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ABSTRACT:

Tomatoes have ameliorative effects on cardiovascular disease and cancer (Agarwal and
Rao 2000; Rao 2002). In this study, metabolic engineering of flavonoids was utilized to improve
the nutritional value of tomatoes by increasing flavonol and anthocyanin content. Total flavonol
content was significantly increased in both the peel and flesh using the onion chalcone
isomerase (CHI) gene. The Delila (Del) and Roseal (Ros1) genes from the snapdragon
Antirrhinum majus were concomitantly expressed to produce an anthocyanin-rich tomato
which was purple in color. Sensory evaluation by a panel of 81 untrained consumers revealed
no significant difference in liking of color or texture between CHI, Del/Ros1, and wild-type
tomatoes. Consumers reported marginal but significantly higher preference for the flavor and
overall liking of CHI tomatoes over Del/Ros1 and wild-type tomatoes. This study is the first to
report the results of sensory tests of transgenic tomatoes by a consumer panel representing the

general consuming public.
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Introduction

Tomatoes are a good source of lycopene, vitamin C, vitamin E, and carotenoids
(Hernandez and others 2007). However, tomatoes have relatively small amounts of flavonoids
compared with other vegetables (Butelli and others 2008). Flavonoids are a subclass of plant
polyphenols, which have a wide range of health-promoting effects (Wach and others 2007; Luo
and others 2008). Flavonol and anthocyanin, subclasses of flavonoids, are especially well-known
as health-protecting components of the human diet and offer many pharmacological benefits
including protection against various types of cancer cells, chronic obstructive pulmonary
disease, diabetes and vascular disease (Ghosh and Konishi 2007).

Genetic engineering is an effective method for enhancing the flavonoid content of fruits
and vegetables (Bovy and others 2007). A single CHI gene from Petunia hybrida suffices to
increase flavonol content in tomato peel (Colliver and others 2002) while Delilah (Del) and
Roseal (Ros1) genes extracted from snapdragon were stacked and introduced to tomatoes,
resulting in an increased anthocyanin content and purple colored tomato peel (Butelli and
others 2008).

Consumers generally have formed negative but vague perceptions of transgenic foods
which prevent them from knowingly purchasing such products. Transgenic vegetables and
crops are widely grown and consumed in the United States and are gradually being accepted in

other parts of the world (Nap and others 2003). The Grocery Manufacturers of America



estimated in 2003 that 75% of all processed foods in the United States contain at least one
GMO ingredient (Bren 2003). Between 1997 and 2010, the total surface area of cultivated land
being used to grow genetically modified organisms (GMO) increased from 17,000 km? to
1,480,000 km?, resulting in approximately 10% of the world’s croplands planted with GMO
crops in 2010 (Bren 2003; James 2011). Consumers perceive non-transgenic foods to be more
environmentally friendly and safer than transgenic foods (Nap and others 2003; Anderson and
others 2007; Curtis and others 2004). However, recent studies reflect a new willingness on the
part of consumers to buy transgenic vegetables, preferring those that contain a gene or genes
taken from other vegetables rather than from Arabidopsis or other species (Lusk and Rozon
2006). While these developments in the consumer marketplace have been unfolding, there
have been almost no attempts to conduct consumer taste tests with transgenic tomatoes. The
few tests that have been conducted involved transgenic tomatoes that were tested by trained
professionals or small consumer groups with no controls for differences in sample
demographics (Bartoszewski and others 2003; Davidovich-Rikanati and others 2007).

In this study, the flavonol and anthocyanin contents of tomatoes were increased using
transgenic methods. The color, flavor, texture, and overall liking of these transgenic tomatoes

compared to wild-type tomatoes were evaluated by an untrained consumer panel.

Materials and Methods
Vector construction
Onion (Allium cepa L.) ranks highest in flavonol content among vegetables and fruits

(Haytowitz and others 2013), therefore the CHI gene from onion was used to increase flavonol



content. The CHI gene was isolated and cloned from red onions. The sequence was obtained by
the accession number, AY700851.1 in NCBI (Kim and others 2004b). In a separate trial, Delila
(Del) and Roseal (Ros1) genes from snapdragon Antirrhinum majus were used to increase
anthocyanin content.

The RNA was extracted with an RNeasy plant mini-kit from QIAGEN (Valencia, CA, U.S.).
cDNA was made with an Advantage RT-for-PCR Kit from Clontech (Mountain View, CA, U.S.).
The primer sequences for CHI were CHI forward 5' -ATGGAAGCAGTGACAAAGTT -3’ and CHI
reverse 5' - T CATGAAAGCACCGGTAACT - 3". The PCR product was inserted to pE1775
expression vector (Lee and others 2007). The pE1775 vector harboring CHI gene was
transferred to Agrobacterium (LBA4404) using the freeze-thaw method (Holsters and others
1978). The Del/Ros1 vector harboring Del/Ros1 gene was obtained from Butelli (Butelli and

others 2008).

Plant Transformation

Seeds of the Solanum lycopersicum L. were surface-sterilized and germinated on a
Murashige and Skoog inorganic salt medium (Murashige and Skoog 1962). Tomato
transformation was performed via an Agrobacterium-mediated transformation method using
cotyledon and hypocotyl explants, as described in Park and others (2003). Agrobacterium
tumefaciens LBA 4404 was used to generate stable transgenic plants. Following inoculation
with A. tumefaciens, the plant cultures were maintained at 25 °C under a 16 hour

photoperiod. After 6 to 8 weeks, the regenerated shoots were transferred to a rooting



medium for 6 weeks. The temperature in the greenhouse was maintained within a range of

25 °C to 30 °C. The cv. Rubion was used for all transformation.

Transgenic plant analyais

Genomic tomato DNA was extracted from leaf tissue with a Qiagen Plant DNA extraction
kit. Tomato RNA was extracted from the peel with a Qiagen Plant RNA extraction kit. The cDNA
was synthesized by moloney murine leukaemia virus-reverse transciptase (BD Biosciences
Clontech, Palo Alto, CA, USA). All polymerase chain reactions (PCR) including RT-PCR were
performed with a GoTaq Flexi DNA Polymerase kit (Promega Corporation, Madison, WI, USA).
The RT-PCR primer sequences for CHI were same with the primers used for cloning. The RT-PCR
primer sequences for Del/Ros1 were forward 5' — AGGGAAATGGCATCAAGT - 3' and reverse 5'
ATTCTACCAGCAATCAGC 3'. All PCRs for genomic DNA and cDNA were performed following

manufacture’s instruction.

Flavonol and anthocyanin content measurement

To extract flavonoids in the peel, an outer layer with a thickness of about 1 mm was
separated from the fruit. The cuticula, an epidermal layer, plus some sub-epidermal tissue were
also removed to form the peel tissue used in the experiment. The columella was excised from
the remaining flesh tissue. The seeds and jelly-like parenchyma were removed from the tissue
that remained after separating the peel and were classified as flesh. Following separation, both
peel and flesh tissues were frozen in liquid nitrogen and stored at -80 °C (Colliver and others

2002) until they were processed for analysis.



To measure total flavonol content, 1 g of peel or flesh stored in —-80 °C were macerated
in a round-bottom 15 ml tube with an iron rod. The samples were then mixed with 2 mL of
methanol 75% (1.5 mL methanol, and 0.5 mL ultrapure water at pH 2.5 adjusted with TFA),
placed in an ultrasound bath at 40 °C for 30 min, then centrifuged at 3,500 rpm. The
supernatant was carefully recovered to prevent contamination with the homogenized tomato
puree pellet and was passed through a 0.45 filter um GHP (Waters, Millford, MA, USA)
(Hernandez and others 2007). Flavonol content was measured spectrophotometrically at 361
nm with the NanoDrop Photospectrometer (Thermo Scientific, Wilmington, DE, USA). Rutin
(Sigma—Aldrich, St. Louis, MO, USA) was used as the standard. Each sample was evaluated in
triplicate.

Anthocyanin content was measured using the following procedure adapted from
Solfanelli and others (2006). One gram of peel or flesh was ground in the same manner as for
total flavonol extraction. The samples were then mixed with 2 mL of 0.5% (v/v) HCl solution in
methanol. The same volume of chloroform was added to the extract to remove chlorophylls.
The mixture was centrifuged for 1 min at 14,000 x g. The anthocyanin-containing phase was
recovered and absorption was determined spectrophotometrically at 544 nm with the
NanoDrop Photospectrometer (Thermo Scientific, Wilmington, DE, USA). Delphinidin 3-
rutinoside (APin Chemicals LTD, Abingdon, UK) was used as the standard control. Each sample
was evaluated in triplicate.

Standard curves were prepared for both rutin and delphinidin 3-rutinoside. When
necessary, samples used for measuring total flavonol and anthocyanin were diluted to

measurable concentrations in UV absorbance ranges of 0.09-0.6 and 0.08-0.6.



Consumer evaluation

Tomatoes were harvested 20 days after the breaker stages and 1 day before the sensory
test. Immediately after harvest, the tomatoes were washed under tap water, dried with kitchen
towels and stored in sealed plastic containers at 4°C overnight. Four hours before the sensory
test, the plastic containers were placed at room temperature (24°C). Immediately before
serving, the tomatoes were cut into 6 mm-—thick slices.

Consumer tests were carried out on the campus of Kansas State University. All
consumers were recruited from the Kansas State University area (Manhattan, Kansas, U.S.A).
This research was intended to elicit the opinions of ordinary consumers, not experts in food
science or culinary science. The only criterion applied in recruiting participants was that they be
willing to consume transgenic food during the study. All recruited consumers consume fresh
and processed tomato at least once per month, regularly.

Prior to participation, each consumer signed an informed consent form indicating that
they were aware that they would be consuming transgenic tomatoes in the evaluation. The
sensory test was conducted in a single session on a single day by 81 untrained consumers.

Each consumer received a paper plate containing 1 slice each of the high flavonol, high
anthocyanin and wild-type (non transgenic) tomatoes. The samples were coded with a
randomized three-digit number and presented in random order to eliminate presentation bias.
Consumers were instructed to taste the tomatoes in order from left to right and score each one
independently on how much they liked the color, flavor, and texture as well as overall liking of

each tomato. A 7-point hedonic scale was used for each attribute where 7 = like extremely, 4 =



neither like nor dislike and 1 = dislike extremely. Ripeness was scored on a 7-point scale where
7 = overly ripe, 4 = perfectly ripe and 1 = under ripe. The typical hedonic scales are 5 to 9 point
scale (Cruz and others 2010). The 7-point scale makes easier for untrained participants than
the 9 point scale (Lawless and Heymann 2010). It has been shown that consumers rarely use
the end anchors of a 9-point scale because they are too extreme (Moskowitz and others 2003).
Unsalted soda crackers and room temperature water were provided as palate cleansers
between each tomato. After completing the sensory evaluation, consumers were asked to
answer demographic questions which included age, gender, education level, liking of raw
tomatoes, frequency of raw tomato consumption and whether they would purchase and
consume transgenic foods if they were shown to be healthier than non-transgenic foods.
Additionally, consumers were asked to rate their comfort level with eating transgenic foods
before as well as after participating in the sensory test using a 5-point scale where 1= not
comfortable at all, 3 = not sure and 5 = completely comfortable. Our object in so doing was to
compare changes in attitude before and after consuming transgenic food rather than
measuring consumer perceptions. The 5 point scale should be enough for that purpose.

To minimize the effect of the purple color, which could affect the perceived flavor,
taste, and overall liking of the samples, the tomatoes were placed randomly and consumers

were instructed not to compare them.

Statistical analysis
All data were analyzed using SAS (Version 9.1, Cary, N.C., USA). For mean separation,

Tukey’s test was used. Analysis of variance was performed using the GLM procedure.



Statistically significant differences were determined at the 95% confidence level (P < 0.05). For

the sensory test, ripeness was used as a covariate.

Results and Discussion

At the phenotypic level, there was no difference in appearance and fruit weight
between the wild-type, high flavonol (CHI) and high anthocyanin (Del/Ros1) tomatoes other
than color (Fig 1). The average individual fruit weight was 47 + 2.6 (standard error) g. The wild-
type and CHI tomatoes were the typical red color while both the peel and the flesh of the
Del/Ros1 tomatoes were purple.

The segregation ratios for all 6 transgenic lines for CHI and Del/Ros1 were 3:1 at T1
generation. CHI (CHI-4, CHI-6 and CHI-8) and Del/Ros1 (DR-4, DR-5 and DR-7) genes were
recovered from the transformation process. All transgenic tomatoes were checked by genomic
DNA amplification (Fig 2a). Once the transgenic plants had the gene of interest, all were
expressed for both peel and flesh without exception (Fig 2 b and c). There was no
distinguishable difference between lines regardless of the flavonoid content in either the peel

or the flesh.

Flavonol and anthocyanin contents

All genes showed significant differences between genes in total flavonol and total
anthocyanin content in the peel and flesh. Onion CHI from cDNA by RT-PCR was amplified. The
resulting lines exhibited a substantial increase in flavonol content. On average, total flavonol

content of the peel was increased by 2.3-fold in the Del/Ros (DR) lines and 9.8 fold in the CHI/



lines compared to the wild-type tomatoes (Fig 3a). While total flavonol content of the flesh was
barely detectable in the wild type, the levels were significantly increased, by 35-fold and 96-fold
on average, in the Del/Ros1- and CHI-expressing lines, respectively (Fig 3b).

Previous attempts by others to enhance flavonoid content by manipulating structural or
regulatory genes found that a major limiting factor along the flavonoid biosynthetic pathway
was the lack of expression of the CHI gene in the tomato peel, likely caused by a mutation in the
promoter (Gonzali and others 2009). Reintroduction of the expression of the CHI gene in
cultivated tomato fruit can be achieved by interspecific crosses with wild tomato species or
ectopic expression of CHI isolated from other species (Willits and others 2005; Muir and others
2001). A single CHI gene suffices to increase flavonol content in tomato peel (Colliver and
others 2002). Although the chalcone synthase (CHS), CHI, flavanone-3-hydroxylase (F3H) and
flavonol synthase (FLS) genes were ectopically expressed simultaneously, the flavonol content
of the tomato with the four genes was not significantly increased compared with tomatoes in
which only the CHI gene was expressed. Without the CHI gene, the single expression of the CHS,
F3H, and FLS genes were also not effective. The concomitant expression of the four genes was
required to increase the flavonol content of the flesh (Colliver and others 2002). In northern
blot analysis, Muir and others (2002) detected no expression of endogenous CHI in tomato
flesh. However, onion CHI was amplified by RT-PCR (Fig 2). Thus, ectopic expression of CHI
produced higher flavonol content in the flesh than diffusion from the peel to the flesh.
However, the increase in flavonol content in the CHI transgenic tomato was significantly lower
than in the flesh of the Del/Ros1 transgenic tomatoes. Further experimentation with other

cultivars will be needed to explain this result. Differential increases in flavonol content

10



corresponding to different cultivars were reported by Luo and others (2008) in transgenic
tomatoes by expressing AtMYB12, resulting in approximately twice as much rutin and
Kaempferol rutinoside in the Micro Tom cultivar compared with the Money Maker cultivar. The
difference in flavonol content between wild-type cultivars was greater than that between
transgenic cultivars (Luo and others 2008). Perhaps the initial flavonol content in wild-type
tomatoes could be the factor that determines flavonol content after transformation. In wild-
type tomatoes, there is an approximately 10-fold difference in flavonol content between
cultivars (Verhoeyen and others 2002).

Both the peel and flesh of the wild-type and CHI tomatoes contained essentially no
traceable amount of anthocyanin (Fig. 3c and d). The anthocyanin content of the Del/Ros1 (DR)
lines was significantly higher than in wild type and CH/ tomatoes (p < 0.01). The anthocyanin
content of the peel ranged from 0.5-0.9 mg/g while that of the flesh ranged from 0.03—0.08
mg/g. The DR-5 and DR-7 lines exhibited significantly higher anthocyanin content compared
with the DR-4 line for both peel and flesh (p < 0.03 and 0.01, respectively, Fig. 3c and d).

Delilah (Del) and Roseal (Ros1) genes extracted from snapdragon were stacked and
introduced into tomatoes to produce a purple color in the tomato peel (Butelli and others
2008). Regulator genes offer the advantage of upregulating many genes at once along the
flavonoid pathway (Bren 2003). Butelli (2008) reported that the expression of Del/Ros
upregulates PAL, CHI, and F3H. PAL determines the flavonoid flux and may explain the increase
in flavonol content in both the peel and the flesh beyond the elevated anthocyanin content.
The upregulation of DFR (dihydroflavonol reductase) affects the distribution of flavonol and

anthocyanin content (Kim and others 2004a). Even though Butelli (2008) reported the Del/Ros1

11



upregulated DFR, the effect may not have been strong enough to use all the flavonol flux that is
necessary to convert to anthocyanin.

The maze transcription factor LC/C1 gene upregulates necessary structural genes along
the flavonoid pathway, increasing the high flavonol content in tomato flesh (Bovy and others
2002). However, the fruit color remains red in spite of the increase in anthocyanin content
because it does not upregulate the PAL gene. The high flavonol content might also be explained
by substrate specificity. Bovy et al. (2002) reported that tomato DFR cannot use
dihyrdokaempferol and dihydroquercetin, so unconverted dihyrdokaempferol and
dihydroquercetin in the tomato fruit are finally converted to a further glycosylated form of
kaempferol, quercertin, kempferol glycoside, and rutin. Rutin is the most abundant flavonol in
wild-type tomatoes. The upregulated DFR by Del/Ros1 eventually moves to anthocyanin. DFR is
located at the branch point between flovonol and anthocyanin, enabling it to determine how

much of these substances remain.

Consumer evaluation

Acceptance of color, flavor, texture, and overall liking of the tomatoes were evaluated
by an untrained panel of 81 consumers. The size of the panel was appropriate for consumer
hedonic tests (Lawless and Heymann 1999, Hough et al 2006). The panel was comprised of 38
females (47%) and 43 males (54%). The ages of the panelists were equally distributed between
the three age ranges of 18-25 yrs old (32%), 26—40 yrs old (33%), 41-55 yrs old (27%) and over

56 years old (8%). On average, typical tomato consumption was reported as daily for 17%, once

12



per week for 39%, up to 3 times per month for 30% and less than 1 time per month for 14% of
the panelists.

Consumer evaluation revealed no bias toward red tomatoes, as the color-liking score of
the high-anthocyanin (Del/Ros1) purple tomato was not significantly different from those of the
two red tomatoes (Table 1). Additionally the flavor-, texture-, and overall-liking scores of the
Del/Ros1 tomatoes were similar to those of the wild-type tomato. The color- and texture-liking
scores of the high flavonol (CHI) tomato were similar to those of the other two tomatoes;
however, on flavor and overall liking they were slightly but significantly better. Even though the
sample size was adequate to detect statistical differences between the three groups in the
sample (wild, high flavonol, and high anthocyanin plants), if we consider the variations in the
consumer subgroups the size of the sample may not be adequate for analyzing the statistically
significant variances between subgroups by age, gender, or consumption frequency. However,
among all subgroups, the overall liking of the Del/Ros1 tomato was consistently higher than
that of the CHI tomato even though no statistical difference was found. P-values for the effects
on overall liking are 0.82, 0.56, and 0.33 for the 18-25, 26—40, and over-40 age groups,
respectively; 0.52 and 0.87 for the female and male groups, respectively; and 0.30, 0.72, 0.09,
and 0.32 for the daily, once per week, up to 3 times per month, and less than 1 time per month
subgroups, respectively.

The tomatoes were grown under strictly controlled conditions in greenhouses to avoid
environmental stress because flavonoids help plants cope with such stress. Controlled
greenhouse environments make it possible to obtain consistent quality and ripeness in

tomatoes. The ripeness of a tomato affects its taste (Kader and others 1977). Therefore,
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ripeness was used as a covariate. There were no significant differences in any of the parameters
measured attributable to consumers’ perceived ripeness (Table 1).

Consumers reported their comfort level with eating transgenic food before and after the
taste test using a 5-point scale where 1= not comfortable at all, 3 = not sure and 5 = completely
comfortable. Prior to participating in the sensory test, the overall average panelist comfort level
with transgenic food consumption was high, receiving a score of 4.3 out of 5. After knowingly
consuming transgenic tomatoes in the sensory test, the average comfort level increased to 4.5.
Participating in the sensory test did not affect the comfort level of the majority of the panelists
(85%). However, 14% of the panelists became more comfortable while only 1 participant (1%)
felt less comfortable with transgenic food consumption after testing (p < 0.01 by chi square
test). The reason for this change in comfort level was not given. A high percentage of the
panelists (96%) indicated they would purchase and consume transgenic foods if they were

shown to be healthier than non-transgenic foods.

Conclusion

Using transgenic methods, the CHI gene from red onion and Del/Ros1 genes from
snapdragon were used to increase the flavonol and anthocyanin contents, respectively, of
tomatoes. An untrained consumer panel indicated no difference in liking of color or texture
among the high flavonol, high anthocyanin, and wild-type tomatoes. However, the flavor and
overall liking of the high flavonol tomatoes was slightly but significantly higher than that of the
other tomatoes. Although there is considerable controversy over the benefits, costs, and

hazards of genetically engineered food, 96% of the consumers on the panel reported that they

14



would buy transgenic food if they. Indeed, following the test, 14% of the panelists changed
their attitudes positively toward believed that it would promote health. This is important for

the future of developing transgenic vegetables transgenic vegetables.
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Table 1. Mean liking scores and p-values of responses from an untrained consumer panel,

comparing wild-type (non transgenic), CHI (high flavonol) and Del/Ros (high anthycyanin)

tomatoes.’
Liking Score®

Tomato Color  Flavor Texture Overall
Wild-type 541a 5.00b 5.13a 5.08b
Mean CHI 562a 551a 537a 5.48a
Del/Ros 5.28a 4.84b 52a 49b

Genes 0.16 0.01 0.09 0.04

P-value Ripeness 0.32 0.12 0.17 0.17
Genes x Ripeness  0.96 0.78 0.12 0.18

? evaluated by 81 consumers

20



® on a 7-point scale where 1 = dislike extremely, 4 = neither like nor dislike, 7 = like extremely

Wild CHI Del/Ros

ank
Figure 1. Photograph of non transgenic and transgenic Rubion cultivar tomatoes: Wild =wild-

type (non transgenic), CHI = increased flavonol content using CHI gene from onion; Del/Ros =

increased anthocyanin content using Delila and Roseal genes from snapdragon
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(a)

1K bp

500
bp

LePP2ACS primer
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Figure 2. Molecular analyses of T1 transgenic plants: (a) genomic DNA PCR from leaf, (b) reverse
transcriptase PCR (RT-PCR) for each of the CHI and Del/Ros lines to check for CHI and Del/Ros
expression, (c) reverse transcriptase PCR (RT-PCR) for each of the CHI and Del/Ros lines with a

housekeeping gene primer (PePP2ACS).
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Figure 3. Total flavonol content in (a) peel and (b) flesh and total anthocyanin content in (c)

peel and (d) flesh in tomato from TO and T1 transformants expressing CHI and Del/Ros.
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Tomatoes were harvested 20 days after breaker stage. The data represent the mean values (+

SD) derived from 4 plants per each line (2 - 3 tomatoes per plant).
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