV, the computational time decreases as the number of machines increases. This is because there is a decrease in the number of nodes explored with the increase in the number of machines for the above experiments, as observed in Table 3.1. It is interesting to note that the change in the computational time due to change in the number of machines is relatively more for the composite-based bounds LB I and LB II, and also for the machine-based bound LB V than that for the job-based bounds LB III and LB IV. This is because the increase in the number of machines causes an increase in the number of

bounds since the lower bound for each node using any of the former lower bounds is computed as the maximum value of the bounds for all machines.

The variation in the computational time from one problem to another with the same size and for a particular bounding procedure is due to the random generation of the entries in processing time and machine ordering matrices. On the average, the composite-based bounds LB I and LB II take less computational time. Therefore, these bounding procedures are more efficient than any of the jobbased or machine-based bounds LB III, LB IV and LB V. However, in general, the composite-based bound LB I gives slightly better results than LB II because the computational time required to compute the lower bound using the former is more than that using the latter. 3. Efficiency of Solution Obtained Without Backtracking. It is interesting to find out how close the solution obtained without backtracking is to the optimal solution. In experiments I through XVIII, the efficiency of such solution is fairly good as observed in Table 3.3. The overall variation in this factor is about 10 percent. Also, unlike the number of nodes explored and the computational time, this factor does not vary much with the increase in the size of the problem. For some experiments such as IV and V, Table 3.3 shows an increase in the efficiency for an increase in the number of machines for all bounding procedures except LB V. Whereas, for some other experiments such as VII and VIII, there is a decrease in the efficiency for an increase in the number of machines for all bounding procedures except LB III. The efficiency of the solution obtained without backtracking depends on the quality of the bounding procedure: the more powerful a bounding procedure the higher the

efficiency of the solution obtained without backtracking. From Table 3.3, it becomes evident that the composite-based bounds
LB I and LB II give a higher efficiency than any of the bounding procedures LB III, LB IV and LB V and are, therefore, more powerful.

Although, the results obtained using the composite-based bounds
LB I and LB II are fairly close to each other, LB II gives slightly better results than LB I. The reason for this slight variation is that the job-based bound LB IV imbedded in composite-based bound LB I is more powerful than the job-based bound LB III imbedded in composite-based bound LB II.

Table 3.1 Mean Number of Nodes Explored to Obtain the Optimal Solution

3 V	NE	13.00	18.68	•		141.68	1451.76	620.56	316.22	960.32	4961.59	17829.00	4200.85	5800.35	2314.35	*	3936.57	- K
LB	N	25	25	25	25	52	25	25	10	25	'n		٣	4	4	**	7	
LB IV	NE	10.60	13.40	164.47	80.04	56.16	777.52	917.24	375.80	1007.88	*	13202.60	*	*	*	*	*	* .
1	Z	25	25	25	25	25	25	25	91	7	1	Ŋ					1	
B III	NE	13.84	16.60	92.00	o -	94.44	1451.76	1925,43	806.20	1125.35	*	*	*	4¢	*	*	*	*
LB	z	25	25	25	25	25	25	25	10	œ								
LB II	NE	8.92		28.44		50.16	202.79	188.50	196.00	366.28	1289.50	1634.70	414,33	2211.75	1239.75	4781.00	6202.00	*
	Z	25	25		25	25	25	25	10	25	12	10	'n	4	4	Н	က	
3 1	NE	9.32	11.28	33.32	6	58.16	196.04	266.96	292.90	385.84	1210.21	1955.40	453,35	1965.50	1242.00	7639.00	4307.32	*
LB	Z	25	25	25	25	25	25	25		25	24	10	m	4	4	H	11	
Prob.	Size	(3x3)	(3x5)	(4x3)	(4×4)	(4x5)	(5x3)	(5x4)		(6x3)	(8×4)	(6x5)	(8x3)	(8x4)	(10x3)	(10×4)	(12x3)	(12x4)
Exp.	No.	۲	III	ΙΛ	Δ	ΙΛ	VII	VIII	X	×	XI	XII	XIII	XIV	XV	XVI	XVII	XVIII

N - Number of Problems Solved
 NE - Mean Number of Nodes Explored
 * - Computer spent 3600 seconds without obtaining the optimal solution

Table 3.2 Mean Computational Time Required to Obtain the Optimal Solution

Exp.	Prob.		LB I	 	LB 11		LB III	1	LB IV	1	LB V
No.	Size	z	CI	Z	CT	z	CT	Z	P	Z	ij
н	(3x3)	25	1.87	25	2.02	25	2.16	25	1.87	25	2.16
II	(3x4)	25	2.59	25	2.59	25	2,45	25	2.45	25	3.60
III	(3x5)	25	2.73	25	3.02	25	2.59	25	2.74	25	4.18
ΛI	(4x3)	25	4.18	25	3.89	25	92.9	25	6.34	25	4.90
Δ	(4×4)	25	6.34	25	7.05	25	6.05	25	7.05	25	10.20
ΙΛ	(4x5)	25	9.34	25	9.65	25	5.76	25	6.34	25	22.90
LIA	(5x3)	25	17,50	25	20.90	25	54.30	25	47.50	25	33.70
VIII	(5×4)	25	31,70	25	29.65	25	82.00	25	65.50	25	72.00
ĭ	(5x5)	10	27.40	10	36.00	10	32.40	10	28.15	10	46.50
×	(ex3)	25	33.80	25	42.80	œ	378.00	7	823.00	25	94.10
XI	(ex4)	24	148.70	12	193.00		*		*	Ŋ	655.00
XII	(6x5)	10	199.50	10	218.50		*	'n	942.50	2	423.40
XIII	(8x3)	11	356,50	ო	1030.00		*		*	ო	1020.00
XIV	(8x4)	4	934.00	4	965.00		*		*	4	800.00
ΛX	(10x3)	4	678.00	4	838.00		*		*	4	812.00
XVI	(10×4)	н.	2880.00	Н	2880.00		*		*		*
XVII	(12×3)	11	787.00	က	1620.00		*		*	7	481.00
XVIII	(12x4)		*		*		*		*		×

N - Number of Problems Solved
 CT - Mean Computational Time in Seconds
 * - Computer spent 3600 seconds without obtaining the optimal solution

Table 3.3 Efficiency of Solution Obtained Without Backtracking

	ES	1.6	$\ddot{\dashv}$	N	9	3.6	91.52	7.4	1.2	2	9.	8	5	87.50	9	82.00	4.	67.50	94.45	4
LB V	N			25			25		25	25	10	25	'n	2	Э	7	7	H	7	æ
																		188	8	
IV	ES	8.0	97.60	7.6	9	3.00	95.96	7.0	5.4	92.92	4.2	7	84.00	9	2	94.50	'n,	78.80	92.70	+
LB	N		25	. 25			25		25	25	10	4	 1	Ŋ	н	H	н	н	н	
111	ES	6.5	97.72	7.4	•	5.4	96.72	5.5	2.3	92.68	3.1	5.	73.20	5.	ë	89.20	φ.	84.20	89,32	19
LB	Z			25				25	25		10	∞	H	-	. 1	H	Н	H	н	88
II	ES	0	97.88	6	,	7.4	98.31	8.6	7.2	92.68	3.6	3.1			Ö	91.50	2.7	71.20	95.38	€
LB	N		25	25	į	25	. 25	25	25	25	10	25	12	10	m	7	4	н	m	en-
3 I	ES	ι.	97.84	4.		φ.	97.64	٠.	۲.	93.28	.1	9.	91.50	٠:	7.6	88.75	91.00	74.80	97.00	s d
LB	Z	25	25	25		25	25	25	25	25	10	25	24	10	11	. 4	7	Н	11	
Prob.	Size	(3x3)	(3x4)	(3x5)	į	(4x3)	(4x4)	(4x5)	(5x3)	(5×4)	(5×5)	(6x3)	(ex4)	(ex5)	(8x3)	(8×4)	(10x3)	(10x4)	(12x3)	(10-()
Exp.	No.	н	II	III		IV	>	IA	VII	VIII	IX	×	XI	XII	XIII	XIV	XΛ	XVI	XVII	T 1111

N - Number of Problems Solved
ES - Efficiency of Solution Obtained Without Backtracking
* The efficiency could not be computed because the optimal solution was not obtained

Table 3.4 Results Obtained by Branch-and-Bound With and Without Backtracking Using LB I

Exp.	Size of	Branc	Branch-and-Bound Number of N	Bound with Backtracking of Nodes Explored	acking d	Branch-and-Bound Efficie	Branch-and-Bound without Backtracking Efficiency of Solution	cking
No.	Prob.	Max.	Min.	п	ď	Range	п	ь
н	(3x3)	22	9	9.32	3.85	0.90 - 1.00	99.52	1.98
II	(3x4)	39	4	13,44	7.81	0.89 - 1.00	97.84	3.96
III	(3x5)	42	4	11.28	7.88	0.90 - 1.00	98.44	2.76
IV	(4x3)	92	11	33,32	20.64	0.87 - 1.00	96.87	3.64
>	(4x4)	315	15	49.48	58.12	0.89 - 1.00	97.64	3.48
IA	(4x5)	276	12	58.16	58.54	0.85 - 1.00	97.56	4.33
VII	(5x3)	2224	20	196.04	435.48	0.81 - 1.00	96.25	4.99
VIII	(5x4)	1110	29	266.95	252.25	0.75 - 1.00	93.28	7.13
IX	(5x5)	1438	83	292.9	383.94	0.87 - 1.00	95.19	3.00
×	(6x3)	3487	42	385.84	709.17	0.76 - 1.00	92.65	7.65
XI	(6x4)	6160	46	1210.21	1449.33	0.75 - 1.00	91.58	7.10
XII	(6x5)	4907	195	1955.40	1400.47	0.86 - 1.00	93.10	4.44
XIII	(8x3)	21322	103	3171.55	6022.66	0.76 - 1.00	89.73	7.10
XIV	(8x4)	4526	220	1965.50	1610,93	0.83 - 0.98	88.75	5.58
XΛ	(10x3)	2602	279	1242.00	927.95	0.77 - 0.98	91.00	8.22
XVII	(12x3)	7781	537	4307.82	3260.01	0.86 - 1.00	97.00	5.00

*The results for the remaining experiments are not tabulated as only one or no optimal solution was obtained

μ - Mean

σ - Standard deviation

Results Obtained by Branch-and-Bound With and Without Backtracking Using LB II Table 3.5

Exp.	Size of	Branc	h-and-Bound Number of N	Branch-and-Bound with Backtracking Number of Nodes Explored	acking	Branch-and-Bound without Backtracking Efficiency of Solution	d-Bound without Backtr Efficiency of Solution	racking
No.	Prob.	Max.	Min.	т.	۵	Range	n n	ь
Н	(3x3)	. 22		8.92	3.95	0.90 - 1.00	99.32	2.34
11	(3x4)	33	4	12.72	6.53	0.90 - 1.00	97.88	3,55
III	(3x5)	42	4	10.52	7.51	0.90 - 1.00	00.66	2.50
IV	(4x3)	72	Ħ	28.44	16.14	0.82 - 1.00	97.48	4.68
>	(4x4)	305	13	46.2	57.41	0.88 - 1.00	98.31	3.09
VI	(4x5)	252	12	50.16	53.49	0.85 - 1.00	09.86	3.37
VII	(5x3)	1939	20	97.20	396.95	0.81 - 1.00	97.20	4.75
VIII	(5x4)	434	46	188.50	116.74	0.75 - 1.00	92.69	6.37
IX	(5x5)	413	98	196.00	94.76	0.79 - 1.00	93.67	6.43
×	(6x3)	2809	41	360,28	628.75	0.79 - 1.00	93.12	8,10
XI	(6x4)	2397	50	1098.00	775.33	0.75 - 1.00	92.00	7.00
XII	(ex5)	4561	160	1634.7	1359.36	0.86 - 1.00	93.46	4.31
XIII	(8x3)	206	319	414.33	76.39	0.82 - 1.00	99.06	6.94
XIV	(8x4)	4526	203	2211.75	1541.51	ı	91.00	7.00
XV XVI	(10x3) (10x4)	2293 4781	283 2635	1239.75 4781	863.56	0.84 - 1.00	92.75	5.26
XVII	(12x3)	10809	2169	6202	3550,54	0.97 - 1.00	98.00	2.00
			n			23		

* The results for the remaining experiments are not tabulated as only one or no optimal solution was obtained

μ - Mean

o - Standard deviation

Results Obtained by Branch-and-Bound With and Without Backtracking, Using LB III* Table 3.6

cktracking tion	D	5.43	4.28	4.75	5.45	3.94	4.94	4.75	5.17	4.11	8.10
d-Bound without Backtr Efficiency of Solution	1	96.56	97.72	97.48	95.48	96.72	95.56	97.48	92.48	93.10	93.12
Branch-and-Bound without Backtracking Efficiency of Solution	Range	0.83 - 1.00	0.85 - 1.00	0.81 - 1.00	0.79 - 1.00	0.85 - 1.00	0.86 - 1.00	0.81 - 1.00	0.82 - 1.00	0.86 - 1.00	0.79 - 1.00
icking I	٥	7.06	17.33	13.45	93.21	85.54	90.45	13.45	2064.40	894.19	628.75
Branch-and-Bound with Backtracking Number of Nodes Explored	. ユ	13.84	19.92	16.60	92	99.84	94.44	16.60	1925.40	806.20	366.28
ch-and-Bound Number of No	Min.	9	4	4	15	20	12	4	246	120	41
Branc	Max.	33	69	52	391	437	336	52	7645	3360	2809
Size of	Prob.	(3x3)	(3x4)	(3x5)	(4x3)	(4x4)	(4x5)	(5x3)	(5x4)	(5x5)	·(6x3)
Exp.	No.	H	11	III	IV	^	VI	IIA	VIII	ΧI	×

* The results for the remaining experiments are not tabulated as only one or no optimal solution was obtained

..

u - Mean

o - Standard deviation

Table 3.7 Results Obtained by Branch-and-Bound With and Without Backtracking Using LB IV

Prob. (3x3)	Size of	Number of	Number of Nodes Explored	d d	brainch-and-bound without backtracking Efficiency of Solution	Efficiency of Solution	ktracking ion
×	b. Max.	x. Min.	n	р	Range	n	р
	(3x3) 2	27 6	10.6	5.37	0.90 - 1.00	80.86	3.42
	$(3x4) \qquad 3$	39 4	14.12	9.16	0.83 - 1.00	97.60	4.35
	(3x5) 44	4 4	13.4	10.18	0.81 - 1.00	97.68	4.56
	(4x3) 603	13 28	164.47	151.96	0.78 - 1.00	93.87	5.06
0.000	(4x4) 372	2 16	80.04	92.65	0.79 - 1.00	95.96	5.81
6.533	(4x5) 252	.2 12	56.16	51.74	0.86 - 1.00	97.04	4.42
	(5x3) 3077	7 97	777.52	704.77	0.83 - 1.00	95.44	4.83
100	(5x4) 4599	137	917.24	1109.26	0.81 - 1.00	92.2	5.35
	(5x5) 3360	0 120	806.20	894.19	0.86 - 1.00	93.10	4.11
	(6x3) 28116	6 1807	10078.75	10532.70	0.74 - 0.98	87.75	9.23

* The results for the remaining experiments are not tabulated as only one or no optimal solution was obtained

р - Mean

σ - Standard deviation

Table 3.8 Results Obtained by Branch-and-Bound With and Without Backtracking Using LB V

		Branc	h-and-Bounc		acking	Branch-and-Bound without Backtracking	d without Back	tracking
Exp.	Size of		Number of Nodes	Nodes Explored	70	Effici	Efficiency of Solution	E.
No.	Prob.	Max.	Min.	크	a	Range	п	р
I	(3x3)	35	9	13.0	6.68	0.80 - 1.00	91.60	7.09
Π	(3x4)	09	4	20.4	12.00	1	91.92	8.99
III	(3x5)	62	4	18.68	14.81	0.79 - 1.00	93.20	7.41
ΙΛ	(4x3)	118		43.68	30.15	0.82 - 1.00	93.68	5.96
Λ	(4x4)	525	15	79.56	80.96	0.67 - 1.00	91.52	9.81
VI	(4x5)	727	28	141.68	154.97	0.63 - 1.00	87.44	9.68
VII	(5x3)	2696	20	303.96	542.41	0.68 - 1.00	91.25	8.82
VIII	(5x4)	2661	20	620.56	612.72	0.68 - 1.00	82.88	7.66
ΙX	(5x5)	1438	137	316.22	397.93	0.67 - 1.00	94.67	3.89
×	(6x3)	8343	42	960.32	1947.24	0.75 - 1.00	88.32	7.26
X	(6x4)	8773	2342	4961.60	2241.25	0.77 - 0.96	85.40	6.47
XII	(ex5)	23643	12015	17829.0	5814.0	0.93 - 0.94	94.20	4.00
XIII	(8x3)	916	637	844.0	146.73	0.82 - 0.91	86.33	3.68
XIV	(8x4)	12008	771	5227.0	4166.13	0.76 - 0.87	82.00	3.94
X	(10x3)	3371	264	2010.25	1182.54	0.77 - 0.89	84.50	4.56
XVII	(12x3)	11278	267	3936.57	3401.70	0.86 - 1.00	90.43	5.29

* The results for the remaining experiments are not tabulated as only one or no optimal solution was obtained

μ - Mean

σ - Standard deviation

CHAPTER IV

SUMMARY AND CONCLUSIONS

The basic objective of this thesis is to develop a branch-and-bound algorithm for job-shop problems. The branch-and-bound approach generates an optimal solution after the generation of only a small subset of possible sequences. The basic concepts of this approach which consists of the branching, bounding and backtracking processes are discussed, using a scheduling tree. The process of generating a new set of nodes at a level from a node at the preceeding level is referred to as the branching process. This process guarantees an optimal solution by generating all nodes of the scheduling tree. The bounding process helps select a particular node at a level for further branching and thus makes it possible to achieve a reduction in the generation of nodes at each level. A backtracking process has to be embedded in the branch-and-bound technique to guarantee optimality. The efficiency of the branch-and-bound technique depends on the quality of the bounding procedure.

A mathematical analysis, in rigorous notation, of the five bounding procedures is presented. The composite-based bounds, referred to as LB I and LB II, are developed in this thesis. The other three bounding procedures, referred to as LB III, LB IV and LB V, are analyzed for comparison purposes. The computation of the lower bounds, using these bounding procedures, is illustrated with the help of a sample problem. The computational algorithm for the branch-and-bound technique is summarized in formal steps. The sample problem, presented earlier, is solved to illustrate the computational algorithm.

In order to study the performance of the various bounding procedures, a considerable number of experiments has been conducted on IBM 360/50. The sizes of the problems vary between 3 to 12 jobs and 3 to 5 machines. The total number of experiments conducted is 18 and the number of problems in each experiment is 25. The elements in both processing time and machine ordering matrices are generated randomly. The performance of the various bounding procedures is compared on the basis of the number of nodes explored, the computation time and the efficiency of solution without backtracking. Also, various statistics such as the minimum, maximum, mean and standard deviation for all the above three factors are computed.

The most significant results obtained from the computational experiments are as follows:

- 1. The number of nodes explored increases with the increase in the size of the problem. This is because the increase in the size of the problem leads to more number of conflicts.
- 2. The computational time required to obtain the optimal solution depends on the number of nodes explored. For composite-based bounds LB I and LB II and machine-based bound LB V, the computational time to explore a node using the machine-based bound depends on the number of machines because the lower bound for each node is computed as the maximum value of the bounds for all machines.
- 3. Unlike the number of nodes explored and the computational time required to obtain the optimal solution, the efficiency of solution obtained without backtracking does not vary much with the increase in the size of the problem. However, it depends on the quality of the bounding procedure: the more powerful a bounding procedure the higher the

efficiency of the solution obtained without backtracking. It is observed that the composite-based bounds LB I and LB II, on the average, give a higher efficiency than any of the bounding procedures LB III, LB IV and LB V.

- 4. The composite-based bounds LB I and LB II are, on the average, more powerful in terms of the number of nodes explored and the computational time required to obtain the optimal solution and the efficiency of the solution obtained without backtracking than any of the lower bounds LB III, LB IV and LB V. The results obtained using the composite-based bounds LB I and LB II are fairly close to each other. However, the composite-based bound LB I gives slightly better results in terms of the number of nodes explored and the efficiency of the solution obtained without backtracking. This is because the job-based bound LB IV, embedded in composite-based bound LB II, is more powerful than the job-based bound LB III, embedded in the composite-based bound LB I. The composite-based bound LB I gives better results in terms of the computer time required to obtain the optimal solution than LB II because the computational time required to explore a node using the former is less than that using the latter.
- 5. In ranking the five bounding procedures, as shown in Tables 4.1,
 4.2 and 4.3, it appears, on the average, that the composite-based bound LB I
 ranks first from the point of view of computational time. Whereas, the
 composite-based bound LB II ranks first according to the number of nodes
 explored to obtain the optimal solution, and the efficiency of solution
 obtained without backtracking.

In conclusion, the composite-based bound LB I, which consists of the job-based bound LB III and the machine-based bound LB V, is recommended as the powerful lower bound.

Table 4.1 Rank of Bounding Procedures Based on the Number of Nodes Explored.

Exp.	Size of			RANK		
No.	Prob1em	1	2	3	4 .	5
T	(2, 2)	1 D 77	7.13. 7	I D TH	10.0	IN TYT
I	(3x3)	LB II	LB I	LB IV	LB V	LB III
ΙI	(3x4)	LB II	LB I	LB IV	LB III	LB A
III	(3x5)	LB II	LB I	LB IV	LB III	LB V
IV	(4x3)	LB II	LB I	LB V	LB III	LB IV
V	(4x4)	LB II	LB I	LB V	LB IV	LB III
. VI	(4x5)	LB II	LB IV	LB I	LB III	LB V
VII	(5x3)	LB I	LB II	LB IV	LB III,V	
VIII	(5x4)	LB II	LB I	LB V	LB IV	LB III
IX	(5x5)	LB II	LB I	LB V	LB IV	LB III
- X	(6x3)	LB II	LB I	LB V	LB IV	LB III
ΧI	(6x4)	LB I	LB II	LB V	*	*
XII	(6x5)	LB II	LB I	LB V	LB IV	*
XIII	(8x3)	LB II	LB I	LB V	*	*
XIV	(8x4)	LB I	LB II	LB V	*	*
χV	(10x3)	LB II	LB I	LB V		*
XVI	(10x4)	LB II	LB I	LB V	* .	*
XVII	(12x3)	LB I	LB II	LB V	*	.*

Due to Computer time limitations, the optimal solution was not obtained for the remaining bounding procedures.

Table 4.2 Rank of Bounding Procedures Based on Computational Time

Exp.	Size of					R/	A NK				
No.	Problem		1		2		3		4		5
I	(3x3)	LB	I,IV	LB	II	LB	III,V		_		
ΙI	(3x4)		III,IV		I,II	LB			_		
III	(3x5)		III	LB		LB	IV	LB	II	LB	V
IV	(4x3)	LB	II	LB	I	LB	v	LB	IV	LB	III
V	(4x4)	LB	III	LB	I	LB	II,IV	LB	V		
VI	(4x5)	LB	III	LB	IV	LB	I	LB	II	LB	V
VII	(5x3)	LB	I	LB	II	LB	v	LB	IV	LB	III
VIII	(5x4)	LB	II	LB	I	LB	IV	LB	V	LB	III
IX	(5x5)	LB	I	LB	IV	LB	III	LB	II	LB	V
X	(6x3)	LB	I	LB	II	LB	v	LB	III	LB	IV
XΙ	(6x4)	LB	I	LB	II	LB	V	菠	t e	4	ŧ
XII	(6x5)	LB	I	LB	II	LB	V	LB	IV	٧	•
(III	(8x3)	LB	I	LB	V	LB	11	3	ŀ	•	•
XIV	(8x4)	LB	V	LB	I	LB	II	,	*	,	•
χV	(10x3)	LB	I	LB	V	LB	II		ł .	i	ř
XVI	(10x4)		I,II	LB				d	•	•	ì
(VII	(12x3)	LB	V	LB	I	LB	II	3	¥		r

Due to Computer time limitations, the optimal solution was not obtained for the remaining bounding procedures.

Table 4.3 Rank of Bounding Procedures Based on Efficiency of Solution (Without Backtracking)

Exp.	Size of			RANK		
No.	Problem	1	2	3	4	5
I	(3x3)	LB I	LB II	LB IV	LB III	LB V
II	(3x4)	LB II	LB I	LB III	LB IV	LB V
III	(3x5)	LB II	LB I	TB IA	LB III	LB V
IV	(4x3)	LB II	LB I	LB III	LB IV	LB V
V	(4x4)	LB II	LB I	LB III	LB IV	LB V
VI	(4x5)	LB II	LB I	LB IV	LB III	LB V
VII	(5x3)	LB II	LB I	LB IV	LB III	LB V
VIII	(5x4)	LB I	LB IV	LB II	LB III	LB V
IX	(5x5)	LB I	LB V	LB IV	LB II	LB III
х	(6x3)	LB II	LB I	LB V	LB IV	LB III
XΙ	(6x4)	LB I	LB II	LB V	LB IV	LB III
XII	(6x5)	LB II	LB I	LB IV	LB V	LB III
XIII	(8x3)	LB IV	LB II	LB I	LB V	LB III
XIV	(8x4)	LB IV	LB II	LB III	LB I	LB V
χV	(10x3)	LB IV	LB II	LB I	LB V	LB III
XVI	(10x4)	LB III	LB IV	LB I	LB II	LB V
XVII	(12x3)	LB I	LB II	LB IV	LB V	LB III

BIBLIOGRAPHY

Branch-and-Bound Approach

- 1. Agin, N., "Optimum Seeking with Branch and Bound", Management Science, Vol. 13, No. 4, 1966, pp. 176 185.
- Ashour, S. and M. N. Quraishi, "Investigation of Various Bounding Procedures for Production Scheduling Problems", <u>The Inter-national Journal of Production Research</u>, Vol. 7, No. 3, 1969, pp. 1 - 4.
- 3. Ashour, S., "An Experimental Investigation and Comparative Evaluation of Flow-shop Scheduling Techniques", submitted to Operations Research, 1969.
- 4. Brooks, G. H. and C. White, "An Algorithm for Finding Optimal or Near Optimal Solutions to the Production Scheduling Problem", The Journal of Industrial Engineering, Vol. 16, Jan. 1965, pp. 34 - 40.
- 5. Brown, A. P. G. and Z. A. Lomnicki, "Some Applications of the Branch-and-Bound Algorithm to the Machine Scheduling Problem", Operational Research Quarterly, Vol. 17, No. 2, 1966, pp. 173 - 186.
- Eastman, W. L., "Linear Programming with Pattern Constraints", Ph.D. Dissertation, Harvard University, Cambridge, Mass., July 1958.
- Ignall, E. J., and L. E. Schrage, "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems", Operations Research, Vol. 13, No. 3, 1965, pp. 400 - 412.
- 8. Land, A. H., and A. Doig, "An Automatic Method of Solving Discrete Programming Problems", Econometrica, Vol. 28, No. 3, 1960, pp. 497 520.
- 9. Lawler, E. L., and D. E. Wood, "Branch-and-Bound Methods: A Survey", Operations Research, Vol. 14, No. 4, 1966, pp. 699 719.
- 10. Little, J. D. C., K. G. Murty, D. W. Sweeney, and C. Karel, "An Algorithm for the Travelling Salesman Problem", Operations Research, Vol. 11, No. 6, 1963, pp. 972 989.
- 11. Lomnicki, Z. A., "A Branch-and-Bound Algorithm for the Exact Solution of the Three Machine Scheduling Problem", Operational Research Quarterly, Vol. 16, No. 1, 1965, pp. 89 100.
- 12. McMahon, G. B., and P. G. Burton, "Flowshop Scheduling with the Branch-and-Bound Method", Operations Research, Vol. 15, No. 3, 1967, pp. 473 481.

- 13. Nabeshima, I., "On the Bound of Makespans and its Application in M Machine Scheduling Problem", <u>Journal of the Operations</u>
 Research Society of Japan, Vol. 9, Nos. 3&4, 1967, pp. 98 135.
- 14. White, C., "An Algorithm for Finding Optimal or Near Optimal Solutions to the Production Scheduling Problem," Ph.D. Thesis, Purdue University, Lafayette, Indiana, 1963.

Related Approaches

- 15. Ashour, S., "A Decomposition Approach for the Machine Scheduling Problem", The International Journal of Production Research, Vol. 6, No. 2, 1967, pp. 109 122.
- 16. Ashour, S., <u>Introduction to Scheduling: Concepts, Analyses</u>, and <u>Performances</u>, John Wiley & Sons, Inc., in press.
- 17. Beenhakker, H. L., "Mathematical Analysis of Facility-Commodity Scheduling Problems", The International Journal of Production Research, Vol. 2, No. 4, 1963, pp. 313 321.
- 18. Beenhakker, H. L., "The Development of Alternatic Criteria for Optimality in the Machine Sequenceing Problem", Ph.D. Thesis, Purdue University, Lafayette, Indiana, 1963.
- 19. Conway, R. W., W. L. Maxwell, and L. W. Miller, <u>Theory of Scheduling</u>, Addison-Wesley Publishing Company, Reading, Massachusetts, 1967.
- 20. Elmaghraby, S. E., "The Machine Sequencing Problem Review and Extensions", Naval Research Logistics Quarterly, Vol. 15, No. , 1968, pp. 205 232.
- 21. Fisher, H., and G. L. Thompson, "Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules," Chapter 15 in reference 31.
- 22. Giffler, B. and Thompson, G., "Algorithms for Solving Production Scheduling Problem", IBM Research Report RC-118, Yorktown Heights, New York, June 1959.
- 23. and , "Algorithms for Solving Production Scheduling Problems", Operations Research, Vol. 8, July-Aug. 1960, pp. 487 503.
- 24. and Van Ness, V., "Numerical Experience with the Linear and Monte Carlo Algorithms for solving Production Scheduling Problems", Chapter 3 in reference 31.
- 25. Giglio, R. J., and H. M. Wagner, "Approximate Solutions to the Three-Machine Scheduling Problem", Operations Research, Vol. 12, No. 2, 1964, pp. 305 324.

- 26. Heller, J., "Combinatorial, Probabilistic and Statistical Aspects of an M x J Scheduling Problem", Report NYO-2540, Atomic Energy Commission Computed and Applied Mathematics Center, Institute of Mathematical Science, New York University, New York, Feb. 1959.
- 27. _____, "Combinatorial Properties of Machine Shop Scheduling",
 Report NYO-2879, Atomic Energy Commission Computed and
 Applied Mathematics Center, Institute of Mathematical
 Sciences, New York University, New York, July 1959.
- 28. _____, "Some Problems in Linear Graph Theory that Arise in the Analysis of the Sequencing of Jobs through Machines", Report NYO-9847, Atomic Energy Commission Computed and Applied Mathematics Center, Institute of Mathematical Science, New York University, New York, Oct. 1960.
- and Logemann, G., "An Algorithm for the construction and Evaluation of Possible Schedules", Management Science, Vol. 8, Jan. 1962, pp. 168 183.
- 30. Nugent, C. E., "On Sampling Approaches to the Solution of the n - By - m Static Sequencing Problem", Ph.D. Thesis, Cornell University, Ithaca, New York, 1964.
- 31. Muth, J. F., and G. L. Thompson, eds., <u>Industrial Scheduling</u>, Prentice-Hall, Englewood Cliffs, New Jersey, 1963.
- 32. Ryser, H. J., Combinatorial Mathematics, The carus Mathematical Monographs, No. 14, The Mathematical Association of America, 1963, Dist. John Wiley and Sons, Inc.
- 33. Sisson, R., "Sequencing Theory", Chapter 7, Progress in Operations Research, Vol. 1, Ackoff, R. L., ed., John Wiley, New York, 1961.
- 34. Spinner, A. H., "Sequencing Theory Development to Date", Naval
 Research Logistics Quarterly, Vol. 15, No. 2, 1968, pp. 319 324.

APPENDIX A

THE FOLLOWING DOCUMENT HAS PRINTING THAT EXTENDS INTO THE BINDING.

THIS IS AS
RECEIVED FROM
CUSTOMER.

ILLEGIBLE DOCUMENT

THE FOLLOWING DOCUMENT(S) IS OF POOR LEGIBILITY IN THE ORIGINAL

THIS IS THE BEST COPY AVAILABLE

```
C
      ***
            BRANCH-AND-BOUND ALGORITHM
      ***
               FOR JOB-SHOP PROBLEMS
      PROGRAMMED BY
                   S. R. HIREMATH
      THE BRANCH AND BOUND ALGORITHM DESCRIBED IN SECTION 2.4
C
      IS PROGRAMMED IN FORTRAN IV
      THIS PROGRAM CONSISTS OF MAIN PROGAM AND FIVE BOUNDING
C
      PROCEDURES AS SUBROUTINES. IN ADDISON IT ALSO CONSISTS
C
      OF THREE MORE SUBROUTINES.
      ****
               VARIABLES
      IT
                   PROCESSING TIME
C
                   MACHINE ORDERING
      MM
C
   JCT
                   COMPLETION TIME
C
      MACH
                   TOTAL NUMBER OF MACHINES OR OPERATIONS FOR
C
                   TOTAL NO. OF JOBS
    JOBS
                   A JOB
C
      LA
                   ENTRY IN THE SCHEDULING TABLE
C
      IOP
                   OPERATION
C
                   JOB IN THE CONFLICT SET
      JJ
C
                   NO. OF JOBS IN CONFLICT SET AT A LEVEL
      N
C
      ILB
                   LOWER BOUND FOR A NODE
C
      NILB
                   MIN. LOWER BOUND AT A LEVEL
C
                   SCHEDULE TIME
      ISTMIN
C
                   ACTIVE NODE AT A LEVEL
      JACTIV
C
                     GENERATING DATA (MACHINE-ORDERING AND
      IREAD. EQ. 0
C
                     PROCESSING TIME MATRICES!
      IREAD.NE. 0
                     READ DATA CARDS FOR BOTH MATRICES
C
C
      IF IPRINT. EQ. O PRINT DETAILS
      IF IPRINT. NE. O.
                       DO NOT PRINT DETAILS
      IF ICARD. EQ.O NO CARD OUTPUT DESIRED
C-
      IF ICARD. NE. 0
                      CARD OUTPUT DESIRED
C
С
                       THE LIMITS OF INTERVAL FOR PROCESS-
      LIMITIELIMIT2
C
                       ING TIMES
C
       MAIN PROGRAM
```

14

```
0001
                     COMMON [T(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
                     COMMON IOP(90,151,JJ(90,15),ILB(90,15),JOBS,ISTMIN
 0003
                     COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
 0004
                     DIMENSION IRAND2(50)
                    READ(1,1) MACH, JOBS, LIMIT1, LIMIT2, NPROB, NFLB, NLLB, IREAD, ISKIP,
0005
                    liprint, ICARD, IX, IY, IB
 0006
                  1 FORMAT(1114,218,14)
- 0007
                    DO 32 NP=1, NPROB
20008
                    WRITE (3,33) NP
                 33 FORMAT(1HO, 10X, PROBLEM NUMBER = ', 13)
 0009
                     IF(IREAD. EQ. 0) GD TO 600
- 0010
              C
              C
                    READ PROCESSING TIME MATRIX
              C
# 0011
                    DO 9 J=1, JOBS
                 9 READ(1,2) (IT(J,I),I=1,MACH)
 0012
 0013
                  2 FORMAT(1015)
 0014
                    GO TO 77
              C
              C
                    GENERATE PROCESSING TIME MATRIX
              C
 0015
                600 DD 211 M=1, MACH
 0016
                    DO 211 J=1, JOBS
3 0017
                211 IT(J, M)=RANDNO(IY)*(LIMIT2-LIMIT1+1)+LIMIT1
 0018
                 77 WRITE (3,82)
                                              'PROCESSING TIME MATRIX')
0019
                 82 FORMAT(1H ,10X,
 0020
                    DO 11 J=1, JOBS
 0021-
                 11 WRITE (3,4) (IT(J,I),I=1,MACH)
 0022
                  4 FORMAT(1H ,10X,12I4)
 0023
                    IF(IREAD. EQ.O) GO TO 698
              C
              C
                    READ MACHINE-ORDERING MATRIX
              C
 0024
                    DO 3 J=1, JOBS
 0025
                  3 READ(1,2) (MM(J,I), I=1, MACH)
* 0026
                    GO TO 76
              C
              C
                    GENERATE MACHINE ORDERING MATRIX
              C
 0027
                698 DO 235 J=1,JOBS
                    DO 231 M=1, MACH
 0028
                231 IRAND2(M)=M
0029
 0030
                    M1=MACH
 0031
                232 IRAN=RANDNO(IY)*M1+1
                    MM(J,M1) = IRAND2(IRAN) + 100 * J
" 0032
                    IF (IRAN .EQ. M1) GO TO 234
 0033
 0034
                    M1 = M1 - 1
 0035
                    IF (M1 .EQ. 0) GO TO 235
 0036
                    DO 233 M2=IRAN, M1
               -233 IRAND2(M2)=IRAND2(M2+1)
 0037
 0038
                    GO TO 232
                234 IF (M1 .EQ. 1) GO TO 235
 0039
                    M1 = M1 - 1
 0040
                    GO TO 232
 0041
 0042
                235 CONTINUE
,0043
                 76 DO 96 J=1, JOBS
                    DO 96 I=1 + MACH
 0044
```

96 MM(J,I)=MM(J,I)-J*100

0045

85 FORMAT(III , 10X, I JOB MC LV JCTI)

0087

97

141

```
DATE = 69336 98
```

```
0088
                 22 DD 70 K=1, MACH
*0089
                    DO 72 J=1, JOBS
0090
                    IF(LA(LV,K,J).NE.T) GO TO 72
 0091
                    N(LV) = 0
                    DO 69 JM=1.JOBS
» 0092
 0093
                 99 IF(LA(LV, K, JM) . GE. T) GO TO 68
 0094
                    GD TD 69
·· 0095
                 68 N(LV)=N(LV)+1
... OC96
                    JJ(LV,N(LV))=JM
                    IF(IPRINT.EQ.O) GO TO 69
 0097
0098
                    WRITE (3,65) JJ(LV,N(LV)),K,LV,LA(LV,K,JM)
-0099
                 65 FORMAT(1H , 10X, 414)
 0100
                 69 CONTINUE
             C
             C
                    DETERMINE LOWER BOUNDS AND RESOLVE CONFLICT
             C
                    IF(N(LV).GT.1) CALL CONFLT(T,K,LV,NNODES,NCNFLT,&110)
0101
0102
                    GO TO 70
 0103
                 72 CONTINUE
                 70 CONTINUE
0104.
             C
             C
                    UPDATE THE ARRAY AND ENTER NEXT OPERATION
             C
                 89 DO 80 K=1, MACH
- 0.105
0106
                    DO 80 J=1, JOBS
                    IF(LA(LV,K,J).NE.T) GO TO 80
 0107
                    IOP(LV,J) = IOP(LV,J)+1
 0108
                 IF(IOP(LV, J).GT. MACH) GO TO 75
 0109
 0110
                    KK=MM(J.IOP(LV.J))
                    LA(LV, KK, J)=JCT(J, IOP(LV, J))
0111
                    GO TO 80
 0112
                 75 IOP(LV,J)=IOP(LV,J)-1
 0113
                 80 CONTINUE
*0114
             C
             C
                    CHECK FOR T
             C
                    IF T IS THE HIGHEST ENTRY A SOLUTION HAS BEEN FOUND
             C
                    OTHERWISE FIND NEXT HIGHER T
                 79 DD 16 M=1, MACH
0115
                    DO 16 J=1, JOBS
 0116
                    IF(T.LT.LA(LV,M,J)) GO TO 51
 0117
 0118
                 16 CONTINUE
                    IF(T.GE.ISTMIN) GO TO 110
 0119
                    ISTMIN=T
 0120
0121
                    WRITE (3,6) ISTMIN
                  6 FORMAT(1H , A SOLUTION ',16)
 0122
                980 FORMAT(1HO, 10X, COMPUTATION TIME = , F12.4)
 0123
                    LEVEL=LV-1
 0124
                    WRITE(3,1001) LEVEL
 0125
               1001 FORMAT(1H , NO OF CONFLICT LEVELS FOR SOLN', 16)
 0126
                    ISWTCH=ISWTCH+1
 0127
 0128 +
                    NBKTRK=NBKTRK+1
                    IF(ISWTCH.EQ.1) NBKTRK=0
 0129
                    IF(ISWTCH.NE.1) GO TO 110
 0130
                    IF(ICARD. EQ. 0) GO TO 110
0131
                    WRITE (2,1003) ISTMIN
.0132
              1003 FORMAT(18)
 0133.
```

147

```
C
                    BACKTRACKING
              C
- 0134
                110 DO 95 I=1, MACH
 0135
                    DO 95 J=1.JOBS
· 0136
                 95 LA(LV,MM(J,I),J)=0
 0137
                    LV=LV-1
 0138
                    IF(IPRINT.EQ.O) GD TO 23
* 0139
                    WRITE (3,501) LV
·· 0140
                501 FORMAT(1H , LEVEL', 15)
 0141
                 23 NLV=N(LV)
0142
                120 DO 300 NL=1.NLV
0143
                    IF(JJ(LV, NL). NE. JACTIV(LV)) GO TO 300
 0144
                    NK=NL
* 0145
                300 CONTINUE
· 0146
                    DO 360 NL=1,NLV
 0147
                    IF(JJ(LV, NL), EQ, JACTIV(LV)) GO TO 360
 0148
                    IF(ISTMIN.LE.ILB(LV.NL)) GO TO 360
 0149
                    IF(ILB(LV, NL).LT.NILB(LV)) GO TO 360
 0150
                    IF(ILB(LV, NL).GT.NILB(LV)) GO TO 310
 0151
                    IF(NL.GT.NK) GO TO 310
 0152
                360 CONTINUE
 0153
                    IF(LV-1)400,400,110
                310 JL=JJ(LV,1)
 0154
0155
                    IL=IOP(LV,JL)
 0156
                    ML=MM(JL, IL)
 0157
                    T=LA(LV,ML,JL)
                    DO 350 NL=2, NLV
 0158
                    J2=JJ(LV, NL)
 0159
                    12=10P(LV, J2)
 0160
 0161
                    M2 = MM(J2, I2)
                    IF(LA(LV,M2,J2),LT,T) T=LA(LV,M2,J2)
 0162
                350 CONTINUE
 0163
                    IF(IPRINT.EQ.O) GO TO 24
 0164
                    WRITE (3,48) T
 0165
                 48 FORMAT(1H , T*', F8.1)
 0166
 0167
                 24 DD 583 J=1, JOBS
                    DO 580 I=1, MACH
 0168
 0169
                    M=MM(J,I)
                    IF(LA(LV,M,J).EQ.O) GO TO 585
 0170
                    JCT(J,I)=LA(LV,M,J)
 0171
 0172
                    GD TO 580
 0173
                585 JCT(J, I)=JCT(J, I-1)+IT(J, I)
                580 CONTINUE
 0174
                583 CONTINUE
 0175
 0176
                    CALL SMLILB(LV)
                    GO TO 22
 0177
                400 WRITE (3,509) ISTMIN
 0178
                509 FORMAT(1H0,10X, DPTIMAL SCHEDULE TIME = 1,16)
 0179
                    WRITE (3,73) NNODES
 0180
                    WRITE (3,74) NCNFLT
0181
                    WRITE (3,78) NBKTRK
 0182
 0183
                    CALL TIME (NT2)
                    COTIME=(NT2-NT1)/100.
 0184
                    WRITE(3,980) COTIME
0185
 0186
                    IF(ICARD. FQ. 0) GO TO 32
                    WRITE(2,902) NNODES, NCNFLT, NBKTRK, COTIME, ISTMIN
, 0187
                 78 FORMAT(1HO, 10X, NUMBER OF BACKTRACKS = 1,112)
 0188
                 73 FORMAT(1HO, 10X, * NUMBER OF NODES EXPLORED =*, [12]
. 0189
```

100 STOP

END

0193

0194

100 . . 147

RANDNO

FUNCTION RANDHOLLY)
IY=IY*65627
IF(IY)5,6,6
5 IY=IY+2147483647+1
6 RANDNO=IY*.4656613E-9
RETURN
END

END

0018

```
0001
                   SUBROUTINE SMALLT(T, LV)
            C
            C.
            C
                   THIS SUBROUTINE FINDS THE SMALLEST NUMBER IN THE SCHE-
            C
                   DULING TABLE AT LEVEL 1 IN THE BEGINNING. EVERYTIME.
            C
                   IT UPDATES THE VALUE OF T TO THE NEXT HIGHER VALUE IN
            C
                   THE SCHEDULING TABLE AT A LEVEL LV.
            C
            C
                   COMMON IT (15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
                   COMMON INP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0003
                   COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
                   ISWTCH=0
0005
                   DO 20 M=1, MACH
0006
                   DO 20 J=1, JOBS
0007
                   IF(LA(LV,M,J).LE.T) GO TO 20
0008
                   ISWTCH= ISWTCH+1
0009
                   IF(ISWTCH.EQ.1) TS=LA(LV,M,J)
0010
                10 IF(LA(LV,M,J).LT.TS) TS=LA(LV,M,J)
0011
0012
                20 CONTINUE
                   T=TS
0013
                   IF(IPRINT.EQ.O) GO TO 25
0014
                   WRITE (3,502) T
0015
               502 FORMAT(1H , T , F8.1)
0016
                25 RETURN
0017
```

SMALLT

```
0001
                    SUBROUTINE CONFLT (T,K,LV,NNODES,NCNFLT,*)
             C
             C
             C
                    THIS SUBROUTINE CHECKS FOR CONFLICT. IF A CONFLICT
             C
                    EXISTS, THE LOWER BOUNDS FOR THE NODES IN THE CONFLICT
             C
                    SET ARE COMPUTED USING ONE OF THE LOWER BOUNDS.
             C
             C
                    COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
 0002
                   COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
 0003
                    COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
 0004
                   NLV=N(LV)
 0005
                   L=0
0006
             C
                   CHECKING FOR CONFLICT USING BEENHAKKERS FORMULA.
             C
                   DD 40 KL=1.NLV
0007
                    J2=JJ(LV,KL)
0008
                    I2=IOP(LV,J2)
0009
                    M2 = MM(J2, I2)
 0010
                    IF(LA(LV, M2, J2). EQ.T) GO TO 39
 0011
                    IF((T+IT(J2, I2)).LE.JCT(J2, I2)) GO TO 40
0012
                 39 L=L+1
 0013
                40 CONTINUE
 0014
                    IF(L.LE.1) GO TO 35€ Reddy
 0015
             C
                    IF CONFLICT EXISTS, ONE OF THE BOUND SUBROUTINE IS
             C
                    CALLED TO COMPUTE THE LOWER BOUNDS FOR THE NODES IN
             C
             C
                    THE CONFLICT SET AT A LEVEL.
             C
                    GD TD(91,92,93,94,95), IB
0016
                 91 CALL BOUNDI(T,K,LV)
 0017
                    GD TD 96
 0018
                 92 CALL BOUND2(T,K,LV)
 0019
                    GO TO 96
 0020
                 93 CALL BOUND3 (T,K,LV)
 0021
                    GO TO 96
0022
                 94 CALL BOUND4(T,K,LV)
 0023
                    GD TO 96
 0024
                 95 CALL BOUNDS (T,K,LV)
 0025
                 96 NILB(LV)=ILB(LV,1)
 0026
             C
                    DETERMINE THE NODE WITH MINIMUM LOWER BOUND. IF A TIE
             C
                    EXISTS, IT IS BROKEN USING THE LEFT HAND RULE.
             C
             C
                    NNODES=NNODES+N(LV)
 0027
                    JACTIV(LV)=JJ(LV.1)
 0028
                    DO 10 NL=2, NLV
 0029
                    IF(NILB(LV).LE.ILB(LV,NL)) GO TO 10
 0030
                    NILB(LV)=ILB(LV,NL)
 0031
                    JACTIV(LV)=JJ(LV,NL)
 0032
                 10 CONTINUE
 0033
                    IF(NILB(LV)-ISTMIN)21,22,22
 0034
                 21 LV=LV+1
 0035
                    NCNFLT=NCNFL[+1
 0036
                    DO 20 M=1, MACH
 0037
```

```
0038
                   DO 20 J=1, JOBS
0039
                20 LA(LV,M,J)=LA(LV-1,M,J)
0040
                   DO 30 J=1, JOBS
0041
                30 IOP(LV,J)=IOP(LV-1,J)
                   IA=IOP(LV, JACTIV(LV-1))
0042
0043
                   L=N(LV-1)
0044
                   DO 15 NL=1.L
                   IF(JJ(LV-1,NL).EQ.JACTIV(LV-1)) GO TO 15
0045
0046
                   J1=JJ(LV-1,NL)
            C
            C
                   UPDATE THE COMPLETION TIME MATRIX IN FAVOR OF THE NODE
            C
                   I1=IOP(LV.J1)
0047
                   JCT(J1, I1)=JCT(JACTIV(LV-1), IA)+IT(J1, I1)
0048
                   M=MM(J1,I1)
0049
                   LA(LV,M,J1)=JCT(J1,I1)
0050
                   IK=I1+1
0051
                   IF(IK.GT. MACH) GO TO 15
0052
                   DO 14 IC=IK, MACH
0053
                14 JCT(J1, IC) = JCT(J1, IC-1) + IT(J1, IC)
0054
                15 CONTINUE
0055
                   IF(IPRINT.EQ.O) GO TO 35
0056
                   WRITE (3,83)
0057
                                            *COMPLETION TIME MATRIX**)
                83 FORMAT(1HO, 10X,
0058
                   DO 16 J=1, JOBS
0059
                16 WRITE (3,4) (JCT(J,I), I=1, MACH)
0060
                 4 FORMAT(1H ,10X,12I4)
0061
                   GO TO 35
0062
                22 NCNFLT=NCNFLT+1
0063
                   RETURN 1
0064
              -35 RETURN
0065
0066
                   END
```

```
0001
                   SUBROUTINE BOUND1 (T,K,LV)
             C
             C
            C
                   THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
             C
                   COMPOSITE-BASED BOUND LB I. THE LOWER BOUND FOR A NODE
             C
                   IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
             C
                   LB III (BOUND 3) ETHE MACHINE-BASED BOUND LBV (BOUND 5)
             C
             C
0002
                   COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0003
                   COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
                   COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
0005
                   DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10)
                   IF(IPRINT.EQ.O) GO TO 60
0006
0007
                   WRITE (3,86)
                86 FURMAT(1HO, 10X, ILB
0008
0009
                60 NLV=N(LV)
                   DO 20 N1=1, NLV
0010
                   J1=JJ(LV, N1)
0011
0012
                   Il=IOP(LV,J1)
0013
                   M1=MM(J1,I1)
                   DO 11 J=1, JOBS
0014
                11 DIF(J)=0.
0015
                   DO 10 N2=1, NLV
0016
                   J2=JJ(LV,N2)
0017
                   12=10P(LV, J2)
0018
                 IF(N2.EQ.N1) DIF(J2)=0
0019
                   IF(N2.EQ.N1) GO TO 10
0020
                   DIF(J2)=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
0021
                10 CONTINUE
0022
                   JGRT=JCT(J1, I1)
0023
                   DO 9 J=1, JOBS
0024
                   IF(J1.EQ.J) GO TO 9
0025
                   DO 8 I=1, MACH
0026
                   KC=MM(J,I)
0027
                   IF (KC. NE. K) GO TO 8
0028
                   IF(LA(LV,K,J).NE.O.AND.LA(LV,K,J).LT.T) GO TO 8
0029
                 6 JGRT=JGRT+IT(J,I)
0030
                 8 CONTINUE
0031
                 9 CONTINUE
0032
                   GREAT(K)=JGRT
0033
                   DO 40 L=1, MACH
0034
                   LL=0
0035
                   IF(K.EQ.L) GO TO 40
0036
0037
                   DO 39 J=1, JOBS.
                   DO 38 I=1, MACH
0038
0039
                   KE=MM(J,I)
0040
                   IF(KE.NE.L) GO TO 38
                   IP=I-1
0041
                   IF(IP.EQ. 0) GO TO 35
0042
                   IF(JCT(J, I).LT.T) GO TO 38
0043
0044
                   LL=LL+1
                   GRAT(LL)=JCT(J, IP)+DIF(J)
0045
                   GD TO 38
0046
                35 JGPP=JCT(J,I)
0047
```

IF(JGPP.LT.T) GO TO 38

```
FORTRAN IV G LEVEL 1, MOD 4
```

```
DATE = 69336
```

```
0049
                   LL=LL+1
0050
                   GRAT(LL)=0.
0051
                38 CONTINUE
0052
                39 CONTINUE
0053
                    IF(LL-1)26,28,29
0054
                29 JGP=GRAT(1)
0055
                   DO 27 LR=2.LL
0056
                    IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
0057
                27 CONTINUE
                   JGPR=JGP
0058
                   GO TO 7
0059
                28 JGPR=GRAT(1)
0060
                 7 DO 50 J=1, JOBS
0061
0062
                   DO 48 I=1, MACH
0063
                   KG=MM(J,I)
                   IF(KG.NE.L) GO TO 48
0064
                   IF(LA(LV,L,J).NE.O.AND.LA(LV,L,J).LT.T) GO TO 48
0065
                 5 JGPR=JGPR+IT(J,I)
0066
0067
                48 CONTINUE
                50 CONTINUE
0068
0069
                   GREAT(L)=JGPR
                   GO TO 40
0070
                26 NT=LA(LV, L, 1)
0071
                   DO 30 J=2, JOBS
0072
                   IF(LA(LV,L,J).GT.NT) NT=LA(LV,L,J)
0073
                30 CONTINUE
0074
                   GREAT(L)=NT
0075
                40 CONTINUE
0076
                    IF(IPRINT.EQ.O) GO TO 12
0077
                   WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
0078
               900 FORMAT(1H .4F8.1)
0079
                12 ILB(LV,NI)=GREAT(1)
0080
                   DO 15 I=2, MACH
0081
                   IF(ILB(LV,N1).GE.GREAT(I)) GO TO 15
0082
                   ILB(LV, N1) = GREAT(I)
0083
                15 CONTINUE
0084
                   IF(IPRINT.EQ.O) GO TO 65
0085
                   WRITE (3,59) ILB(LV,N1),N1
0086
                59 FORMAT(1HO, 10X, 2I5)
0087
                65 JXP1=ILB(LV,NI)
0088
                   DO 80 MI=1.NLV
0089
0090
                BO GREAT (MI) = 0.
                    J1=JJ(LV, N1)
0091
                    I1 = IOP(LV, J1)
0092
                   DO 70 N2=1,NLV
0093
                    J2=JJ(LV, N2)
0094
                    12=10P(LV, J2) .
0095
                    IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH)
0096
                    IF(N2.EQ.N1) GO TO 70
0097
                   KIF=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
0098
                   GREAT(N2) = JCT(J2 + MACH) + KIF
0099
                70 CONTINUE
0100
                    ILB(LV, N1) = GREAT(1)
0101
                    DO 75 I=2, NLV
0102
                    IF(ILB(LV,N1).GE.GREAT(I)) GO TO 75
0103
                    ILB(LV, N1) = GREAT(I)
0104
                75 CONTINUE
0105
```

IF (IPRINT. FQ. 0) GO TO 66

FORTRAN	IV	G	LEVEL	1, MOD 4 BOUND	1
0107				WRITE (3,59) ILB(LV,N1),N1	1
0108			66	JXP2=ILB(LV,N1)	
0109				IF(JXP2-JXP1161,61,62	
0110			61	ILB(LV,N1)=JXP1	
0111				IF(IPRINT.EQ.O) GO TO 20	
0112				WRITE (3,59) ILB(LV,N1),N1	1
0113				GO TO 20	
0114			62	ILB(LV,N1)=JXP2	

20 CONTINUE RETURN

END

, 0115

0116 0117

0118 0119 IF(IPRINT.EQ.O) GO TO 20

WRITE (3,59) ILB(LV,N1),N1

DATE = 69336

14

BOUND2

```
0001
                     SUBROUTINE BOUNDS (T.K.LV)
              C
              C
              C
                     THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
              C
                     COMPOSITE-BASED BOUND LB II. THE LOWER BOUND FOR A
              C
                     NODE IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
              C
                     LB IVI (BOUND 416THE MACHINE-BASED BOUND LBV (BOUND 5)
              C
 0002
                     COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
 0003
                     COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
 0004
                     COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
                     DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10), IZ(10), SMALL(10),
 0005
                    1GRETE(10)
 0006
                     IF(IPRINT-EQ.O) GO TO 999
 0007
                     WRITE (3,86)
 8000
                 86 FORMAT(1HO, 10X, ILB
                                               Nº }
 0009
                999 NLV=N(LV)
                     DD 20 N1=1, NLV
 0010
 0011
                     J1=JJ(LV,N1)
 0012
                     Il=IOP(LV, J1)
                     DO 10 N2=1.NLV
 0013
 0014
                     J2=JJ(LV.N2)
 0015
                     12=10P(LV, J2)
 0016
                     IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH-1)
                     IF(N2.EQ.N1) GO TO 10
 0017
                     KIF = JCT(J1, I1) + IT(J2, I2) - JCT(J2, I2)
 0018
 0019
                     GREAT (N2) = JCT (J2, MACH-1)+KIF
                 10 CONTINUE
 0020
 0021
                     N2=NLV
 0022
                     DO 30 J=1, JOBS
                     NN=1
- 0023
                  9 IF(JJ(LV, NN).EQ.J) GO TO 30
 0024
 0025
                     NN=NN+1
                     IF(NN.GT.NLV) GO TO 40
 0026
                     GO TO 9
 0027
                 40 N2=N2+1
 0028
* 0029
                     GREAT (N2) = JCT(J, MACH-1)
                     JJ(LV,N2)=J
 0030
                 30 CONTINUE
 0031
 0032
                     DO 600 KX=1, MACH
                     L=0
 0033
                     DO 502 NN=1,N2
 0034
                     J3=JJ(LV, NN)
 0035
 0036
                     M3 = MM(J3, MACH).
                     IF(M3.NE.KX) GO TO 502
 0037
                    L=L+1
 0038
 0039
                     GRAT(L)=GREAT(NN)
                     IZ(L)=NN
 0040
 0041
                     MR=NN
                502 CONTINUE
 0042
 0043
                     IF(L.EQ.0) GO TO 600
                     IF (L. GT.1) GO TO 510
 0044
                     LL=0
0045
 0046
                     DO 210 IK=1,N2
                     J4=JJ(LV, IK)
 0047
```

```
FORTRAN IV G LEVEL 1, MOD 4
```

```
DATE = 69336
```

```
0048
                    IF(MM(J4, MACH-1).NE.KX) GO TO 210
 0049
                    LL=LL+1
0050
                    IF(LL.EQ.1) JGRT=GREAT(IK)
 0051
                210 CONTINUE
 0052
                    IF(LL.EQ. 0) GD TO 580
 0053
                    J5=JJ(LV, MR)
 0054
                    IF(JGRT.GE.GREAT(MR)) GO TO 220
 0055
                    GRT(MR)=GREAT(MR)+IT(J5, MACH)
× 0056
                    GO TO 600
                220 GRT(MR)=JGRT+IT(J5, MACH)
 0057
 0058
                    GD TD 600
 0059
                510 DD 700 M=1.L
                    SMALL(M) = GRAT(1)
 0060
 0061
                    MN = IZ(1)
 0062
                    KP=1
 0063
                    DO 690 KS=2,L
                    IF(GRAT(KS).GE.SMALL(M)) GO TO 690
 0064
 0065
                    SMALL (M)=GRAT (KS)
 0066
                    MN=IZ(KS)
 0067
                    KP=KS
                690 CONTINUE
 0068
 0069
                    GRAT (KP) = 9999
                    J6=JJ(LV.MN)
 0070
                    1F(M.GT.1) GO TO 691
 0071
                    IF(M.EQ.1) GRT(MN)=SMALL(M)+IT(J6,MACH)
 0072
 0073
                    IF(M.EQ.1) GRETE(M)=SMALL(M)+IT(J6,MACH)
 0074
                    GO TO 700
                691 IF(SMALL(M).LE.GRETE(M-1)) GRT(MN)=GRETE(M-1)+IT(J6,MACH)
 0075
 0076
                    IF(SMALL(M).Le.GRETE(M-1)) GRETE(M)=GRETE(M-1)+IT(J6,MACH)
                    IF(SMALL(M).GT.GRETE(M-1)) GRT(MN)=SMALL(M)+IT(J6, MACH)
 0077
                    IF(SMALL(M).GT.GRETE(M-1)) GRETE(M)=SMALL(M)+IT(J6.MACH)
 0078
 0079
                700 CONTINUE
                    GO TO 600
 0080
                580 J7=JJ(LV, MR)
-0081
                    GRT(MR)=GREAT(MR)+IT(J7, MACH)
 0082
                600 CONTINUE
 0083
 0084
                    ILB(LV,N1)=GRT(1)
                    DO 15 IX=2.N2
 0085
                    IF(ILB(LV, N1).GE.GRT(IX)) GO TO 15
 0086
                    ILB(LV, N1) = GRT(IX)
* 0087
                 15 CONTINUE
 0088
 0089
                    IF(IPRINT.EQ.O) GO TO 65
                    WRITE (3,59) ILB(LV,N1),NI
 0090
                 59 FORMAT(1H0,10X,2I5)
 0091
                 65 JXP1=ILB(LV,N1)
 0092
 0093
                 21 DO 47 L=1,10
                    GREAT(L)=0.
 0094
                    GRT(L)=0.
 0095
 0096
                 47 GRAT(L)=0.
                    NLV=N(LV)
- 0097
                    J1=JJ(LV,N1)
 0098
                    II=IOP(LV,JI)
 0099
 0100
                    MI=MM(JI,II)
                    DO 11 J=1, JOBS
 0101
                 11 DIF(J)=0.
 0102
0103
                    DO 41 N2=1.NLV
# 0104
                    J2=JJ(LV, N2)
```

12=10P(LV, J2)

```
FORTRAN IV G LEVEL 1, MOD 4
```

```
DATE = 69336
```

```
0106
                     IF(N2 \cdot EQ \cdot N1) DIF(J2)=0
 0107
                     IF(N2.EQ.N1) GO TO 41
. 0108
                     DIF(J2)=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
 0109
                  41 CONTINUE
 0110
                     JGRT=JCT(J1, I1)
 0111
                     DO 42 J=1.JOBS
 0112
                     IF(J1.EQ.J) GO TO 42
 0113
                     DO 8 I=1, MACH
× 0114
                     KC = MM(J, I)
 0115
                     IF(KC.NE.K) GO TO 8
 0116
                     IF(LA(LV,K,J).NE.O.AND.LA(LV,K,J).LT.T) GO TO 8
 0117
                   6 JGRT=JGRT+[T(J,I)
 0118
                  8 CONTINUE
 0119
                  42 CONTINUE
 0120
                     GREAT (K)=JGRT
 0121
                     DD 43 L=1.MACH
                     LL=0
 0122
                     IF(K.EQ.L) GO TO 43
 0123
                     DO 39 J=1, JOBS
 0124
 0125
                     DO 38 I=1, MACH
                     KE=MM(J.I)
 0126
                     IF(KE.NE.L) GO TO 38
 0127
 0128
                     IP=I-1
                     IF(IP.EQ.O) GO TO 35
 0129
                     IF(JCT(J,I).LT.T) GO TO 38
 0130
 0131
                     LL=LL+1
                     GRAT(LL)=JCT(J, IP)+DIF(J)
 0132
                     GO TO 38
 0133
 0134
                  35 JGPP=JCT(J,I)
                     IF(JGPP.LT.T) GO TO 38
 0135
                     LL=LL+1
 0136
                     GRAT(LL)=0.
 0137
                  38 CONTINUE
 0138
                  39 CONTINUE
 0139
                     IF(LL-1)26,28,29
 0140
 0141
                  29 JGP=GRAT(1)
                     DO 27 LR=2,LL
 0142
                     IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
 0143
                  27 CONTINUE
 0144
                     JGPR=JGP
 0145
                     GO TO 7
 0146
                  28 JGPR=GRAT(1)
 0147
                   7 DO 44 J=1, JOBS
 0148
                     DD 48 I=1, MACH
 0149
                     KG=MM(J.I)
 0150
                     IF(KG.NE.L) GO TO 48
* 0151
                     IF(LA(LV,L,J).NE.O.AND.LA(LV,L,J).LT.T) GO TO 48
 0152
                   5 JGPR=JGPR+IT(J,I)
 0153
                  48 CONTINUE
 0154
                - 44 CONTINUE
 0155
                     GREAT (L)=JGPR
 0156
                     GO TO 43
 0157
 0158
                  26 NT=LA(LV,L,1)
 0159
                     DO 45 J=2, JOBS
                     IF(LA(LV, L, J), GT, NT) NT=LA(LV, L, J)
 0160
                  45 CONTINUE
 0161
                     GREAT (L)=NT
 0162
                  43 CONTINUE
 0163
```

	0164		IF(IPRINT.EQ.O) GO TO 52
	0165		WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
	0166	900	FORMAT(1H ,4FB.1)
	0167	52	ILB(LV,N1)=GREAT(1)
	0168		DO 46 1=2, MACH
	0169		IF(ILB(LV, N1).GE.GREAT(I)) GO TO 46
	0170		ILB(LV,NI)=GREAT(I)
	0171	46	CONTINUE
	0172		IF(IPRINT.EQ.O) GO TO 66
	0173		WRITE (3,59) ILE(LV,N1),N1
	0174	66	JXP2=ILB(LV,N1)
	0175		IF(JXP2-JXP1)61,61,62
	0176	61	[LB(LV,N1)=JXP1
	0177		IF(IPRINT.EQ.O) GO TO 20
	0178		WRITE (3,59) ILB(LV,N1),N1
	0179		GD TO 20
	0180	62	ILB(LV,N1)=JXP2
	0181		IF(IPRINT.EQ.O) GO TO 20
	0182		WRITE (3,59) ILB(LV,N1),N1
	0183	20	CONTINUE
£1	0184		RETURN
	0185		END

SUBROUTINE BOUNDS (T,K,LV)

```
C
                  C
                 THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
           C
                 JOB-BASED BOUND III. SUGGESTED BY CONWAY ET AL.
                C
0002
                 COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0003
                 COMMON : IDP(90,15), JJ(90,15), ILB(90,15), JUBS, ISTMIN
0004
                 COMMON N(90), NILE(90), JACTIV(90), IPRINT, IB
0005
                 DIMENSION GREAT(10)
0006
                 IF(IPRINT.EQ.O) GO TO 60
0007
                 WRITE (3.86)
0008
              86 FORMAT(1H ,10X,"
                                        Nº)
                                   ILB
0009
              60 NLV=N(LV)
0010
                 DD 20 N1=1,NLV
0011
                 J1=JJ(LV,N1)
0012
                 II=IOP(LV,J1)
0013
                 DO 10 N2=1,NLV
0014
                 J2=JJ(LV, N2)
0015
                 12=10P(LV, J2)
0016
                 IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH)
0017
                 IF(N2.EQ.N1) GO TO 10
0018
                 DIF=JCT(J1, [1)+IT(J2, [2)-JCT(J2, [2)
0019
                 GREAT (N2) = JCT (J2, MACH) + DIF
              10 CONTINUE
0020
                 ILB(LV,N1)=GREAT(1)
0021
                 DO 15 I=2.NLV
0022
                 IF(ILB(LV, N1).GE.GREAT(I)) GO TO 15
0023
0024
                 ILB(LV, N1)=GREAT(I)
0025
              15 CONTINUE
                 IF(IPRINT.EQ.O) GO TO 20
0026
                 WRITE (3,50) ILB(LV,N1),N1
0027
              50 FORMAT(1H ,10X,215)
0028
              20 CONTINUE
0029
                 RETURN
0030
0031
                 END
```

```
0001
                   SUBRDUTINE BOUND4
             C
             C
                   THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
             C
                   JOB-BASED BOUND IV , SUGGESTED BY'BROOKS AND WHITE'
             C
0002
                   COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0003
                   COMMON IOP(90,15), JJ(90,15), ILB(90,15), JUBS, ISTMIN
0004
                   COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0005
                   DIMENSION GREAT(10), GRAT(10), I(10), GRT(10), SMALL(10), GRETE(10)
                   IF(IPRINT.EQ.O) GO TO 999
0006
0007
                   WRITE (3.86)
8000
                86 FORMAT(1H0,10X,
                                       ILB
                                              N.)
               999 NLV=N(LV)
0009
0010
                   DO 20 N1=1, NLV
0011
                   J1=JJ(LV,N1)
0012
                   I1=IOP(LV,J1)
                   DO 10 N2=1,NLV
0013
                   J2=JJ(LV, N2)
0014
                   I2=IOP(LV,J2)
0015
                   IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH-1)
0016
0017
                   IF(N2.EQ.N1) GO TO 10
0018
                   DIF=JCT(J1, I1)+IT(J2, I2)-JCT(J2, I2)
                   GREAT (N2) = JCT (J2, MACH-1)+DIF
0019
                10 CONTINUE
0020
0021
                   N2=NLV
                   DO 30 J=1,JOBS
0022
0023
                   NN=1
                 9 IF(JJ(LV, NN) . EQ. J) GO TO 30
0024
0025
                   NN = NN + I
                   IF(NN.GT.NLV) GO TO 40
0026
                   GO TO 9
0027
                40 N2=N2+1
0028
                   GREAT (N2) = JCT (J, MACH-1)
0029
                   JJ(LV,N2)=J
0030
                30 CONTINUE
0031
                   DD 600 KX=1,MACH
0032
                   L=0
0033
                   DO 502 NN=1,N2
0034
                   J3=JJ(LV, NN)
0035
                   M3 = MM(J3, MACH)
0036
                   IF(M3.NE.KX) GO TO 502
0037
                   L=L+1
0038
                   GRAT(L)=GREAT(NN)
0039
                   I(L)=NN
0040
                   MR=NN
0041
               502 CONTINUE
0042
                   IF(L.EQ.0) GO TO 600
0043
                   IF(L.GT.1) GO TO 510
0044
0045
                   LL=0
                   DO 210 IK=1,N2
0046
0047
                   J4=JJ(LV, IK)
                   IF(MM(J4, MACH-1).NE.KX) GO TO 210
0048
0049
                   LL=LL+1
                   IF(LL.FQ.1) JGRT=GREAT(IK)
0050
               210 CONTINUE
0051
                   IF(LL.EQ. 0) GO TO 580
0052
```

```
0053
                   J5=JJ(LV.MR)
0054
                   IF(JGRT.GE.GREAT(MR)) GO TO 220
0055
                   GRT(MR)=GREAT(MR)+IT(J5, MACH)
0056
                   GO TO 600
0057
               220 GRT(MR)=JGRT+IT(J5, MACH)
0058
                   GO TO 600
0059
               510 DO 700 M=1.L
0060
                   SMALL(M)=GRAT(1)
0061
                   MN=I(1)
0062
                   KP=1
                   DU 690 KS=2,L
0063
                   IF(GRAT(KS).GE.SMALL(M)) GO TO 690
0064
                   SMALL (M) = GRAT (KS)
0065
                   MN=I(KS)
0066
0067
                   KP=KS
8800
               690 CONTINUE
0069
                   GRAT (KP) = 9999
0070
                   J6=JJ(LV. MN)
0071
                   IF(M.GT.1) GO TO 691
0072
                   IF(M.EQ.1) GRT(MN)=SMALL(M)+IT(J6, MACH)
0073
                   IF(M.EQ.1) GRETE(M)=SMALL(M)+IT(J6,MACH)
0074
                   GO TO 700
0075
               691 IF(SMALL(M).LE.GRETE(M-1)) GRT(MN)=GRETE(M-1)+IT(J6,MACH)
                   IF(SMALL(M).LE.GRETE(M-1)) GRETE(M)=GRETE(M-1)+IT(J6,MACH)
0076
                   IF(SMALL(M).GT.GRETE(M-1)) GRT(MN)=SMALL(M)+IT(J6,MACH)
0077
0078
                   IF(SMALL(M).GT.GRETE(M-1)) GRETE(M)=SMALL(M)+IT(J6,MACH)
               700 CONTINUE
0079
                   GO TO 600
0080
0081
               580 J7=JJ(LV, MR)
0082
                   GRT(MR)=GREAT(MR)+IT(J7, MACH)
0083
              600 CONTINUE
                   ILB(LV, N1) = GRT(1)
0084
                   DO 15 IX=2,N2
0085
                   IF(ILB(LV,N1).GE.GRT(IX)) GO TO 15
0086
0087
                   ILB(LV,NI) = GRT(IX)
0088
                15 CONTINUE
                   IF(IPRINT.EQ.O) GO TO 20
0089
                   WRITE (3,50) ILB(LV,N1),N1
0090
                50 FORMAT(1H0,10X,215)
0091
0092
                20 CONTINUE
0093
                   RETURN
                   END
0094
```

```
0001
                   SUBROUTINE BOUNDS (T.K.LV)
            C
                      C
                   THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
            C
                  MACHINE-BASED BOUND LB V, SUGGESTED BY CONWAY ET AL.
            C.
            C
                  CDMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
0003
                  COMMON IDP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0004
                  COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
                  DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10)
0005
                   IF(IPRINT. EQ. 0) GO TO 60
0006
0007
                  WRITE (3,86)
                                            N. 1
0008
               86 FORMAT(1H0,10X,*
                                     ILB
0009
               60 NLV=N(LV)
0010
                  DD 20 N1=1.NLV
0011
                  J1=JJ(LV, 11)
                  II=IOP(LV, J1)
0012
0013
                  M1=MM(J1,I1)
0014
                  DO 11 J=1, JOBS
0015
               11 DIF(J)=0.
                  DO 10 N2=1, NLV
0016
                  J2=JJ(LV, N2)
0017
                  12=10P(LV, J2)
0018
                  IF(N2.EQ.N1) DIF(J2)=0
0019
                  IF(N2.EQ.N1) GO TO 10
0020
0021
                  DIF(J2)=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
0022
               10 CONTINUE
                  JGRT=JCT(J1, I1)
0023
                  DO 9 J=1, JOBS
0024
                  IF(J1.EQ.J) GO TO 9
0025
                  DO 8 I=1, MACH
0026
                  KC=MM(J,I)
0027
                  IF(KC.NE.K) GO TO 8
0028
                  IF(LA(LV,K,J).NE.O.AND.LA(LV,K,J).LT.T) GO TO 8
0029
                6 JGRT=JGRT+IT(J,I)
0030
                8 CONTINUE
0031
                9 CONTINUE
0032
                  GREAT (K)=JGRT
0033
                  DO 40 L=1, MACH
0034
                  LL=0
0035
                  IF(K.EQ.L) GO TO 40
0036
                  DO 39 J=1, JOBS
0037
                  DO 38 I=1, MACH
0038
                  KE=MM(J.I)
0039
                  IF(KE.NE.L) GO TO 38
0040
                  IP=I-1
0041
                   IF(IP.EQ. 0) GO TO 35
0042
                  IF(JCT(J, [].LT.T) GD TO 38
0043
0044
                  LL=LL+1
                  GRAT(LL)=JCT(J, IP)+DIF(J)
0045
0046
                  GO TO 38
               35 JGPP=JCT(J,I)
0047
                  IF(JGPP.LT.T) GO TO 38
0048
                  LL=LL+1
0049
                  GRAT(LL)=0.
0050
               38 CONTINUE
0051
               39 CONTINUE
0052
```

```
0053
                   IF(LL-1)26,28,29
0054
                29 JGP=GRAT(1)
0055
                   DO 27 LR=2.LL
                   IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
0056
0057
                27 CONTINUE
0058
                   JGPR=JGP
                   GD TD 7
0059
0060
                28 JGPR=GRAT(1)
0061
                 7 DO 50 J=1, JOBS
                   DO 48 I=1, MACH
0062
                   KG=MM(J.I)
0063
                   IF(KG.NE.L) GO TO 48
0064
                   IF(LA(LV,L,J).NE.O.AND.LA(LV,L,J).LT.T) GO TO 48
0065
                 5 JGPR=JGPR+IT(J,I)
0066
                48 CONTINUE
0067
0068
                50 CONTINUE
                   GREAT(L)=JGPR
0069
0070
                   GO TO 40
0071
                26 NT=LA(LV,L,1)
                   DO 30 J=2, JOBS
0072
                   IF(LA(LV,L,J).GT.NT) NT=LA(LV,L,J)
0073
0074
                30 CONTINUE
                   GREAT(L)=NT
0075
                40 CONTINUE
0076
                   IF(IPRINT.EQ.O) GO TO 12
0077
0078
                   WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
               900 FORMAT(1H , 4F8.1)
0079
                12 ILB(LV,N1)=GREAT(1)
0080
                   DO 15 I=2, MACH
0081
                   IF(ILB(LV, N1).GE.GREAT(I)) GO TO 15
0082
                   ILB(LV.N1)=GREAT(I)
0083
                15 CONTINUE
0084
                   IF(IPRINT.EQ.O) GO TO 20
0085
                   WRITE (3.59) ILB(LV, N1), N1
0086
                59 FORMAT(1H0, 10X, 215)
0087
                20 CONTINUE
0088
                   RETURN
0089
                   END
0090
```

BOUND5

```
0001
                     SUBROUTINE SMLILB(LV)
 0002
                     COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
 0003
                     COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
                    COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
 0004
 0005
                     NLV=N(LV)
 0006
                120 DO 300 NL=1,NLV
 0007
                     IF(JJ(LV, NL).NE.JACTIV(LV)) GO TO 300
 0008
                    NK = NL
0009
                300 CONTINUE
 0010
                    ISWTCH=0
 0011
                    NLV=N(LV)
 0012
                    DO 10 NL=1, NLV
 0013
                    IF(JJ(LV, NL). EQ. JACTIV(LV)) GO TO 10
 0C14
                    IF(ISTMIN.LE.ILB(LV, NL)) GO TO 10
 0015
                    IF(ILB(LV, NL)-NILB(LV))10,8,9
                  8 IF(NL.LT.NK) GO TO 10
 0016
 0017
                  9 ISWTCH=ISWTCH+1
                     IF(ISWTCH-1)11,11,12
 0018
                 11 NT=ILB(LV,NL)
 0019
 0020
                    NTL=NL
 0021
                    GO TO 10
 0022
                 12 IF(ILB(LV, NL).GE.NT) GO TO 10
 0023
                    NT=ILB(LV, NL)
 0024
                    NTL=NL
 0025
                 10 CONTINUE
 0026
                    NILB(LV)=NT
                    JACTIV(LV)=JJ(LV,NTL)
 0027
                 21 LV=LV+1
 0028
                    DO 20 M=1, MACH
 0029
                    DO 20 J=1, JOBS
 0030
 0031
                 20 LA(LV,M,J)=LA(LV-1,M,J)
 0032
                    DO 30 J=1, JOBS
 0033
                 30 IOP(LV,J) = IOP(LV-1,J)
 0034
                    IA=IOP(LV, JACTIV(LV-1))
 0035
                    L=N(LV-1)
                    K=MM(JACTIV(LV-1), IA)
 0036
                    JCT(JACTIV(LV-1), IA)=LA(LV-1, K, JACTIV(LV-1))
 0037
 0038
                    DO 15 NL=1.L
                    IF(JJ(LV-1, NL). EQ. JACTIV(LV-1)) GO TO 15
 0039
                    J1=JJ(LV-1,NL)
 0040
                    II=IOP(LV,JI)
 0041
                    JCT(J1, I1) = JCT(JACTIV(LV-1), IA) + IT(J1, I1)
 0042
                    M=MM(J1,I1)
 0043
 0044
                    LA(LV,M,J1)=JCT(J1,I1)
                    IK=I1+1
 0045
                    IF(IK.GT.MACH) GO TO 15
 0046
                    DD 14 I=IK, MACH
 0047
 0048
                 14 JCT(J1, I) = JCT(J1, I-1) + IT(J1, I)
 0049
                 15 CONTINUE
                    IF(IPRINT.EQ.O) GO TO 35
 0050
 0051
                    WRITE (3.88)
                                              *COMPLETION TIME MATRIX**)
 0052
                 88 FORMAT(1HO, 10X,
                    DD 13 J=1,JOBS
 0053
                 13 WRITE (3,4) (JCT(J,I), I=1, MACH)
 0054
                  4 FORMAT(1H ,15X,1214)
 0055
                 35 RETURN
 0056
                    END
 0057
```

ILLEGIBLE

THE FOLLOWING DOCUMENT (S) IS ILLEGIBLE DUE TO THE PRINTING ON THE ORIGINAL BEING CUT OFF

ILLEGIBLE

PRO	BLEM	NUMB	FR =	1	
	ESSIN			ATRI	Y.
	20	25	19	27	^
21					
1	20	26	24	5	
22	24	12	4	16	
25	30	22	16	15	
23	10	2	12	30	
5	11	18	21	29	
5	28	16	1	3	
13	2.2	16	15	19	
MACH	INE O	RDER	ING	MATR	IX
2	3	5	1	4	
3	5	4	2	1	
3	5	4	2	1	
3	5	2	4	1	
5	3	1	2	4	
5	2	1	3	4	
3	5	4	1	2	
2	1	4	3	5	
BOU	NDING	PRO	CEDU	RE	1

SOLUTION 218 O CF CONFLICT LEVELS FOR SOLN 30 SCLUTION 217 O OF CONFLICT LEVELS FOR SOLN 26 SOLUTION 214 O OF CONFLICT LEVELS FOR SOLN 29

```
C
     *** BRANCH-AND-BOUND ALGORITHM
C
C
     *** FOR JOB-SHOP PROBLEMS ***
C
     PROGRAMMED BY
C
                 S. R. HIREMATH
C
THE BRANCH AND BOUND ALGORITHM DESCRIBED IN SECTION 2.4
С
     IS PROGRAMMED IN FORTRAN IV
C
     THIS PROGRAM CONSISTS OF MAIN PROGAM AND FIVE BOUNDING
C
     PROCEDURES AS SUBROUTINES. IN ADDISON IT ALSO CONSISTS
C
     OF THREE MORE SUBROUTINES.
C
     ****
             VARIABLES ****
C
C
    IT
                 PROCESSING TIME
C
                 MACHINE ORDERING
     MM
C
     JCT
                 COMPLETION TIME
   MACH
C
                 TOTAL NUMBER OF MACHINES OR OPERATIONS FOR
C
                 TOTAL NO. OF JOBS
     JOBS
C
                 A JOB
   LA
C
                 ENTRY IN THE SCHEDULING TABLE
C
                 OPERATION
     IOP
                 JOB IN THE CONFLICT SET
C
     JJ
C
                 NO. OF JOBS IN CONFLICT SET AT A LEVEL
     N
C
                 LOWER BOUND FOR A NODE
     ILB
C
     NILB
                 MIN. LOWER BOUND AT A LEVEL
C
     ISTMIN
                 SCHEDULE TIME
     JACTIV
C
                 ACTIVE NODE AT A LEVEL
C
C
                 GENERATING DATA (MACHINE-ORDERING AND
C
     IREAD. EQ. 0
                   PROCESSING TIME MATRICES!
C
     IREAD.NE.O READ DATA CARDS FOR BOTH MATRICES
     IF IPRINT.EQ.O PRINT DETAILS
C
C
     IF IPRINT.NE.O DO NOT PRINT DETAILS
C
     IF ICARD. EQ.O NO CARD OUTPUT DESIRED CARD OUTPUT DESIRED
C
C
                     THE LIMITS OF INTERVAL FOR PROCESS-
C
     LIMITICLIMIT2
C
                     ING TIMES
C
     MAIN PROGRAM
```

```
DATE = 69336
FORTRAN IV G LEVEL 1, MOD 4
                                          MAIN
                                                                                    14/
 0001
                    COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
 0002
                    COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
 0003
                    COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
 0004
                    DIMENSION IRAND2(50)
                    READ(1,1) MACH, JOBS, LIMIT1, LIMIT2, NPROB, NFLB, NLLB, IREAD, ISKIP,
 0005
                   11PRINT, ICARD, IX, IY, IB
 0006
                  1 FORMAT(1114,218,14)
                    DO 32 NP=1,NPROB
· 0007
 0008
                    WRITE (3,33) NP
 0009
                 33 FORMAT(1HO, 10X, PROBLEM NUMBER = 1, 13)
 0010
                    IF(IREAD.EQ.O) GO TO 600
              C
              C
                    READ PROCESSING TIME MATRIX
              C
                    DO 9 J=1, JOBS
 0011
                  9 READ(1,2) (IT(J,I),I=1,MACH)
 0012
 0013
                  2 FORMAT(1015)
 0014
                   GD TO 77
              C
              C
                    GENERATE PROCESSING TIME MATRIX
              C
 0015
                600 DD 211 M=1, MACH
                    DO 211 J=1, JOBS
 0016
                211 IT(J,M!=RANDNO(IY)*(LIMIT2-LIMIT1+1)+LIMIT1
 0017
                 77 WRITE (3,82)
 0018
                                             *PROCESSING TIME MATRIX*)
                 82 FORMAT(1H ,10X,
 0019
                    DO 11 J=1, JOBS
 0020
                 11 WRITE (3,4) (IT(J,I),I=1,MACH)
 0021
                  4 FORMAT(1H .10X,12I4)
 0022
                    IF(IREAD. EQ.O) GO TO 698
 0023
              C
              C
                    READ MACHINE-ORDERING MATRIX
              C
 0C24
                    DO 3 J=1, JOBS
                  3 READ(1,2) (MM(J,I),I=1,MACH)
 0025
                    GD TD 76
 0026
              C
                    GENERATE MACHINE ORDERING MATRIX
                698 DO 235 J=1,JOBS
 0027
 0C28
                    DO 231 M=1.MACH
                231 IRAND2(M)=M
, CO29
                    M1=MACH
 0030
 0031
                232 IRAN=RANDNO(IY)*M1+1
                    MM(J,M1)=[RAND2([RAN)+100*J
0032
                    IF (IRAN .EQ. MI) GO TO 234
 0033
 0034
                    M1=M1-1
                    IF (M1 .EQ. 0) GO TO 235
0035
                    DO 233 M2=IRAN, M1
 0036
```

233 IRAND2(M2)=IRAND2(M2+1)

234 IF (M1 .EQ. 1) GO TO 235

GO TO 232

76 DO 96 J=1, JOBS

DO 96 I=1, MACH

96 VM(J,I)=MM(J,I)-J*100

M1=M1-1 GO TO 232

235 CONTINUE

0037

0038

0039

* OC41

0042

0044

0045

```
FORTRAN IV G LEVEL 1, MOD 4
                                                           DATE = 69336
                                         MAIN
 0046
                    WRITE (3,81)
                 81 FORMAT(1H ,10X,
 0047
                                            "MACHINE ORDERING MATRIX")
 0048
                    DO 8 J=1, JOBS
 0049
                  8 WRITE (3,4) (MM(J,I),I=1,MACH)
                    WRITE (3,35) IB
 0050
0051
                 35 FORMAT(1HO, 10X, BOUNDING PROCEDURE', 13)
             C
             C
                    FORM COMPLETION TIME MATRIX
             C
0052
                    DO 10 J=1.JOBS
                    JCT(J,1)=IT(J,1)
 0053
                    DO 10 I=2, MACH
 0054
0055
                    JCT(J, I) = JCT(J, I-1) + IT(J, I)
0056
                 10 CONTINUE
                    IF(IPRINT.EQ.O) GO TO 21
0057
                    WRITE (3,83)
0058
                                           . COMPLETION TIME MATRIX')
0059
                 83 FORMAT(1H ,10X,
                    DO -13 J=1.JOBS
 0060
                 13 WRITE (3,2) (JCT(J,I),I=1,MACH)
0061
             C
             C
                    INITIALIZE
             C
                    SET UP SCHEDULING TABLE
             C
                 21 DO 40 LV=1,90
 0062
                    DO 40 I=1, MACH
 0063
                    DO 40 J=1.JOBS
0064
                 40 LA(LV, I, J)=0
 0065
                    DO 41 LV=1,90
 0066
                    DD 41 J=1, JOBS
 0067
                 41 IOP(LV, J)=1
 0068
             C
                    ENTER FIRST OPERATIONS OF EACH JOB
             C
             C
                    T=0.
 0069
                    ISWTCH=0
 0070
                    ISTMIN=99999
 0071
                    LV=1
 0072
                    NBKTRK=0
 0073
                    NNODES=0
0074
                    NCNFLT=0
 0075
                    CALL TIME (NT1)
 0076
                    DO 50 J=1, JOBS
 0077
                    M=MM(J,1)
0078
 0079
                50 LA(1,M,J)=JCT(J,1)
             C
                    FIND SMALLEST T AND NEXT HIGHER T
             C
             C
                 51 CALL SMALLT(T, LV)
0080
                    IF(IPRINT.EQ.O) GO TO 22
 0081
                    WRITE (3,84)
 0082
                                            "SCHEDULING TABLE")
                 84 FORMAT(1H ,1CX,
* 0083
                    WRITE (3,7) ((LA(LV,K,J),J=1,JOBS),K=1,MACH)
 0084
                  7 FORMAT(1H , 10X, 3014)
0085
              C
              C
                    CHECK FOR CONFLICT
              C
```

85 FORMAT(1H .10X. JOB MC LV JCT')

551 WRITE (3,85)

0086

0087

121

14/

```
IMRTRAN IV G LEVEL 1, MOD 4
                                         MAIN
                                                            DATE = 69336
8800
                22 DO 70 K=1, MACH
                    DO 72 J=1, JOBS
0089
0090
                    IF(LA(LV,K,J).NE.T) GO TO 72
0091
                    N(LV)=0
0092
                    DO 69 JM=1, JOBS
                99 IF(LA(LV,K,JM).GE.T) GO TO 68
0093
0094
                    GO TO 69
                68 N(LV)=N(LV)+1
0095
0096
                    JJ(LV+V(LV))=JM
0097
                    IF(IPRINT.EQ.O) GO TO 69
                   WRITE (3,65) JJ(LV,N(LV)),K,LV,LA(LV,K,JM)
0098
0099
                65 FORMAT(1H ,10X,4I4)
0100
                69 CONTINUE
             C
             C
                   DETERMINE LOWER BOUNDS AND RESOLVE CONFLICT
             C
0101
                   IF(N(LV).GT.1) CALL CONFLT(T,K,LV,NNODES,NCNFLT,6110)
0102
                   GD TD 70
0103
                72 CONTINUE
0104
                70 CONTINUE
             C
             C
                   UPDATE THE ARRAY AND ENTER NEXT OPERATION
             C
0105
                89 DO 80 K=1, MACH
0106
                   DO 80 J=1, JOBS
0107
                   IF(LA(LV,K,J).NE.T) GO TO 80
0108
                   IOP(LV,J) = IOP(LV,J) + 1
                   IF(IOP(LV, J).GT.MACH) GO TO 75
0109
0110
                   KK=MM(J,IOP(LV,J))
0111
                   LA(LV,KK,J)=JCT(J,IOP(LV,J))
0112
                   GD TO 80
0113
                75 IOP(LV, J) = IOP(LV, J) - 1
                80 CONTINUE
0114
             C
             C
                   CHECK FOR T
             C
                   IF T IS THE HIGHEST ENTRY A SOLUTION HAS BEEN FOUND
             C
                   OTHERWISE FIND NEXT HIGHER T
             C
0115
                79 DO 16 M=1, MACH
0116
                   DO 16 J=1, JOBS
0117
                   IF(T.LT.LA(LV,M,J)) GO TO 51
0118
                16 CONTINUE
0119
                   IF(T.GE.ISTMIN) GO TO 110
0120
                   ISTMIN=T
0121
                   WRITE (3,6) ISTMIN
                 6 FORMAT(1H , A SOLUTION 1,16)
0122
0123
               980 FORMAT(1H0,10X, COMPUTATION TIME = ,F12.4)
                   LEVEL=LV-1
0124
                   WRITE(3,1001) LEVEL
0125
0126
              1001 FORMAT(1H , NO OF CONFLICT LEVELS FOR SOLN , 16)
                   ISWTCH=ISWTCH+I
0127
0128
                   NPKTRK=NBKTRK+1
0129
                   IF (ISWTCH.EQ.1) NBKTRK=0
0130
                   IF(ISWTCH.NE.1) GO TO 110
                   IF(ICARD.EQ.O) GO TO 110
0131
                   WRITE (2,1003) ISTMIN
0132
0133
              1003 FORMAT([8]
             C
```

```
C
                   BACKTRACKING
0134
               110 DO 95 I=1.MACH
0135
                   DO 95 J=1, JOBS
0136
                95 LA(LV,MM(J,I),J)=0
                   LV=LV-1
0137
0138
                   IF(IPRINT.EQ.O) GO TO 23
0139
                   WRITE (3,501) LV
0140
               501 FORMAT(1H . LEVEL . 15)
                23 NLV=N(LV)
0141
0142
               120 DO 300 NL=1.NLV
0143
                   IF(JJ(LV, NL).NE.JACTIV(LV)) GO TO 300
0144
                   NK=NL
0145
               300 CONTINUE
                   DO 360 NL=1.NLV
0146
                   IF(JJ(LV, NL). EQ. JACTIV(LV)) GO TO 360
0147
                   IF(ISTMIN.LE.ILB(LV.NL)) GO TO 360
0148
0149
                  IF(ILB(LV, NL).LT.NILB(LV)) GO TO 360
0150
                   IF(ILB(LV, NL).GT. NILB(LV)) GO TO 310
0151
                   IF(NL.GT.NK) GO TO 310
0152
               360 CONTINUE
                   IF(LV-1)400,400,110
0153
0154
               310 JL=JJ(LV, 1)
0155
                   IL=IOP(LV.JL)
0156
                   ML=MM(JL, IL)
0157
                   T=LA(LV,ML,JL)
                   DO 350 NL = 2 , NLV
0158
0159
                   J2=JJ(LV, NL)
0160
                   12=10P(LV, J2)
0161
                   M2 = MM(J2, I2)
                   IF(LA(LV,M2,J2) \cdot LT \cdot T) T = LA(LV,M2,J2)
0162
               350 CONTINUE
0163
0164
                   IF(IPRINT.EQ.O) GO TO 24
0165
                   WRITE (3,48) T
0166
                48 FORMAT(1H , T*', F8.1)
0167
                24 DO 583 J=1, JOBS
0168
                   DO 580 I=1, MACH
0169
                   M=MM(J, I)
                   IF(LA(LV, M, J). EQ. 0) GU TO 585
0170
0171
                   JCT(J, I)=LA(LV, M, J)
0172
                   GO TO, 580
               585 JCT(J,I)=JCT(J,I-1)+IT(J,I)
0173
C174
              580 CONTINUE
               583 CONTINUE
0175
0176
                   CALL SMLILB(LV)
                   GO TO 22
0177
               400 WRITE (3,509) ISTMIN
0178
               509 FORMAT(1H0,10X, DPTIMAL SCHEDULE TIME = 1,16)
0179
                   WRITE (3,73) NNODES
0180
                   WRITE (3,74) NCNFLT
0181
                   WRITE (3,78) NEKTRK
0182
0183
                   CALL TIME (NT2)
                   COTIME = (NT2-NT1)/100.
0184
                   WRITE(3,980) COTIME
0185
0186
                   IF(ICARD.EQ.O) GO TO 32
                   WRITE(2,902) NNODES, NCNFLT, NBKTRK, COTIME, ISTMIN
0187
                78 FORMAT(1HO, 10X, NUMBER OF BACKTRACKS = 1, 112)
0188
                73 FORMAT(1HO, 10X, * NUMBER OF NODES EXPLORED =*, I12)
0189
```

0190	74	FORMAT(1HO, 10X, NUMBER OF CONFLIS = 1,112)	
0191	902	FORMAT(3112,F11.3,110)	
0192	32	CONTINUE	
0193	100	STOP	
0194		FND	

FORTRAN	I۷	G	LEVEL	1, MOD 4	RANDNO
0001				FUNCTION RANDNO(IY)	
0002				IY=IY*65627	
0003				IF(IY)5,6,6	
0004			5	IY=IY+2147483647+1	
0005			6	RANDNO=1Y*.4656613E	-9

RETURN

END

0006

0007

DATE = 69336 125 14/

END

```
0001
                 SUBROUTINE SMALLT(T, LV)
           C
           C ..
                C
           C
                 THIS SUBROUTINE FINDS THE SMALLEST NUMBER IN THE SCHE-
           C
                 DULING TABLE AT LEVEL 1 IN THE BEGINNING. EVERYTIME.
                 IT UPDATES THE VALUE OF T TO THE NEXT HIGHER VALUE IN
           C
                 THE SCHEDULING TABLE AT A LEVEL LV.
           C
           C
           C.
                 COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
0003
                 COMMON IDP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
                 COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
0005
                 ISWTCH=0
                 DO 20 M=1, MACH
0006
                 DO 20 J=1, JOBS
0007
8000
                 IF(LA(LV, M, J).LE.T) GO TO 20
                 ISWTCH=ISWTCH+1
0009
                 IF(ISWTCH.EQ.1) TS=LA(LV,M,J)
0010
              10 IF(LA(LV, M, J).LT.TS) TS=LA(LV, M, J)
0011
              20 CONTINUE
0012
0013
                 T=TS
                 IF(IPRINT.EQ.O) GO TO 25
0014
0015
                 WRITE (3,502) T
             502 FORMAT(1H . T .F8.1)
0016
              25 RETURN
0017
```

```
0001
                  SUBROUTINE CONFLT (T, K, LV, NNODES, NCNFLT, *)
            C
                   C
                  THIS SUBROUTINE CHECKS FOR CONFLICT. IF A CONFLICT
            C
                  EXISTS, THE LOWER BOUNDS FOR THE NODES IN THE CONFLICT
                  SET ARE COMPUTED USING ONE OF THE LOWER BOUNDS.
            C
                  COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
                  COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0003
                  COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
0005
                  NLV=N(LV)
0006
                  L=0
            C
            C
                 CHECKING FOR CONFLICT USING BEENHAKKERS FORMULA.
            C
0007
                  DO 40 KL=1, NLV
8000
                  J2=JJ(LV,KL)
0009
                  12=10P(LV, J2)
0010
                  M2=MM(J2, I2)
                  IF(LA(LV, M2, J2). EQ.T) GO TO 39
0011
0012
                  IF((T+IT(J2,I2)).LE.JCT(J2,I2)) GO TO 40
0013
               39 L=L+1
               40 CONTINUE
0014
                  IF(L.LE.1) GO TO 35
0015
            C
            C
               IF CONFLICT EXISTS, ONE OF THE BOUND SUBROUTINE IS
            C
                  CALLED TO COMPUTE THE LOWER BOUNDS FOR THE NODES IN
            C
                  THE CONFLICT SET AT A LEVEL.
0016
                  GO TO(91,92,93,94,95), IB
               91 CALL BOUNDI(T,K,LV)
0017
                  GO TO 96
0018
               92 CALL BOUND2(T,K,LV)
0019
                  GD TO 96
0020
               93 CALL BOUND3(T,K,LV)
0021
0022
                  GO TO 96
               94 CALL BOUND4(T,K,LV)
0023
                  GO TO 96
0024
               95 CALL BOUNDS (T.K.LV)
0025
               96 NILB(LV)=ILB(LV,1)
0026
            C
                  DETERMINE THE NODE WITH MINIMUM LOWER BOUND. IF A TIE
            C
                  EXISTS, IT IS BROKEN USING THE LEFT HAND RULE.
            C
            C
                  NNODES=NNODES+N(LV)
0027
                  JACTIV(LV)=JJ(LV,1)
0028
0029
                  DO 10 NL=2, NLV
                  IF(NILB(LV).LE.ILB(LV,NL)) GO TO 10
0030
                  NILB(LV)=ILB(LV, NL)
0031
                  JACTIV(LV)=JJ(LV.NL)
0032
               10 CONTINUE
0033
                 IF(NILB(LV)-ISTMIN)21,22,22
0034
               21 LV=LV+1
0035
                  NCNFLT=NCNFLT+1
0036
                  DO 20 M=1, MACH
0037
```

CONFLT

FORTRAN IV G LEVEL 1, MOD 4

```
0038
                   DO 20 J=1, JOBS
0039
                20 LA(LV,M,J)=LA(LV-1,M,J)
0040
                   DO 30 J=1, JOBS
                30 IOP(LV, J) = IOP(LV-1, J)
0041
0042
                   IA=IOP(LV, JACTIV(LV-1))
0043
                   L=N(LV-1)
                   DO 15 NL=1,L
0044
0045
                   IF(JJ(LV-1,NL).EQ.JACTIV(LV-1)) GO TO 15
                   J1=JJ(LV-1.NL)
0046
            C
                   UPDATE THE COMPLETION TIME MATRIX IN FAVOR OF THE NODE
            C
            C
0047
                   I1=IOP(LV,J1)
                   JCT(J1, I1) = JCT(JACTIV(LV-1), IA) + IT(J1, I1)
0048
0049
                   M=MM(J1,I1)
0050
                  LA(LV,M,J1)=JCT(J1,I1)
0051
                   IK=I1+1
                   IF(IK.GT.MACH) GO TO 15
0052
                  DO 14 IC=IK, MACH
0053
               14 JCT(J1, IC) = JCT(J1, IC-1) + IT(J1, IC)
0054
               15 CONTINUE
0055
0056
                   IF(IPRINT.EQ.O) GO TO 35
0057
                   WRITE (3,83)
                                          *COMPLETION TIME MATRIX**)
0058
                83 FORMAT(1HO,10X,
0059
                  DO 16 J=1, JOBS
               16 WRITE (3,4) (JCT(J,1), I=1, MACH)
0060
                4 FORMAT(1H ,10X,12I4)
0061
                   GO TO 35
0062
               22 NCNFLT=NCNFLT+1
0063
                  RETURN 1
0064
               35 RETURN
0065
                  END
```

```
0001
                   SUBROUTINE BOUND1 (T,K,LV)
            C
            C
            C
                   THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
            C
                   COMPOSITE-BASED BOUND LB I. THE LOWER BOUND FOR A NODE
            C
                   IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
            C
                   LB III (BOUND 3) ETHE MACHINE-BASED BOUND LBV (BOUND 5)
            C
            C.
0002
                   COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0003
                   COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
                   COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
0005
                   DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10)
0006
                   IF(IPRINT.EQ.O) GO TO 60
0007
                   WRITE (3.86)
8000
               86 FORMAT(1HO,1OX, ILB
                                             N. )
0009
                60 NLV=N(LV)
0010
                   DD 20 N1=1,NLV
0011
                   J1=JJ(LV.N1)
                   II=IOP(LV,J11
0012
0013
                   M1=MM(J1,I1)
0C14
                   DO 11 J=1, JOBS
                11 DIF(J)=0.
0015
0016
                DD 10 N2=1.NLV
0017
                   J2=JJ(LV, N2)
0018
                   12=10P(LV, J2)
                   IF(N2 \cdot EQ \cdot N1) DIF(J2) = 0
0019
                   IF(N2.EQ.N1) GO TO 10
0020
0021
                   DIF(J2)=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
0022
               10 CONTINUE
                   JGRT=JCT(J1, I1)
0023
0024
                   DO 9 J=1, JOBS
                   IF(J1.EQ.J) GO TO 9
0025
                   DO 8 I=1.MACH
0026
                   KC=MM(J,I)
0027
                   IF(KC.NE.K) GO TO 8
0028
                   IF(LA(LV,K,J).NE.O.AND.LA(LV,K,J).LT.T) GD TO 8
0029
0030
                 6 JGRT=JGRT+IT(J,I)
0031
                 8 CONTINUE
0032
                 9 CONTINUE
                   GREAT (K)=JGRT
0033
                   DO 40 L=1, MACH
0034
0035
                   LL=0
                   IF(K.EQ.L) GO TO 40
0036
                   DO 39 J=1, JOBS.
0037
0038
                   DO 38 I=1, MACH
0039
                   KE=MM(J,I)
                   IF(KE.NE.L) GO TO 38
0040
C041
                   IP=I-1
                   IF(IP.EQ. 0) GO TO 35
0042
                   IF(JCT(J, I).LT.T) 60 TO 38
0043
0044
                   LL=LL+1
0045
                   GRAT(LL)=JCT(J, IP)+DIF(J)
0046
                   GO TO 38
0047
                35 JGPP=JCT(J.I)
```

IF(JGPP-LT-T) GO TO 38

```
DATE = 69336
FORTRAN IV G LEVEL 1, MOD 4
                                          BOUND1
 0049
                    LL=LL+1
 0050
                    GRAT(LL)=0.
 0051
                 38 CONTINUE
 0052
                 39 CONTINUE
0053
                    IF(LL-1)26,28,29
0054
                 29 JGP=GRAT(1)
 0055
                    DO 27 LR=2,LL
                    IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
 0056
0057
                 27 CONTINUE
0058
                    JGPR=JGP
0059
                    GO TO 7
0060
                 28 JGPR=GRAT(1)
0061
                  7 DO 50 J=1.JOBS
                    DO 48 I=1, MACH
0062
0063
                    KG=MM(J.[)
0064
                    IF(KG.NE.L) GO TO 48
0065
                    IF(LA(LV,L,J).NE.O.AND.LA(LV,L,J).LT.T) GO TO 48
                  5 JGPR=JGPR+IT(J,I)
0066
                 48 CONTINUE
0067
0068
                 50 CONTINUE
0069
                    GREAT(L)=JGPR
0070
                    GO TO 40
0071
                 26 NT=LA(LV,L,1)
                    DO 30 J=2, JOBS
0072
0073
                    IF(LA(LV,L,J).GT.NT) NT=LA(LV,L,J)
0074
                 30 CONTINUE
                    GREAT(L)=NT
0075
0076
                 40 CONTINUE
0077
                    IF(IPRINT.EQ.O) GO TO 12
0078
                    WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
0079
                900 FORMAT(1H ,4F8.1)
0080
                 12 ILB(LV,N1)=GREAT(1)
0081
                    DO 15 I=2, MACH
0082
                    IF(ILB(LV, N1).GE.GREAT(I)) GO TO 15
0083
                    ILB(LV,N1)=GREAT(I)
                 15 CONTINUE
0084
0085
                    IF(IPRINT.EQ.O) GO TO 65
                    WRITE (3,59) ILB(LV,N1),N1
0086
0087
                59 FORMAT(1H0,10X,215)
                65 JXP1=ILB(LV,N1)
0088
                    DO 80 MI=1.NLV
0089
                80 GREAT(MI)=0.
0090
0091
                    J1=JJ(LV.N1)
                    I1=IOP(LV,J1)
0092
0093
                    DO 70 N2=1, NLV
                    J2=JJ(LV, N2)
0094
0095
                    I2=IOP(LV,J2) .
                    IF(N2.EO.N1) GREAT(N2)=JCT(J2,MACH)
0096
                    IF(N2.EQ. N1) GO TO 70
0097
                    KIF = JCT(J1, I1) + IT(J2, I2) - JCT(J2, I2)
0098
0099
                    GREAT (N2) = JCT (J2, MACH) + KIF
                70 CONTINUE
0100
```

ILB(LV,N1)=GREAT(1)

ILB(LV,N1)=GREAT(I)

IF(IPRINT.EQ.O) GO TO 66

IF(ILB(LV,N1).GE.GREAT(I)) GO TO 75

DD 75 I=2.NLV

75 CONTINUE

0101

0103

-0105

-0106

14/

0107	WRITE (3,59) ILB(LV,N1),N1
0108	66 JXP2=ILB(LV,N1)
0109	IF(JXP2-JXP1)61,61,62
0110	61 ILB(LV,N11=JXP1
0111	IF(IPRINT.EQ.O) GO TO 20
0112	WRITE (3,59) ILB(LV,N1),N1
0113	GD TO 20
0114	62 1LB(LV,N1)=JXP2
0115	IF(IPRINT.EQ.O) GO TO 20
0116	WRITE (3,59) ILB(LV,N1),N1
0117	20 CONTINUE
0118	RETURN
0119	END

```
0001
                    SUBROUTINE BOUND2 (T,K,LV)
              C
              C
                    THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
              C
                    COMPOSITE-BASED BOUND LB II. THE LOWER BOUND FOR A
              C
                    NODE IS COMPUTED AS THE MAXIMUM OF THE JOB-BASED BOUND
              C
                    LB IVI (BOUND 4) & THE MACHINE-BASED BOUND LBV (BOUND 5)
              C
              C.
 0002
                    COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
                    COMMON IDP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
 0003
                    COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
 0004
 0005
                    DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10), IZ(10), SMALL(10),
                   IGRETE(10)
                    IF(IPRINT.EQ.O) GO TO 999
0006
0007
                    WRITE (3,86)
 0008
                 86 FORMAT(1HO,10X, ILB
                999 NLV=N(LV)
 0009
                    DO 20 N1=1, NLV
 0010
0011
                    J1=JJ(LV, N1)
                    II=IOP(LV, J1)
0012
                    DO 10 N2=1,NLV
 0013
0014
                    J2=JJ(LV, N2)
 0015
                 I2=IDP(LV,J2)
                    IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH-1)
 0016
 0017
                    IF(N2.EQ.N1) GO TO 10
                    KIF = JCT(J1, I1) + IT(J2, I2) - JCT(J2, I2)
 0018
                    GREAT(N2)=JCT(J2,MACH-1)+KIF
 0019
                 10 CONTINUE
 0020
                    N2=NLV
 0021
                    DO 30 J=1, JOBS
 0022
                    NN=1
 0023
 0024
                  9 IF(JJ(LV,NN).EQ.J) GO TO 30
 0025
                    NN=NN+1
                    IF(NN.GT.NLV) GO TO 40
 0026
 0027
                    GD TO 9
                 40 N2=N2+1
 0028
                    GREAT (N2) = JCT (J, MACH-1)
 0029
                    JJ(LV,N2)=J
 0030
                 30 CONTINUE
 0031
                    DO 600 KX=1, MACH
 0032
                    L=0
 0033
 0034
                    DO 502 NN=1,N2
 0035
                    J3=JJ(LV, NN)
                    M3=MM(J3, MACH).
 0036
                    IF(M3.NE.KX) GO TO 502
 0037
                    L=L+1
 0038
                    GRAT(L)=GREAT(NN)
 0039
                    IZ(L)=NN
 0040
                    MR=NN
0041
                502 CONTINUE
 0042
                    IF(L.EQ.0) GO TO 600
 0043
                    IF(L.GT.1) GO TO 510
 0044
 0045
                    LL=0
                    DO 210 IK=1,N2
0046
```

J4=JJ(LV, IK)

```
0048
                    IF (MM(J4, MACH-1).NE.KX) GO TO 210
 0049
                    LL=LL+1
 0050
                    IF(LL.EQ.1) JGRT=GREAT(IK)
 0051
                210 CONTINUE
 0052
                    IF(LL.EQ. 0) GO TO 580
                    J5=JJ(LV.MR)
 0053
 0C54
                    IF(JGRT.GE.GREAT(MR)) GO TO 220
 0055
                    GRT(MR)=GREAT(MR)+IT(J5,MACH)
 0056
                    GO TO 600
                220 GRT(MR)=JGRT+IT(J5, MACH)
 0057
                    GD TD 600
 0058
 0059
                510 DO 700 M=1,L
 0060
                    SMALL (M)=GRAT(1)
 0061
                    MN=IZ(1)
 0062
                    KP=1
                    DO 690 K$=2.L
 0063
 0064
                    IF(GRAT(KS).GE.SMALL(M)) GO TO 690
 0065
                    SMALL(M)=GRAT(KS)
 0066
                    MN=IZ(KS)
 0067
                    KP=KS
                690 CONTINUE
 0068
 0069
                    GRAT(KP)=9999
 0070
                    J6=JJ(LV.MN)
 0071
                    IF(M.GT.1) GO TO 691
 0072
                    IF(M.EQ.1) GRT(MN)=SMALL(M)+IT(J6, MACH)
                    IF(M.EQ.1) GRETE(M)=SMALL(M)+IT(J6,MACH)
 0073
 0074
                    GO TO 700
                691 IF(SMALL(M).LE.GRETE(M-1)) GRT(MN)=GRETE(M-1)+IT(J6,MACH)
 0075
 0076
                    IF(SMALL(M).LE.GRETE(M-1)) GRETE(M)=GRETE(M-1)+IT(J6,MACH)
                    IF(SMALL(M).GT.GRETE(M-1)) GRT(MN)=SMALL(M)+IT(J6,MACH)
 0077
                    IF(SMALL(M).GT.GRETE(M-1)) GRETE(M)=SMALL(M)+IT(J6,MACH)
 0078
 0079
                700 CONTINUE
 0080
                    GO TO 600
                580 J7=JJ(LV, MR)
 0081
 0082
                    GRT(MR)=GREAT(MR)+IT(J7, MACH)
 0083
                600 CONTINUE
                    ILB(LV,N1)=GRT(1)
 0084
                    DO 15 IX=2,N2
 0085
 0086
                    IF(ILB(LV,N1).GE.GRT(IX)) GO TO 15
                    ILB(LV.N1)=GRT(IX)
 0087
                 15 CONTINUE
 0088
                    IF(IPRINT.EQ.O) GO TO 65
 0089
                    WRITE (3,59) ILB(LV,N1),N1
 0090
 0091
                 59 FORMAT(1H0,10X,215)
                 65 JXP1=ILB(LV,N1)
 0092
                 21 DO 47 L=1,10
 0093
                    GREAT (L)=0.
 0094
                    GRT(L)=0.
 0095
 0096
                 47 GRAT(L)=0.
 0097
                    NLV=N(LV)
                    J1=JJ(LV, N1)
 0098
0099
                    I1=IOP(LV,J1)
 0100
                    M1 = MM(J1, [1])
 0101
                    DO 11 J=1,JOBS
                 11 DIF(J)=0.
 0102
 0103
                    DO 41 N2=1, NLV
 0104
                    J2=JJ(LV,N2)
                    12=10P(LV, J2)
* 0105
```

```
FORTRAN IV G LEVEL 1, MOD 4
```

```
DATE = 69336
```

134 14/6

```
IF(N2.EQ.N1) DIF(J2)=0
0106
0107
                   IF(N2.EQ.N1) GO TU 41
0108
                   DIF(J2)=JCT(J1,I1)+IT(J2,I2)-JCT(J2,I2)
0109
                41 CONTINUE
0110
                   JGRT=JCT(J1.I1)
0111
                   DO 42 J=1.JOBS
0112
                   IF(J1.FQ.J) GO TO 42
0113
                   DO 8 I=1. MACH
0114
                   KC = MM(J, I)
0115
                   IF(KC.NE.K) GO TO 8
                   IF(LA(LV,K,J).NE.C.AND.LA(LV,K,J).LT.T) GO TO 8
0116
0117
                6 JGRT=JGRT+IT(J.I)
0118
                8 CONTINUE
                42 CONTINUE
0119
0120
                   GREAT (K)=JGRT
                   DO 43 L=1, MACH
0121
                   LL=0
0122
0123
                   IF(K.EQ.L) GO TO 43
                   DO 39 J=1, JOBS
0124
0125
                   DO 38 I=1.MACH
0126
                   KE=MM(J,I)
                   IF(KE.NE.L) GO TO 38
0127
                   IP=I-1
0128
                   IF(IP.EQ. 0) GO TO 35
0129
0130
                   IF(JCT(J, I).LT.T) GO TO 38
0131
                LL=LL+1
                  ·GRAT(LL)=JCT(J, IP)+DIF(J)
0132
                   GD TO 38
0133
                35 JGPP=JCT(J,I)
0134
                   IF(JGPP.LT.T) GO TO 38
0135
                   LL=LL+1
0136
                   GRAT(LL)=0.
0137
               38 CONTINUE
0138
0139
               39 CONTINUE
                   IF(LL-1)26,28,29
0140
               29 JGP=GRAT(1)
0141
                   DO 27 LR=2,LL
0142
                   IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
0143
                27 CONTINUE
0144
                   JGPR=JGP
0145
                   GD TO 7
0146
                28 JGPR=GRAT(1).
0147
              7 DO 44 J=1,JOBS
0148
                   DO 48 I=1, MACH
0149
                   KG=MM(J,I)
0150
                   IF(KG.NE.L) GO TO 48
0151
                   IF(LA(LV,L,J).NE.C.AND.LA(LV,L,J).LT.T) GO TO 48
0152
                 5 JGPR=JGPR+IT(J,I)
0153
                48 CONTINUE
0154
              - 44 CONTINUE
0155
                   GREAT(L)=JGPR
0156
0157
                   GD TO 43
                26 NT=LA(LV, L, 1)
0158
                   DO 45 J=2, JOBS
0159
                   IF(LA(LV,L,J).GT.NT) NT=LA(LV,L,J)
0160
                45 CONTINUE
0161
                   GREAT(L)=NT
0162
                43 CONTINUE
0163
```

0164		IF(IPRINT.EQ.O) GO TO 52
0165		WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
0166	900	FORMAT(1H , 4F8.1)
0167	52	ILB(LV,N1)=GREAT(1)
0168		DO 46 I=2, MACH
0169		IF(ILB(LV, N1).GE.GREAT(I)) GO TO 46
0170		ILB(LV,N1)=GREAT(I)
0171	46	CONTINUE
0172		IF(IPRINT.EQ.O) GO TO 66
0173		WRITE (3,59) ILB(LV,N1),N1
0174	66	JXP2=ILB(LV,N1)
0175		IF(JXP2-JXP1)61,61,62
0176	61	ILB(LV,N1)=JXP1
0177	86 E E	IF(IPRINT.EQ.O) GO TO 20
0178		WRITE (3,59) ILB(LV,N1),N1
0179		GO TO 20
0180	62	IL3(LV,N1)=JXP2
0181		1F(IPRINT.EQ.O) GO TO 20
0182		WRITE (3,59) ILB(LV,N1),N1
0183	20	CONTINUE
0184		RETURN
0185		END

END

```
0001
                 SUBROUTINE BOUNDS (T.K.LV)
            C
            THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
            C
                 JOB-BASED BOUND III, SUGGESTED BY CONWAY ET AL.
            C
0002
                 COMMON IT(15.15), MACH. MM(15.15), JCT(15.15), LA(90.15,15)
0003
                 COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0004
                 COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
                 DIMENSION GREAT(10)
0005
0006
                 IF(IPRINT.EQ.O) GO TO 60
0007
                 WRITE (3.86)
              86 FORMAT(1H ,10X,
                                        N . 1
0008
                                  ILB
0009
              60 NLV=N(LV)
                 DO 20 N1=1.NLV
0010
0011
                J1=JJ(LV, N1)
0012
                 Il=IOP(LV,J1)
                 DO 10 N2=1.NLV
0013
0014
                 J2=JJ(LV, N2)
0015
                 I2=IOP(LV,J2)
0016
                 IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH)
0017
                 IF(N2.EQ.N1) GO TO 10
                 DIF=JCT(J1, I1)+IT(J2, I2)-JCT(J2, I2)
0018
0019
                 GREAT (N2) = JCT (J2, MACH) + DIF
0020
              10 CONTINUE
0021
                 ILB(LV.NI)=GREAT(1)
0022
                 DO 15 I=2.NLV
                 IF(ILB(LV, N1).GE.GREAT(I)) GO TO 15
0023
0024
                 ILB(LV.N1)=GREAT(I)
              15 CONTINUE
0025
0026
                 IF(IPRINT.EQ.O) GO TO 20
                 WRITE (3,50) ILB(LV,N1),N1
0027
0028
              50 FORMAT(1H ,10X,2I5)
0029
              20 CONTINUE
                 RETURN
0030
```

```
0001
                  SUBROUTINE BOUND4
            C.
                  THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
            C
                  JOB-BASED BOUND IV . SUGGESTED BY BROOKS AND WHITE
            C
            C
                  COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
                  COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0003
                  COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
0004
                  DIMENSION GREAT(10), GRAT(10), I(10), GRT(10), SMALL(10), GRETE(10)
0005
                  IF(IPRINT.EQ. 01 GO TO 999
0006
                  WRITE (3.86)
0007
               86 FORMAT(1HO, 10X, ILB
                                           N . )
0008
              999 NLV=N(LV)
0009
0010
                  DO 20 N1=1.NLV
0011
                  J1=JJ(LV, N1)
                  I1=IOP(LV, J1)
0012
0013
                  DO 10 N2=1.NLV
0014
                  J2=JJ(LV, N2)
                  12=10P(LV, J2)
0015
                  IF(N2.EQ.N1) GREAT(N2)=JCT(J2,MACH-1)
0016
                  IF(N2.EQ.N1) GO TO 10
0017
                  DIF=JCT(J1, I1)+IT(J2, I2)-JCT(J2, I2)
0018
                  GREAT (N2) = JCT (J2, MACH-1)+DIF
0019
               10 CONTINUE
0020
0021
                  N2=NLV
                  DO 30 J=1, JOBS
0022
                  NN=1
0023
                9 IF(JJ(LV, NN) . EQ. J) GO TO 30
0024
0025
                  N=NN+1
                  IF(NN.GT.NLV) GO TO 40
0026
                  GO TO 9
0027
               40 N2=N2+1
0028
                  GREAT (N2) = JCT (J, MACH-1)
0029
0030
                  JJ(LV,N2)=J
               30 CONTINUE
0031
                  DO 600 KX=1, MACH
0032
                  L=0
0033
                  DD 502 NN=1,N2
0034
                  J3=JJ(LV,NN)
0035
                  M3=MM(J3,MACH)
0036
                  IF(M3.NE.KX) GO TO 502
0037
                  L=L+1
0038
                  GRAT(L)=GREAT(NN)
0039
                  I(L)=NN
0040
                  MR=NN
0041
              502 CONTINUE
0042
                  IF(L.EQ.0) GO TO 600
0043
                  IF(L.GT.1) GO TO 510
0044
                  LL=0
0045
                  DO 210 IK=1.N2
0046
                  J4=JJ(LV, IK)
0047
                  IF(MM(J4, MACH-1).NE.KX) GO TO 210
0048
                  LL=LL+1
0049
                  IF(LL.EQ.1) JGRT=GREAT(IK)
0050
              210 CONTINUE
0051
                  IF(LL.EQ.0) GO TO 580
```

BOUND4

END

```
0053
                   J5=JJ(LV, MR)
0054
                  IF(JGRT.GE.GREAT(MR)) GO TO 220
0055
                  GRT(MR)=GREAT(MR)+IT(J5, MACH)
                  GO TO 600
0056
              220 GRT(MR)=JGRT+IT(J5,MACH)
0057
                  GO TO 600
0058
0059
              510 DO 700 M=1.L
0060
                  SMALL (M)=GRAT(1)
                  MN=I(1)
0061
0062
                  KP=1
                  DO 690 KS=2.L
0063
0064
                  IF(GRAT(KS).GE.SMALL(M)) GO TO 690
0065
                  SMALL(M)=GRAT(KS)
                 MN=I(KS)
0066
0067
                  KP=KS
              690 CONTINUE
0068
0069
                  GRAT(KP)=9999
0070
                  J6=JJ(LV, MN)
                  IF(M.GT.1) GO TO 691
0071
                  IF(M.EQ.1) GRT(MN)=SMALL(M)+IT(J6, MACH)
0072
                  IF(M.EQ.1) GRETE(M)=SMALL(M)+IT(J6,MACH)
0073
0074
                  GD TD 700
              691 IF(SMALL(M).LE.GRETE(M-1)) GRT(MN)=GRETE(M-1)+IT(J6.MACH)
0075
0076
                  IF(SMALL(M).LE.GRETE(M-1)) GRETE(M)=GRETE(M-1)+IT(J6,MACH)
                  IF(SMALL(M).GT.GRETE(M-1)) GRT(MN)=SMALL(M)+IT(J6, MACH)
0077
                  IF(SMALL(M).GT.GRETE(M-1)) GRETE(M)=SMALL(M)+IT(J6,MACH)
0078
              700 CONTINUE
0079
                  GD TO 600
0080
0081
              580 J7=JJ(LV, MR)
0082
                  GRT(MR)=GREAT(MR)+IT(J7, MACH)
              600 CONTINUE
0083
                  ILB(LV,N1)=GRT(1)
0084
                  DO 15 IX=2,N2
0085
0086
                  IF(ILB(LV,N1).GE.GRT(IX)) GO TO 15
                  ILB(LV,N1)=GRT(IX)
0087
               15 CONTINUE
0088
                  IF(IPRINT.EQ.O) GO TO 20
0089
                  WRITE (3,50) [LB(LV,N1),N1
0090
0091
               50 FORMAT(1H0,10X,215)
0092
               20 CONTINUE
                  RETURN
0093
```

39 CONTINUE

```
0001
                   SUBROUTINE BOUNDS (T,K,LV)
            C
            C
                   THIS SUBROUTINE COMPUTES THE LOWER BOUND USING THE
                   MACHINE-BASED BOUND LB V. SUGGESTED BY CONWAY ET AL.
            C
            C
                   COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0002
0003
                   COMMON 10P(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
0004
                   COMMON N(90), NILB(90), JACTIV(90), IPRINT, IB
                   DIMENSION GREAT(10), GRAT(10), GRT(10), DIF(10)
0005
                   IF(IPRINT.EQ.O) GO TO 60
0006
                   WRITE (3,86)
0007
0008
               86 FORMAT(1HO,10X, ILB
                                            Nº 1
0009
               60 NLV=N(LV)
0010
                   DO 20 NI=1, NLV
0011
                  J1=JJ(LV, N1)
0012
                   I1 = IOP(LV, J1)
                   M1 = MM(J1, I1)
0013
                  DO 11 J=1, JOBS
0014
               11 DIF(J)=0.
0015
                  DO 10 N2=1,NLV
0016
0017
                  J2=JJ(LV, N2)
0018
                  I2=IOP(LV,J2)
0019
                  IF(N2 \cdot EQ \cdot N1) DIF(J2) = 0
                  IF(N2.EQ.N1) GO TO 10
0020
                   DIF(J2)=JCT(J1, 11)+IT(J2, I2)-JCT(J2, I2)
0021
               10 CONTINUE
0022
0023
                  JGRT=JCT(J1, I1)
0024
                  DO 9 J=1, JOBS
0025
                  IF(J1.EQ.J) GO TO 9
                  DO 8 I=1, MACH
0026
                  KC=MM(J,I)
0027
0028
                  IF(KC.NE.K) GO TO 8
                   IF(LA(LV,K,J).NE.O.AND.LA(LV,K,J).LT.T) GO TO 8
0029
                6 JGRT=JGRT+IT(J,I)
0030
                8 CONTINUE
0031
                9 CONTINUE
0032
0033
                  GREAT (K)=JGRT
0034
                  DO 40 L=1, MACH
0035
                  LL=0
                   IF(K.EQ.L) GO TO 40
0036
                  DO 39 J=1, JOBS
0037
0038
                  DO 38 I=1, MACH
                  KE=MM(J,I)
0039
                  IF(KE.NE.L) GO TO 38
0040
                  IP=I-1
0041
                  IF(IP.EQ. 0) GO TO 35
0042
                  IF(JCT(J, I).LT.T) GO TO 38
0043
                  LL=LL+1
0044
0045
                  GRAT(LL)=JCT(J, IP)+DIF(J)
                  GD TO 38
0046
0047
               35 JGPP=JCT(J, I)
0048
                  IF(JGPP-LT-T) GO TO 38
0049
                  LL=LL+1
                  GRAT(LL)=0.
0050
               3B CONTINUE
0051
```

```
0053
                   IF(LL-1)26,28,29
0054
               29 JGP=GRAT(1)
0055
                   DO 27 LR=2, LL
                   IF(GRAT(LR).LT.JGP) JGP=GRAT(LR)
0056
0057
               27 CONTINUE
                   JGPR=JGP
0058
                   GO TO 7
0059
0060
               28 JGPR=GRAT(1)
0061
                7 DO 50 J=1, JOBS
                   DO 48 I=1, MACH
0062
0063
                   KG=MM(J.I)
                   IF(KG.NE.L) GO TO 48
0064
                   IF(LA(LV,L,J).NE.O.AND.LA(LV,L,J).LT.T) GO TO 48
0065
0066
                 5 JGPR=JGPR+IT(J,I)
               48 CONTINUE
0067
0068
               50 CONTINUE
                   GREAT(L)=JGPR
0069
0070
                   GO TO 40
0071
               26 NT=LA(LV, L, 1)
                   DO 30 J=2, JOBS
0072
0073
                   IF(LA(LV,L,J).GT.NT) NT=LA(LV,L,J)
               30 CONTINUE
0074
                  GREAT(L)=NT
0075
0076
               40 CONTINUE
                  IF(IPRINT.EQ.O) GO TO 12
0077
                  WRITE(3,900) (GREAT(MQ), MQ=1, MACH)
0078
              900 FORMAT(1H , 4F8.1)
0079
0800
               12 ILB(LV,N1)=GREAT(1)
0081
                   DO 15 I=2, MACH
                   IF(ILB(LV,N1).GE.GREAT(I)) GO TO 15
0082
                   ILB(LV,N1)=GREAT(I)
0083
               15 CONTINUE
0084
                  IF(IPRINT.EQ.O) GO TO 20
0085
                   WRITE (3,59) ILB(LV,N1),N1
0086
               59 FORMAT(1H0,10X,215)
0087
               20 CONTINUE
8800
                  RETURN
0089
0090
                   END
```

```
FORTRAN IV G LEVEL 1, MOD 4
```

```
DATE = 69336
```

```
0001
                   SUBROUTINE SMLILB(LV)
0002
                   COMMON IT(15,15), MACH, MM(15,15), JCT(15,15), LA(90,15,15)
0003
                   COMMON IOP(90,15), JJ(90,15), ILB(90,15), JOBS, ISTMIN
                   COMMON N(90), NILE(90), JACTIV(90), IPRINT, IB
0004
0005
                   NLV=N(LV)
0006
               120 DD 300 NL=1.NLV
0007
                   IF(JJ(LV, NL).NE.JACTIV(LV)) GO TO 300
8000
0009
               300 CONTINUE
                   ISWTCH=0
0010
0011
                   NLV=N(LV)
0012
                   DO 10 NL=1, NLV
0013
                   IF(JJ(LV, NL) . EQ. JACTIV(LV)) GO TO 10
0014
                   IF(ISTMIN.LE.ILB(LV,NL)) GO TO 10
0015
                   IF(ILB(LV, NL)-NILB(LV))10,8,9
0016
                 8 IF(NL.LT.NK) GD TO 10
0017
                 9 ISWTCH=ISWTCH+1
0018
                   IF(ISWTCH-1)11.11.12
0019
                11 NT=ILB(LV, NL)
0020
                   NTL=NL
0021
                   GD TO 10
0022
                12 IF(ILB(LV,NL).GE.NT) GO TO 10
0023
                   NT=ILB(LV, NL)
0024
                   NTL=NL
0025
                10 CONTINUE
0026
                   NILB(LV)=NT
0027
                   JACTIV(LV)=JJ(LV,NTL)
                21 LV=LV+1
0028
0029
                   DD 20 M=1, MACH
0030
                   DO 20 J=1, JOBS
0031
                20 LA(LV,M,J)=LA(LV-1,M,J)
0032
                   DO 30 J=1.JOBS
0033
                30 IOP(LV,J) = IOP(LV-1,J)
0034
                   IA=IDP(LV, JACTIV(LV-1))
0035
                   L=N(LV-1)
0036
                   K=MM(JACTIV(LV-1),IA)
                   JCT(JACTIV(LV-1), IA)=LA(LV-1, K, JACTIV(LV-1))
0037
                   DO 15 NL=1,L
0038
                   IF(JJ(LV-1,NL).EQ.JACTIV(LV-1)) GO TO 15
0039
0040
                   J1=JJ(LV-1.NL)
0041
                   I1=IOP(LV_{*}J1)
                   JCT(J1,I1)=JCT(JACTIV(LV-1),IA)+IT(J1,I1)
0042
                   M=MM(J1,I1)
0043
0044
                   LA(LV,M,J1)=JCT(J1,I1)
0045
                   IK=II+1
                   IF(IK.GT.MACH) GO TO 15
0046
                   DD 14 I=IK, MACH
0047
0048
                14 JCT(J1,I) = JCT(J1,I-1) + IT(J1,I)
0049
                15 CONTINUE
                   IF(IPRINT.EQ.O) GO TO 35
0050
                   WRITE (3,88)
0051
0052
                88 FORMAT(1HO, 10X,
                                            *COMPLETION TIME MATRIX**)
                   DO 13 J=1, JOBS
0053
                13 WRITE (3,4) (JCT(J,I),I=1,MACH)
0054
                4 FORMAT(1H ,15X,1214)
0055
                35 RETURN
0056
                   END
```

PROB	LEM	NUMB	ER =	1
PROCE	SSIN	G TI	ME M	MATRIX
21	20	25	19	27
1	20	26	24	5
22	24	12	4	16
25	30	22	16	15
23	10	2	12	30
5	11	18	21	29
5	28	16	1	3
13	22	16	15	19
MACHI	NE O	RDER	ING	MATRIX
2	3	5	1	4
3	5	4	2	1
3	5	4	2	1
3	5	2	4	1
5	3	1	2	4
5 5	2	1	3.	4
3	5	4	1	2
2	1	4	3	5

BUUNDING PROCEDURE 1

A SCLUTION	218			
NO CF CONFLICT	LEVELS	FOR	SOLN	30
4 SOLUTION	217			
NO OF CONFLICT	LEVELS	FOR	SOLN	26
A SCLUTION	214			
40 OF CONFLICT	LEVELS	FOR	SOLN	29

A BRANCH-AND-BOUND ALGORITHM FOR JOB-SHOP PROBLEMS

by

SANGAYYA RACHAYYA HIREMATH

B.E. (Mech.), Karnatak University
Dharwar, Mysore-State, India, 1967

AN ABSTRACT OF A MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY

Manhattan, Kansas

The scheduling problem with which this thesis is concerned consists of determining the sequence of J jobs to be processed on M machines so that the schedule time is minimized.

In this thesis, a branch-and-bound technique for job-shop problems is developed. This technique generates an optimal solution after the generation of only a small subset of possible sequences. The basic concepts of this approach consist of the branching, bounding and backtracking processes. The branching process generates a set of new nodes from a node at the preceding level. The bounding process helps select a particular node at a level for further branching and thus, makes it possible to achieve a reduction in the generation of nodes at each level. The backtracking process guarantees an optimal solution.

In this thesis, two new lower bounds, referred to as composite-based bounds LB I and LB II, are developed. Three other existing lower bounds, referred to as bounding procedures LB III, LB IV and LB V, are analyzed in a mathematical form and rigorous notation for comparison purposes. A considerable number of experiments has been conducted on IBM 360/50 computer. The results are obtained in terms of the number of nodes explored and the computational time required to obtain the optimal solution and the efficiency of solution obtained without backtracking.

The various lower bounds are compared with the help of the above results. It is found that the number of nodes explored and the computational time to obtain the optimal solution increase rapidly with the increase in the size of the problem. In general, the performance of the composite-based bounds LB I and LB II is better than any of the bounding procedures LB III, LB IV and LB V.