
^k Computer Engineering Environment for
Feature Based Design and Manufacture^ -

by

Larry Eugene Schmidt

B.S., Kansas State University, 1986

A THESIS

submitted in partied fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Mechanical Engineering

Kansas State University
Manhattan, Kansas

1989

Approved by:

Major Professor

.TH-

c. 2

TABLE OF CONTENTS
AlieOfl 301142

CHAPTER PAGE

TITLE PAGE i

TABLE OF CONTENTS U

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vu

1. INTRODUCTION 1

1.1 Background 1

1.2 Thesis Statement 8

1.3 Method 8

2. ENVIRONMENT OVERVIEW 10

2.1 Kernel Based Environment 10

2.2 Object Oriented Programming 11

2.3 Entity Definition 13

2.4 Database Module 14

2.5 User Interface Module 15

2.6 Kernel 17

2.7 Applications 18

3. CONCEPTUAL REPRESENTATION 19

3.1 Conceptual Overview 19

3.2 Schema Files 20

ii

3.3 Template Description 20

3.4 Directory Description 22

3.5 Methods 25

3.6 Special Classes and Entity Types 26

3.7 Conceptual Summary 27

4. INTERNAL REPRESENTATION 29

4.1 Internal Overview 29

4.2 Metadata Definition and Functions 30

4.3 Directory Metadata 31

4.4 Method Metadata 35

4.5 Master Method Directory 38

4.6 Model Data 39

4.7 Resource Data 45

4.8 Graphics Data 46

5. CONCLUSIONS 48

5.1 Conclusions 48

5.2 Future Research Topics 50

6. REFERENCES 52

6.1 Literature Cited 52

6.2 Bibliography 54

7. APPENDIX A: DYNAMIC BINDING 55

A.l Acknowledgement 55

A.2 Definition of Dynamic binding 55

A.3 Function Execution 56

A.4 Resolution ofECB Pointers 57

A.5 Binary File Format 60

iii

A.6 Master Method Directory Builder 64

A.7 Example Binary File 66

8. APPENDIX B: KERNEL ACCESS LANGUAGE ... 71

B.l Kernel Access Language Header File 72

B.2 Data Manipulation Language Reference 75

B.3 Display Msinipulation Language Reference 123

9. APPENDIX C: DATA DESCRIPTION LANGUAGE . .136

C.l Terminology 136

C.2 Template Files 136

C.3 Directory File 137

10. APPENDIX D: KERNEL HEADER FILE 140

LIST OF FIGURES

FIGURE PAGE

2.1 Kernel Based Environment 10

2.2 User Interface 16

3.1 Simple Template File 21

3.2 Template File with Constituents 21

3.3 Mode Declarations 23

3.4 Special Name Declarations 23

3.5 Machine Function Declarations 24

3.6 Entity and Class Declarations 24

4.1 Branch and Leaf Structures 32

4.2 Template Structures 33

4.3 Leaf Directory Structures 34

4.4 Method Structures 3g

4.5 Special Names Directory Structures 37

4.6 Master Method Directory Structures 39

4.7 Constituent Pointer Example 42

4.8 User Pointers 43

A.l Domain C Fimction Pointers 56

A.2 Dereferencing a Function Pointer 57

A.3 Establishing ECB Base Address 59

A.4 Structure of Method Directory 59

V

LIST OF TABLES

TABLE PAGE

A.l Binary Header Information 61

A.2 Binary File Section D Information 62

ACKNOWLEDGMENTS

I would like to thank Professor J. Garth Thompson, the Department

ofMechanical Engineering and the Center for Research in Computer

Controlled Automation for making this research possible.

I would also hke to thank my family and friends for their support

during this endeavor.

CHAPTER 1

INTRODUCTION

1.1 Background

The techniques for design and manufacture ofproducts are in a state

of revolution. The advent and development of the computer has been the

fuel, and automation of product design and manufacture is the goal of the

revolution. Appropriate automation will lead to higher productivity and

higher quality products.

The production cycle begins with the designer and ends with the

manufacturer. The designer is presented with a problem and specifications

for the product which will solve the problem. The designer attempts to

produce a design which solves the problem while meeting the specifications.

The design is then checked and verified. If modification is required, the

design is returned to the designer. The cycle may be repeated several times

as specifications change during the development of the original product as

well as during the life of the product. When the design is complete, it is

passed to the manufacturer.

The manufacturer pools the available resources and creates a plan for

the manufacture of the product. During creation of the plan, the

manufacturer is concerned with meeting the specifications of the design with

the available resources. Once the plan is complete, production begins.

During production, the final product is checked to verify that it meets the

specifications of the designer. As during the design process, modifications of

the plan are often required in order to more accurately meet the

specifications and more efficiently use the available resources.

The key to the entire design-manufacture cycle is communication.

During the design cycle, the design is commxmicated to the design engineer

who may communicate it to other engineers who verify the designer's

calculations. The verified design is communicated to the manufacturer.

During manufacture, communication is required between process planners,

production personnel and quedity control. In order to accormnodate the

communication of product information, industry developed a language

capable of describing all aspects of a product. The language produced was

the blueprint. A blueprint integrates graphical and textual information in a

manner which completely describes a product to everyone involved in the

design-manufacture cycle. The classical method for producing blueprints is

by hand at a drafting table.

Computer automation has produced a m3rriad of products to aid the

designer and manufacturer. Computer-Aided Design (CAD) products

have been developed to partially automate the design-analysis cycle. For

example, SDRC's IDEAS package is a CAD product which allows designers

to construct the geometry of parts and assemblies from solid primitives and

to specify part materials. Once the geometry and material are specified,

finite element analysis and kinematic analysis can be performed. However,

once the design and analysis are complete the design must somehow be

commimicated to the manufacturer. Therefore, IDEAS and other CAD

products provide facilities for computer-aided drafting which can semi-

automatically convert the solid geometry into a blueprint.

Computer-Aided Manufacturing (CAM) products attempt to

automate the manufacturing process. Classically, the automation has

involved the production of computer controlled manufacturing machines.

However, products such as Adra Systems' ELCAM have come into the CAM

market, which when provided with the geometry of a part, facilitate the

semi-automatic production of tool paths. The tool paths are then

communicated to computer controlled machines.

The aforementioned design and manufacturing tools tend to work

independently, producing islands of automation. The islands must be

bridged during the production cycle. Usually, information is passed between

the islands via blueprints. Therefore, "What is touted as computer-aided

design (CAD), for example, usually boils down to computer-aided drafting...

And computer-aided manufacturing (CAM) often amounts to using a

computer to run machine tools that are not integrated with other factory

operations." [1]

Factory of the future is a term which is used to describe the

maximally automated production facility. The factory of the future can also

be described as a paperless factory, because product information flows from

design throughout manufacture electronically. Thus, in the factory of the

future, product data will flow between the islands ofautomation

electronically eliminating the need for blueprints.

Toward the goal of the factory of the future, Computer-Integrated

Manufacturing (CIM) has developed. CIM can be described as the

paperless flow of work through a factory. [2] CIM is the manufacturing

world's attempt at electronically integrating computer controlled production

tools. An effective bridge, however, between design and manufacture has yet

to emerge.

3

In addition to bridges between the islands of automation, more

efficient methods of creating, maintaining and checking designs are needed.

When designing a product, designers tend to think in terms of high level

entities. For example, when designing a shaft the designer thinks in terms

of steps, tapers, grooves, chamfers, faces, etc. In a blueprint oriented

commimication system, the designer must translate these three-dimensional

entities into two-dimensional representations in order to communicate the

design. CAD products called solid modelers (e.g., SDRC's IDEAS package)

have been developed which allow designers to operate in three dimensions

using three-dimensional solid primitives to build product geometry. Solid

modeling, however, still requires the designer to translate high level entities

into combinations of solid primitives. Therefore, a CAD product which could

understand and manipulate high level entities would provide a more natural

design environment and eliminate much of the translation time.

The design verification process would fall under the category of expert

systems. An automated design verification system would have to know the

specifications of a design as well as corporate and industry standards. With

this knowledge, a design verification system could judge a design's

acceptabiUty with respect to its knowledge base.

Expert systems could also be used in automated manufacturing. In

automated manufacturing, the knowledge base would include information

about production resources. Knowledge of production resources would allow

an automated manufacturing system to check the manufacturability of a

product as well as produce process plans for manufacturing the product.

Therefore, an integrated design-manufacturing system should include a

knowledge base which contains information on specifications, standards and

production resources.

With the goal of the factory of the future in mind, industry has begun

to develop concepts, standards and computer implementations which are

moving computer automation from the islands of automation towards the

integrated systems of the future. In order to completely describe a product to

design and manufacturing systems, the concept ofproduct data has

evolved. "Product data includes the geometry, topology, relationships,

tolerances, attributes and features necessary to completely define a

component part or an assembly of parts for the purpose of design, analysis,

manufacture, test and inspection." [3]

Standards have begun to evolve in order to facilitate the exchange of

product data between CAD/CAM systems. The Initial Graphics Exchange

Specification (IGES) was initiated in late 1979. IGES was developed to

standardize the the exchange of graphical information. Basically, IGES

allows the electronic exchange of blueprints. To clarify, IGES provides

facilities for communicating graphical information. Non-graphical

information is passed as notes appended to the graphical information.

In order to facihtate accurate and efficient exchange of product data,

a new standard is being developed called. Product Data Exchange

Specification (PDES). "...PDES is aimed at communicating a complete

product model with sufficient information content as to be interpretable

directly by advanced CAD/CAM application programs..." [3] The

international equivalent ofPDES is called, the Standard for the

Exchange of Product Data (STEP). IGES has evolved into a standard

while PDES and STEP continue to develop.

Software products which demonstrate factory of the future concepts

m^

are McDonnell Douglas' Product Definition Data Interface (PDDI), and

Automated Technology Product's Cimplex CAD system. PDDI demonstrated

how complete product data models could be transfered between CAD and

CAM systems. Product data was produced by a design system which

translated the information into a neutral format. The neutral form could be

sent to a manxifacturing system which would translate the neutral form into

its own internal data format. PDDI is a demonstration ofhow islands of

automation can be bridged. A great deal of time, however, is spent

translating to and from the neutral format. Cimplex demonstrates the

concept of a high level design interface as well as production and

maintenance ofproduct data.

While PDDI and Cimplex are significant steps toward the factory of

the future, they are not singularly adequate. The ultimate computer based

design-manufacture system must be able to span the entire design-

manufacture cycle efficiently and accurately. The ultimate system would

require the following features. First, it must have a high level user interface

to speed the creation and maintenance of designs. Second, it must create

and maintain complete product data models. Third, it must create and

maintain a design and manufacturing knowledge base so that a design can

be verified and manufacturing resources can be identified. Fourth, it must

be flexible. Standards for product data definition will evolve and a design-

manufacture system must accommodate the evolution. Also, corporations

tend to produce specific classes of products, therefore a design-maniifacture

system should be flexible so that it can meet specific corporate needs.

The backbone of any computer system is its database system. The

database system performs several general operations. At the physical level,

6

the database system contains the data structures in which data is

maintained. The data structures are designed to provide fast access to the

data by appHcation programs while minimizing memory requirements. Also,

the physical level maintains the data on storage device(s). At the logical

level, the database system provides an efficient interface between application

programs and the physical level. That is, an application program can

conveniently access data without knowing the complex physical nature of the

data. Finally, a database system provides data security. A database system

protects the data from system crashes, unauthorized access and maintains

data consistency.

Years of research and development have been spent on database

systems. Much of the research and development has been in the area of

business oriented applications. From the business oriented research and

development, came the relational, hierarchical and network data models

upon which traditional database management systems are built. Engineering

data, however, differs in both content and use from business data.

Business databases are characterized by a few record types with

simple relationships between the records. Also, there are a large number of

instances of each record type. Finally, the data types are static, that is, once

the representation of the data is defined it seldom changes. [4]

In contrast, engineering databases are characterized by a large

number of record types with complex relationships between the records. As

with business databases, engineering databases involve large numbers of

instances of each record type. [4] Unlike many business databases, however,

relationships between the records, as well as the records themselves, may

change during the life of the database.

1.2 Thesis Statement

The traditionEil business oriented database management systems do

not provide adequate support for a feature-based design-mainufacture

computer system. The purpose of this thesis is to present an implementation

of a computer engineering environment capable of supporting feature-based

design and manufacture. The environment can create and maintain

complete product data and knowledge data. In addition, the environment is

flexible enough to change with evolving standards and specific design-

manufacture needs.

1.3 Method

The presentation of this thesis work will begin in chapter 2 with an

overall description of the computer environment and its object oriented

nature. In addition, the function of each of the environment's modules is

discussed and terms used in the thesis are defined.

Chapter 3 presents the environment's conceptual schema and parts

of the data description language. The chapter explains the organizational

abilities of the system and logical structure of the data.

Chapter 4 is devoted to the internal (i.e., computer) implementation

of the system. This chapter presents the data structures and file format

upon which the environment is built. Chapter 5 presents conclusions and

fiiture research topics.

The implementation of the computer engineering environment was

performed on the Center for Research in Computer Controlled Automation

and the Department ofMechanical Engineering's Apollo computer system at

8

Kansas State University. The operating system used was Apollo's AEGIS

system. The environment was coded in the C programming language. The

graphics portion of the user interface was based on Apollo's DOMAIN

GMR3D graphics package as well as Apollo's windowing system (Display

Manager).

CHAPTER 2

ENVIRONMENT OVERVIEW

2.1 Kernel Based Environment

The architecture of the computer environment described in this

thesis is much like the executive centered system described by Staley and

Anderson. [4] The environment is built around an executive module called

the kernel. The kernel controls three subordinate modules. The

subordinate modules are the user interface, database, and applications

(see figure 2.1).

APPLICATIONS

KERNEL

USER
INTERFACE
MODULE

-I

DATABASE
MODULE

Figure 2.1: Kernel Based Environment

This thesis work concentrated on developing the kernel, user

interface module, and database module (Note, the part of the environment

which was developed by this thesis work is contained within the dashed lines

offigure 2.1.). The result ofthe thesis work is an object oriented

environment which provides access routines to appUcation writers who wish

10

to develop feature-based design-maniifacture applications. A discussion of

object oriented programming and how it pertains to this thesis work follows.

A more complete discussion of the environment follows the presentation of

object oriented programming.

2.2 Object Oriented Programming

Object oriented programming is a technique ofprogramming where

data objects are the basic building blocks of a program. An object is defined

by its attributes and methods. For example, an object called "color" could

be estabhshed which is constructed of the attributes: red, green, blue.

To manipulate an object (i.e., alter its attributes), an application

program sends a message to the object. The message requests the object to

perform an operation on itselfby invoking one of the object's methods.

Returning to the color example, an application program may send a message

to a "color" object telling it to set its red, green, blue values to one, two and

three, or a request may be sent asking for the current red, green, blue values.

Therefore, the complete definition of an object includes its attributes as well

as the methods to manipulate those attributes.

The attribute information of a data object defines a template for

that data object. The template is a pattern which specifies the size of a data

object and its various attribute fields. The actual data which is manipulated

by methods and which constitutes a data model is contained in instances of

the templates. Therefore, the process of instantiation which builds a model

involves producing an editable copy of a template. The copy is then

manipulated by methods.

In contrast, procedure oriented programming uses the procedure as

11

its basic building block. In a procedure oriented program, procedures are

established and data is passed between them. For example, a program called

"average" is specified which must find the average of three numbers. First,

the three numbers are passed to a procedure called "add" which passes back

the svun of the three numbers. Next, the sum is passed to a procedure called

"divide" which divides the previous result by three. Finally, the result might

be passed to a procediire called "print" which prints the average to standard

output.

There are several advantages to object oriented programming over

procedure oriented programming when dealing with complex data models.

The first advantage is data abstraction. Data abstraction means that

application programs are not required to know the actual nature (i.e.,

integer, real, character, array, etc.) of object attributes in order to

manipulate them. Data abstraction is achieved because appUcation

programs simply send generic messages to objects telling the object to invoke

one of its methods. Type checking is performed within the methods.

The second advantage of object oriented programming is function

overloading [5]. Function overloading means that many data objects may

have a method with a common name. Therefore, the same message may be

sent to many data objects telling them to perform a specific operation (e.g.,

print_self). In contrast, procedure oriented programming forces the

programmer to assign unique names to every procedure even if the only

difference between them is that they deal with different data types.

Another advantage of object oriented programming is dynamic

binding. Dynamic binding resolves the addresses of the executable code for

methods at run time. Dynamic binding allows applications to be written

12

which are able to invoke methods whose actual names are not known until

run time. In contrast, procedure oriented programming forces the names of

procedures to be known at compile time. Dynamic binding is the critical

ingredient of object oriented programming which gives the environment of

this thesis work its flexibiHty.

An example ofhow dynamic binding may be utiHzed, is in a general

display application. When such an application is written, the programmer

only needs to know that the application must pass a "display" message to

every object. Therefore, every displayable object must have a display method

and the corresponding display methods may be added to and deleted from

the object oriented environment wdthout effecting the operation of the

display application. In contrast, procedure oriented programming requires

the names of every procedure to be known at compile time and if a procedure

is added or deleted the program must be recompiled.

Classification and inheritance are the final advantages of object

oriented programming. Classification allows data objects wdth similar

attributes and methods to be grouped together thereby giving structure to

the overall data model. Members of a class inherit the methods of their

super-class, and therefore redundant coding is reduced.

2.3 Entity Definition

In reference to this thesis work, an entity is the basic data object

upon which the object oriented environment is constructed. An entity has

attributes and methods. Entities are classified hierarchically according to

common attributes and functions. Attributes of an entity may be simple data

types (e.g., integer, float, character, string, etc.) and/or other entities. By

13

properly specifying attributes, entities may be geometric or non-geometric.

In addition, since the attributes of an entity may be other entities, complex

entities may be built from more primitive entities. For example, a face may

be defined by four lines, the four Unes are defined by two points and finally

the two points are defined by three coordinates.

A feature is simply a complex entity built from more primitive

entities and/or other features. Therefore, feature based applications can be

supported by this environment if appropriate features, and methods to

maintain those features, are defined. Also, complete product data models

may be produced since the entity types may be defined to be geometric or

non-geometric.

2.4 Database Module

The database module performs several important database related

fimctions. The most important function is physical data independence.

Physical data independence means that the user's view of the data is

independent of the actual internal (computer) representation of the data.

The user is concerned with the content of the entities, the relationship

between entities, and the methods associated with entities. Therefore, the

user only requires a conceptual view of the data. The internal view,

however, is quite different from the conceptual view. The internal view is

concerned with the efficient storage and manipulation of the data within the

computer.

The conceptual view of the data is called the conceptual schema.

The schema is written in a Data Description Language (DDL). The

schema defines the attributes of entities, the relationships between entities,

14

and default values for attributes. Also, since the system is object oriented,

the schema declares and classifies methods for entities. A formal discussion

of the schema and DDL is presented in chapter 3.

The schema defines entities. The actual data which constitutes a

model is stored in instances of entities. In this thesis, entity type will be

used to describe the declaration of an entity in the schema. Entity instance

or simply instance will refer to an instance of an entity tjfpe in the

database. The declaration of an entity type in the schema defines a template

for that entity type. The template contains space for the attributes which

define the entity type as well as default attribute values. When a user

creates a model, instances of the templates are created. An instance is an

editable copy of the template. The internal representation of templates and

instances as well as other aspects of the internal view of the data will be

presented in chapter 4.

Finally, the data system includes a Data Manipulation Language

(DML). The DML is a subset ofthe Kernel Access Language (KAL). The

KAL includes the DML and non-database related routines. The complete

reference for the kernel access routines is in Appendix B.

2.5 User Interface Module

The user interface module is used by the database module, kernel

and applications to communicate with a user who is manipulating a product

within the total environment. The user interface has four windows as shown

in figure 2.2 (following page).

The graphics window manages the display of model geometry and

any other graphical input or output required by applications. Utilities are

15

provided to application writers who wish to use GMR3D and the graphics

window. Therefore, application writers can use GMR3D commands and

supporting KAL routines to create 3-dimensional shaded images ofmodel

geometry. The types of entities which can be displayed by the environment

is limited to expUcit geometric entities. Applications, however, can

completely take over the graphics window. Therefore, applications may
provide their own graphical capabilities using any available graphics

package.

Textual input is supported in the input window. The environment

requires some textual input (e.g., model name, save and retrieve file names,

and other text oriented functions). In addition, the input window is

accessible to application writers who require textual input. The input

window also provides a history of previous input which may be scrolled.

¥BU

OUTPUT

INPUT-
HISTORY

INPUT

GRAPHICS

Figure 2.2: User Interface

16

The output window communicates all textual output from the

environment's modules and applications. The kernel uses the output window

to communicate environment status and error messages. Applications have

access to the window and may write any textual information to it.

The menu window is only available to the kernel. A utility, however,

is included in the KAL called "PickPad" which allows an application to create

menus. The menu performs four functions. First, it is used to navigate the

hierarchical schema and pick entity types. Schema navigation will be

further discussed in chapter 3 when the hierarchical nature of the schema is

explained. Once an entity type is selected, the second function the menu

performs is method invocation. The third fiinction involves model storage

and retrieval. Models and partial models may be stored and retrieved from a

disk by the system and the process is controlled through the menu and input

' window. The storage and retrieval programs are special methods and are

further discussed in chapter 4. Finally, the menu controls and manipulates

the display of model geometry. A few of the display manipulations supported

are: rotation, translation, three types of shading, and scaling.

2.6 Kernel

The kernel is the controller for the entire system. It integrates the

database module, user interface module and applications. The most

important function the kernel serves is to provide an object oriented

environment for application writers by way of its access routines (KAL).

Application writers use the KAL to produce applications to create and

manipulate data objects. Users utilize user interface utilities to view models

and to invoke applications. The KAL is an include file and a set of access

17

routines. The access routines include the aforementioned DML routines,

display utilities and other utilities. The access routines are written in C and

only applications written in C are supported.

Another important function the kernel serves is to maintain system

states. The states include current graphics states and model name.

2.7 Applications

Applications are written in C and use the KAL to to create and

maintain models. In the object oriented environment, an application is a

method. Special entity types are provided which allow applications (i.e.,

methods) to be written which act on an entire model. The special entity

types will be discussed in chapter 3.

18

CHAPTERS

CONCEPTUAL REPRESENTATION

3.1 Conceptual Overview

The conceptual view of a database is the view application writers and

users see. The conceptual view is called the schema. The schema defines

the logical structure of the data independent of its physical (computer

implemented) structure. The schema is written in a Data Description

Language (DDL). The schema is compiled into the intemsJ representation

of the data.

In reference to this thesis work, the schema defines the attributes,

methods, and relationships between entities (data objects) of the object

oriented environment. A model is built from instances of entities defined in

the schema.

A simple schema could easily include hundreds of entity types and

each entity type may include many methods. Thus, the number ofmethods

could easily grow into the thousands. Therefore, when developing the

schema, emphasis was placed on efficient management of methods. The final

form of the schema and DDL reflect this emphasis.

This chapter will present the structure and content of the schema. In

doing so, the basic parts and syntax of the DDL will be revealed. A complete

presentation of the DDL is included in appendix C. The chapter concludes

with a summary which discusses the schema's relationship to the PDES

schema and how the schema fits into the overall structure of the flexible

19

feature based design-manufacture environment being presented in this

thesis.

3.2 Schema Files

The schema definition is accompHshed in two types of files. The first

type is the template file. A template file defines the attributes of an entity

type. There is a template file for every entity t3rpe.

The second file type is the directory file. The directory's primary

fiinction is organization. The directory organizes entity types into a

hierarchy of classes and sub-classes. Methods are declared in the directory

and associated vsdth modes (modes will be discussed in section 3.4) and entity

types. Method association may be either direct or through inheritance from

a super-class. The directory is described in detail in section 3.4.

The purpose of dividing the schema into two separate file t3T)es was

to facilitate schema modification without having to recompile the entire

schema and without destroying all existing models which used an old

schema. If a template file is edited, the system strips the obsolete entity

instances from an existing model as it is read. The user may then edit the

model and replace the stripped instances. The directory can be reorganized

and methods can be added and deleted without effecting existing models. In

addition, entity types may be added to the directory. If an entity is deleted,

however, any model which contains instances of that entity type will be

treated as if that entity type is obsolete.

3.3 Template Description

The attributes (and default values for those attributes) of an entity

20

type are defined in a template file. For example, the template file for an

entity type called "3D_point" would look like figure 3.1. The template

specifies that a 3D_point entity contains three floats labeled x, y and z. The

attributes are all initialized to 1 . No classification is achieved in the

template file and methods are not yet associated with the entity type.

FILE_NAME: 3D_pomtforni

attributes
{

float X 1 .

;

float y 1.;
float z 1.;
}

Figure 3.1: Simple Template File

As described in section 2.3, complex entities are built from more

primitive entities. Therefore, the template file for a complex entity type will

include attributes which are defijied to be other entity types. For example,

figure 3.2 is the template file for the entity type "3D_line". The line is

FILE_NAME: 3D_line.form

attributes
{

entity 3D_point ptl;
entity 3D_point pt2;

Figure 3.2: Template File with Constituents

21

constructed from two 3D_points labeled ptl and pt2. The more primitive

entity types which make up a complex entity tjrpe are referred to as

constituents of the complex entity type. The complex entity t)rpe is referred

to as a user of the more primitive entity type. Returning to the 3D_line

example, the 3D_line entity type uses the 3D_point entity type. The

3D_point entity type is a constituent of the 3D_Iine entity type. Note that

the 3D_point entity type may be used by any nimiber of other entity tjrpes, as

can the 3D_line entity type.

3.4 Directory Description

The directory is divided into four major sections. The sections are:

mode declarations, special-name declaration, machine-function declaration,

and entity-class declaration. These sections will be detailed in subsequent

paragraphs.

As pointed out earlier, the number of methods may be large for any

particular entity type. Therefore, to limit the number of methods for a given

entity type accessible to the user at any particular time, the methods are

sorted into modes. Thus, the user has access to only those methods which

are associated with the mode he/she has selected. The application writer

establishes which methods belong in each mode. Example modes are: design,

manufacture, and analysis. Therefore, when a user is designing a model

he/she would enter the design mode and subsequently would only have

access to "design" methods. An example mode declaration section is

presented in figure 3.3 (following page).

The second section of the directory declares names for special

methods. The function of special methods will be further discussed in section

22

3.5. The syntax of the special names section is such that names are declared

and associated with modes. An example of declaring special names appears

in figure 3.4.

modes {

global;
design;
analysis;
manufacture;)

NOTE: Any method declared to belong in the first
listed mode will appear when any other mode
is selected. Hence, the name "global" is
appropriate.

Figure 3.3: Mode Declarations

special_naines {

none DISPLAY;
manufacture PickMachine;
design EditEntlty;
global SetUser;)

Figure 3.4: Special Name Declaratioiis

The third section of the directory declares the possible machine

functions. The kernel system allows for the definition of a "knowledge" data

base which contains all the machines available to the user for producing

products. The machines have attributes like other entity types, in addition,

however, machine definitions include the functions which the machine can

perform. Therefore, machine functions are declared and later used to

completely define a machine. Each machine function is declared as an ASCII

string as shown in the directory section presented in figure 3.5.

23

machine_functions (

1 axis turning;
3 axis milling;
drilling; }

Figure 3.5: Machine Function Declarations

The fourth and final section makes up the bulk of the directory. This

section declares the entity types and entity classes. Through the declaration

process, entity types are divided into classes and methods are associated

with entity types. Since entity types can inherit methods from their super-

class, method code can be reduced by organizing the entity types into classes

such that common methods may be written for any entity type in the class.

Then, one method can be shared by every member of the class by associating

the method with the super-class. Figure 3.6 shows part of a directory's

entity-class declaration section which places two entity tjrpes in a common

class and associates methods with the entity types both directly and through

class inheritance.

entity turned_edge; { methods {

Transformer TransformEdge;))

class turned_features; {

members {

entity turned_edge;
class turned_internal; } /* sub-class */

methods (

DISPLAY TurnedDisplay; }

NOTES: The above section places turned_edge into
the class turned_features . The method
TurnedDisplay is associated with all members
of the class turned_feature. The method
TransformEdge is associated with turned edge.
Figure 3.6: Entity and Class Declarations

24

3.5 Methods

Methods are divided into two categories; special methods and

specific methods. The major distinction between the categories is that

special methods may be inherited, while specific methods may not be

inherited.

Special methods are the object oriented methods of the environment.

Special method names are declared in the directory, and therefore, are

available to any application. To clarify, an appHcation may be written to

display all geometric entities. The special name "DISPLAY" would be ~: .

reserved in the directory. Any entity type which may be displayed must

have a method associated with it named "DISPLAY". The display method

may be associated directly or through inheritance from a super-class. When

the display application is invoked, it "asks" every entity instance in the

model if it has a "DISPLAY" method, if so, that method is invoked. When

every entity instance has been requested to display itself, the display

application is finished.

Special methods are further divided into two sub-categories: vnth

parameters, and without parameters. Special methods which do not require

parameters to be passed between themselves and their caller, may be

invoked directly through the user interface as well as from other methods.

Therefore, when such a special method name is declared, modes must be

associated with it. Special methods which require parameters can only be

invoked by another method. Such special methods are assigned the unique

mode "none". In addition, all methods written for a special name which

requires parameters must have the same parameter list.

Specific methods may only be invoked through the user interface,

25

and thus, may not have parameter lists. Specific methods are used when a

method can only be used by a specific entity type and can not be inherited.

Specific methods are meant to be the "flavoring" methods which enhance the

manipulation of a specific entity type. For example, there are several ways

to define a line (e.g., two points and point-slope). Therefore, several specific

methods may be written to handle these different forms of Une definition.

3.6 Special Classes and Entity Types

There are two special classes which must be declared in the ;

directory. The first class is called the root class. The root is the top node of

the hierarchy of entity types and classes. Any class or entity type which does

not belong in a super-class, by default, belongs in the root class. Therefore,

the root class does not have any declared members, however, methods may

be associated with the root. Root methods are important in that they are

often applications which must act on all members of the directory hierarchy.

The second special class is called user_entity and it must be

assigned to the root class. The user_entity class may have no sub-classes.

The function of user entity types is to group entity instances

together. For example, a user entity type named "part" may be defined.

When creating a model, many instances may become constituents of a

specific "part". Later, the "part" may be manipulated as a distinct unit (e.g.,

saved in a library, copied, rotated, translated). Another user entity type

named "assembly" might be defined in which "parts" are grouped together

into an "assembly". By saving user entity instances, libraries can be created

from predefined sets of entity instances.

There is one unique user entity type which must be declared called

26

resources. The resources user entity type is used to create the "knowledge" ' ..

database for production tools. Only certain entity types may be constituents

ofa resources instance. Those entity types must have an attribute field

which defines which of the pre-declared machine functions (see section 3.4)

they are capable of performing. For example, entity types named lathe, .

'

face_mill, and end_mill may be defined. They all have various attributes " -

such as maximum speed, throw, and others. One attribute, however, must

be labeled, "machine_fimctions". When building the resource database, a J

resources instance named "factory" may be created. The factory may have ia*i

the constituents: lathe, face_mill, and end_mill. The lathe may be specified

to have a maximimi speed of 3000 RPM and in the "machine_functions" field '
"

.

it may be specified to allow "1 axis turning" and "2 axis turning". Again, as

vdth other user entity types, resource instances may be saved and copied and

by doing so a "knowledge" database can be built fi-om resource entities.

3.7 Conceptual Summary

The purpose of the conceptual schema is to present a logical view of

the database. The database in this thesis work is object oriented and the

conceptual schema reflects the object oriented nature. The schema is written

in a DDL. Parts of the DDL have been presented in the process of describing

the conceptual schema, however, for a complete description of the DDL see

appendix C. When developing the conceptual schema and DDL, emphasis

was directed at organizing the methods, the methods are organized so as to

avoid redundant code and to allow access to only selected groups (modes) of

methods.

The conceptual schema forms a hierarchy of entity types which •

27

begins at the root node. The user interface displays the hierarchy and users

are able to navigate the hierarchy and pick entity types with the mouse.

When an entity type is selected, some of its methods (i.e., methods in the

current mode and methods which do not have parameter lists) appear in the

menu window. Any method which is displayed in the menu window may be

invoked by selecting it wdth the mouse.

In practice, part of the schema would be written by a central

administration and part would be written by application developers. The

administrators would define entity types and their attributes and place the

entity types into the entity hierarchy. Application developers would add the

methods.

Ideally, the schema entity and class definitions would become

standard. When PDES is released, it could become the basis for such a

standard schema. A database administrator could then chose class and

entity types from the PDES standard which fit his/her companies needs and

then add a minimal number of unique entities as are required.

28

CHAPTER 4

INTERNAL REPRESENTATION

4.1 Internal Overview

The internal (physical) layer of the environment is invisible to the

end user and the apphcation writer. The internal layer, however, is the base

of the entire system. The major consideration during the development of the- — i.*ii

internal layer was function. Emphasis was placed on developing an

environment capable of supporting feature-based (object oriented) design and

manufacture, complete product representation, knowledge representation

Eind flexibility. Also considered were efficient use of disk and dynamic

memory, and speed of execution.

The internal representation can be divided into five major sections,

each section deahng with a different class of data. The five sections are:

directory metadata, method metadata, model data, resource (knowledge)

data, and graphics data. Each of the sections will be detailed in the

remainder of this chapter. While detailing the five sections, parts of the

Kernel Access Lan^age (KAL) will be revealed. For a complete

description of the KAL and its access routines, see appendix B. In addition,

this chapter will present a qualitative description of the environment's data

structures and their functions. The kernel header file in appendix D

contains the exact declarations of the C data structures used in the final

implementation.

29

Tsir.

4.2 Metadata Definition and Functions

Metadata is data about the data. The metadata provides a "map" to

where instance and other environment data are located. Basically, the

metadata structures are the physical manifestation of the conceptual schema

presented in chapter 3, with extra pieces added to facilitate the internal

workings of the kernel and its subordinate modules.

The metadata is created both when the environment is initialized

and during operation. At initialization, the schema's directory source file is

parsed and the structures of the metadata are formed (The directory -w

metadata structures are detailed in section 4.3.). As users create instances,

if the template source file has not yet been parsed, it is parsed at that time

and the template structures are added to the metadata.

When the environment is shutting down, it saves the metadata into

two files (one for directory data and one for template data) in a binary

format. Then, upon subsequent invocations of the kernel, the date stamp on

the binary version of the directory and on the directory source file are

checked. If the source file has not been modified since the binary file was

written, the binary file is used to form the directory metadata. Since the

binary file contains a structured pre-parsed form of the metadata, it is much

faster to read and form the metadata structures from the binary file.

Likewise, if the template source file for an entity type has not been

modified since the binary version of the template was saved, the binary file is

used to form template structures. If the template source file has been

modified, the kernel skips the corresponding section of the template binary

file and keeps track of which template(s) have been modified. Then, when a

model file is read, if it contains obsolete versions of entity types, those entity

30

instances are stripped from the model and the user must replace them.

The metadata is divided into two parts. The first part is the

directory metadata and the second is method metadata. Directory metadata

will be detailed in section 4.3. Method metadata is detailed in section 4.4.

4.3 Directory Metadata

As explained in chapter 3, the conceptual schema forms a hierarchy

of entity types. • The physical manifestation of the hierarchy is constructed of

branch and leaf structures. Each branch corresponds to a class in the -fJ^ii^-

schema and each leaf corresponds to an entity type in the schema.

A branch structure has five fields (figure 4.1 , following page). The

first field contains a pointer to the name of the branch. The second field

contains a pointer to the branch which uses that branch. The next field is a

pointer to a list of methods for the branch (The structure of the method list

will be discussed in section 4.3). The fourth field contains the number of sub-

branches and/or leaves under a branch. The final field is an array of

structures whose first field tells if the sub-item is a branch or a leaf and

whose second field contains a pointer to a sub-branch or leaf. By storing

pointers to both the user branch and the sub-branches and leaves, the

schema hierarchy may be navigated from bottom to top or from top to

bottom.

A leaf structure also has five fields (figure 4.1). The first of which

contains a pointer to the name of the leaf. The second field contains the user

pointer. The third field contains a pointer to the template for the entity type.

The fourth field contains a pointer to an array of structures. Each structure

in this array contains the name of, and pointer to, an instance of the entity

31

type which the leaf represents (This array will be further detailed in section

4.6.). The final field of a leaf structiire contains a pointer to the hst of

methods associated with the leaf.

BRANCH STRUCTURE

BRANCH NAME
POINTER

USER
POINTER

METHOD LIST
POINTER

LEAF AND
BRANCH
COUNT

LEAF
FLAG

LEAF OR
BRANCH
POINTER

LEAF OR
BRANCH
POINTER

LEAF STRUCTURE

TEMPLATE
POINTER

INSTANCE ARRAY
POINTER

METHOD LIST
POINTER

Figure 4.1: Branch and Leaf Structures

A template structure contains all the attribute information about the

entity type to which it corresponds. A template structure is made of three

integer fields and two pointers to structure arrays (figure 4.2, following

page). The first integer field contains the size (in bytes) of the template.

When an instance of an entity type is created, the number of bytes of

memory reserved for the instance equals the size specification in the

32

template. The next field contains the number of non-array attributes which

are in the template. The final integer field contains the number of array

attributes in the template.

TEMPLATE STRUCTURE

TEMPUTE
SIZE

NON-ARRAY
COUNT

ARRAY
COUNT

NON-ARRAY
STRUCTURES
POINTER

ARRAY
STRUCTURES
POINTER

DATA LABEL
POINTER

Figure 4.2: Template Structiires

The first structure array of the template holds information about the

non-array attributes of the template. Each non-array structure has three

fields. The first field contains the offset of the attribute from the beginning

of the memory block reserved for an instance of the template. The next field

contains the data type (e.g., integer, real, character) of the attribute. The

last field contains the data label of the attribute (i.e., the name attached to

33

the attribute in the schema).

The second structure array holds information about array attributes.

Each array structure has five fields. The first, fourth, and fifth fields

perform the same functions as the first, second, and third fields of a non-

array structure. The second and third fields of an array structure contain

the beginning and ending indexes of an array attribute.

Note that the system knows how much space to allocate for each

defined data type. Therefore, the template size field contains the sum of all

the sizes of the individual data types of the attributes declared in a template

file.

In addition to the overall hierarchy ofbranches and leaves, a special

directory of leaves is maintained by the kernel. The structure of this

directory is as shown in figure 4.3. The leaf directory is an array of pointers,

each pointer points to a leaf in the hierarchy.

LEAF STRUCTURES

LEAF
COUNT

LEAF
POINTER

LEAF
POINTER

o
e
e

Figure 4.3: Leaf Directory Structures

The directory metadata may be queried by applications for

information about the current schema. The current position of the kernel

system in the schema hierarchy can be determined using the KAL routines

GetBranch and GetLeaf The user of a branch or leaf and the members of a

34

branch can be determined with the KAL routines GetUser and GetMembers.

The most important information, however, is information about attributes

and the leaf directory index of an entity type. Using the KAL routine

GetLabel, an application can determine all the attributes of an entity type

including each attributes type, label, and whether the attribute is an array.

If an attribute is an array, the beginning and ending indexes can be

determined.

The leaf directory index is very important and is determined using

the KAL routine GetDirlndex. As explained earlier in this sectiony the,lea£. .

directory contains pointers to the leaves of the schema hierarchy. Therefore,

if the index into the leaf directory is known for a particular entity tjfpe,

information about that entity type and its instances can be quickly accessed.

If the leaf directory did not exist, the entire schema hierarchy would have to

be searched every time information about a leaf were requested.

4.4 Method Metadata

The method metadata keeps track of special and specific methods for

branches and leaves, method modes, and pointers to each methods

executable code. Any branch or leaf in the schema hierarchy can have

method structures associated vfith it. A method structure has two integer

fields and two pointers to structure arrays (figure 4.4, following page). The

first integer field contains the number of structures pointed to by the first

array pointer and the second integer field contains the nimiber of structures

pointed to by the second array pointer. The two arrays contain identical

structures. The structures, however, hold different information.

The first array deals with specific methods. The first field in a

35

structure of this array contains an index into the master method directory (to

be discussed in section 4.5) and the second field contains the modes of the

specific method.

The modes are represented by individual bits in a four byte field.

Each mode has a specific bit and if that bit is set then the specific method

belongs in that mode.

METHOD LIST STRUCTURE

SPECIFIC
METHOD
COUNT

SPECIAL
METHOD
COUNT

SPECIFIC METHOD
STRUCTURES
POINTER

SPECIAL METHOD
STRUCTURES
POINTER

.,-.-.. ._--^

SPECIFIC METHOD ENTRIES

MASTER METHOD
DIRECTORY INDEX

MODE

SPECIAL METHOD ENTRIES

MASTER METHOD
DIRECTORY INDEX

SPECIAL NAMES
INDEX

Figure 4.4: Method Structures

The second array in a method structure deals with special methods.

For special methods, the first field of an entry in the array is an index into

the master method directory. The mode field, however, does not perform the

same task as it did for specific methods. Bits are set in the mode field of a

special method entry according to where the special name resides in the

36

special names directory.

The structure of the special names directory is as seen in figure 4.5.

The first field of a special names entry contains a pointer to the special

name. The second field contains the mode in which any special named

method, corresponding to that entry, will belong.

SPECIAL NAME STRUCTURE SPECIAL NAME ENTRIES

SPECIAL NAME
COUNT

SPECIAL NAME'
ENTRIES
POINTER

.SPECIAL NAME
POINTER

MODE

Figure 4.5: Special Names Directory Structures

•. 1

.

Applications use the information in the method metadata section to

request what methods exist for an entity type and also to invoke those

methods. Within an application, the names of the specific methods for an

entity type can be determined with a call to the KAL routine GetFcnNames.

Once the names are known, to invoke the method the application first makes

a call to GetFcnFromName to obtain a pointer to the executable code for the

specified specific method. Finally, the method is invoked by dereferencing

the pointer to the executable code.

AppUcations invoke special methods using the KAL routines

GetSpecIndex and GetSpecFcn. GetSpecIndex returns the index into the

special method directory. Given the index of a special method, GetSpecFcn

returns a pointer to the executable code, which can be dereferenced to invoke

the special method.

37

An example application which uses the previously discussed method

KAL routines, would be a general application to edit entities. The

application would know to request the special method named "edit_entity".

The appUcation may then request the specific methods for the entity type

being edited and then give the user the choice of either invoking the special

edit_entity method or else invoking a specific method.

Another example would be an apphcation to display all entities in a

model. The application would search the model and "tell" each instance to

display itself. The process of "telling" the instance to display itself involves

the appUcation first determining the entity type of an instance, then using

GetSpecIndex to get the index of the "DISPLAY" special method. Finally,

the application would call GetSpecFcn to get the pointer to the executable

code. The pointer is then dereferenced to invoke the "DISPLAY" method.

4.5 Master Method Directory

The master method directory is built when the kernel system is

initiaUzed. The master method directory contains an entry for each method

that the kernel can recognize. A method entry in the master method

directory contains the method's name and pointers to the method's

executable code (see Figure 4.6, following page).

The process of building the master method directory is referred to in

this thesis work as dynamic binding. Dynamic binding, as defined in chapter

2, allows application writers to develop applications without knowing (at

compile time) the actual names of methods which the application must

invoke. Dynamic binding is critical to the flexibility and generality of the

environment.

38

The dynamic binding process involves parsing the environment's

executable code at run-time to find all of the addresses of the executable code

for the methods declared in the directory. To parse the executable code, the

names of the methods must be known as well as the format of the executable

code. The names ofthe methods are declared in the directory. The format of

the executable code as well as a detailed discussion ofthe dynamic binding

process are presented in appendix A. Thus, when the environment

initiahzes, it parses the executable code and builds the master method

directory which is then used as detailed in the previous section.

MASTER METHOD DIRECTORY STRUCTURE

METHOD
COUNT

METHOD STRUCTURES
ARRAY POINTER

MASTER METHOD DIRECTORY ENTRIES

EXECUTABLE CODE
POINTER #1

EXECUTABLE CODE
POINTER #2

METHOD NAME
POINTER

Figure 4.6: Master Method Directory Structures

4.6 Model Data

The creation and maintenance ofmodel data is the primary fimction

ofthe environment. A model is constructed of instances of entity types

defined in the conceptual schema, which are tied together with many to

39

many relationships. The attributes and relationships of an instance are

manipulated by applications (i.e., methods). Model data can be saved to, and

read from disk files. This section details the structure of model data and how

the data is maintained by the kernel and its subordinate modules.

When an entity instance is created (using the KAL routine

Makelnstance), a block ofmemory is allocated which will contain the

attribute values for that instance, as well as other relational information to

be discussed. In addition, an instance number is assigned which along with

the entity type's leaf directory index uniquely identifies the instance. The

pointer to the allocated memory is stored in the leaf directory. As was

discussed in section 4.3, a leaf structure contains a pointer to an array of

structures which contains a pair of pointers for each instance of the entity

type that the leaf represents. One of the pointers points to the allocated

memory for an instance. The other pointer points to a string of characters

which holds the label of the instance. Instance labels are created with the

KAL routine MakeName and read with GetName. Instance labels are usefiil

in identifying non-geometric instances (geometric instances can usually be

highlighted on the display). The entity type's leaf directory index is stored in

the first two b3^es of an instance's memory block and -the instance number is

stored in the next four bytes.

In order to accommodate default attribute values, a special instance

for each entity type is maintained. The special instance is assigned instance

number zero. Instance zero's attribute values are equal to the default values

declared in the conceptual schema. Instance zero's instance number (bytes

3-6) contains the total number of instances of its type. (Note that creating an

instance is equivalent to creating an editable copy of instance zero, except for

40

the instance number bytes.) The kernel system uses the instance pointers

and the count in instance zero to keep track of every instance created.

The individual instances of a model are associated with one another

using many to many relationships to form a complex network. As stated in

chapter 3, complex entity tjT^es are built from more primitive entity types

within the conceptual schema. The more primitive entity types are called

constituents. Thus, instances of complex entity types must have data

included in them which attaches them to their corresponding constituents.

Therefore, within the block of data allocated for a complex instance, there is

space reserved for its constituent pointers. A single constituent may be used

by several complex instances and therefore complex instances may be

connected together through common constituents.

For example, consider a simple model which includes four 3D_points

and four SDJines which are connected to form a face (see figure 4.7a,

following page). The face instance contains four constituent pointers

(defined in the conceptual schema) - one for each of the SDJines which form

the face. Each 3D_line instance contains two pointers to 3D_point instances.

Finally, each 3D_point contains an x, y and z coordinate. Figure 4.7b shows

the constituent pointers and instances which form the model. Note that each

3Djpoint is shared between two SDJines.

Sharing constituents has two advantages. The first is reduced

memory. The second is model integrity. The face in this example is defined

by four inter-connpfted lines which form a closed surface. If the face were

defined by four 3D_lines constructed from eight independent 3D_points,

there would be no way to assure that the lines formed a closed surface.

Each entity instance, in addition to the possible constituent pointers.

41

(a) Geometric Representation

^ 3D LINE #1 ^9^

s-^

^\ 3D_LINE #2 v%,

^

Ob) Database Representation

3D_P0INT #3

X3. Y3. Z3
3D_P0INT #4

X4. Y4, Z4

r~^

—

CONSTITUENT POINTER

ENTITY INSTANCE

Figure 4.7: Constituent Pointer Example

42

contains a list of pointers to instances which use it. These pointers are

called, user pointers (see figure 4.8). By having both user and constituent

« " CONSTITUENT POINTER

•— USER POINTER

I I ENTITY INSTANCE

Figure 4.8: User Pointers

pointers available, the kernel is able to begin at a particular entity instance

and traverse a model either from constituent to user, or from user to

constituent. An example of user to constituent traversal is deleting a

complex entity instance and all of its constituents. An example of

constituent to user traversal is a display routine which refreshes the display

whenever an instance is edited. An edited instance will affect its own image

as well as the image of all of its users. In order to avoid refreshing every

instance in the model, the application would search out and refresh the users

43

of the edited instance and then the user's users and so on.

Finally, models can be saved to, and read from, a permanent storage

device such as a hard disk. The models are saved in a binary format so as to

save disk space and maintain accuracy. The saving process involves two

steps. First, the kernel searches the leaf directory and determines which

entity types have been used in the model being saved. Whenever the kernel

discovers that an entity type has been used, the name of the entity type and

its current leaf directory index are written to the model file. Then, the

kernel writes all of the instances in the model to the model file. Simple data

types (i.e., not constituents) are written directly. The constituent pointers

are resolved into the equivalent leaf directory index and instance number.

User hsts are not saved because they can be reconstructed from constituent

data as a model file is read.

Saving the entity type names and current index allows entity types

to be added to, and deleted from the schema. Adding and deleting entity

types from the schema will alter the leaf directory indexes. But, since the old

indexes and type names were saved in the model file, the kernel can convert

the old indexes into the current indexes. If an entity type used in the model

file does not exist in the current schema, the kernel will strip the obsolete

entity type instances from the model.

In addition to saving entire model files, the kernel can also save user

instances. A user instance groups features together into a logical set such as

a part. By saving, reading and editing user instances, "part" libraries can be

maintained. The format of a user file is exactly the same as that of a model

file. The order that instances are saved, however, is different for model files

than for user files. When a model is saved, the kernel searches the leaf

44

directory and saves every instance. When a user instance is saved, the

kernel begins by writing the specified user instance to the file and then the

system recursively saves its constituents and the constituent's constituents

and so on.

4.7 Resource Data

The environment's knowledge database is built and structured like

the model database in every way except for two exceptions. First, the

knowledge database is built fi-om user entity instances of type, "resource".

Second, any constituent of a resource entity type must have an attribute of

data type, set and with a data label of, "machine_functions" declared in its

template file.

The first exception allows the kernel to separate the knowledge

database from the model database. The separation is important to

applications which must search for knowledge data within the entire kernel

database. Such an application, need only search for user instances of type

resource and not the entire kernel database. The separation is also exploited

when model data is saved to a disk file since resource data is not saved along

with model data. Resource data can be saved in exactly the same way that

any user instance can be saved.

The second exception allows resource data to contain information

about design-manufacture functions. As was detailed in chapter 3, machine

functions are declared in the schema. Each declared function is assigned an

index into an array of strings which contain the machine function

specifications. The set data type is defined as a 16 bit field. Therefore, to

assign a machine fiinction to an entity instance, the bit which corresponds to

45

the machine function index is set. Any number of bits may be set, and

therefore, a single "machine" instance can be specified to perform many

machine functions.

4.8 Graphics Data

A separate database to accommodate display data is maintained by

the kernel. The display database is used by display applications to interface

with Apollo's GMR3D graphics package. Display applications manipulate

and read the display database with a subset of the KAL routines. The

primary motivation for creating the special display database within the

kernel database was to isolate (as much as possible) the special needs of

GMR3D from the rest of the kernel.

GMR3D maintains data structures and graphics information in a

metafile. The metafile contains all the information which GMR3D needs to

create a screen image. When ordered to do so, GMR3D reads the metafile

and displays the image that the file defines. In addition, GMR3D has many

facilities for manipulating (e.g., shading, translating, rotating) an image

which were incorporated into the user interface.

The structure of the metafile is much like the structure of the model

data. That is, complex graphical entities, called structures in GMR3D's

language, are built from more primitive structures.

The process of displaying a model involves building the metafile from

the model instances. Therefore, display applications must create and

maintain the metafile. The easiest way to maintain the metafile (requiring

no special display database) would be to invoke every displayable entity

instance's display method every time that the model is displayed after it has

46

been edited. A display method would add its own GMR3D structure to the

metafile and properly associate the structure with other structures in the

metafile.

The process of bvdlding the metafile fi-om scratch, however, is very

time consuming for large geometrical models. Therefore, to avoid rebuilding

the metafile whenever an entity instance is edited, the metafile structure

identifiers (assigned by the GMR3D system) are saved in the display

database. In addition to the structure identifiers, a flag is kept with each

structure identifier which indicates whether the structure needs to be

recreated (refreshed) within the metafile the next time that the model is

displayed.

Therefore, when a diplayable instance is edited its corresponding

refresh flag is set. Consequently, the next time a display appKcation is

invoked it need only invoke display methods for instances which have been

edited.

47

CHAPTER 5

CONCLUSIONS

5.1 Conclusions

The purpose of this thesis work was to develop a computer

engineering environment capable of supporting feature based design and

manufacture. To accomplish this goal, the implemented environment had to

address four key problems.

First, the environment had to define and maintain complex data

types (features) and instances so that the complexities of engineering data

could be fully described. The object oriented environment developed can

build complex entity types from more primitive entity types, and thus

complex data types can be defined. Data objects are manipulated by

methods. The methods may be inherited through super-class and/or direct

association. The object oriented environment, by defining complex entity

types and associating methods, can efficiently and effectively maintain

complex engineering data.

Second, complete product data must be maintained by the

environment. The complete product data includes both geometric and non-

geometric data. The environment's Data Description Language (DDL) and

internal data structures are robust enough to allow geometric and non-

geometric data definition and storage. Examples of geometric data definition

have already been presented in chapter 3 (figures 3.1 and 3.2) and chapter 4

(figure 4.7). An example of non-geometric data is a material entity. A

48

material entity could contain the materials ANSI code and properties such as

Young's Modulus and yield strength. Such a material entity could become a

constituent of a user entity defining a part and thus become the material for

that part.

Third, to facilitate knowledge based operations on engineering data,

the environment maintains a "knowledge" database. The knowledge data is

encapsulated in special "resource" entity instances. Constituents of a

resource entity instance contain data which define the machine functions

which the constituent can perform.

Finally, the environment is flexible enough to evolve with appHcation

writers' changing needs and the evolution of standards such as the Product

Data Exchange Specification (PDES) and the Standard for the Exchange of

Product Data (STEP). Much of the flexibility is provided by the object

oriented approach to programming and dynamic binding. The object

oriented approach allows high level applications to be written independent of

the specific entity types which they will manipulate because applications

need only send messages to abstract entity types in order to manipulate

them. In addition, the dynamic binding property of object oriented

programming allows methods and entity types to be added and deleted from

the schema without requiring the recompilation of the kernel and its

subordinate modules. Also, only those methods directly effected by a schema

alteration need be recompiled following the alteration.

The environment was implemented on the Apollo system and was

then utilized by Vance Unruh to develop a CAD/CAM application. Mr.

Unruh's appHcation is detailed in his thesis entitled, Implpmpntat.inn nf a

Feature-Bf^spd Obiprt-Oriented CAD/CAM Syst.Pm [6] The application dealt

49

strictly with turned features (i.e., features whose geometry can be

represented as a surface of revolution). The environment, however, is not

restricted to turned features. Mr. Unruh's application allows a designer to

input and edit a design using features as the building blocks of the design.

The design can be viewed as a three dimensional wire frame or as a soUd

with shaded surfaces.

The application faciKtates the editing of a factory (knowledge base)

which in this case contains machines capable ofproducing turned parts. In

addition, the application allows the user to define the raw stock from which a

part is to be turned. Once the design, factory and raw stock are defined the

application can determine which machines in the factory can produce the

part specified by the design. The user can then define the work holding.

Finally, the application can generate the necessary tool paths to

manufacture the part and outputs the tool paths as APT (Automatic

Programmable Tool) statements.

5.2 Future Research Topics

Four research areas should be investigated in future research and

implementations of feature based design-manufacture computer

environments. The first area involves standards. The PDES and STEP

standards for product data definition are evolving and should be fully

utilized. In addition, the EXPRESS language would provide a robust and

standard Data Description Language (DDL).

Second object oriented environments may be more effectively

implemented in an object oriented programming language such as C++ [7].

The environment of this thesis work was written in standard C due to the

50

availability of C compilers.

Third, current commercial databases and solid modeling systems

should be integrated into future environments as much as possible. Object

oriented databases are currently on the market which perform many of the

functions of the database module of this work as well as providing many

other database oriented utilities. A solid modeler modified to manipulate

features would also be useful when geometric model data is being edited.

Finally, much research could be done in the areas of knowledge

encapsulation and use. The environment of this thesis work allows a "tool"

knowledge database to be maintained. Model integrity, however, must be

maintained by methods. An expert system to check a model's integrity

against a design-manufacture knowledge database would be useful.

51

REFERENCES

6.1 Literature Cited

1

.

Herb Brody, "Cad Meets Cam," High Technology, May, 1 987, pp. 12-18.

2. D. R. Searle, J. M. Kniskem, L. P. Kotronis, "Computer-Integrated

Manufacturing System Goes Beyond CAD/CAM," Control

Engineering, February, 1985, pp. 50-53.

3. Bradford M. Smith, V. S. and International Efforts in Product Data

Exchange, Gaithersburg, Maryland: National Bureau of Standards,

January 27, 1986, pp. 1-11.

4. Scott M. Staley and David C. Anderson, "Functional Specification for

CAD Databases," Computer-Aided Design, April, 1986, pp. 132-138.

5. Bjame Stroustroup, The C++ Programming Language, Reading,

Massachusetts: Addison-Wesley PubHshing Company, 1986, pp. 1-37.

6. Vance W. Unruh, Implementation ofa Feature-Based Object-Oriented

CAD/CAM Package, M. S. Thesis in Mechanical Engineering, Kansas

State University, 1988.

52

7. DOMAIN C Language Reference, Software Release 9.2,

Chelmsford, Massachusetts: Apollo Computer Incorporated, 1986, pp.

3-17 to 3-18.

53

6.2 Bibliography

1. Dixon, J. R.; Libardi, E. C, Jr.; Luby, S. C; Vaghul, M.; and Simmons,

M. S. "Expert Systems for Mechanical Design: Examples of Symbolic

Representations of Design Geometries" Applications ofKnowledge

Based Systems to Engineering Analysis and Design, Editor: C. L.

Dym, ASME, 1985.

2. Klein, Arthur. "A SoHd Groove: Feature-Based Programming of Parts"

Mechanical Engineering, March, 1988, pp. 37-39.

3. Grant, John. Logical Introduction to Databases. New York, New York:

Harcourt Brace Jovanovich, 1987, pp. 1-31.

4. Product Definition Data Interface: Operator's Manual (Draft),

CM 560130000 (Prepared for: Materials Laboratory, Air Force

Wright Aeronautical Laboratories, Air Force Systems Command,

Wright-Patterson Air Force Base, Ohio), July 30, 1985.

5. EXPRESS: Information Modeling Language, ISO TCI 84/SC4AVG1

(N268 Draft August 1988).

54

APPENDIX A

DYNAMIC BINDING

A.1 Acknowledgement

The format of the binary file, and the algorithm for the parser of the

binary file, presented in this appendix were established by Vance Unruh

(Graduate student in Mechanical Engineering, Kansas State University,

1987 - 1988). The format was determined experimentally.

A.2 Definition of Dynamic Binding

The object oriented system presented in this thesis depends on the

ability to invoke any method for any object type. The object types and

methods cannot be known when the kernel system is compiled. To demand

such knowledge at compile time would require re-compilation of the kernel

every time the schema (object and method declarations) were altered.

Therefore, the system must be able to resolve pointers to methods

(functions) at run time. That is, when an application program (or the user

interface) requests a particular object to invoke a specific method, the system

must, at that time, determine the address, in memory, of the code for that

method. Once a pointer to the code is established, the method can be

invoked. Run time resolution of code pointers is referred to as dynamic

binding.

Djmamic binding was accomplished in this thesis work by binding the

executable method code onto the kernel system. The executable file created

55

by the binder is then parsed at run time to determine the memory address of

the method code. A complete explanation of the process wiU follow.

A,3 Function Execution

Function execution in a DOMAIN C program involves dereferencing

a pointer to the function. For example, if "fcn_ptr" is declared as a pointer to

a function and is assigned a valid function pointer, then the function pointed

to by fcn_ptr is executed by dereferencing fcn_ptr as shown in figure A.2

(following page).

However, the dereferencing process involves a level of indirection,

which in normal circumstances is resolved by the C compiler. For a complete

discussion of the indirection process, refer to the DOMAIN C language

reference [7]. A pointer to a function actually points to a 64-bit address

constant that in turn contains two other pointers (see figure A.l). In C

FUNCTION
POINTER

B4-BIT
ADDRESS CONSTANT

ENTRY CONTROL
BLOCK

POINTER TO ^ ECB

ECB

ECB POINTER POINTER KECB
POINIbH

'

Figure A.1: DOMAIN C Function Pointers.

compiled executable code, the two pointers are identical and point to the

functions entry control block (ECB). The ECB contains the function's static

data and the location ofinstructions.

56

In reference to this thesis work, the indirection had to be simulated

at run time. In other words, the method ECB pointers were determined at

run time and stored in the first 64-bits of a structure. A method could then

be invoked by dereferencing a pointer to the structure. The aforementioned

structure as well as the algorithm for finding the ECB pointers will be

discussed in subsequent sections of this appendix.

mainO /* Demonstration program */

int (* fcn_ptr)(); /* Declare fcn_ptr as a
pointer to a function
which returns an
integer. */

int value;

fcn_ptr = ((*){))a_function; /* Assign fcn_ptr
the pointer to
a function.

*/

value = fcn_ptr(); /* Execute the function
pointed to by fcn_ptr. */

int a_function() /* Define a_function */

int a value;

code

return (a value)

;

)

Figure A.2: Dereferencing a Function Pointer

A.4 Resolution ofECB Pointers

The ECB pointers are resolved through a three step process. The

process is carried out when the system is initialized. The first step

57

establishes the offset, from a yet to be determined base, of each method's

ECB. In the second step, the base is established. Finally, the offsets are

added to the base to produce the unique ECB pointer for each method. The

pointers are then stored in the master method directory which is used by the

system to invoke methods.

The ECB offsets are imbedded in the binary file (described in section

A.5), which contains the bound executable code for the entire system. In the

binary file, each method (i.e., user defined function) has a block ofmemory

reserved which contains its name (in ASCII) and ECB offset. Therefore, a

parser can search the binary file for method names and read the ECB offset

for each method.

However, the parser must know when it has found the name of a

method. Therefore, methods were given a special prefix to their name. The

prefix is, "n_". Consequently, a method named "DisplayStep", would be

prefixed to become, "n_DisplayStep".

The base address is established by finding the ECB pointer of a

special method (i.e., a method with a predefined name) named

"n_setup_fcn_calls". Note that n_setup_fcn_calls is also the initiahzation

routine which parses the binary code and sets up the master method

directory. The C code segment of n_setup_fcn_calls which estabUshes the

ECB pointer is shown in figure A.3 (foUovsdng page). A complete listing of

n_setup_fcn_calls is include at the end of this appendix. The base address

generated by the code segment in figure A.3 has the offset for

n_setup_fcn_calls already added to it. Since, the method offsets have been

established, the offset for n_setup_fcn_calls can be subtracted off the base to

produce the absolute base address of the ECBs.

58

long n_setup_fcn_calls (file_name)
char file_name; /* The name of the system binary file.*/

I

long *ptr; /* Pointer to pointer to ECB. */
base; / Base address of ECBs. */

ptr - <long *) n_setup_fcn calls;
base = (long *) (*ptr) ;

~

)

Figure A.3: Establishing ECB Base Address

Once the base and offsets are established, the offsets are added to the

base to generate the ECB address for each method. The ECB addresses are

stored in the master method directory along with their corresponding method

name. The directory is an array of structures. The structures contain two

pointers (ECB pointers) and a pointer to a string which contains the name of

the method, (see figure A.4).

Therefore, when a request is made to the system to invoke a method,

the array of structures (i.e., the master method directory) is searched until

the appropriate name is found. A pointer to the located structure can then

be dereferenced (refer to section A.3) to execute the specified method.

struct Method_Entry

pointer ECB_ptr; /* Pointer to an ECB */
pointer ECB_ptr2;
string *name; /* Pointer to the name of a

method. */
} f

Figure A.4: Structure ofMethod Directory

59

A.5 Binary File Format

The binary files, which this section describes, were produced by

binding (DOMAIN bind function, version 5.17) the kernel modules to the

methods library. The method modules were gathered into a library using the

DOMAIN librarian, version 2.14. All modules were written in C and

compiled with the DOMAIN C compiler, version 9.2.

The binary file is divided into six major sections. Note, a sample

binary file is presented at the end of this appendix. The six major sections

are:

A) header,

B) executable code,

C) debug information,

D) external definitions,

E) static data (used in ECBs),

G) footer.

The contents of the sections will be discussed in subsequent paragraphs.

Section A, the header, spans 32 (hex) bytes. The contents of the

header are presented in table A.l (following page).

Section B contains all the executable code (assembly code) for the

routines which make up the binary file. Each routine begins with PEA
CLR.L and ends with RTS.

Section C contains debug information. When modules of the binary

file have been compiled with the debug option, this section is large because it

contains debug information for each module. However, when the debug

60

option is not used, this section contains only a small header.

Table A.1: Header Information

Note: All offsets are relative to the beginning of the binary file.

Offset (hex) Fnnrtinn

4 - 7 offset of section D

8 - b offset of section B

c - f offset of section D

10 - 13 offset of sections

14-17 offset of section F

Ic - If total length ofbinary file

Section D is the most important section relative to this thesis work

because section D contains the ECB offsets and names of user defined

routines. Table A.2 (following page) presents some pertinent information

contained in section D.

The standard length subsection of section D contains an entry for each

external routine bound into the binary file. Each entry is 36 (hex) bytes long.

Bytes zero and one of an entry define the number of the external routine

(The externals are numbered consecutively in this subsection). Bytes two

and three indicate whether the external was defined by the system or

defined by a user. Bytes two and three contain zeros if the external is

system defined and 00 02 if the external is user defined. If the external is

61

user defined, bytes four through seven contain the offset (relative to a base

address defined when the binary file is loaded into memory) of the routine's

ECB, otherwise, bytes four through seven are all zero. Bytes sixteen through

thirty-five contain the ASCII name of the external (padded with spaces to 32

hex bytes).

Table A.2: Section D Information

Offset^ihffld FiinctinnZ

^ " 25 module name (padded with spaces to 32h

bytes)

offset to beginning of standard length

names^

3a - 3d

«3

3e - 41 number of standard length names

42 - 45 offset of section E

4a - 4d offset of section B

4e - 51 length of sections

9e - 101 offset of section C

102 - 105 length of section C

1

.

Offsets are relative to the beginning of section D.

2. Offsets are relative to the beginning of the binary file.

3. The standard length names subsection ofD will be further

detailed.

62

Relative to this thesis work, the standard length names subsection of

section D contains the crucial information needed to find the ECB pointer of

a routine at run time (i.e., the name of the routine is associated with an

offset to the ECB).

Section E contains static data used to build the ECB of a routine.

Therefore, if a routine has static variables initiahzed in it, the static data

will appear in this section.

Section F has information pertaining to when the file was created. In

addition, the section specifies what tools where used to create the file (i.e., C

compiler, binder, etc.), as well as other information.

63

JtjV .

A.6 Master Method Directory Builder

include <ngm.in3.c>
include Ocernel . ins . c>

define from_begin
define from_current 1

/**************'****i,*******1,1,i,*l,i:t*,,m,.l,1,t,tH.n,i,ti,l,t,*tl,i,1,ti,,n,i,tttt
setup_fcn_calls: Initializes the master methods directory

n_setup_fcn_calls (main_name)
^^^^ main_name [] ;

(

/* Pointer to pointer to ECB */
/* Pointer to start of ECB's */

long *ptr char,
base;

long pos,
step.
end.
offset,
off3et2.
start;

FILE *file id;
int i.j;
stringPtr nameP

;

string tryname;
char malloc ;

flat_methods = (Method_List_P) NewPtr (sizeof (struct Method List)
- method_max*sizeof (pointer)) ;

ptr_char = (long *) n_setup_fcn_calls;
base = (long *) *ptr_char;

file_id=fopen (main_name, "r")

;

fseelc(file_id, OxOc, from_begin) ;

start - getw(file_id)

;

end = getw(file_id)

;

fseek(file_id, start + 0x3A, from_begin)

;

start = getw(file_id)

;

pos = end;

Read the binary file and find all the methods. »/

for (i = 0, flat_methods->number = 0; pos > start;)

fseek(file_id,pos-0x20, from_begin)

;

fgets (tryname, 32, file_id)

;

StripSpaces (tryname)

;

if (strncmp (tryname, "N ",2) == 0)
(

flat_methods = (Method_List_P) SetPtrSize (flat_methods,
sizeof (short) + (i + i)
*sizeof (Method_Entry_p));

flat_methods->item[i] = (Method_Entry_P) malloc (

64

sizeof (Method_Entry_t)
)

;

step = pos - 0x32;
fseek (file_id, step, from begin);
offset = getw(flle_id)

;

nameP = tryname + 2;
strcpy (tryname.nameP)

;

for(j = 0; j < strlen (tryname) ; j++)
if (tryname tj] < 'a')

tryname! j] = tolower (tryname [j])

;

else
trynamelj] = toupper (tryname [j])

;

flat_methods->item[i] ->name
- (stringPtr)malloc (strlen (tryname) + 1);

strcpy(flat_methods->item(il->name, tryname)

;

flat_method3->item[i] ->where =
(pointer) (((char «)base) + offset);

flat_methods->item[i] ->where2 =

(pointer) (((char «)base) + offset);

i++;
flat_methods->number++;
)

pos — 0x36;
)

for
(j-0; j<i; j++)
if (strncmp(flat_methods->item[j]->name,

"setup_fcn_calls", 15) == 0)

b"^"^
" (l°ng)flat_method3->item[j]->where - (long)base;

)

for (j=0; j<i; j++)
(

flat_methods->item[jl->where =
(pointer) (((char *)flat method3->item

f i 1 ->where)- off3et2)

;

flat_methods->item[j] ->where2 =
(pointer) (((char *) f lat_methods->item[j] ->where2)
- of f3et2)

;

)

65

A.7 Example Binary File

I 00

Eh 1 o
U 1 o
[J 1 o
in

1 o
O O
00 r-l

fat-
f-t(nooooo oo owoooo oo o
t-t oooooo o
O 09O rH
o ooo

* 2
X 2-

[d in O
< m Q
•C CO [14

•=r <* Cu
U in Q
Du r* <N
fej Cd [u
Cu T CN
yj Cw OD
in in Q
Cd < Du
tj. eg ti^ Cu Qo * rgO O fcjo in <N

03 M -a-

y3 in Q
< M U-^T UiO O Q
in cn (M
CO U Cu^ ^ OJ
r- o o
< .H o
c\J Cu o
'^ tj o
in Q ii>

in i-o in
CO O Cd
*r csj -"T

^ lis

i-H Oo o
o o
U 00
tX» U3
CO ril

T CM<o
o in
V~- CO
l£. ^
-a- r-^ <O <Mo <r

O 03
f^ -^

o o
o o

Scu
I

• <n- 3; *
<2J O

II • m Oi
• D <
• o s 2
E • 3 •

X 2 2 2

• 2 •

N g • eS X 2 s

«•?

H • a
u • 3
a • -u

'^ <N ^ iH
1 «3 ^

Ip ^ r- 1 r- rH
Cd ti4 Cd 1 -H CN]

tw (N ^
1 r^

td T CD in •z 1 1^ Cu <H
«j Q vo r-

1 ix>

03 a. < [d M 1000T tj (M ^r e^ 1 t^
•£. Q U* 1 eg c^
C14 1^ in in

1
* r-

[d -a- oD < 1 in
[lj CN ^ CM

1 y?
r- tu Cu 1 ^^ en i^

^oj < ^ s: 1 tD
Q CN

1
iXi CN

fM ^ in
1 r-
1

en IJu in u D 1 vo Cu VA
< td m in ca 1 (N in rH
Q Ui oo [d td t O) .H^ tj- ^ Q l£
Q in CO [d
i£i CTi r~ tn r-
CO [d [d [1] in
er -^r ^3- ^ (J U5

-^ tu CM CNI 'a*

(J (J^ in en 2 p- inQ cd < Cd l£l

tn Cu CN] ti 1X3< Q tu Q E-* in 10
r- yj *r i£i y3
00 Cd CO CNT IN in CN to i£i r-

Cd <! tn .H CNQ ca in rH 10 rH fOQ Q Cd Cu in
Ci* -a- [l, U3
< Q Q CO rH
r* 1^ a> u) i£)

03 CO Cd 03 moo
Tj- (T ^ <r u>u 00 m eg< Cu Cu 000

Cd Cu 000
Cl. lu 000

Q Cd Q ^O rH <
i£> i£) [l] m 000
CO 00 iH [d rH cnT ^ -^r T t^

CO 03 03
rH CN ^ in r- CD <

< < << < < <

u u Cd
i^ o m
CTl CN] o
1^ o r-
CN < in
p- m r-O rH ^
r~ o [^
< "^ rgO .H P-O -H rH
O O l^
iH Cd *J"o o r^o o no o r-

o < Cuo in ino «a< en001^
< CO Cuo o in
in o CuO O '^
O CN] U Oo r- 1^ o
f^ o o oO O U> O
CJ O Cu [uO O l£> Cu
iH O O Oo o p- r-

*« CN) rH oo o 1^ o
^ o o oo o m o
Cd in CN] C3O ^O rH CN
>H O O OO "-D O O
O tn rH Oo ys O O
iH ys o oO liJ o o
Cd Cu O CNo in o om ^r o oo r- o o
CO O CO o
CO in ^o 03
Cu Cu Cu Cu

66

I- Q
• a
o
:§

m o
«3 (SJ

lu o
in csj

Uj o
r^ o^ (N
IJU o^ (NOo
'^ (No
• CNJ

D O
O O

o o
CSJ CSJo o
CM CSJ

00 O
<^ CQ

<-< o o o
rg (N CNJ CMO O TT OO CM CM (NO O 1-t o
lO CM ^ OJ
< o ^ o
iH (M in tNO O iH O
C3 CN T CMo o q" Oo (N -(r rs)o o o o
CNJ CM O (NO O O OO CM O CNJ

O O O Oo fsi m CNJO O Cu oO CM O CNJo o o oO CM O CNJo o o oO (N O (NO O O OO CN O <Mo o o oO CNJ O CMo ^r o oO CNJ O CSJo in o oO ^ O CM

O CM O Oo in oj (No in o oo m CNJ CM
[w ^ o on ^ CNJ CMo in o oo ^ eg CNJo m o oO T CNJ CNJO Cn O oO -"T (SJ (Nl

CN O O
in (Nj CMO O Om CM CNJ

O CO o
W tu rH
Du [u O

o o o OOOCMOOOOOOOOinooo
CM O (N OcNOinCNO(NOCMOCMO'3'CNOCNo o o oooooooooooo^a-ooo
(N O CNJ OCMOinCNOCNOCMC (N O tn (N O CNO O O OCi]<<3-OOOrHOC O CJ 'T O O (T^
CM O (NJ 0'TiH(MCN0CM0{N0CN.-icMCNO(Mo o o ocno Cuoooooo O O [tj O o o
CNJ O (NI O^OincNOCMOCNO CM O in CN O CNo o o OrHOQOOOmoO O O Q O O O
CNJ CNJ CM OTCM-O-CMOCNOCNO CM CN ^ (N O CvJTT O O ooor-oooooo o o r- o o o^ (NJ (N O-o-tN-^CNOOJOfslO CN CM "a* CM O CN(Ti O O o-^roooooooo O O C3 a o ir-1^ (NJ CN
bj O O OCNCMOCMOCNOCNOCNCNOCNOCMOfcOOOOOOOO o o o o o oin osi (M OLn(NOCNO<NO(NO CN CM O CN O (N

in o o O^OOOOOi-tOOOQ ^ O O O i-H OT CN CMUo o rHinCMOCNO(NOCM.-H in (N O (N O (Nocnoooooc3oo en C3 O O O O^ (N CM OTJ-CNOCMOCMOCMO 'T' (N O CSJ O CM<Ti O O O Cdooorooooo CO o o o m in^ CN CN (N ••^"(NIOCMOCNOCNCN in (N O (N O <3*^ O O O (Oinoo^ooooo in o o o o en^ CM CN CN OJincMOinocNocNCNBOOOCNOOOQO 'a* CN o CM o tn^ o ro O O O O O O tuO CM O CM O '^00 CN in (N (CO<NOinO(MO^CN^ o in o Coooi-toooino o o o o o oO (N O CM O "!1*
O CM in (M OCNO^OCMOTCN
CM O ^I* O Ji^JOOrHOOOO'^l'O o o rH o o mO CN in CN UO(NOinocMrHtncN C3 (N O CN O TO O .H O tJiooo tLjOoocno O O O O O [i4O CN O (N o mO CM -^ CN CO(Noino(NoincM

HooromoooCT^oO O *! O o o CO o o in oO CM in (N OCNO'C'OCN(NinCM O CM O CN C!> ^3- rjO O f^ O "pooooooonooooiriofic^O CM in CN MOCNOVOCNCNinCN O (N O ^f O ^ CNo o o ^ o o^ oo o ^ o TJooocnooioooO CN 00 (N TJOCNO^OinCsjOCN o CN o in o a- CMO O O i-< o so oo o ^ o COOO'X>00000O CM O (M tnocNOTomcNocN O (N O -^ O T CM
"H O O M [u ^ Oo o ^ o UrHOOpuCOrOOOOO (N O CM tOocNoin.-('3<(Nio(M O CN O ^3" >—1 (NJ (MO O O O OOOTOCNOOO O O O !Ti O [lj OO CN O CN o(NOinoincNO(N O (N O ^ O in CNO O O O tnoo tdO'^'OOO m O O Q O Q oO CM O ^ CM ^ CM

CM Cvl O CN OCNO"3'CNinCMOfMO O O O oooosocnooo C> O O CM o t^ o
rsj (N O CM OrslO»3"CMinCMOCN O CM O in (M T (N

O 00 O CO
r- CO < CD

OCOOOOOCOOCOO CO O OD C3 CO O 00QMOrHn'3'^f>r-CTv <; U Q [u o CN mCO en (O CO
(N (N CN CM INCMCNCNCNCMCNCMCN

^ 5? 'a- -^ in in in
IN (N (N (N (N (N CN

67

A H
• H
z

• O II

°isisliii°siiiiilii§iiiliiiss|§s§sgsgys§sg
sssgss::isgsssg2sisslsiii°iiilSs§°s°s°§'-gs§

°sggss^gsgssgsssgsi!igigiiig£°§°§°§°§'Sgsg
sgggg2gggsggiiiisg5iigiiiS|S|||gsgssssgsg
ssgsgsssgS3ggggsEi5iii|glEisggi°°i°°-°s°§
gsgsg;^gggggggggi^iiiligilsiiiii|s°-°§sgsgor.o^o^owr.or.or.oSgj;sgsgsgsgssgsgsgsgs:sgsgsg

iigH?sliiiggs5slg|igsl£s^iiii-s?ssgsssg
gsg£g£gsgggsggsgHislig!gSil2iils°£°°°§°§
gggsgsgsggggggsgs2lgig|£gHi°°°°"°-°§°§°§
gggic°?;gsggggi°3g|gislgi2gsgigig|-°'°s°§°§
gggs§sgggggggg|giilsiggSii|ii|||ssgsgsgsg
sggss;5gggsg8ggsgggsslglsgig°gigii°§°§°§°§
gg::::sssggggg^5!ssggggsiii;iigg°°°"'°§°3Sgs^o<No^o^^o«oSg?;gssgsgsgsg5;sgsgsgsg5;sgsgsgs;g

ggisg^iigggiHgHgig|2iig^iiiiigss5sgsgsgs^s
§gssgsgggggs£iiilig3i^gsgliliisg'-°°°°§'°
gggsggggggggsgggiiiHsgigigigisg°°°°°°°'°
ggs;^gg2sgssissggg!g8Ellgig°g°°§-°§°§°§°§sis
:sgssgggggis3sg|ggisssigigggigss°°°°°°°—

°

gggsgggsggsgsggg|gisgsgigggggi2°s°s°§sgss
ggg^ggggggsgsggigil£g^iiiigi°°-sgsgsgsisss
°'M':if^':i°':i??;°^??:5SSgSgS:SSSgSgSg5S5SgSgSgSSSS
5SSSSSSSSSSSS£3SSSSSSSSSgSSSSSg5?is°"°"°"°

68

o o
CN OO O
CNJ O
o o
CN oo o
tN OO O
<N] Oo o
eg oo td
CN O
O O
(NJ O
o a

O tu
CN O
O O
rg oo Ui
tN ^
o o
<N Oo o
o o
CM (No o
eg rgo o
eg <N

Cd o o
^ CN O
H O O
"5" CN O
U O O
''T rsj oo o o
m cN o
Cn O O
in (N o
Cd o o
^ eg oo o oo og oo o oo rg o

o o
rg o
o o
rg o
O r-i

eg o
o o
rg oo o
OSI o
o o
eg oo o
CN O
o o
eg o

o o
eg o
o o
eg o
o o
rs) oo o
eg o
o o
eg oo o
eg o
o eg
eg .-<

o o
eg o

o m [u o
eg 1 r c\]

o o u o
eg o '3' ego eg [l4 o
eg lT) m ego o -tr o
esi o T ego o o^ o
eg eg -ST ego o m o
eg eg lT) ego o o o
eg eg o ego o o o
eg eg o esj

o oo ego o
o rg
o o
o rg
o oo eg
o o
o rgo o
o ego oO CMo o
o rg

o oo ego oo eg
<-(o
o ego o
o eg
o oo eg
o o
o ego o
o eg
o o
o esi

ego o
eg oo o
rg eg
o o
eg eg
T o
ui rgm o
^ eg
in o
•^ ego o
in eg

fn o
in eg
•H O
^ ego o
o ego o
o rg
o o
o ego o
o eg
o oo ego o
o eg

o o
eg ego o
og ego o
eg eg
en o
^ rgo oo ego oo ego oo eg
o oo eg

o o
o eg
o oo ego oo ego o
o ego oo ego o
o eg
•H Oo ego oo eg

<H oo ego oo rg
o oo ego o
o rgo o
o eg
o o
o ego oo ego oo eg

o oo ego oo esio o
o eg
o oo eg
r-i O
rH ego -^

o in
o cd

in ego o
o ego o
eg eg
o o
eg in
o o
eg oo o
eg o
o o
rg oo o
eg o

o o o
eg o eg
o o o
eg o ego o o
eg o rgo o o
eg o eg
o o o
eg o ego o o
rg o es]O .-H O
CM o ego o o
eg o eg

•-" o o in ino eg o ^ ino o o eg oo eg o in o
C3 O O in CDo eg o in ego o o r- oo eg o ^ ego o in en oo eg ^ ^ ego o o vo oo eg o ^ ego O T tj oo eg in m egO O O -ST Oo eg o ^ eg

r [— tn oo ^ r-i sj- rgO OS o tu oo ^r o m ego Cm liJ to oo in in ^r rMo in o o oo ^ o V ego O o <n oo ^ eg T egO CTi o vo oo T eg ^ eg
>-o vo o o o
<H -"a- rg o egO [in O o oo in eg o eg

-* o o o
in CM o eg
Cd oo o
«i" eg o eg
Cl(o o o
^ eg o eg
'^ o o o
^ eg o ego o o oo eg o eg
o o o oo eg o egO O i-« oo rg o ego o o oo eg o eg

o oo eg
o o
o ego o
o ego oo ego o
o ego oo eg
o o
o rgo o
o eg

iH oo eg
o o
o ego o
o ego oo ego oo eg
o oO CMo o
o ego oo rg

o ooo rg oo ooo eg oo o oo eg o
o ooo eg o
rH o o
o eg o
o o oo eg oo o o
o rg oo o o

o o n o
eg o in CMo o *i* o
eg o in rgo o Cd o
CM -H ^ eg

rg o T ego [u tu o
rg V ^ ego o o o
eg o in egm o tLi o
in eg in eg
in o [d o
r CN r eg

III o
^ ego o
in eg
o o
o ego oo ego o
o eg
o o
O CMo o
o ego o
o eg

o o oo eg o
o o oo eg oo o oo rg oo o o
o eg o
.-H o oo eg o
o o oo eg oo o o
o eg oo o oo eg o

o o
eg oo o
CM o
o V
eg •-{

o o
eg o
o en
eg in
o o
eg o
hi O
a* eg
r- o
"T eg

^ o <n o
in eg >!• eg
oo o m o
in eg in eg
in o o o
T eg o eg
^ o o o
Ln rM o eg
tu o o o
Ln eg o eg
^ o o o
•5T' eg o rg
CT\ o o o
^ eg o eg
ro o o om eg o CM

o o oo rg oo ooo eg oo o oo eg o
o o oo eg o
•H O Oo eg oo o oo eg oo oo
o eg oo o oo eg o

o o o o
eg o eg ego o o o
eg o eg ego CO ro o
eg <H in ego o m o
eg o in rgo r- ^ o
eg in in egO O .-) o
eg o T ego o -^r o
CM eg in eg
ST* o m o
"a* eg in eg

SS??^?*'='°°'=*°^*='°°0'=o<=>«>OcoocDoaDoa30coocoCT^CQUCdt..^eg•c•lnr-ao<cQQ[dOrHm"^vBr-a^rffl^^S^^^S^^^^^^^^^^^ooSSoSSooooS
cgegegegcgegegegcgegcNegegegegcnrifommmrioifiSn^Sn

o o o oo o o o
o o o oo o o oo o o oo o o oo o o oo o o oo o o o
o o o oo o o oo o o o
o o o o
[- o o o
i-t o o oo o o o
o o o oo o o oo o o o
o o o oo o o oo o o oo o o o
o o o o
eg o o oo O O O
O O O oo o o oo o o oo o o oo o o oo o o o
o o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o oo o o

en cQ
^ o
in o
in o
=r o
^ in
tu Id^ o
eg o
in oo o
in o
o eg
o o
r- o

<n o
C3
O

in o
m C3

<-)

IS) W
Cl4

iri ^
m tn
^

C5
o in

O T
o o
o o

CO o
in c^
in in

69

2; Eh

2 E->

• 114 D
*£. M (_; kS • Q
O U. D o 2; o
1-1 [J Q M o a
Eh Q O H M a<
U OS UH
D CO CL tZ> <
Q 00 • Q CC
O W • O O

CN O
lO O
o o
in o
n CM
-H O
o oo oUo
lO o
W o
o o
o o
o o
o oo o

3 Dq cNj

O T OO CTi OO "3* o
U in o
r- rH oWoo
o ooO CO oO CO oO [i] o
o o o
CNJ O ^O O 'T
O O IT)

O O '^

m o
T o
fT> O
^ o
Cd <N

Cu o
'^r om o

O O LO '<l-

00 o us t^O O tJ- PnO O [^ kO
o o fn o
00 o t— »^
O tu rH Oo [n US r-
Cm -H Q Uj
Cu O yJ CN
Cu o Cu r-
r- o CN r-o ^ [n &j
CO DJ Cs] ySo M o COO O CN i-O

CN t] O CNJ 00
c O o ^
J o o m
" O O LT)

1 o o <yi

' o o ^
root]
) o o *J-

^ tw o o^
r (N o T
q "a- o us
r in o T
> m u o
r -"a- ^ o
3 in [i, cd

o tu c

o ^ e

o tn cO <T <

O ^ <

o in e

^ ^O
O Vo o
'a* o
in om 00
^ CD
lo [d
m o
T o
^ o
tM O

ro o CN
T o in
m en o
in in in

M- in o
[u in o
^ T o
tN m o
in 'a* c~-o Cw M
in ^ o

CN in
in 53'

o ^
in in

fN CN
in oo o
in o
m o
iH o
o oo oo o
< o
Ed oo o
O T
o in
o oo m

o o
oo oo o
o oO CN
CO o
o oo oo o
CD Oo oo o
o o
00 CO
o o
o o
O O DJ
CO OJ CMo o oo o oo o oo
03 CO [i]o o lao o o
Ci3 o o
rH CD O
O O OO O O
^ O CN
U CO O
[d O Oo o o

o o ^
o o oO O OO O O
00 O iH
^ m oO i-H OO "3* O
i^ o ^ o
^ O O O
CN O O O
o o o o
< 00 o o
Cu o o o
CN iH O Oo ^ o o
U) O ^ COo o o oo o o oo o o o
CO O .-I fO
>H O O O
ti* o o oo o o oo on 1-f

o o o oo o o oo o o o
CN O O Oo o o o

T O O M* O
i-o o o r- o
tj o < fn 'a'

CN O iH r- om o o Cu o
P- O O lO O
CN O oo CN
r~- o (N r- o
in Cu tj u o
*^ i-O O <N O
en r- o Du o
r* 1-D o in o
in [tj o r- o
r— uj o "^ o
Cu O CM Uj CN
CN IC O US o
CN Du O O o
r- in o i^ o

<r> en
r- r-o Cn
r- CN
ro m
o m
CN '^
cn u
Q Im
1X3 CN

aoocooooocoocooaaocooiD
03<EQQ[dOr-lfn'^M3r-Cri<OQ
mmininLn'^y3i£iii)>^^£>ii3ii3^cu>
mfncncnmcncoronronnmfncn

-H o tjO CSJ [i4o o CuO CN fao o DhO (N InO O faO CN faO O
CN CNO O
CN CN
o o
rsi CNo o
CN (N

o o
CN CNO O
CN CNm o
U3 CNm o
y? CN
us oO CN
Ci] o
r- CNo o
fa CN
oa o
CN CN

o o
iH (No oO CNV oO CNO OO CNuo
CN CNo oO CN
i-t oO CNo oO (N

o oo
fa o
•sD r-
ro m

70

APPENDIX B

KERNEL ACCESS LANGUAGE

To use the Kernel Access Language (KAL) to produce a method:

1. Declare the method in the schema.

2. Create a source file with the name n_[method_name].c

3. Include the KAL header file (section B.l) in the method

source.

4. Write the method source code in C using the routines

defined in sections B.2 and B.3.

5. Compile the method.

6. Append the new method's object code to the method

library.

7. Re-bind the method library to the main modules.

71

B.l Kernel Access Language Header File

#nolist
#include <stdio .h>
#include <math.h>
finclude <3tring3.h>
include <base.in3.c>
include <error . ins .c>
#list

define
define
define
define
define
define
define
define
define
define
define

define
define
define
define
define
define
define

typedef
typedef
typedef
typedef
typedef
typedef

array_max 5000
menu_3 1 r ing_maX 120
menu_count max 50
stringlength 256
method_max 100
mode3__max 128
num_data types max ,-^ .50 . , .'

setlength 4
FALSE false
TRUE true
NIL

max_module3 100
max module name 32
max_messages 30
max message length 80
Ml (char) Oxel
M2 (char) 0xe2
M3 (char) 0xe3

unsigned char byte;
byte •pointer;
pointer •handle;
char string (stringlength]
char *3tringPtr;
unsigned long set [setlength]

;

struct
I

done_entry
I

long number;
short dir_index;
boolean
)-

•done

;

struct done

short
struct done_entry

number;
**item;

typedef struct done

struct
{

short
long
);

done_list_t

;

entity_desc

type;
num;

72

typedef

typedef

typedef

struct entity_de3c

struct
{

short
short
In-

struct ngTn_status

union
{

float
double
short
long
boolean
string ;

pointer
pointer . --^

ent it y_de sc_t
}

Data Type Pre-Def initions

:

struct
{

long
string
};

entity__desc_t;

ngm_status

module;
code ;

ngm_statu3 t;

*d;
*i;
*1;
*b;
*8/

p;
*lif-

*e;
gptr;

da t a__type_di r_ent ry

length;
type_name;

typedef

#def ine
#def ine
#def ine
#define
#define
#def ine
#def ine
#def ine
#def ine

struct data_type_dir_entry
data_type_dir_t [num_data_types_max]

;

float_data_index
double_data_index
short_data_index
long_data_index
boolean_data_index
string_data_index
pointer_data_index
entity_data_index
class data index

extern
extern
extern
extern
extern

data_type_dir_t
int
FILE
status_$t
ngin_statu3 t

data_type3;
num_data_type3;
*out_f ile;
status;
Stat;

extern
extern
extern
extern

/* Memory usage functions */

pointer NewPtr ()

;

void BlockMoveO ;

pointer SetPtrSizeO ;

void DisposePtr {)

;

73

/* database functions */

extern short GetDirlndexO ;

extern short GetDataTypeNumO ;

extern int GetValue ;

extern int GetArray ;

extern long GetLastlndexO ;

extern long GetTypeName
()

;

extern long GetLabeK) ;

extern void GetLeaf ;

extern long GetMembersO ;

extern void GetBranohO ;

extern int GetUserO ;

extern entity_desc_t GetCurrentUser ;

extern long SetCurrentUserO ;
'

extern void GetModelName ()

;

extern short GetCurrentMode ;

extern long GetTypeCount ()

;

extern long GetSpecFcnIndexO ;

extern long
J •GetSpecFcn ; i:

extern long *GetSpecFonFromName
extern short GetFcnNames ()

;

extern long *GetFcnFromName () ;

extern int SetValueO ;

extern int SetArray ;

extern int SetLastlndexO ;

extern void MakeName ()

;

extern int GetName ()

;

extern long Makelnstance ;

extern int DeletelnstanceO ;

extern int GetMachFcnName ;
extern short GetMachFcnIndexO ;

extern short GetMachFcnCount () ;

extern long StripSpacesO ;

extern int check () ;

extern int checkngmO ;

extern int ErrorPrint ()

;

/* Di.splay Functions */
extern long GetDisplaylD ()

;

extern long SetDisplaylDO ;

extern long DeleteDisplay ;

extern long Ref reshUserDisplavs ;

extern long SetRefreshO ;

extern boolean GetRefreshO ;

extern void RefreshDisplay ;

extern long PickPad ()

;

extern void Ref reshMenus ;

74

• «i

B.2 Data Manipulation Language Reference

check

DESCRIPTION

If a system error has occurred, check prints out the error message.

FORMAT

checkO

checkngm

DESCRIPTION

If an ngm error has occurred, checkngm prints an error message.

FORMAT

checkngm(status)

INPUT PARAMETER

ngm_status_t status

Status code returned from an ngm or display function.

75

•J-

Deletelnstance

DESCRIPTION

Deletes an instance and/or instances from the model.

FORMAT

error = DeleteInstance(dir_index,inst_num,option,status)

INPUT PARAMETERS i.

short dirjndex

Directory index of the entity type.

long inst_num

Instance number to be deleted.

short option

Delete options: = Delete specified instance.

1 = Delete specified instance if it is not used.

2 = Delete specified instance and its constituents

if it is not used.

OUTPUT PARAMETERS

long error

Error code: = no error

EOF = error.

ngm_status_t *status

76

STATUS CODES

Module number = 19

error number error

1 DeleteEntity failed.

2 Template has not been loaded.

3 Instance has not been created for the

specified entity type.

4 Specified instance number is outof range.

5 Specified instance has users.

6 Option index is out of range.

77

'' ^*, ._

ErrorPrint

DESCRIPTION

Prints an error message.

FORMAT

ErrorPrint(status)

INPUT PARAMETERS . .

ngm_status_t *stahis

Status code returned from an ngm or display function.

78

»r»T»'

GetArray

DESCRIPTION

Retrieves array data, given a list of array names.

FORMAT

error = GetArray(dir_index,inst_num,component_name,

begin,end,destP,status)

INPUT PARAMETERS

short dir_index

Directory index of the entity tj^pe.

long inst_nuin

Instance number.

stringPtr component_name

Name of the array(s) to get. Individual arrays are separated by

commas. Constituent data can be retrieved by separating the

constituent names from the data fields with periods.

long begin

Beginning index of the array(s) to retrieve.

long end

Ending index of the array(s) to retrieve.

pointer destP

Pointer to the retrieved data.

79

OUTPUT PAHAMETERS

long error

Error code: = no error,

EOF = error.

ngni_status_t *status

EXAMPLES

1) GetArrayd,!, "begin_point",l,5,&point,status); Retrieves the

begin_pomt array items 1. to 5 from entity type 1 , .
. , c .

instance 1, and returns the data in point.

1) GetArrayd ,l,"end_point.x",l,5,&point,status); Retrieves x array

items 1 to 5 from the constituent of entity type 1,

instance 1, named end_point and returns them in

point.

STATUS CODES

Module number = 4

error number error

1 Template index could not be located.

2 Instance pointer could not be located.

3 Data type requested is not of type array.

4 Array begin index is out of range.

5 Array end index is out of range.

6 Data block size is less than zero.

80

7 Source pointer returned by GetComponent,

or destination pointer was NIL.

8 GetComponent failed.

9 Expecting a data type of 'entity'.

10 A NIL entity pointer was encountered.

11 Instance number out of range.

12 Bad directory index.

81

w=

GetBranch

DESCRIPTION

Retrieves the name of the current branch.

FORMAT

void GetBranch(name,status)

INPUT PARAMETERS i , '.^i::i

stringPtr name

An array of at least 32 characters.

OUTPUT PARAMETERS

StringPtr name

An array containing the branch name. The name is of zero length if

an error is encountered.

ng;m_status_t *status

STATUS CODES

Module nimiber = 9

error number error

1 There is no current branch.

82

GetCurrentMode

DESCRIPTION

Returns the current mode index.

FORMAT

mode = GetCurrentMode(status)'

OUTPUT PARAMETEI^

short mode

The current mode index.

ngm_status_t *status

STATUS CODES

Module number = 11

83

GetCurrentUser

DESCRIPTION

Retrieves the current user entity.

FORMAT

user = GetCurrentUser(status)

OUTPUT PARAMETERS -, ,

entity_desc_t user

The current user entity.

ngm_status_t *status

STATUS CODES

Module number = 27

84

GetDataTypeNum

DESCRIPTION

Gets the data index of the named data type.

FORMAT

type_num = GetDataTypeNum(type_name,status)

INPUT PARAMETERS j
. j ..

stringPtr type_name

Name of the type (e.g., float).

OUTPUT PARAMETERS

short type_num

Index of the data t3T)e.

ngm_status_t *status

STATUS CODES

Module number = 2

error number error

1 Could not locate the data type index for the

given data type name.

85

GetDirlndex

DESCRIPTION

Gets the directory index of the named entity type.

FORMAT

dirjndex = GetDirIndex(entity_name,status)

INPirT PARAMETERS .
. ..,

stingPtr entity_name

Name of the entity type.

OUTPUT PARAMETERS

short dirjndex

Directory index of the entity type.

ngm_status_t *status

STATUS CODES

Module nvmaber = 1

error number error

1 Could not determine directory index for given

entity tsrpe name.

86

GetFcnFromName

DESCRIPTION

Retrieves the method pointer given a method name.

FORMAT

fen = GetFcnFromName(dirJndex,name,status)

INPUT PARAMETERS . .:j . ,

short dir_index

Directory index of the entity type.

stringPtr name

Name of the method.

OUTPUT PARAMETERS

long (*fcn)()

Function pointer for the specified method.

ngm_status_t *status

STATUS CODES

Module number = 37

87

error number error

1 Bad directory index.

2 Name pointer is nil.

3 Could not find the method pointer for the

input name.

88

GetFcnNames

DESCRIPTION

Retrieves the names of the methods for a specified entity type which

are included in the current mode.

FORMAT

count = GetFcnNames(dir_index,max_count,names,status)

INPUT PARAMETERS

short dirjndex

Directory index of the entity type.

short max_count

The maximum number of names to retrieve.

char names[max_count][32]

A two dimensional array to hold the members.

OUTPUT PARAMETERS

short count

The number of methods in the current mode for the specified entity

type.

char names[countormax_count][32]

The names of the methods. If the number of names exceeds

max_count, then only max_count of the names are returned and the

status code is set to a non-zero value and the actual number of names

is returned as count.

89

ngm_status_t *status

STATUS CODES

Module number = 36

error number error

1 Bad directory index.

2 Number of methods exceeds max_count.

90

GetLabel

DESCRIPTION

Retrieves template data.

FORMAT

error = GetLabel(dir_index,array,label_index,label,type,

begin,end,entity_type_name,status)-

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

boolean array

TRUE if the template item your asking about is an array, FALSE if

not.

int label_index

The template index of the item of inquiry.

OUTPUT PARAMETERS

stringPtr label

The data label.

stringPtr tjT)e

The data type name (e.g., float).

long *begin

If the item is an array, the beginning index of the array.

long *end

91

If the item is an array, the ending index of the array.

stringPtr entity_type_name

If the item is of type entity or class, the entity or class tjfpe name is

returned in this string.

long error

Error code: = no error,

EOF = error.

ngm_status_t *status

STATUS CODES

Module number = 7

error number error

1 Template has not been loaded.

2 Array label index is out of range.

3 Non-array label index is out of range.

4 Bad directory index.

92

GetLastlndez

DESCRIPTION

Gets the last index assigned for a variable length array.

FORMAT

lastindex = GetLastIndex(dir_index,inst_num,component_name,

status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long inst_num

Instance number.

stringPtr component_naine

Name of the component to check.

OUTPUT PARAMETERS

long lastindex

Last index assigned.

ngm_status_t *status

STATUS CODES

Module number = 5

93

error number error

1 Template index could not be located.

2 Instance pointer could not be located.

3 Bad directory index.

4 Instance number out of range.

94

GetLeaf

DESCRIPTION

Retrieves the name of the current leaf.

FORMAT

void GetLeafIname,status)

INPUT PARAMETERS - . . .3

stringPtr name

An array of at least 32 characters.

ngm_status_t *status

OUTPUT PARAMETERS

stringPtr name

An array containing the leaf name. The name is of zero length if an

error is encountered.

ngm_status_t *status

STATUS CODES

Module number = 8

error number error

1 There is no current leaf.

95

GetMachFcnCount

DESCRIPTION

Retrieves the current number of possible machine functions.

FORMAT

count = GetMachFcnCount(status)

OUTPUT PARAMETERS ;!j : ; .5 . *

short count

The current number of possible machine functions.

ngm_status_t 'status

STATUS CODES

Module number = 34

96

GetMachFcnIndex

DESCRIPTION

Retrieves the machine function index for the specified machine

function.

FORMAT

index = GetMachFcnIndex(fcn_name,status)

. . . V .< t . ^_i. - . i_-> -

INPUT PARAMETER

stringPtr fcn_name

Name of the machine fiinction for which the index is being requested.

OUTPUT PARAMETERS

short index

Index of the specified machine function.

ngm_status_t *status

STATUS CODES

Module number = 33

error number error

1 Input string pointer is NULL.

2 Could not find the index for the specified

machine function.

97

GetMachFcnName

DESCRIPTION

Retrieves the machine function name for a specified machine

function index.

FORMAT

error = GetMachFcnName(fcn_index,fcn_name,status)

INPUT PARAMETERS

short fcn_index

Machine function index for which the name is being requested.

stringPtr name

An array of at least 256 characters.

OUTPUT PARAMETERS

long error

Error code: = no error,

EOF = error.

stringPtr fcn_name

The machine function string associated with the input index.

ngm_status_t *status

STATUS CODES

Module number = 32

98

error number error

1 Input string pointer is NULL.

2 Machine function index is out of range.

99

GetMembers

DESCRIPTION

Retrieves the members of a specified directory class.

FORMAT

error = GetMembers(classname,max_member_comit,members,

number_of_members,status)

INPUT PARAMETERS

stringPtr classname

The name of the class for which the members are being requested.

short max_ineinber_count

The maximum nimiber of members to retrieve.

char members[max_member_couiit][32]

A two dimensional array to hold the members.

OUTPUT PARAMETERS

long error

Error code: = no error,

EOF = error.

short *num_of_members

The number ofmembers of the specified class.

char members[number_of_members or max_member_count][32]

The members of the specified class. If the number of members

exceeds max_member_count, then only max_member_count of

100

member names are returned and an error is returned.

ngm_status_t ^status

STATUS CODES

Module number = 30

error number error

1 The input name was the name of an entity

ts^pe. . ;.;.

2 Bad branch name.

3 The number ofmembers exceeded

max_member count.

101

GetModelName

DESCRIPTION

Retrieves the name of the current model.

FORMAT

void GetModelName(name,status) •

INPUT PARAMETERS o

stringPtr name

An array of at least 32 characters.

OUTPUT PARAMETERS

stringPtr name

An array containing the model name. The name is of zero length if

an error is encountered.

ngm_status_t 'status

STATUS CODES

Module number = 10

102

GetName

DESCRIPTION

Gets the name associated with an entity instance.

FORMAT

error = GetName(dir_index,inst_nuin,name,status)

INPUT PARAMETERS •- r.^ . . ^ . . . ji

short dir_index

Directory index of the entity type.

long inst.num

Instance number to be named.

stringPtr name

Name associated with specified entity.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t *status

STATUS CODES

Module number = 17

103

error number error

1 A name has not been assigned for this

instance.

2 Bad directory index.

3 Instance number out of range.

104

GetSpecFcn

DESCRIPTION

Gets the special function pointer.

FORMAT

spec_fcn = GetSpecPcn(dir_index,spec_index,status)

INPUT PARAMETERS . >

short dirjndex

Directory index of the entity type.

long spec_index

The index of the special function.

OUTPUT PARAMETERS

long (*spec_fcn)()

The pointer for the special function.

ngm_status_t *status

STATUS CODES

Module number = 14

error number error

1 No special function.

2 Directory index was out of range.

105

GetSpecFcnFromName

DESCRIPTION

Gets the special function pointer given the name of either an entity

type or a class.

FORMAT

spec_fcn = GetSpecFcnFromName(name,spec_index,status)

INPUT PARAMETERS

stringPtr name

The name of an entity type or class.

long spec_index

The index of the special function.

OUTPUT PARAMETERS

long (*spec_fcn)()

The pointer for the special function.

ngm_status_t *statTis

STATUS CODES

Module number = 31

error number error

No special function.

106

GetSpecFcnIndex

DESCRIPTION

Gets the special function index.

FORMAT

index = GetSpecFcnIndex(spec_name,status)

INPUT PARAMETER

stringPtr spec_fcn_name

The name of the special function.

OUTPtrr PARAMETERS

long index

The index of the special function.

ngm_status_t *status

STATUS CODES

Module number = 13

error number error

1 Could not find the special function index.

107

GetTypeCount

DESCRIPTION

Retrieves the current instance count for the specified entity type.

FORMAT

instance_count = GetTypeCount(dir_index,status)

INPUT PARAMETER

short dir_index

Directory index of the entity type.

OUTPUT PARAMETERS

long instance_couiit

The number of instances of type dirjndex. EOF is returned if an

error occurred.

ngm_status_t *status

STATUS CODES

Module number = 12

error number error

1 Bad directory index.

2 Instance has not been created for the

specified entity type.

108

"nfS

GetTypeName

DESCRIPTION

Retrieves the entity t3T3e name given a directory index.

FORMAT

error = GetTypeName(dir_index,naine,status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

stringPtr name

An array of at least 32 characters.

OUTPUT PARAMETERS

stringPtr name

An array containing the type name.

long error

Error code: = no error, EOF = error.

ngm_status_t *stattis

STATUS CODES

Module number = 6

error number error

1 Directory index out of range.

109

GetUser

DESCRIPTION

Returns the classname of the input string. The input string may be

either the name of an entity or the name of a class.

FORMAT

error = GetUser(input_string, cla88_name, status)

INPUT PARAMETER

stringPtr input_string

The name of either an entity or a class.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

StringPtr class_naine

The name of the class of which input_string is a member.

ngm_status_t 'status

STATUS CODES

Module number = 29

error number error

Bad branch name.

no

GetValue

DESCRIPTION

Retrieves data, given a list of component names.

FORMAT

error = GetValue(dir_index,inst_num,component_name,

destP.status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long iiist_num

Instance number.

stringPtr component_name

Name of the component(s) to get. Including the array index if the

component is an array. Individual components are separated by

commas. Constituent data can be retrieved by separating the

constituent names from the data fields with periods.

pointer destP

Pointer to the retrieved data.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t *status

111

EXAMPLES

GetValue(l,l,"begin_point",&point); Retrieves the begin_point from

entity type 1, instance 1, and return it in point.

GetValued ,1 ,"end_point.x,y,z",&point); Retrieves x,y,z from the

constituent of entity type 1, instance 1, named end_point and

return it in point.

STATUS CODES

Module number = 3

error number error

1 GetComponent failed.

2 Subscript on a variable length array was out

of range.

3 Source pointer returned by GetComponent,

or destination pointer was NIL.

4 Expecting a data type of 'entity'.

5 A NIL entity pointer was encountered.

6 Instance number out of range.

112

Makelnstance

DESCRIPTION

Creates an instance of the specified entity type.

FORMAT

instance_number = Makelnstance(dir_index,status)

INPUT PARAMETER

short dir_index

Directory index of the entity type.

OUTPUT PARAMETERS

long instance_number

Number of the instance created or EOF if an error is encountered.

ngm_status_t *status

STATUS CODES

Module number = 18

error number error

1 Bad directory index.

2 LoadTemplate failed.

113

^y-

MakeName

DESCRIPTION

Name an instance of an entity.

FORMAT

voidMakeName(dir_index,inst_num,name,status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long iiist_num

Instance niimber to be named.

stringPtr name

Name to be assigned (Up to 256 characters).

OUTPUT PARAMETER

ngm_status_t *status

STATUS CODES

Module number = 16

error number error

1 Bad directory index.

2 Instance nimiber out of range.

114

SetArray

DESCRIPTION

Moves a block of data containing an array to a specified location.

FORMAT

error = SetArray(dir_index,inst_num,component_name,begin,end,

sourceP.status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long iiist_num

Instance number.

stringPtr component_name

Name of the component to get. Including the array index if the

component is an array.

long begin

Beginning index of the array being set.

long end

Ending index of the array being set.

pointer sourceP

Pointer to the source data.

OUTPUT PARAMETERS

long error

115

Error code: = no error, EOF = error.

ngm_status_t *status

STATUS CODES

Module number = 35

error number error

1 Template has not been loaded for the input

entity type. ,. -j .-

2 Destination pointer, or source pointer was

NIL.

3 A NIL entity pointer was encountered.

4 Bad directory index.

5 Instance number out of range.

6 Could not find the template index for the

specified component.

7 Specified component was not an array item.

8 Could not find the instance pointer for the

input instance.

9 Array index out of range.

10 GetLastlndex failed.

11 SetLastlndex failed.

116

SetCurrentUser

DESCRIPTION

Sets the current user entity.

FORMAT

error = SetCurrentU8er(dir_index, inst_num, status)

INPUT PARAMETER

short dir_index

Directory index of the entity t3T)e.

long iiist_num

Instance number.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t 'status

STATUS CODES

Module number = 28

error number error

1 Bad Directory Index.

2 Could not find the input entity's class.

3 The input entity's class is not user_entity.

117

SetLastlndex

DESCRIPTION

Sets the number of elements of a variable length array. Memory i

allocated or freed if necessary.

FORMAT

error = SetLastIndex(dir_index,inst_num,component,newIndex,

status)
. .; . . .i

INPUT PARAMETERS

short dirjndex

Directory index of the entity type.

long inst_num

Instance number.

stringPtr component

Name of the component to set.

long newlndex

New final index of the array.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t *status

118

STATUS CODES

Module number = 25

error number error

1 Bad directory index.

2 Instance number out of range.

3 Invalid component name.

4 Could not find the template index for

component.

5 Component is not a 1 to many array.

6 Could not find the instance pointer for the

specified instance.

7 New index is less than the beginning index.

119

SetValue

DESCRIPTION

Moves a block of data to a specified location.

FORMAT

error = SetValue(dir_index,inst_num,component_name,sourceP,

status)

1 ; . J. . -•)

INPUT PARAMETERS

short dir_index

Directory index of the entity iy^.

long inst_nuin

Instance number.

stringPtr componeiit_name

Name of the component to get. Including the array index if the

component is an array.

pointer sourceP

Pointer to the som-ce data.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t *status

120

STATUS CODES

Module number = 15

error number error

1 GetComponent failed.

2 Destination pointer returned by

GetComponent, or source pointer

was NIL.

3 A NIL entity pointer was encoxmtered.

4 Bad directory index.

5 Instance number out of range.

121

StripSpaces '

DESCRIPTION

Strips the leading and trailing spaces from the input line.

FORMAT

StripSpaces(name)

EVPUT PARAMETERS . . . ,.j> . • .^ .

string name

A string ofup to 256 characters.

OUTPUT PARAMETERS

string name

A string with no leading or trailing spaces.

122

B.3 Display Manipulation Language Reference

BlankDisplay

DESCRIPTION

Removes the specified gmr3d structure from the gmrSd metafile, sets

the displayjd in the kernel to -1 and sets the refi'esh state to

FALSE. . . , ..

FORMAT

error = BIankDispIay(dir_index,inst_num,status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long inst_num

Instance number to be named.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngm_status_t *status

STATUS CODES

Module number = 20

123

error number error

1 GetDisplaylD failed.

124

DeleteDisplay

DESCRIPTION

Removes the specified gmrSd structure from the gmr3d metafile, and

removes the displayjd in the kernel.

FORMAT

error = DeleteDisplay(dir_index,inst^num,status)

INPUT PARAMETERS " '

short dir_index

Directory index of the entity type.

long inst_num

Instance number to be deleted.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngfni_status_t 'status

STATUS CODES

Module number = 24

error number error

GetDisplaylD failed.

125

DisplayModel

DESCRIPTION

Displays the model.

FORMAT

void DisplayModeK)

126

GetDisplaylD

DESCRIPTION

Retrieves the gmr3d structure id from the kernel.

FORMAT

displayjd = GetDisplayrD(dir_index,inst_num,status)

INPUT PARAMETERS

short dir_index

Directory index of the entity type.

long inst_nuin

Instance number to be named.

OUTPUT PARAMETERS

long displayjd

The gmrSd structure id of the specified instance.

STATUS CODES

Module number = 22

error number error

1 Directory index is out of range.

2 Instance number is out of range.

3 Could not find the gmrSd structure id.

127

GetRefresh

DESCRIPTION

Retrieves the current refresh state of the specified instance.

FORMAT

refresh = GetRefresh(dir_index,inst_nuin,status)

INPUTPARAMETERS- . i.tJiv, >;. ; .j

short dir_index

Directory index of the entity type.

long inst_nuin

Instance number to be named.

OUTPUT PARAMETERS

boolean refresh

The refresh state of the specified instance.

STATUS CODES

Module number = 26

error number error

1 Directory index is out of range.

2 Instance number is out of range.

3 Could not find the gmrSd stracture id.

128

PurgeDisplay

DESCRIPTION

Clears the display. The display window is cleared and the kernel

display structure is deleted.

FORMAT

void PurgeDisplayO

129

RefreshDisplay

DESCRIPTION

Redisplays all the entity instances with the refresh state set to

TRUE.

FORMAT

void RefreshDisplayO

130

RefreshUserDisplays

DESCRIPTION

Sets the refresh state to TRUE for all users of an instance.

FORMAT

RefreshUserDisplays(dir_index,inst_num)

131

SetDisplaylD

DESCRIPTION

Sets the gmr3d structure id in the kernel.

FORMAT

error = SetDisplayID(dir_index,inst_num,display_id,status)

INPUT PARAMETERS i i l. i a

short dir_index

Directory index of the entity tjrpe.

long itist_iium

Instance number to be named.

long display_id

The structure id of the specified instance.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngin_status_t *status

STATUS CODES

Module number = 23

132

l|^^ ir.-=-

error number error

1 Directory index is out of range.

2 Instance number is out of range.

.!J . '. Li-rj

133

SetRefresh :
, l^

DESCRIPTION

Gets the current refresh state of the specified instance.

FORMAT

error = SetRefresh(dir^index,inst_num,refresh,status)

INPUT PARAMETERS . ,

short dirjndex

Directory index of the entity type.

long inst_num

Instance number to be named.

boolean refresh

Refresh = TRUE, if the instance needs to be refreshed else,

refresh = FALSE.

OUTPUT PARAMETERS

long error

Error code: = no error, EOF = error.

ngin_status_t *status

STATUS CODES

Module number = 21

134

error number error

1 Directory index is out of range.

2 Instance number is out of range.

3 Could not find the gmr3d structure id.

135

APPENDIX C

DATA DESCRIPTION LANGUAGE

C.l Terminology

The following terms and concepts will be employed in sections C.2

and C.3 to define the Data Description Language:

1. Characters typed within single quotes (i.e.,
'

') must be entered

verbatim into the schema files (without the quotes).

2. Bold terms represent variables.

3. Parenthesis () group terms.

4. I is the choice operator (e.g., a I b means a or b).

5. means or more occurrences (e.g., (a) represents a string of or

more a's).

6. [] means or 1 occurrence (e.g., [a] means either ", or 'a').

7. An identifier is a string which fits the definition; a{d). Where a is

any alphabetic character and d is any alphanumeric character.

8. /* ... */is a comment.

C.2 Template Files

Template files define the attributes or an entity type. The template

file for an entity type must be named, type_name".form". Where

type_name is the name of the entity type being defined.

The following variables are used in the definition of the template file

syntax:

136

1. beginjndex and endjndex are integers.

2. simple_data_type may be one of the following identifiers:

a) "float" is a 2 byte real,

b) "double" is a 4 byte real,

c) "short" is a 2 byte integer,

d) "long" is a 4 byte integer,

e) "boolean" is a 2 byte logical,

d) "string" is a 256 b3fte character array. •

3- datajabel may be any identifier except a reserved word. - J ..- j l.^r^ y^.

4. entity.type may be any defined entity type.

5. class_name may be any defined class name.

Template Filp Ryntav

'attribute' '('

{['array' '[' beginjndex ':' (endjndex I 'many') ']"]

((simple_data_type datajabel) I

('entity" entity_type [datajabel]) I

('class' (class_name I 'any") [datajabel])) ';'}
'

'}'

. .

C.3 Directory File

The directory file must be named "directory".

The following variables are used in the definition of the directory

S3mtax:

1. global_mode and mode are identifiers.

2. special_name any identifier.

3. machine.function is any ASCII string which does not include a

137

semicolon. r
'

4. method_name any identifier.

5. type_name any declared entity type or class name. Note: All

variables must be declared before they are used.

Directory Fils Syntay

'modes' '{'

global_mode ';' /* This mode is always visible and must be

declared. */

{mode';'}')' ; ; . . ; / .

'special_names' '('

{('none' I mode) special_name';') ')'

'machine_functions' '{'

{machine_fimction ';') '}'

'root_methods' '{'

{(mode I special_name) method_name ';') ')'

/* Entity and Class declarations. */

{('entity' type_name ';' '{'

['methods' '{'

{(mode I speclal_name) method_name ';') ')']

'}' /* end of entity declaration */

) I

138

('class' type_name ';' '('

['members' '(' (('entity' I 'class') type_name ';') '}']

['methods' '{' {(mode I special_name) method_name ';') '}']

')' /* end of class declaration */

))

139

APPENDIX D

KERNEL HEADER FILE

The kernel header file contains the C declarations of the data

structures used in the kernel system.

I* This include file defines some global constants, types and variableused throughout this application.*/

include "/sys/ins/kbd. ins .
c"

include "/sys/ins/gpr . ins .

c"

typedef
typedef

typedef

/*

typedef

pointer
list_t

struct
(

pointer
stringPtr
);

list_t [array_max]

;

*list_P;

name_ent ry

instancePtr;
namePtr;

struct name_entry *name_entry_P;

Template Pre-Def initions

:

struct Template_Entry

Ion? offset;
/•index into data_type_directory */

short data_type;
StringPtr
);

struct Teniplate_Entry

data_label;

*Template_Entry_P;

Teinplate_Array_Entrystruct
{

long offset;
long begin;
long end;
/*index into data_type_directory */

short data_type;
StringPtr data_label;

140

typedef struct Teinplate_Array_Entry
*Template_Array_Entry_P;

struct
{

long
short
short
Template_Entry_P
Template_Array_Ent ry__P

Template

size;
na_number

;

a_nuinber;
*na_item;
*a item;

typedef

/*

struct Template *Template_P;

Methods Pre-Definitions:

struct
{

stringPtr
set
};

Special_Entry'

name

;

mode

;

struct
{

pointer
pointer
StringPtr
1;

Method_Entry

where;
where2;
name

;

struct
{

short
set
};

Method_Index_Entry

index;
mode

;

struct
{

short
struct Special Entry
};

Special_Li3t

number;
**item;

struct
{

short
struct Method_Index_Entry
short
struct Method_Index_Entry

Method_Index_Li3t

numbe r

;

**item;
spec_number;
**3pec_item;

Struct
{

short
struct Method Entry
};

Method_List

number;
*item[method max];

struct
{

char
short

Method_Menu

text [menu_string_max]

;

index

;

141

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct Special_Entry
struct Method_Entry
struct Method_Index_Entry
struct Method_Menu
Method_Entry_t
struct Special_List
struct Method_List
struct Method_Index List

Special_Entry_t;
Method_Entry_t

;

Method_Index_Entry_t;
menu_t

;

*Method_Entry_P;
*SpeciaI_List_P;
*Method_List_P

;

*Method Index List P;

Directory Pre-Definitions

:

typedef

struct
struct
struct
{

branch;
leaf;
dir_entry '

boolean ::

union
f

isleaf;

\

struct leaf . _

struct branch
*LP;
*BP;

}

};
PU;

struct branch

StringPtr
struct branch
Method Index List P
short
struct dir entry
1

name

;

*user;
methods;
number;
item [array_max]
branch t;

struct branch *branch_P;

typedef

typedef

struct
(

StringPtr
struct branch
Template_P
name_entry_P
Method_Index List P
}; - -

struct leaf

struct dir__entry

leaf

name

;

*user;
template;
*instance3;
methods;

*leaf_P;

directory_entry_t;

typedef

struct
{

long
leaf_P
In-

struct flat_dir_entry

flat_di reentry

number;
item[array_max]

;

*flat_di rectory P;

142

typedef

typedef

typedef
/*

typedef

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern

Display Pre-Definitions :

display_entrystruct
{

long
boolean
};

struct display_entry

struct
{

long
display_entry_t
};

structID;
refresh;

display_entry_t;

flat_display_entry

numbe r

;

**item;

struct flat_di3play_entry flat_display_entry_

flat_display

**type;

struct
(

flat_display entry t

};

struct flat_di3play *flat_di3play_P;

Machine Functions:
struct Mach fen
{

short numbers-
char **item;
};

struct Mach fen

boolean
branch P
flat_dTrectory__P
Special_Li3t_P
flat_display_P
Method_Li3t_P
branch_P
leaf_P
struct Method_Entry
short
char
char

short
short
short
short
short
entity__desc_t
short
boolean
boolean

Mach_fcn t;

Quits-
root ;

dir;
spec-
display;
flat_inethod3;
myBranch;
myLeaf

;

myMethod;
myMode

;

ModelName
[]

;

basedir []

;

dir_level;
dir_count;
mth_count;
mode_count

;

spec_count

;

CurrentUser;
Checkltem;
SaveFlag;
SaveDir;

143

extern
extern
extern
extern
extern
extern
extern

boolean
menu_t
menu_t
menu_t
char
Mach_fcn_
long

SaveTemp;
EntMenu []

;

MethodMenu[]

;

SpecialMenu []

;

**Mocies;
*MachineFunction3;
line number;

/* Kernel Functions
extern short
extern long
extern long
extern pointer
extern void
extern void
extern branch_P
extern branch_P
extern branch_P
extern void
extern void
extern void
extern long
extern long
extern void
extern long
extern stringPtr
extern gptr
extern gptr
extern void
extern int
extern void
extern int
extern void
extern void
extern void
extern void
extern int

extern void
extern long
extern void
extern void

*/

GetTemplatelndex
GetlnstanceNumbe
GetComponent ()

;

GetlnstancePoint
GetMode ()

;

AddToConstList ()

LooJcForBranchO ;

change ()

;

changeAllO ;

BuildDirMenuO ;

BuildMethodMenu

(

BuildSpecialMenu
BuildDirectory

(

)

LoadTemplate ()

;

trashTemplateO ;

MakelnstanceO ()

;

ReadStripSpaces

(

removefromuser (

)

removef romconst

{

SaveModeK) ;

SaveUser ()

;

PurgeModel {)

;

ReadModelO ;

SaveDirectory
(

)

ReadDirectory ()

SaveTemplates {)

ReadTemplates ()

.

KernelErrorPrint

r();

>r()
,

);

<1 ;

(),

SaveDisplay ;

BlankDisplay () ;

PurgeDisplay ;

DisplayModel () ;

144

A Computer Engineering Environment for
Feature Based Design and Manufacture

by

Larry Eugene Schmidt

B.S., Kansas State University, 1986

AN ABSTRACT OF A THESIS

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Mechanical Engineering

Kansas State University
Manhattan, Kansas

1989

ABSTRACT

The objective of this research was to develop a universal adaptable

computer engineering environment to support complete product design and

manufacture. Such an environment should have the following

characteristics: support feature based design to easeproduct development; jl' ;?: at

and manufacture; support complete product data definition ofboth geometric

and non-geometric data; encapsulate and utilize resource knowledge; evolve

and flex vsdth evolving standards and specific corporate needs.

The result of the research was an object oriented program which

provides to application writers the utilities to define and manipulate complex

entity types (features). The features may be either geometric or non-

geometric. Resource knowledge is encapsulated in special entity types and

are maintained independent of model data. The program allows feature

definitions and applications to be edited without requiring the re-compilation

of the entire system and without effecting existing models or applications

which do not refer to the edited features or appUcations.

The program was written in the C programming language and was

developed and executed on the Department of Mechanical Engineering's

APOLLO computer system.

