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Abstract
This thesis introduces a new partitioning algorithm to cluster variables in high dimen-

sional low sample size (HDLSS) data and high dimensional longitudinal low sample size

(HDLLSS) data. HDLSS data contain a large number of variables with small number of

replications per variable, and HDLLSS data refer to HDLSS data observed over time.

Clustering technique plays an important role in analyzing high dimensional low sample

size data as is seen commonly in microarray experiment, mass spectrometry data, pattern

recognition. Most current clustering algorithms for HDLSS and HDLLSS data are adapta-

tions from traditional multivariate analysis, where the number of variables is not high and

sample sizes are relatively large. Current algorithms show poor performance when applied

to high dimensional data, especially in small sample size cases. In addition, available algo-

rithms often exhibit poor clustering accuracy and stability for non-normal data. Simulations

show that traditional clustering algorithms used in high dimensional data are not robust to

monotone transformations.

The proposed clustering algorithm PPCLUST is a powerful tool for clustering HDLSS

data, which uses p-values from nonparametric rank tests of homogeneous distribution as a

measure of similarity between groups of variables. Inherited from the robustness of rank

procedure, the new algorithm is robust to outliers and invariant to monotone transformations

of data. PPCLUSTEL is an extension of PPCLUST for clustering of HDLLSS data. A

nonparametric test of no simple effect of group is developed and the p-value from the test

is used as a measure of similarity between groups of variables.

PPCLUST and PPCLUSTEL are able to cluster a large number of variables in the

presence of very few replications and in case of PPCLUSTEL, the algorithm require neither

a large number nor equally spaced time points. PPCLUST and PPCLUSTEL do not suffer

from loss of power due to distributional assumptions, general multiple comparison problems

and difficulty in controlling heterocedastic variances. Applications with available data from

previous microarray studies show promising results and simulations studies reveal that the

algorithm outperforms a series of benchmark algorithms applied to HDLSS data exhibiting

high clustering accuracy and stability.
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for the support during my studies.

Besides, my thanks to the most important people in this journey and in all my life:

my family. To my wonderful and loved parents, Adolfo and Nilse, for their infinite love

and motivation, and to my brother Ricardo, my sisters Rosana and Claudia, my brothers

and sisters-in-law, my mother-in-law, my aunt Augusta, for their friendship and love. Also,

the most important people and the reason of my life, my loved wife Michelle, my daughter

Beatriz and my son Felipe.

Finally, I would like to specially acknowledge my best friend and brother Ricardo. He is

my inspiration in life and in academic world. I’m so lucky to have him in my life.

xii



Dedication

This thesis is dedicated to my wife Michelle, my daughter Beatriz and my son Felipe.

They are the reason of my success, the reason of my life. I love you.

xiii



1

Introduction

The advent of new technologies for collecting and storing data has motivated the re-

search of inference methods applied to high dimensional low sample size data in areas such

as microarray experimentation (Pomeroy et al. [81]), spectrometry studies (Thiele [107]),

pattern recognition (Reese [83]) and agriculture screening trials (Brownie and Boos [13]).

For example, scientists have been able to study complex disorders through the monitoring

of expression of thousands of genes from a single DNA chip, known as DNA microarray,

[103],[76], [58], [95], [67], [41], [6], [89], [36], and one of the most important statistical learn-

ing technologies used to identify groups of differentially expressed genes has been cluster

analysis, [28], [7], [72], [118], [49], [47], [33]. According to McLachlan [67], reasons for clus-

tering of genes are: to discover genes with difference in expression in different tissues; to

discover genes belonging to a particular pathway; to find common characteristics in genes

declared similar through a comparison of expression patterns. Clustering can also be used

as an exploratory tool to compare different experimental conditions (as a batch of reagents,

technicians), to support visual methods in generating hypotheses about the existence of

possible groups, to identify subgroups in complex data, to identify gene expression patterns

in time or space and to reduce redundancy in prediction. More about the subject is available
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in Segal et al. [90, 91].

A medium-size microarray study often contains information from thousands of genes

with no more than a hundred samples for each gene. The dimensionality of the study will

impose many restrictions to traditional statistical analyses. Drawbacks of available clus-

tering algorithms are the difficulty in specifing the number of clusters in advance, their

sensitiveness to outliers, the long processing time, their lack of robustness in the presence of

small perturbations, their non-uniqueness, problems with inversion, distributional assump-

tions, and their failure to computate covariance matrices when one or more components

is singular or nearly singular. Chapter 2 reviews some available clustering algorithms and

discusses the advantages and disadvantages of each algorithm.

This thesis introduces a new algorithm for clustering high dimensional, low sample size

(HDLSS) data and a new test that can be used when clustering high dimensional longitu-

dinal, low sample size (HDLLSS) data. The objective of the new algorithm and test is to

cluster a large number of variables in problems where there is a small number of replications

per variable and when this replicated data is observed over time. Statistically, clustering

of HDLSS data can be viewed as unsupervised separation of data originating from high

dimensional mixtures of distributions, where each cluster is represented by data from the

same distribution. For reasons stated above, this dissertation proposes a new partitional

algorithm using a robust measure of similarity that can automatically determine the number

of clusters. The robust similarity measure evolves from p-values obtained from the test of

no nonparametric effect of groups (see Akritas and Papadatos [3]) specifically developed for

the HDLSS and HDLLSS data structures. The new algorithm does not suffer from many of

the drawbacks that traditional algorithms have and can obtain groups with high accuracy

and stability. Additionally, both algorithms are fast and do not show memory allocation

problems observed in some algorithms when the number of variables in the study is very

high 1. Applications to microarray gene expression data for colorectal cancer and to a HIV

1For example, when used 10000 or more variables.
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study are discussed in this thesis.

A review of the terminology related to cluster analyses is presented in the next section.

The objective of this review is to clarify and differentiate common terms from different

scientific areas that are frequently used without a precise meaning in the literature about

clustering of high dimensional data. The terms covered are: (1) data mining; (2) statistical

learning; (3) supervised/unsupervised learning; (4) clustering; (5) gene-based clustering; (6)

class discovery; and (7) classification.

1.1 Background

Data mining and statistical learning are two fields of research that investigate methods

that search for valuable information in large volumes of data using either automatic or

semi-automatic techniques to discover meaningful patterns and rules in data [12, 43]. As

pointed out by Hastie, Tibshirani and Friedman [43], data mining works with very large

amounts of data and has the challenge of extracting information through the application of

multivariate techniques; statistical learning has a similar challenge in finding meaningful

information in data with the use of supervised and/or unsupervised learning. Supervised

learning has the goal of investigating the influence that some measured or preset inputs

have in one or more outputs using a training set of data from previously solved problems

to build a model. Examples are: linear models (least squares), linear discriminant analy-

sis, classification, nonparametric density estimators, neural networks, probabilistic boolean

networks, support vector machines, distance weight discrimination and sliced inverse regres-

sion. Unsupervised learning has the goal of inferring properties of a set of measured

variables without using the help of a supervisor, i.e., when there are no outputs to either

specify if the answer (prediction) is correct or to give a degree of error for each inferred

observation. Examples are: cluster analysis, association rules in market basket analysis and

dimensional reduction techniques. The main difference between data mining and statistical

learning is that the former works with a large volume of information about a relatively
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small number of variables (factors, experiments, parameters) while the latter works with an

extremely small volume of information about a relatively large number of variables. In data

mining problems, the main difficulty is that most statistics will be less conservative than

in traditional data sets only because the number of observations is too large. In statistical

learning, asymptotics do not work anymore because of the small sample sizes.

Bioinformatics uses both computational algorithms in data mining and statistical

learning to solve problems in biology and medicine. The techniques studied in this mono-

graph have their main focus in the unsupervised statistical learning part of bioinformatics and

their application in the clustering of genes in microarray data, also known as gene-based

clustering. Theodoridis and Koutroumbas [106] describe clustering as the objective of

discovering patterns in data that helps the researcher form “sensible” groups of similar

objects, called clusters, to derive useful conclusions about differences that resulted in for-

mation of such clusters. The discovery of meaningful groups is defined as class discovery

by Simon et al. [95] and it involves one step further in cluster analysis, since it looks for

some meaningful clusters found by a specific algorithm. For example, there are efforts to

incorporate biological knowledge in the clustering process through the use of Gene Ontology

in recent years [10, 47].

This thesis studies the clustering of high dimensional data with a focus on gene expression

data where the number of genes is large and the number of experiments (tissues, samples)

for each gene is small. Although some authors, like Dettling and Bühlman [20], also see the

dual problem of clustering a small number of experiments that have information from a large

number of genes as a high dimensional clustering problem. These problems are not HDLSS

data problems as emphasized by many authors (see for example Fridlyand and Dudoit [31]).

Traditional clustering techniques are expected to work well in those problems.

In the clustering process some steps should be followed before and after application of

clustering algorithms [106]. Selection of variables or factors to be clustered and choice of

similarity (or dissimilarity) measures are two steps that must be defined before the use of
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a clustering algorithm. Validation and interpretation of results should follow a clustering

algorithm application. In order to quantify the degree of similarity or dissimilarity between

variables, different measures of distance are used and they are fundamental to the clustering

process once clustering seeks objects that are most similar or least dissimilar, i.e., objects

in same cluster are more similar to one another than objects in different clusters and each

cluster should be as different as possible from other clusters. A clustering process can be

thought as a minimization of a loss function formed by the within-cluster dissimilarity [106,

98] with separated groups as different as possible. An overall classification of clustering

algorithms is shown in Fig. 1.1. The majority of clustering algorithms can be divided into

hard or fuzzy algorithms 2. In hard clustering methods, objects are allocated to one and

only one cluster, while in fuzzy methods the same object can be allocated to more than one

cluster. Hard clustering methods are the most commonly used methods in the literature

and can be divided into partitional and hierarchical methods. Partitional methods

seek to optimally divide objects into a fixed (defined or not) number of clusters, while

hierarchical methods produce a nested sequence of clusters in agglomerative or divisive

ways. In hierarchical methods the choice of the number of clusters is made after the complete

sequence of groups is formed. If the sequence of groups is formed starting with n groups of

1 object, each, and finishing with 1 group including all objects in it, then the hierarchical

process is called agglomerative. The inverse process is called divisive hierarchical clustering.

Note that in the partitional method there is no nested sequence of groups, but a fixed number

of clusters is to be obtained, even though a series of different numbers of clusters can be

compared in the partitional method until the best number is found according to some criteria

that maximize the similarity within each group and/or the dissimilarity between groups.

Additionally, the way hard or fuzzy clustering methods work with data can be divided

into combinatorial, mixture modeling, and mode seeking methods. In combinatorial algo-

2Some authors [34, 106, 49] divide clustering algorithms in many other categories, as center-based, graph-
based, density-based algorithms, etc, but they are basically variations of decision criteria methodologies used
in partitioning or hierarchical algorithms.

5



Figure 1.1. Diagram of clustering algorithms (Gan et al. [34]).

rithms, data is clustered without considering any underlying probability model. Mixture

modeling uses the idea that the data came from a mixture of groups originating from i.i.d.

samples of populations that can be described by some probability function. In mode seek-

ing, data around the modes of a probability density function are considered to be from the

same cluster.

The number of articles about clustering methods in microarray gene expression investi-

gations has grown exponentially in recent years. Pubmed 3 revealed more than 1000 articles

published in 2006. The volume of information generated by gene expression investigations

has brought many challenges for scientists, not only in molecular biology, but also in areas

such as informatics, mathematics and especially statistics. Zakharkin et al. [119] discuss

some of the challenges faced by high-dimensional biology with the increase in studies about

microarray technology.

In the context of clustering gene expression data, the following data layout can be used.

The gene expression data from a microarray experiment is represented by a real-valued

expression matrixM = {xij|1 ≤ i ≤ a, 1 ≤ j ≤ b} where each row of the matrix (i = i, . . . , a)

represents a gene4 and each column (j = 1, . . . , b) represents a tissue or condition in the

3Searching words “microarray” and “gene expression” and “clustering”. Pubmed is a service of the U.S.
National Library of Medicine that includes over 17 million citations from Medline and other life science
journals for biomedical articles.

4Actually, rows represent DNA sequences that can be genes, cDNA clones or expressed sequence tags
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microarray experiment. In longitudinal studies, replicated genes are represented in multiple

rows, while time-course is represented in different columns of the matrix. Tables 1.1 and 1.2

illustrate the high dimensional replicated data layout for non longitudinal and longitudinal

cases, respectively.

Table 1.1. High dimensional replicated data layout. Here a→∞ and ni ≥ 2.

Variable Observations Sample size
1 X11 X12 . . . X1n1 n1

2 X21 X22 . . . X2n2 n2
...

...
...

...
...

...
a Xa1 Xa2 . . . Xana na

Table 1.2. High dimensional replicated data layout in longitudinal design.
Here a→∞ and ni ≥ 2, tj ≥ 2.

Time Points
Variable Observations t1 t2 . . . tb

1 1 X111 X121 . . . X1b1
...

...
...

...
...

n1 X11n1 X12n1 . . . X1bn1

...
...

...
...

...
...

a 1 Xa11 Xa21 . . . Xab1
...

...
...

...
...

na Xa1na Xa2na . . . Xabna

In cluster analysis, the gene expression matrix can be analysed in three different ways:

gene-based, sample-based and subspace clustering. Gene-based clustering is the clustering of

genes considering experiments as replications. In contrast to gene-based clustering, sample-

based clustering is the clustering of samples using genes as observations. Finally, subspace

clustering treats both genes and samples, symmetrically such that both genes and samples

(ESTs) in the experiment. Here we focus on clustering of genes and do not distinguish between DNA
sequences.
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can be treated as variables, to be clustered, or replications in data. This thesis consider,

gene-based clustering analysis using a partitional method based on mixture modeling data.

The literature on cluster analysis has a vast number of algorithms for different data types

and structures. An excellent review of a large number of algorithms and different similarity

measures used in each algorithm can be found in Theodoridis and Koutroumbas [106] and

Kaufman and Rousseeuw [52].

As discussed by Gan et al. [34], data clustering is often confused with classification meth-

ods like random forest and others. However, classification methods use class comparison

and class prediction to deal with supervised learning. Clustering is an unsupervised

approach and it can be defined as an unsupervised classification, because it relies on

the classification of objects into classes that were not predefined. However, clustering can

also be used for class comparison. In this situation, the observed difference between paired

classes is used to cluster variables (factor levels, genes). Classes with large differences will

result in different groups of variables. In paired microarray data, one can consider, for

example, the difference in gene expression of normal and tumor tissues. Genes with high

difference will be grouped in high (positive) or low (negative) expressed genes, while genes

with invariant expression in the two types of tissues are grouped in another cluster of no

expressed genes. The number of clusters formed by an algorithm in class comparison will

depend on the intensity of the difference between classes. The colorectal cancer in example

considered in Section 5.1 is one application of clustering in a class comparison problem with

paired microarray data.

Since the main application of the algorithms developed in this thesis is in microarray

gene expression studies, a brief review of microarray technology is presented in Appendix A.

1.2 Contribution

This work introduces a new partitioning algorithm to cluster variables in high dimensional

data, where the number of variables is large and the number of replications per variable
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is small. The development of the algorithm incorporates both the high dimensional low

sample size (HDLSS) case and the high dimensional longitudinal low sample size (HDLLSS)

case. The measure of similarity between groups is given by the p-value from a nonpara-

metric hypothesis test of no group effect specific to HDLSS data and from a nonparametric

hypothesis test for no simple group effect developed in HDLLSS data. In the longitudinal

setting, the original observations are used, but in non-longitudinal replicated data, the over-

all ranks of gene expressions are used in the clustering algorithm. This makes the analysis

more robust and invariant to monotone transformations of data. In both the HDLSS and

HDLLSS cases, the algorithm requires very few assumptions, no intervention, and no pre

specification of the number of groups. Simulations show that the procedures can obtain

groups with high accuracy and stability without any supervision or data reduction. Addi-

tionally, the procedures are fast and can handle ultra high-dimensional clustering without

memory allocation problems. The applications to colorectal cancer and HIV microarray

data show promising results that can offer insight for biologists and scientists in related

areas for further experimentation.
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2

Literature Review

This chapter presents a review of some benchmark algorithms used in the clustering of

high dimensional data. In clustering there are two components, the proximity measure and

the algorithm. The proximity measures are reviewed in Section 2.1 and the algorithms are

reviewed in Section 2.2. The algorithms reviewed are used in Chapter 4 to compare their

efficiency and stability with the new partitioning algorithm for HDLSS data introduced in

Chapter 3. The efficiency of clustering algorithms is obtained using the Adjusted Rand

Index that is reviewed in Section 2.3.

2.1 Review of Proximity Measures

In cluster analysis data is represented by a proximity measure. This measure quantifies the

degree of similarity or dissimilarity (distance) between pairs of variables. For two vectors x

and y in p-dimensional space, a dissimilarity measure d is defined to be a distance function

if

• d(x,x) = 0;

• d(x,y) ≥ 0;
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• d(x,y) = d(y,x).

A similarity measure s between x and y is defined if

• s(x,y) = s(y,x);

• s(x,y) > 0;

• s(x,y) increases as the similarity between x and y increases.

Some common dissimilarity measures used in cluster analysis are the Euclidean and

Manhattan distances that are particular cases of the Minkowski distance that is defined as

d(xi, yj) =

(
p∑

k=1

|xik − yjk|r
)1/r

, r ≥ 1 (2.1)

Euclidean (r = 2) and Manhattan (r = 1) distances usually are dominated by variables with

the largest scales and only work well when the data set has compact or isolated clusters.

One alternative is to standardize the Euclidean distance by using,

d(xi, yj) =

p∑
k=1

(xik − yjk)2

s2
k

(2.2)

where s2
k is the variance of the kth variable. This standardized distance is called the Karl

Pearson distance. As a drawback of all sum of squares, this distance is expected to be

sensitive to outliers.

The above distances ignore the correlation between variables. A distance that take into

account the correlation between variables is the Mahalanobis distance defined as,

d(xi, yj) =
√

(xi − yj)TΣ−1(xi − yj), (2.3)

where Σ is the variance-covariance matrix of the data set. The Mahalanobis distance is

invariant under nonsingular transformations, i.e., if zi = Cxi and rj = Cyj for all i and

j, then d(xi, yj) = d(zi, rj). However, to use this distance, it is necessary to estimate the
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inverse of the covariance matrix, which requires a large number of samples. In case of small

sample sizes, the estimated covariance matrix is often not invertible.

In clustering of microarray gene expression data it is common to use the Inner Product

defined as,

s(x,y) = xTy =
n∑
i=1

xiyi, (2.4)

and the Pearson’s Correlation Coefficient defined as,

sr(x,y) =
xTc yc
‖xc‖ ‖yc‖

, (2.5)

where xc and yc are the original vectors centered about their respective means.

As a similarity measure, the inner product is usually used with normalized vectors and

this is not a recommended procedure in clustering gene expression data. Pearson’s Corre-

lation Coefficient has been used frequently in gene expression analysis. However, studies

indicate that this measure is not robust to outliers and data from non-Gaussian distribu-

tion. Some gene expression studies (see Eisen et. al [25]) use a dissimilarity measure that

is obtained from sr by the transformation,

d(xi, yj) =
1− sr(xi, yj)

2
. (2.6)

More details about proximity measures can be found in Mardia [64], Theodoridis and

Koutroumbas [106], Kaufman and Rousseeuw [52], Allison et. al [6], Johnson and Wich-

ern [51] and Gan et. al [34].

2.2 Review of Clustering Algorithms

2.2.1 Partitional Clustering Methods

• K-means, PAM and Clara

K-means was proposed by MacQueen [68] and is one of the most popular partition-based

methods. It partitions the dataset into k disjoint subsets, where k is predetermined. For
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each subset it obtains initial centers µ̂1, . . . , µ̂k and minimizes the sum of squared distances

from each observation to its cluster center µ̂c, c = 1, . . . , k. The algorithm keeps adjusting

the assignment of objects to the closest current cluster mean until no new assignments of

objects to clusters can be made.

One Advantage of this algorithm is its simplicity. There are no problems with missing

observations and low time complexity (see Jiang et. al [49]). One drawback is that in gene

expression data it is difficult to specify the number of clusters in advance. Another drawback

is that the algorithm is sensitive to outliers since it works with squared distances. A third

drawback is that centroids are not meaningful in most problems.

The Partitioning Around Medoids (PAM) algorithm was introduced by Kaufman and

Rousseeuw [52], It is based on the search of k representative objects, called medoids, among

the objects of the dataset. The medoids are points with smallest average dissimilarity to

all other points. The algorithm follows the same sequence of steps that are followed by

the k-means algorithm, but the use of medoids instead of means makes the algorithm more

robust to outliers. Also, the center of each cluster is now more representative since it is an

element of the dataset. PAM can also be used in datasets that have categorical and/or other

types of discrete data, such as binary data. One of the problems of the PAM algorithm is

the requirement that the desired number of clusters must be predetermined.

When working with gene expression data, there are typically thousands of genes to be

clustered. In this case, both the k-means and PAM algorithms are slow and not practical

because for a fixed number k of clusters, the number of possible subsets from a objects

increases exponentially at the rate ka. One can imagine situations where different numbers

of clusters are found and the algorithm has to be repeated many times. One algorithm that

tries to solve this problem is CLARA (Clustering LARge Applications). CLARA is a method

based on PAM that attempts to deal with large dataset applications. Instead of applying

PAM to cluster all the data, CLARA uses the PAM algorithm to first cluster a sample from

a set of objects into k subsets. After this first step, each object not belonging to the initial

13



sample is allocated to the nearest representative object, and a measure of clustering of the

entire dataset is obtained. This measure is compared with n other measures obtained from

the application of the algorithm in n different initial samples. The best clustering obtained

from the different samples is the one selected by the algorithm.

Kaufman and Rousseeuw [52], Theodoridis and Koutroumbas [106] detail the k-means,

PAM and CLARA algorithms and present some variations of each, such as CLARANS.

Simulations have shown that such methods are still slow when clustering high dimensional

data.

• Self-Organing Maps - SOM

Self-organizing maps (SOM) are partitioning algorithms introduced by Kohonen [59]

as a neural network process that consists of clusters in low dimensional grids formed by

cells known as neurons. Each neuron is represented by a d-dimensional reference vector

(prototype vector). The dimension d is specified through an input vector space and the

distributions of this input vector space directs the movement of the reference vectors to the

denser areas of the vector space. In the SOM algorithm, adjacent neurons of a grid represent

clusters that are close to one another. An example of such structure is presented in Fig. 2.1,

using software R1, where a SOM grid of 6 by 5 was applied, by Tamayo et al. [104], to a

microarray of 6601 genes, measured at 18 time points in the yeast cells cycle.

SOM is basically a data reduction technique with an algorithm similar to k-means that

has the advantage of representing similar clusters in closer points of a graphical map which is

exactly the appealing feature of SOM technique. Examples of SOM applications in clustering

of gene expression data are given by Tamayo et al. [104], Törönen et al. [108], Yano and

Kotani [117] and Garrigues et al. [35].

1Copyright 2007 from The R Foundation for Statistical Computing.
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Figure 2.1. Example of two dimensional SOM grid for a microarray data
produced with R package.

2.2.2 Hierarchical Clustering Methods

Hierarchical clustering algorithms divide or merge a dataset into a sequence of nested par-

titions. The way the hierarchy of nested partitions is formed is what defines agglomerative

or divisive hierarchical clustering. In the agglomerative method, clustering starts with each

single object in a single cluster and it continues to cluster the closest pairs of clusters un-

til all the objects are together in just one cluster. Divisive hierarchical clustering, on the

other hand, starts with all objects in a single cluster and keeps splitting larger clusters into

smaller ones until all objects are separated into unit clusters. Both hierarchical methods

have a natural way of representing nodes of splits or unions of clusters through a graphical

tree called a dendogram. In each approach, different strategies can be used to split or merge

clusters and the same data can produce a different sequence of nodes for agglomerative or

divisive clusterings. One example of such result is presented in Fig. 2.2 where the same
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data produced different dendograms in agglomerative and divisive algorithms2. Kaufman

and Rousseeuw [52], Johnson [50], and Johnson and Wichern [51] describe some of the main

hierarchical clustering algorithms.

Figure 2.2. Agglomerative (left) and divisive hierarchical (right) dendo-
grams for the same dataset. Agglomerative dendogram should be read from
bottom to top graph and divisive should read in opposite direction.

In comparative studies with PPCLUST, two agglomerative algorithms and one divi-

sive algorithm are used: HCLUST (Hierarchical CLUstering), and AGNES (AGglomerative

NESting); and DIANA (DIvisive ANAlysis clutering).

The following descriptions of each method are taken from the R help user’s guide3.

Additional details about the algorithms are described in Kaufman and Rousseeuw [52].

• HCLUST performs a hierarchical cluster analysis using a set of dissimilarities for the

objects being clustered. Initially, each object is assigned to its own cluster and then

the algorithm proceeds iteratively, at each stage joining the two most similar clusters,

2It occurs also due to choice of the dissimilarity (or similarity) measure to be used in each algorithm, as
for example, group average, nearest neighbor and furthest neighbor.

3R is a free software. Copyright from The R Foundation for Statistical Computing.
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continuing until there is just a single cluster. At each stage distances between clusters

are recomputed by the Lance Williams dissimilarity updated formula according to the

particular clustering method being used. In simulations it was used the Ward’s min-

imum variance method with dissimilarities between the clusters in Euclidean metric.

Ward’s method minimizes the increase in total within-cluster sum of squared errors 4.

• AGNES is another agglomerative clustering method such as HCLUST. It constructs

a hierarchy of clusterings where, at first, each observation is in a cluster by itself.

Clusters are merged until only one large cluster remains which contains all the obser-

vations. At each stage, the two nearest clusters are combined to form one larger cluster

using average linkage method, i.e., the distance between two clusters is the average of

the dissimilarities between the points in one cluster and the points in the other cluster.

• DIANA computes a divisive hierarchy. The diana-algorithm constructs a hierarchy

of clusterings, starting with one large cluster containing all n observations. Clusters

are divided until each cluster contains only a single observation. At each stage, the

cluster with the largest dissimilarity between any two of its observations is selected.

To divide the selected cluster, the algorithm first looks for its most disparate observa-

tion, i.e., which has the largest average dissimilarity to the other observations of the

selected cluster. This observation initiates the “divisive group”. In subsequent steps,

the algorithm reassigns observations that are closer to the “divisive group” than to the

“old group”. The result is a division of the selected cluster into two new clusters.

When clustering genes or a large number of objects, usually agglomerative algorithms

are chosen for hierarchical clustering. The reason is that for agglomerative algorithms

the number of possible fusions of two objects in the first step is n(n − 1)/2, while the

number of possible divisions in a first step of a divisive algorithm is 2n−1 − 1. In high

4Ward’s hierarchical clustering method is based on minimization of loss of information from joining two
groups. Other methods of agglomerative hierarchical clustering are single linkage, complete linkage, and
average linkage. Details about each method are available on Johnson and Wichern [51].
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dimensional data it makes the divisive algorithm extremely slow as the number of objects

to be clustered increases. For example, in a microarray data, where the objective is to

cluster just 1000 genes, the agglomerative algorithm will have 499500 possible fusions, while

the divisive algorithm will have 5.357543× 10300 possible divisions, resulting in a extremely

slow divisive algorithm. Although, DIANA is a divisive algorithm, it can be applied to

microarray datasets just because the algorithm does not consider all possible splits in each

step, but it uses, instead, an iterative procedure that is explained in details in Kaufman and

Rousseeuw[52]. Other procedures for clustering objects in hierarchical algorithms have been

used in the microarray literature. Some are deterministic-annealing, cluster identification

by connectivity kernels (CLICK) and a cluster affinity search technique (CAST). Jiang et

al. [49] has an excellent review of such techniques with a large number of references.

Besides a long processing time, the major drawback in hierarchical algorithms is the fact

that a bad decision about splitting or grouping objects in one step can not be corrected in the

following steps. Tamayo et al. [104] also indicates that hierarchical clustering suffers from a

lack of robustness with small perturbations changing the hierarchical structure considerably.

Other problems cited are non-uniqueness, and inversion problems that results in complicate

interpretation of the hierarchy in these methods.

• Hierarquical Clustering by Minimun Energy Distance (ε-clustering)

Clustering using ε-distance was introduced by Székely and Rizzo [102] as an agglomera-

tive hierarchical method that merges two groups of objects with minimum energy distance

at each step. The minimum energy distance of two groups Gi and Gj is defined by

e(Gi, Gj) =
ninj
ni + nj

(2Dij −Dii −Djj),

where

Dij =
1

ninj

ni∑
p=1

nj∑
q=1

||Yip − Yjq||α,

and || · || denotes the Euclidean norm, and Yip is the pth observation in the ith group. The

ε-distance measures both the heterogeneity between clusters and the homogeneity within
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clusters and when α = 2, it is equivalent to Ward’s method in agglomerative hierarchical

clustering. According to Rizzo and Székely [85], when α = 1 the ε-clustering is particularly

effective in high dimensional problems, and is more effective than some standard hierarchical

methods when clusters have equal means. The authors also call attention to the fact that

if clusters are characterized by their means, then Ward’s method (α = 2) is a better choice,

but if clusters are characterized by their distributions, then 0 ≤ α < 2 may be a better

choice. Other properties of ε-clustering are found in Székely and Rizzo [102]. In comparisons

made with PPCLUST α = 1 was used. In simulations, the ε-clustering algorithm produced

results very similar to those obtained using hierarchical clustering with Ward’s method of

computing distances.

2.2.3 Fuzzy clustering

Fuzzy clustering is a general form of partitional clustering5 where each object in the dataset

is given a probability of inclusion in a cluster through the use of membership coefficients

that range from 0 to 1. The membership coefficients add to 1 for each object. The advantage

of fuzzy clustering is that one object can have an equal membership coefficient for different

clusters when its location in one or another cluster is not clear. An interesting example is

presented by Kaufman and Rousseeuw [52], page 165, where the allocation of some elements

in the data are not as evident as others. The example is reproduced in Fig. 2.3 and one

should note that object 6 has 2 likely clusters for allocation while object 13 has three likely

clusters for allocation.

Using the package FANNY (Fuzzy ANalysis) from R software, with 3 clusters, the mem-

bership coefficients of object 6 are equal to 0.45, 0.38, 0.17 and for object 13 the coefficients

are 0.23, 0.38, 0.39, for clusters 1, 2 and 3 respectively. All other objects have membership

coefficients of at least 0.65 to one of the clusters. Thus, fuzzy allocation spreads object 6

mostly in 2 clusters, while object 13 spreads out over 3 clusters. This description of the

5Actually, the fuzziness principle can be extended to many partitional algorithms, resulting in fuzzy
k-means, fuzzy k-modes, and many other variations of partitional algorithms.
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Figure 2.3. Dataset with two intermediate objects (6 and 13). Example
generate in R language, based on KaufmanRousseeuw [52].

uncertainty of objects in real data is seen as one of the main advantages of fuzzy clustering.

Unfortunately, in large datasets FANNY is computationally slow and results in very difficult

comparisons of clusters. In simulations the cluster allocated to an object was the cluster

with highest membership coefficient. This allows comparisons with PPCLUST.

2.2.4 Model-Based Clustering (MCLUST)

Model-based clustering is a hierarchical clustering method with a flavor of fuzzy clustering.

It does a model-based agglomerative hierarchical clustering by mixtures of distributions and

provides an estimated probability (or uncertainty measure) that an object i belongs to a

cluster k. The MCLUST package by Fraley and Raftery [30] assumes a mixture of normal
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distributions using

f(x) =

g∑
i=1

πifi(x|µi,Σi)

where the data is represented by x, πi is the probability that an observation belongs to

distribution i and fi(x|µi,Σi) is the normal density of group i with mean µi and variance-

covariance Σi. The parameters are estimated by Expectation-Maximization (EM) algorithm

and the object is assigned to the component with maximum probability. The final compo-

nents will be the clusters. In this way, the estimated probabilities of assignment of an object

to a component can show if one object is highly correlated to more than one cluster, as in

fuzzy clustering. In MCLUST, the normal distribution clustering modeling decomposes

the variance-covariance matrix Σi in a set of geometric features that provide information

about volume, shape and orientation of the components or clusters. Different parameteri-

zations of the covariance matrix generate different models that are compared through the

Bayesian information criterion (BIC) of Schwarz[88]. The best model is considered the one

with maximum BIC over all models and numbers of components considered. Figure 2.4

shows a typical graph produced with MCLUST for different covariance parameterizations

and different number of components6.

The assignment of probabilities to components in MCLUST also helps to produce graph-

ical outputs, as projected clusters and projected degree of uncertainty in the allocation of

objects to clusters. Figure 2.5 has examples of such graphs.

As observed by Fraley and Raftery [30], model-based clustering has also many drawbacks.

The assumption that the dataset fits a specific distribution is not always accepted and

may be difficult to justify in microarray or high dimensional data analysis. Also, the EM

computations can fail when the covariance matrix of one or more components is singular or

nearly singular, or yet, if the clusters contain few observations.

Model-based clustering using mixture of distributions has been largely studied with many

applications to high-dimensional and microarray data. Examples are Fraley [28], McLachlan

6For details about covariance parameterizations see Gan et al. [34] or Fraley and Raftery [30].
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Figure 2.4. BIC comparison of different models with different number of
components in clustering of a data. The covariance structures considered
are EII (spherical with equal variance), VII (spherical unconstrained), EEI
(diagonal with equal variance), VEI (diagonal with equal shape), EVI (diag-
onal with equal volume) , VVI (diagonal unconstrained), EEE (ellipsoidal
with equal variance), EEV (ellipsoidal with equal volume and shape), VEV
(ellipsoidal with equal shape) and VVV (ellipsoidal unconstrained). The
best model is VEV with 2 clusters.

and Peel [65], McLachlan et al. [67], Fraley and Raftery [29], McLachlan et al. [66], Gan et

al. [34], Gottardo et al. [38] and Gottardo et al. [39]7.

In comparison with other methods, MCLUST shows superior results when consider-

ing clusters with symmetric distributions and a larger number of replications. However,

MCLUST has poor results for simulated clusters with asymmetric distributions, since it

is based on the assumption of having a mixture of normally distributed clusters. In all

7The last two articles more directed related to Bayesian methods for gene expression in microarrays.
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Figure 2.5. Example of coordinate projections of clustered objects showing
clustering (named as classification) and uncertainty of allocation.

simulations presented in this thesis, MCLUST was less efficient than PPCLUST.

In terms of clustering genes in microarray data, ANOVA methods have been used to

declare genes as differentially expressed or not. In this thesis, all the clustering methods

are based on similarity measures that come from p-values obtained from hypothesis test-

ing in ANOVA specially developed under the setting of large number of factor levels and

small sample sizes. The next subsection gives a brief review of the use of ANOVA in gene
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expression studies.

2.2.5 ANOVA methods in clustering analysis

ANOVA methods (see Pavlidis [78], Kerr et al. [53], Milliken et al. [71]) have been pro-

posed to determine which genes are differentially expressed over samples obtained under

different experimental conditions or across different kinds of tissue samples. However, few

studies have been concerned with the use of ANOVA methods when the number of genes

is large and the number of observations is small. Usually the application of ANOVA meth-

ods for discovering differentially expressed genes in replicated microarray data is reduced

to the identification of just two categories, expressed and non-expressed genes through the

comparison of the expression of pairs of genes (Pan [75], Pavlidis et al. [78], and Sykacek

et al. [101].). However, traditional ANOVA imposes strong assumptions that make it im-

practical and not powerful enough. The assumptions include normality, independence and

homocedasticity of errors. The assumption of normality of gene intensity distributions is

difficult to justify in many microarray applications even after applying the common log

transformation used in most studies. To solve this problem, authors use permutation tests

or bootstrap methods, as in Kerr et al. [53], but then more replicates are required than are

usually found in HDLSS or HDLLSS datasets as explained by Simon et. al [95]. Some other

ANOVA methods with large numbers of factor levels are given in Boos and Brownie [14],

[13], Akritas and Arnold [2], Akritas and Papadatos [3], and Wang and Akritas [112]8. An-

other assumption that requires attention is homocesdasticity. Dubin et al. [24] showed that

usual log transformations are subject to problems such as not stabilizing data in microar-

rays uniformly. Finally, multiple testing in ANOVA studies generate significance levels with

extremely low p-values due to the high dimensionality of the problem and experimentwise

Type I error rates are too conservative. In this situation it is frequently used in applications

of false discovery error rate (FDR) by Benjamini and Hochberg [11]. FDR is defined as the

8All cited references are not concerned directly with microarray experiments, but with ANOVA when
the number of factors is large.
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expected proportion of false positives among the number of rejections. However, methods

using FDR are still restricted to a gene by gene analysis and cannot borrow information

from other genes.

The use of non-parametric methods may correct many of the problems mentioned above,

but in many cases it results in a loss of power and if, still requires some assumptions to be

valid as mentioned by Mehta et al. [69] and Roy [86].

In this thesis, two specific nonparametric hypothesis tests of no group effect are used

in presence of a large number of factors levels when the number of observations is small.

In this case, the p-values from the tests can be used as similarity measures in algorithms

for clustering. Chapter 3 introduces the test used for clustering HDLSS data and a novel

partitioning algorithm that has many advantages over existing algorithms in the literature.

In Chapter 5, the developed algorithm is evaluated through numerical comparisons and

applied to a microarray data. In Chapter 6 a new test is developed for simple effects in high

dimensional low sample size data in longitudinal studies. The asymptotic distributions of

the test statistics are derived. Simulation studies concerning Type I error rates and power

estimates of the new test are reported. This new test is used for implementation of the

clustering algorithm that allows clustering of a large number of variables when only few

replications over time are available. Finally, Chapter 7 presents conclusions about results

obtained and discusses future research possibilities and perspectives. Each chapter identifies

important references in the recent literature, but the reference list is not exhaustive due to

the huge and even daily amount of new publications in this area.

Comment:

Other algorithms for clustering replicated microarray gene expression data have been used

for specific situations with relative success. Examples: gene-shaving (Hastie et al. [42],

and K-A. Do et al. [23]), density-based hierarchical clustering (Jiang et al. [48]), clustering

via iterative feature filtering or CLIFF (Xing and Karp [116]), plaid models (Lazzeroni

and Owen [60]), subspace clustering (Parsons et al. [77]), and coupled two-way clustering
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analysis of gene microarray data (Getz et al. [37]). However, comparisons by simulation

using those methods were not possible for the following reasons: lack of flexibility to do

the simulations (no code access), poor documentation or/and incompatibility with different

operational system platforms and versions of statistical packages.

2.3 Cluster Quality by Adjusted Rand Index

The Adjusted Rand Index (ARI) from Hubert and Arabie [46] is a measure of agreement in

order to compare clustering results against an external criteria. An external criteria is some

standard result for clustering that is judged to be correct, or even the result of clustering

with a different methodology that someone wants to compare with other methods.

Consider, for example, a partition P1 = {rc1, rc2, . . . , rck} representing k reference clus-

ters that will be used to compare clustering procedures. Let P2 = {oc1, oc2, . . . , occ} be a

partition of c clusters obtained from some clustering algorithm (k-means, som, etc.). The

Contingency Table9 2.1, represents the results of both clustering procedures, where nij is

the number of objects that are in both clusters rci and ocj, with i = 1, . . . , k, j = 1, . . . , c,

and ni. =
∑c

j=1 nij, n.j =
∑k

i=1 nij.

Table 2.1. Contingency Table of clustering agreement.

oc1 oc2 . . . occ
rc1 n11 n12 . . . n1c n1.

rc2 n21 n22 . . . n2c n2.
...

...
...

...
...

...
rck nk1 nk2 . . . nkc nk.

n.1 n.2 . . . n.c n

9Table adapted from Fridlyand and Dudoit [31].
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Using this notation, the ARI can be calculated as,
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ARI = 1, if the partitions agree completely, regardless of the permutation of the labels,

or equivalently, if all elements in the same cluster in one partition are also together in some

cluster in the other partition, for all clusters in both partitions. ARI = 0 when the elements

in each partition are randomly assigned to each cluster. As an example, consider Table 2.2

with results from a clustering algorithm that is supposed to cluster 2000 objects in groups

of sizes 200, 200, 800, 400, and 400 (reference clusters). The result obtained in Table 2.2

results in ARI = 0.93123.

Table 2.2. Contingency Table of clustering agreement of 2000 clustered objects.

1 2 3 4 5 6 Total
1 0 6 182 7 4 1 200
2 0 3 1 0 0 192 200
3 6 791 2 0 0 1 800
4 2 2 0 0 396 0 400
5 0 19 0 375 2 4 400

Total 8 821 185 382 402 202 2000

A SAS c© macro to calculate ARI was implemented for SAS c© Version 9.1.3 and used

in our simulations. The macro was adapted from Fisher and Hoffman [27] and corrected

for the latest version of SAS c© language10. R software has ARI implemented in package

MCLUST.

10Instructions available in Appendix B.
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3

Partition Clustering of HDLSS Data
Based on p-Values

This chapter introduces a computational algorithm for partition clustering of a large

number of variables with few observations per variable 1. The algorithm uses the one-way

ANOVA model based on ranks developed by Wang and Akritas [112]. Clustering of High

Dimensional Low Sample Size (HDLSS) data has been extensively used in the analysis

of replicated data represented by a mixture of unknown distributions where individuals

from a cluster are all generated from the same distribution. However, existing clustering

algorithms applied to HDLSS data suffer from several drawbacks as noted in Chapter 2.

The algorithm introduced in this thesis does not suffer from such drawbacks. Additionally,

the new algorithm has better performance in finding the correct groups of factor levels

(variables).

The new procedure, based on ANOVA methods, uses the p-value of the test statistic

from Wang and Akritas [112] as a measure of similarity between groups. Classical ANOVA

models and ANOVA based on ranks have been used in many studies with high dimensional

1For simplicity of description, we refer to a variable as a level of a factor. For example, different genes
from a microarray data are viewed as different factor levels of a factor.
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data. See Brownie and Boos [14], Kerr et al. [53] and Wu et al. [115] for examples.

In HDLSS data problems, differences among factor levels can be reflected in many dif-

ferent ways. The observations from different factors may have different mean values or the

replicated data may have different variances. In this thesis, the problem of clustering on ob-

servations from all factor levels is stated as the problem of detecting a significant difference

on the distribution of the observations from each factor level. Let Xij denote the jth obser-

vation from the ith factor level where {Xij, 1 ≤ j ≤ ni} are independent observations from

some unknown distribution Fi(x), i = 1, 2, . . . , a. We first test to see if these observations

are from the same distribution, that we test

H0 : F1(x) = . . . = Fa(x). (3.1)

Classical ANOVA tests whether the means of observations from each factor level are the

same. However, these methods require error terms to be i.i.d. normal and with a constant

variance (homocedasticity). The Kruskal-Wallis test can be used where the data are not

normal by computing th usual analysis of variance test statistic from the ranks, rather than

on the original observations. This test can be applied when the number of treatments is

small; but the test is not valid in a high dimensional setting since the inference is based on

large sample size and small number of distributions. Akritas and Arnold [2] showed that the

ANOVA F test is robust to departure from homocedasticity when there is a large number of

factors, but it is not asymptotically valid for unbalanced data with small sample sizes, even

under homocedasticity. Later, Akritas and Papadatos [3] considered test procedures for

unbalanced and/or heterocedastic situations when the number of factors tends to infinity.

However, their test still requires that the number of replications goes to infinity suitably

fast. Finally, trying to solve all such limitations, Wang and Akritas [112] considered a

nonparametric rank test of the null hypothesis of equality of distribution functions for each

factor level when the number of factors is large and the number of replications is either small2

or large. The use of Wang and Akritas [112] procedure in the new clustering algorithm gives

2This is the situation defined here as HDLSS data.
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a large amount of flexibility considering balanced and unbalanced data, homocedastic or

heterocedastic cases, small or large sample sizes and non-normality of error terms.

3.1 The Nonparametric Test of No Group Effect

This section explains the nonparametric test that allows one to detect the effect of the group

factor by considering a large number of factor levels simultaneously. The p-value produced

from such a test provides a measure of homogeneity among the levels considered in the test.

First, let Xij denote the jth observation from the ith factor, where {Xij, 1 ≤ j ≤ ni} are

independent observations from some unknown distribution Fi(x), i = 1, 2, . . . , a. When the

distributions from all factor levels are the same, all observations are i.i.d. realizations of a

common distribution. A matrix of elements Xij with rows representing factors, i = 1, . . . , a,

and columns representing observations (replications), j = 1, . . . , ni is shown in Table 3.1.

Table 3.1. High dimensional data layout, where a→∞ and ni ≥ 2.

Factor Level Observations Sample size
1 X11 X12 . . . X1n1 n1

2 X21 X22 . . . X2n2 n2
...

...
...

...
...

...
a Xr1 Xr2 . . . Xrnr na

Let Rij represent the rank of observationXij in the set of all n1+n2+. . .+na observations.

Then, under H0, these ranks are discrete uniformly distributed random numbers between 1

and
∑a

i=1 ni. Now, define the test statistic,

FR =
MSTR
MSER

(3.2)

where MSTR is the mean square error due to factor levels, calculated over ranks. That is,

MSTR =
1

a− 1

a∑
i=1

(R̄i. − R̃..)
2, (3.3)
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and MSER is the estimate of sample variance, also obtained over ranks, or

MSER =
1

a

a∑
i=1

1

ni
S2
R,i. (3.4)

Note that R̄i. = n−1
i

∑ni
j=1Rij is the mean rank of each factor level, R̃.. = a−1

∑a
i=1 R̄i. is

the overall mean of factor levels, and S2
R,i is the sample variance calculated for each factor.

The following theorem, by Wang and Akritas [112], uses the test statistic defined in (3.1)

to give the asymptotic distribution of
√
a(FR−1) under H0 in HDLSS data where FR is the

test statistic defined in (3.2).

Theorem 3.1. Let H0 : F1(x) = . . . = Fa(x) be satisfied, with Fi(x) arbitrary . If ni ≥ 2

fixed, assuming the observations are independent, the following limits exist

v2
2 = lim

a→∞

1

a

a∑
i=1

1

ni
σ2
i > 0

and

τ2 = lim
a→∞

1

a

a∑
i=1

2σ4
i

ni(ni − 1)
.

Then, as a→∞,
√
a(FR − 1)

d→ N(0, τ2/v
4
2). (3.5)

The statistic
√
a(FR−1) can be used to obtain a p-value for the test and compare it with

some specified significance level α, such that the p-value works as a similarity measure in

the algorithm. In this way, large p-values indicate the factor levels being tested are similar

in distribution, and factors levels belong to the same group. In contrast, a small p-value

gives evidence against H0 indicating that at least two groups of factors are required.

The performance of the test is verified here through analysis of Type I error rates in

simulated data.

3.1.1 Type I Error Rate

Wang and Akritas [112] reported simulation studies in two-way ANOVA showing that their

test statistic has a stable Type I error rate and the test works even when the error distri-

bution is not normal. A numerical study on performance of the test statistic under the one
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way model has not been reported in literature. Table 3.2 reports the approximate Type I

error rates using the asymptotic distribution of the test statistic in 3.5 at levels 0.10, 0.05

and 0.01. For performance of other nonparmetric tests in such a setting, one should see

Akritas and Papadatos [3]. In the simulations a takes on the values 1000, 2000 and 4000,

and the number of observations per factor level is set to 4. The simulations are based on

2000 replications and observations were generated from normal, lognormal, exponential, and

Cauchy distributions. The jackknife estimators3 of σ4
i were used in the estimation of the

asymptotic variances from (3.5).

Table 3.2. Estimated levels for one-way ANOVA

Nominal levels
Number of 0.10 0.05 0.01

Distribution Factors Type I errors
Normal(0,1) 1000 0.0965 0.0500 0.0130

2000 0.1060 0.0620 0.0110
4000 0.1075 0.0535 0.0135

Lognormal(0,1) 1000 0.1040 0.0605 0.0155
2000 0.1150 0.0610 0.0140
4000 0.1140 0.0620 0.0170

Exponential(1) 1000 0.1160 0.0625 0.0130
2000 0.1100 0.0585 0.0130
4000 0.1135 0.0605 0.0155

Cauchy(0,1) 1000 0.1105 0.0545 0.0165
2000 0.1005 0.0555 0.0150
4000 0.1100 0.0625 0.0105

The Type I error rates reported in Table 3.2 are close to the true α levels, indicating

that the test statistic
√
a(Fr − 1) performs well in testing the hypothesis in (3.1) regardless

3Let (x1, . . . , xn) be a random sample, σ4
n =

(∑n
i=1(xi−x̄)2

n

)2

, and σ4
n(i), xi, i = 1, . . . , n, be calculated as

σ4
n, excepted that xi is removed from the sample. The Jackknife estimator of σ4, σ̂4

jack is given by,

σ̂4
jack = nσ4

n −
n− 1
n

n∑
i=1

σ4
n(i).

This estimator has a smaller bias than σ4
n. See Pawitan [79].
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of whether the distribution is symmetric (normal), or skewed (lognormal, exponential),

or heavy tailed (Cauchy). These results are expected because according to Theorem 3.5

the only assumption required is that observations are independent and from any arbitrary

distribution Fi(x).

Once a measure of dissimilarity for the clustering algorithm is established, a new clus-

tering algorithm can be developed through a partitioning of the factor levels into groups

until the homogeneity measure of each group is above a given threshold. Section 3.2 will

introduce the details of the new partitioning algorithm.

3.1.2 Power Curves

To study the power of test given in Theorem 3.5, datasets were generated with 2000 factor

levels and 4 observations for each factor level. Simulations considered random values of one of

the following distributions: Normal(0, 1), Lognormal(0, 1), Exponential(1) and Cauchy(0, 1).

In each case 1900 values were generated from one of the distributions and 100 values from

the same distribution had the mean shifted for some value d. The Type I error rate was

α = 0.05. Figure 3.1 shows the power curves for each case. It is possible to note that the

power increases faster for asymmetric distributions (Exponential and Lognormal) and the

test is less powerfull in the case of symmetric heavy tailed distribution (Cauchy). Overall

PPCLUST showed to be very powerful in detecting small differences in all cases.

3.2 Partition Clustering Algorithm Based on p-Values

The p-values obtained from the test in (3.1), using the statistic FR in (3.2), can serve as

similarity measure in a partitional clustering algorithm with high dimensional data having

the structure shown in Table 3.1. The algorithm introduced in this thesis, called PPCLUST

(p-values based Partitional Clustering), iteratively tests to see if each group that contains

multiple factor levels has similarity, i.e. homogeneity measure above a given threshold.

A partition occurs whenever the similarity is below the threshold. That is, a group is
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Figure 3.1. Achieved power for HDLSS data with α = 0.05, consid-
ering shifted differences in mean (d) in a group of 100 factor levels in
a total of 2000 factor levels and data generated from four distributions:
Normal(0, 1) (continuous line in blue), Lognormal(0, 1) (dashed line in
black), Exponential(1) (dotted line in red) and Cauchy(0, 1) (dotted-dashed
line in green).

partitioned into two smaller groups when the test for H0 in (3.1) is rejected and the group

remains intact if the test is not rejected. When H0 is rejected, smaller groups of factor

levels are created and tested. The algorithm stops when there are no groups with similarity

measures below the threshold. Factor levels that cannot be assigned to any of the created

groups are labeled as group 0 in PPCLUST. This means that factor levels with group label

equal to 0 are not necessarily similar (or dissimilar), but they only did not belong to any other

created group according to PPCLUST, i.e., factor levels in group 0 resulted in a rejection
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of H0 when tested with factor levels of any other created group. Groups labeled with lower

values in the output usually contain factor levels with lower observation values than those in

groups labeled with higher numbers. In microarray expression data this means, for example,

that lower groups are formed by low expressed genes, high groups by high expressed genes

and intermediate groups by genes not expressed.

Let g stand for a current group label that the test is to be applied, D1 contains the ob-

servations in the current working group g and nf is the number of factors in D1. PPCLUST

is described below in 8 steps, and a detailed block diagram of the algorithm is represented

in Fig. 3.2 (see end of this chapter).

Step 1: Set g = 1, D1 = Data.

Step 2: Rank all data in D1.

Step 3: Calculate the median rank for each factor in D1.

Step 4: Sort factors in D1 by median ranks.

Step 5: Test D1.

If H0 is not rejected: finish.

If H0 is rejected: continue.

Step 6: Take a subset of D1 and call D2.

Step 7: Calculate number of factors in D2 and give the nf of D2.

If nf = 1:

Allocate factor in D2 to group 0.

Remove factors in D2 from D1.

If nf inD1 = 0 then finish.

If nf in D1 > 0, then make D2 = D1 and return to Step 7.
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Step 8: Test D2.

If H0 is not rejected:

Assign factors of D2 to group g.

Make g = g + 1.

Remove factors in D2 from D1.

If nf in D1 = 0 then finish.

If nf in D1 > 0 then do:

Test to see if each factor of D1 belongs to the new assigned group

by testing the hypothesis that the observations in all factor levels have

the same distribution. Remove the factor from D1 when H0 is not rejected

and put it into the newly assigned group.

Make D2 = D1 for the remaining factors in D1 and return to Step 7.

If H0 is rejected:

Take a subset of D2 and call it D3.

Return to D1 all factors that are not in D3.

Make D2 = D3 and delete D3.

Return to Step 7.

The accuracy and stability of PPCLUST is explored in Chapter 4 through simulations

that reproduce the basic structure of microarrays in terms of the distribution of gene ex-

pression levels. PPCLUST is compared with some benchmark algorithms found in literature

and the properties of PPCLUST are listed in the end of the chapter. Also, in Chapter 5,

two examples with gene expression data are explored with the new algorithm.
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Figure 3.2. PPCLUST block diagram. In the diagram nf stands for “num-
ber of factors” and g for “group label”. Group 0 is reserved to factors that
cannot be allocated to any created group.

37



4

Simulations and Properties of
PPCLUST in Replicated Data

When performing clustering on simulated data, groups of factor levels can be generated

from known distributions and the quality of a clustering algorithm can be evaluated by

using some measure that allows one to compare generated groups with the groups obtained

by a clustering algorithm. In this chapter, simulations are performed to verify the quality of

PPCLUST in grouping factors, and also to compare PPCLUST with some benchmark algo-

rithms found in microarray clustering literature. The quality of each algorithm is obtained

through the Adjusted Rand Index (ARI) described in Section 2.3.

4.1 Clustering Simulations with HDLSS Data

When clustering gene expression data there is no guarantee that an algorithm worked suc-

cessfully unless further biological study about functions of genes is performed for each group

of genes to see if the obtained groups are meaningful. For this reason, simulated data that

represents real data having previously known group structures are used to test clustering

algorithms. In this way, the performance of PPCLUST on real gene expression data can

be inferred from its performance on the simulated data. Generate simulated data to closely
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reproduce real gene expression data alone is a challenging topic as the nature of such data

is not well understood (see e.g., Grant et al. [40], Lönnstedt and Speed [61], Purdom and

Holmes [82], Nykter et al. [73], Albers et al. [4], and Shaik and Yeasin [93]). The data

involves static or dynamic state. Examples that model such data include stochastic differ-

ential equations (Mendes et al. [70]), Bayesian networks (Friedman et al. [32]), relevance

networks (D’haeseleer et al. [21]; Butte and Kohane [15]), and graphical models (Kishino

and Waddell [56]; de la Fuente et al. [19]; Magwene and Kim [63]).

In the following simulations we only try to simulate the basic structure observed in

some colorectal data studied by Notterman et al. [72]. The objective is to reproduce the

overall distribution of genes observed in large groups of similarly expressed genes. The

groups are obtained using both PPCLUST and some other standard algorithms. It is noted

that the overall distribution in large groups is similar to a t-distribution shifted by some

location parameter µ and stretched by a scale parameter σ. Figure 4.1 compares the density

functions of three groups of genes obtained from colorectal data and three simulated groups

generated from t-distributions with 15 degrees of freedom shifted by −0.25, 0 and 0.2, and

stretched by 0.25. The simulated distributions based on original data satisfy the objectives

of clustering comparisons intended here and were adopted in the simulation studies.
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Figure 4.1. Original (continuous blue line) and simulated (dashed red line)
density functions for three groups of genes in colorectal expression data .

4.1.1 Study I: Symmetric Groups

Once the overall structure of the colorectal data was observed, the simulation study was

performed considering 200 datasets, with 4000 factor levels each. The data was divided into

5 groups of factors from location-scale families with standard pdf from a t-distribution with

15 degrees of freedom (t15), according to the following scheme:

- Group 1: 300 factor levels equal to 0.25× t15 − 0.5.

- Group 2: 200 factor levels equal to 0.25× t15 − 0.2.

- Group 3: 2500 factor levels equal to 0.25× t15.

- Group 4: 800 factor levels equal to 0.25× t15 + 0.5.

- Group 5: 200 factor levels equal to 0.25× t15 + 1.

In this case, the data for each group comes from symmetric distributions, as can be

observed in Figs. 4.2 and 4.3, where the sample size for each factor level was set equal to 5.
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Figure 4.2. Study I: Density functions used to generate groups of data.

After the data were generated, PPCLUST1 and the following 10 benchmark clustering

algorithms are applied to the data: PAM, K-means, Energy (with Euclidean norm ||x−y||),

Mclust (with automatic choice of best model), CLARA (with Euclidean metric), DIANA

(with Euclidean metric), HCLUST (with Ward’s agglomeration method), AGNES, FANNY

and SOM (with dimension 5 × 1). ARI was used to compare the performance of these

algorithms.

In all algorithms that need pre-specification of the number of clusters, the number is set

to be 5, the real number of groups. R software (version 2.4.1) with packages energy, mclust,

cluster, and SOM were used. PPCLUST was written in SAS c© macro language (version

9.3.1), and the Adjusted Rand Index was calculated using both R and SAS c© 2.

1PPCLUST used significance level α = 10−8.
2The simulations and all calculations were performed using Windows XP with Intel Pentium M processor,

1.6GHz, and 1Gb of RAM memory.
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Figure 4.3. Study I: Boxplots of generated data for each group.

In order to verify the performance of PPCLUST under different sample sizes, the com-

plete simulation study was repeated considering also samples of sizes 10, 15, and 20.

4.1.2 Study II: Asymmetric Groups

In a second study, the data generated for study I was transformed using the equation

exp((x + 1) ∗ 4), where x is a value generated in study I. The resulting distribution of

the data is like a lognormal but with more extreme points since x was generated from t-

distribution and not a normal distribution. The resulting groups are presented in Fig. 4.4.

Note that the distributions now are asymmetric with outliers and some overlap in many

points.
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Figure 4.4. Study II: Density plots for simulated groups, where (a) shows
group 1, (b) shows groups 2 (blue tall curve) and 3 (red short curve), (c)
group 4, and (d) group 5. Groups separated into 4 plots due to large differ-
ence in their respective ranges.

4.1.3 Results

Table 4.1 reports the mean and standard deviations of ARI for PPCLUST and each of

the 10 other algorithms based on 200 simulations for different sample sizes, when groups

are simulated from symmetric distributions. The two best (highest means) and the two

most stable (lowest standard deviations) algorithms under each sample size are indicated in

bold face fonts. In terms of quality of adjustment, i.e., grouping together the correct factor
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Table 4.1. Mean and standard deviations (std) of Adjusted Rand Index
for PPCLUST and 10 other algorithms, over 200 simulated datasets and
considering different sample sizes. Generated groups from symmetric dis-
tributions (Study I).

Adjusted Rand Index
Sample Sizes

5 10 15 20
Algorithm Mean Std. Mean Std. Mean Std. Mean Std.
PPCLUST 0.8600 0.0104 0.9205 0.0110 0.9541 0.0084 0.9688 0.0059
PAM 0.4709 0.0323 0.5342 0.0166 0.5352 0.0135 0.5346 0.0121
K-means 0.4652 0.0416 0.4938 0.1585 0.5476 0.1697 0.5407 0.1362
Energy 0.4846 0.0469 0.6456 0.1149 0.8562 0.0851 0.9184 0.0262
Mclust 0.6184 0.1163 0.8826 0.0894 0.9425 0.0056 0.9613 0.0043
Clara 0.4219 0.0927 0.5315 0.0656 0.5516 0.0565 0.5527 0.0560
Diana 0.5662 0.1477 0.6182 0.1387 0.6401 0.1151 0.7145 0.1052
HCLUST 0.4846 0.0469 0.6456 0.1149 0.8559 0.0852 0.9184 0.0262
Agnes 0.4963 0.0557 0.6915 0.1193 0.8551 0.0841 0.9150 0.0332
Fanny 0.3820 0.1368 0.6122 0.0431 0.6067 0.0378 0.5856 0.0516
SOM 0.2920 0.0048 0.3750 0.0057 0.4280 0.0059 0.4622 0.0045

levels, PPCLUST is the best for all sample sizes. The stability of PPCLUST is also the best

for small sample sizes (5 and 10) with the algorithm very stable in large sample sizes (15

and 20). Stability is very important because it means that the algorithm will not produce

considerably different results under similar data structures.

Among the compared algorithms, MCLUST achieved ARI superior to 85% for samples

of sizes greater than 5. This makes MCLUST a good alternative to PPCLUST in such

situations. SOM showed consistent stability but with very low quality of grouping, since

ARI mean values were less than 0.5 for all sample sizes. Algorithms Energy, HCLUST,

and Agnes, are competitive methods to PPCLUST for samples of size 15 or higher, but

those algorithms are not as stable as PPCLUST and MCLUST. Diana and Fanny showed

the lowest stability of all algorithms and should not be used with HDLSS data. Figure 4.5

shows a visual comparison of the algorithms through the use of boxplots. Overall, PPCLUST

produced the best results as it is very stable and has a high capacity of correctly allocating
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factor levels to groups. For larger samples, MCLUST is a good alternative to PPCLUST.

Figure 4.5. Boxplots of Adjusted Rand Index for PPCLUST and 10 other
algorithms, over 200 simulated datasets and considering different sample
sizes. Generated groups from symmetric distributions (Study I).

Additionally, Table 4.2 and Fig. 4.6 consolidate the results obtained when simulated

groups have asymmetric distributions. In this case it is clear that PPCLUST is considerably

better than all other algorithms in all sample size situations. Clara gave the worst results

and PAM was the best algorithm among the one’s compared with PPCLUST, but never

had ARI higher than 0.65 for all sample sizes. PPCLUST presented the same results as

in simulations of groups with symmetric distributions, because it is invariant to monotone

transformations.

In microarray data it is usually recommended to log transform the data before its analy-

sis. The previous results seem to agree with this strategy, if the data is really asymmetrical.
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Table 4.2. Mean and standard deviations (std) of Adjusted Rand Index
for PPCLUST and 10 other algorithms, over 200 simulated datasets and
considering different sample sizes. Generated groups from asymmetric dis-
tributions (Study II).

Adjusted Rand Index
Sample Sizes

5 10 15 20
Algorithm Mean Std. Mean Std. Mean Std. Mean Std.
PPCLUST 0.8600 0.0104 0.9205 0.0110 0.9541 0.0084 0.9688 0.0059
PAM 0.5396 0.0257 0.6073 0.0218 0.6347 0.0178 0.6454 0.0377
K-means 0.1321 0.0192 0.2670 0.1524 0.5194 0.1164 0.5700 0.1410
Energy 0.4923 0.0370 0.5905 0.0184 0.6213 0.0114 0.6318 0.0097
Mclust 0.3495 0.0547 0.4126 0.0372 0.4656 0.0813 0.5028 0.1040
Clara 0.3860 0.1515 0.3696 0.0213 0.3256 0.2134 0.3390 0.2171
Diana 0.0130 0.0079 0.0066 0.0037 0.0045 0.0019 0.0039 0.0013
HCLUST 0.4923 0.0370 0.5905 0.0184 0.6211 0.0114 0.6318 0.0097
Agnes 0.1420 0.0320 0.1553 0.0181 0.1580 0.0052 0.1579 0.0036
Fanny 0.2990 0.0250 0.4236 0.0375 0.4716 0.0457 0.5221 0.0235
SOM 0.4766 0.0112 0.5412 0.0083 0.5775 0.0087 0.5999 0.0060

PPCLUST has the advantage of being invariant to transformations with high quality of

grouping whether the data are symmetrical or not. PPCLUST is very stable in any sit-

uation and does not need a previous specification of the unknown number of groups, as

required by other algorithms. The specification of the significance level α in PPCLUST

allows a fine tunning of the number of groups to be obtained. Too many small groups with

intermediate values means that α should be increased, extreme groups in data means that

α should be decreased.

An additional investigation was made to compare the processing times of the algorithms.

Table 4.3 presents compilation times among algorithms with best results in simulations with

symmetric groups. PPCLUST processing time was always less than 1 minute for each run

on 4000 levels and PAM was the only faster algorithm. MCLUST, the closer competitor to

PPCLUST, showed processing times at least 3 times higher than PPCLUST.

Finally, a study about efficiency was made when data in a row (or column) is stan-
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Figure 4.6. Boxplots of Adjusted Rand Index for PPCLUST and 10 other
algorithms, over 200 simulated datasets and considering different sample
sizes. Generated groups from asymmetric distributions (Study II).

dardized. Data standardization was shown to be a bad strategy in all situations even for

PPCLUST, with ARI very small or around 0, meaning that in this case factors are randomly

allocated to groups. That is, there is no pattern in allocation of elements to groups when

data are standardized and standardization is not recommended when clustering HDLSS

data.
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Table 4.3. Compilation time, in seconds, for PPCLUST and 4 other al-
gorithms: PAM, MCLUST, HCLUST, and Energy. Datasets with 4000
factors and equal sample sizes.

Compilation Time for
Sample Sizes

Algorithm Description 5 10 15 20

PPCLUST Partition clustering based on p-values 18 30 43 54
PAM Partitioning around medoids 24 12 13 13
MCLUST Model based clustering 135 151 141 158
HCLUST Hierarchical clustering 276 274 275 277
Energy Hierarchical clustering by minimum energy 321 306 309 312

4.2 Properties of PPCLUST

A close inspection of the PPCLUST algorithm allows one to detect some of its properties.

Others are revealed only with simulations performed in this chapter. Interesting properties

that make PPCLUST appealing for use with HDLSS data in real applications are listed

bellow.

1. Invariance to monotone transformations – the use of overall ranks observations in

the test statistic leads to similarity measure that is invariant to monotone transforma-

tion of data and this in turn makes PPCLUST to have such property. In microarray

studies it is common to have data log transformed before analysis. Many clustering

algorithms can produce different results before and after monotone transformations on

the same data. This is because monotone transformations change distances between

variables and therefore modify similarity matrices used in clustering. PPCLUST does

not have this drawback.

2. Automatic specification of number of groups – PPCLUST does not require the

number of clusters to be specified in advance. It will determine the number of clusters

automatically by specification of significance levels as a threshold that will be com-
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pared with the p-values for testing the hypothesis of no group effect. The specification

of significance levels is not as intrusive as the specification of number of groups, which

is one of the objectives of clustering analysis. Actually, significance levels can be used

as a guidance in finding the number of groups in a real dataset. For example, de-

creasing the significance level in PPCLUST will decrease the number of groups found

because it decreases the Type I error committed by the test3. The use of different

significance levels can serve as a fine tuning parameter in revealing the number of

groups g where the algorithm tends to stabilize, i.e, find g that is more common to

different α levels. This can be used as an indication of the true number of groups

in the data. As an example, Table 4.4 show the number of groups and factor levels

in each group for different significance levels used in one real study. Note that for

very small significance levels there is no modification in group sizes and the number

of groups is smaller than for higher significance levels.

Table 4.4. Number of groups and group sizes for different thresholds (α
levels) in a real data example.

thresholds (α)
Group 10−1 10−5 10−10 10−20 10−30

0 5 4 4 1 1
1 8 98 91 89 89
2 124 776 774 728 728
3 4 6 9 2726 2726
4 1007 2614 2673 9 9
5 23 13 5 661 661
6 2438 9 655 20 20
7 7 675 23 - -
8 574 39 - - -
9 44 - - - -

3Actually, lower significance levels will also decrease the power of the test in finding new and small
groups.
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3. High quality in grouping factors – in simulation studies the Adjusted Rand Index

is used to evaluate the quality of clustering. This measure was introduced by Hubert

and Arabie [46] and is described in Chapter 2. The simulations revealed that the algo-

rithm has an outstanding performance in correctly grouping factors and outperforms

all the algorithms used in comparison with PPCLUST in both clustering accuracy and

stability.

4. No multiple comparison problems – control of global errors in multiple testing is

one of the challenges that statisticians one concerned about with HDLSS data analysis

(Sabatti[87]). This is less of a problem in PPCLUST since the test is applied to groups

of variables instead of on a one-by-one basis.

5. No need for dimension reduction – in high-dimensional studies it is common to ap-

ply some dimension-reduction technique such as principal components analysis before

clustering data (see PCA in Johnson [50]). Studies, as in Yeung and Ruzzo [118], do

not recommend the use of PCA before clustering, except in very special situations.

Simulations in Yeung and Ruzzo show that clustering principal components instead

of original data produce different results on many algorithms using different similarity

metrics. PPCLUST does not require previous dimension reduction to the analysis. In-

stead, PPCLUST relies on the high dimension to provide power to give good similarity

measure. This is specially appealing with only very small number of replications.

6. No requirement of balanced data – the algorithm works with both balanced or un-

balanced data. The only requirement is that the number of replications for a factor

be at least 2. There is no need that all factor levels have the same number of replica-

tions. Unbalanced data is common in studies of microarray gene expression data and

some algorithms require balanced data. Solutions like elimination from the study of

factor levels with incomplete information or imputation of data can hide or seriously

compromise the result of the study.
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7. Fast and easy to use – in simulations, PPCLUST took less than a minute to complete

the clustering of datasets. The performance was observed with different sample sizes

(5 to 20 observations) and number of factor levels up to 70004. Additionally, the

algorithm is very easy to use, since PPCLUST was written in SAS c© macro language

using a friendly screen for specification of necessary information, like dataset name,

observations and significance level of each test5.

8. No memory allocation problems – Since PPCLUST is developed using SAS c©macro

language, it takes advantadge of SAS memory allocation and does not have problem

in handling as many factor levels as necessary.

4Performance observed with PC machine running Windows XP with Intel Pentium M processor, 1.6Ghz,
and 1Gb of RAM memory.

5Instructions in Appendix B.
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5

Applications of PPCLUST in
Microarray Data

Clustering of HDLSS data has been studied in many areas such as chemometrics, image

analysis, and agriculture. One of the major applications has been in genomics where the

study of gene expression data using DNA microarrays 1 involves data about a large number

of genes for a small number of biological samples. PPCLUST can be applied to microarray

data analysis when one wants to cluster genes (factor levels). In microarray studies, thousand

of genes are observed for a small number of tissues. The reason for clustering genes is the

idea that genes that are responsible for disease progression or in their response to treatment

may have differentially expressed levels. Clustering information can be used for biomarker

identification in drug development. Additionally, the differentially expressed genes can be

used to classify patient disease status. For example, using all genes from the whole genome

can lead to inefficiency in classifying tumor patients as no methodology can deal with high

dimensional prediction without posing strong assumptions. Instead, using only the genes

found to be differentially expressed from the clustering algorithm can significantly reduce the

complexity of the classification problem. That is, results from the clustering can serve as a

1See Appendix A for description of microarray technology.
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dimension reduction tool for classification. These studies would allow to improve treatments

by identification of targets for therapy in many diseases.

In this chapter, PPCLUST is applied to two HDLSS datasets found in the microarray

literature: (1) Notterman et al. [72] study about transcriptional gene expression profiles of

colorectal cancer and; (2) van’t Wout et al. [110] HIV cellular gene expression data. In real

data examples, graphical procedures, such as heatmaps and principal components plots, are

used to verify the efficiency of PPCLUST. Heatmap is a matrix that maps the expression

levels of each gene to a color intensity value.

5.1 Real Data Study I: Clustering Genes in Colorectal

Cancer

Colon and rectal cancer have many features in common and for this reason both are often

referred to as colorectal cancer. Figure 5.1 shows the area in the organism where colorectum

cancer starts, i.e., the large intestine (colon) and rectum (end of colon). This cancer begins

in most cases as a growth of tissue, called polyp, inside the wall of the colon or rectum (see

Figure 5.2). If the cells of a tumor (adenomas) acquire the ability to invade and spread into

the intestine and other areas a malignant tumor develops (carcinoma or adenocarcinoma).

According to the American Cancer Society [97], colorectum cancer is the fourth most

diagnosed cancer in the United States and Canada. Only skin cancer, lung and breast in

women and lung and prostate in men have more cases.

The Colon Cancer Alliance Group [5] estimates that about 20% of colorectal cancers

are found after the disease has spread to more distant organs such as the lung, and only

37% of colorectal cancers found are confined to colon or rectum. When the cancer has

spread to other sites, only 8.5% of those diagnosed will live for five-years or more. This

drammatic statistic becomes worse if it is considered that the American Cancer Society

estimates 112, 340 new cases of colon cancer and 41, 420 new cases of rectal cancer will

be diagnosed in 2007, and that both malignancies will result in 52, 180 deaths. More de-
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Figure 5.1. Areas of development of colorectal cancer (nlm.nih.gov/medilineplus)

Figure 5.2. Polyp in colon wall (endoatlas.com)

tailed information about colorectal cancer can be found in publications by American Cancer

Society [97], Colon Cancer Alliance [5] and others [80, 17].

Understanding how change in DNA causes cells of the colon and rectum to become

cancerous could guide scientists in the development of new drugs, treatments and actions

during early stages of the disease.

Alon et al. [7] used a colon cancer dataset to study the clustering of tumor and nor-
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mal colon tissues probed by oligonucleotide arrays. This dataset has expression levels for

40 tumor and 22 normal colon tissues for 2, 000 human genes measured using Affimetrix

technology. Later, Notterman et al. [72] studied transcriptional gene expression profiles of

colorectal adenoma, adenocarcinoma, and normal tissues, using oligonucleotide arrays. The

advantage of the Notterman et al. [72] study is that normal tissues were paired with the two

types of tumors, adenoma and andenocarcinoma. The Notterman data 2 consists of mRNA

expression patterns probed in 4 colon adenoma tissues, 18 adenocarcinoma and 22 paired

normal colon samples. In their study, a two-way hierarchical clustering algorithm was used

to show that genome-wide expression profiling may permit a molecular classification of the

three different types of tissue. PPCLUST is used to cluster genes, not tissues.

Since some of the genes in the original data were observed more than once, the median of

expression levels of duplicated genes in each database (adenoma and paired normal tissues

database, and adenocarcinoma and paired normal tissues database) was calculated. Then

the same transformations described in Notterman et al. [72] study were performed prior

to the application of PPCLUST in the composite database, i.e., the following steps were

applied to each dataset:

• Deletion of expression levels ≤ 0;

• Calculation of the logarithm of the expression level;

• Deletion of genes having more than 25% of their values missing. In Notterman the

percentage cuttof was 15% resulting in a smaller sample.

Note that in Notterman et al. the data was also centered about the mean and normalized.

However, this procedure is not recommended as was indicated by simulation studies in

Section 4.1.

Two unbalanced datasets are obtained, the first one with 4 adenoma and paired normal

tissues for 4175 genes and the second one with 18 adenocarcinomas and paired normal tissues

2Available in microarray.princeton.edu/oncology.
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for 4234 genes. Only 1038 genes are common to both datasets.

The existence of paired data allows the application of PPCLUST to the difference in

gene expression levels of cancer (adenoma or adenocarcinoma) and normal tissues. The idea

is that genes not related to the disease should not have a change in expression levels for

cancer and normal tissues. However, genes that have a significant change in expression level

should produce meaningful clusters with the application of the algorithm.

PPCLUST was used with significance level of 1 × 10−10, because it was observed that

higher significance levels resulted in too many small clusters of genes. Overall, the main

structure of groups was not altered using a very small significance level. After applying the

algorithm, the heatmaps of original and clustered data were compared 3. Then the plot of

the first two principal components 4 was obtained to visualize the results of clustering. PCA

was used to reduce the dimensionality of the problem to just two principal components and

project genes in the two dimensional graph identifying the classification groups.

Figure 5.3 presents the heatmap of original differences in expression levels of adenoma

and normal tissues in paired samples. There is a concentration of zero to positive expression

levels for this data with no clear existence of any gene groups. After applying PPCLUST,

genes were clustered into 6 groups with 38 (0.91%), 316 (7.57%), 9 (0.22%), 3573 (85.58%),

221 (5.29%), and 15 (0.36%) genes in each group. Lower groups had low expressed genes,

while higher groups had the highest differences between expression levels of adenomas and

paired normal tissues. There was also a set of 3 (0.07%) genes that could not be grouped

with any other gene.

Figure 5.4 presents the heatmap with genes ordered by the groups to which they were

allocated 5. It can be noted that the extreme groups were formed by genes with highest

3Technical note 1: Usually heatmaps are presented in different shades of green to red colors. Here we
used the red to blue scale since the values of expression levels are very similar. Other color scales have been
used in literature, as yellow to blue, grey to blue, etc.

4Technical note 2: To obtain the principal components it was used the covariance matrix of the data.
This way the variables were not forced to have equal variance, keeping it consistent with other procedures
used. Also, if the correlation matrix was used, it could defeat the purpose of identifying those variables that
contribute most to the total variability as explained in Khattree and Naik [54].

5Note: A longer black line on the right side of the graph indicates the start of a new group.
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Figure 5.3. Heatmap for Adenoma-Normal Tissues.

differences in expression levels between adenoma and normal tissues, and group 4 was formed

mostly by genes that had no change in their expression levels.

Figure 5.5 shows the plot of the first two principal components for the difference in

expression levels of adenoma and paired normal tissues. Genes were labeled according

to results obtained from PPCLUST giving a visual idea of the quality of clustering with

PPCLUST in this dataset 6. The first two principal components are responsible for 68.47%

of the total variation in the data where 48.68% of the total variation is explained by the

6Due to the high number of genes, some genes are not visible in the PCA plot. Example are genes from
group 3 in Fig. 5.5.
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Figure 5.4. Heatmap for Grouped Adenoma-Normal Tissues.

first component. The algorithm seems to work in very reasonable way since it is possible to

observe that groups 1 and 2 are concentrated in the lower extreme of the first dimension,

groups 5 and 6 in the higher extreme of the first dimension and group 4 is distributed around

value 0 of the first dimension.

The previous study was repeated considering the difference in expression levels of ade-

nocarcinoma and normal tissues. In this case, 7 groups were obtained with only 4 (0.09%)

genes not assigned to any group. The number of genes in each group were 91 (2.15%),

774 (18.28%), 9 (0.21%), 2673 (63.13%), 5 (0.12%), 655 (15.47), and 23 (0.54%). Special
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Figure 5.5. PCA Plot of Adenoma-Normal Tissue Clusters.

attention should be given to genes that are not in the largest group, since the largest group

seems to be the group formed by genes with no difference in expression levels when com-

paring carcinoma tissues and normal tissues. The heatmaps before and after clustering are

represented in Figs. 5.6 and 5.7. The two extreme groups indicating lower expressed values

in red/white and higher expressed values in blue are more evident than other groups (2 to

5). Again, with the PCA it is possible to verify that the clustering algorithm seems to work

in a very reasonable way (Fig. 5.8). The two first principal components now are responsi-

ble for 42.22% of the total variation in the data, with the first component responsible for

32.87% of the total variation and this could explain why some points apparently clustered

into wrong groups.

59



Figure 5.6. Heatmap for Adenocarcinoma-Normal Tissues.

Table 5.1 shows the distribution of genes among groups for both tissue types. From

the 1038 genes that are present in both datasets, it was possible to observe that 558 genes

had no expression in both, adenoma and adenocarcinma tissues. For the other genes not

expressed in adenoma tissues, usually, there is no pattern of expression in carcinoma tissues.

It could be also observed that there is a tendency of genes with low expression in adenoma

tissues to be also low expressed in carcinoma tissues. The same property is also observed

for highly expressed genes. Only 10 genes had opposite expression levels in both types of

tissues.
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Figure 5.7. Heatmap for Grouped Adenocarcinoma-Normal Tissues.

Comparing the heatmaps obtained before and after clustering in both tissue types reveals

that in carcinoma tissues the clustering of genes is more evident than in adenoma tissues.

This is due to the larger differences in expression levels of carcinoma genes.

The clustering of genes in the colorectal cancer study suggests many interesting questions

to be answered by molecular biologists. Some of them are:

1. Why do some genes have opposite expression values in benign epithelial tumor (ade-

nomas) and cancer cells (adenocarcinomas)?

2. What are the characteristics of genes expressed in both types of tumor cells?

3. What are the characteristics of genes that are highly expressed in cancer cells?
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Figure 5.8. PCA Plot of Adenocarcinoma-Normal Tissue Clusters.

4. What can be done with the list of expressed genes in both types of tumor cells?

For the last question Osier [74] noted that the answer is not so easy and that an expert

biological researcher should decide how to interpret the results, develop new questions,

and design new experiments. An overview of current methods of approach to analyze the

expression profiles and aid in interpretation of the data is also described in Osier [74].

An interesting paper by Cooper [18] calls attention to the use of precise criteria in the

interpretation of microarray data. This work is left for biologists.
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Table 5.1. Distribution of 1038 genes present in both Adenoma and Ade-
nocarcinoma tissue types. Genes in group 0 are genes not grouped by PP-
CLUST, and genes in group 4 are not expressed in either tissue types.

Adenocarcinoma Groups
Adenoma Groups 0 1 2 3 4 5 6 7

0 0 0 1 0 1 0 0 0
1 0 2 4 0 3 0 0 0
2 0 10 41 0 38 0 4 0
4 0 12 148 2 558 1 152 3
5 1 0 6 0 24 0 24 2
6 0 0 0 0 0 0 1 0

5.2 Real Data Study II: Cellular Gene Expression upon

HIV data

The analysis of gene expressions in HIV data is another important application of HDLSS

clustering algorithms. According to Wout et al. [110], “human immudeficiency virus type

1 (HIV-1) is an enveloped retrovirus that causes severe depletion of the immune system in

humans, leaving them susceptible to infection with other pathogens”. HIV can lead to ac-

quired immunodeficiency syndrome (AIDS) that results in immune system failure and leads

to serious infections. A representation of a cross section of the human immunodeficiency

virus is given in Fig. 5.9. The number of people killed by AIDS has been estimated by

World Health Organization to be more than 25 million since it was first detected in 1981.

In this section, the dataset described by van’t Wout et al. [110] and McLachlan et al. [66]

is used. The data consist of expression levels of 7680 genes in CD4+-T-cell lines, after 24

hours of infection with the HIV-1 virus. There are four control slides of pooled mRNA from

uninfected cells and four slides of pooled mRNA from the infected cells, so that there is a

total of eight arrays for each of the 7680 genes. The dataset includes 12 HIV-1 genes that

can be used as positive controls as they are known to be differentially expressed in infected

and uninfected cells.
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Figure 5.9. Stylized rendering of a cross section of the human immunod-
eficiency virus (Wikipedia).

The log expression values were column normalized 7, as in McLachlan et al. [66]. PP-

CLUST was applied to the absolute value of the difference in expression values of uninfected

and infected cells. The objective was to see how PPCLUST deals with the 12 genes known

to be differentially expressed and observe whether the algorithm could detect other genes

as being differentially expressed. PPCLUST was used with a significance level of 10−5. The

algorithm detected 6 groups. Only 7 genes could not be allocated to any of the groups.

The two highly expressed groups had 1062 (13.83%) and 48 (0.63%) genes, respectively,

and the 12 HIV-1 genes were allocated to those two groups. Figure 5.10 shows the original

heatmap for the HIV data with no clear pattern in gene expression levels. After the genes

were clustered and ordered according to respective groups, the new heatmap in Fig. 5.11

shows a clear pattern in distribution of low expressed and high expressed genes for the HIV

data indicating that PPCLUST worked well in this case too.

7For each column of log expression, it was subtracted the column mean and divided by the column
standard deviation.
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Figure 5.10. Heatmap for original HIV data.

Figure 5.11. Heatmap for grouped HIV data. Genes ordered by groups.
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6

Partition Clustering of HDLLSS Data
Based on p-Values

6.1 Introduction

In this chapter, the PPCLUST algorithm is extended to consider a large number of factor

levels with a few replications over time. Wang [111] uses a marginal model for making

inferences about the effects of a fixed small number of factor levels replicated over a large

number of time points. Wang’s test is extended to the situation where there is a large

number of factor levels: a → ∞. Each factor level is observed over a fixed number of time

points (b) with a few replications at each time point (ni). This data setup is denoted as high

dimensional longitudinal low sample size (HDLLSS) data and the new algorithm is named

PPCLUSTEL (p-values based partitional clustering of longitudinal data).

There are many examples of studies in microarray technology that use HDLLSS data.

Some are cell cycle studies of yeast, primary fibroblasts, human cancer, HeLa cells, mouse

embryo fibroblasts and others. Statistical analysis techniques used in the cell cycle study1

include Fourier transformation (Spellman et al. [99]), visual inspection (Cho et al. [16]), self-

1Most of the techniques are described in Hastie et al. [43]
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organizing maps (Tamayo et al. [104]), k-means clustering (Tavazoie et al. [105]), single pulse

modeling (Zhao et al. [120]), QT-clustering (Heyer et al. [44]), singular value decomposition

(Holter et al. [45], Alter et al. [8]), correspondence analysis (Fellenberg et al. [26]), wavelet

analysis (Klevecz [57]), and warping algorithms (Aach and Church [1]).

As in HDLSS studies, assumptions like constant variance and normality also restrict

full generality in HDLLSS data studies. Shedden and Cooper [94] perform a numerical

characterization of the time points for each gene by least squares fitting. Additionally,

issues like significance level for multiple comparison are also present in most studies, as in

Wang et al. [113] which describes an agglomerative method for clustering cell cycle related

genes through a dissimilarity measure using gene by gene comparison. More than that, the

results vary so widely from method to method that some of them are practically impossible

to reproduce.

For the purpose of clustering factor levels in HDLLSS data, we developed a procedure

similar to the one discussed in Chapter 3, that applies to longitudinal data . The idea is to

obtain a statistic to test for no simple effect of group of factor levels (genes in microarray), or

equivalently, no main effect of group and no group/time interaction effect when genes in each

factor level are repeatedly observed. Once this statistic is obtained, the algorithm developed

in Chapter 3 is adapted to cluster factor levels using p-values, again, as a similarity measure.

The efficiency of this new algorithm is studied through simulations.

6.2 Theory Development for Testing No Simple Effect

of Group in HDLLSS Data

Consider Xik = (Xi1k, . . . , Xibk) representing a subject k nested in a factor level i, where

i = 1, . . . , a, k = 1, . . . , ni; and each subject is measured at b time points t1, t2, . . . , tb. Also,

let a be large (a → ∞), b fixed, and ni small. The data structure can be easily seen in

Table 6.1.

Modeling Xijk as µ+αi +βj +γij + εijk, for i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , ni; with
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Table 6.1. Data structure in longitudinal repeated measures design.

Factor Time Points
Level Subject t1 t2 . . . tb

1 1 X111 X121 . . . X1b1

2 X112 X122 . . . X1b2
...

...
...

...
...

n1 X11n1 X12n1 . . . X1bn1

2 1 X211 X221 . . . X2b1

2 X212 X222 . . . X2b2
...

...
...

...
...

n2 X21n2 X22n2 . . . X2bn2

...
...

...
...

...
...

a 1 Xa11 Xa21 . . . Xab1

2 Xa12 Xa22 . . . Xab2
...

...
...

...
...

na Xa1na Xa2na . . . Xabna

E(εijk) = 0 and Xijk ∼ Fij arbitrary, the parametric hypothesis of no simple effect can be

written as,

H0(φ) : all φij = αi + γij = 0, (6.1)

where
∑a

i=1 αi =
∑b

j=1 βj =
∑a

i=1 γij =
∑b

j=1 γij = 0.

Assume that

cov(Xijk, Xi′j′k′) =

{
σijj′ if i = i′, k = k′

0 if i 6= i′ or k 6= k′

meaning that observations for the same factor level and subject are correlated, while obser-

vations for different factor levels and/or different subjects are not correlated2.

Throughout this chapter the following notation is used:

X̄ij. = 1
ni

∑ni
k=1Xijk, X̃.j. = 1

a

∑a
i=1 X̄ij.,

X̄... = 1
N

∑a
i=1

∑b
j=1

∑ni
k=1Xijk, X̃... = 1

ab

∑a
i=1

∑b
j=1 X̄ij.

where N = b
∑a

i=1 ni. The estimates for the parametric model are,

2Note that the only assumption is about independence of Xijk for different factor levels and/or different
subjects.
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µ̂ = X̄..., α̂i = X̄i.. − X̄... = X̃i.. − X̄...

β̂j = X̄.j. − X̄... = X̃.j. − X̄..., γ̂ij = X̄ij. − X̄i.. − X̄.j. + X̄..., and

α̂i + γ̂ij = X̄ij. − X̄.j. = X̄ij. − X̃.j., as usual.

Now define the statistics

MSϕ =
1

(a− 1)b

a∑
i=1

b∑
j=1

(X̄ij. − X̃.j.)
2 (6.2)

and

MSE =
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

(Xijk − X̄ij.)
2

ni(ni − 1)
(6.3)

Proposition 6.1. Under H0(φ), E(MSϕ) = E(MSE).

Proof. First, let’s rewrite MSϕ and MSE in terms of residuals.

For MSϕ note that,

X̄ij. =
1

ni

ni∑
k=1

Xijk =
1

ni

ni∑
k=1

(µ+ αi + βj + γij + εijk) = µ+ αi + βj + γij + ε̄ij.

and,

X̃.j. =
1

a

a∑
i=1

X̄ij. =
1

a

a∑
i=1

1

ni

ni∑
k=1

Xijk =
1

a

a∑
i=1

1

ni

ni∑
k=1

(µ+ αi + βj + γij + εijk)

= µ+
1

a

a∑
i=1

∑ni
k=1 αi
ni

+
1

a

a∑
i=1

∑ni
k=1 βj
ni

+
1

a

a∑
i=1

∑ni
k=1 γij
ni

+
1

a

a∑
i=1

∑ni
k=1 εijk
ni

= µ+
1

a

a∑
i=1

αi +
1

a

a∑
i=1

βj +
1

a

a∑
i=1

γij + ε̃.j.

= µ+ βj + ε̃.j. (6.4)

Thus,

X̄ij. − X̃.j. = µ+ αi + βj + γij + ε̄ij. − (µ+ βj + ε̃.j.) = αi + γij + ε̄ij. − ε̃.j.

and under the null hypothesis, H0 : αi + γij = 0,

X̄ij. − X̃.j. = ε̄ij. − ε̃.j.
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Finally, MSϕ can be rewritten as,

MSϕ =
1

(a− 1)b

a∑
i=1

b∑
j=1

(ε̄ij. − ε̃.j.)2 =
1

(a− 1)b

a∑
i=1

b∑
j=1

(ε̄2ij. − 2ε̄ij.ε̃.j. + ε̃2.j.)

=
1

(a− 1)b

[
a∑
i=1

b∑
j=1

ε̄2ij. − 2
b∑

j=1

ε̃.j.

a∑
i=1

ε̄ij. + a

b∑
j=1

ε̃2.j.

]

=
1

(a− 1)b

[
a∑
i=1

b∑
j=1

ε̄2ij. − 2a
b∑

j=1

ε̃2.j. + a

b∑
j=1

ε̃2.j.

]
=

1

(a− 1)b

[
a∑
i=1

b∑
j=1

ε̄2ij. − a
b∑

j=1

ε̃2.j.

]

Thus,

MSϕ =
1

(a− 1)b

[
a∑
i=1

b∑
j=1

ε̄2ij. − a
b∑

j=1

ε̃2.j.

]
. (6.5)

Now, for MSE note that,

Xijk − X̄ij. = µ+ αi + βj + γij + εijk − (µ+ αi + βj + γij − ε̄ij.) = εijk − ε̄ij.

and,

MSE =
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

(εijk − ε̄ij.)2

ni(ni − 1)
=

1

ab

a∑
i=1

b∑
j=1

[∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

]
.

Thus,

MSE =
1

ab

a∑
i=1

b∑
j=1

[∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

]
. (6.6)

Then, it is easy to observe that E(MSϕ) = E(MSE), since
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E(MSϕ) = E

[
1

(a− 1)b

[
a∑
i=1

b∑
j=1

ε̄2ij. − a
b∑

j=1

ε̃2.j.

]]

=
1

(a− 1)b

a∑
i=1

b∑
j=1

E(ε̄2ij.)−
a

(a− 1)b

b∑
j=1

E(ε̃2.j.)

=
1

(a− 1)b

a∑
i=1

b∑
j=1

σ2
ij

ni
− a

(a− 1)b

b∑
j=1

a∑
i=1

E

[( ε̄ij.
a

)2
]

=
1

(a− 1)b

a∑
i=1

b∑
j=1

σ2
ij

ni
− 1

(a− 1)ab

a∑
i=1

b∑
j=1

σ2
ij

ni

=
1

ab

a∑
i=1

b∑
j=1

σ2
ij

ni
(6.7)

and,

E(MSE) = E

[
1

ab

a∑
i=1

b∑
j=1

[∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

]]
=

1

ab

[
a∑
i=1

b∑
j=1

∑ni
k=1 σ

2
ij − σ2

ij

ni(ni − 1)

]

=
1

ab

[
a∑
i=1

b∑
j=1

niσ
2
ij − σ2

ij

ni(ni − 1)

]
=

1

ab

a∑
i=1

b∑
j=1

σ2
ij

ni
(6.8)

From Proposition 6.1 it is reasonable to use a function of MSϕ
MSE

as test statistic for H0(φ)

in (6.1). The objective is to obtain the asymptotic distribution of a test statistic based

on MSϕ
MSE

that allows the testing of the null hypothesis (6.1) of no simple effect under the

established conditions.

Quoting van der Vaart [109], “a common method to derive the limit distribution of a

sequence of statistics Tn is to show that it is asymptotically equivalent to a sequence Sn of

which the limit behavior is known. The basis of this method is Slutsky’s Lemma, which

shows that the sequence Tn = Tn−Sn+Sn converges in distribution to S if both Tn−Sn
p→ 0

and Sn
d→ S.” Thus, one alternative is to find a suitable sequence Sn that is sufficiently
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simple to allow the limit properties to be known, and close enough to Tn. This sequence

can be obtained through a projection method. A projection of a random variable is defined

as the closest element in a given set of functions, and can be used for the purpose of finding

the asymptotic distribution of a sequence of variables through comparison to the projected

form. The Hájek projection consists of a set S of all variables of the form
∑n

i=1 gi(Xi) for

arbitrary measurable functions gi, where X1, . . . , Xn are independent random vectors and

E[g2
i (Xi)] <∞. The interest in this projection form is that the convergence in distribution

of the sums can be derived from the Central Limit Theorem. Applying the Hájek projection

method to a quadratic form yields a sequence of statistics that is asymptotically equivalent to

the sequence of quadratic forms. The next step here is to find the projection of MSϕ−MSE

onto a class S of form
∑

i,k gik(Xik), where Xik are independent random vectors, and find the

asymptotic distribution of a test statistic for Ho(φ) using the projection of MSϕ−MSE.

The following proposition helps to find the projection of MSϕ.

Proposition 6.2. If the observations Xijk have finite centered second moment,

T1 =

√
ab

(a− 1)ab

a∑
i 6=i′

b∑
j=1

ε̄ij.ε̄i′j.
p→ 0 (6.9)

as a→∞.

Proof. We need to show that E(T1) = 0 and E(T 2
1 )→ 0 as a→∞. Note that,

E(T1) = E

[ √
ab

(a− 1)ab

a∑
i 6=i′

b∑
j=1

ε̄ij.ε̄i′j.

]
= 0
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from the model, and

E(T 2
1 ) =

ab

(a− 1)2a2b2

a∑
i 6=i′

a∑
i1 6=i′1

b∑
j=1

b∑
j1=1

E
(
ε̄ij.ε̄i′j.ε̄i1j1.ε̄i′1j1.

)
=

2

(a− 1)2ab

a∑
i 6=i′

b∑
j=1

b∑
j1=1

E (ε̄ij.ε̄i′j.ε̄ij1.ε̄i′j1.)

=
2

(a− 1)2ab

a∑
i 6=i′

b∑
j=1

b∑
j1=1

E (ε̄ij.ε̄ij1.)E (ε̄i′j.ε̄i′j1.)

=
2

(a− 1)2ab

a∑
i 6=i′

b∑
j=1

E
(
ε̄2ij.
)
E
(
ε̄2i′j.
)

+
2

(a− 1)2ab

a∑
i 6=i′

b∑
j 6=j′

E (ε̄ij.ε̄ij′.)E (ε̄i′j.ε̄i′j′.)

Let E(T 2
1 ) = Q1 +Q2. It is possible to observe that, as a→∞, with b fixed,

Q1 =
2

(a− 1)2ab

a∑
i 6=i′

b∑
j=1

E
(
ε̄2ij.
)
E
(
ε̄2i′j.
)

=
2

(a− 1)2ab

a∑
i 6=i′

b∑
j=1

σ2
ij

ni

σ2
i′j

ni′
→ 0

and

Q2 =
2

(a− 1)2ab

a∑
i 6=i′

b∑
j 6=j′

E (ε̄ij.ε̄ij′.)E (ε̄i′j.ε̄i′j′.)

=
2

(a− 1)2ab

a∑
i 6=i′

b∑
j 6=j′

1

n2
i

ni∑
k=1

σijj′
1

n2
i′

ni′∑
k=1

σi′jj′

=
2

(a− 1)2ab

a∑
i 6=i′

b∑
j 6=j′

σijj′σi′jj′

nini′
→ 0

Proposition 6.3. The projection of MSϕ is given by,

PMSϕ =
1

ab

a∑
i=1

b∑
j=1

ε̄2ij. (6.10)
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Proof.

PMSϕ =
1

(a− 1)b

a∑
i=1

b∑
j=1

ε̄2ij. −
a

(a− 1)b

b∑
j=1

ε̃2.j.

=
1

(a− 1)b

a∑
i=1

b∑
j=1

ε̄2ij. −
a

(a− 1)b

b∑
j=1

a∑
i=1

a∑
i′=1

ε̄ij.ε̄i′j.
a2

=
1

(a− 1)b

a∑
i=1

b∑
j=1

ε̄2ij. −
1

(a− 1)ab

a∑
i=1

b∑
j=1

ε̄2ij. −
1

(a− 1)ab

a∑
i 6=i′

b∑
j=1

ε̄ij.ε̄i′j.

=
1

ab

a∑
i=1

b∑
j=1

ε̄2ij. −
1

(a− 1)ab

a∑
i 6=i′

b∑
j=1

ε̄ij.ε̄i′j.

Thus, using Proposition 6.2, the projection ofMSϕ can be written as PMSϕ = 1
ab

∑a
i=1

∑b
j=1 ε̄

2
ij..

Proposition 6.4. The projection of MSE is still MSE.

Proof.

MSE =
1

ab

a∑
i=1

b∑
j=1

[∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

]

=
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

ε2ijk
ni(ni − 1)

− 1

ab

a∑
i=1

b∑
j=1

ε̄2ij.
(ni − 1)

.

Proposition 6.5. The projection of MSϕ−MSE is given by

PMSϕ−MSE =
1

ab

a∑
i=1

b∑
j=1

1

(ni − 1)ni

ni∑
k 6=k′

εijkεijk′ (6.11)

Proof. By Propositions 6.3 and 6.4,
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PMSϕ−MSE =
1

ab

a∑
i=1

b∑
j=1

ε̄2ij. −
1

ab

a∑
i=1

b∑
j=1

[∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

]

=
1

ab

a∑
i=1

b∑
j=1

ni
(ni − 1)

ε̄2ij. −
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

ε2ijk
ni(ni − 1)

=
1

ab

a∑
i=1

b∑
j=1

ni
(ni − 1)n2

i

ni∑
k 6=k′

εijkεijk′ +
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

ni
(ni − 1)n2

i

ε2ijk

− 1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

ε2ijk
ni(ni − 1)

=
1

ab

a∑
i=1

b∑
j=1

1

(ni − 1)ni

ni∑
k 6=k′

εijkεijk′

Lyapunov’s Central Limit Theorem

Let {Xk, k ≥ 1} be an independent sequence of random variables satisfying E(Xk) = 0,

V ar(Xk) = σ2
k <∞, s2

n =
∑n

k=1 σ
2
k. If for some δ > 0

n∑
k=1

E|Xk|2+δ

S2+δ
n

→ 0

Then
Sn
sn
→ N(0, 1),

where Sn = X1 +X2 + . . .+Xn.

Proof. See Resnick [84].

The following propositions help to verify Lyapounov’s condition and to prove Theo-

rem 6.1, that follows. With Proposition 6.6, the use of traditional F-statistic MST/MSE

can be modified to consider using MST −MSE only.

Proposition 6.6. MSE
p→ lima→∞E(MSE) if the observations Xijk have finite centered

second moment.
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Proof. Note that, for a→∞ and b fixed, by (6.8) E(MSE)→ 0 and the variance of MSE

is

V ar(MSE) = V ar

(
1

ab

a∑
i=1

b∑
j=1

ni∑
k=1

(εijk − ε̄ij.)2

ni(ni − 1)

)

= V ar

(
1

ab

a∑
i=1

b∑
j=1

∑ni
k=1 ε

2
ijk − niε̄2ij.

ni(ni − 1)

)

=
1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

V ar

(
b∑

j=1

ni∑
k=1

ε2ijk − ni
b∑

j=1

ε̄2ij.

)

=
1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

V ar

[
b∑

j=1

ni∑
k=1

ε2ijk − ni

(
b∑

j=1

ni∑
k 6=k′

εijkεijk′

n2
i

+
b∑

j=1

ni∑
k=1

ε2ijk
n2
i

)]

=
1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

V ar

[
(ni − 1)

ni

b∑
j=1

ni∑
k=1

ε2ijk −
1

ni

b∑
j=1

ni∑
k 6=k′

εijkεijk′

]

≤ 1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

[
(ni − 1)2

n2
i

b∑
j=1

b∑
j1=1

ni∑
k=1

ni∑
k1=1

E (εijkεijk1εij1kεij1k1)

− 1

n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

ni∑
k1 6=k′

1

E
(
εijkεijk′εij1k1εij1k′

1

)
=

1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

[
2(ni − 1)2

n2
i

b∑
j=1

b∑
j1=1

ni∑
k=1

E (εijkεijk1)E (εij1kεij1k1)

+
2

n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

E (εijkεijk′)E (εij1kεij1k′)

]

=
1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

[
2(ni − 1)2

n2
i

b∑
j=1

b∑
j1=1

ni∑
k=1

σ2
ijj1

+
2

n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

σ2
ijj1

]

=
1

a2b2

a∑
i=1

1

n2
i (ni − 1)2

[
2(ni − 1)2

ni

b∑
j=1

b∑
j1=1

σ2
ijj1

+
2(ni − 1)

ni

b∑
j=1

b∑
j1=1

σ2
ijj1

]

=
1

a2b2

a∑
i=1

[
2

n3
i

b∑
j=1

b∑
j1=1

σ2
ijj1

+
2

n3
i (ni − 1)

b∑
j=1

b∑
j1=1

σ2
ijj1

]

=
1

a2b2

a∑
i=1

[
2

n2
i (ni − 1)

b∑
j=1

b∑
j1=1

σ2
ijj1

]
= O

(
1

a

)
→ 0

Thus, MSE
p→ lima→∞E(MSE).
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Proposition 6.7. If the observations Xijk have (2 + δ) centered moment finite (δ > 0), the

projection
√
ab(PMSϕ−MSE) converges in distribution, when ni are uniformly bounded.

Proof. From Proposition 6.5,

√
ab (PMSϕ−MSE) =

1√
ab

a∑
i=1

b∑
j=1

1

(ni − 1)ni

ni∑
k 6=k′

εijkεijk′

Then,

E
(√

ab (PMSϕ−MSE)
)

=
1√
ab

a∑
i=1

b∑
j=1

1

(ni − 1)ni

ni∑
k 6=k′

E(εijkεijk′) = 0 (6.12)

from the model. Also,

V ar
(√

ab (PMSϕ−MSE)
)

=
1

ab

a∑
i=1

1

(ni − 1)2 n2
i

V ar

(
b∑

j=1

ni∑
k 6=k′

εijkεijk′

)

=
1

ab

a∑
i=1

1

(ni − 1)2 n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

ni∑
k1 6=k′

1

E
(
εijkεijk′εij1k1εij1k′

1

)
=

2

ab

a∑
i=1

1

(ni − 1)2 n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

E (εijkεijk′)E (εij1kεij1k′)

=
2

ab

a∑
i=1

1

(ni − 1)2 n2
i

b∑
j=1

b∑
j1=1

ni∑
k 6=k′

σ2
ijj1

=
2

ab

a∑
i=1

1

(ni − 1) ni

b∑
j=1

b∑
j1=1

σ2
ijj1

(6.13)

When ni are uniformly bounded, using the inequality

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
p

≤ np−1

n∑
i=1

|Zi|p , n ≥ 1, p ≥ 1

which for p > 1 follows from Hölder’s inequality, it is possible to note that,
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E
[√

ab (PMSϕ−MSE)
]2+δ

=
a∑
i=1

b∑
j=1

E

[
1√

ab ni(ni − 1)

ni∑
k 6=k′

εijkεijk′

]2+δ

=
a∑
i=1

b∑
j=1

1(√
ab ni(ni − 1)

)2+δ
E

∣∣∣∣∣
ni∑
k 6=k′

εijkεijk′

∣∣∣∣∣
2+δ


≤
a∑
i=1

b∑
j=1

1(√
ab ni(ni − 1)

)2+δ
[ni(ni − 1)]1+δ

ni∑
k 6=k′

E |εijkεijk′|2+δ

=
a∑
i=1

b∑
j=1

1

(ab)
2+δ
2 ni(ni − 1)

ni∑
k 6=k′

E
(
|εijk|2+δ

)
E
(
|εijk′|2+δ

)

≤
a∑
i=1

b∑
j=1

1

(ab)
2+δ
2 ni(ni − 1)

ni∑
k=1

(
E |εijk|2+δ

)2

→ 0

as a→∞ and b fixed.

Using the previous results, the following theorem allows testing for no simple effect of a

large number of factor levels (a), observed over a fixed number of time points (b) and with

a small number of replications (ni) under each time point.

Theorem 6.1. (Test of no simple effect of a group of factor levels.)

Let Xijk = µ + αi + βj + γij + εijk, with µ the overall effect, αi, i = 1, . . . , a, the mean

factor effect, βj, j = 1, . . . , b, the time point effect, γij the factor-time interaction effect and

εijk some error term with arbitrary distribution Fij, for all k = 1, . . . , ni.

Let also, H0(φ) : all φij = αi + γij = 0 be satisfied. If the observations Xijk have (2 + δ)

centered moment finite (δ > 0), and the number of replications is small, with ni ≥ 2 and

bounded, observed over a fixed number of time points b,

Fφ =
√
ab (MSϕ−MSE)

d→ N

(
0, lima→∞

2

ab

a∑
i=1

1

(ni − 1) ni

b∑
j=1

b∑
j1=1

σ2
ijj1

)
(6.14)

as a→∞.
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Proof. From Propositions 6.6 and 6.7 the conditions of Liapunov’s Theorem holds, and

√
ab (P − E(P ))

V ar(
√
ab P )

d→ N(0, 1)

where P = 1
ab

∑a
i=1

∑b
j=1

1
(ni−1)ni

∑ni
k 6=k′ εijkεijk′ . From (6.12), (6.13) in Proposition 6.7, and

under H0(φ) of no simple effect of group,

√
ab (MSϕ−MSE)

d→ N

(
0,

2

ab

a∑
i=1

1

(ni − 1) ni

b∑
j=1

b∑
j1=1

σ2
ijj1

)
(6.15)

as a→∞.

Thus, using statistic Fφ in Theorem 6.1, it is possible to adapt PPCLUST algorithm in

Section 3.2 through the replacement of the test statistic
√
a(Fr−1) by the new test statistic

Fφ. The resulting partitional algorithm is called PPCLUSTEL (PPCLUST for Longitudinal

data).

6.3 Simulation Study on Performance of The Test

6.3.1 Type I Error Rate

Table 6.2 reports type I error rates compared to nominal levels 0.10, 0.05 and 0.01 when

testing (6.1). Three conditions were considered: 2000 factor levels with 3 time points and 4

subjects; 2000 factor levels with 10 time points and 3 replications; and 10000 factor levels

with 3 time points and 4 replications. Simulations are based on 2000 replications and the

distribution used was a multivariate normal distribution with mean cos(π × (j + 1)), j =

1, . . . , b (b is the number of time points), and variance-covariance matrix Σ with unit variance

and decreasing covariance for observations in more distant time points, or equivalently,

σijj1 = 1− |j − j1| × 0.2.
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Table 6.2. Estimated levels for test of no single effect.

Nominal levels
Factor Time 0.10 0.05 0.01
Levels Points Observations Type I errors
2000 3 4 0.1040 0.0505 0.0145
2000 10 3 0.0940 0.0445 0.0095
10000 3 4 0.1065 0.0510 0.0080

The estimated Type I error rates reported in Table 6.2 are close to the true α levels,

indicating that the test statistic Fφ performs well for both small and a relatively large number

of time points given only a small number of replications. However, in simulations (not shown

here) it was observed that the algorithm is sensitive to changes in the variance-covariance

matrix. When small covariances are considered, the type I error increases considerably. One

possibility for this result is that the sample variance-covariance matrix based on no more

than 4 replications is a very poor estimatior of the true variance-covariance matrix (Σ).

Since the statistic Fφ uses squared values of Σ, unbiased estimation of squared variances

would be obtained using the same estimator of σ4 used in calculation of the test statistic

used in PPCLUST. More about the estimation of the variance-covariance matrix is left for

future investigations.

6.3.2 Power Curves

To study the power of the test in Theorem 6.1, datasets with 2000 factor levels over 10 time

points, with 3 replications for each factor level/time point were generated. The function

used to generate data was a multivariate normal with mean cos(π×(i+1))+d, i = 1, . . . , 10,

and variance-covariance matrix with unit variance and decreasing covariances (as before) for

more distant time points. The term d in the mean of the multivariate normal is a deviation

from H0 ranging from 0 to 1.6. It is included in some factor levels to examine the power of

the test. Power curves were obtained under three situations: (1) 200 factor levels shifted by

d; (2) 100 factor levels shifted by d; and (3) 50 factor levels shifted by d.
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It is clear from Fig. 6.1 that for 200 shifted factor levels, the power of the test increases

very fast and the test also showed to be extremely powerful in detecting small differences

even with only 50 factor levels (2.5% of total levels) being different in data.

Figure 6.1. Achieved power for HDLLSS data with α = 0.05, considering
shifted differences in two groups according to three cases: P200 (continuous
line in blue) has 200 shifted factor levels; P100 (dashed line in red) has 100
shifted factor levels; and P050 (dotted line in black) has 50 shifted factor
levels.

In the following section a simulation is done to test the quality of PPCLUSTEL in

clustering objects.
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6.4 Partition Clustering of HDLLSS Data Based on

p-Values

Again, it is important to notice that the algorithm follows the same eight steps described

in Section 3.2, changing only the test statistic for the new test statistic Fφ. A SAS c© macro

called PPCLUSTEL was implemented 3. To test the efficiency of PPCLUSTEL a dataset

with 5 groups was simulated and the quality of clustering was obtained using adjusted rand

index (ARI). Details of the efficiency study follows.

6.4.1 Performance on Simulated Data and Comparison with MCLUST

The data structure of HDLLSS data presented in Table 6.1 was used to test the quality

of PPCLUSTEL in clustering of factor levels and to compare with MCLUST algorithm

described in Chapter 2. The dataset had 2000 factor levels with 3 replications and 10 time

points per factor level. The 2000 factor levels were divided into 5 groups. Each group

was formed from a multivariate normal distribution with mean vector µ10×1 and variance-

covariance matrix Σ10×10. The mean of each group is generated according to the following

scheme:

- Group 1: 200 factor levels with mean µj,1 = cos(π(j + 1)), j = 1, . . . , 10 time points.

- Group 2: 200 factor levels with mean µj,1 = cos(π(j + 1)/10), j = 1, . . . , 10.

- Group 3: 800 factor levels with mean µj,1 = sin(π(j + 1)/10), j = 1, . . . , 10.

- Group 4: 400 factor levels with mean µj,1 = i− 4, j = 1, . . . , 10.

- Group 5: 400 factor levels with mean µj,1 = i/4, j = 1, . . . , 10.

All groups had factor levels generated from the same variance-covariance matrix with unit

variance and decreasing covariance for more distant elements in time. Figure 6.2 represents

the simulated data considering all factor levels together and separated in each group.

3See Appendix B for details of use.
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Figure 6.2. Profile plot for simulated longitudinal data. Gene expression
levels in vertical axis and time points in horizontal axis. (a) All replicated
factor levels. (b) Factor levels in group 1. (c) Factor levels in group 2. (d)
Factor levels in group 3. (e) Factor levels in group 4. (f) Factor levels in
group 5.

A total of 2000 simulations were performed with ARI obtained after applying PPCLUS-

TEL and MCLUST to cluster factor levels in each simulation. In order to apply MCLUST

the mean value of 3 replications for each factor level was used since MCLUST does not allow

the use of replications. The results obtained for ARI are summarized in Fig. 6.3 for both

PPCLUSTEL and MCLUST.

It can be observed that both PPCLUSTEL and MCLUST were very efficient in clustering
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Figure 6.3. Boxplots for ARI in 2000 simulations using PPCLUSTEL
and MCLUST to cluster generated data.

the factor levels of each group. ARI was very stable on both cases, but MCLUST was more

stable and with higher values for ARI in clustering of HDLLSS data. The advantadge of

MCLUST over PPCLUSTEL could be justified by the use of multivariate normal distribu-

tion to generate different groups in simulated data. However, it was observed that MCLUST

is much slower than PPCLUSTEL and when the number of factor levels increases, MCLUST

begins experiencing memory allocation problems and does not produce any result when the

number of factor levels is about 10000 or more. Table 6.3 presents time of execution of

PPCLUSTEL and MCLUST for data sets with different number of factor levels.

In this way, PPCLUSTEL can be used as an alternative algorithm when MCLUST is
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Table 6.3. Execution time of PPCLUSTEL and MCLUST for data with
different number of factor levels. MCLUST is considered in two situations:
(a) number of groups specified, (b) number of groups not specified.

Factor Levels PPCLUSTEL MCLUST (a) MCLUST (b)
2000 10 sec 14 sec 1 min, 5 sec
5000 37 sec 2 min, 9 sec 4 min, 38 sec
10000 2 min, 12 sec does not execute does not execute
20000 8 min does not execute does not execute

not available. When MCLUST has time restrictions or does not work, PPCLUSTEL can

be used as an alternative procedure to reduce the number of factor levels in the problem,

and to indicate the number of groups that should be used with MCLUST. The reduction of

the number of factor levels after use of PPCLUSTEL is possible if one eliminates from the

data groups with low variation over time. Those groups will be more easily identified after

clustering with PPCLUSTEL. As an example, in Figure 6.2, group 3 could be eliminated

from the study before application of MCLUST.

Additionally, most of the advantages observed in PPCLUST are also obtained with PP-

CLUSTEL, including: automatic specification of number of groups, high quality in grouping

variables, no multiple comparison problems, no need of dimension reduction, fast and easy

to use. The algorithm is as easy to use as the PPCLUST algorithm, since it was also written

in SAS c© macro language4.

The similarity measure used in PPCLUSTEL does not require the data to be equally

spaced over time, as most time series procedures do. Another issue with application of time

series methods in HDLLSS data is observed by Kim and Kim [55], who note that usually

the number of observed time-points in microarray studies is very small, and methods such

as auto-regression, moving-average or Fourier analysis are not applicable in this situation.

One drawback of PPCLUSTEL, is that it is not invariant to monotone transformations

4Performance of PPCLUSTEL and MCLUST was observed in a machine using Windows XP with Intel
Dual-core, 1.79Ghz, and 2Gb of RAM memory. Instructions about macro use in Appendix B.
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in data, since the test statistic is obtained using the original observations. Future research

should be directed to the use of PPCLUSTEL with different distributions and ranked data

instead of original observations.

6.4.2 Comparison to Other Methods

Some of the recent competing methodologies of PPCLUSTEL in the area of microarray gene

expression analysis are indicated in the next paragraphs.

The proposed method of Storey et al. [100] focuses particularly on spline-based methods

and is used mostly to differentiate two groups of genes in expressed and non expressed genes.

An open-source software called EDGE was implemented and is freely available. One of the

difficulties with EDGE is its use in simulation procedures. Also, EDGE does not have an

output with the list of genes in each group when using large data sets.

Serban and Wasserman [92] describe a technique for nonparametric estimation and clus-

ter of a large number of curves. The technique is called CATS (Clustering After Transfor-

mation and Smoothing) and one of the main drawbacks in relation to PPCLUSTEL is that

the technique showed to be an effective method only when the number of time points and/or

the number of replications is large. In addition, CATS only allows the use of independent

observations.

Ma et al. [62] describes another procedure that addresses spline-based methods for clus-

tering of time course gene expression data. Besides the advantages outlined by the authors

in their study, simulated curves in each group are very different in shape and easy to cluster.

Additionally, the procedure was applied only to a large number of time points and small

number of factor levels (150); and it is not clear if the procedure can be applied to HDLLSS

data. A software called SSCLUST (smoothing spline clustering) and source code are freely

available on the web.

All three previous studies are based on smoothing spline methods that are not recom-

mended for data with small number of time points. This is not an issue with PPCLUSTEL.
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A method that is not based on smoothing spline is proposed by Kim and Kim [55] and

called DIB-C (difference-based clustering algorithm). DIB-C is an algorithm that works

with first- and second-order differences between adjacent time points. The method does not

use conventional time-series methods and, according to the authors, works with short and

unevenly spaced time-course data. The main drawback is that DIB-C requires more replica-

tions and it is not effective with long time-course data. Finally, Angelini et al. [9] developed

a functional Bayesian approach designed for time series microarray data. The main criticism

of these ANOVA approachs being applied to time-course experiments is the fact that time

variables are treated as particular experimental factors. The authors cited studies including

Kerr et al. [53], Wu et al. [115], DiCamillo et al. [22], Smyth [96] and others as examples of

studies where the temporal biological structure of data is ignored. PPCLUSTEL could also

be included in this list. However, the main objective in PPCLUSTEL is not to describe the

evolution in gene expression over time, but to cluster genes that are similarly expressed over

time. More research about the impact of ignoring temporal structure in clustering of gene

expression data should be investigated. A major drawback in Angelini et al. [9] is the fact

that the method requires relatively large number of time points.

Overall, PPCLUSTEL was found to be highly efficient in clustering of simulated data

with small or large numbers of time points. Comparison with other methods in simulated

and real-life datasets should be investigated in future research.
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7

Conclusions

Application

Applications using high dimensional low sample size (HDLSS) data and high dimensional

longitudinal low sample size (HDLLSS) data are common in current research problems due

to the improvements in data collection technologies that allow the obtaining of information

from a large number of variables (objects, factor levels, parameters) at once but at a cost

or time that restricts the use or observation of many replications. Examples of applications

with HDLSS and HDLLSS data include: microarray experimentation, with data collected for

thousands of genes with few replications per gene; spectrometry studies, with data collected

for thousands of objects in few replications over a short period of time; pattern recognition,

with analysis of thousands of voxels for a small number of images; agriculture screening

trials, with large number of treatments (cultivars, pesticides) in a complete block design

limited to 3 or 4 blocks; and broadband sonars, with detection of high dimensional signals

for small, time consuming acquisition, and expensive datasets.
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Problem

In the context of microarray gene expression analysis, clustering has been one of the most

important statistical learning technologies used to identify groups of differentially expressed

genes, [28], [7], [72], [118], [49], [47], [33]. Most of the current implemented clustering

algorithms for microarray data are adaptations from standard clustering algorithms used in

traditional multivariate analysis, where the number of factor levels is not high and sample

sizes are relatively large. As a drawback it is observed that these algorithms cannot deal with

the high dimensionality of data, requiring some dimension reduction prior to the analysis or

working with comparison of pairs of factor levels in clustering. This dimension reduction is

criticized by authors like Yeung and Ruzzo [118]. Further, the use of multiple comparisons

results in a drastic reduction of the Type I error rate of the test, and requires the use of

alternative solutions as suggested by Benjamini and Hochberg [11]. Another problem from

traditional algorithms is the requirement of more replications or time points than usually

available in HDLSS and HDLLSS data problems. In longitudinal applications, usually there

is an additional requirement of evenly spaced time-points when using traditional time series

or smoothing techniques. Some algorithms cannot deal with unbalanced data, requiring

the complete elimination of a factor level from the study or the use of some imputation

technique. Additionally, many traditional algorithms require a series of assumptions to be

met by the data, such as constant variance and distributional assumptions, and most of

the algorithms are sensitive to monotone transformations, producing different results when

applied to data after some transformation has been made.

Solution to HDLSS Problem

PPCLUST is a novice computational algorithm for partition clustering of large number

of factors with small number of observations per factor. The algorithm uses the one-way

nonparametric ANOVA model based on ranks developed by Wang and Akritas [112]. The

new procedure uses the p-value of the test statistic as a measure of similarity between groups,
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i.e., as an indication of degree of alike between factors in a group.

Type I error rates indicate that the test statistic used in PPCLUST performs well in

testing the hypothesis of no distributional difference between factor levels, regardless of

whether the distribution is symmetric (normal), or skewed (lognormal, exponential), or

heavy tailed (Cauchy). The only assumption required by PPCLUST is that observations

are independent and from any arbitrary distribution.

Results and Advantages

PPCLUST outperformed 10 other benchmark algorithms described in the microarray

literature and was shown to have many interesting properties that make the algorithm

appealing for use with HDLSS data, including invariance to monotone transformations,

automatic specification of number of groups, high quality in grouping variables, no multiple

comparison problems, no need of dimension reduction in data, no requirement of balanced

data, fast and easy to use. In simulations, the only competitive algorithm was MCLUST,

that is a model-based algorithm which uses a mixture of normal distributions. However,

MCLUST showed inferior performance with very small sample sizes or when groups of factor

levels are asymmetrically distributed.

Solution to HDLLSS Problem

When HDLSS data are observed over time, PPCLUST is not applicable for clustering of

factor levels. For this purpose, the asymptotic distribution of a new test statistic for testing

of no simple effect of group of factor levels was obtained, or equivalently, no main effect of

group and no group/time interaction effect when data have many factor levels replicated over

time, i.e., when data are HDLLSS. Once this statistic was obtained, PPCLUST algorithm

was adapted to cluster factor levels using p-values from the new test statistic, as similarity

measures. The new algorithm is named PPCLUSTEL.
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Results and Advantages

Type I error rates indicated that the test statistic used in PPCLUSTEL algorithm per-

forms well for both small and relatively large number of time points, given only a small

number of replications. However, it was observed that the algorithm is very sensitive to

changes in the variance-covariance matrix. When small covariances are considered, the

Type I error increases considerably. Also, the test was found to be extremely powerful

in detecting small differences even with only 50 factor levels (2.5% of total levels) being

different in data with 2000 factor levels.

In simulations, PPCLUSTEL was very efficient and stable in clustering factor levels.

However, MCLUST was more stable and efficient in simulations with multivariate normal

distributions than PPCLUSTEL. Nevertheless, PPCLUSTEL is an excellent alternative

when MCLUST is not available or in situations when MCLUST does not produce any

result due to memory allocation problems. PPCLUSTEL can also be used as an auxiliary

tool to MCLUST in order to reduce the dimension of the problem and to indicate the

possible number of groups available in data. Additionally, most of the advantages observed in

PPCLUST are also obtained in PPCLUSTEL, including: automatic specification of number

of groups, high quality in grouping variables, no multiple comparison problems, no need

of dimension reduction, fast and easy to use. In simulations, PPCLUSTEL took less than

a minute to complete the clustering of a large dataset with as many as 5000 factor levels.

PPCLUSTEL is also very easy to use and the test developed for longitudinal data does not

require the data to be equally spaced over time. One drawback with PPCLUSTEL, is that it

is not invariant to monotone transformations in data, since it uses the original observations

for computation of the test statistic of no simple effect.

7.1 Future Research

This thesis implements two algorithms, PPCLUST and PPCLUSTEL, for the clustering of

HDLSS data and HDLLSS data. Although many of the issues with existing algorithms are
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not observed with the new algorithms, several points require further research.

Other algorithms have been used with relative success for specific situations in clustering

of replicated microarray gene expression data. Examples are gene-shaving (Hastie et al. [42],

K-A. Do et al. [23], etc.), density-based hierarchical clustering (Jiang et al. [48]), clustering

via iterative feature filtering or CLIFF (Xing and Karp [116]), plaid models (Lazzeroni and

Owen [60]), subspace clustering (Parsons et al. [77]), coupled two-way clustering analysis

of gene microarray data (Getz et al. [37]) and others. However, comparisons with those

methods in simulations were not directly possible due to lack of flexibility in implemented

software (no code access), poor documentation or/and incompatibility with different op-

erational system platforms and versions of statistical packages. Efforts in comparing such

algorithms with PPCLUST should be made, once the literature about many of these algo-

rithms report excellent results and some advantages related to traditional algorithms.

PPCLUSTEL should be investigated with real-life datasets and also compared with other

recent techniques for HDLLSS data, as source codes and user-friendly programs are made

available by the authors or by the scientific community. Additionally, since the p-values used

in PPCLUSTEL are from a test statistic based on original observations, it is important to

compare the performance of PPCLUSTEL in HDLLSS data with different distributions,

such as double exponential, Cauchy, lognormal. The asymptotic distribution for testing of

no simple effect of group of factor levels using ranks instead of original observations, should

also be investigated. This could make PPCLUSTEL invariant to monotone transformations

and, might result in better performance under different distributions.

Finally, both algorithms, PPCLUST and PPCLUSTEL, were implemented in SAS c©

macro language. SAS c© was found to be very flexible and capable of performing the clus-

tering of very large datasets in relatively modest machines. However, SAS c© is not an open

source, or free program, making it difficult to access its capabilities in some cases. One

direction of future research should be the implementation of PPCLUST and PPCLUSTEL

in other computer languages, such as R software. At this moment R has serious problems
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with memory allocation when performing analysis of high dimensional data.

PPCLUST and PPCLUSTEL proved to be powerful and efficient algorithms in clustering

of HDLSS and HDLLSS data. This thesis addresses the specific application of microarray

gene expression; however there are many important different applications that can take

advantage of the features of PPCLUST and PPCLUSTEL.
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Appendix A

Basics of Microarray Technology

Scientists are studying complex disorders through the identification of components of the

interactions of genes. A gene is a specific segment of a deoxyribonucleic acid (DNA) molecule

contained within chromosomes in the nucleus of each cell 1 and control the production of

proteins and ribonucleic acid (RNA) molecule.

Two huge interwined strands of DNA form a chain that is called a chromosome. The

strands of DNA bond together through the base pairing of four nitrogen bases known as ade-

nine (A), thymine (T), cythosine (C), and guanine (G) in a double helix molecule structure

as described by James D. Watson and Francis Crick in 1953 2 and illustrated in Fig. A.1.

The protein production from genes involves the stages of transcription and translation

that is the Central Dogma of Molecular Biology, as represented in Fig. A.2. Transcription

is the communication of a genetic code from DNA to RNA through the synthesis of a

strand of RNA that has sequences of bases complementary to that of the DNA strand.

Translation is the process of synthesizing polypeptide (compound of amino acids) chains

from an intermediary form of DNA known as messanger RNA (mRNA). The complementary

DNA (cDNA) is a form of DNA that possesses the complementary bases of the mRNA. The

amino acids synthesized by one mRNA strand form a chain that folds into a protein.

1The nucleus of almost every cell includes the complete human genome that is a representation of our
entire gene complement, i.e., about 30,000 genes in human DNA already provided by the Human Genome
Project.

2An interesting text about the history of discovery of the Double Helix structure is Watson and
Berry [114].
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Figure A.1. DNA double helix molecule base pairing schematic (Access
Excellence at the National Health Museum, www.accessexcellence.org).

Microarray technology utilizes properties of pairing bonding in DNA for a process of

joining two complementary strands of DNA, known as the hybridization process, using

pieces of labeled DNA or RNA (called probes) to measure the expression of a gene. The

molecule of mRNA is relatively fragile and can be broken down by the action of enzimes

in laboratory. The creation of cDNA from mRNA is known reverse transcription and is

used in microarray technology to create short sequential segments called EST (Expressed

Sequence Tag) to represent the coding portion of a gene and as a substitute to a technique

that “amplifies” or replicates DNA fragments (PCR - Polymerase Chain Reaction).

To better understand how DNA microarray experiments are performed the following

section presents a synthesis of the microarray procedure reproduced from a flash animation

developed by Malcolm Campbell at Davidson College. The complete animation can be

found in geat.davidson.edu/Pirelli/index.htm 3.

3Copyright c©University of North Carolina at Chapell Hill and A. Malcom Campbell. Slides cut and
pasted from flash animation with authorization of the authors.
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Figure A.2. The Central Dogma of Molecular Biology (Access Excellence
at the National Health Museum, www.accessexcellence.org).

• Microarray Technology Steps

Microarrays have made it possible to measure genes that are induced or repressed when

two populations of cells grow under different conditions. In microarrays the expression of

the entire genome of one organism can be analysed in just one experiment. In past, the

experiments allowed the observation of just some genes, making the process time consuming

and very expensive. With advances in bioinformatics, mathematics, and statistics, DNA

microarrays made (and continue to make) a revolution in molecular biology research.

Figure A.3. Nothern blot slide superposed to microarray slide.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 1 – Suppose two groups of cells are exposed to a control and experimental

condition like aerobic and anaerobic, cancer and non cancer, etc. The objective is to

compare any two cell types through the measure of expression of their genomes under

the different conditions (Fig. A.4).

Figure A.4. Groups of cells exposed to different conditions.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 2 – As the cells grow under the experimental condition, certain genes are re-

pressed, others are induced, and some do not change their expression when compared

to the same genes in the cells exposed to the control condition (Fig. A.5).

Figure A.5. Growth of cells under two experimental conditions.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 3 – In order to measure the expression of a gene, a piece of labeled RNA or DNA,

called probe, is used. The starting point is the generation of probes in the isolation of

mRNA from both conditions, experimental and control. Millions of mRNA molecules

are isolated. The population of mRNA molecules is different in each tube (Fig. A.6).

Figure A.6. Isolation of mRNA. Copyright c©University of North Carolina
at Chapell Hill and A. Malcom Campbell.
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• Step 4 – Using an enzime, called reverse transcriptase, cDNAs are synthesized from

mRNA templates. At this point green fluorescent dyes are used to label other cDNAs

from genes transcribed under control. Red fluorescent dyes are used to label genes

transcribed under the experimental condition. (Fig. A.7).

Figure A.7. Green and red dyes in transcription process.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 5 – The cDNAs are complementary to the mRNA molecules from which they

were made and also complementary to the antisense strand of the gene. (Fig. A.8).

Figure A.8. Labeled cDNA. Copyright c©University of North Carolina at
Chapell Hill and A. Malcom Campbell.
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• Step 6 – Combined cDNAs (red and green) are used to probe the microarray (Fig. A.9).

In each spot of the microarray there is a portion of the coding sequence from a differ-

ent gene of the material being analysed. Together all spots could represent an entire

genome (human, yeast, etc.).

Figure A.9. Combined cDNAs in preparation for hybridization process.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 7 – In the hybridization process, green and red cDNAs bind to DNA spotted on

the microarray. The binding to a spot indicates if the expression of a gene on a specific

spot was changed under the condition where cells were grown. The unbound cDNAs

are washed off and the remaining will be visualized in the microarray (Fig. A.10).

Figure A.10. Washing off unbound cDNAs. Copyright c©University of
North Carolina at Chapell Hill and A. Malcom Campbell.
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• Step 8 – The microarray slide is scanned with two different lasers to detect the

bound green and red cDNAs. If only green (red) cDNAs bound to a gene this will

be indicated by green (red) laser only and means that the gene was only expressed

in cells grown under control (experimental) condition. If the gene is expressed under

both conditions, than a yellow spot will result from the merging of green and red

bounded cDNAs (Fig. A.11).

Figure A.11. Merging of image from 3 scanned genes.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 9 – A final microarray will include different variations of intensity of red and

green spots indicating levels of variations of expression of a gene. Black spots indicates

that a gene was not expressed (not transcribed) under both conditions (Fig. A.12).

Figure A.12. Different levels of gene expression in a microarray.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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• Step 10 – Finally, in a computer, the different intensities of colors in a microarray

(Fig. A.13) will be transformed to numbers that represent the final data of gene ex-

pression . From this step, procedures like clustering and classification will take place

to explore the characteristics of the analysed genome. It will enable the researcher

to diagnose genetic diseases, improve medical treatments, predict side effects from

treatment, etc.

Figure A.13. Microarray with expression of thousands of genes.
Copyright c©University of North Carolina at Chapell Hill and A. Malcom
Campbell.
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Appendix B

SAS Macros

This appendix provides the SAS c©1 macros introduced in Chapters 3 and 6 to perform partition
clustering of high dimensional low sample size (HDLSS) data and high dimensional longitudinal
low sample size (HDLLSS) data. In addition, the appendix provides a SAS c© macro code for the
calculus of Adjusted Rand Index (ARI) from Hubert and Arabie [46]. The ARI macro was adapted
from Fisher and Hoffman [27] and corrected for the latest version of SAS c©. All macros presented
here are compatible with SAS 9.1.3 or later.

The following sections present the SAS c© source code and instructions for use of each macro
using command lines. Before running each macro a proper SAS data set should be ready for
analysis as indicated in each section bellow.

B.1 Macro PPCLUST for HDLSS data

PPCLUST is a SAS c© macro for partitioning clustering of HDLSS data as described in Chapter 3
of this monograph.

The SAS data set for PPCLUST should be in the format presented in Table B.1, where Factor
Level is an optional variable with the label of each factor. For example, in a microarray data
each factor level can correspond to a gene name. The variables X1, X2, . . . , Xn represent the
replications and should be named with a prefix name plus numbers in sequence. For example, in
a data set with three replications, they could be denoted by R1, R2, and R3.

Command line: %macro ppclust(dataset,obsmin,obsmax,alpha);

Input commands: In this case Dataset is the SAS data name, obsmin is the name of the
variable indicating the first replication, obsmax is the name of the variable indicating the
last replication, and alpha is the threshold parameter to be compared with p-values in the
clustering algorithm, as explained in Chapter 3.

Output: PPCLUST produces three temporary SAS data sets that can be saved or exported using
common SAS commands. The data set called grfr has the number of factor levels in each
created group, while the data set groupclass has a numerical identification for each factor

1SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute Inc. in the USA and other countries. c© indicates USA registration.
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Table B.1. High dimensional replicated data set layout. Here a→∞ and ni ≥ 2.

Factor level X1 X2 . . . Xn
1 X11 X12 . . . X1n1

2 X21 X22 . . . X2n2

...
...

...
...

...
a Xa1 Xa2 . . . Xana

level (variable idobs) and the respective group of each factor level (variable group). The
data set datanew has the original data with the information in data groupclass added to
it.

The following command line starts PPCLUST in a data set called adenoma with four repli-
cations and threshold of 10−10.

%ppclust(adenoma,d1,d4,1e-10);

B.1.1 SAS Code

%macro ppclust(dataset,obsmin,obsmax,alpha);

data datanew;
set &dataset;
idobs = _N_;
run;

proc iml;

start rankmiss(matrix1);
matrixm = matrix1 = .;
nmiss = matrixm[,+]; nmiss = nmiss[+,];
miss = -999999999999;
matrix1 = choose(matrix1=.,miss,matrix1);
matrix1 = ranktie(matrix1);
matrix1 = matrix1 - nmiss;
matrix1 = choose(matrix1<=0,.,matrix1);
finish;

start sortmed(matrix1,matrix2);
matrix3 = choose(matrix2=.,max(matrix1)+1000,matrix2);
medians = t(median(t(matrix3)));
call sortndx(matrix1,medians,{1});
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matrix2 = matrix2[matrix1,];
free medians;
finish;

start sortcenter(matrix2,colm5,tst);
nr = nrow(matrix2);
nc = ncol(matrix2);
if tst = 1 then do;
m2 = matrix2;
end;
else if tst > 1 then do;
ed = tst-1;
m1 = matrix2[1:ed,];
m2 = matrix2[tst:nr,];
end;
nr2 = nrow(m2);
j1 = j(nr2,1) * 0;
c1 = int(0.40*nr2);
c2 = int(0.60*nr2);
call sort(m2,colm5);
do i = 1 to nr2;
if i < c1 then j1[i,] = 1;
if i > c2 then j1[i,] = 1;
end;
m2 = m2 || j1;
nc2 = nc + 1;
call sort(m2,nc2);
m2 = m2[,1:nc];
if tst = 1 then matrix2 = m2;
else if tst > 1 then matrix2 = m1 // m2;
finish;

start sig4hat(x,n,s4hat);
mx = sum(x)/n;
s4hat = (ssq(x-mx)/n)**2;
finish;

start sig4jack(x,sigma4);
n = nrow(x); ni = n-1;
if ni > 0 then do;
call sig4hat(x,n,s4hat);
s4jack = n * s4hat;
do i=1 to n;
xni = t(remove(x,i));
call sig4hat(xni,ni,s4hatni);
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s4jack = s4jack - (n-1)/n * s4hatni;
free s4hatni;
end;
sigma4 = s4jack;
end;
else if ni = 0 then sigma4 = 0;
finish;

start sigma4est(exp1,nrowe1,maxobs,sigma4e);
exp1 = colvec(exp1);
lfac = t(1:nrowe1) @ j(maxobs,1);
expi1 = exp1 ^= .;
lfac = lfac # expi1;
lfac = lfac[loc(lfac),];
exp1 = exp1[loc(exp1 ^= .),];
y = j(nrow(exp1),1);
sigma4e = j(nrowe1,1);
do i = 1 to nrowe1;
temp = choose(lfac=i,y=1,y=0) # exp1;
temp = temp[loc(temp),];
call sig4jack(temp,sigma4);
sigma4e[i,] = sigma4;
end;
free exp1 expi1 lfac y temp;
finish;

start anovarank(resp,nfac,maxobs,sigma4ea,pv);
respi = resp ^= .;
ng = respi[,+];
meang = resp[,+]/ng;
center= resp - repeat(meang,1,maxobs);
ss = center[,##];
varg = ss / (ng-1);
resp = colvec(resp);
j = j(maxobs,1);
free respi;
meant = sum(meang)/nfac;
difmt = meang - meant;
mst = ssq(meang - meant)/(nfac - 1);
mse2= sum(varg/ng) / nfac;
fr2 = mst/mse2;
tau2 = sum(sigma4ea/(ng#(ng-1))) * 2 / nfac;
asyvar = tau2 / mse2**2;
pv = 1 - probnorm(sqrt(nfac)*(fr2-1)/sqrt(asyvar));
finish;
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start indtest(exp,st,limitn,alpha,nrowe,ncole,colgr,colts,cols4,g);
exp[,colts] = 0; count = 0;
do i=1 to nrowe;
if exp[i,colgr]=g then exp[i,colts] = 1;
end;
do i=st to nrowe;
exp[i,colts] = 1;
n = sum(exp[,colts]);
expt = exp[loc(exp[,colts]),];
call anovarank(expt[,1:ncole],n,ncole,expt[,cols4],pv);
if (pv > alpha) then exp[i,colgr] = g;
else if (pv <= alpha) then exp[i,colts] = 0;
end;
call sort(exp,colgr); * Included;
do i=1 to nrowe;
if exp[i,colgr] <= g then count = count + 1;
end;
st = count + 1;
finish;

use datanew;
read all var{idobs} into factor;
read all var("&obsmin":"&obsmax") into expression;
alpha = &alpha;
testpp = 0; g = 1;
ncole = ncol(expression);
nrowe = nrow(expression);
call rankmiss(expression);
call sortmed(factor,expression);
exp1 = expression;
call sigma4est(exp1,nrowe,ncole,sigma4e);
colid = ncole + 1;
colgr = ncole + 2;
colts = ncole + 3;
cols4 = ncole + 4;
colm5 = ncole + 5;
j1 = j(nrowe,1);
expression = expression || j1 # factor;
expression = expression || j1 * 9999;
expression = expression || j1 * 0;
expression = expression || j1 # sigma4e;
expression = expression || j1 # factor;
tstart = 1; tend = nrowe;
call sortcenter(expression,colm5,tstart);
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call anovarank(expression[,1:ncole],nrowe,ncole,expression[,cols4],pv);
pv2 = pv;
if (pv > alpha) then expression[,colgr] = 1;
if (pv <= alpha) then do;
L = (tend - tstart + 1)/2;
tend = tstart + int(L-1);
do while (tstart <= nrowe);
if (pv2 > alpha) then g = g + 1;
expression[,colts] = 0;
do i = 1 to nrowe;
if (tstart <= i) then do;
if ( i <= tend) then expression[i,colts] = 1;
end;
end;
n = sum(expression[,colts]);
if (n = 1) then do;
expression[tstart,colgr] = 0;
tstart = tend + 1;
tend = nrowe;
testpp = -1;
end;
exp = expression[loc(expression[,colts]),];
if testpp = 0 then call anovarank(exp[,1:ncole],n,ncole,exp[,cols4],pv);
pv2 = pv;
if (pv > alpha) then do;
do i = 1 to nrowe;
if (tstart <= i) then do;
if ( i <= tend) then expression[i,colgr] = g;
end;
end;
tstart = tend + 1;
tend = nrowe;
st = tstart; exp = expression;
call indtest(exp,st,limitn,alpha,nrowe,ncole,colgr,colts,cols4,g);
tstart = st;
expression = exp;
end;
else if (pv <= alpha) then do;
L = (tend - tstart + 1)*0.9;
tend = tstart + int(L-1);
testpp = 0;
end;
end;
end;
exp = expression[,colid];
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exp = exp || expression[,colgr];
create groupclass var{idobs group};
append from exp;
free all;
quit;

proc sort data=datanew; by idobs;
proc sort data=groupclass; by idobs; run;

data groupclass groupclass0;
merge groupclass datanew;
by idobs;
if group = 0 then output groupclass0;
else if group ^= 0 then output groupclass;
run;

proc sort data=groupclass; by group; run;

data t1 (keep = idobs group &obsmin - &obsmax);
set groupclass;

data t1 (drop = &obsmin - &obsmax);
set t1;
array num(*) &obsmin - &obsmax;
length obst $ 8;
do i=1 to dim(num);
expression = num[i];
call vname(num[i],obst);
output;
end;
run;

proc means data=t1 noprint;
var expression;
by group;
output out=t2 median=median;
run;

data t2 (keep=group median);
set t2;
run;

proc sort data=t2; by median; run;

data t2 (keep=group corder);
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set t2; corder = _N_;
run;

proc sort data=t2; by group; run;

data groupclass(drop=corder);
merge groupclass t2;
by group;
group = corder;

data groupclass;
set groupclass;
if idobs=lag(idobs) then delete;
run;

data groupclass;
set groupclass0 groupclass;
run;

proc datasets nolist;
delete t1 t2 groupclass0;
run;

proc freq data=groupclass noprint;
tables group / out=grfr;
run;

proc sort data=datanew;
by idobs;
run;

proc sort data=groupclass(keep=idobs group);
by idobs;

data datanew;
merge datanew groupclass;
by idobs;
run;

proc sort data=groupclass;
by group;
run;

%mend ppclust;
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B.2 Macro PPCLUSTEL for HDLLSS data

PPCLUSTEL is a SAS c© macro for partitioning clustering of HDLLSS data as described in Chap-
ter 6 of this monograph.

The SAS data set for PPCLUSTEL should be in the format presented in Table B.2 where
factor level is the variable with gene names, array is the corresponding replication for each factor
level, and X1, X2, . . . , Xb represent the time points each factor level replication is observed.

Table B.2. High dimensional replicated data layout in longitudinal design.

Factor Time Points
Level Array X1 X2 . . . Xb

1 1 X111 X121 . . . X1b1
...

...
...

...
...

n1 X11n1 X12n1 . . . X1bn1

...
...

...
...

...
...

a 1 Xa11 Xa21 . . . Xab1
...

...
...

...
...

na Xa1na Xa2na . . . Xabna

Command line: %macro ppclustel(dataset,gene,array,time1,timen,alpha);

Input: In this case Dataset is the SAS data name, gene is the name of the variable indicating
the gene names or codes, array is the name of the variable indicating each gene replication
number, time1 is the variable indicating the first time point, timen is the variable indicating
the last time point, and alpha is the threshold parameter to be compared with p-values in
the clustering procedure, as explained in Chapter 6.

Output: PPCLUSTEL produces three temporary SAS data sets that can be saved or exported
using common SAS commands. The data set called grfr has the number of factor levels in
each created group, and the data set groupclass has a numerical identification for each factor
level (variable idobs) and the respective group the factor level was allocated (variable group).
The data set datanew has the original data with the information in data groupclass added
to it.

The following command line starts PPCLUSTEL in a data set called simulated with gene
name as genes, array name as rep, starting time as t1 and ending time point as t10. The
threshold is set to 0.01.

%ppclust(simulated, genes, rep, t1, t10, 0.01);
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B.2.1 SAS Code

%macro ppclustel(dataset,geneid,arrayid,tmin,tmax,alpha);

proc freq data=&dataset noprint;
tables &geneid / out=nigene(keep=&geneid count);
run;

data nigene;
set nigene;
rename &geneid = geneid;
run;

proc means data=nigene sum noprint;
var count;
output out=sumni sum=sumni;
run;

data _null_;
set sumni;
call symput(’sumni’,sumni);
run;

proc iml;
start rankmiss(matrix1);
matrixm = matrix1 = .;
nmiss = matrixm[,+];
nmiss = nmiss[+,];
miss = -9999999999;
matrix1 = choose(matrix1=.,miss,matrix1);
matrix1 = ranktie(matrix1);
matrix1 = matrix1 - nmiss;
matrix1 = choose(matrix1<=0,.,matrix1);
finish;

use &dataset;
read all var{&geneid &arrayid} into factor;
read all var("&tmin":"&tmax") into expression;
b = ncol(expression);

create nb var{b};
append from b;
quit;

data datasetf1 (keep=geneid arrayid &tmin - &tmax);
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set &dataset;
geneid = &geneid;
arrayid = &arrayid;
run;

data nb;
set nb;
call symput(’b’,b);
run;

data datasetf2 (drop= &tmin - &tmax);
set datasetf1;
array num(*) &tmin - &tmax;
do time=1 to dim(num);
exp = num[time];
output;
end;
run;

proc means data=datasetf2 median noprint;
var exp;
by geneid;
output out=result1(keep=geneid median) median=median;
run;

proc sort data=datasetf2; by geneid time;
run;

proc means data=datasetf2 mean noprint;
var exp;
by geneid time;
output out=result2(keep=geneid time rbijp) mean=rbijp;
run;

data temp1;
merge datasetf2 result2;
by geneid time;
run;

data temp2;
merge temp1 nigene;
by geneid;
msepartial = (exp - rbijp)**2 / (&b*count*(count-1));
run;

130



proc means data=temp2 sum noprint;
var msepartial;
by geneid;
output out=result3(keep=geneid msep) sum=msep;
run;

proc corr data=datasetf1 cov noprint outp=temp3;
var &tmin - &tmax;
with &tmin - &tmax;
by geneid;
run;

data temp3(keep=geneid time &tmin - &tmax);
set temp3;
if _TYPE_ = ’COV’;
rename _NAME_ = time;
run;

data temp4 (drop= &tmin - &tmax);
set temp3;
array num(*) &tmin - &tmax;
do timecov=1 to dim(num);
cov = num[timecov];
cov2 = cov*cov ;
output;
end;
run;

proc means data=temp4 sum noprint;
var cov2;
by geneid;
output out=result4(keep=geneid cov2p) sum=cov2p;
run;

data result4(keep=geneid cov2p);
merge result4 nigene;
by geneid;
cov2p = 2 * cov2p / (&b*count*(count-1));
run;

proc means data=datasetf1 mean noprint;
var &tmin - &tmax;
by geneid;
output out=result5(keep=geneid &tmin - &tmax) mean=&tmin - &tmax;
run;
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data prepmatrix;
merge result1 result3 result4 result5;
by geneid;
run;

proc iml;

start sortmed(matrix);
call sortndx(ms,matrix,{2});
matrix = matrix[ms,];
finish;

start sortcenter(matrix,tst);
nr = nrow(matrix);
nc = ncol(matrix);
if tst = 1 then do;
m2 = matrix;
end;
else if tst > 1 then do;
ed = tst-1;
m1 = matrix[1:ed,];
m2 = matrix[tst:nr,];
end;
nr2 = nrow(m2);
j1 = j(nr2,1) * 0;
c1 = int(0.35*nr2);
c2 = int(0.65*nr2);
call sort(m2,1);
do i = 1 to nr2;
if i < c1 then j1[i,] = 1;
if i > c2 then j1[i,] = 1;
end;
m2 = m2 || j1;
nc2 = nc + 1;
call sort(m2,nc2);
m2 = m2[,1:nc];
if tst = 1 then matrix = m2;
else if tst > 1 then matrix = m1 // m2;
finish;

start anovalongrank(resp,a,b,pv);
cts = 5;
cte = 4 + b;
xijp = resp[,cts:cte];
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xpjp = xijp[+,]/a;
k1 = j(a,1);
k2 = j(b,1);
k = k1 * k2‘;
xpjp = k # xpjp;
mst = (xijp - xpjp) ## 2;
mst = mst[,+];
mst = mst[+,]/((a-1)*b);
mse = resp[,3];
mse = mse[+,] / a;
cov2 = resp[,4];
cov2 = cov2[+,] / a;
pv = 1 - probnorm(sqrt(a*b)*(mst-mse)/sqrt(cov2));
finish;

start indtest(exp,b,st,alpha,a,colgr,colts,g);
exp[,colts] = 0; count = 0;
do i=1 to a;
if exp[i,colgr]=g then exp[i,colts] = 1;
end;
do i=st to a;
if exp[i,colts] = 0 then do;
kwtest = 0;
exp[i,colts] = 1;
n = sum(exp[,colts]);
if kwtest = 0 then do;
expt = exp[loc(exp[,colts]),];
call anovalongrank(expt,n,b,pv);
if (pv > alpha) then exp[i,colgr] = g;
else if (pv <= alpha) then exp[i,colts] = 0;
end;
end;
end;
do i=1 to a;
if exp[i,colgr] <= g then count = count + 1;
end;
st = count + 1;
call sort(exp,colgr);
kwtest = 0;
finish;

use prepmatrix;
read all into mdata;
alpha = &alpha;
g = 1;
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ktest = 0;
a = nrow(mdata);
b = &b;
ncole = ncol(mdata);
call sortmed(mdata);
colid = 1;
colgr = ncole + 1;
colts = ncole + 2;
j1 = j(a,1);
mdata = mdata || j1 * 9999;
mdata = mdata || j1 * 0;
tstart = 1; tend = a;
call sortcenter(mdata,tstart);
call anovalongrank(mdata,a,b,pv);
pv2 = pv;
if (pv > alpha) then do;
mdata[,colgr] = 1;
end;
if (pv <= alpha) then do;
L = (tend - tstart + 1)/2;
tend = tstart + int(L-1);
do while (tstart <= a);
if (pv2 > alpha) then g = g + 1;
call sortcenter(mdata,tstart);
mdata[,colts] = 0;
do i = 1 to a;
if (tstart <= i) then do;
if ( i <= tend) then mdata[i,colts] = 1;
end;
end;
n = sum(mdata[,colts]);
if (n = 1) then do;
mdata[tstart,colgr] = 0;
tstart = tend + 1;
tend = a;
ktest = -1;
end;
exp = mdata[loc(mdata[,colts]),];
if ktest = 0 then call anovalongrank(exp,n,b,pv);
pv2 = pv;
if (pv > alpha) then do;
do i = 1 to a;
if (tstart <= i) then do;
if ( i <= tend) then mdata[i,colgr] = g;
end;
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end;
tstart = tend + 1;
tend = a;
st = tstart; exp = mdata;
call indtest(exp,b,st,alpha,a,colgr,colts,g);
tstart = st;
mdata = exp;
end;
else if (pv <= alpha) then do;
L = (tend - tstart + 1)*0.9;
tend = tstart + int(L-1);
end;
end;
end;

exp = mdata[,colid];
exp = exp || mdata[,colgr] || mdata[,2];

create groupclass var{geneid group mediange};
append from exp;
free all;
quit;

proc sort data=groupclass;
by group;
run;

data groupclass groupclass0;
set groupclass;
if group = 0 then output groupclass0;
else if group ^= 0 then output groupclass;
run;

proc means data=groupclass median noprint;
var mediange;
by group;
output out=newgroupclass median=med;
run;

proc sort data=newgroupclass;
by med;
run;

data newgroupclass(keep=group sgroup);
set newgroupclass;
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if group=0 then delete;
sgroup = _N_;
run;

proc sort data=newgroupclass;
by group;
run;

data groups;
merge groupclass newgroupclass;
by group;
run;

data groups(keep=geneid group);
set groupclass0 groups;
if group=0 then sgroup=0;
rename group = og;
rename sgroup = group;
run;

proc datasets nolist;
delete datasetf1 datasetf2 groupclass groupclass0
nb newgroupclass nigene prepmatrix result1-result5
sumni temp1-temp5;
run;

data groupclass;
set groups;
rename geneid=idobs;
run;

proc datasets nolist;
delete groups;
run;

proc freq data=groupclass noprint;
tables group / out=grfr;
run;

data datanew;
set &dataset;
idobs = &geneid;
run;

proc sort data=groupclass;
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by idobs;
run;

data datanew;
merge datanew groupclass;
by idobs;
run;

proc sort data=groupclass;
by group;
run;
%mend ppclustel;

B.3 Macro ADJRAND for Adjusted Rand Index

ARI is a SAS c© macro to obtain the Adjusted Rand Index from Hubert and Arabi [46]. The
measure is described in Chapter 2 and the macro is an update from Fisher and Hoffman [27]
macro with corrections for the latest version of SAS c© language.

The SAS data set needs just two variables indicating the results for the external criteria and
the allocated group obtained with some clustering method.

Command line: %ari(name1,name2,name3);

Input: In this case name1 is the SAS data name, name2 is the name of the variable containing
the results for the external criteria, and name3 is the name of the variable with the grouping
we want to compare with the external criteria.

Output: When ARI is executed it produces two temporary SAS data sets that can be saved
or exported using common SAS commands. The data set called adjrand has calculated
Adjusted Rand Index, and the data set tabari has the tabulated results for each pair of
grouping in the data set name1.

The following command line starts macro ARI in a data set called comparison with compared
variables named as original and grouped.

%ari(comparison, original, grouped);

B.3.1 SAS Code

%macro tab(data=,missing=);

proc iml;
start a2;
do i=1 to nrow(z);
t[z[i,1],z[i,2]] = z[i,3];
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end;
finish;

start separate;
do k = 1 to nrow(z);
if z0[k,1] = . then if z0[k,2] = . then do;
in = i:i+z0[k,3]-1;
jn = j:j+z0[k,3]-1;
z = z // (in || jn || j(z0[k,3],1,1));
i = i + z0[k,3];
j = j + z0[k,3];
nomiss = 0;
end;
else do;
in = i:i+z0[k,3]-1;
z = z // (in || j(z0[k,3],1,z0[k,2]) || j(z0[k,3],1,1));
i = i + z0[k,3];
nomiss = 0;
end;
else if z[k,2] = . then do;
jn = j:j+z0[k,3]-1;
z = z // (j(z0[k,3],1,z0[k,1]) || jn || j(z0[k,3],1,1));
j = j + z0[k,3];
nomiss = 0;
end;
else keep = keep || k;
end;
if nomiss = 0 then z = z[keep || (nrow(z0)+1:nrow(z)),];
z0 = z;
z[rank(z[,1]),] = z0;
finish;

start combined;
x0 = loc(z[,1] = .);
y0 = loc(z[,2] = .);
if ncol(x0) > 0 then z[x0,1] = i;
if ncol(y0) > 0 then z[y0,2] = j;
if ((ncol(x0) > 0) | (ncol(y0) > 0)) then nomiss = 0;
finish;

use tabari;
read all into z0;
i = max(z0[,1])+1;
j = max(z0[,2])+1;
z = z0;
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nomiss = 1;
if ((&missing = ’separate’) | (&missing = ’0’)) then call separate;
if ((&missing = ’combined’) | (&missing = ’1’)) then call combined;
t = j(max(z[,1]),max(z[,2]),0);
call a2;
cm = t[+,];
sscm = ssq(cm);
rm = t[,+];
ssrm = ssq(rm);
tot = rm[+];
sst = ssq(t);
nn = tot * tot;
n2 = 0.5 * tot * (tot - 1);
n0 = -0.5 * (ssrm + sscm) + n2;
ns = sst + n0;
nc = ssrm * sscm / nn + n0 + (nn - ssrm) * (nn - sscm) / (nn * (tot - 1));
adjrand = (ns - nc) / (n2 - nc);
res = nomiss || sscm || ssrm || tot || sst || adrand;
create adjrand var{adjrand};
append from adjrand;
quit;
%mend tab;

%macro freq(data=,x=,y=) / store des=’ARI - FREQ’; ;
proc freq data = &data;
tables &x * &y / out = tabari(rename=(&x = x &y = y) drop=percent) noprint;
run;
%mend freq;

%macro ari(data,x,y) / store des=’ARI - MAIN’;
%let missing=’separate’;
data &data;
set &data;
z = &x + 1;
k = &y + 1;
run;

%freq(data=&data,x=z,y=k);
%tab(data=&data,missing=&missing);

data &data(drop=z k);
set &data;
run;
%mend ari;

139


	Title Page
	Abstract
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Dedication
	Introduction
	Background
	Contribution

	Literature Review
	Review of Proximity Measures
	Review of Clustering Algorithms
	Partitional Clustering Methods
	Hierarchical Clustering Methods
	Fuzzy clustering
	Model-Based Clustering (MCLUST)
	ANOVA methods in clustering analysis

	Cluster Quality by Adjusted Rand Index

	Partition Clustering of HDLSS Data Based on p-Values
	The Nonparametric Test of No Group Effect
	Type I Error Rate
	Power Curves

	Partition Clustering Algorithm Based on p-Values

	Simulations and Properties of PPCLUST in Replicated Data
	Clustering Simulations with HDLSS Data
	Study I: Symmetric Groups
	Study II: Asymmetric Groups
	Results

	Properties of PPCLUST

	Applications of PPCLUST in Microarray Data
	Real Data Study I: Clustering Genes in Colorectal Cancer
	Real Data Study II: Cellular Gene Expression upon HIV data

	Partition Clustering of HDLLSS Data Based on p-Values
	Introduction
	Theory Development for Testing No Simple Effect of Group in HDLLSS Data
	Simulation Study on Performance of The Test
	Type I Error Rate
	Power Curves

	Partition Clustering of HDLLSS Data Based on p-Values
	Performance on Simulated Data and Comparison with MCLUST
	Comparison to Other Methods


	Conclusions
	Future Research

	Bibliography
	Basics of Microarray Technology
	SAS Macros
	Macro PPCLUST for HDLSS data
	SAS Code

	Macro PPCLUSTEL for HDLLSS data
	SAS Code

	Macro ADJRAND for Adjusted Rand Index
	SAS Code



