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Abstract

There is a growing demand for more effective integration of humans and computing

systems, specifically in multiagent and multirobot systems. There are two aspects to

consider in human integration: (1) the ability to control an arbitrary number of robots

(particularly heterogeneous robots) and (2) integrating humans as peers in computing

systems instead of being just users or supervisors.

With traditional supervisory control of multirobot systems, the number of robots that

a human can manage effectively is between four and six [17]. A limitation of traditional

supervisory control is that the human must interact individually with each robot, which

limits the upper-bound on the number of robots that a human can control effectively. In

this work, I define the concept of “organizational control” together with an autonomous

mechanism that can perform task allocation and other low-level housekeeping duties, which

significantly reduces the need for the human to interact with individual robots.

Humans are very versatile and robust in the types of tasks they can accomplish. However,

failures in computing systems are common and thus redundancies are included to mitigate

the chance of failure. When all redundancies have failed, system failure will occur and the

computing system will be unable to accomplish its tasks. One way to further reduce the

chance of a system failure is to integrate humans as peer “agents” in the computing system.

As part of the system, humans can be assigned tasks that would have been impossible to

complete due to failures.
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Chapter 1

Introduction

As computing systems become more advanced, more is being expected out of them. Some

of these expectations are (1) to perform complex tasks autonomously, (2) to be able to

adapt to failures, and (3) to have closer integration with humans. Human integration with

computing systems plays a part in achieving better autonomy and adaptation to failures. In

this dissertation, human integration means two things: (1) humans have more control over

computing systems and (2) humans are included as part of the decision-making process of

a computing system.

Autonomy. Autonomy and adaptation to failure usually goes hand-in-hand. More

autonomy in computing systems means more free time for the human operators; some of

this free time can be used to manage multiple systems. In the field of Human-Computer

Interaction (HCI), research is being done on interfaces that allow humans to efficiently

interact with multiple systems simultaneously. Similarly, research in the field of Human-

Robot Interaction (HRI) is borrowing ideas and concepts from HCI as the lines between

robots and computing systems continue to blur. Robots are useful machines that allow

tasks to be performed in places that would otherwise be too dangerous, difficult, or costly

for humans. For example, (1) in urban search and rescue, robots can navigate in areas that
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are too small for humans; (2) in hazardous waste cleanup, robots are more resilient when

dealing with hazardous waste; and (3) in planetary exploration such as the ongoing Mars

missions, robots require significantly less resources to explore the planet than do humans.

In the early days of HRI, a single robot required multiple humans operators to control it.

However, as technology continues to improve, the situation is starting to be reversed. There

is a greater emphasis on one human operator controlling multiple robots due to reasons such

as reducing cost [17].

In practical terms, autonomy is usually augmented by human supervision. Even for

fully autonomous robots, human intervention is occasionally required to ensure continued

operation. For example, the iRobot Roomba R© Vacuuming Robot1 is fully autonomous.

Once turned on, the Roomba will start to perform its intended purpose such as vacuuming

the floor while avoiding obstacles and recharging itself when necessary. However, there are

times when the Roomba requires external help to continue. So, imagine a scenario where

a cleaning crew is comprised of 20 Roombas and one human supervisor. The Roombas are

deployed to vacuum rooms that are spread across multiple floors. It is inefficient for the

human supervisor if each Roomba has to be checked periodically to ensure that it is still

working correctly. It would be more effective if the Roombas would attempt to correct the

situation by themselves first and then request assistance from the human supervisor via an

HRI when they are unable to rectify the situation. Then the human supervisor could try to

correct the situation remotely and, if failing to do so, proceed to the Roombas’ locations to

correct the situation manually. Thus, as the trend towards one human controlling multiple

robots continues, there will be an increasing demand for more efficient and effective ways

to interact with multiple robots.

In HRI, Conway, Voltz, and Walker [16] define five categories of interaction: teleoperation,

shared control, traded control, supervisory control, and learning control. In addition, Tsuji

1Further information can be obtained from http://store.irobot.com/
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and Tanaka [99] add impedance control as the sixth type of interaction. Teleoperation

means that a human operator assumes direct-control of a robot. Shared control means that

a human operator controls a robot through high-level instructions such as “go here” and

“pick up this object”. Traded control is similar to shared control except that the human

operator and the robot are in the same vicinity. Traditionally, supervisory control means

that a human operator controls a robot through tasks. Tasks such as “search this area for

explosives” require that robots to reason over them. Learning control means that a human

operator controls a robot as if it was another human because the robot possesses an artificial

intelligence that is comparable to human intelligence. Impedance control refers to robots

that function as an extension to human actions such as a prosthetic limb or an exoskeleton.

Crandall et al. [18] propose that the interaction schemes from the six categories can be

measured using neglect time and interaction time. Neglect time is “the expected amount of

time a robot can be ignored before its performance drops below a threshold” and interaction

time is “the expected amount of time that a human must interact with a robot to bring

it to peak performance”. With respect to controlling multiple robots, this measurement

system implies that there is an upper bound to the number of robots that a single human

can control. Even traditional supervisory control (as defined by Conway, Voltz, and Walker

[16]), which has high neglect time and low interaction time, has an upper bound on the

number of robots that a single human can control because the human is still interacting

with each robot individually. A user study by Crandall and Cummings [17] suggests that

the highest performance is somewhere between four and six robots. Figure 1.1a illustrates a

single human operator controlling a single robot while Figure 1.1b illustrates the division of

the human’s attention between multiple robots. In Figure 1.1a, the interface loop is where

the human interacts to control and receive information from the robot. And at the bottom,

the autonomy loop is where the robot controls the actuators to interact with the world and

uses the sensors to retrieve information about the world. In Figure 1.1b, there are two
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robots. While the human operator is interacting with one robot, the other robot is left

unattended (represented by the greyed-out oval in the interface loop). The human operator

has to divide his/her attention between the robots. This form of supervisory control is

sometimes referred to as sequencing style [44]. As long as the human is required to divide

his/her attention between the robots, there is going to be a limit to the number of robots a

human can control.

Interface

Autonomy

Human

World

Robot

Info Controls

ActuatorsSensors

(a) 1 Human 1 Robot

Interface

Autonomy

selection

World

Robot 1

Info Controls

ActuatorsSensors

Interface

Autonomy

World

Robot 2

Info Controls

ActuatorsSensors

Human

interacting

(b) 1 Human 2 Robots

Figure 1.1: Supervisory Control (Sequencing Style) [17]

Christoffersen and Woods [15] suggest that “the issue is not the level of autonomy or

authority, but rather the degree of coordination”. Johnson et al. [47] suggest that coactivity

instead of autonomy should be the focus in systems where robots and humans are teammates.

Coactivity is defined in three parts: (1) a group of participants is performing the same action

(i.e., joint action), (2) a compulsion from the participants toward good teamwork, and (3) the

abilities of participants allow external guidance (i.e., reciprocal action). They provide four

reasons why autonomy is the wrong focal point.

1. The more autonomous a robot is, the less the robot depends on humans. However,

the inverse happens to humans. Humans dependence on robots increases as robots

gain more autonomy because the robots are in control of certain information and the

4



decisions that occur. This problem of the human becoming more dependent on the

robot cannot be resolved with more autonomy.

2. Autonomy is not and cannot be perfect and thus will be prone to failure. Because

autonomy is susceptible to failures, humans must intervene to correct the failure.

Failures in autonomy cannot be solved with more autonomy, but can be solved with

teamwork.

3. Some human activities cannot be replaced with autonomy without disrupting how the

system works. This is because “humans cannot simply offload tasks to robots without

incurring some coordination penalty” [47].

4. The last reason is humans themselves. Systems are typically built so that humans can

benefit (in some way) from the systems. As such, humans want to understand the

system but more importantly, humans want the ability to affect the system.

Thus, in order to control an arbitrary number of robots, a more scalable type of

interaction is required. This leads to the first open question, what new form of supervisory

control can allow control over an arbitrary number of robots. Ongoing research in the field of

HRI is attempting to address the scalability limitation of the sequencing style of supervisory

control. One particularly promising approach is to eliminate the need for the human to

interact with the robots directly; there have been various attempts to increase the human-

to-robots ratio [13, 64, 65, 69]. Instead of interacting with the robots directly, the human

interacts with a system, which in turn handles the interaction with the robots. Figure 1.2

illustrates the evolving definition of supervisory control that deals with multiple robots as

a group.

A particularly popular approach to controlling a group of robots is called the playbook

style [44, 63], where the human selects a group of robots and the relevant “play” for that
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group. There are various implementations of the playbook style [44, 63, 64, 69]. My approach

bears a similarity to playbook style in that control is over groups instead of individual robots.

However, the means of control is different. In playbook style, “plays” are issued to groups.

In my approach, high-level goals are issued to groups. A “play” is designed to achieve one or

more objectives, which is equivalent to high-level goals. A “play” also typically specifies how

many players there are and how each player behaves with regards to the objectives. In this

respect, plays are more restrictive because the objectives are tightly coupled together with

the behaviors specified to meet those objectives. My approach breaks the tight coupling by

issuing high-level goals to groups while a separate mechanism decides how many members

and the behaviors to achieve those goals.

Adaptation. Rising expectations for adaptive computing systems include the ability

to automatically correct themselves in a fluid and dynamic environment (e.g., autonomic

systems [49]). Multiagent concepts [11] are well-suited for developing adaptive systems.

Russell and Norvig [79] define agents as able to perceive and act autonomously such

that their actions are based on their own experiences rather than predefined knowledge.

Multiagent Systems (MASs) exploit this behavior to self-correct; if one agent should fail,

another agent can take over.

One approach in multiagent research is to leverage organizational concepts such as
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agents, roles, and goals found in organizational models to produce Organization-based

Multiagent System (OMAS). Some examples of such organizational models are Organization

Model for Adaptive Computational Systems (OMACS) [26], Organizational Model for

Normative Institutions (OMNI) [31], Organizations per Agents (OperA) [30], and HarmonIA

[104]. By leveraging these organizational models, a general approach to adaptivity can be

achieved through task allocations. Task allocations can be handled in a general manner

because these models capture the necessary information to reallocate a task should an agent

fail. Various research teams have applied organizational concepts in robotics, particularly

in multirobot systems [9, 37, 41, 71, 89, 92, 95].

Another way of increasing a system’s ability to adapt is by including humans as part of

the system. Traditionally, humans have been considered as users of a computing system;

humans are not typically considered as a factor during a system’s decision making process.

As computing systems continue to grow, the environments in which these systems operate

sometimes involve humans. By including humans as a factor in these systems’ decision

making process, such systems are able to increase their adaptivity; tasks that can not be

completed by the system due to failures can be allocated to humans for completion. There

are two aspects involved when attempting to include humans as part of a system. First,

designers must consider an interface to allow humans to interact with the system and vice

versa. However, the actual requirements for such interfaces is beyond the scope of this

dissertation. Second, an appropriate internal structure for a system to support humans so

that the system can reason about humans and their abilities to complete tasks must be

developed. This aspect significantly increases the complexity of such systems. One way to

mitigate the increase in complexity is to represent humans in a general manner such that

systems can reason over humans in an abstract way. Fortunately, organization-based models

are well-suited to facilitate integration of humans because these models already provide a

basic framework for representing humans; humans can be considered as agents. This leads
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to the second open question: what type of information about the humans should be captured

that can lead to better allocation of tasks.

1.1 Open Issues

Two open questions are identified above.

1. What new form of supervisory control can allow a human to control an arbitrary

number of robots.

2. What type of information about humans should be captured that can lead to better

allocation of tasks.

These two questions also show two different views to integrating humans with computing

systems: (1) integration through human control over computing systems and (2) integration

through inclusion of humans as part of a computing system’s decision making process.

Firstly, facilitating better human control over an arbitrary number of robots requires

an abstraction to capture and represent the robots as a group. In other words, the human

needs to interact with a group and not individual robots. Figure 1.2 illustrates the idea of

extending traditional supervisory control such that interactions are with a group of robots.

The idea behind this new form of supervisory control is that since the human does not

directly interact with the individual robots but rather a group of robots, the number of

robots within that group should no longer be a limitation. Thus, a human should be able

to control an arbitrary number of robots. Although supervisory control facilitates control

over an arbitrary number of robots, there are still a number of challenges to overcome.

1. Investigate the types of failures that can occur. These failures are usually failures

of individual robots that causes the group (in the current configuration) to fail in

completing a task.
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2. Define a mechanism to allow a group to autonomously change the group configuration

so that the group can continue in completing the task without requiring human

intervention.

3. Define a mechanism where a human can attempt to resolve the problem when/if the

group fails to reorganize successfully.

4. Investigate the types of interactions that can occur between a human and a group.

Second, the types of information about humans that are relevant to task allocation need

to be investigated. One type of information that is relevant for task allocation is human

performance factors2. In the book by Wickens et al. [109], they examined and explained a

large variety of human performance factors that are relevant to designing systems for human

interaction. For instance, they explain the various human performance factors that affect

the ability of a human to drive at night. The following are some of the human performance

factors that impact the ability of a human to drive at night: the eyesight of the driver,

the fatigue level of the driver, the reaction time of the driver, the color of objects, the

luminosity of objects, the current weather conditions, the ambient lighting, and the speed

of the car. For example, suppose there is one last task to deliver a package, it is snowing

heavily, and there are two drivers available. Driver A has been driving for the past eight

hours and is fatigued but driver B has only been driving for four hours and is less fatigued

than driver A. Thus, it would be better to pick driver B who is less fatigued for the task.

These human performance factors are not exclusive to any particular task and they can

be classified into three categories: human-specific, task-specific, and environment-specific.

There are a number of challenges to overcome in order to use human performance factors.

2The term “human factors” has multiple meanings. In order to distinguish between them, the term
“human performance factors” refers to a specific definition where human factors are factors that affect the
performance of an individual.
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1. Define a means of capturing human performance factors so that they can be used by

task allocation algorithms.

2. Define an appropriate mechanism so that a large number of human performance factors

can be used at runtime for computing task allocations.

1.2 Approach

In the previous section, two general issues related to human integration with computing

systems are highlighted: (1) how can a human interact with or control a group (organization)

and (2) how to include and use information about humans as part of a system.

In my research, I have defined and developed a mechanism that allows humans to exercise

supervisory control over a group of autonomous entities that are participating as part of

an organization. The mechanism includes a definition of organization control (which is

supervisory control over an organization) and a set of interactions that can occur when a

human interacts with an organization. In order to eliminate or significantly reduce the need

for the human to have direct interactions with the robots, I have developed a mechanism

that interacts with the human. This mechanism converts the interactions with the human

into individual interactions with the robots. In order words, the mechanism handles the

individual interactions with the robots for the human. Furthermore, I have implemented a

few of these interactions and will be evaluating them.

Next, Performance Moderator Functions (PMFs) [84] can be used to capture human

performance factors, particularly Human Performance Moderator Functions (HPMFs) can

be used to capture human-specific human performance factors. PMFs are a well-known

and accepted approach to capturing human performance factors. In general, there are an

enormous number of human performance factors [109]. Thus, when designing computing

systems that include humans as part of the system (i.e., humans are considered as peers),
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there can be a significant increase to the amount of information to be handled and the

complexity of these systems can be overwhelming [81]. There is a need to discover an

appropriate mechanism such that the complexity of systems that includes humans are not

overwhelming. The complexities of including PMFs/HPMFs can be managed by leveraging

Model Driven Engineering (MDE) [81]. By following the MDE approach, a runtime model

(commonly referred to as models@run.time [7]) can be developed. This runtime model allows

development of an adaptive mechanism that can autonomously perform task allocations.

Furthermore, in the field of autonomous task allocation for multirobot systems, Parker

[72] identified three paradigms for tackling the problem of task allocation. Two of the

paradigms (the role-based organizational paradigm and the knowledge-based paradigm)

tackle the problem of task allocations for heterogeneous robots in different ways. I followed

the approach of OMACS, which combines both paradigms. However, the problem of task

allocation is NP-hard [42], and thus, it is not realistic to expect optimal task allocations

during runtime as general optimal task allocation algorithms would take too much time. In

practical terms, greedy-based task allocation algorithms are often “good enough”. Thus, the

approach does not assume optimal task allocations from the algorithms but instead provides

a mechanism to allow a human to modify the task allocations and uses element from both

the role-based organizational and the knowledge-based paradigms.

This leads to the thesis statement, which is two-fold.

1.2.1 Thesis Statement

1. I will show that organization control coupled with an autonomous mechanism that has

the ability to perform task allocations can significantly reduce the need for a human

supervisor to interact with the individual robots.

2. In MASs that include humans as peers, I will show that task allocation algorithms that
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are informed by HPMFs can lead to better results than uninformed task allocation

algorithms.

1.3 Contributions

The following is a list of the contributions of my research.

• The definition of organization control and a set of interactions that can be used to

implement organization control.

• The definition of an architecture that facilitates organization control. The architecture

implements a mechanism that autonomously manages a group of robots and allows

a human supervisor to exercise supervisory control over the organization through

interactions with the organization instead of the individual robots.

• The implementation and demonstrations of several organization control interactions.

• The definition of a runtime model that captures HPMFs so that autonomous

mechanisms can reason about humans with respect to their ability to perform tasks.

• The implementation and demonstrations of a runtime model that can lead to better

task allocations for systems comprised entirely of humans or a mix of humans and

robots in bulk and incremental task allocations.

1.4 Overview

The rest of this dissertation is organized as follows. Chapter 2 describes a scenario that

functions as the motivating example for the work in this dissertation. Chapter 3 highlights

the foundational work on which this dissertation is based. Chapter 4 describes the runtime

model. Chapter 5 defines organization control, the architecture that facilitates organization
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control, and demonstrations of several organization control interactions. Chapter 6 discusses

research that is similar to the work in this dissertation. And Chapter 7 concludes by

summarizing the work and contributions of this dissertation and highlighting some future

work.
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Chapter 2

Motivating Example

This chapter describes a scenario that serves as a motivating example for the work in my

research. Section 2.1 describes the scenario and Section 2.2 follows through the scenario

with an example script.

2.1 Scenario

An earthquake of magnitude 9.1 struck Research Lab A, which is a six-story building with

four more levels underground. Research Lab A conducts research in various fields, some

of which involves hazardous materials. Some parts of the building collapsed from the

quake, resulting in large piles of rubble. Some parts of the building that are still intact

are structurally fragile and could collapse anytime and cause further damage. The status

of the underground levels are unknown but is assumed to be just as bad. An emergency

response team (Human Responders and Survey Robots) is dispatched to the scene. The

emergency response team is lead by a commander and is comprised of three groups that

perform one of the following three functions: (1) survey, (2) hazard identification, and

(3) victim rescue. The survey, hazard identification, and victim rescue groups consist of
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multiple teams. A team contains one human and one robot. The robots are built for exactly

one of the three functions of the emergency response team and they are not interchangeable

across groups. The humans, however, could have cross training in the three functions and

can be interchangeable.

All robots from the emergency response team are equipped with the following capabil-

ities: (1) wireless communications; (2) GPS (for outdoor use), which has an accuracy up

to 10 cm; (3) gyroscope (for indoor use), which can be used to infer positioning when GPS

data is unavailable such as inside a building; (4) track-based wheels; and (5) navigation

algorithms.

All human members are given an Android1 device. The Android device is the primary

means of interaction with the robots, the emergency response team system, and other human

members. The following are actions taken through the Android device: (1) verbal and

visual communications with other human members (either in one-to-one mode or conference

mode), (2) looking up the state of their robot partner, (3) correcting inconsistencies in their

robot partner, (4) receiving notifications from their robot partner, and (5) receiving new

instructions and/or objectives from the emergency response team commander.

For the purpose of completeness, Appendix B provides further details on the emergency

response team. The next section describes an example situation for the emergency response

team.

2.2 Example Script

This section describes an example script to illustrate the situations and cases that I address

in this dissertation, as well as serving as a central example for explaining concepts and

ideas throughout this dissertation. In the example script, there are three robots in the

1Further information about Android is available at http://www.android.com/
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survey group, two robots in the hazard identification group, and one robot in the victim

rescue group. There are three human members (excluding the commander) in the emergency

response team. The human members are John, Rob, and Stan. They have different ranks

(which is equivalent to experience) and have gone through different training regimes (which

is equivalent to skill sets).

John has just finish basic training and promoted to the rank of Emergency Response

Officer (ERO), which is the basic starting rank in the emergency response team. Rob has

the rank of Sergeant, which is the next rank up from ERO. In addition to basic training,

Rob has also completed the Biological Agents Module (BAM) training. Lieutenant Stan has

also completed BAM training. Unfortunately, none of them has gone through the Structural

Hazards Awareness Module (SHAM) training. Table 2.1 shows the tabular form of the three

human members with their rank and training.

Rank Training
John ERO Basic
Rob Sergeant Basic, BAM
Stan Lieutenant Basic, BAM

Table 2.1: Agent, Rank, and Training

There are fours areas (A1, A2, A3, A4) that need to be surveyed. The area A1 is the area

around the part of the building that collapsed. There is rubble but nothing else dangerous

so that anyone with basic training can survey A1. The area A2 is the ground floor entrance

of the building, which is at the part of the building that is still intact but structurally

fragile and could collapse anytime. So, to avoid further casualties, surveying A2 would

require someone who has experience (e.g., at least a Sergeant rank) and someone who has

been through SHAM training. The area A3 is the parking garage located in the first floor

basement. The parking garage was built with sturdy materials and is moderately safe for

surveying. In fact, surveying A3 would provide crucial SHAM experience such that someone

surveying A3 would acquire a field training that is equivalent to SHAM training. Because
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A3 provides an invaluable training experience, it is preferable that someone with experience

(e.g., at least Sergeant rank) be selected to survey A3. The area A4 is where the biological

labs are located. The structural integrity of the building in A4 is weak but still standing.

However, the sensors that are still functioning indicate biological contamination. So, there

is a high chance of biological contamination. Therefore, the team going to A4 will be both

surveying and analyzing A4 for biological contamination.

The above description results in five tasks: survey A1, survey A2, survey A3, survey A4,

and hazards identification A4. Table 2.2 shows the requirements and gains of performing

the task in terms of rank and training.

Rank Training
Requires Requires Gains

Survey A1 Any Basic –
Survey A2 At least Lieutenant Basic, SHAM –
Survey A3 At least Sergeant Basic SHAM
Survey A4 Any Basic –

Hazards ID A4 Any BAM –

Table 2.2: Task Requirements

Based on the requirements of the tasks and the human members available, there are a

number of possible initial assignments for the human members. Table 2.3 shows the possible

initial assignments for the three human members of the emergency response team. At first,

no human member can be assigned to survey A2 because the task requires someone who

has the necessary SHAM skills.

Possible Assignments
John Survey A1, A4
Rob Survey A1, A3, A4, Hazards ID A4
Stan Survey A1, A3, A4, Hazards ID A4

Table 2.3: Possible Assignments

However, not all the possible assignments are viable for the long term goal. For instance,

if Rob is assigned to survey A3, he would gain the equivalent SHAM skill upon completing
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that task; but then there are no human members who can be assigned to survey A2.

Therefore, the commander should pick Stan instead of Rob for the task of surveying A3.

Suppose that John is given the task of surveying A1 and is paired with a robot partner

named Surveyor 1. At the start, John discusses with Surveyor 1 about how to get to A1.

Since this is John’s first deployment and Surveyor 1 has experience, John decides to let

Surveyor 1 lead the way to A1. John notices on the Android device that his map has been

updated to show the path that Surveyor 1 will take to reach A1. As John follows Surveyor

1 to A1, he also notices that his map is being updated by Surveyor 1 to indicate paths and

obstructions. Halfway through the path, John sees a quicker path to A1. John informs

Surveyor 1 of this preferred path using his Android device. Surveyor 1 corrects itself and

navigates the updated path to A1.

Upon reaching A1, Surveyor 1 begins its systematic search of A1 and John begins to

visually survey the area and updates his map on the Android device. As John is updating his

map, he receives a request from Surveyor 1 to look at subarea A1a, where Surveyor 1 could

not search. John proceeds to A1a and searches A1a. As John nears completion of searching

A1a, Surveyor 1 finds a survivor. Surveyor 1 notices that John is busy searching A1a but

is nearly done, so Surveyor 1 decides to wait until John completes his search. When John

finishes his search, Surveyor 1 informs John of the survivor. John proceeds immediately to

the survivor’s location.

Once John arrives at the survivor’s location, Surveyor 1 resumes its search. John

determines that the survivor is mobile and decides to escort the survivor back to base.

The commander notices that John is escorting the survivor back and assigns Rob to replace

John. Rob heads to A1, following the path taken earlier as indicated on his map. As Rob is

making his way to join Surveyor 1, Surveyor 1 discovers an unconscious survivor. Surveyor

1 informs the commander of an unconscious survivor. The commander dispatches Stan and

the Stretcher 1 to the location. Surveyor 1 notices that John is no longer available and
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that Rob is on his way. Surveyor 1 stays with the survivor until Rob arrives on the scene.

When Rob arrives at A1, he receives a notification from Surveyor 1 that an unconscious

survivor is found. Rob proceeds immediately to the survivor’s location. When Rob reaches

the location, Surveyor 1 resumes its search. Rob realizes that a victim rescue team is already

on the way and waits for the team to arrive.

Stan and Stretcher 1 arrive at the unconscious survivor’s location. Stretcher 1 prepares

itself to take the survivor on the stretcher. Stan and Rob prepare the survivor to be

moved onto the stretcher. While the survivor is being prepared to be evacuated, Surveyor

1 completes its search and informs Rob. Surveyor 1 realizes that Rob is busy preparing the

survivor for evacuation and decides to join up with Rob. When Surveyor 1 reaches Rob’s

location, it enters standby mode to conserve power until Rob is ready. When the survivor is

secured to the stretcher, Stan and Stretcher 1 proceed back to base. Rob wakes up Surveyor

1 and the team proceeds back to base.

2.3 Highlights

The example script (Section 2.2) highlights situations where controls (either by the

commander or the human partner) and the interactions involved. The following is a list

of controls and interactions. Only the first three are addressed in my research.

• In the example script, the commander makes the decision on who to assign to tasks.

This decision can also be made autonomously by a task allocation algorithm. In my

research, I show how such task allocations can be done autonomously.

• The commander, who has supervisory control over the system, is able to change

parameters of the system should the need arise such as replacing John with Rob

when Rob is escorting a survivor back. In my research, I will show how a human
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supervisor can exercise this type of control and also how this type of control can also

be done autonomously.

• In the example script, the parameters of a robot can be modified by a human such

as modifying the robot’s navigation path. In my research, I show how this type of

control can be done.

• In the example script, the robot modifies its behavior such as waiting for John to finish

searching before informing John of a survivor.

2.4 Summary

This chapter describes a scenario that serves as the motivation for the work in my research.

The example script highlights some of interactions and control that are enabled by the

work in this dissertation. In addition, the example (Section 2.2) also serves to help explain

concepts and ideas in later parts of this dissertation. The next chapter (Chapter 3) covers

the necessary background information that forms the basis for the work in this dissertation.
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Chapter 3

Background

This chapter highlights key background areas required to understand the work in my

research. Section 3.1 describes the OMACS model. OMACS is the basis for the Chazm

Model (CzM) (which is presented in Chapter 4). Section 3.2 describe the Goal Model for

Dynamic Systems (GMoDS) model. GMoDS is the goal model that I am extending to allow

goal modifications (Section 5.3.2). Section 3.3 describes the Organization-based Multiagent

System Engineering (O-MaSE) methodology that I used in building the system described in

Section 5.2.1. Section 3.4 describes human factors and highlights the mathematical concepts

to explain and capture human factors. Section 3.5 describes the various aspects of HRIs.

3.1 Organization Model for Adaptive Computational

Systems (OMACS)

This section describes OMACS [26]. OMACS forms the foundation on which the CzM

model is built. OMACS is a model that captures the knowledge required to allow a team

of autonomous agents to adapt to failures or changing goals. As shown in Figure 3.1,

an OMACS organization consists of goals, roles, agents, and capabilities. Goals are high-
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level descriptions of what the system is supposed to accomplish [78]. Roles are high-level

specifications on how to achieve specific goals. Agents are autonomous entities that can

perceive and act within their environment [78]. Capabilities represent the notion of an

agent’s ability to perceive and act on its environment.

Figure 3.1: OMACS Model

These entities are related to one another via a set of functions: achieves, requires,

possesses, capable, and potential. The achieves function defines the effectiveness [0.0, 1.0] of

a role in achieving a goal, where 0.0 means that the role is unable to achieve the goal. The

requires function defines the capabilities that a role needs in order for agents to carry out

the role’s behavior. The possesses function defines the effectiveness [0.0, 1.0] of an agent’s

capabilities, where 0.0 means that the capability is broken or non-existent. The capable

function specifies how well [0.0, 1.0] an agent can perform a role, where 0.0 means that the

agent is unable to perform the role. The potential function defines how well [0.0, 1.0] an

agent can perform a role to achieve a goal, where 0.0 means that the agent is unable to

perform the role to achieve the goal.

There is a user definable function called the rcf function. The rcf function computes

a score [0.0, 1.0] that indicates how well an agent (with its current capabilities) is able to

perform a role. The rcf function is user definable because it is not possible to represent all

ways of computing a score through one general function. An example of the rcf function
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is shown in Equation 3.1, which uses the requires and possesses functions. The example

rcf function ensures that a given agent possesses the required capabilities of a given role.

Because the rcf function is user definable, a custom rcf function can specify a minimum

competency level for the capabilities that agents must have in order to be considered eligible

for performing the role. In OMACS, because of the way the rcf function is defined, the

capable function is the same as the rcf function: rcf(a, r) = capable(a, r). The potential

function combines the score from the rcf function with the score from the achieves function:

potential(a, r, g) = rcf(a, r)× achieves(r, g).

rcf(a, r) = |{c|(r,c)∈requires}|

√ ∏
c∈{c|(r,c)∈requires}

possesses(a, c) (3.1)

OMACS-based systems use the potential function to autonomously make assignments1.

An assignment is a tuple consisting of one goal, one role, and one agent. As the capabilities

of agents change throughout the course of a system’s execution, these changes are reflected

through the possesses function, which then is also reflected by the rcf function, and finally

by the potential function. Should an agent reach a point where it is no longer capable of

performing a role, the rcf function would return a score of 0.0. This would, in turn, cause

the potential function to return a score of 0.0, and if that agent is still assigned to perform

the associated role to achieve the associated goal, a reorganization must occur at this point

to replace the failed agent. In this manner, an OMACS-based system adapts to failures.

3.2 Goal Model for Dynamic Systems (GMoDS)

This section describes the formalization behind GMoDS [25, 66]. In this dissertation,

GMoDS is extended to allow goal modifications to occur. The extension reuses existing

definitions from the GMoDS and so, those definitions will be reiterated again. In OMACS,

1Making assignments is synonymous with task allocation.

23



the set of goals simply represents the current goals that the organization is actively pursuing.

A sophisticated model is required to represent a more complex set of requirements such as

alternative goals, goal sequencing, and situational goals.

In GMoDS, a system’s requirements is captured as a single goal tree. The top-

level or overall goal is decomposed into subgoals that follows the classic AND/OR goal

decomposition [100]. If all subgoals must be achieved to achieve the parent goal, then the

parent goal is an AND-goal. Conversely, a goal is an OR-goal if that goal is achieved when

any of its subgoals are achieved. At the lowest level of the goal tree are the leaf goals (goals

without subgoals), which are goals that are used by OMACS-based systems for making

assignments.

GMoDS consists of two parts: (1) a specification model that captures the generic

requirements of a system and (2) an instance model that tracks the progression of a system

towards achieving the overall goal. The classic AND/OR goal tree provides the ability to

track progression in achieving a system’s overall goal. In addition to the classic AND/OR

goal tree, the GMoDS provides two additional features. First, GMoDS provides the ability

to systematically track incremental progress towards achieving the system’s overall goal

(i.e., a sequential ordering for achieving goals) through the precedes relation. For instance,

if goal A precedes goal B, then goal A must be completed first before goal B can be

attempted. Second, GMoDS provides the ability to dynamically adapt to variations in

system parameters (capturing events that cause the creation of new goals or removal of

existing goals) through the triggers relation. For instance, if goal A triggers goal B on

event E, then while in the pursuit of goal A, goal B is created every time event E occurs.

3.2.1 Specification Model

The specification model is where the precedes and triggers relations are specified. Starting

with the definition of a goal in the specification model. A goal in the specification model is
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known as a specification goal.

Definition 3.1. A specification goal is a goal type. For example, the survey A1, survey

A2, survey A3, and survey A4 goals (from Chapter 2) are from the same goal type: survey.

Thus, GS is the set of all specification goals.

Because all specification goals are captured in a tree-like structure, there are four

functions that describe the relationships among specification goals in that tree-like structure.

The first function is the parent function that returns the parent specification goal. In the

GMoDS, all specification goals except the overall specification goal has exactly one parent.

Function 3.1. parent : GS 7→ GS. Given two specification goals, g1 and g2, if g1 is a subgoal

of g2 then parent (g1) = g2, which means that g2 is a parent of g1.

The ancestor function expands on the parent function. The ancestor function is the

transitive closure of parent (g)+, where g ∈ GS. The ancestor function returns a set of

specification goals that are the ancestors of the given specification goal.

Function 3.2. ancestor : GS 7→ P (GS). The ancestor function is defined recursively as

ancestor (g) =
⋃
g′∈parent(g) ancestor (g′), where g ∈ GS.

The next function is the children function that returns the subgoals of a given

specification goal.

Function 3.3. children : GS 7→ P (GS). Given three specification goals, g1, g2, and g3, if g2

and g3 are subgoals of g1 then children (g1) = {g2, g3}, which means that g2 and g3 are the

children of g1.

Similar to the ancestor function, the descendant function expands on the children

function. The descendant function is the transitive closure of children (g)+, where g ∈ GS.

Function 3.4. descendant : GS 7→ P (GS). The descendant function is defined recursively

as descendant (g) =
⋃
g′∈children(g) descendant (g′), where g ∈ GS.
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The next definition is the triggers relation.

Definition 3.2. A trigger is a tuple of 〈E,GS, GS〉. Given an event e and the specification

goals g1 and g2, a trigger (e, g1, g2) means that g1 can trigger g2 if event e occurs. Thus, T

is the set of all triggers.

3.2.2 Instance Model

The following are definitions of the instance model. First, the definition of a goal in the

instance model. A goal in the instance model is known as an instance goal.

Definition 3.3. An instance goal is an instance of a specification goal. For example, the

survey A1, survey A2, survey A3, and survey A4 goals (from Chapter 2) are instance goals.

Thus, GI is the set of all instance goals.

Because all instance goals are associated with a specification goal, the spec function

defines the relations between instance goals and specification goals.

Function 3.5. spec : GI 7→ GS. For example, the survey A1 goal (from Chapter 2) comes

from the specification goal survey. Thus, spec (survey A1) = survey.

Similar to the specification model, all goals in the instance model are stored in a tree-like

structure. The next four functions describe the relationships among instance goals.

Function 3.6. parent : GI 7→ GI. Given two instance goals, g1 and g2, if g1 is a subgoal of

g2 then parent (g1) = g2, which means that g2 is a parent of g1.

The ancestor function expands on the parent function. The ancestor function is the

transitive closure of parent (g)+, where g ∈ GI. The ancestor function returns a set of

instance goals that are the ancestors of the given instance goal.

Function 3.7. ancestor : GI 7→ P (GI). The ancestor function is defined recursively as

ancestor (g) =
⋃
g′∈parent(g) ancestor (g′), where g ∈ GI.

26



The next function is the children function that returns the subgoals of a given instance

goal.

Function 3.8. children : GI 7→ P (GI). Given three instance goals, g1, g2, and g3, if g2

and g3 are subgoals of g1 then children (g1) = {g2, g3}, which means that g2 and g3 are the

children of g1.

Similar to the ancestor function, the descendant function expands on the children

function. The descendant function is the transitive closure of children (g)+, where g ∈ GI.

Function 3.9. descendant : GI 7→ P (GI). The descendant function is defined recursively

as descendant (g) =
⋃
g′∈children(g) descendant (g′), where g ∈ GI.

For further details on the GMoDS, look at thesis [66] or the journal paper [25].

3.3 Organization-based Multiagent System Engineer-

ing (O-MaSE)

This section describes the O-MaSE [24, 40] methodology framework, which I used to build

the system described in Chapter 5. The O-MaSE methodology is an organization-based

agent-oriented design process that expands on existing MAS methodologies, particularly

from an earlier work Multiagent Systems Engineering (MaSE) [28]. Furthermore, the

O-MaSE methodology provides the necessary key concepts to designing and implementing

MASs and allows designers to define an OMACS-compliant development process. The

O-MaSE methodology is based on the SPEM 2.0 [45] and the O-MaSE meta-models.

Figure 3.2 illustrates the O-MaSE methodology framework, where the meta-model, the

fragments, and the process construction guidelines are the main components of the O-MaSE

methodology framework. In addition, the O-MaSE methodology is supported by agentTool
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III (aT3) [38, 39]. A process engineer starts by selecting the necessary fragments and then

creates the associated processes while keeping to the defined guidelines. Each fragment is

an instance of an element from the SPEM meta-model, which is defined in terms of the

O-MaSE meta-model.

defined over instance of

inputs

specify

process

constrain

process

produces

SPEM 

Metamodel

O-MaSE 

Fragments

O-MaSE Process 

Construction Guidelines

Process

Engineer

O-MaSE Process 

Instance

O-MaSE Process 

Instance

O-MaSE Process 

Instance

O-MaSE 

Metamodel

Figure 3.2: O-MaSE Methodology Framework [24]

The O-MaSE meta-model is derived from the OMACS model and includes additional

concepts and relationships to define MASs. Figure 3.3 shows the O-MaSE meta-model (

shaded rectangles are elements that correspond to elements from OMACS). An organization

(in O-MaSE) consists of six entities: goals, roles, agents, a domain model, and policies. Goals,

roles, and agents share the same definitions from OMACS. The domain model captures the

necessary information about the environment in which the agents will operate. Policies

constrain an organization by limiting how the organization behaves in certain situations.

In order for agents to operate within an environment, agents possesses a set of capabilities.

Capabilities can be defined as (1) a composition of multiple capabilities, (2) a set of actions

that the capability can carry out, and (3) a set of plans that defines a sequence of actions

to use.

To capture the notion of a hierarchy in organizations, the O-MaSE meta-model defines

the organizational agents. Organizational agents are organizations that acts as agent within

28



Figure 3.3: O-MaSE Meta-Model [24]

another organization. Just like agents, organizational agents possesses capabilities and are

capable of playing roles.

In order for communications to occur, the O-MaSE meta-model define protocols for

communications among roles and also for communications between external entities (defined

as actors) and the organization. Thus, there are two types of protocols : internal protocols

and external protocols. A protocol can be defined in terms of either a sequence of messages

or actions.

In O-MaSE, there are various types of tasks. Only a subset of the tasks are covered

here because the end result of those tasks are models that are used in Chapter 5. For more

detailed information on O-MaSE, look at the paper by DeLoach and Garćıa-Ojeda [24].

The first two tasks, Model Goals and Refine Goals, result in a goal model as the work

product. The Model Goals task transforms the system requirements into goals. A common

approach to modeling goals is the classic AND/OR goal decomposition [100]. Once the

initial goal model is done, then Refine Goals task refines the initial goal model so that

dynamic aspects of the system are captured such as a sequential order to achieving goals,

events that cause new goals to be created, and defining parameters that describe the state
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of goals. An example of a goal model after the Refine Goals task is completed is GMoDS

[66].

The tasks Model Roles and Define Roles result in a role model as the work product.

The purpose of the Model Roles task is to identify the roles, the interactions that occur

among roles, and the leaf goals that the roles can achieve. The Define Roles task defines

the capabilities that agents must have in order to play a role. In addition, the Define Roles

task also specifies the behavior for how agents play the roles.

The Model Agent Classes task results in an agent model as the work product. The

purpose of the Model Agent Classes task is to identify the types of agents that can exist

in the system. The types of agent can be defined in one of two ways. The first way is to

define the agent types in terms of the roles that the agents may play. The second way is to

define the agent types in terms of capabilities that the agents have, which corresponds to

the required capabilities defined for roles.

The Model Capabilities task results in a capability model as the work product. The

purpose of the Model Capabilities task is to define the capabilities of agents in terms of

either actions or plans.

For further information on the other aspects of O-MaSE, look at the paper by DeLoach

and Garćıa-Ojeda [24].

3.4 Performance Moderator Functions (PMFs)

This section explains human factors and how the study of human factors has lead to the

development of PMFs. The goal of human factors (as defined by Wickens et al. [109]) is

to facilitate better human interaction with systems so that (1) performance is enhanced,

(2) safety is increased, and (3) user satisfaction is increased. The study of human factors

is multidisciplinary as it encompasses (1) understanding of the human mind and how the
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human brain processes information, (2) understanding the physical aspects of the human

body, and (3) understanding how the human brain and body work with systems. The study

of human factors is also known as human factors sciences. Furthermore, human factors

engineering is the application of the knowledge gained from the study of human factors. In

their book, Wickens et al. [109] explore a number of design principles and methodologies to

designing better systems.

For example, the current design of road signs is a result extensive study and experimen-

tation of human factors. There are various aspects (such as shape, color, and manufacturing

materials) to designing a good road sign. One of the human factors included in the study

is the human eye. A human eye can perceive light in the wavelength ranging from 400

nanometers (i.e., the color violet) to 700 nanometers (i.e., the color red). However, the

human eye often perceive multiple light sources at the same time. A light source can be

characterized by hue, saturation, and brightness. Hue is typically defined in terms of the

three primary colors: red, blue, and green. Saturation is whether a light source is diluted

(unsaturated) or undiluted (saturated) by another color such as gray. Brightness is the

intensity of the light source. For instance, for a human to see a road sign at night, the

formula R = L/I [109] (where R is reflectance, L is luminance, and I is illuminance)

approximates the brightness the road sign. Reflectance is a percentage of how much light is

reflected. Illuminance refers to how much light the road sign is getting, which is typically

the head lights of the car. Luminance refers to how much light is reflected off the road sign.

But brightness is not all there is to designing good road signs. Another important human

factor is also contrast. Contrast helps in discerning the different types of road signs, which

can be measured as C = (L − D)/(L + D) [109], where C is contrast, L is the luminance

of the light areas, and D is the luminance of the dark areas. The ability of a human eye

to discern contrast is known as contrast sensitivity, which can be measured as S = 1/T

[109], where S is contrast sensitivity and T is the minimum amount of contrast that can be
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detected.

Human factors play an important role in the development of simulations that model

human behavioral and cognitive processes. For example, the Department of Defense (DoD)

Modeling & Simulation Coordination Office (M&S CO)2 creates realistic and complex virtual

worlds for training soldiers. These virtual worlds are populated with virtual combatants

that are highly realistic. Human factors play a part in guiding the behaviors of these virtual

combatants. However, the literature in human factors is vast and extracting these factors

into a form that is suitable for implementation often require expertise in the associated field.

That is where research in PMFs bridges the gap between the literature and implementation.

PMFs are the quantified form of human factors. Developers can use PMFs in their

implementations without requiring expertise in the associated fields.

PMFs [84, 85] indicate the impact of internal and external human factors on human

performance. Examples of internal human factors are fatigue level, reaction time, and

mental acuity. Examples of external human factors are noise level, lighting, and task time.

In addition, PMFs are able to capture impact of personality on performance such as emotion,

cultural background, and biases. Furthermore, PMFs quantify performance differences

between two humans such as intelligence, skill, and motivation. In other words, PMFs

capture the relationship between performance moderators and the level of performance in

the form of dose-response (or exposure-response). As the dose (or exposure) increases or

decreases, PMFs indicate the change in the level of performance.

An example of a PMF is shown in Equation 3.2 [84] for computing how people make

decisions given two risky prospects, where x represents the gain for the first prospect with

probability p and y represents the gain for the second prospect with probability q.

2More information can be obtained from the website http://www.msco.mil/.

32

http://www.msco.mil/


V (x, p; y, q) =


π(p)v(x) + π(q)v(y) if (p+ q < 1) ∨ (x ≥ 0 ≥ y) ∨ (x ≤ 0 ≤ y)

v(y) + π(p)[v(x)− v(y)] if (p+ q = 1) ∧ ((x > y > 0) ∨ (x < y < 0))

(3.2)

For instance, the first prospect could be winning a small amount of money (x) with a

high probability (p) and the second prospect could be winning a large amount of money (y)

with a low probability (q).

3.5 Human-Robot Interaction (HRI)

This section describes four key aspects to HRI. These aspects are not independent of each

other.

1. The human should be able to perceive the environment in which the robot is operating

(also known as situation awareness [35]).

2. The human should be able to convey their intentions to the robot, preferably in a

natural way so as to reduce the mental workload [69] on the human.

3. The robot should be able to comprehend the intentions of the human (e.g., perspective

taking [97] is one such approach).

4. The robot should be able to provide humans with useful information and not just data

[15].

First, the roles that humans play when they are interacting with robots are described

in Section 3.5.1. The roles that humans adopt is a contributing factor to the types of

interactions that occur between humans and robots. Next, the various interaction schemes
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are described in Section 3.5.2. And finally, the various levels of automation of robots are

described in Section 3.5.3.

3.5.1 Human Roles

When humans interact with robots, there are a number of roles that humans can play.

Scholtz [82] defined five types of roles: supervisor, operator, mechanics, peer, and bystander.

Furthermore, Scholtz, Antonishek, and Young [83] suggest that when humans are playing

these roles, they are not played in a mutually exclusive manner. Sometimes, when a human

is playing the role of a supervisor, he/she may also play the role of an operator. Each of the

five roles (as defined by Scholtz [82]) have different requirements and expectations on HRIs.

The following describes the requirements and expectations of each role.

Supervisors – when assuming the role of a supervisor, the interactions that occur between

the human and the robot are similar to the interactions that occur between humans.

Operators – when assuming the role of an operator, the human is typically in direct control

of the robot. The operator is allowed access to the internal state of the robot as well

as direct-control of the robot’s action.

Mechanics – humans take on the role of a mechanic when they are required to deal with

the physical aspects of the robots such as adjusting the angle of a camera.

Peers – when assuming the role of a peer, humans and robots coexist as teammates. As

teammates, both humans and robots are required to work together to achieve some

common goals, which is usually given by the supervisor.

Bystanders – when assuming the role of a bystander, humans have little or no direct

interactions with the robots. Typically, robots do not work with bystanders. A

bystander can indirectly interact with the robot such as standing in the path that
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the robot is navigating; and typically, the robot reacts by navigating around the

bystander.

3.5.2 Interaction Schemes

Conway, Voltz, and Walker [16] defined five categories of HRIs: teleoperation, shared control,

traded control, supervisory control, and learning control. In addition, Tsuji and Tanaka [99]

defined impedance control as the sixth category of HRIs.

Teleoperation – the human has direct-control of the robot. Typically, the human controls

the robot from a remote location. The robot has little autonomy (if there is any

autonomy at all in the robot) because the human controls the robot using the lowest-

level operations. If there is some autonomy in the robot, the human still has direct

control of the robot, but the robot is given some autonomy such as preventing damage

to itself by not allowing the human to collide with objects; this level of autonomy is

often called safe mode [10] .

In order to permit the human teleoperation control over the robot, the human would have

to be aware of the environment in which the robot is located (situation awareness [35]).

Endsley [35] defined three levels of situation awareness : perception (level 1), comprehension

(level 2), and projection (level 3). Perception is the ability of the interface to provide the

necessary information so that humans are able to perform their function. Comprehension

is how the interface is able to combine information and how the interface interprets the

information. Projection is the ability to predict the future events based on current events

and the state of the environment.

A great deal of research has been done on the area of perception (typically referred to as

telepresence). The goal of telepresence research is to create an interface such that humans

would feel as if they are actually present in the environment of the remote robots. However,
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according to Woods et al. [110], accomplishing this goal is not easy for many reasons. One of

the problems is the inability of humans to perceive the scale of objects [110] through video

feeds or images. Kanduri et al. [48] describe the problem of height perception when humans

attempt to navigate robots in remote environments using a single video feed (monoscopic

vision). Kanduri et al. [48] proposed a solution in the form of post-image processing by

performing horizon analysis. However, horizon analysis was only shown to work reliably

when the terrain is generally flat. Hughes and Lewis [46] proposed another solution that

used two cameras to provide stereoscopic vision. However, the amount of bandwidth required

to provide two video feeds is currently impractical especially since providing one video feed

with sufficient quality is already consuming a significant portion of the available bandwidth.

Another problem is the inability to perceive the horizon or attitude as described by Lewis

et al. [54]. There are many reasons this problem occurs, one of which is the fixed camera.

Fixed cameras do not provide feedback on the slope on which the robot is sitting, which

often leads to the robot being overturned. Lewis et al. [54] proposed a solution that used

gravity referenced view instead of fixed view, which they claimed to provide better situation

awareness.

When teleoperation is coupled with telepresence, humans are able to interact with remote

environments as if they are actually there. However, teleoperation is highly susceptible to

communication delays that could potentially result in undesirable outcomes. Unfortunately,

the goal of achieving true telepresence (i.e., remote perception is the same as direct

perception) is a very difficult problem to solve [46]. Thus, ongoing research is more focused

on functional presence [46], where there is just enough perception information so that

humans can complete their given tasks [110].

The following HRI schemes were developed as a result of the problems encountered with

teleoperation, particularly the dependency on nearly instant communications.

Shared Control – the human has control of the robot through high-level instructions.
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Typically, the robot is semi-autonomous because the robot is given the autonomy in

deciding how to execute the high-level instructions. A typical situation for shared

control is waypoint navigation; a set of waypoints is given to the robot and the robot

navigates from point to point while avoiding obstacles.

In the shared control scheme, inputs from both the human and robot are required to proceed.

The human provides high-level instructions that the robot attempts to achieve. How the

robot achieves the high-level instructions is up to the robot. The high-level instructions are

transformed into a sequence of primitive commands, which is similar to the direct-control

from teleoperation. But the one difference from teleoperation is that the robot is given

the freedom to change or modify the sequence of primitive commands based on the robot’s

own assessment of the environment. Typically, the automation available in robots in this

scheme is a form of a reactive automation. The area to which reactive automation is most

commonly applied is when humans are responsible for the navigation of remote robots.

One of way that the shared control scheme is used is through safeguarding [36, 51].

Safeguarding is a way to prevent the robot from being “harmed” by high-level instructions.

Whenever a high-level instruction would put the robot in harm’s way, safeguarding will

override the given high-level instruction to ensure the robot’s safety. An example of shared

control is the Autonomous Robot Architecture (AuRA) [5]. The AuRA is a hybrid form of

reactive control, where the robot is “capable of functioning both in the presence or absence

of world knowledge, and can reconfigure its [the robot] behaviors based on mission intents,

environmental knowledge and success or failure of attaining the mission’s goals”.

Traded Control – similar to shared control except that the human and the robot are in

the same location. The human and robot are required to be in the same location

because the process involves the human’s mental or physical abilities.
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An example of a traded control scheme is the Collision and Accident Avoidance System

(CAAS) [43] that helps humans in driving cars safely. The CAAS is supposed to decrease the

human driver’s mental workload thereby increasing the human driver’s situation awareness

as well as their comfort level. Goodrich and Boer [43] described two types of automation

that are applicable in traded control schemes: task automation and response automation.

Task automation occurs when tasks are started by the humans but are easily automated and

carried out by the robot so as to help the human (e.g., regulating speed using cruise control).

Response automation is when tasks are automatically applied by the robot when humans

are driving cars (e.g., ensuring safety when changing lanes). According to the Goodrich

and Boer [43], the goal of task automation is to “safely promote comfort” while the goal of

response automation is to “comfortably promote safety”.

Supervisory Control – similar to shared control, the difference is that instead of high-

level instructions, humans issue tasks [16] to the robot. Tasks are similar high-level

instructions except that robots have to reason about the tasks (e.g., student A instructs

student B “give me the pen” and student B can see two pens but student A only sees

one pen). Typically, robots in the supervisory control schemes are mostly autonomous

because the robots are able to handle a wide variety of tasks by themselves. This would

effectively lead to a lower frequency in the required amount of HRI.

Because humans are issuing tasks, the mental workload on the humans is reduced because the

humans are no longer required to form the high-level instructions for the robots. As Adams

[1] said, “the underlying . . . technology must be intelligent and achieve complex reasoning

that reduces the reliance on the human’s cognitive reasoning capabilities”. Less reliance on

a human’s cognitive ability allows more robots to be supervised by a single human. One

of the problems in supervisory control schemes is that tasks have to be processed either by

the robots or the interface. One issue in understanding the meaning of a task is resolving

38



ambiguities. For instance, in the example of the two students, how does student B know to

which pen student A is referring? The human cognitive processes contextual information

such as the line-of-sight of student A, and then infers that “correct” pen is the pen that

student A sees. Most of the time, this can be done without student B asking for more

information like “which pen?”. It would be ideal if such tasks can be issued to robots and

the robots can infer their meaning.

One approach to resolving this type of ambiguities is perspective-taking [97]. The idea

of perspective-taking is that the robot would use the resources it has (e.g., cameras and

sonars) to model the environment from the perspective of the human that issued the task.

In combination to the robot’s own perspective of the environment, the robot should then be

able to resolve most ambiguities. Trafton et al. [97] implemented perspective-taking based

on the polyscheme cognitive architecture [12]. Polyscheme is a cognitive architecture that

attempts to create human-level intelligent systems by allowing multiple inference techniques

and multiple representations to be integrated in a single system.

Another aspect of research in supervisory control is in how to issue tasks to robots with

minimal increase to a human’s mental workload without assuming that robots can infer

the meaning of tasks. One approach is the use of “tasking” interfaces [65] that use the

notion a playbook to issue tasks. According to Miller, Pelican, and Goldman [65], there

are three areas that are required for “tasking” interfaces: (1) a shared vocabulary of tasks

where humans can issue tasks and a mechanism to know how the tasks are going to be

accomplished, (2) enough knowledge from the interface so that intelligent decisions can be

made about how to accomplish tasks, and (3) a way to inspect and manipulate the shared

vocabulary and an easy and fast way to view the details of the tasks. Parasuraman et al. [69]

expand on the idea of “tasking” interfaces, where “tasking” interfaces are called delegation-

type interfaces. Parasuraman et al. [69] proposed a flexible delegation-type interface that

increases overall system performance. Parasuraman et al. [69] defined flexibility as consisting
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of two parts: level of aggregation and level of abstraction. The proposed interface allowed

two levels of control: direct control or automated control. However, Parasuraman et al. [69]

noted in their findings that the benefits of flexibility was negated when the number of robots

double from four to eight; probably due to the increase in mental workload when managing

more robots.

One of the goals of supervisory control is to allow a single human to supervise multiple

robots; the more robots that can be supervised by a single human the better. One aspect of

supervisory control is determining what tasks are given to robots. An example can be seen in

the work by Adams [1], where she developed an algorithm to control multiple Autonomous

Vehicles (AVs) in forming a coalition.

Learning Control – the robot possesses an artificial intelligence that is comparable to

human intelligence. HRI is only required because the robot has encountered an

unknown situation, where it does not know what to do and requires the expertise

and experience of a human expert. Once the robot has learned how to handle the

unknown situation, the robot should be able to handle other similar situations that

arises.

Unfortunately, this is a future vision in the field of artificial intelligence that has yet to be

achieved. Currently, there is no known artificial intelligence system that is equivalent to

human intelligence. There are a number of problems to be solved before creating an artificial

intelligence that is comparable to human intelligence such as determining when situations

or events are equivalent and resolving ambiguities such natural language speech.

Impedance Control – the robots in this control scheme typically are not autonomous,

and if the robots do have some autonomy, the autonomy is simple. Generally, robots

in the impedance control scheme are used for assisting human actions. For example,

a robot could be a prosthetic limb that is attached to a human or an exoskeleton.
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Tsuji and Tanaka [99] proposed a mechanism for tracking control properties of the human

arm. In addition, they provided a Neural Network (NN) for training their system so that

humans can improve their ability to control the robot.

3.5.3 Robot Automation

There are varying degrees of autonomy, from fully autonomous robots to non-autonomous

robots. Parasuraman, Sheridan, and Wickens [70] defined ten levels of autonomy. The levels

range from non-autonomous (level 1) to fully autonomous (level 10).

1. Robots in this level have no autonomy because humans make all the decisions and

perform all the actions for the robots.

2. Robots in this level offer a complete set of decision/action alternatives but the robots

play no part in helping humans to choose a decision or action to execute.

3. Robots in this level reduce the set of decision/action alternatives to a few.

4. Robots in this level offer only one decision/action alternative but the decision still lie

with the humans.

5. Robots in this level execute the decision/action alternative if approved by humans.

6. Robots in this level give the humans a limited time to “veto” the decision/action

alternative before the robots automatically execute the decision/action alternative.

7. Robots in this level automatically execute the decision/action alternative and inform

the humans.

8. Robots in this level only inform the humans if asked.

9. Robots in this level decide if the humans should be informed.
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10. Robots in this level are fully autonomous because the robots decide everything

independent of the humans.

In HRI, when automation in robots increases, the authority given to robots increases

as well. Otherwise, humans would be overwhelmed by the task of micromanaging different

aspects of multiple robots at the same time, which could potentially lead to a decrease in

overall system performance. As the level of automation in robots increases, there is a need

for more sophisticated forms of interactions between humans and robots [15]. According

to Christoffersen and Woods [15], “the issue is not the level of autonomy or authority, but

rather the degree of coordination”.

For robots that are not fully autonomous, human interactions are required to maintain

a certain level of efficiency or performance. These interactions are an integral part of the

system. Crandall et al. [18] defined two terms: neglect time and interaction time. Neglect

time is “the expected amount of time a robot can be ignored before its performance drops

below a threshold” [18] and interaction time is “the expected amount of time that a human

must interact with a robot to bring it to peak performance” [18]. Crandall et al. [18] used

the two terms to provide a metric system for determining the validity of different HRIs by

evaluating the number of robots in terms of neglect time and interaction time to see if a

given HRI is feasible.

Another means of evaluating HRIs is through situation awareness. Scholtz, Antonishek,

and Young [83] proposed that supervisory control schemes can be evaluated using situation

awareness. Their methodology evaluates supervisory control schemes for each of the three

levels of situation awareness [35]: perception, comprehension, and projection. The perception

evaluation determines if the user interface provides sufficient information to perceive the

environment so that tasks can be completed. The comprehension evaluation determines

how well the user interface combines and interprets information. And lastly, the projection

evaluation determines how capable the user interface is in predicting the future based on
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the current situation.

Most HRIs are designed to meet specific goals. However, that is not necessarily the case.

Michaud et al. [62] developed a robot named Roball, which did “not have a specific goal to

achieve with a clear outcome”. Roball was designed primarily for child development skills.

Michaud et al. [62] showed that it was possible that HRIs do not have to have specific goals.

3.6 Summary

This chapter covers key background concepts and terms necessary to understand the work

in my research. The background includes (1) the OMACS model that is the basis for the

CzM model, (2) the GMoDS model that I am extending to allow goal modifications, (3) the

O-MaSE methodology that I follow in building the system described in Section 5.2.1, (4) the

human factors and mathematical concepts required to capture human factors, and (5) the

various aspects to HRIs. The next chapter (Chapter 4) describes the CzM model.
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Chapter 4

Chazm Model (CzM)

This chapter presents the CzM that addresses the open question from Chapter 1 about the

type of information on humans that should be captured that can lead to better allocation of

tasks. Section 4.1 highlights the limitations of the OMACS. Section 4.2 presents the CzM

model. Section 4.4 evaluates the CzM model in a humans only scenario and analyzes the

time complexity of various task allocation algorithms. Section 4.5 evaluates the CzM in a

human-robot scenario. And Section 4.6 summarizes this chapter.

4.1 Limitations of OMACS

OMACS [26] is (1) unable to explicitly capture human performance factors such as skill,

training or reaction time, (2) unable to capture information that describe the state of agents

(particularly humans) such as location, fatigue, and workload, and (3) unable to capture

information pertaining to tasks such as their affect on the state of agents. One use of this

information can be for better task allocation. By definition, human performance factors are

factors that play a part in the performance of an individual human with respect to some

specific task. By including a human performance factor that contributes to the performance,
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the computation of the performance of an individual becomes more accurate.

In OMACS, the possesses function is defined as possesses : Agent× Capability 7→ [0, 1],

which indicates how well an agent can use the capability. It has been suggested that all

information can be captured as capabilities and the scores used to reflect the actual values.

However, that is generally not the case. Silverman [84] defined two types of information:

quality-type and quantity-type. Quality-type information has a range [0, 1] while quantity-

type information is unbounded. The range [0, 1] is indicative of quality-type information.

However, there is also quantity-type information that must be captured. Some quantity-

type information can be transformed into quality-type information without loss of meaning

such as fatigue. Fatigue can be represented as quality-type information because there is

a known minimum and maximum level. Unfortunately, not all quantity-type information

have known minimum and maximum values. An example of a quantity-type information

that cannot be transformed to quality-type without loss of meaning is location. For example,

how does the longitude and latitude values convert to a value between [0, 1] without loss of

meaning?

Another limitation of the possesses function is the predefined meaning associated with

the range [0, 1], where 0.0 means a lack of or a broken capability and 1.0 means complete

or perfect capability. In other words, higher values are better. However, there are some

quality-type information that are more intuitive if the reverse is true such as fatigue; for

fatigue, lower values are better.

In OMACS, the definitions of the achieves function and the rcf function do not allow

information about goals to be used. The achieves function is defined as achieves : Goal ×

Role 7→ [0, 1], which indicates how well a role achieves a goal. However, the rcf function

does not account for variations of the same goal type. For example, for the tasks survey

A1 and survey A2 (from Chapter 2) have the same role and the same goal type; the only

difference is in the parameter values of the goal instances. Thus, for two equally capable
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agents, preference may be given to the agent that is physically closer to the area. Similarly,

the rcf function is defined as rcf : Agent×Role 7→ [0, 1], which determines how well an agent

performs a role. In order to determine how well an agent can perform a role to achieve a

goal, an overall score is computed by combining score from the rcf function with the score

from the achieves function. However, this does not allow parameters values of goals to affect

the overall score such as giving preference to agents that are physically closer to the area.

The next section (Section 4.2) introduces a model that addresses the above limitations.

4.2 Chazm Model (CzM)

This section introduces the CzM that captures human performance factors that can be used

by task allocation algorithms. A number of additions and changes to OMACS are required

to capture human performance factors so that human performance factors can be used in

task allocation algorithms; these additions and changes result in the creation of the CzM

model. Figure 4.1 shows some of the additions and changes to OMACS.

There are three types of elements in Figure 4.1: rectangles, lines, and ellipses. Rectangles

are entities. Lines between entities are relations; the arrows on the lines denote direction

for reading purposes only. For instance, role X requires capability Y . Ellipses attached

to relation via a dashed line indicate values associated with relations that are functions.

Elements that are greyed out are elements that exists in OMACS. In CzM, there are four

new entities, six new relations (two of which are functions), and changes to existing elements.

The first new entity is an attribute. An attribute describes a property of an agent.

Currently, there are three types of attributes: quality-type, quantity-type, and unbounded-

type. A quality-type attribute constrains the value to the [0, 1] range, a quantity-type

attribute constrains the range to [0,+∞], and an unbounded-type attribute does not

constrain the values [−∞,+∞]. In addition, each type is either a positive-type or negative-
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Figure 4.1: CzM Model

type attribute, which indicates the type of scale used to measure the values in relation to

one another. Some attributes can be represented as either a positive-type (the higher the

value, the better) or a negative-type (the lower the value, the better). For example, consider

the attributes energy and fatigue. These two attributes represent the same concept except

that for energy, higher values are better, while for fatigue, lower values are better.

The purpose of the second new entity, performance function, is to capture the PMFs.

Capturing PMFs as an entity allows user-defined PMFs to be used at runtime. For instance,

two roles may have slightly different PMFs for computing the fatigue of agents after

performing different roles because one role may require more strenuous activities than the

other. PMFs are captured in CzM as functions of the form of Definition 4.1. The Role,

Agent, and Goal inputs inform the PMF function to which role the agent is performing

to achieve the goal. The Set{Assignment} is the relevant set of assignments for the PMF

function, which can be all the assignments of the organization or a subset such as the

assignments of a particular agent; not all assignments affect the computation of PMFs.

pmfattribute : Role× Agent×Goal× Set{Assignment} 7→ value (4.1)

The characteristic entity describes a property of a role. A characteristic provides

additional information that can be utilized by performance functions. For example, the
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surveyor role (from Chapter 2) may contain information about the average length of

time taken to complete the role, which can be captured as the average completion time

characteristic. The average completion time characteristic can be used by performance

functions associated with the surveyor role.

The last new entity is a task. A task is the composition of a role and a goal. The

purpose of the task entity is purely for human understanding; computationally, a task does

not provide any additional information other than what the associated role and goal already

provide. For example, the task survey A1 (from Chapter 2) is comprised of the role surveyor

and the goal survey A1. In OMACS, an assignment is formally defined as assignment :

Agent × Role × Goal. In CzM, the definition of an assignment is expanded to include

assignment : Agent× Task.

The has function (Definition 4.2) takes in an agent and an attribute and returns a value

consistent with the type of that attribute: quantity [0,+∞], quality [0, 1], or unbounded

[−∞,+∞]. Even though the has function specifies a relation between an agent’s attribute

and a single value, it is straightforward to model complex attributes such as compound

attributes. A compound attribute such as location does not contain a value but is comprised

of multiple single values. For example, the location attribute is typically comprised of

three values: longitude, latitude, and altitude. The three values can be represented as

three attributes: longitude, latitude, and altitude. A logical grouping of the three attributes

(longitude, latitude, and altitude) into the location attribute would not provide any functional

benefits. To ease the use of CzM, design tools can provide logical groupings for complex

attributes such as location. These design tools would then translate these complex attributes

for use in CzM.

has : Agent× Attribute 7→ value (4.2)
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The moderates relation (Definition 4.3) specifies a relation between a performance

function and an attribute. Because a performance function captures a PMF and a PMF

computes the result for a particular attribute, the moderates relation is a many-to-one

relation (i.e., a performance function moderates exactly one attribute but an attribute can

be moderated by multiple performance functions). The moderates relation specifies the

attribute to which the result of the PMF is applicable. For example, to capture a PMF

that computes fatigue, the PMF is captured as a performance function that moderates the

fatigue attribute.

moderates : Performance Function× Attribute (4.3)

The needs relation (Definition 4.4) specifies a relation between a role and an attribute.

The purpose of the needs relation is to capture additional requirements for performing a

role beyond just capabilities as currently used in OMACS. The needs and requires relations

specify the complete set of requirements an agent must meet to perform a role. For example,

to be assigned to the task survey A1 (from Chapter 2), the role surveyor requires the training

capability and the rank attribute and the goal survey A1 contains the exact requirements;

an agent can be of any rank and must have basic training.

needs : Role× Attribute (4.4)

The uses relation (Definition 4.5) specifies a relation between a role and a performance

function. The purpose of the uses relation is to indicate which of the attributes associated

with the role through the needs relation require the use of a PMF to compute the value. For

example, the reaction time attribute may not need a PMF because the value is obtained

directly from the agent through the has function. But the fatigue attribute may need a

PMF to compute the value because the result may depend on the roles (e.g., surveyor role,
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identifier role, rescuer role). More importantly, the uses relation differentiates between

attributes whose values are used and attributes whose values are changed as a result of

performing roles. For correctness, there are two constraints on the uses relation: (1) a role

can only use a performance function if the attribute modified by the performance function

is also the attribute needed by the role (Constraint 4.6) and (2) a role cannot use two or

more performance functions that moderate the same attribute (Constraint 4.7).

uses : Role× Performance Function (4.5)

∀r ∈ Role, f ∈ Performance Function, a ∈ Attribute

| (r, f) ∈ uses ∧ (f, a) ∈ moderates⇒ (r, a) ∈ needs
(4.6)

∀r ∈ Role, f, f ′ ∈ Performance Function, a ∈ Attribute

| (r, f), (r, f ′) ∈ uses ∧ (f, a), (f ′, a) ∈ moderates⇒ f = f ′
(4.7)

The utilizes relation (Definition 4.8) specifies a relation between two performance

functions. The reason for the utilizes relation is to indicate whether a performance

function uses another performance function for computation. For example, to compute

the overall workload, the overall workload PMF may require the auditory workload PMF,

cognitive workload PMF, and visual workload PMF. There are two constraints on the

utilizes relation: (1) the utilizes relation do not form a cycle (Constraint 4.9) and (2) if a

role uses a performance function (A), which utilizes another performance function (B),

then the attribute moderated by performance function (B) is also needed by the role

(Constraint 4.10). The transitive closure of a relation is denoted by the + symbol.

utilizes : Performance Function× Performance Function (4.8)
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∀f ∈ Performance Function | (f, f) 6∈ utilizes+ (4.9)

∀r ∈ Role, f, f ′ ∈ Performance Function, a ∈ Attribute

| (r, f) ∈ uses ∧ (f, f ′) ∈ utilizes+ ∧ (f ′, a) ∈ moderates

⇒ (r, a) ∈ needs

(4.10)

The contains function (Definition 4.11) takes in a role and a characteristic and returns a

value. For example, surveying an area would take on average 30 minutes. This example can

be modeled as the surveyor role contains the average completion time characteristic with a

value of 30. Then a performance function for computing the fatigue for that role can use

the average completion time characteristic for computing the new fatigue value of agents

after performing the surveyor role.

contains : Role× Characteristic 7→ value (4.11)

In OMACS, to perform a role, an agent must have the required capabilities. In CzM, to

perform a role, an agent must have the required capabilities and the necessary attributes.

The rcf function defined in OMACS is defined as rcf : Role × Agent 7→ [0, 1] and the rcf

function only evaluates the capabilities of an agent with respect to the role. This definition

is no longer sufficient due to the addition of attributes; thus, the rcf function is not part

of CzM. Instead, a goodness function (Definition 4.12) is defined that evaluates both the

capabilities and attributes required by agents. Furthermore, the specific goal being pursued

is also part of the input for the goodness function because the goal may contain parameters

that affect how well agents may perform a particular role. The Set{Assignment} is the

relevant set of assignments for the goodness function, which can be all the assignments

of the organization or a subset such as the assignments of a particular agent as not all
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assignments affect the computation of PMFs. The goodness function has one constraint

(Constraint 4.13), where the return value must be 0.0 if the agent do not possesses a required

capability, a needed attribute, or the role cannot achieve the goal.

goodnessrole : Role× Agent×Goal× Set{Assignment} 7→ [0, 1] (4.12)

goodness(r, a, g, φ) =



0.0 if ∃c ∈ (r, c) ∈ requires | (a, c) 6∈ possesses

∨∃n ∈ (r, n) ∈ needs | (a, n) 6∈ has

∨(r, g) 6∈ achieves

[0, 1]

(4.13)

Due to the removal of the rcf function from CzM, the capable function is eliminated.

In OMACS, the capable function is defined as capable : Agent × Role 7→ [0, 1] with the

constraint that return value is the same as the rcf function: capable(a, r) = rcf(a, r).

Thus, the capable function is redundant. The existing definition of the capable function

from OMACS is insufficient to correctly capture the goodness function because even if

capable(a, r) > 0, it is still possible for goodness(a, r, g, φ) = 0.0. A different solution would

be to redefine the capable function as capable(a, r, g, φ) but then that would mean that

capable(a, r, g, φ) = goodness(a, r, g, φ) and therefore the capable function is redundant.

In OMACS, the achieves function was defined as achieves : Role× Goal 7→ [0, 1], which

indicates how well the role achieves a specific goal. However, in CzM, achieves is defined as

a simple relation between a role and a goal (Definition 4.14). The reason for the change is

because the goodness function takes in a goal as input, the score functionality is now part of

the goodness function. This change provides greater flexibility because CzM allows specific

goals to contribute to the goodness score. For example, there are two agents capable of
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surveying A1 and sometimes it is preferable to select the agent that is closer to A1.

achieves : Role×Goal (4.14)

There is a brief discussion in Appendix C that describes a general guideline to creating

runtime models.

4.3 Evaluation Process

The next two sections (Section 4.4 and Section 4.5) evaluate the CzM model for the purpose

of task allocations. However, PMFs research is currently in the early stages. Many studies

in the past have shown a causal relation between PMFs and human performance. However,

the relation has not been properly defined for general use across multiple domains. For

example, fatigue as a function of lack of sleep has been extensively studied by the U.S.

Department of Transportation to specify regulations for businesses for hours-of-service1 of

drivers. However, it is not clear how the results from the studies translate to, for example,

construction workers of high-rise buildings as it is unknown whether working continuously

in construction for x and x+ 1 hours correspond to a similar increase in the risk of causing

an accident as driving continuously for x and x+ 1 hours.

For PMFs to be useful for task allocation purposes, the relation between PMFs and

performance needs to be quantified. For instance, in order to properly use PMFs, there is

a need for detailed knowledge such as if fatigue increases by x amount, performance should

decrease by y amount. PMFs research is not at this stage yet. Thus, the PMFs in the

evaluation scenarios do not represent validated PMFs for the associated domains.

1More information can be obtained from http://www.fmcsa.dot.gov/rules-regulations/topics/

hos/index.htm.
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4.4 Multiple Humans Evaluation

The Conference Management System (CMS) [22, 111] is used as a basis for evaluating the

usefulness of CzM versus OMACS. The CMS represents a conceptual model of the process

that takes place leading up to a scientific conference, where authors submit their papers,

reviewers are given papers to review, the PC chair makes decisions to accept papers, and

accepted papers are sent to the printers for printing. Figure 4.2 shows the GMoDS model

that captures the CMS process, where system goals are represented and further decomposed

into subgoals. The top-level goal of the CMS is to manage submissions, which is decomposed

into six conjunctive subgoals, which are also further decomposed into subgoals. At the

bottom of the goal tree are the leaf goals, which are collect papers, distribute papers, partition

papers, review paper, collect reviews, make decision, inform declined, inform accepted, collect

finals, master CD, and print proceedings. These leaf goals are the only goals that can be

pursued by agents to achieve the top-level goal.

«Goal»

0 – Manage Submissions

«Goal»

1 – Obtain Papers

rejected(paper, author)

review(paper)

«Goal»

6.2 – Create Publication
«Goal»

1.1 – Collect Papers

«Goal»

1.2 – Distribute Papers

«Goal»

2 – Partition Papers

«precedes»

«Goal»

3 – Review Paper

«precedes»

«Goal»

4 – Select Papers

«Goal»

4.1 – Collect Reviews

«Goal»

4.2 – Make Decision
«precedes»

«Goal»

5 – Inform Authors

«Goal»

6 – Process Proceedings

«precedes»

«Goal»

5.1 – Inform Declined

paper : Paper

author: Author

«Goal»

5.2 – Inform Accepted

paper : Paper

author : Author

accepted(paper, author)

«Goal»

6.1 – Collect Finals

paper : Paper

«precedes»

«Goal»

6.2.1 – Master CD

«Goal»

6.2.2 – Print Proceedings

accepted(paper, author)

Figure 4.2: CMS Goal Model

Figure 4.3 shows the role model where each leaf goal is mapped to a specific role. These

roles are defined to achieve their associated leaf goal(s) and specify the capabilities required

by agents in order to perform them. For the experiments, a minor modification to the
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role model is required to include the necessary attributes. The role reviewer is modified to

include workload, stress, and incentive as necessary attributes.
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Figure 4.3: CMS Role Model

The workload PMF, which is the sum of the workload values of each paper the agent is

reviewing, is defined by two equations: Equation 4.15 and Equation 4.16. In Equation 4.15,

p.type refers to the type of paper. In Equation 4.16, g.paper refers to the paper parameter

of the goal g.

workload(p) =


10 if p.type = poster

20 if p.type = short

40 if p.type = full

(4.15)

pmfworkload(r, a, g, φ) =

 ∑
(a,r,g′)∈φ

workload(g′.paper)

+ workload(g.paper) (4.16)
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4.4.1 Experimental Setup

An experiment evaluates the usefulness of CzM by using different task allocation algorithms

with a given number of reviewers, a given number of papers to review, a given number

of papers to accept, and a given range for the quality of a submitted paper. The CMS

experiments are set up such that for every experiment, the number of reviewers is fixed at

50, the number of papers accepted is fixed at 40, and the submitted paper quality range is

from [45%, 55%]. The range is kept small so as to increase the chance of a paper that is not in

the top 40 being accepted due to inaccurate reviews of that paper; the small interval makes

the problem harder because it is harder to discriminate between papers. Each submitted

paper is given a quality that is randomly selected from the given range [45%, 55%]. These

submitted papers are ranked based on their quality; ideally, only the top 40 papers are

accepted. There are a total of 80 experiments. The first experiment starts at 40 papers to

review, the second at 41 papers to review, the third at 42 papers to review, and so forth,

up to the 80th experiment with 120 papers to review. Each submitted paper is reviewed by

three reviewers. Once all reviews are in, the decision to accept or reject a paper is based on

the three reviews. The purpose of an experiment is to evaluate how well a task allocation

algorithm can assign these reviews to reviewers so that the set of accepted papers is as close

as possible to the ideal set.

In each experiment, the performance of four reorganization algorithms is compared.

Three of the algorithms are general reorganization algorithms, which means that the

algorithms use only information directly available in the model, while the fourth algorithm

is not entirely general. The implementation of the fourth algorithm utilizes information

about the domain. Although the implementation of the fourth algorithm is not general,

it is possible to generalize the implementation such that it is applicable to other domains.

However, generalizing the implementation is beyond the scope of this dissertation. The

three general reorganization algorithms are random, round robin, and attributes-greedy; the
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non-general algorithm is the attributes-enhanced. Since the OMACS model only provide

information on capabilities and, in this experiment, all reviewers are equally capable,

randomly assigning papers or assigning papers in a round robin is all OMACS can do.

On the other hand, the CzM model provides additional information about reviewers which

is used by the attributes-greedy and attributes-enhanced algorithms. These algorithms are

discussed in detail in Section 4.4.2. Although the goal model captures the entire CMS

process, the focus of the experiments is on allocating the instances of the review paper goal.

There are three types of reviewers defined: tenured professors, assistant professors, and

graduate students. All reviewers need three attributes (as shown in Figure 4.3): incentive,

stress, and workload. These three attributes are of the same scale, where a value of 0

means no incentive, no stress, and no workload respectively2. Incentive values are none,

low, medium, and high, maximum. For computational purposes, the incentive values are

mapped to 0, 30, 50, 70, and 100 respectively. Stress and workload are measured in terms

of percentages and do not have an upper-bound. These attributes determine the maximum

number of papers a reviewer can review before becoming overloaded/overburdened. An

overloaded reviewer will produce reviews that are less than 100% quality. As incentive

increases, a reviewer is able to review more papers before becoming overburdened. As

stress decreases, a reviewer is able to review more papers before becoming overburdened.

Similarly, as workload decreases, a reviewer is able to review more papers before becoming

overburdened. Table 4.1 shows the starting values of the attributes for the three types of

reviewers.

Incentive Stress Workload
Tenured Professors low (30) 0% 0%

Assistant Professors medium (50) 50% 0%
Graduate Students low (30) 60% 0%

Table 4.1: Attribute Values of Agent Types

2Determining what the values means in terms of numbers is beyond the scope of this dissertation.
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There are three types of papers defined: full paper, short paper, and poster paper.

Reviewing a full paper would add 40% to a reviewer’s workload; reviewing a short paper

adds 20% to the workload; and reviewing a poster paper adds 10% to the workload. The

quality (qr) of a review produced by a reviewer is defined by Equation 4.17. For example, if a

tenured professor has 6 short papers to review, the workload PMF will return a result of 120%

workload, which results in the quality of all 6 reviews being 100÷(120+30−0)×100 = 66.6%.

workload = pmf(Role,Agent,Goal)

total load = workload + stress− incentive

qr =


100 if total load < 100,

100

total load
× 100

(4.17)

Incentive and stress do not change throughout the experiment. Workload is computed

based on the number of papers given to a reviewer, with each paper contributing either

10%, 20%, or 40% to the reviewer’s workload. The quality of a review (qr) and the quality

of the paper (qp) determines the review score (s) as defined in Equation 4.18. As the review

quality (qr) approaches to 0, the range of possible review scores approaches [0, 100]. For

example, if qp = 60 and qr = 80, then s = 60 + [−10, 10] = [50, 70].

s =


qp if qr = 100,

qp +

[
−100− qr

2
,
100− qr

2

] (4.18)

Once all reviews are done, the average review score is computed for each paper since

there are three reviews per paper. Once the average review score is computed, papers are

sorted by the average review score and the top 40 are accepted.

The distribution of the reviewers (n) remain the same for each experiment. There are

approximately n/3 for each type of reviewers. The mathematical distribution for each type
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are as follows: tenured professors (rtp) are
⌊
n
3

⌋
, assistant professors (rap) are

⌊
n
3

⌋
, and

graduate students (rgs) are n − rtp − rap. Since there are 50 reviewers in the experiments,

there are 16 tenured professors, 16 assistant professors, and 18 graduate students.

Because of the randomness in various aspects of the experiments such as the random

paper qualities and the bounded-random error for review scores, each experiment is executed

10, 000 times to normalize the data.

4.4.2 Algorithms

The random algorithm randomly selects an agent capable of achieving a goal and assigns

that goal to the agent. This process continues until all goals have been assigned. Because

the random algorithm only cares about finding an agent that is capable of achieving a given

goal, the random algorithm only uses the score of the goodness function to check that

the agent is capable (i.e., the goodness function score is greater than 0.0). The goodness

function is defined by Equation 4.19, which is the same as Equation 3.1 in Chapter 3, for

all roles. For the purpose of this dissertation, the results from the random algorithm act as

the baseline for the other algorithms.

|{c|(r,c)∈requires}|

√ ∏
c∈{c|(r,c)∈requires}

possesses(a, c) (4.19)

The round robin algorithm assigns goals by evenly distributing the goals to capable

agents. The goodness function for all roles is defined by Equation 4.19. Because not all

agents are capable of achieving all the goals, the round robin algorithm keeps track of the

number of goals assigned to each agent. For a given goal, the capable agent (goodness

> 0.0) with the least number of goals currently assigned is assigned to that goal. This

process continues until all goals have been assigned. Because the order of the goals impact

the outcome (particularly the review paper goals, because a reviewer can only review a
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paper once), the goals are sorted to keep the review paper goals of the same paper together.

Furthermore, the ordering of agents also affects the outcome; it could result in better or

worse assignments. For example, if there are 3 reviewers (R1 and R2), and they can review

a maximum of 1, 2 papers respectively before being overburdened, and there are 3 papers

to review. If the order is R1 and R2, then R1 will get 2 papers, which overburdens R1.

However, if the order is R2 and R1, then no agent is overburdened. Since the experiments

are executed 10, 000 times, the ordering of agents is randomized to normalize the results.

The attributes-greedy algorithm uses the goodness function score to rank all agents for

a given goal and assigns the agent with the highest score to that goal. Because CzM allows

access to the workload, stress, and incentive values of an agent, the goodness function for

the reviewer role is defined as computing the review quality (qr). So the goodness function

returns the value of qr as defined by Equation 4.17. For the rest of the roles, the goodness

function is defined by Equation 4.19. This process continues until all goal are assigned.

Similarly, for the attributes-enhanced algorithm, the goodness function for the reviewer

role computes qr as defined by Equation 4.17. In addition, the attributes-enhanced algorithm

tracks the contributions (∆) of an agent as shown in Equation 4.203 and uses it to determine

the best agent instead of just relying on the basic goodness score. The goodness function

only captures the score of an agent performing the role in the current context (i.e., all the

assignments of the agent). But the goodness function does not recomputes the scores of

existing assignments, which may change if a new goal is assigned to the agent. For example,

an agent is assigned one paper to review and the goodness function score is 1.0, which

means that the agent will produce a review with 100% quality. If that agent were to be

assigned a second paper to review and the goodness function score is 0.9, that means that

the agent would produce two reviews with 90% quality. The attributes-enhanced algorithm

does this “recomputation” of existing assignments by using Equation 4.20, which tracks

3As mentioned earlier, the equation is a result of analyzing the domain but the equation can be
generalized.
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each agent’s overall contribution by comparing the current contribution (two 90% quality

reviews) with the previous contribution (one 100% quality review).

∆i = goodness ∗ (assignments + 1)−∆i−1 (4.20)

4.4.3 Attributes Only Results

There are three types of data collected in the experiments: score difference, set commonality,

and review quality. Score difference measures the sum of the accepted paper qualities

versus the sum of the ideal paper qualities. Set commonality measures the percentage

of ideal papers in the set of accepted papers. Review quality measures the average review

quality of all reviews. In the experiments, there are two factors that significantly impact

the performance of algorithms: the number of assignments4 for each agent and the quality

of reviews produced by each agent. The quality of reviews factor can only be measured

accurately by algorithms that have access to the workload, stress, and incentive attributes

because these attributes affect the quality of a review as defined by Equation 4.17.

There is a relationship between the two factors; as the number of assignments increases,

the quality of reviews tend to decrease. However, the importance of the two factors are not

constant throughout the experiments. Because the number of reviewers are fixed at 50 for

all experiments, the number of assignments is less important than quality of reviews when

the number of submitted papers are low. However, as the number of submitted papers

increases, the importance of the number of assignments also increases to a point where

the number of assignments becomes more important than quality of reviews. Also, the

importance of the two factors depends the measurement system. For example, the quality

of reviews factor plays a more important part in the review quality measurement than the

other two measurements. Based on the relationship between the two factors, the hypothesis

4In these experiments, the number of assignments is the same as the number of papers to review.
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is that the results are generally split into three parts: (1) the first part is where the quality

of reviews factor is the dominant factor while the number of assignments factor is minor,

(2) the second part is where the two factors are equally important, and (3) the third part is

where the number of assignments factors is the dominant factor while the quality of reviews

factor is minor.

The performance of the algorithms are linked to how the algorithms use the two factors.

Although the random algorithm ignores both factors, indirectly and to a certain extent

through random selection, the random algorithm utilizes the number of assignments factor.

The round robin algorithm considers only the number of assignments factor and ignores

the quality of reviews factor. The attributes-greedy algorithm considers only the quality

of reviews factor and ignores the number of assignments factor. The attributes-enhanced

algorithm considers both factors.

Figure 4.4 shows the results of the four algorithms as measured by the score difference.

There are three points of interest in the graph. The first point of interest (around 52

submitted papers) is where the round robin algorithm begins to accept papers that are not

in the top 40 papers because some reviewers are overburdened (i.e., producing reviews that

are less than 100% quality) from being assigned too many papers to review. After this

point, it is still possible to keep all reviewers from being overburdened. Both the attributes-

greedy and attributes-enhanced algorithms that use CzM are able to produce assignments

that keep the set of accepted papers the same as the top 40 papers. The second point of

interest (around 72 submitted papers) is where the effect of overburdened reviewers becomes

noticeable for the attributes-greedy and attributes-enhanced algorithms. After this point,

the attributes-greedy and attributes-enhanced algorithms still produce better results than

the random and round robin algorithms. At the third point of interest (around the 98

submitted papers), the performance of the attributes-greedy and round robin algorithms

converge. This is the point where the number of assignments factor is just as important as
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the quality of reviews factor. The attributes-enhanced algorithm maintains a performance

advantage over the other algorithm.
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Figure 4.4: Score Difference Graph

Figure 4.5 shows the results of the four algorithms as measured by set commonality.

There are three points of interests in the graph. At the first point of interest (around

52 submitted papers), the round robin algorithm begins to fall off while the attributes-

greedy and attributes-enhanced algorithms still produce assignments that keep all reviewers

from being overburdened because there are 50 reviewers and about 52 papers to be

reviewed three times. The second point of interest (around 70 submitted papers) is

where the effect of overburdened reviewers becomes noticeable for the attributes-greedy

and attributes-enhanced algorithms. Still, the attributes-greedy and attributes-enhanced

algorithms maintain an advantage over the random and round robin algorithms. At the

third point interest (around 90 submitted papers), the performance of the attributes-greedy

algorithm converges to the performance of the round robin algorithm but the attributes-

enhanced algorithm still maintains an advantage over the other algorithms. The performance

advantage of the attributes-greedy algorithm over the round robin algorithm is gone because,

around the third point of interest, the number of assignments factor is just as important

as quality of reviews factor. However, the attributes-enhanced algorithm still maintains an
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advantage over the other algorithms because it uses both factors (number of assignments

and quality of reviews) in the form of overall contributions (Equation 4.20).
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Figure 4.5: Set Commonality Graph

Figure 4.6 shows the results of the four algorithm as measured by review quality. Again,

there are three points of interests in the graph. The first point of interest (around 52

submitted papers) is where the round robin algorithm begins to produce assignments that

result in reviews that are less than 100% quality. The attributes-greedy and attributes-

enhanced algorithms still produce assignments that result in 100% quality reviews. The

second point of interest (around 72 submitted papers) is where the effect of overburdened

reviewers becomes noticeable for the attributes-greedy and attributes-enhanced algorithms.

Up to the third point of interest (around 88 submitted papers), the attributes-greedy

and attributes-enhanced algorithms maintain a noticeable advantage over the random and

round robin algorithms. However, after this point, the attributes-greedy begins to perform

worse than the round robin algorithm, while the performance advantage of the attributes-

enhanced algorithm over the round robin algorithm becomes smaller. Again, the attributes-

enhanced algorithm maintains an advantage over the other algorithms because it uses both

factors (number of assignments and quality of reviews) in the form of overall contributions

(Equation 4.20). Because the attributes-greedy algorithm only considers review quality and
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the number of assignments becomes more important than quality of reviews, the attributes-

greedy algorithm begins to perform worse than the round robin algorithm.
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Figure 4.6: Review Quality Graph

Based on the three graphs, the attributes-enhanced algorithm is able to produce better

assignments due to the use of the two factors: number of assignments and quality of reviews.

On the other hand, the attributes-greedy algorithm, which uses only the quality of reviews

factor, is only able to maintain an advantage over the round robin algorithm for the early

portions of the graph; up to the point when the number of assignments factor becomes

dominant factor. The performance of the attributes-greedy algorithm either converges to

the performance of the round robin algorithm or performs worse than the round robin

algorithm because the number of assignments factor, which is ignored by the attributes-

greedy algorithm, becomes just as important or more important than the quality of reviews

factor. This leads to the conclusion that just having the information available is not

sufficient. The information needs to be used in the proper context, which leads to the

next section that explores the case where the scores of capabilities matter.
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4.4.4 Attributes and Capabilities Results

The setup of CMS experiments in Section 4.4.1 assumes that every agent (in this case, the

reviewers) are equally capable in their reviewing abilities. However, this is not generally

the case. The setup of the experiments in this section uses different scores for the review

capability to reflect the ability of the three reviewer types. Table 4.2 shows the starting

values of the attributes and the reviewing capability of the three types of reviewers, where a

value of 1.0 means 100%. The reviewing capability of the reviewers do not change throughout

the experiments.

Incentive Stress Workload Review Ability
Tenured Professors low (30) 0% 0% 1.0 (100%)

Assistant Professors medium (50) 50% 0% 0.8 (80%)
Graduate Students low (30) 60% 0% 0.6 (60%)

Table 4.2: Attribute and Capability Values of Agent Types

Since the capability scores are now different, a greedy algorithm would not return the

same assignments as the round robin algorithm as the experimental setup in Section 4.4.1.

The goodness function for the reviewer role for the greedy and round robin algorithms

is defined by Equation 4.19. The greedy algorithm makes assignment decisions based on

Equation 4.21 for all agents. If the numerator is always the same value, then the greedy

algorithm is equivalent to the round robin algorithm when making assignments.

goodness(r, a, g)

number of papers for a
(4.21)

In order to incorporate capability scores in the experiments, a minor change to

Equation 4.17 is required. Equation 4.22 defines how review quality is computed that

uses the score of an agent’s reviewing capability. In Equation 4.17, max load is always 100.

In Equation 4.22, max load is multiplied by the score of the agent’s reviewing capability,

which ranges [0, 1]. And thus, tenured professors have 100 max load, assistant professors
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have 80 max load, and graduate students have 60 max load.

max load = 100× reviewing capability

total load = workload + stress− incentive

qr =


100 if total load < max load,

max load

total load
× 100

(4.22)

Similar to Section 4.4.3, there are two factors to consider in the experiments: number

of assignments and quality of reviews. The greedy algorithm considers the number of

assignments factor and, in a limited degree, considers the quality of reviews by using just

the capability score while ignoring the attributes. Likewise, the goodness function for the

attributes-greedy and attributes-enhanced algorithms were changed to match Equation 4.22.

All other aspects of the experiments remain the same as Section 4.4.1. However, the results

from Section 4.4.3 are not directly comparable with the results from this section due to

the following reasons: (1) on average, the reviewers are less capable than the reviewers

from Section 4.4.3 (only the tenured professors are as capable); and (2) capability score

contributes differently than stress, workload, and incentive in computing the quality of

reviews. The result is that the performance gap between the random algorithm and the rest

of algorithms are significantly narrower.

Figure 4.7 shows the score difference graph. The greedy and round robin algorithms drop

off immediately at the beginning of the graph although the greedy algorithm maintains

an advantage over the round robin algorithm. The advantage of the greedy algorithm

over the round robin algorithm is perhaps due to use of the two factors. Although the

greedy algorithm considers both factors, the quality of reviews factor is incorrect as the

goodness function for the greedy algorithm ignores attributes, which results in poorer

performance when compared to the attributes-greedy and attributes-enhanced algorithms.

The attributes-greedy and attributes-enhanced algorithms still produce assignments that

67



result in 100% quality reviews. At the first point of interest (around 58 submitted papers),

the attributes-greedy and attributes-enhanced algorithms are no longer able to keep some

reviewers from being overburdened. However, the attributes-greedy and attributes-enhanced

algorithms still maintain an advantage over the greedy and round robin algorithms. At the

second point of interest (around 70 submitted papers), the attributes-greedy algorithm

begins to perform worse than the greedy algorithm probably because the number of

assignments becomes a more important factor than the quality of reviews factor. The

attributes-enhanced algorithm still maintains a small advantage over the other algorithms

because it considers both factors. The round robin algorithm barely maintains an advantage

over the random algorithm because it ignores the score of an agent’s reviewing capability,

which matters in these experiments. At the third point of interest (around 106 submitted

papers), the performance of all algorithms seem to converge probably because situation is

bad enough that any algorithm would perform just as well.
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Figure 4.7: Score Difference Graph

Figure 4.8 shows the set commonality graph. Again, the round robin and greedy

algorithms drop off immediately at the beginning of the graph but the greedy algorithm,

which considers both factors, maintains an advantage over the round robin algorithm. At the

first point of interest (around 56 submitted papers), the attributes-greedy and attributes-
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enhanced algorithms are not able to keep some reviewers from being overburdened but

they still maintain an advantage over the other algorithms. At the second point of interest

(around 66 submitted papers), the greedy algorithm almost catches up to the attributes-

enhanced algorithm and the attributes-greedy algorithm begins to perform worse than the

greedy algorithm. This change is probably due the number of assignments factor becoming

the dominant factor. At the third point of interest (around 104 submitted papers), the

performance of all algorithms seem to converge probably because the situation is severe

enough that any algorithm would perform just as good. Although, the attributes-enhanced

algorithm seem to be slightly better the other algorithms.
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Figure 4.8: Set Commonality Graph

Figure 4.9 shows the review quality graph. Again, the round robin and greedy algorithms

start out worse than the attributes-greedy and attributes-enhanced algorithms. However,

the greedy algorithm, which considers both factors, maintains an advantage over the round

robin algorithm. At the first point of interest (around 58 submitted papers), the attributes-

greedy and attributes-enhanced algorithms are no longer able to keep some reviewers from

being overburdened but they still maintain an advantage over the other algorithms. At

the second point of interest (around 68 submitted papers), the greedy algorithm surpasses

the attributes-greedy algorithm because the number of assignments factor becomes just as
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important as the quality of review factor. The attributes-enhanced algorithm still maintains

a slight advantage over the greedy algorithm because it considers both factors properly. At

the third point of interest (around 80 submitted papers), the number of assignments factor

becomes the dominant factor. This results in the attributes-greedy algorithm performing

worse than the round robin algorithm. At the fourth point of interest (around 106 submitted

papers), the attributes-greedy algorithm performs worse than the random algorithm. This

is probably due to the overwhelming importance of the number of assignments factor over

the quality of reviews factor. Also, the performance of the greedy algorithm is surpassed

by the round robin algorithm probably because the greedy algorithm incorrectly considers

the two factors. The attributes-enhanced algorithm maintains a slight advantage over the

round robin algorithm because it considers the two factors properly.
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Figure 4.9: Review Quality Graph

With the introduction of attributes, algorithms that take advantage of this extra

information are able to perform better. However, the caveat of this extra information is

that it needs to be considered in the proper context as the attributes-greedy algorithm

demonstrates through the three graphs. Also, just using the extra information but ignoring

other existing information such as number of assignments can also lead to a decrease in

performance as seen in the three graphs when the greedy algorithm surpasses the attributes-
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greedy algorithm.

4.4.5 Time Complexity

This section discusses the time complexity of the four algorithms in Section 4.4.2. None of

the algorithms reshuffles current assigned goals, the algorithms only assign goals that have

not been assigned.

Let g be the number of unassigned goals, a be the number of agents in the organization,

r be the number of roles in the organization, c be the number of capabilities in the

organization, and n be the number of attributes in the organization. The time complexity of

the random, round robin, and greedy algorithms is O(g×a×r×c), while the time complexity

of the attributes-greedy and attributes-enhanced algorithms is O(g× a× r× (c+n)). For a

detailed proof, refer to Appendix D.1, D.2, D.3, D.4, and D.5. Introducing attributes to CzM

increases the time complexity of the goodness function by an expected amount. Although

the time complexity of the attributes-enhanced algorithm is not affected by Equation 4.20,

a generalized implementation could increase the time complexity.

4.5 Multiple Humans Multiple Robots Evaluation

The scenario described in Section 4.4 has three limitations: (1) all the agents are modeled

as humans, (2) the bulk of the assignments occur at the same time (i.e., when deciding the

papers to be assigned to reviewers), and (3) there is only one PMF. The retrieval scenario

in this section addresses the three limitations by having a mix of humans and robots, tasks

that occur at different times, and multiple PMFs.

The retrieval scenario has two recurring tasks: (1) retrieve an item and (2) relay

messages. The retrieve task is the primary task where performance will vary based on

the agent. The relay task is a secondary task that also affects the performance of the
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retrieve task. However, the performance of the relay task is constant regardless of the

agent performing it. These tasks can occur at different times and in different amounts. In

addition, retrieve tasks can have different minimum completion time while the completion

time of relay tasks is constant. An agent can only work on one retrieve task at a time but

can work on multiple relay tasks at the same time. However, human performance degrades

when a human is working on too many tasks at the same time. Furthermore, as humans

continue to perform their recurring tasks, their performance will degrade over time.

Figure 4.10 shows the GMoDS model that captures the retrieval scenario. There are three

leaf goals, which are retrieve, relay, and initialize. The retrieve and relay goals represent

the two recurring tasks and the initialize goal allows GMoDS to create new retrieve/relay

goals.

«Goal»

0 – Retrieval

retrieve(distance)
«Goal»

1 – Initialize

«Goal»

3 – Relay
relay()

«Goal»

2 – Retrieve

distance : int

Figure 4.10: Retrieval Goal Model

Figure 4.11 shows the OMACS role model with three roles, each of which achieves a

specific leaf goal. Because the CzM model also captures attributes, the retriever role and

the relayer role are modified to include fatigue and workload as necessary attributes as

shown in Figure 4.12. For the purposes of this experiment, all humans and robots are

capable of performing the retriever and relayer roles. There is no need to have separate

roles for the robots and human such as human retriever role and robot retriever role.

«Role»

Initializer

«achieves» Initialize

«requires» Initialization Procedure

«Role»

Relayer

«achieves» Relay

«requires» Communication

«Role»

Retriever

«achieves» Retrieve

«requires» Movement

Figure 4.11: Retrieval Role Model – OMACS
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«Role»

Relayer

«achieves» Relay

«requires» Communication

«needs» Fatigue

«needs» Workload

«Role»

Retriever

«achieves» Retrieve

«requires» Movement

«needs» Fatigue

«needs» Workload

Figure 4.12: Modified Roles

The workload PMF computes the workload of a given agent, which is the sum of the

workload of all the tasks that are currently assigned to the agent plus a task that may be

assigned to the agent. The workload PMF is defined by two equations: Equation 4.23 defines

the workload of the retrieve and relay tasks (i.e., the retrieve and relay goals respectively) and

Equation 4.24 defines the workload of a given agent based on its current set of assignments

plus a new task.

workload(g) =


55% if g = retrieve

15% if g = relay

(4.23)

pmfworkload(r, a, g, φ) =


0 if a = robot(∑

(a,r′,g′)∈φ workload(g′)
)

+ workload(g)

(4.24)

The fatigue PMF computes the fatigue of a given agent, which is the sum of the fatigue

at the completion of all currently assigned tasks plus a task that may be assigned to the

agent. The fatigue PMF is defined by two equations: Equation 4.25 defines the fatigue at

the completion of the retrieve and relay tasks and Equation 4.26 defines the fatigue of a

given agent based on its current set of assignments plus a new task.

fatigue(g) =


3%× g.distance if g = retrieve

2% if g = relay

(4.25)
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pmffatigue(r, a, g, φ) =


0 if a = robot

a.fatigue +
(∑

(a,r′,g′)∈φ fatigue(g′)
)

+ fatigue(g)

(4.26)

4.5.1 Experimental Setup

The experiment was designed to evaluate the performance of the CzM model versus the

OMACS model using two brute force task allocation algorithms on the retrieval scenario.

There are several parameters for the retrieval scenario: the number of agents, the number of

tasks, a given time range in which the recurring tasks can appear, and a given range for the

distance parameter of the retrieval goal. The retrieval experiments were set up such that the

numbers of agents was fixed at 6, the time range at which tasks can appear was [1, 15], and

the range for the distance parameter was [1, 10]. There were a total of 10 experiments. The

first experiment started at 5 retrieval tasks, the second at 10 retrieval tasks, the third at 15

retrieval tasks, and so forth, up to the 10th experiment with 50 retrieval tasks. The purpose

of the experiment was to evaluate how well the two task allocation algorithm assigned the

recurring tasks so that the time taken to complete all tasks is as short as possible.

Unlike the algorithms from Section 4.4.2, which are greedy in nature, the two algorithms

used for the retrieval scenario were brute force algorithms that go through all combinations

of assignments to find the best one. Because of the brute force nature of the two algorithms,

their time complexity is exponential (further discussion on the time complexity is in

Section 4.5.4).

There were three types of agents: capable humans, average humans, and robots. These

types capture the differences in ability when performing the retrieval task; capable humans

were the best, followed by average humans, and finally the robots. However, the performance
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of human agents were affected by fatigue and workload, whereas the performance of the

robots were consistent. As fatigue increased, human agents took longer to complete retrieval

tasks. Similarly, as workload increased (beyond a threshold), human agents took longer to

complete retrieval tasks. All three types of agents were equally capable of performing the

relay tasks and the time taken to complete relay tasks was constant. Table 4.3 shows the

starting values of the two attributes for the three types of agents and the two capabilities

required by the two recurring tasks.

Fatigue Workload Retrieval Ability Relay Ability
Capable Humans 0% 0% 1.0 (100%) 1.0 (100%)
Average Humans 0% 0% 0.75 (75%) 1.0 (100%)

Robots 0% 0% 0.5 (50%) 1.0 (100%)

Table 4.3: Attribute and Capability Values of Agent Types

Performance for the retrieval task was based on fatigue, workload, ability, and the

distance parameter of the retrieval task. As a baseline, a perfect agent (1.0 ability, 0%

fatigue and workload, and is unaffected by fatigue and workload) would complete a retrieval

task in d time units, where d = g.distance. In general, Equation 4.27 defines the progress

that an agent made in one time unit when performing the retrieval task.

d∆ = distance ∗ (1− ability)

f∆ = distance ∗ fatigue

w∆ = distance ∗max(workload− 1, 0)

estimated completion time = distance + d∆ + f∆ + w∆

progress =
1

estimated completion time

(4.27)

For example, if a capable human was given a retrieval task with 2 distance. Then the

progress made in the first time unit was 1
2

because fatigue is 0 and workload was less than 1.

However, in the next time unit, the fatigue of that agent increased by 3% (Equation 4.25).

So the progress made for that task in the second time unit was 1
2.06

and the fatigue of the
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agent increased by 1
2.06
× 2 distance × 3% fatigue ≈ 2.91%. But the total progress of the

task was only ≈ 98.5% complete, so the agent had to take a third time unit to complete the

task, at which point the fatigue of the agent increased by ≈ 0.09% to a final value of 6%

fatigue.

There were six agents for every experiment: two capable humans, two average humans,

and two robots. The reason the number of agents was small is because of the highly

exponential time complexity of the brute force algorithms. It was not possible to obtain

data in a reasonable amount of time if the number of agent was larger than 10.

Due to the randomness of the experiments (the time in which the two recurring tasks

can appear and the distance for the retrieval tasks) and the exponential time complexity,

each experiment was only executed 1000 times to normalize the data.

4.5.2 Algorithms

The two brute force algorithms are essentially the same, the only differences were in

computing the score for an assignment and the overall score. With a given list of unassigned

goals, the two brute force algorithms computed a mapping for each unassigned goal. The

mapping is from an unassigned goal to a list of agents capable of achieving that goal. An

example is shown in Table 4.4 with four goals (g1, g2, g3, and g4) and four agents (a1, a2,

a3, and a4). For instance, g3 can be assigned to either a3 or a4.

g1 g2 g3 g4

a1 a2 a3 a4

a2 a3 a4

a3 a4

a4

Table 4.4: Example Table

Once the table is computed, the two brute force algorithms go through every per-

mutation to create an assignment set. Using the example from Table 4.4, there are 24
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combinations of an assignment set. For example, a combination of an assignment set is

{〈g1, a1〉, 〈g2, a2〉, 〈g3, a3〉, 〈g4, a4〉}. Another example is {〈g1, a1〉, 〈g2, a2〉, 〈g3, a4〉, 〈g4, a4〉}.

The two algorithms compute the overall score for each assignment set and pick the

assignment set with the highest score as the best one.

In the OMACS version of the algorithm, the computation of the score for an assignment

is defined by Equation 4.28. The computation of the overall score for a set of assignments is

defined by Equation 4.29, where assigned(Φ) is the set of agents that are currently assigned,

total(a,Φ) is the number of assignments for agent a, score(a) is the retrieval task score for

agent a, relays(a,Φ) is the number of relay tasks assigned to agent a, and relays(Φ) is the

number of all relay tasks.

score = |{c|(r,c)∈requires}|

√ ∏
c∈{c|(r,c)∈requires}

possesses(a, c) (4.28)

∑
a∈assigned(Φ)

(
1

total(a,Φ)

)
score(a)− relays(a,Φ)

(
relays(a,Φ)

relays(Φ)

)(
relays(a,Φ)

total(a,Φ)

)
(4.29)

In the CzM version of the algorithm, the computation of the score for an assignment

depends on the task type. If the task is the retrieval task then the score computation is

defined by Equation 4.30. If the task is the relay task then the score computation is defined

by Equation 4.31. The computation of the overall score for a set of assignments is defined

by Equation 4.32, where score(a, r, g) is the score for the assignment.
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d∆ = distance ∗ (1− ability)

f∆ = distance ∗ pmffatigue(r, a, g, φ)

w∆ = distance ∗max(pmfworkload(r, a, g, φ)− 1, 0)

estimated completion time = distance + d∆ + f∆ + w∆

score =
distance

estimated completion time
+ distance

(4.30)

f∆ =
1

pmffatigue(r, a, g, φ) + 1

w∆ = min(
1

pmfworkload(r, a, g, φ)
, 1)

score =
f∆ + w∆

2

(4.31)

overall score =
∑

(a,r,g)∈Φ

score(a, r, g) (4.32)

4.5.3 Results

Two types of data were collected in the experiments: cases and completion time. Cases

measured the number of runs in which the CzM algorithm performed worse than, equal

to, or better than the OMACS algorithm. Completion time measured the average time in

which a run took to complete all tasks.

Figure 4.13 shows the results of the two algorithms as measured by cases. When the

number of retrieval tasks is low, there was a small number of cases where the OMACS

algorithm performed better, a significant number of cases where the two algorithms had the

same performance, and a small number of cases where the CzM algorithm performed better.

However as the number of retrieval tasks increases, the trend changes. When the number of

retrieval tasks is over 20, in virtually every case, the CzM algorithm performed better than

the OMACS algorithm.

There are two graphs for the completion time data. The first figure, Figure 4.14, shows
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Figure 4.13: Cases Graph

the results of the two algorithms as measured by average completion time. In addition to

the results from the two algorithms, a third line is added to the graph. The third line is the

completion time using only six perfect agents; perfect agents are unaffected by fatigue and

workload and have the best ability when performing retrieval tasks. The reason for the third

line is to provide an approximation of the lower bound for the completion time. Ideally,

the third line should come from an optimal algorithm. However, due to the exponential

time complexity, it would take too long to obtain the results. For example, on a small case

(where there are 3 agents, 12 relay goals, and 2 retrieval goals), there are approximately

about 4 million (312+2) paths to explore per run. A path takes about 10 seconds5 to explore,

so exploring all 4 million paths would take about 1.2 years. However, the perfect agents line

is a loose approximation because agents never tire or drop in their performance whereas the

performance of human agents continue to deteriorate the more tasks they perform, more

so towards the higher end (50 retrieval tasks). Even an optimal algorithm (with normal

agents) cannot not perform better than the perfect agents line. Furthermore, the difference

510 seconds is an estimate for an 8-core Intel R© Xeon R© E5462 @ 2.80GHz with 12GB RAM.
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between the optimal line and the perfect line should be increasing as the number of retrieval

tasks increases.
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Figure 4.14: Completion Time Graph

The second graph, Figure 4.15, shows the average completion time along with one

standard deviation from the average for the OMACS and CzM models. There is an overlap

between the two models, which occurs between the averages of the two models. Even though

there is an overlap, the conclusions drawn from Figure 4.13 are still valid. The overlap occurs

because of the random distances for the retrieval tasks and the times at which tasks appear.

For example, using 5 retrieval tasks, there can be a case where all 5 retrieval tasks have the

same starting time with all of them having a distance of 1. In another case, the 5 retrieval

tasks can have the same starting times as the previous case but a distance of 10. This wide

range of possible values creates a large variation of possible completion times. However, as

shown in Figure 4.13, in the same case, the CzM model is usually better (after 15 retrieval

tasks) or the same (before 15 retrieval tasks) as the OMACS model.

When the number of retrieval tasks is low, there is almost no difference between the two

algorithms. However, as the number of retrieval tasks increases, the difference between the
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two algorithms becomes noticeable. The CzM algorithm maintains a noticeable difference

(≈ 10% difference in terms of completion time) over the OMACS algorithm.

The results of this evaluation show that attributes and PMFs in the CzM model can

allow continuous task allocation algorithms to perform better when a mix of humans and

robots are involved. The OMACS algorithm is already very good (within ≈ 80% of the

perfect line at the early part of the results) and the CzM algorithm (an improvement of

≈ 10% over the OMACS algorithm) is also better in virtually every case when there are

over 20 retrieval tasks.

4.5.4 Time Complexity

This section discusses the time complexity of the two brute force algorithms in Section 4.5.2.

The two algorithms only assign goals that have not been assigned.

Let g be the number of unassigned goals, a be the number of agents in the organization,

c be the number of capabilities in the organization, and n be the number of attributes in the

organization. The time complexity of both brute force algorithms is O(ag × (g × (c+ n))),
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where n = 0 for the OMACS version. For a detailed proof, refer to Appendix D.6. The use

of attributes increases the time complexity by an expected amount.

4.6 Summary

This chapter presents the CzM model and demonstrates that task allocation algorithms

can benefit by including human performance factors, which are captured as attributes.

The results from the first experiment (Section 4.4) show that in a system consisting of

all humans, the use of attributes in bulk task allocation algorithms can produce better

results. The second experiment (Section 4.5) shows that in a system consisting of a mix

of humans and robots, the use of attributes in incremental task allocation algorithms can

produce better results. The next chapter (Chapter 5) describes another aspect of human

integration: organization control.
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Chapter 5

Organization Control

This chapter introduces an alternative interaction scheme to the playbook style [44, 63] of

supervisory control [16]. In Chapter 1, it was mentioned that traditional supervisory control

is not highly scalable because according to the evaluation system proposed by Crandall et

al. [18], there is a low upper bound to the number of robots a human supervisor can handle

[17]. Figure 1.2 illustrates the general approach to addressing this scalability limitation. One

particularly popular approach is the playbook style. However, in playbook style approaches,

the human selects a group of robots and the appropriate play for that group. Unfortunately,

playbook style is not appropriate because a play is typically predefined, which includes a

fixed number of players.

Using the example from Chapter 2, suppose that the commander wants John and

Surveyor 1, who are currently surveying A1 as a team, to also survey A2. It would be

awkward if the commander has to issue the order to each member of the team (i.e., issuing

the order to John to survey A2 and issuing the same order to Surveyor 1 to survey A2).

In fact, it is intuitive for the commander to issue the order to the team once instead of

individually to each member. From the above example, the commander issues a high-level

goal to the team and it is up to the team to adjust appropriately to the goal. The intent is
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to regard groups as part of an organizational hierarchy and through the organization allow a

human supervisor to exercise supervisory control (organization control is supervisory control

over an organization).

First, a broad definition of an organization. An organization is a group that is working

towards a common goal [8]. An organization is composed of three basic entities: goals,

roles, and agents. Goals define the purpose and intent of the organization. Roles form the

behavioral how-to to achieving those goals. And agents are the entities that carry out their

respective roles to achieve those goals. In any organization, a task is defined as the pairing

of a goal with a role and the pairing of an agent with a task is defined as an assignment.

Next, is the definition of organization control.

Definition 5.1. Organization control . . .

1. exists as a single mechanism that a human supervisor interacts with to exercise

supervisory control over an organization.

2. defines a consistent set of interactions.

3. contains a mechanism that makes decisions autonomously but still allows a human

supervisor to modify those decisions.

To achieve organization control, the human supervisor should not need to interact

with the agents individually. In fact, most (if not all) of the interactions with individual

agents should be relegated to an autonomous mechanism. This mechanism should be

an abstraction of all the agents in the system. By eliminating the need for a human

supervisor to interact with agents individually, the number of agents should no longer

be a limitation. However, just because the human supervisor no longer needs to interact

with the agents individually does not mean that the direct interactions with agents are

no longer necessary. These direct interactions are still required but instead of the human
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supervisor interacting with the agents, these direct interactions are handled by a layer that

sits between the human supervisor and the agents. Furthermore, to facilitate control over an

arbitrary number of agents, this layer must also be able to handle more complex functions

of autonomy to alleviate the human supervisor from dealing with the agents individually.

One such autonomous function is autonomous task allocation; another autonomous function

is autonomous tracking of the current set of tasks and determining the next set of tasks.

Figure 5.1 illustrates the concept of organization control through this layer, which is named

the Intelligent Autonomous Layer (IAL).

Intelligent Autonomous Layer

Human

Robot 2

Robot 3 Robot 4

Robot 1

Figure 5.1: Organization Control

The human supervisor interacts with the IAL while the IAL handles the individual

interactions with agents such as informing them of their assignments. Furthermore, the

IAL incorporates some decision-making processes. One such process is task allocation; the

IAL autonomously decides “who is working on what”. First, the set of interactions that

can occur between a human supervisor and the IAL for organization control are defined

in Section 5.1. The following section (Section 5.2) describes an agent architecture that

facilitates implementation of the IAL. The next two sections describe two of the interactions

for organization control in detail. Section 5.3.1 describes how assignment set manipulation

works and Section 5.3.2 describes an extension to GMoDS [66] to allow goal modification.
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And Section 5.4 summarizes this chapter.

5.1 Interactions of Organization Control

This section explores a set of interactions that can occur between a human supervisor and

the IAL for organization control. Based on the broad definition of an organization (at the

beginning of this chapter), the following is a list of descriptions of the interactions that a

human supervisor should be able to perform on an organization. Since organization control is

mostly about control over an organization, the focus is on interactions with the organization

rather than individual members. However, there are some individual interactions that still

persist at the organization-level because of assignments (i.e., “who is working on what”).

Even though assignment is an organizational concept, manipulation of assignments can still

be considered an individual interaction because the human supervisor is essentially making

the decision on “who is working on what”; thus, manipulating assignments is no different

from traditional supervisory control. Furthermore, the set of interactions should be available

through a single mechanism such as the IAL. The following list is the set of interactions for

organization control.

Create Goals. When an organization interacts with its environment and pursues its goals,

that organization is likely to evolve over time. Thus, a human supervisor should be

able to add goals to the organization. These goals can be more of the same types of

goals or new goal types that are not part of the initial design. Using the example

from Chapter 2, suppose that a team has already completed surveying A1 but the

commander wants that area to be surveyed again by another team. So, the commander

creates another survey A1 goal. In another situation, suppose that the team surveying

A2 gets trapped by crumbling debris. So, the commander creates a new goal type,

which is to clear the debris to free trapped team.
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Remove Goals. Likewise, as organizations evolve, there are going to be goals that are no

longer necessary. Thus, a human supervisor should be able to remove goals from the

organization. Using the example from Chapter 2, suppose that before area A4 can be

surveyed, that area is completely closed off due to further debris collapse. Since the

area A4 is no longer accessible, the goal survey A4 is no longer necessary and can be

removed by the commander.

Modify Goals. Similarly, as organizations continue to evolve, the objectives of an

organization could evolve and so there are going to be goals that need to change

over time to reflect the changes in an organization. Thus, a human supervisor should

be able to modify existing goals. Using the example from Chapter 2, suppose that

a search area is defined as regions that should be explored and surveyed. A sudden

collapse of a ceiling could close off a portion of an existing region from being explored

and surveyed. For these type of changes, only the boundaries that define the affected

region need to be changed and only the affected goal needs to change. Rather than

removing the affected goal and creating a new one, it is more effective to just change

the affected goal. In this case, it would be easier for the commander to modify the

affected goal instead of removing it and creating a new one.

Achieve Goals. As organizations continue to pursue their goals, these goals may eventu-

ally be achieved. Thus, a human supervisor should be able to mark goals as achieved.

Using the example from Chapter 2, once the team assigned to the goal survey A1

completes it, that goal is now achieved. However, the commander can also manually

achieve the survey A1 goal if the commander decides that enough effort has been

expended on the goal.

Fail Goals. Likewise, an organization could fail to achieve some of their goals. Thus, a

human supervisor should be able to mark goals as failed. Using the example from

87



Chapter 2, suppose that the commander imposes a time limit on the survey A1 goal

and that the team assigned to that goal has already exceeded the allotted time; that

means that the goal has failed and the commander should mark that goal as failed.

Create Roles. When new goal types are created that are not part of the original design,

these new goals may require new roles to capture the behavioral requirements to

achieve the new goals. Thus, a human supervisor should be able to create new roles.

Using the example from Chapter 2, when the commander creates a new goal type to

clear debris to free a trapped team, a new role needs to be created to capture how

that new goal can be achieved because no existing role can achieve the new goal.

Remove Roles. Likewise, when goal types are removed, the accompanying roles may no

longer be necessary. Instead of leaving them orphaned in the organizational structure,

they should be removed. Thus, a human supervisor should be able to remove existing

roles. Using the example from Chapter 2, suppose that there is no need to identify

hazards because prior to the earthquake, all hazardous materials were removed from

the building. In this case, the commander may remove the role for identifying hazards

from the organizational structure because there is not going to be any hazards that

need identification.

Modify Roles. When organizations evolve, the behavior associated with roles may change.

This change can be a result of external influences such as changes to existing laws that

affect how an organization should act. Sometimes, such changes require modification

to the behavior of the roles. Thus, a human supervisor should be able to modify

existing roles. Using the example from Chapter 2, suppose that there is a change to

how Cardiopulmonary Resuscitation (CPR) is performed. If mouth-to-mouth is no

longer part of the process, the role for rescuing victims would require an update to

the CPR behavior.
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Add Agents. Even if the goals and roles of an organization do not change, the set of

agents may not remain the same throughout the life of the organization. Thus,

the human supervisor should be able to add agents to the organization. Using the

example from Chapter 2, suppose that the commander requests assistance from other

emergency response teams. When help arrives, the commander will need to add these

new members (agents) to the organization.

Remove Agents. Similarly, agents also leave organization for various reasons. Thus, a

human supervisor should be able to remove agents from the organization. Using the

example from Chapter 2, suppose that John is injured and is sent to a hospital. Since

he can no longer continue to function as part of the organization, the commander

should remove John from the organization.

Create Assignments. Assignments are an important part of the organizational structure

as they indicate “who is working on what”. Thus, a human supervisor should be

able to create new assignments when necessary. Using the example from Chapter 2,

suppose that the commander decides to add an extra person to the team currently

surveying A1, the commander must also create a new assignment for that person.

Remove Assignments. Similarly, throughout the life of an organization, the “who is

working on what” changes over time. Thus, a human supervisor should be able to

remove assignments when necessary. Using the example from Chapter 2, suppose that

the commander notices that John of the team currently surveying A1 is extremely

fatigued and also injured. But there is a new fresh member, Alison, who is currently

doing nothing. The commander decides to replace John with Alison. Thus, the

commander must remove the assignment for John.

The set of interactions defined above are the interactions for organization control that

deals with the goals, roles, agents, and assignments. When dealing with agents, a human
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supervisor can “add” (not “create” as the goals, roles, or assignments) because agents can

be either humans, robots, or software agents. Only in the case of software agents can a

human supervisor spawn a process for new agents and even then, the human supervisor

may not have the authority to spawn new processes. More so for human/robot agents, a

human supervisor does not have the power to magically “create” new humans or robots.

Thus, a human supervisor can only add agents. Furthermore, a human supervisor cannot

“modify” agents as the human supervisor typically does not have total control over agents.

Also, the “modify” assignment interaction is missing because there is no semantic

difference between a “modify” operation and using a “remove” assignment interaction

followed by a “create” assignment interaction. An assignment modification would mean

a change either the agent, role, or goal of the assignment such as changing the role to

a different one. Any of the three changes would require the agent to be informed to stop

working on the current assignment and the new assignment. Removing the assignment would

perform the notification, and creating the new assignment would perform the notification.

The next section (Section 5.2) describes a approach for including organization control in

multiagent systems. This approach creates the IAL, which is the mechanism with which a

human supervisor interacts to achieve organization control.

5.2 Intelligent Autonomous Layer (IAL)

The IAL (as shown in Figure 5.1) is the mechanism that sits between a human supervisor and

a group of agents. The human supervisor interacts with the IAL while the IAL interacts

with all the agents. Furthermore, it is through the IAL that a human supervisor can

exercise organization control. The IAL can be formed through the Organization-Based

Agent Architecture (OBAA) [23]. So, the first step is to explain the OBAA architecture.

The OBAA is an architecture for implementing agents. The OBAA provides a separation
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between the application specific and non-application specific implementations. Figure 5.2

illustrates the architecture, where an OBAA agent is comprised of two major components:

the Execution Component (EC) and the Control Component (CC). Generally, the EC

contains the application specific implementation of an agent such as role behaviors and

capabilities. On the other hand, the CC contains the non-domain specific and non-

application specific implementation (i.e., the CC contains general algorithms that use

application specific information).
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Figure 5.2: Agent Architecture

The EC consists of three components: the Role Control Component (RCC), a set of roles,

a set of capabilities, and a set of attributes. The RCC functions as the interface between the

EC and the CC and as a scheduler for the assignments that have been given to the agent.

The RCC handles the assignments that are passed from the CC, which determines which

roles to use to complete the assignments. Furthermore, the RCC informs the CC of events

that occur while performing roles and changes to the agent’s capabilities and attributes.
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The CC consists of four components: the Goal Reasoning (GR), the Organization Model

(OM), the Reorganization Algorithm (RA), and the Organizational Reasoning Component

(ORC). The GR performs goal-based reasoning such as deciding the sequence of goals to

achieve and modifying the set of goals based on events that occur during the execution of the

system. The OM is the knowledge repository that contains information about the current

structure of the organization such as the agents that are present in the organization, the goals

that the system is pursuing, and the set of assignments. The RA is the assignment algorithm

that computes the initial set of assignments as well as subsequent assignments due to failures

and changes to agents’ capabilities and/or attributes. It is possible to include application-

specific assignment policies into the RA such as “an agent can be assigned at most one task”.

The ORC is the interaction point between the EC and CC where assignments are handed

out to the EC and events received from the EC are processed. The ORC performs three

important functions. First, the ORC decides when and how events are processed. Second,

the ORC decides when and how to reorganize. Reorganization means changing the set of

assignments. For example, when an agent’s capabilities degrades to a point where it is no

longer capable of carrying out its current assignment, the ORC uses the RA to determine a

new assignment. Third, the ORC is responsible for maintaining accurate information about

state the agents and the overall progress of the system. The IAL is composed of the CC

across all agents working together as illustrated in Figure 5.3. To human supervisors, the

objective is to make it appear as if there is only one CC in the system.

Figure 5.3: Intelligent Autonomous Layer (IAL)
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It is when the human supervisor is interacting with the IAL that the human supervisor

can exercise organization control. By exercising organization control, the burden of dealing

with robots individually now rests with the IAL instead of the human supervisor. Due to

the way the CC is structured, the set of interactions that is available for use by a human

supervisor depends on whether the GR and the OM support the interactions.

First, there is a need to evaluate the useful of the IAL before proceeding further with

organization control. The next section (Section 5.2.1) looks at how the IAL can perform its

autonomous function of task allocation. Autonomous task allocation frees up the human

supervisor from micromanaging the “who is working on what”. Furthermore, the IAL

also inherits from GMoDS the ability to autonomously tracks the current set of goals and

determines the next set of goals based on events that occur in the environment.

5.2.1 Scenario

To evaluate the IAL, a military-based scenario is devised. In military situations, routes

used for convoys must be constantly monitored for safety, including detection of Improvised

Explosive Devices (IEDs) [56], which are easily disguised and hard to spot as shown in

Figure 5.4. Furthermore, as IEDs can be remotely detonated, monitoring an area for safety

is a high risk situation when humans are involved.

Figure 5.4: Improvised Explosive Devices

Currently, the United States Marine Corp (USMC) deploys teleoperated iRobot PackBot
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[107] to safely identify and disarm IEDs as shown in Figure 5.5. Scenarios like this are well-

suited for testing an autonomous system’s ability to adapt to failures.

(a) iRobot PackBot [107] (b) iRobot PackBot used in
Mosul, Iraq [108]

Figure 5.5: Using iRobot PackBot

A scenario is defined where two routes intersect and are to be monitored for IEDs. A

human operator provides the initial input of areas to monitor and provides expertise on

IED identification. The area includes the two intersecting routes and the area surrounding

those routes. The IED detection system utilizes a team of heterogeneous robots that will

proceed to their given areas to search for IEDs. Once the area of to monitor is given, it is

partitioned into smaller areas, which are assigned to robots that are capable of detecting

suspicious objects. These robots continuously monitor their given area(s) for suspicious

objects. When suspicious objects are detected, they are flagged for identification and robots

that are capable of identifying IEDs (which may be the same robot that detected them)

are assigned to identify them. In cases when identification is not possible by the robots, a

human is asked for help with the identification process. When IEDs are identified, robots

that are capable of defusing or disposing of IEDs are assigned to deal with the IEDs.

Following the O-MaSE design process produced four models: a goal model, a role
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Figure 5.6: Scenario

model, a capability model, and an agent model. The goal model represents the high-level

requirements of the IED scenario as well as their decomposition into the goals that are

necessary to achieve them. The role model specifies the necessary behavior and capabilities

required to achieve the leaf goals from the goal model. The capability model specifies the

necessary functionality for every capability in the role model. The agent model defines

several types of agents based on the capabilities that they possess, which are defined in the

capability model.

5.2.1.1 Goal Model

Figure 5.7 shows the GMoDS goal model of the IED detection system. The top-level goal

is monitor IEDs, which has four subgoals: interact with user, monitor area, identify object,

and defuse IED. At initialization, the subgoal interact with user is the only goal that exists;

the rest of the subgoals must be triggered by events. The interact with user is automatically

assigned to the appropriate agent to pursue.

The monitor area goal is triggered by the monitor event while the agent is pursuing

the interact with user goal, which also triggers the divide area goal as well. A monitor

event occurs when the human operator specifies an area to monitor for IEDs. Once the
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Figure 5.7: IED Goal Model

divide area goal is triggered, it is automatically assigned to the appropriate agent. The

agent pursing the divide area goal raises the patrol event whenever a new area needs to be

patrolled. The patrol event causes the patrol area goal to be triggered, which is automatically

assigned to the appropriate agent. When the agent pursuing the patrol area goal detects a

suspicious object, the identify event is raised, which causes the identify object goal to be

triggered as well as the machine identification goal. The machine identification goal is then

automatically assigned to an appropriate agent.

When the agent pursuing the machine identification goal is unable to successfully identify

the suspicious object, it raises the uncertain event. The uncertain event causes the human

identification goal to be triggered. The human identification goal is then assigned to a

human expert to aid in the identification process. The defuse event can be raised by either

the human expert or the agent pursuing the machine identification goal when the suspicious

object is identified as an IED. The defuse event causes the defuse IED goal to be triggered

which is then automatically assigned to the appropriate agent.

As shown in Figure 5.7, the goal model supports two of the interactions defined for

organization control to a limited degree: (1) creation of the monitor area goal, and

(2) deletion of the monitor area goal. This is achieved by the interact with user goal

having a positive trigger and a negative trigger to the monitor area goal. However, a human
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operator cannot create/delete patrol area goals, identify object goals, and defuse IED goals.

One way to enable it is to create positive and negative triggers from interact with user goal

to the other goals. This approach would create three new positive trigger and three new

negative trigger. Furthermore, this approach would require explicit inclusion in the designs

of GMoDS models to support goal creation and deletion. Instead, GMoDS can be extended

to properly support some of the interactions defined for organization control. Section 5.3.2

describes an extension to GMoDS to support goal modification.

5.2.1.2 Role Model

Figure 5.8 shows the roles that are defined for the IED detection system, the leaf goals that

the roles achieve, the capabilities that are required by the roles, and the protocol that the

roles use for communication. Six roles are defined to achieve exactly one of the six leaf

goals from Figure 5.7. One protocol is defined; the inform protocol is a simple protocol that

notifies the user interaction role on what information to display to the human operator.

Figure 5.8: IED Role Model

The user interaction role specifies the functionality for a human supervisor to input

the areas to be monitored for IEDs, provide the human supervisor with information about
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the state of the system such as displaying search area(s), locations of agents, and current

assignments. Domain-specific information comes from the inform protocol.

The area divider role handles the task of partitioning larger areas into smaller more

manageable search areas. When a search area is determined, the patrol event occurs, which

also triggers the patrol area goal. In addition, the user interaction role is informed of new

search areas through the inform protocol.

The patroller role patrols a given search area for suspicious objects. Information about

the search area is obtained from the patrol area goal when it is assigned to an agent. When

a suspicious object is detected, the identify event occurs, which triggers the identify object

goal. Furthermore, every time the identify event occurs, information about the suspicious

object is passed to the user interaction role through the inform protocol.

The objective of the machine identifier role is to perform a more accurate analysis of

a suspicious object. The location of the suspicious object is obtained from the machine

identification goal when it is assigned to an agent. When classification of a suspicious

object is not possible due to failure in meeting the accuracy requirement, the uncertain

event occurs, which triggers the human identification goal. On the other hand, a suspicious

object can be classified as either an IED or inert. When a suspicious object is classified

as an IED, the defuse event occurs, which triggers the defuse IED goal. Otherwise, that

suspicious object is classified as inert. In any case, the inform protocol is used to inform

the user interaction role about the suspicious object.

The purpose of the human identifier role is to present sufficient information to the human

peer so that the human peer can determine if a suspicious object is an IED or not. When

the human identification goal is assigned to an agent, the agent is able to obtain information

about the suspicious object from the goal. When the human peer decides that the suspicious

object is an IED, the defuse event occurs, which triggers the defuse IED goal. Otherwise,

the suspicious object is classified as inert. In either case, the user interaction role is informed
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of the decision through the inform protocol.

The objective of the defuser role is to safely dispose of an IED. Disposing an IED can

be done in a number of ways such as disarming the IED on the spot or moving the IED

to a safer location for disarming or detonation. Agents assigned to the defuse IED goal

can obtain the location of the IED the goal. When the defuser role is complete, the user

interaction role is informed of the successful disposal of an IED through the inform protocol.

The behavior of the six roles are implemented by plans [40] that determine how agents

play a given role. Furthermore, plans capture the domain dependant portions of the IED

detection system. Each role is implemented with one plan.

5.2.1.3 Capability Model

Capabilities are a fundamental building block of any OMACS-based system. Capabilities are

defined in terms of their actions, which are specific interactions with the environment such

as retrieving the readings from a sonar, instructing a robotic arm to move, and instructing

a gripper to release [27, 40]. Figure 5.9 shows the capabilities that are defined for the IED

detection system.

The user interface capability captures the interaction mechanism between the system

and a human supervisor. Currently, the user interface capability provides a limited display

indicating the monitoring area, the location of agents, and the location of suspicious objects

and their classification. In addition, the monitoring area is given by the human supervisor

to the system through this capability.

The algorithm that partitions the monitor area into smaller search areas is provided by

the area division algorithm capability. This capability is used by agents that are playing

the area divider role.

The ability to communicate is essential for an OMACS-based system as it is used in

various organizational aspects of the system such as communicating assignments and events.
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Figure 5.9: IED Capability Model

Currently, the only direct use of the communication capability in the system is to pass

information to the user interaction role through the inform protocol.

Another important capability for any physical system is the movement capability. The

movement capability provides the ability for agents to move from one location to another

while providing features such as collision prevention and simple obstacle avoidance. Certain

features of navigation such as path finding and plotting are too complex to be included as

an action in the movement capability because these features could require an infinite state

space.

The ability to detect objects that meet a certain classification profile (i.e., possibly

containing explosive ordnance) are captured by the suspicious object detection capability.

This capability can utilize a number of different hardware sensors such as the sonar, the

camera, and some type of explosive detector.

The explosive device detection capability is similar to the suspicious object detection

capability except that emphasis is on accuracy in its analysis; potential IEDs are carefully
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analyzed to provide an accurate classification.

The human identification display capability captures another aspect of the interaction

between a human peer and the system. This capability is used to present information

obtained from the explosive device detection capability to the human peer. In addition, the

response from the human peer is passed to the system through this capability.

The ability for agents to dispose IEDs is captured by the explosive device disposal

capability. Currently, this capability utilizes a gripper to move the IED to a safe location.

5.2.1.4 Agent Model

OMACS-based systems define the types of agents by the capabilities that they possess.

Figure 5.10 shows the agent model for the types that are used in the IED detection system;

other agent type combinations are possible but only four are defined. Three of the agent

types are defined as a hierarchy due the physical configurations of the research robots. All

robots have a camera, which are used differently by the suspicious object detection capability

and the explosive device detection capability, and only one robot has a gripper, which is used

by the explosive device disposal capability.

Figure 5.10: IED Agent Model
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5.2.1.5 Organization-Based Agent Architecture (OBAA)

There are many possible approaches to implementing the IAL. By following the OBAA,

there are numerous CCs (one CC per agent), but the CCs all work together to form the IAL.

So, to a human supervisor, it appears as if there is only one CC. For simplicity, a centralized

approach is used to implement the CCs to avoid additional complexities associated with

adopting a distributed approach such as data synchronization. The centralized approach

has two types of CC: “master” and “slave”. There is one “master” CC and the rest are

“slave” CC. The “master” handles all the logic processing such as handing out assignments,

updating the OM with updated information, and processing events as they occur. The

“slaves” on the other hand are only responsible for relaying all information to the “master”

for processing.

The RA is a modified variant of the greedy task allocation algorithm, with the policy

of selecting the the agent with the least workload (i.e., the agent with the least number

of assignments) if multiple agents can be chosen for a specific assignment. The modified

algorithm still performs “good enough” for the purpose of evaluation.

Each role defined in Figure 5.8 has a fixed priority. The RCC uses a modified version

of the rate-monotonic scheduling algorithm [55], where priorities are predetermined instead

of computed at runtime. The priorities for the six roles are as follows: defuser (highest)

→ machine identifier → human identifier → user interaction → area divider → patroller

(lowest).

5.2.2 Results

The adaptive behavior of the IED detection system comes from the CCs across all agents

(IAL); particularly the ORC for dealing with agent failures, which uses the RA for

reorganization. The GR contains the goal model (Figure 5.7) for dealing with events such
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as the identify and defuse event. In this section, the system is evaluated on its ability to

adapt to agent failures, which is either the agent itself has failed or its capabilities have

degraded to a point where it is unable to achieve its goal.

5.2.2.1 Robots

The IED detection system used a team of three Pioneer 3-AT (P3-AT1) robots (“Patroller

1 . . . 3”) and one laptop (“Laptop 1”). The three robots were of the “Patroller Agent” type

(Figure 5.10). The laptop was of the “Laptop Agent” type. In the experiments, after the

robots have been assigned their search area(s), one of the robots would be disabled in one

of two ways.

The first way was to simply just turn the robot off. The communication capability

provided a mechanism to detect if an agent was no longer part of the network. And, for the

experiments, when an agent was disconnected from the network, the agent was considered to

have left the organization. When an agent left the organization, a reorganization occurred.

The two remaining robots would be assigned by the ORC to take on the assignment(s) of

the disabled agent.

The second way was to simulate a capability degradation by modifying the possesses score

of a required capability. One of two cases can occur: either (1) the agent itself detected

that it was unable to continue working on a goal and reported a failure or (2) the ORC

detected that the affected agent was unable to continue working on a goal. In either case,

a reorganization occurred and the assignment(s) of the affected agent would be reassigned

to the two remaining robots.

Figure 5.11 shows an image of the scenario as well as the five areas (A, B, C, D, E).

Eight field experiments were conducted and in each experiment, up to two robots would

be disabled and the ORC would reassign the tasks from disabled robots to the remaining

1Further information can be obtained from http://www.activrobots.com/ROBOTS/p2at.html.

103

http://www.activrobots.com/ROBOTS/p2at.html


one. In one experiment, “Patroller 1” was tasked to patrol area A and B, “Patroller 2”

was tasked to patrol area E, and “Patroller 3” was tasked to patrol area C and D. When

“Patroller 1” was disabled, “Patroller 2” was given an additional task of patrolling area

A, while “Patroller 3” was given area B. Upon disabling “Patroller 2”, “Patroller 3” was

tasked to patrol all five areas (A, B, C, D, and E).

Figure 5.11: IED Detection System

5.2.2.2 Simulation

To validate the results for scalability, a simulation of the IED detection system was developed

on the Cooperative Robotics Organization Simulator (CROS) [115]. CROS is a high-

level simulation framework for developing and testing OMACS-based systems. The test

configuration consisted of eleven agents: nine agents were of the “Patroller Agent” type

(“Patroller 1 . . . 9”), one was of the “Identifier Agent” type (“Identifier 1”), and one was of

both the “Defuser Agent” and “Laptop Agent” type (“Defuser 1”). With a larger number

of agents, more permutations were tested. Figure 5.12 illustrates just one particular sample

from the simulation of how the system adapted to agent failures. Figure 5.12a shows the

assignments before any agent failures occurred. There were a total of thirteen assignments;

eleven of the assignments were for patrolling an area and all eleven agents were given an area

to patrol because all of them were able to play the patroller role. For instance, the assignment
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〈A: Defuser 1,R: AreaDivider,G: DivideArea(. . . )〉 (second assignment from the top) means

that the “Defuser 1” agent is playing the area divider role to achieve the divide area goal.

Figure 5.12b illustrates the change to the assignments when one agent (“Patroller 3”) failed.

Once the “Patroller 3” agent failed, the assignment of the failed agent was reassigned to

another agent. The ORC detected the failed agent and requested from the RA the next

most suitable agent (“Patroller 5”) to take over. The most suitable agent was not necessarily

always the same. For this particular type of assignments, there was an additional criterion of

using the distance to the search area. Figure 5.12c illustrates the change to the assignments

when an additional three agents (“Patroller 2”, “Patroller 4”, and “Patroller 6”) failed.

Again, the ORC detected the failed agents and new assignments were made. In this case,

the assignment for “Patroller 2” is given to “Patroller 8” while “Patroller 7” takes on the

assignments from “Patroller 4”, and “Patroller 6”.

(a) Assignments – Original (b) Assignments – Sample 1 (c) Assignments – Sample 2

Figure 5.12: Reassignments Example

Many combinations and permutations were tested in the simulation, and in all cases,

the ORC was able to adapt to the failures except for cases when “Defuser 1” was one of the

agent that failed. The reason for this was because the “master” CC resided in “Defuser 1”

for all of the tests.

The adaptive behavior was a result of reorganization that was made possible through

the use of OMACS. The assignment algorithm used one application specific policy: the
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distance of the agent to the objective (either the search area, suspicious object, or IED).

This policy prevents the assignment algorithm from being usable in any domain but is still

usable in a wide array of domains that use mobile robots.

The experiments showed the usefulness of IAL in providing autonomous task allocation,

the next section (Section 5.2.3) describes limitations of the two models (OMACS/CzM and

GMoDS) with respect to organization control.

5.2.3 Organization Control Demonstration

Currently, OMACS/CzM supports two of interactions defined for organization control in

Section 5.1: (1) create assignments and (2) remove assignments. However, OMACS/CzM

does not explicitly support three of the interactions for roles: (1) create roles, (2) remove

roles, and (3) modify roles. The remaining three interactions depend on GMoDS: (1) create

goals, (2) remove goals, and (3) modify goals.

Unfortunately, the goal model (GMoDS) does not explicitly support any of interactions

defined for organization control in Section 5.1. Although it is possible to include the create

goals and remove goals interactions by designing them into GMoDS models, this approach

is not desirable for a number of reasons.

First, this approach of designing the create and remove interactions into GMoDS model

can create unnecessary clutter in the GMoDS model that may make it hard to maintain

human-readability. The clutter can happen because a new goal has to be created to represent

the organization control and for every goal that is desirable to allow a human supervisor

to create and/or remove, a positive trigger (create) and/or a negative trigger (remove) to

that goal has to be specified. All these new triggers originate from the new goal that

represents organization control. Figure 5.13a shows an example GMoDS model that does

not include organization control. There are nine goals that are triggerable, so these are

the goals that a human supervisor is allowed to create and/or remove. Figure 5.13b shows
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the modified GMoDS model where these nine goals can be created or removed by a human

supervisor. There is a new goal “create / remove” that have nine positive triggers and nine

negative triggers to the nine triggerable goals. Another example is the scenario described

in Section 5.2.1, where the GMoDS model allows a human supervisor the ability to create

and/or remove one goal even though there are five triggerable goals. Even though the clutter

has negligible impact on runtime performance, the performance of validation tools would

degrade significantly due to the exponential increase in the number of states.
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Figure 5.13: Designing Control

Second, due to the semantics of GMoDS, it is advisable to only create triggers to goals
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that are already triggerable. Doing otherwise would change the meaning of the original

GMoDS model because a goal that was originally not triggerable is now triggerable. For

illustration purposes, Figure 5.14a shows a very simple goal model where goal A triggers goal

B. At the initial state2 of the instance model, there are two goals present: [0, A] (or 0A, for

short). For subsequent states there can be zero or more instances of goal B. For example, a

trace3 to a final state4 can be [0, A,B,B] (or 0ABB, for short). To generalize to a regular

expression, all possible traces to final states can be generalized to 0AB∗5. Figure 5.14b

shows the addition of goal X that represents the ability to create and/or remove goals by

a human supervisor and there is a positive trigger and a negative trigger to goal B. At the

initial state, there are three goals: [0, X,A] (or 0XA, for short). Again, all possible traces to

final states can be generalized to 0XAB∗. However, in Figure 5.14c, there is also a positive

trigger and a negative trigger from goal X to goal A. All the possible traces to final states

can be generalized to 0X(A(A|B)∗)?6.

«Goal»

0

«Goal»

A

«Goal»

B
trigger()

(a) Unmodified Model (b) Modified Model (Good) (c) Modified Model (Bad)

Figure 5.14: Designing Control

Third, continuing with the example models from Figure 5.14b, the newly created goal

X must be defined as a special type of goal. The reason for this is in the original model

(Figure 5.14a), where goal B can only be achieved if goal A is achieved because that means

2An initial state is.
3A trace is a sequence of goals that are added to the instance model.
4A final state is where no more goals can be added to the instance model.
5In regular expressions, ∗ means zero or more.
6In regular expressions, ? means zero or one.
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that no more instances of goal B can be triggered. So, when goal A is achieved and all

instances of goal B are achieved then goal 0 is achieved. However, in Figure 5.14b, if goal X

is not special, then goal B can only be achieved if both goal A and goal X is achieved. To

maintain the same achievement requirement for goal B in the original model, goal X must

not be part of the achievement requirement for goal B.

Fourth, because a new goal must be created in the GMoDS model to represent the ability

to create and/or remove goals by a human supervisor, a role must be defined to achieve that

new goal. This also requires an agent capable of playing that role to be defined. Thus,

a separate mechanism must be designed and implemented to achieve this control. While

there are two mechanisms for achieving this control (through roles and the IAL), it is still

possible to provide the human supervisor with the illusion that there is a single mechanism

by hiding the two mechanisms behind a single user interface. But that defeats the purpose

behind organization control.

Fifth, the ability to create and/or remove goals by a human supervisor depends on the

design of the GMoDS model and generally differs from design to design. This inconsistency

results in an ambiguous situation where a human supervisor is unsure whether a triggerable

goal can be created or removed. An example of this problem can be seen in the goal model

(Figure 5.7) in Section 5.2.1, where a human supervisor can only create/remove one out of

five triggerable goals. This problem is even more vexing since it only offers two types of

organization control: creation and removal of goals.

Sixth, this approach does not facilitate the third interaction with goals: modifying goals.

In GMoDS, a goal modification means changing the parameters of a goal.

The above six reasons are the limitations of the designing control through the GMoDS

models, the next section (Section 5.3) explores an existing control over assignments as well

as an extension to GMoDS to allow goal modification.
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5.3 Organization Control

This section explores three of the interactions for organization control: creation and removal

of assignments and goal modification. Creation and removal of assignments (assignment set

manipulation) is already available through OMACS/CzM. Assignment set manipulation is

used extensively by the CC to adapt to failures. However, assignment set manipulation

has not been explicitly tested for use by a human supervisor. Section 5.3.1 explores and

demonstrates the feasibility that the existing mechanism can be used by a human supervisor

for manipulating assignments. As for goal modification, which currently cannot be done by

GMoDS, an extension of GMoDS to allow goal modification is defined in Section 5.3.2.

Furthermore, Section 5.3.2 explores and demonstrates its use by a human supervisor.

5.3.1 Assignment Set Manipulation

This section describes the procedures for manipulating assignments. OMACS/CzM already

has the necessary structures to support assignment set manipulation (creation and removal

of assignments). However, assignment set manipulation requires more than just modifying

the data structures in OMACS/CzM. Fortunately, there are already existing mechanisms

implemented that allow assignments to be created and removed because the ORC handles

failures through reassignment. The existing mechanism can also be used for assignment

set manipulation by a human supervisor. Even though assignments are already being

manipulated by the system, it is still important for a human supervisor to be able to

manipulate assignments because there are times when the human supervisor can see a

better set of assignments. There are a multitude of reasons why a human supervisor can

see a better set of assignments. One of the reasons could be that there is some information

that is not being tracked but is affecting the performance of the system. It is unreasonable

and unrealistic to expect a system to track everything. For example, perhaps the traction
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of the floor is causing one of the robots to move twice as slow and in turn, that robot is

taking twice as long to complete its assignment. A human supervisor can easily gain insight

on this non-tracked information and tweak the assignments accordingly.

In general, when creating an assignment two steps must be performed: (1) the assignment

needs to be verified for correctness and (2) the affected agent needs to be notified. As for

removing an assignment, the affected agent needs to be notified.

All assignments in OMACS/CzM must conform to the validity requirements specified by

OMACS/CzM. In OMACS, an assignment 〈a, r, g〉 is valid if the rcf is greater than 0 and

the role r can achieve the goal g. In CzM, an assignment is valid if the goodness is greater

than 0. Thus, newly created assignments must pass the validity check. An assignment that

is removed does not need to be checked but it should be noted that there is now a goal that

is not in the process of being achieved. Eventually, something needs to be done, either by

the human supervisor or the IAL.

Once the assignment passes the validity check, the affected agent needs to be notified.

Currently, there are already mechanisms for informing agents of new assignments or to stop

agents from working on an existing assignment. In the CC, when a reorganization occurs

autonomously (i.e., the RA produces a set of assignments), all affected agents are notified

as to whether they have new assignments or to stop working on existing assignments; the

CC notifies the EC of the changes. It is through the same mechanisms that affected agents

can be notified when assignments are created or removed.

Allowing assignment set manipulation by a human supervisor is straightforward as most

of the necessary mechanisms already exists. However, there still remains the need for an user

interface for use by the human supervisor, which is beyond the scope of this dissertation.

The next section (Section 5.3.1.1) demonstrates a proof-of-concept of the usefulness of

assignments manipulation with a simple search scenario on how a human supervisor can

manipulate assignments.
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5.3.1.1 Demonstration

This section describes a scenario to illustrate a proof-of-concept of the usefulness of

assignments manipulation. The scenario is a simple search scenario. There are thirty rooms

that needs to be searched. The rooms are laid out along a corridor with fifteen rooms on

each side. For the purpose of evaluation, all rooms are of the same size so that the time

required to search a room is the same. In the scenario, there are three agents and they start

at one end of the corridor. An illustration of the initial layout is depicted in Figure 5.15.

The numbers that are superimposed over the rooms indicate the initial assignments, where

1 means that the room is assigned to “agent 1”, 2 means that the room is assigned to “agent

2”, and 3 means that the room is assigned to “agent 3”.

One important criteria of the search scenario is the time taken to search all thirty rooms;

the shorter the time, the better. However, due to unknown reasons, one of the agents moves

twice as slow as the other two agents. As the system does not know about this problem, all

three agents are considered equivalent and the system assigns ten rooms to each agent to

be searched.

Without human intervention, the system would take 2590 turns to complete the search

of the thirty rooms. Two agents would complete the search for ten rooms but one agent

would still have five more rooms to complete. At that point, the two agents would stay idle

and wait for the slow agent to complete searching the five rooms. Ideally, the two agents

should search twelve rooms while the slow agent should search six rooms. This would result

in a lower number of turns while keeping the time the agents complete their search to be

approximately the same. However, it is not feasible to design systems that can keep track of

everything or know about every potential problems and be able to deal with the problems.

That is the point where a human supervisor can help alleviate the problem.

A human supervisor can notice the problem that one of the robots is moving slower than

the other two robots. There are numerous ways that this can be accomplish such as a visual
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Figure 5.15: Scenario Layout
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overview of the areas that have been search, keeping tabs on the search progress of each

agent, keeping track of completion rate of tasks, etc. In the proof-of-concept demonstration,

the assignments completed by each agent is monitored. Each room is represented by a goal,

so there are thirty search goals. These goals are then assigned to the three agents. When an

agent completes the search for of a room, the associated goal is achieved. The monitoring

interface tracks the achievement of the search goals. Figure 5.16 shows the monitoring

interface at the initial state, where each agent is assigned to search ten rooms.

Figure 5.16: Initial State
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Figure 5.17 shows the point where the two normal agents have completed searching five

rooms with five more rooms to complete. It is clear at this point that “agent 3” is the slow

agent, which has only managed to search two rooms with eight more rooms to complete (as

can be seen in Figure 5.17b). Figure 5.17a shows the locations of the three agents at the

same point, where the slow agent is further apart from the other two agents.
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Figure 5.17: Monitoring Interface – Halfway Point
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Figure 5.18 shows the point where the two normal agents have completed searching all

their ten assigned rooms and are waiting for the slow agent to complete the remaining five

rooms (as can be seen in Figure 5.18b). Figure 5.18a shows the locations of the three agents

about halfway through the simulation. However, the slow agent has only completed two

rooms.
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Figure 5.18: Monitoring Interface – Waiting
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Even at the point where the two normal agents are just waiting for the slow agent

to finish, it is still not too late for a human supervisor to manipulate the assignments.

Figure 5.19 shows the reassignment process. The human supervisor selects one of the

assignments and then select an agent to reassign (as can be seen in Figure 5.19a). The

human supervisor repeats the process three more times such that the slow agent is left

with one room to search and the other two agents are given two rooms each to search.

Figure 5.19b shows the point after the reassignments are done.

Selected Assignment

Selected Agent

(a) (b)

Figure 5.19: Monitoring Interface – Reassignment

Figure 5.20 shows the point where the thirty rooms have been searched, where each of

the two normal agents searched twelve rooms while the slow agent searched six rooms (as

can be seen in Figure 5.20b, which shows the location of the agents at the point where the

search is completed after the human supervisor manipulated the assignments). Furthermore,

the completion time of this particular run is 1681 turns, which is 909 turns less than the

2590 turns where human intervention is not involved.

The proof-of-concept demonstration shows the usefulness of enabling a human supervisor
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Figure 5.20: Monitoring Interface – Completion

to manipulate assignments. In the next section (Section 5.3.2), the interaction for

manipulating goals is explored.

118



5.3.2 Goal Modification

This section explores goal modification. Goal modification is the only goal-related

organization control that cannot be effectively “simulated” by GMoDS models as described

in Section 5.2.3. GMoDS does not explicitly support goal modification although GMoDS

has the necessary data structures. In GMoDS, a goal modification refers to the ability to

change the values of parameters of an instance goal.

For example, the goal survey A1 (from Chapter 2) comes from the base goal type survey.

The base goal survey defines one parameter: the search area. So survey A1 means that the

search area parameter has the value of A1. Currently, to change the value from A1 to B1

in GMoDS, the goal survey A1 needs to be removed (through a negative trigger) and a

new goal created with B1 as the parameter (through a positive trigger). This process often

disrupts the flow of operations because the agent assigned to survey A1 will have to be

reassigned to survey B1. This is not always a desirable situation. A more seamless process

is needed to change values of parameters without causing a reassignment to occur.

Another example of goal modification is to modify parameters for a group of goals. For

example, suppose that the survey goals have a parameter to indicate their search area. If

the search area changes (e.g., the search area shrinks or expands), the commander wants to

notify all members of a team of the change in the search area. Currently, in GMoDS, the

“best” way for this notification to occur is for the commander to individually reassign each

member of that team. However, a better approach would be to allow the commander to make

one change to the search area for the team and all members of that team would be notified

of the change automatically. In GMoDS, this can be done by exploiting the tree-based

structure of goals. Non-leaf goals can be considered as team goals. If the subgoals inherit

the values of their parameters from their parent goals, then the value of the parameter of the

parent goal can be modified and the values of the subgoals can be automatically updated.

The next part of this section describes the formalized extension to GMoDS to support goal
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modification. The extension facilitates a more seamless notification mechanism as well as

allowing modifications to a group of goals.

5.3.2.1 Extension

In GMoDS, all goals in the goal tree are allowed to have parameters. Simply allowing a

human supervisor to change the values of parameters is not sufficient because it can break

the implied relations among goals that share the same parent goal. Using the example

described earlier for modifying a group of goals, it does not make sense if one member

has the goal survey A1 and another member has the goal survey B1 and they are in the

same team. A tree-based structure offers benefits that should not be ignored because that

structure can be used for modifying a group of goals. However, there are no constraints that

govern how these parameters interact; this result in ambiguity on how parameters should

work. The extension to GMoDS introduces a number of constraints that govern how these

parameters interact and function within GMoDS.

The formal specification of GMoDS is described in Section 3.2. The following is a recap

of some of the definitions that will be used again. GS is the set of specification goals, GI is

the set of instance goals, E is the set of events, TS is the set of specification triggers, and TI

is the set of instance triggers.

In GMoDS, an instance parameter is defined as a pair 〈k, v〉, where k is the key or

identifier of the parameter and v is the value of that parameter. For example, the survey

A1 goal (from Chapter 2) has one parameter: area, which has a value of A1. And so, the

first two definitions is defined.

Definition 5.2. Lkey is the set of all strings that serves as keys or identifiers. A string is a

sequence of characters, where a character is an alphabet of a language.

Definition 5.3. Lvalue is the set of all strings that serves as values.
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With Lkey and Lvalue defined, parameters can be defined formally. In GMoDS, there

are two models: a specification model and a runtime (also known as instance) model. In

addition, goals can have multiple parameters. So, the specification model will be explained

first. Since the goals in the specification model (also known as specification goals or goal

types) do not need values for their parameters, a parameter for a specification goal is simply

a set of k ∈ Lkey. Suppose that a specification goal g has two parameters k1 and k2, then the

set {k1, k2} is a specification parameter group. And so, a specification parameter is defined.

Definition 5.4. A specification parameter is an element of Lkey. A specification parameter

group is a subset of Lkey. PS is the set of all specification parameter groups. A specification

goal has a specification parameter group p, where p ∈ PS, such that p = {k1, k2, k3, . . . , kn},

where km ∈ Lkey.

Next, is the definition of a function that returns the specification parameter group for a

given specification goal.

Function 5.1. params : GS 7→ PS. Given a specification goal g that has two parameters k1

and k2, then params (g) = {k1, k2}.

Similarly, a trigger (both positive and negative) can have multiple parameters. A trigger

in the specification model is defined as a tuple 〈E,GS, GS〉. For example, if the survey goal

type (from Chapter 2) has one parameter (area) and can be triggered by trigger t, then it

would make sense that the set {area} is the specification parameter group for t. And so, a

specification trigger is defined.

Definition 5.5. A specification trigger has a specification parameter group p, where p ∈ PS,

such that p = {k1, k2, k3, . . . , kn}, where km ∈ Lkey. where tuple of 〈T, PS〉. TS is the set of

all specification triggers.

Next, are the definitions of two functions. The first function returns the specification

parameter group for a given specification trigger. The second function returns the
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specification parameter groups for all specification triggers to a given specification goal.

A power set is denoted by P (s), where s is a set.

Function 5.2. params : TS 7→ PS. Given a specification trigger t′ = 〈t, p〉, where t =

〈e, g1, g2〉 and p = {k1, k2}, then params (t′) = {k1, k2}.

Function 5.3. triggers : GS 7→ P (TS). Given a specification goal g that can be triggered

by trigger t1 with specification parameter group {k1, k2} and trigger t2 with specification

parameter group {k2, k3}, then triggers (g) = {k1, k2, k3}.

That concludes the definitions for the specification model. Next, are the definitions for

the runtime (instance) model, starting with instance goals. Similar to specification goals,

instance goals can also have multiple parameters. Suppose that an instance goal g has

two parameters k1 with value v1 and k2 with value v2, then the set {〈k1, v1〉, 〈k2, v2〉} is an

instance parameter group. And so, an instance parameter is defined.

Definition 5.6. An instance parameter is a tuple 〈k, v〉 such that k ∈ Lkey and v ∈ Lvalue.

An instance parameter group is a set of the tuples 〈Lkey, Lvalue〉. PI is the set of all instance

parameter groups. An instance goal has an instance parameter group p, where p ∈ PI such

that p = {〈k1, v1〉, 〈k2, v2〉, 〈k3, v3〉, . . . , 〈kn, vn〉}, where km ∈ Lkey and vm ∈ Lvalue.

Next, is the definition of a function that returns the instance parameter group for a given

instance goal.

Function 5.4. params : GI 7→ PI. Given an instance goal g that has two parameters 〈k1, v1〉

and 〈k2, v2〉, then params (g) = {〈k1, v1〉, 〈k2, v2〉}.

The following two functions are for dealing with instance parameters. The first function

returns a set of k ∈ Lkey for a given instance parameter group. The second function returns

the value v ∈ Lvalue for a given instance parameter group and a key k ∈ Lkey.
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Function 5.5. keys : PI 7→ P (Lkey). Given an instance parameter group p, where p =

{〈k1, v1〉, 〈k2, v2〉, 〈k3, v3〉}, then keys (p) = {k1, k2, k3}.

Function 5.6. value : PI × Lkey 7→ Lvalue. Given an instance parameter group p, where

p = {〈k1, v1〉, 〈k2, v2〉, 〈k3, v3〉}, then value (p, k1) = v1.

Next, is the definition for instance triggers (both positive and negative). Similar to

specification triggers, instance triggers can have multiple parameters. For example, if the

survey goal type (from Chapter 2) has one parameter (area) and can be triggered by a

trigger with the specification parameter group {area}. Then for the instance goal survey

A1, it would make sense that the instance parameter group {〈area,A1〉} is the instance

parameter group for the instance trigger when it occurred. This leads to the definition of

an instance trigger.

Definition 5.7. An instance trigger has an instance parameter group p, where p ∈ PI such

that p = {〈k1, v1〉, 〈k2, v2〉, 〈k3, v3〉, . . . , 〈kn, vn〉}, where km ∈ Lkey and vm ∈ Lvalue. TI is the

set of all instance triggers.

The following two functions are for dealing with instance triggers. The first function

returns instance parameter group for a given instance trigger. The second function returns

the instance parameter group of the instance trigger that triggered the given instance goal.

Function 5.7. params : TI 7→ PI. Given an instance trigger t′ = 〈t, p〉, where t = 〈e, g1, g2〉

and p = {〈k1, v1〉, 〈k2, v2〉}, then params (t′) = {〈k1, v1〉, 〈k2, v2〉}.

Function 5.8. triggers : GI 7→ TI. Given an instance goal g that can be triggered by trigger

t1 with specification parameter group {k1, k2} and trigger t2 with specification parameter

group {k2, k3} and g was triggered by t1 with instance parameter group {〈k1, v1〉, 〈k2, v2〉},

then triggers (g) = {〈k1, v1〉, 〈k2, v2〉}.
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Now that parameters for goals and triggers have been formally defined, modifications

can be defined. In GMoDS, a goal modification means to change the value of a parameter.

Since an instance parameter is the tuple 〈k, v〉, then a modification is the change to the

value of a parameter. For example, if the value of the area parameter of the instance goal

survey A1 (from Chapter 2) is to be changed to B1, then the modification for survey A1 is

{〈area,B2〉}. So, a modification is defined.

Definition 5.8. A modification is a tuple 〈g ∈ GI, p ∈ PI〉 such that ∀k ∈ keys (p) ⇒ k ∈

keys (params (g)). M is the set of all modifications.

The following two functions are for interacting with modifications. The first function

returns the instance parameter group for a given modification. The second function returns

the latest modification for each instance parameter of a given instance goal.

Function 5.9. params : M 7→ PI. Given a modification m = 〈g, {〈k1, v1〉, 〈k2, v2〉}〉, then

params (m) = {〈k1, v1〉, 〈k2, v2〉}.

Function 5.10. mod : GI 7→ M . Given an instance goal g with three instance parameters

(〈k1, v1〉, 〈k2, v
′
2〉, and 〈k3, v

′′
3〉) and g has been modified by a sequence of modifications

[m1,m2,m3] ∈ M , where m1 = 〈g, {〈k2, v
′
2〉, 〈k3, v

′
3〉}〉, m2 = 〈g, {〈k3, v

′′
3〉}〉, and m3 =

〈g, {}〉. Then mod (g) = 〈g, {〈k2, v
′
2〉, 〈k3, v

′′
3〉}〉.

The next function is for retrieving the initial values of the instance parameter group for

a given instance goal.

Function 5.11. init : GI 7→ PI. Given an instance goal g with three instance parameters

〈k1, v
′
1〉, 〈k2, v

′′
2〉, and 〈k3, v

′′′
3 〉) and that v1 is the initial value of k1, v2 is the initial value of

k2, and v3 is the initial value of k3. Then init (g) = {〈k1, v1〉, 〈k2, v2〉, 〈k3, v3〉}.

Now that all the necessary parts have been defined, the following five constraints limits

how the parameters interact. The first constraint (Constraint 5.1) specifies how parameters

124



interact within the specification model. All parameters of a specification goal must come

from either its parent goal or defined as a parameter of a trigger to that specification

goal. For instance (as shown in Figure 5.21), given (1) a specification goal g1 that has the

specification parameter group {k1, k2, k3, k4}; (2) g1 is a subgoal of g0; and (3) two triggers

(t1, t2) to g1. The first constraint says that km must either be a parameter of g0 or defined

as a parameter of t1 or t2. Thus, k1 and k3 are from g0, k2 is from t1, and k4 is from t2.

∀g ∈ GS, t ∈ TS

t ∈ triggers (g)⇒ params (g) = (params (parent (g)) ∪ params (t))
(5.1)

«Goal»

g0

---------

k1
k3

«Goal»

g1

---------

k1
k2
k3
k4

t1(k2)

t2(k4)

Figure 5.21: Source of Parameters

The second constraint (Constraint 5.2) specifies a relationship between the parameters of

a specification goal and the parameters of instances of that specification goal. All instance

goals must have the same set of keys as the associated specification goal. For instance (as

shown in Figure 5.22), given a specification goal g1 that has specification parameter group

{k1, k2} (shown in Figure 5.22a), then all instances of g1 (which are instance goals) must

have the instance parameter group {〈k1, x〉, 〈k2, y〉} (shown in Figure 5.22b).

∀g ∈ GI, k ∈ Lkey

k ∈ keys (params (g))⇔ k ∈ params (spec (g))
(5.2)
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(a) Specification
Model

(b) Instance Model

Figure 5.22: Same Set of Keys

The third constraint (Constraint 5.3) specifies a relationship among the values of instance

parameters. The value for an instance parameter must come from one of three sources: its

parent goal, the trigger that created that instance goal, or a modification to that instance

goal.

∀g ∈ GI, k ∈ Lkey

k ∈ keys (params (g))⇒

value (params (g) , k) = value (params (parent (g)) , k)∨

value (params (g) , k) = value (params (triggers (g)) , k)∨

value (params (g) , k) = value (params (mod (g)) , k)

(5.3)

The fourth constraint (Constraint 5.4) expands on the third constraint by limiting the

source of the initial value for an instance parameter. If a parameter is defined in any of

the triggers, then the value of that parameter must come from the trigger. For instance (as

shown in Figure 5.23), given (1) two specification goals g1 and g0, (2) g1 is a subgoal of g0,

(3) g1 and g0 both have the parameter k1, and (4) there is a trigger t1 to g1 with parameter

k1 (shown in Figure 5.23a), then the value of parameter k1 for all instances of g1 must come

from the trigger (shown in Figure 5.23b).
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∀g ∈ GI, k ∈ Lkey

k ∈ (keys (params (triggers (g)))− keys (params (mod (g))))⇒

value (params (g) , k) = value (params (triggers (g)) , k)

(5.4)

«Goal»

g0

---------

k1

«Goal»

g1

---------

k1

t1(k1)

(a) Specification Model

«Goal»

g0

---------

k1 = a

«Goal»

g1

---------

k1 = b

t1(k1 = b)

«Goal»

g1

---------

k1 = c

t1(k1 = c)

(b) Instance Model

Figure 5.23: Values are from Triggers

The fifth constraint (Constraint 5.5) limits the subsequent sources of the values of an

instance parameter to be either from the parent instance goal if that instance parameter can

inherited the value from the parent instance goal or from a modification to that instance

goal.

∀g ∈ GI, k ∈ Lkey

k ∈ keys (params (g)) ∧ value (params (g) , k) 6= value (init (g) , k)⇒
k /∈ keys (params (triggers (g)))⇒

value (params (g) , k) = value (params (mod (g)) , k)∨

value (params (g) , k) = value (params (parent (g)) , k)


∧ k ∈ keys (params (triggers (g)))⇒

value (params (g) , k) = value (params (mod (g)) , k)



(5.5)

The five constraints govern how parameters interact and function within GMoDS.
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Next, there are two operations that describe how modifications work. The first operation

(Equation 5.6) states that when a modification 〈g, p〉 occurs for instance goal g, then all

values of matching parameters are changed. For instance (as shown in Figure 5.24), if

instance goal g1 has three parameters 〈k1, a〉, 〈k2, b〉, and 〈k3, c〉 (shown in Figure 5.24a).

There is a modification {〈k1, d〉, 〈k3, e〉, 〈k4, f〉} to g1, then the new values of the parameters

for g1 is {〈k1, d〉, 〈k2, b〉, 〈k3, e〉} (shown in Figure 5.24b). Even though 〈k4, v4〉 is part of

the modification, nothing happens for that parameter because k4 does not exists in the g1;

modifications do not add new parameters. The current state is denoted as S and S ′ denotes

the next state.

S Jmodify (g ∈ GI, p ∈ PI)KS ′

S ′ |=

∀k ∈ Lkey

k ∈ (keys (p) ∩ keys (params (g)))⇒

value (params (g′) , k) = value (p, k)

(5.6)

(a) Before Mod-
ification

«Goal»

g1

---------

k1 = d

k2 = b

k3 = e

m(k1 = d, k3 = e, k4 = f)

(b) After Modification

Figure 5.24: Goal Modification

In GMoDS, goals are decomposed into subgoals and achieving the subgoals automatically

achieves the parent goal. Likewise, in a similar manner, modifications to an instance goal

follow a similar principal. However, instead of moving up to the parent goal, modifications

are moving down to the children goals. The second operation (Equation 5.7) states that when
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a modification occurs, all values of matching and inherited parameters for the subgoals are

also changed. It is important to know that the fourth constraint (Equation 5.4) determines

whether a parameter is inherited; an inherited parameter is a parameter that exists only in

the parent goal. For instance (as shown in Figure 5.25), given (1) three specification goals

g0, g1, and g2, (2) g1 and g2 are subgoals of g0, (3) g0, g1, and g2 have the parameter k1,

and (4) there is a trigger t1 to g2 with parameter k1 (shown in Figure 5.25a). And in the

instance model, the value of the parameter k1 of g0, g1, and g2 is a (Figure 5.25b). There is

a modification {〈k1, b〉} to g0, then the value of the parameter k1 of g0 and g1 changes to b

but the value of the parameter k1 of g2 remains unchanged (Figure 5.25c). This is because

even though the parameter k1 from g2 is the same key as the parameter from g0, k1 was

redefined by the trigger t1. Thus, the parameter k1 from g2 is not an inherited parameter.

S Jmodify (g1 ∈ GI, p ∈ PI)KS ′

S ′ |=

∀g2 ∈ GI, k ∈ Lkey

g2 ∈ descendant (g1)∧

k ∈


 keys (p) ∩ keys (params (g2))∩

keys (params (parent (g2)))

−
keys (params (triggers (g2)))

⇒
value (params (g′2) , k) = value (params (parent (g1)) , k)

(5.7)

This concludes the formal description of the extension to GMoDS to support goal

modification. The next section (Section 5.3.2.2) looks at the proof of correctness of the

extension.

5.3.2.2 Proof

This section provides a proof-by-exhaustion that goal modifications (modify (g ∈ GI, p ∈ PI))

do not violate the three constraints as defined in Section 5.3.2.1: Constraint 5.3,
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«Goal»

g0

---------

k1

«Goal»

g1

---------

k1

«Goal»

g2

---------

k1

t1(k1)

(a) Specification Model

«Goal»

g0

---------

k1 = a

«Goal»

g1

---------

k1 = a

«Goal»

g2

---------

k1 = a

(b) Instance Model -
Before

«Goal»

g0

---------

k1 = b

«Goal»

g1

---------

k1 = b

«Goal»

g2

---------

k1 = a

m(k1 = b)

(c) Instance Model -
After

Figure 5.25: Propagation of Modifications

Constraint 5.4, and Constraint 5.5. In the context of this proof, Constraint 5.1 is assumed

to hold because the constraint only applies to the specification tree and goal modification

only applies to the instance tree. Similarly, Constraint 5.2 is also assumed to hold because

the constraint states that instance goals must have the same set of parameters as their

associated specification goals and goal modifications do not add or remove parameters.

Proof. The goal modification operation is defined by Equation 5.6 and Equation 5.7. There

are two cases to consider when a goal modification (modify (g ∈ GI, p ∈ PI)) occurs on the

given instance goal g with instance parameter group p: (1) how the modification is applied

to the given instance goal g and (2) how the modification is applied to the descendant goals

of g.

1. How the modification is applied to instance goal g. In Equation 5.6, the value

of an instance parameter is changed when k ∈ (keys (p) ∩ keys (params (g))) and

nothing happens to the values of instance parameters that are not modified, k /∈

(keys (p) ∩ keys (params (g))). The instance parameters of g and instance parameters

of p determines the modification. Thus, there are five possible cases to consider.

(a) keys (params (g)) ⊂ keys (p). Any k /∈ keys (params (g)) ∧ k ∈ keys (p)
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is ignored because the instance parameter with key k does not exists in

instance goal g and goal modification does not add or remove instance pa-

rameters. Because keys (params (g)) ⊂ keys (p), the values of all instance

parameters of g will be modified. This results in “value (params (g) , k) =

value (params (mod (g)) , k)” being true for all instance parameters of g. And so,

Constraint 5.3 and Constraint 5.5 remains satisfied. Constraint 5.4 is vacuously

true because every instance parameters of the instance goal g is modified,

keys (params (triggers (g)))− keys (params (mod (g))) = ∅.

(b) keys (params (g)) ⊃ keys (p). For any k ∈ keys (params (g)) ∧ k /∈ keys (p),

the value associated with k remains unchanged by the goal modification because

k /∈ (keys (p) ∩ keys (params (g))). Constraint 5.3 and Constraint 5.5 remains sat-

isfied because for instance parameters that are modified, “value (params (g) , k) =

value (params (mod (g)) , k)” is true. And for instance parameters that are

unchanged, the constraints are satisfied before the modification and so, continues

to satisfy the constraints. Constraint 5.4 holds because the constraint is satisfied

prior to the modification for all k ∈ keys (params (g)) and the remaining keys

continue to hold true because (keys (p)− keys (params (g))) ⊂ keys (params (g)).

(c) keys (params (g)) = keys (p). Similar to case, keys (params (g)) ⊂ keys (p), with

the exception that 6 ∃k | k /∈ keys (params (g)) ∧ k ∈ keys (p).

(d) keys (params (g)) ∩ keys (p) 6= ∅. There are three cases to consider.

i. k /∈ keys (params (g)) ∧ k ∈ keys (p). Since goal modification do not add

or remove instance parameters, the extra instance parameters from the

modification are ignored. So, the three constraints are vacuously true.

ii. k ∈ keys (params (g)) ∧ k /∈ keys (p). Since Constraint 5.3, Constraint 5.5,

and Constraint 5.4 are satisfied prior to the modification and none of the

131



instance parameters in this case are modified, the three constraints continue

to be satisfied.

iii. k ∈ keys (params (g)) ∧ k ∈ keys (p). Similar to case, keys (params (g)) ⊃

keys (p), where instance parameters that are modified will still satisfy the

constraints because “value (params (g) , k) = value (params (mod (g)) , k)” is

true. And instance parameters that are not modified continue to satisfy the

constraints because they satisfy the constraints prior to modification.

(e) keys (params (g)) ∩ keys (p) = ∅. No values associated with any instance

parameters of the instance goal g is modified, and since g satisfies Constraint 5.3,

Constraint 5.5, and Constraint 5.4 before the modification, g continues to satisfy

the three constraints.

2. How the modification is applied to the descendant goals of g. In Equation 5.7, the

type of descendant goal is determined by the instance parameters of the descendant

goal g′, the instance parameters of the parent instance goal of g′, the triggers to g′,

and p. For this portion of the proof, the proof evaluates g and the children as the

proof can be applied recursively from the instance goal g to the leaf goals of g. So the

parent (g′) = g. Thus, there are four cases to consider.

(a) keys (params (g))∩ keys (params (g′)) = ∅. Since the result is empty, the triggers

to g′ (if there are any) and p do not change the type of children goal. Since

keys (p)∩∅ = ∅, that means that no instance parameters of g′ are modified. And

since g′ satisfies Constraint 5.3, Constraint 5.5, and Constraint 5.4 prior to the

modification, g′ continues to satisfy the three constraints.

(b) keys (params (g))∩keys (params (g′))∩keys (p) = ∅. Since the result is empty, the

triggers to g′ (if there are any) do not change the type of children goal. Since ∅−

keys (params (triggers (g′))) = ∅, that means that no instance parameters of g′ are
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modified. And since g′ satisfies Constraint 5.3, Constraint 5.5, and Constraint 5.4

prior to the modification, g′ continues to satisfy the three constraints.

(c)

 (keys (params (g)) ∩ keys (params (g′)) ∩ keys (p))−

keys (params (triggers (g′)))

 = ∅. Since the result

is ∅, that means that no instance parameters of g′ are modified. And since

g′ satisfies Constraint 5.3, Constraint 5.5, and Constraint 5.4 prior to the

modification, g′ continues to satisfy the three constraints.

(d)

 (keys (params (g)) ∩ keys (params (g′)) ∩ keys (p))−

keys (params (triggers (g′)))

 6= ∅. There are two

cases to consider based on whether any of the triggers to g′ contain the same

keys as the instance parameters of g′.

i. k ∈ keys (params (triggers (g′))). The instance parameter k will not inherit

its value from the parent instance goal g. This results in a p′ ⊂ p | k /∈

keys (params (p′)).

ii. k /∈ keys (params (triggers (g′))). The instance parameter k will inherit

its value from parent instance goal g. This results in a p′ ⊂ p | k ∈

keys (params (p′))

The instance parameters of the instance goal g′ will be modified recursively

modify (g′, p′) .

Thus, the goal modification operation does not violate Constraint 5.3, Constraint 5.5, and

Constraint 5.4.

This concludes the proof for the goal modification operation. The next section

(Section 5.3.2.3) demonstrates a proof-of-concept of the usefulness of goal modification.
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5.3.2.3 Demonstration

This section describes a navigation scenario to illustrate a proof-of-concept of the usefulness

of goal modification. The navigation scenario has a team of robots that navigates along a

given set of waypoints. The navigation scenario is based on a much larger reconnaissance

scenario from the Human Robot Teams (HuRT)7 project. In the navigation scenario, the

team consists of four robots (simulated via Player/Stage8). The four robots navigate as a

team using three pieces of information obtained from their goals: a set of waypoints, the

danger level, and the formation. Once the robots have their goals, they begin to navigate

along the given set of waypoints in the specified formation. The danger level determines

the distance between robots; a high danger level means that robots are further apart while

a low danger level means that robots are closer to one another.

Figure 5.26 shows a partial view of the goal model from the reconnaissance scenario. The

Go To goal is the navigation goal for the team. One of the subgoals of the Go To goal is

the Move goal, which has four subgoals. Each subgoal represents the position of a robot in

a formation. As defined by the goal modification extensions (Section 5.3.2.1), the location,

formation, level, and points parameters are inherited parameters. Thus, changing the values

of those parameters from the Go To goal will change the values of the Move, LeadMove,

AlphaMove, BetaMove, and GammaMove goals. Likewise, changing the values of those

parameters from the Move goal will also change the values of the LeadMove, AlphaMove,

BetaMove, and GammaMove goals.

In a run of the system, a human supervisor initiates the Go To task (which is represented

by the Go To goal) and provides three waypoints, the medium danger level, the wedge9

formation. As the team begins to navigate along the given waypoints, the human supervisor

7More information about HuRT can be obtained from http://projects.cis.ksu.edu/gf/project/

hurt/.
8More information about Player/Stage can be obtained from http://playerstage.sourceforge.net/.
9A triangle-shaped formation; more information can be obtained from http://en.wikipedia.org/wiki/

Flying_wedge.
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GoTo(location, formation, level, points, status)

«precedes»
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3 – Go To

location : Location

formation : Formation

level : DangerLevel

points : WayPoints

status : Status

«Goal»

3.2 – Move

location : Location

formation : Formation

level : DangerLevel

points : WayPoints

lostGamma(formation, level)

lostGamma(location, formation, level)

lostBeta(location, formation, level)

lostAlpha(location, formation, level)

lostGamma(location, formation, level)

lostBeta(location, formation, level)

lostAlpha(location, formation, level)

reform(formation, level, points)

GoTo(location, formation, level, points, status) lostAlpha(location, formation, level)
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4.1 – LeadCrossDA
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tactic : Tactic

level : DangerLevel
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«Goal»

3.2.1 – LeadMove

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.2.2 – AlphaMove

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.2.3 – BetaMove

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.2.4 – GammaMove

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.1.3 – BetaForm

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.1.4 – GammaForm

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.3.1 – LeadReform

formation : Formation

level : DangerLevel

points : WayPoints

«Goal»

3.3.2 – AlphaReform

formation : Formation

level : DangerLevel

points : WayPoints

Figure 5.26: Partial Goal Model

changes the danger level from medium to low. The following five figures (Figure 5.27,

Figure 5.28a, Figure 5.28b, Figure 5.28c, and Figure 5.28d) show the logs of the sequence

of events from the IAL and the four robots that is related to changing the value of the level

parameter.

Figure 5.27 shows a reformatted and simplified log (from Appendix E) of the IAL. Only

the relevant lines from the log that are related to the change of value in the level parameter

of the Go To goal are shown. At line 37, the IAL receives the goal modification from the

human supervisor for the Go To goal to change the value of level parameter. Line 38 lists

the four leaf-goals that are affected by this change: LeadMove, AlphaMove, BetaMove, and

GammaMove. Lines 39–42 lists the four robots that are currently assigned to the respective

leaf-goals: red robot that is assigned to the LeadMove goal, blue robot that is assigned to

the AlphaMove goal, green robot that is assigned to the BetaMove goal, and black robot

that is assigned to the GammaMove goal.
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37

38

39

40

41

42

2011/05/27 14:18:24 >> Goal Modification (Go To[1])
  status = null,
  points = [(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
  Task ID = 1,
  location = recon.data.ReconArea [x=31, y=75, width=0, height=0],
  level = LOW,
  formation = WEDGE

2011/05/27 14:18:24 >> Affected Goals
  LeadMove[1]
    state = ([2, 1, 1],false),
    points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
    location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
    level = *LOW,
    formation = *WEDGE
  AlphaMove[1]
    state = ([2, 1, 1],false),
    points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
    location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
    level = *LOW,
    formation = *WEDGE
  BetaMove[1]
    state = ([2, 1, 1],false),
    points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
    location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
    level = *LOW,
    formation = *WEDGE
  GammaMove[1]
    state = ([2, 1, 1],false),
    points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
    location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
    level = *LOW,
    formation = *WEDGE

2011/05/27 14:18:24 >> Goal (BetaMove[1]) Assigned To Agent (green)

2011/05/27 14:18:24 >> Goal (LeadMove[1]) Assigned To Agent (red)

2011/05/27 14:18:24 >> Goal (AlphaMove[1]) Assigned To Agent (blue)

2011/05/27 14:18:24 >> Goal (GammaMove[1]) Assigned To Agent (black)

Figure 5.27: Reformatted Log of IAL
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The IAL informs the four robots about the change in their respective goals. The following

figure (Figure 5.28) shows how each robot receives and reacts to the change in value for

the level parameter. Figure 5.28a shows the red robot receiving the change for the level

parameter. However, because the red robot is playing the leader role in the formation, it

does not need to react to this change. Figure 5.28b shows the blue robot receiving the change

for the level parameter. When the blue robot, which is playing the alpha position in the

formation, receives the change, it reacts by changing the distance that it needs to be from

the leader position from 1100 millimeters to 1000 millimeters. Figure 5.28c shows the green

robot receiving the change for the level parameter. When the green robot, which is playing

the beta position in the formation, receives the change, it reacts by changing the distance

that it needs to be from the leader position from 1100 millimeters to 1000 millimeters.

Figure 5.28d shows the black robot receiving the change for the level parameter. When

the black robot, which is playing the gamma position in the formation, receives the change,

it reacts by changing the distance that it needs to be from the alpha position from 1100

millimeters to 1000 millimeters.

The next goal modification that the human supervisor changes is the waypoints. The

human supervisor decides to add a fourth waypoint to the original three waypoints.

Figure 5.29a shows the interface before the modification of the points parameter of the

Go To goal and Figure 5.29b shows the interface after the modification. The following five

figures (Figure 5.30, Figure 5.31a, Figure 5.31b, Figure 5.31c, and Figure 5.31d) show the

logs of the sequence of events from the IAL and the four robots that is related to changing

the value of the points parameter.

Figure 5.30 shows a reformatted and simplified log (from Appendix E) of the IAL. Only

the relevant lines from the log that are related to the change of value in the points parameter

of the Go To goal are shown. At line 43, the IAL receives the goal modification from the

human supervisor for the Go To goal to change the value of the points parameter. Line 44
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5 2011/05/27 14:18:25 >> Goal Modification (LeadMove[1])
  formation = *WEDGE,
  level = *LOW,
  state = ([2, 1, 1],false),
  location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)]

(a) “red” Robot

4 2011/05/27 14:18:24 >> Goal Modification (AlphaMove[1])
  state = ([2, 1, 1],false),
  level = *LOW,
  location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
  formation = *WEDGE

2011/05/27 14:18:24 >> Reaction To Modification
  Previous Value: (MEDIUM), Distance Apart: (1100)
  New Value: (LOW), Distance Apart: (1000)

5

(b) “blue” Robot

4 2011/05/27 14:18:25 >> Goal Modification (BetaMove[1])
  location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
  state = ([2, 1, 1],false),
  level = *LOW,
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
  formation = *WEDGE

2011/05/27 14:18:25 >> Reaction To Modification
  Previous Value: (MEDIUM), Distance Apart: (1100)
  New Value: (LOW), Distance Apart: (1000)

5

(c) “green” Robot

4 2011/05/27 14:18:28 >> Goal Modification (GammaMove[1])
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0)],
  location = *recon.data.ReconArea [x=31, y=75, width=0, height=0],
  state = ([2, 1, 1],false),
  level = *LOW,
  formation = *WEDGE

2011/05/27 14:18:28 >> Reaction To Modification
  Previous Value: (MEDIUM), Distance Apart: (1100)
  New Value: (LOW), Distance Apart: (1000)

5

(d) “black” Robot

Figure 5.28: Reformatted Log of Robots
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3 waypoints

(a) Before

4 waypoints

(b) After

Figure 5.29: Waypoint Modification
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lists the four leaf-goals that are affected by this change: LeadMove, AlphaMove, BetaMove,

and GammaMove. Lines 45–48 lists the four robots that are currently assigned to the

respective leaf-goals: red robot that is assigned to the LeadMove goal, blue robot that is

assigned to the AlphaMove goal, green robot that is assigned to the BetaMove goal, and

black robot that is assigned to the GammaMove goal.

The IAL informs the four robots about the change in their respective goals. The following

figure (Figure 5.31) shows how each robot receives and reacts to the change in value for the

points parameter. Figure 5.31a shows the red robot receiving and reacting to the change

for the points parameter. Line 6 is when the red robot receives the change. Lines 3, 7,

and 9 show the red robot indicating that the team has reached a waypoint; line 9 is the

new fourth waypoint added by the human supervisor. Figure 5.31b shows the blue robot

receiving the change for the points parameter. However, because the blue robot is simply

following the red robot, it does not need to react to this change. Figure 5.31c shows the

green robot receiving change for the points parameter. However, because the green robot is

simply following the red robot, it does not need to react to this change. Figure 5.31d shows

the black robot receiving the change for the points parameter. However, because the black

robot is simply following the blue robot, it does not need to react to this change.

The proof-of-concept demonstration shows the usefulness of enabling a human supervisor

to modify goals, especially for team goals. The next section (Section 5.4) summarizes this

chapter.

5.4 Summary

In summary, this chapter defines organization control and a set of interactions for

organization control. In addition, an architecture is presented that shows how the IAL

(Section 5.2) can autonomously perform task allocation and adapt to failures. The IAL frees
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43

44

45

46

47

48

2011/05/27 14:18:30 >> Goal Modification (Go To[1])
  status = null,
  points = [(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
  Task ID = 1,
  location = recon.data.ReconArea [x=31, y=69, width=0, height=0],
  level = LOW,
  formation = WEDGE

2011/05/27 14:18:30 >> Affected Goals
  BetaMove[1]

state = ([2, 1, 1],false),
points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
level = *LOW,
formation = *WEDGE

  LeadMove[1]
state = ([2, 1, 1],false),
points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
level = *LOW,
formation = *WEDGE

  AlphaMove[1]
state = ([2, 1, 1],false),
points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
level = *LOW,
formation = *WEDGE

  GammaMove[1]
state = ([2, 1, 1],false),
points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
level = *LOW,
formation = *WEDGE

2011/05/27 14:18:30 >> Goal (BetaMove[1]) Assigned To Agent (green)

2011/05/27 14:18:30 >> Goal (LeadMove[1]) Assigned To agent (red)

2011/05/27 14:18:30 >> Goal (AlphaMove[1]) Assigned To Agent (blue)

2011/05/27 14:18:30 >> Goal (GammaMove[1]) Assigned To Agent (black)

Figure 5.30: Reformatted Log of IAL
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3 2011/05/27 14:18:20 >> Arrived At Waypoint (31.2263, 79.8246, 0.0)

2011/05/27 14:18:31 >> Goal Modification (LeadMove[1])
  formation = *WEDGE,
  level = *LOW,
  state = ([2, 1, 1],false),
  location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)]

2011/05/27 14:18:33 >> Arrived At Waypoint (31.1299, 75.1946, 0.0)

2011/05/27 14:18:53 >> Arrived At Waypoint (31.0334, 68.9247, 0.0)

6

7

9

(a) “red” Robot

6 2011/05/27 14:18:30 >> Goal Modification (AlphaMove[1])
  state = ([2, 1, 1],false),
  level = *LOW,
  location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
  formation = *WEDGE

(b) “blue” Robot

6 2011/05/27 14:18:31 >> Goal Modification (BetaMove[1])
  location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
  state = ([2, 1, 1],false),
  level = *LOW,
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
  formation = *WEDGE

(c) “green” Robot

6 2011/05/27 14:18:33 >> Goal Modification (GammaMove[1])
  points = *[(31.2263, 84.1653, 0.0), (31.2263, 79.8246, 0.0), (31.1299, 75.1946, 0.0), (31.0334, 68.9247, 0.0)],
  location = *recon.data.ReconArea [x=31, y=69, width=0, height=0],
  state = ([2, 1, 1],false),
  level = *LOW,
  formation = *WEDGE

(d) “black” Robot

Figure 5.31: Reformatted Log of Leader Robot
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up a human supervisor from the need to micromanage the assignments. The IAL also allows

a human supervisor to exercise organization control. The two interactions for manipulating

assignments and a demonstration of human supervisor assignment manipulation is presented

in Section 5.3.1. Section 5.3.2 describes a formal extension to GMoDS to allow goal

modification, proves the correctness of the formalization, and demonstrates its usefulness.

Role-related interactions for organization control are not addressed because there is

currently no autonomous means of generating role behaviors other than writing executable

code and not all human supervisors are proficient at writing executable code. Furthermore,

code injection for new roles or a means for translating role behavior to executable code is

beyond the scope of this dissertation.

In addition, the goal creation and removal interactions are not addressed because

these would require extensions to GMoDS similar to goal modification. But unlike goal

modification, which adds new formalizations to GMoDS and does not modify any existing

formalization in GMoDS, the formalization for goal creation and removal would require

changes to existing formalization in GMoDS.

The next chapter (Chapter 6) discusses related work and how they compare to the work

in this dissertation.
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Chapter 6

Related Work

This chapter looks at existing work that are related to my work. Section 6.1 looks at

work related to multirobot task allocation. Section 6.2 looks at related work in applying

PMFs. Section 6.3 looks at work that are aimed at increasing the human-to-robot ratio of

supervisory control.

6.1 Task Allocation

In multirobot systems, Parker [72] defined three approaches to tackling the problem of

task allocation: bioinspired, organizational, and knowledge-based. Furthermore, Gerkey

and Matarić [42] provided a taxonomy for multirobot task allocation problems. The four

classifications are: (1) single-task robot, where a robot can perform at most one task at

a time; (2) multi-task robot, where a robot can perform multiple tasks simultaneously;

(3) single-robot task, where a task requires exactly one robot; (4) multi-robot task, where a

task requires multiple robots.
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6.1.1 Bioinspired Approaches

In bioinspired approaches, observations made on animal/insect behaviors are applied to

solve the problem of task allocation in multirobot systems. A commonly used behavior is

from the study of ants; the most popular application of ant behavior is the Ant Colony

Optimization (ACO) [34] technique, which was inspired by the foraging behavior of ants.

Similarly, some animal/insect behaviours can be applied to the task allocation problem in

multirobot systems. Robots in bioinspired approaches are typically homogeneous and exists

in large numbers (i.e., swarms). Individually, each robot possesses very limited capabilities.

However, when they are grouped together in swarms and interact as a collective, a group-

level intelligent behavior emerges. Because it is assumed that every robot has the ability

to sense the relevant information in their environment (i.e., stigmergy [58]), communication

among the robots is reduced significantly. Even in situations when stigmergy is not available,

robots only need to broadcast minimal information about their state or environment.

Because of the minimal communication, there is no need for the robots to communicate

about task allocation. A task is allocated when a robot senses that a task needs to be

performed and proceeds to perform it. Should a robot fail when performing a task, another

robot simply replaces the failed robot. By following this basic behavior, a collective of these

robots can achieve the overall system goal.

The following works are broadly equivalent to the above description on bioinspired

approaches. The differences lie in the details such as the architecture, framework, and/or

type of robot deployed. For example, Stilwell and Bay [91] proposed a decentralized

architecture for controlling a swarm of homogeneous robots in transporting materials using

a pallet. A robot is much smaller in size than a pallet and the maximum carrying weight of a

robot is significantly lower than the weight of the pallet. However, as a collective, the weight

can be distributed among the robots so that no single robot is over the maximum carrying

weight. Furthermore, the robots know the direction in which to move the pallet. Because
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the robots are homogeneous and able to determine their placement through stigmergy, no

direct communication is necessary to coordinate the robots.

Matarić [58] proposed an approach for using a group of homogeneous robots in a foraging

scenario. A robot can exhibit one of the six basic behavior (collision avoidance, following,

dispersion, aggregation, homing, and flocking) when looking for food or carrying the food

home. Again, no direct communication is necessary because the robots are homogeneous

and use stigmergy.

Kube and Zhang [52] proposed an approach for using a group of homogeneous robot

in a box-pushing scenario. Each robot can exhibit one of the five behaviors: (1) move

to destination, (2) avoid collisions, (3) follow another robot, (4) slow down to avoid rear-

end collisions, and (5) find. The authors experimented with two different strategies in

behavior selection: fixed priority behavior preference and a neural network. Again, no

direct communication is necessary because the robots are homogeneous and use stigmergy.

Balch and Arkin [6] proposed a schema-based reactive control system for controlling a

group of homogeneous robots. A schema describes a task in terms of states and associated

behaviors. The authors defined three schemas for three tasks: forage, consume, and graze.

Their system is able to function without direct communication for the three tasks but

the authors have shown that state communication significantly improves the performance

of the forage and consume tasks but is unnecessary for the graze task. The reason for the

performance gain is because forage and consume tasks have little impact on the environment.

The graze task on the other hand have an impact on the environment, which can be sensed

by other robots.

Kubo and Kakazu [53] proposed a reactive planning system for controlling a group of

homogeneous robots in a competitive scenario of foraging for food. The authors applied

reinforcement learning (particularly, the stochastic learning automata) to learn strategies to

deal with the opposing team.
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Kazuo and Suzuki [93] proposed a distributed algorithm for controlling a group of

homogeneous robots in forming geometric shapes such as circles and polygons. The

algorithm assumes that all robots has the same physical characteristics and abilities. Again,

no direct communication is necessary because the robots are homogeneous and stigmergy.

Sun, Lee, and Sim [94] proposed an approached based on the human immune system

for controlling a group of homogeneous robots. The authors applied their approach to four

tasks: aggregation, random search, dispersion, and homing. There is some communication

involved such as state information being exchanged. However, these communications are

localized to robots that are in close proximity (i.e., local inter-robot communication).

Passino [73] proposed an algorithm based on the foraging behavior of bacteria and showed

how the algorithm can be viewed as an optimization algorithm to provide adaptive control on

problems that can be transformed to an optimization problem such as autonomous guidance

of AVs.

McLurkin and Smith [60] proposed a directed dispersion algorithm for controlling a

group of homogeneous robots in exploring large and complex indoor environments. The

directed dispersion algorithm was designed to spread the robots out quickly and uniformly

in an enclosed space while also maintaining a communication network. The communication

network is formed through a series of local inter-robot communication.

A major criticism of bioinspired approaches is the dependence on homogeneous robots.

Because of the assumption that the robots are homogeneous, there is no need to provide

any mechanisms for determining what a robot is capable of performing. This dependence

typically results in a solution to a particular problem. While it is possible that a given

solution can be re-engineered to solve another problem, the re-engineering process typically

include reworking the core aspects of the existing solution such as using a different type of

robot and figuring out new algorithms.

Another criticism of bioinspired approaches is that solutions addresses a particular
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problem and the scope of the problem is typically limited. One of the reasons is because

of cost. As the scope of a problem increases, the number of different types of tasks also

increases. Since the robots are homogeneous, this means that the robots must be able to

perform all those tasks. Building a homogeneous robot that can perform all tasks is more

expensive than building different robots that can perform a subset of those tasks.

6.1.2 Organizational Approaches

Organizational approaches utilize organizational theory for task allocation in multirobot

systems. There are two sub-approaches in organizational approaches: role-based and

market-based.

6.1.2.1 Role-Based Approaches

Role-based approaches employ the use of roles to divide up the work that needs to be done.

A role can consists of one or more tasks that need to be completed. Once the set of roles have

been defined, robots select (or are assigned) the roles that are best suited for them. Pure

role-based approaches typically predefine the set of agents that can perform a particular

role; thus there is no need to determine at runtime the set of agents that can perform a

particular role. Role-based approaches that that determine role-agent mappings at runtime

typically employ ontology/semantic information. For the purposes of clarity, any role-based

approaches that use ontology/semantic information in the task allocation process are listed

in the next section (6.1.3). The following work are examples of pure role-based approaches.

Stone and Veloso [92] proposed an architecture for use in periodic team synchronization

domains. A periodic team synchronization domain is defined as consisting of a team of

autonomous agents operating in an environment where communication is unreliable but

periodically communication will be unrestricted and unlimited. One example of a periodic

team synchronization domain is robotic soccer. In the architecture, roles specify the internal
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and external behavior of agents such as the captain’s position on the soccer team. The robot

in the authors’ experiment are homogeneous and capable of performing any of the defined

roles for the robotic soccer domain. An agent starts out with the initial role it is playing

and a set of plays (which are strategies that defined the actions/behaviours that should be

carried out at particular situations). Once the game starts, communication is unreliable and

limited. Agents will have to infer what roles their teammates are playing so that they can

infer the current strategy that the team is executing, which determines the current roles that

agent should be playing. A major limitation of the authors’ architecture is the assumption

that all agents are capable of performing any role, which inherently implies that the agents

are homogeneous.

Simmons et al. [89] proposed a role-based approach and applied it to the assembly (i.e.,

building large structures) domain. The assembly domain consists of three robots: (1) a

crane that is able to carry and move heavy beams, (2) a roving eye that uses stereo cameras

to provide a fine-grained positions of beams, and (3) a mobile manipulator that uses an

arm to perform fine-grained adjustments of beams. The three robots and the “foreman”

agent will perform the task of assembling a large structure. In the authors’ domain, each of

the robot also represent a role: (1) crane, (2) roving eye, and (3) mobile manipulator. In

the authors’ approach, there is no need to determine at runtime which robot can perform

which role since a robot is equivalent to a role. Although the assembly domain can be fairly

complex, the setup is relatively simple as it consists of three robots that perform different

functions with no overlap. In a more complex setup such as more robots with some overlap,

it is uncertain what mechanism is responsible for selecting the group of robots to perform

the assembly task.
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6.1.2.2 Market-Based Approaches

Market-based approaches use principles and theories of market economies to enable robots

to negotiate with other robots on which tasks they should perform. Most approaches use a

utility function and/or a cost function for computing the approximate values to performing

some action. Once the values for a given task have been computed, robots with the highest

(utility) or lowest (cost) value would be the robot performing the task. The following work

are broadly equivalent to the above description on market-based approaches. The differences

lie in the utility/cost functions, the communication protocols, and the architecture.

Botelho and Alami [9] proposed the M+ architecture. In M+, a task is defined as a set of

goals to be achieved. For a given task, a robot can decompose the task into a set of actions

that the robot can perform to achieve the goals associated with the task. Different robots can

decompose the same task into different sets of actions. Each robot has access to the list of

tasks that needs to be completed. A robot picks the task with the lowest cost and announces

it to the group. If no other robot has selected the task, that robot continues to execute the

task. However, if another robot also selects the task, the negotiation process is initiated

between the robots to decide the best robot. The M+ architecture shares some similarities

to the OBAA architecture. A task is similar to a role in which the role specifies how to

achieve a goal. The OBAA architecture also specifies that a role have one or more plans that

can be executed. A key difference is that in M+, the set of actions can be autonomously

computed at runtime, while plans in OBAA are defined at design time. In M+, tasks are

assumed to be achievable by a single robot (i.e., single-robot task). However, a robot can

ask other robots for help, which also initiates a negotiation to pick the best robot. This

particular feature is not present in OBAA-based systems. However, an equivalent process

occurs; if an agent cannot complete a role, an agent failure occurs. The agent failure causes

the goal (associated with the role) to be reassigned to another agent.

Gerkey and Matarić [41] proposed the MURDOCH system. MURDOCH is an auction-
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based system. In MURDOCH, a task contains metric(s) that robots can use to compute their

task-specific fitness. There is an auctioneer agent that is responsible for (1) informing robots

of new tasks, (2) collecting bids (in the form of the fitness score) from robots, (3) informing

the winner, and (4) monitoring the progress tasks. The winning robot has a time limit in

completing the awarded task. The time limit is MURDOCH’s way to handle failures. If the

auctioneer agent has not seen sufficient progress or has not received any response from the

robot performing the task, the auctioneer agent will initiate the auction process. Similar to

CzM/OMACS-based systems, MURDOCH performs task allocations for single-robot tasks.

Zlot and Stentz [116] proposed an auction-based system that performs task allocation

for complex tasks. A complex task is a task that can be decomposed into smaller subtasks

through AND/OR decomposition. The system is an extension to TraderBots [29] to

incorporate task decomposition into the allocation process, which enables task allocation

from any level of a task tree. Agents/robots bid (cost or utility) on any task(s) that they

are able to perform. If the task is a complex task, the winner decomposes the task and

may subcontract the subtasks to other agents/robots. If another agent/robot comes along

and has a better bid for that complex task, that agent/robot takes over that complex task

and may have its own task tree that is different. Incorporating task decomposition into

the task allocation process allows a more robust system than the decompose-then-allocate

process (which CzM/OMACS-based systems follow). A limitation of the decompose-then-

allocate process is that sometimes the decomposed tasks may not be achievable for a group

of agents/robots although that group of agents/robots may still achieve the root task if the

tree was decomposed differently. There is currently no known algorithm that can perform

task decomposition for any task; thus, task decomposition is typically predefined for a known

set of tasks. In situations where the tasks are not known a priori, a human expert is required

to decompose tasks properly.

Vig and Adams [102] proposed the RACHNA architecture. In RACHNA, there are two
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types of agents1: service agents and task agents. A service agent represents a role or service

that a robot can perform or provide (i.e., if there are six services that a robot can provide,

then there are at least six service agents). A task agent represents a task (which represents a

list of required services) that needs to be completed. A task agent bids on services that the

task requires (by communicating with service agents). Since a service agent maintains a list

of robots that can provide a particular service, the service agent will respond to bids with the

robot(s) that accepted the bids. Once an auction is successfully completed, the task agent

can communicate directly with robots that are going to be providing the necessary services

to complete the task. Tasks in RACHNA are multi-robot tasks, which CzM/OMACS-based

systems cannot handle.

Dash et al. [21] proposed an auction-based system for self-interested agents. A self-

interested agent may lie about its capabilities so that it may avoid undesirable tasks.

There are two implementations of the system: a centralized system and a billboard-type

decentralized system. The centralized system includes a penalty mechanism that provides

an incentive for agents to truthfully report their capabilities. In other words, the penalty

mechanism ensures that it is in the best interest of the agents to truthfully reveal private

information. The billboard-type system is a complimentary approach to the centralized

approach but does not always result in the best allocations. OBAA-based systems typically

assume cooperative and honest agents and little work has been done in incorporating self-

interested agents. Although it may be possible to provide an IAL that allows self-interested

agents, it remains to be seen if the existing architecture is sufficient.

Vincent et al. [103] proposed an algorithm for searching for objects of interest and

protecting objects of interest. The algorithm can work in one of two modes: managed, or

auction-based. In the managed mode, a dispatcher maintains the necessary information

about each robot such as position and battery level. Based on that information, the

1In the author’s context, an agent is purely software based and is not synonymous to a robot.
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dispatcher informs the robots of their assigned task. The process of the managed mode

is similar to the centralized implementation of the IAL, where one of the CC is the

master and the rest are slaves. In the auction-based mode, robots receive a list of tasks,

ranks the tasks, and return the ranking to the dispatcher. Once the dispatcher has the

rankings, the dispatcher allocates tasks based on the rankings. Although my work uses a

centralized implementation of the IAL, because of the flexibility of the OBAA architecture, a

different implementation such as an auction-based IAL can be substituted for the centralized

implementation without interfering with the rest of the system.

Choi, Brunet, and How [14] proposed two algorithms: consensus-based auction algorithm

and consensus-based bundle algorithm. The consensus-based auction algorithm is for

single-task agents/robots, while the consensus-based bundle algorithm is for multi-task

agents/robots. In situations where it is not feasible to ensure synchronized state information

across all agents/robots, an agent/robot may have information about the environment that

is inconsistent with another agent/robot. This inconsistencies in information may result

in different assignments. By combining an auction-based approach for assignments with a

consensus-based approach for conflict resolution of assignments, the two algorithms are able

to function in environments where the information of agents/robots about the environment

could be inconsistent. Although conflict resolution is not the focus of my research, due

to the flexibility of the OBAA architecture, it may be possible to implement an IAL

(particularly the ORC) that can function in environments where agents may not have the

same information about the environment as other agents.

6.1.3 Knowledge-Based Approaches

Knowledge-based approaches share ontological and/or semantic information among the

robots as the basis for task allocation. Typically, these ontological and/or semantic

information have some relation to tasks. Through the process of sharing these ontological
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and/or semantic information, robots can obtain enough information about other robots to

help compute the appropriate robot for a given task. One type of ontological and/or semantic

information that is typically shared is the capabilities of robots. Because the capabilities

of robots is one of the types of information being shared, knowledge-based approaches are

able to include heterogeneous robots when allocating tasks.

The following work are broadly equivalent to the above description on knowledge-based

approaches. The difference lie in how these ontological and/or semantic information is

captured and how they are applied in task allocations. For example, Parker [71] proposed the

ALLIANCE architecture. In ALLIANCE, every robot contains a model of every other robot.

The model contains information about the performance of the robots and tasks-related

information. Information obtained from observations (typically through the sensors) on the

environment is used to populate the models. Then, the robots are able to use their models

to determine which task(s) to perform. In ALLIANCE, the models are similar in concept

to CzM/OMACS-based system (where every agent contains a model representing other

agents) and GMoDS (where events that occur in the environment are processed by GMoDS).

Although the ALLIANCE architecture has limited communications, CzM/OMACS-based

system depends on the IAL (particularly the ORC) for sharing the necessary information

to other agents.

Fua and Ge [37] proposed the COBOS scheme. In COBOS, a team of robots is captured

by a task suitability matrix for the purposes of computing task allocation. The task

suitability matrix maintains the suitability of each robot for each task. The suitability

(i.e., how qualified) of a robot for a given task is based on the capabilities of the robot and

environmental factors such as distance of the robot to the task. Each robot contains a task

suitability matrix and updates to the matrix are obtained from broadcasts messages, which

include a robot’s suitability for each task. In COBOS, loss of communication does not imply

failure of robot. When a robot loses communication, information pertaining to that robot
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(such as task suitability and the task(s) the robot is performing) is left unchanged until

communication is reestablished. Furthermore, COBOS is able to handle tasks that have

uncertain requirements that result in an unknown number of robots required to complete

that task. When the first robot performs a task with uncertain requirements and discovers

that more robots are needed, a secondary algorithm is activated to recruit more robots

for that task. The task suitability matrix is similar to CzM/OMACS. In CzM/OMACS,

capabilities of agents are stored as well as the relationship of those capabilities to roles and

goals; based on that information, a score is computed to indicate how well agents can perform

roles to achieve goals. Although the issue of communication loss is not specifically addressed

in my work, it can be addressed in the ORC, which is responsible for the team coordination

aspects of an OBAA-based system such as what happens when an agent joins/leaves the

team.

Tang and Parker [95] proposed the ASyMTRe methodology. The basic building block

of an ASyMTRe system are environmental sensors and schemas, which functions like

component with inputs and outputs. In ASyMTRe, there can be multiple inputs but one

output is assumed. There are three types of schemas: perceptual, communication, and

motor. The output of environmental sensors can be connected to perceptual schemas. The

inputs for perceptual schemas can be from either environmental sensors or communication

schemas and the output can go to either communication or motor schemas. The inputs

for communication schemas can be from either perceptual or communication schemas and

the output can go to either perceptual, communication, or motor schemas. The inputs

for the motor schemas can be from either perceptual or communication schemas and the

output goes to the robot effector control process. The definition of a task includes a set

of motor schemas. ASyMTRe uses the set of motor schemas and attempts to make the

necessary connections. When a valid flow is established, that flow represents how and who

will attempt to complete the task. The initial reasoning responsible for creating valid
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flows in ASyMTRe is centralized but was addressed in later work (ASyMTRe-D) [96].

However, the solution quality in ASyMTRe-D is lower than the centralized version. In

another later work, Zhang and Parker proposed the IQ-ASyMTRe [112, 113] architecture,

which expands on ASyMTRe, to deal with sensor constraints that are imposed as a result

of sharing capabilities. IQ-ASyMTRe addresses the issue of finding a valid solution while

satisfying the sensor constraints. ASyMTRe does not restrict task allocations to single-

robot tasks but allows multi-robot tasks. In contrast, CzM/OMACS-based system restricts

allocations to single-robot tasks; the decomposition of multirobot tasks is done by a designer

with GMoDS. Furthermore, an ASyMTRe solution includes the “how” to complete a given

task, whereas in CzM/OMACS-based system, the roles are specified at design time.

Vig and Adams [101] provide a heuristic-based coalition (i.e., a group of robots)

formation algorithm for independent tasks. Tasks are specified in terms of required

capabilities and each robot is represented by a capability vector (which is similar to

CzM/OMACS-based systems). The authors introduced the idea of coalition imbalance,

which occurs when an agent possesses a significant number of capabilities in comparison

to other agents in the same coalition. Coalition imbalance has a negative impact on the

fault tolerance of the coalition. The algorithm selects the coalition with the highest fault

tolerance, which also favors balanced coalitions. Again, CzM/OMACS-based systems do

not allocate multi-robot tasks; multi-robot tasks are decomposed through GMoDS.

Macarthur et al. [57] proposed a distributed algorithm (branch-and-bound fast-max-

sum) that is based on prior work (fast-max-sum [77]), and fast-max sum is also based on

prior work (max-sum [2]). The branch-and-bound fast-max-sum includes two important

features. The first feature is an online pruning algorithm that reduces the complexity of the

problem and the second feature is the branch-and-bound algorithm that reduces the search

space. Together, the two features allow the branch-and-bound fast-max-sum algorithm to

scale well when there is a large number of agents and multi-robot tasks. However, the
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branch-and-bound fast-max-sum algorithm assumes that an agent can only be assigned to

one group task (i.e., single-task robot); whereas, CzM/OMACS-based systems allow agents

to be assigned multiple tasks (i.e., multi-task robot). However, CzM/OMACS-based systems

only compute assignments for single-robot tasks while the branch-and-bound fast-max-sum

algorithm compute assignments for multi-robot tasks.

Vincent et al. [103] proposed a task allocation algorithm for exploration and mapping.

The algorithm uses a utility function and a cost function to maximize the utility minus the

cost. Because the algorithm assigns a robot to one task (i.e., single-task robot), an optimal

set of assignments can be computed using a liner program solver fairly quickly (O(rt), where

r is the number of robots and t is the number of tasks). The utility function is similar to the

goodness function in CzM or rcf function in OMACS. Although there is no cost function

in CzM, the goodness function allows consideration of team-based qualities that affect the

performance of individual agents. Furthermore, because CzM/OMACS-based systems allow

multi-task agents, it is not feasible to find the optimal assignments during runtime (O(2at),

where a is the number of agents and t is the number of tasks).

Tsalatsanis, Yalcin and Valavanis [98] proposed an approach that is based on supervisory

control theory to facilitate task allocation. A robot team is modeled as a Discrete Event

System (DES), robots are modeled as a finite state automatons, and task requirements are

modeled as discrete events. Because the robots are heterogeneous, a utility function based

on sensor capabilities is defined to compute the values of robots for tasks (which is similar

to the goodness function in CzM or rcf function in OMACS). Two types of failures are

considered: (1) temporary failures, where a robot loses some capability but can be quickly

repaired; and (2) failures, where capability loss cannot be repaired or repairs would take

a considerable amount of time. For temporary failures, the robot that failed is considered

offline and events pertaining to the tasks that are allocated to that robot are not masked

while the robot is being repaired. When repairs are done, the robot resumes the tasks it
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has been allocated and the associated events are unmasked. For non-temporary failures, the

robot is also considered offline and events are masked. However, the tasks that are allocated

to that robot are reallocated to another robot. My work does not specifically address

temporary failures but treat failures similar to the latter and reassigns any assignments

for the failed agent. However, temporary failures can be implemented as part of the IAL

(particularly the ORC).

Dahl, Matarić, and Sukhatme [19] proposed a distributed algorithm (called vacancy

chain scheduling) for a prioritized transportation scenario. An example of a vacancy chain

is how a family car is passed on; the parents buy a new car to replace an existing one,

the existing car is passed to the oldest child, and if that child has an existing car, that car

is also passed on, and so forth. The vacancy chain scheduling algorithm has no explicit

communication but instead relies on stigmergy. For the algorithm to work, tasks must be

spatially classifiable, so that robots can compute the local utility estimates. In addition,

vacancy chain scheduling is inherently limited to single-robot task (similar to CzM/OMACS-

based system). Furthermore, vacancy chain scheduling is able to model group dynamics

(which are positive or negative effects on performance when members of a group interact).

Although CzM is able to model some group dynamics indirectly through the goodness

function, it remains to be seen if the goodness function is sufficient for modeling all group

dynamics.

6.2 Performance Moderator Functions (PMFs)

PMFs are quantified human performance factors. Some PMFs can be used to model

human behavior. Modeling human behavior is vital in realistic military human-based

simulations that are used to train future soldiers because good PMFs are accurate

approximations of actual human behaviours. A challenge in developing realistic human-
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based simulation is validating PMFs [86]. Traditionally, PMFs are validated on a case-by-

case basis. However, it is more useful if PMFs can be validated using a unified architecture,

which would cut down on the time required to develop simulations to validate PMFs.

There are two popular architectures that provide a unified architecture for validating

PMFs: Performance Moderator Functions Server (PMFserv) [86] and Improved Performance

Research Integration Tool (IMPRINT) [3, 4].

Silverman et al. [86] created PMFserv for modeling human behaviours. PMFserv

simulates a virtual world that is populated by virtual agents. These virtual agents are

given behavioural PMFs that allow the agents to mimic human behavior. In PMFserv,

behaviours are broken up into four areas: (1) psychobiological, (2) personality, culture, and

affect, (3) social, and (4) cognitive. The psychobiological area deals with motivators and

stressors. The personality, culture, and affect area deals with likes/dislikes, preferences,

and emotion. The social area deals with the relationships between agents and the cognitive

area deals with decision making. The four areas allow a more realistic simulation of human

behavior.

IMPRINT, on the other hand, does not simulate a virtual world with virtual agents to

validate PMFs. Instead, IMPRINT is a discrete event-based network system. IMPRINT is

used to identify system requirements such as personnel and manpower required to effectively

maintain and operate a system under various environmental conditions. In IMPRINT, a

task network is created, where each task specifies a set of requirements such as the length

of time to complete the task, the circumstances that must occur before, during, and after

the task, and the personnel that will be performing the task. Furthermore, IMPRINT

allows PMFs to be included in one of the four micro-models: (1) perceptual, (2) cognitive,

(3) motor, and (4) special. By default, IMPRINT already includes some PMFs that are a

constant value in each of the four micro-models. For example, the perceptual micro-model

has eye and head movement time; the cognitive micro-model has perceptual, decision, and
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motor process time; the motor micro-model has cursor movement using mouse; and the

special micro-model has priorities.

PMFserv and IMPRINT are tools that are used to validate PMFs. Although validating

PMFs is not the focus of my work, they are complimentary to validating PMFs. Once a

PMF is validated, the validated PMF can be capture and used in CzM to reason about the

ability of agents to perform roles to achieve goals. However, PMFserv is not just a tool

for validating PMFs. Because PMFserv is able to simulate virtual agents, PMFserv is also

used to emulate realistic behavior of virtual agents in simulated environments. In 2003,

PMFserv was integrated with the original Unreal Tournament2 to recreate the Black Hawk

Down scenario [87]. In subsequent years, PMFserv has been integrated with a number of

different simulations.

Pelechano et al. [74] proposed an architecture that integrated Multi-Agent Communi-

cation for Evacuation Simulation (MACES) with PMFserv. MACES is a crowd simulation

system that performs high-level path-finding in exploring unknown environments such as

an unfamiliar building in order to find exits during emergencies. Typically, most crowd

control simulations have a large number of individuals that have the same behavior; some

simulations may offer limited variability in behaviours based on age and gender. However,

by integrating with PMFserv, MACES is able to offer a large variety of validated behaviours

based on demographics and culture, which can enhance emergent crowd behavior.

Silverman et al. [75, 88] proposed an architecture called NonKin Village, where “the

player(s) interacts with other virtual or real followers and leaders of contending factions

at a local village level”. The purpose of NonKin Village is to provide an immersive

training environment through the simulation of insurgent operations in a village. A player

can attempt to influence the virtual world through four categories of actions (Diplomatic,

Intelligence, Military, and Economic) while being constrained by limited resources. PMFserv

2Unreal Tournament 3 (http://www.unrealtournament.com/) is the latest version, which is powered
by the Unreal engine (http://www.unrealengine.com/).
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is a core part of the architecture that is used for emulating realistic human behavior of the

virtual people in the village.

One way of using PMFs is what Silverman is doing with PMFserv. By using validated

PMFs, PMFserv is able to emulate realistic human behavior in a virtual environment.

My work, on the other hand, uses PMFs in a different way. My runtime model (i.e., the

CzM model) captures PMFs and the necessary relationships to tasks and agents. Then

these PMFs can be used by task allocation algorithms that may help in making better

assignments.

6.3 Supervisory Control

In the area of supervisory control, there is ongoing work that is aimed at addressing the

human-to-robot ratio. A user study by Crandall and Cummings [17] suggests that the

highest performance is somewhere between four and six robots. Most work are aimed at

increasing the number of robots a human supervisor is able to control effectively.

A popular approach is the playbook style for controlling multiple robots. Miller,

Pelican, and Goldman [65] introduced the “tasking” interface for controlling Uninhabited

Combat Aerial Vehicles (UCAVs). The interface is modeled such that it is similar to

how playbooks work in sports. For example, how a coach supervises a team of players

or how the quarterback gives orders to other players. There are three requirements [63, 65]

that is necessary for “tasking” interfaces to be useful: (1) a shared vocabulary of tasks

where humans can issue tasks and a mechanism to know how the tasks are going to be

accomplished, (2) enough knowledge from the interface so that intelligent decisions can be

made about how to accomplish tasks, and (3) a way to inspect and manipulate the shared

vocabulary and an easy and fast way to view the details of the tasks. The Playbook GUI

allows a human to plan three types of missions (interdiction, airfield denial, and suppress
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enemy air defenses). After selecting the mission type, the human can provide further details

(such as route, roles for the UCAVs, etc.) or let the Mission Analysis Component (MAC)

complete the details automatically. A goal of “tasking” interfaces is to provide the flexibility

for a human to choose a comfortable level of control between the two extremes of robot

automation (level 1 versus level 10). In a later work [69], the “tasking” interface was

simplified (called delegation-type interface) and tested with RoboFlag [20]. This delegation-

type interface retained the ability to give tasks to robots. However, the ability to provide

further details were removed from the interface. In the delegation-type interface, the human

selects a robot and then selects one of the three defined task (circle offense, circle defense,

and patrol border). There is also the option of selecting all robots and then selecting a task.

Miller and Parasuraman [64] noted that there have multiple demonstrations of the Playbook

style but none of the demonstrations have completely realized the Playbook vision.

The research in Playbook is orthogonal to the research in this dissertation. For instance,

the delegation-type interface [69], where the human supervisor selects a robot and then a

task, is similar to the concept of assignments in OMACS/CzM. The difference is that, in

OMACS/CzM, there is a mechanism (IAL) that autonomously computes the assignments

but the human supervisor still retains the ability to modify the assignments should the

need arise. In contrast, the “tasking” interface that works in conjunction with the MAC

provides the flexibility to “drill down” (i.e., to allow a human supervisor to provide as much

or little details for tasks). In OMACS/CzM, the flexibility to “drill down” can be met by a

combination of goal parameters and the roles. There is already a mechanism to modify goal

parameters. Similarly, roles would need a mechanism to modify the behaviours. However,

such a mechanism to modify role behavior is beyond the scope of this dissertation.

Another different approach of research that is attempting to increase the human-to-robot

ratio of supervisory control is RoboLeader [13, 90]. RoboLeader is an intelligent agent that

was developed to assist humans in route planning. In an early experiment [13], it was
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shown that RoboLeader does not improve situation awareness or performance (in terms of

target detection). Human operators with higher spatial ability outperformed operators with

lower ability regardless if RoboLeader was used. Furthermore, RoboLeader does not improve

performance when the number of robots increased (e.g., 4-robots versus 8-robots). However,

RoboLeader was able to increase efficiency and thus reduce the completion time of missions.

Currently, RoboLeader (as of 2010) can assist human operators in route planning. However,

RoboLeader is designed so that additional capabilities can be added. Four capabilities [90]

are being explored: (1) asset allocation and mission planning, (2) real-time motion and

obstacle avoidance, (3) cooperative control, and (4) decision making models.

Wang et al. [105, 106] proposed an asynchronous interface (Image Queue Interface) for

an urban search and rescue scenario. In the scenario, a human operator is tasked to identify

victims using videos from 12 robots. The asynchronous interface mines the video streams

from all the robots and only shows the relevant parts to the human operator. The authors

compared their approach to the traditional approach where the human operator watches

the 12 video streams and looks for victims. Their results showed that there is no significant

difference in terms of performance (i.e., number of victims found). However, there are

significant differences (in favor of their approach) in terms of errors (i.e., false positives and

negatives) and operator workload. Although the Image Queue Interface serves a specific

function, the concept of asynchronous display and aggregating video streams (from multiple

sources) into one video stream may exhibit similar be applicable to other types of data

such as the set of assignments. For instance, is there just a single list that displays all the

assignments or are there multiple lists (one per agent) that shows the assignments of each

agent. However, the user interface design aspect is not the focus of my work but the runtime

models (both OMACS and CzM) do provide the means to do so.

Scerri et al. [80] proposed a framework (Machinetta) that facilitates coordination of a

large group of robots (the authors tested up to 200 Uninhabited Aerial Vehicles (UAVs)).
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Their framework is separated into two parts: the low-level dynamic control of an UAV and

the high-level coordination. The high-level coordination is contained in proxies. Each UAV

has a proxy. There are one or more Team Oriented Plans (TOPs) per proxy. A TOP

has a similar structure to typical a goal tree, where a leaf node (called role) is assigned to

one team member. To ensure coordination, a proxy has a number of coordination agents

(which are created when necessary) that fall into three categories: PlanAgents, RoleAgents,

and InformationAgents. A PlanAgent is responsible for (1) instantiating and terminating

TOPs, (2) creating the associated RoleAgents, (3) resolving conflicting TOPs with other

PlanAgents, and (4) ensuring that there is at most one TOP attempting to achieve a goal

with other PlanAgents. A RoleAgent is responsible for finding a team member to perform a

specific role. An InformationAgent is responsible for sharing information with other proxies,

which are created when there is any new information that should be shared. The Machinetta

framework is similar to the OBAA architecture. A Machinetta proxy is similar to the

CC, where it is responsible for coordinating a team. However, a primary difference is

that a Machinetta proxy can have multiple TOPs (one TOP represents a team), which

allows multiple teams to be represented in the Machinetta framework. Whereas, the OBAA

architecture only has one goal model and one organization model, and thus no proper

representation for multiple teams. However, it is uncertain how a supervisor can exert

control over a Machinetta system as it has not been specifically addressed by the authors.

McLurkin et al. [61] proposed an approach for developing, debugging, and evaluating

distributed algorithm on a large swarm of robots (the authors’ experiment consists of 112

iRobot SwarmBots). One of the key aspects of their approach is the centralized user

interfaces: a terminal display and a GUI display. The terminal display is mostly used

for user input. The GUI display shows “real-time telemetry data, detailed internal state,

local neighbor positioning, and global robot positioning”, which were inspired by real-time

strategy games. Another key aspect of their approach is the use of Swarmish language,

164



which consists of visual and audio outputs. The visual output consists of three Light-

Emitting Diodes (LEDs) (red, green, and blue) that are mounted on each robot, which is

also shown in the GUI. The LEDs have been programmed to display certain patterns that

indicate the current state of a robot, which can be understood by an experienced user in

about 1
2

second. The audio output consists of a simple MIDI player that is also mounted on

each robot. The player has been programmed to play a single note that can vary in terms

of instrument, pitch, duration, and volume. Once a user has learned the tempo and rhythm

of a good run of the overall system, the user should be able to pick up abnormalities, which

are indicative of bugs, without the need to perform a detailed analysis of the execution

traces of all robots. The focus of their work is on the outputs so that human users are not

overwhelmed by the tremendous amount of data coming from all the robots. Furthermore,

since their approach is primarily for development, debugging, and evaluation, developers

benefit the most as their approach helps developers to quickly spot bugs and deploy fixes

easily. In contrast, my research is on a human being able to supervise an OBAA-based

system. Also, the robots are the same (i.e., iRobot SwarmBot).

Kira and Potter [50] proposed an approach that consists of two forms of real-time

control that a human operator can exert over a swarm of robots: top-down control and

bottom-up control. Top-down control allows a human operator to control the overall

swarm behavior through the use of swarm characteristics. A swarm characteristic is an

abstraction of some lower-level parameters of individual robots. By changing these swarm

characteristics, a human operator can control the behavior of the swarm. The bottom-up

control allows a human operator to influence a subset of the swarm through the introduction

of virtual elements. The swarm would react to these virtual elements as they would if the

swarm encounters these elements in the physical world. Through the bottom-up control, a

human operator can indirectly control swarms to exhibit desired behaviors. Although their

approach can be generalized to other swarm-based system, their approach does not cater to
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heterogeneous robots. For example, the top-down approach works because all robots have

the same lower-level parameters that can be abstracted to a characteristic and modifying

these characteristics controls overall swarm behavior. However, in heterogeneous domains,

it is not necessarily the case that all robots have some common lower-level parameters.

This limitation results in characteristics that controls a subset of the robots. Similarly, the

bottom-up control have the same limitation in the domain of heterogeneous robots. Robots

may react differently to the same virtual element that could lead to undesirable outcomes.

Ding et al. [32, 33] proposed a framework that provides decision-support to a human

operator for controlling multiple UAVs. The framework functions in one of two modes:

autonomous mode and pilot-control mode. In both modes, all UAVs are controlled via the

leader-follower routine. All UAVs can be designated as either a leader or a follower but

there is only one leader at any given time. In the autonomous mode, the human operator

can change which UAV is the leader, the system automatically adjusts the formation to the

new leader. To obtain more control, the human operator can switch over to pilot-control

mode to directly control the leader UAV while the follower UAVs operate autonomously. By

controlling the leader, the human operator can exert control over the group. A limitation

of their framework is that it does not translate well to heterogeneous domains. While it

is possible that there can be multiple leaders for different types of robots, a leader has to

be grouped with similar robots. For example, if a group consists of both aerial and ground

robots, controlling that group through the leader-follower approach is hard because the

aerial robots moves at a much faster speed than the ground robots.

Podnar et al. [76] proposed an architecture that provides multiple levels of human control

over a team of robots called Multilevel-Autonomy Robot Telesupervision Architecture

(MARTA). The levels of control provided by MARTA range from low-level teleoperation

to high-level task planning and monitoring. MARTA is broken into five modules:

(1) task planning and monitoring, (2) robot telemonitoring, (3) robot team coordination,
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(4) telepresence and teleoperation, and (5) robot controller. The task planning and

monitoring module provides the information pertaining to the overall system such as

maps representing different aspects of an area, locations of robots, navigation paths, and

team status. The robot telemonitoring module archives telemetry and images from each

robot and presents the information via a dashboard-type display to the human operator.

Furthermore, the archives are also used for automated analysis and monitoring. The robot

team coordination module decomposes the the high-level instructions from the task planning

and monitoring module into robot-specific instructions. The telepresence and teleoperation

module provides the human operator the ability to exert direct control over a robot. The

robot controller is responsible for managing the robot-specific instructions that are sent from

the robot team coordination module and monitoring the executions of those instructions.

MARTA and OBAA share some similarities. The task planning and monitoring module and

the robot team coordination module provide similar functionality as the CC from OBAA and

the robot controller module provides similar functionality as the EC from OBAA. Some of

the functionality of the robot telemonitoring module can be captured using the CzM runtime

model as attributes. The functionality of the telepresence and teleoperation module is not

present in OBAA.

Mau and Dolan [59] proposed a scheduling algorithm, double Shifted Shortest Processing

Time (dSSPT), to reduce the downtime of robots. When supervising a robot team, there

are times when a robot requires the attention of a human supervisor to continue (i.e., the

robot waits until the human supervisor resolves the situation), which is commonly referred

to as downtime. Furthermore, when there are multiple robots, there may be times when

multiple robots are waiting for the human supervisor simultaneously. dSSPT prioritizes

these requests for the human supervisor so that the downtime of robots is reduced. As a

result of reduced downtime, missions can be completed faster. Furthermore, as the human

supervisor’s time is more efficiently managed, the maximum number of robots that can be
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supervised can also be increased. dSSPT is effective for traditional HRI systems where a

human operator is required to exert direct control such as teleoperation on the robots to

correct situations.

Similar to the previous work (dSSPT), Zheng et al. [114] also proposed an algorithm to

prioritize which robot the human operator should interact with. In their study, the robots

are social robots that answer questions raised by customers. In situations when the robot

is unable to respond to a question, the human operator intervenes and instructs the robot

(typically through teleoperation) with the appropriate response.

Nevatia et al. [67] proposed an approach that allows a human supervisor multiple levels of

control over a robot team. At the highest level of control, the human supervisor can designate

goals to the robot team. And at the lowest level of control, robots can be teleoperated by

the human supervisor. A key feature of their approach is the idea of augmented autonomy.

At the highest level of control, if the human supervisor does not provide any goals, the robot

team autonomously creates goals instead remaining idle. Furthermore, the human supervisor

can also override autonomously created goals. At lower levels, the human supervisor can turn

on or off specific autonomous functions such as obstacle avoidance. The idea of augmented

autonomy is an important aspect of my work. There is GMoDS that handles the creation

of new goals based on events that occur in the environment, there is the RA that computes

assignments, and there is OMACS/CzM that enables the ability to change assignments.

6.4 Summary

In summary, this chapter highlights related work in the following areas: task allocation

algorithms, PMFs, and increasing the human-to-robot ratio of supervisory control. The

next chapter (Chapter 7) concludes the work completed for this dissertation.
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Chapter 7

Conclusions

This chapter concludes this dissertation by reiterating the current state and problems

(Section 7.1), reviewing the work done and my contributions (Section 7.2), describing the

limitations of my work (Section 7.3), and highlighting some areas of future work enabled by

my work (Section 7.4).

7.1 Current State & Issues

As computing technology advances, more is being demanded from computing systems. In

the field of multiagent systems, agents are expected to be more autonomous and intelligent.

Furthermore, as the number of agents in a multiagent system increases, users are also

expecting more effective ways to maintain control over the system without becoming

overwhelmed by the increasing number of agents.

Large and complex multiagent systems, particularly in the field of robotic agents, are

hard to control. Often times, multiple trained human operators are required to control a

single robotic agent. Robotic agents can be mass produced, but trained human operators

are in limited supply. There is an emerging need for a single human to be able to control
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multiple robotic agents simultaneously. Ideally, the mechanism that allows a single human

operator to control multiple robotic agents should be scalable, whether the human operator

is controlling three robots or hundreds of robots. Traditionally, researchers have attempted

to address this issue by introducing more automation, which can free up more time for a

human to manage multiple robots. However, this approach has its drawbacks. One of them

is that if something goes wrong, the automation needs to be temporarily suspended while

the human resolves the issue. If all the robots are the same (i.e., homogeneous), it is less of

an issue for the human because the human can be trained to resolve issues for that particular

type of robot. However, if the robots are not the same (i.e., heterogeneous), the problem

is significantly more severe for the human because the human has to be trained to resolve

issues for multiple types of robots. It is harder for a human to be an expert in multiple

types of robots, more so as the number of types increases.

Another issue that becomes apparent as multiagent systems become larger is that humans

are no longer just users, humans become peers working alongside agents, particularly robotic

agents. A multiagent system’s adaptability is increased because human peers can perform

the work when the agents are unable to due to failures. However, there is a vast amount of

information pertaining to humans that can be captured so that multiagent systems can work

with their human counterparts. One of the first issues to be resolved is to decide the types of

information about humans to capture. Often, human performance factors, which are often

indicators of performance with respect to task performance, are the type of information that

is first captured. These human performance factors are often captured as PMFs. Second,

the information should be captured in such a way as to allow dynamic changes to occur

because human performance factors often fluctuate over time.
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7.2 Work Done & Contributions

There are three major contributions of this dissertation.

First, the CzM model (Chapter 4) is able to capture information about the state of an

agent through the attribute entity. This is the first step toward including humans as part

of a multiagent system. The associated functions (contains, affects, and needs) provide the

necessary structures so that multiagent systems can use this new information. In addition,

the CzM model can capture PMFs, which can be used for predicting human performance.

The usefulness of the CzM model for task allocation algorithms is demonstrated by two

scenarios (Section 4.4 and Section 4.5), which show that the CzM model can improve the

results of task allocation algorithms.

Second, organization control (Definition 5.1) provides the ability to exercise supervisory

control over a multiagent system as an organization, where agents in the multiagent system

have autonomy and intelligence. An agent can be a software agent, a robot, or a human.

A group of agents form an organization and a supervisor can exert supervisory control by

interacting with the organization as a single entity. Section 5.1 defines and describes a set

of interactions that can be used to control an organization.

Third, the OBAA architecture is a general architecture for implementing agents and the

IAL (Section 5.2) is formed by correctly implementing the CC component of the OBAA

architecture across all agents. The IAL is an autonomous and intelligent mechanism that

manages the bulk of the work (such as autonomous task allocation) in managing individual

agents. A supervisor interacts with the IAL as a single entity to exercise supervisory control

through a set of interactions (Section 5.1). There is a demonstration (Section 5.2.2) that

shows that the IAL can perform autonomous task allocations as well as handle agent failures

autonomously. There are two demonstrations, assignment set manipulation (Section 5.3.1)

and goal modification (Section 5.3.2), that illustrate the usefulness of organization control.
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A proof-of-concept demonstration of assignment set manipulation shows how a supervisor

can modify assignments at runtime through the OMACS/CzM model. A proof-of-concept

demonstration of goal modification, which requires an extension to GMoDS (Section 5.3.2.1),

shows how a supervisor can modify the parameters of goals at runtime.

In summary, the following are my three major contributions.

• The definition of a runtime model (i.e., CzM) that captures PMFs so that autonomous

mechanisms can reason about humans with respect to their ability to perform tasks

and multiple demonstrations that show how using the CzM model can lead to better

task allocations.

• The definition of organization control and a set of interactions that can be used to

implement organization control.

• The definition of an architecture that facilitates organization control and demon-

strations of several organization control interactions. The architecture implements

a mechanism that autonomously manages a group of robots and allows a human

supervisor to exercise supervisory control over the organization through interactions

with the organization instead of the individual robots.

7.3 Limitations

There are three limitations of the work in this dissertation.

First, the IAL can be a single point of failure. As demonstrated in this dissertation,

should the main agent fail, the entire system fails. The reason for the single point of

failure is that the IAL was implemented as a centralized mechanism. Multiagent systems

are inherently distributed systems, so it is desirable for the IAL to be distributed. In

theory, the IAL can be distributed. However, to ensure deterministic behavior, the current
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implementation of the IAL makes a decision based on the latest information in the runtime

models (i.e., GMoDS and CzM). Thus, one agent makes all the decisions while the

other agents simply forward information to that one agent for processing. However, if

all agents make decisions, the IAL will require that information in the runtime models be

synchronized across all agents, so that all agents will arrive at the same decisions. However,

synchronization is an expensive operation, in terms of communication costs, as any change

in the runtime models will need to be propagated to all agents before the next change can

occur.

Second, the CzM model does not capture the notion of time. The notion of time is

important for some human performance factors such as fatigue. Using workload as a counter

example, a task typically has a fixed workload value (x). Thus the workload of an agent

performing that task is x. Fatigue, on the other hand, is more complex; there is no fixed

fatigue value (y) for the duration of a task. There can be a fixed fatigue value (z) at the

completion of a task. However, what is the fatigue value when a task is partially complete?

If fatigue increases at a uniform rate, then the duration of the task is sufficient to compute

the fatigue value at specific time intervals using z
duration

. Unfortunately, that is generally not

the case in reality. Human performance factors such as fatigue do not always increase or

decrease uniformly. In systems where partially completed tasks can be handed off to other

agents without losing progress, it is important to know the fatigue value at intermittent

time intervals to determine if the remaining work in a task can be best completed using

another agent.

Third, the CzM model does not explicitly capture human performance factors associated

with the environment. Human performance factors can be classified into three categories:

(1) human-specific, (2) task-specific, and (3) environment-specific. Some examples

of environment-specific human performance factors are ambient light, day/night, and

raining/sunny. Poor lighting conditions can affect the performance of an agent. Although it
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is possible to capture environment-specific human performance factors with the task, it is not

an effective solution because environment-specific human performance factors is applicable

to most (if not all) tasks. If environment-specific human performance factors are captured

with tasks, then these environment-specific human performance factors must be duplicated

for each task that needs access to that information. Thus, whenever a environment-specific

human performance factor changes, every task that capture that environment-specific human

performance factor has to be updated accordingly.

7.4 Future Work

The following are some of the future work based on this dissertation.

A scalable distributed IAL. Multiagent systems are inherently distributed systems, so it

would be ideal if the IAL can function in a distributed manner without requiring information

in the runtime models to be synchronized across all agents before making a decision. A

scalable distributed IAL should be able to function with incomplete or possibly outdated

information. When a system continues to function with incomplete or possibly outdated

information, there will be situations that result in conflicts. Thus, the IAL must provide a

mechanism for conflict resolution. Agents should continue to function correctly when faced

with incomplete or possibly outdated information and resolve conflicts when necessary.

Capturing the notion of time in the CzM model. For most purposes of task allocation,

knowing the final fatigue value (z) at the end of a task is sufficient. However, there are

some situations where finer grain information is advantageous. But PMFs can be used

for more than just task allocations; PMFs can be used for continuously tracking human

performance factors. A possible use of continuous tracking of PMFs is to allow supervisors

to adjust system parameters if certain PMFs are above or below a threshold to guide the

system along a different path. Another possible use is to autonomously adapt the agents’
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behavior based on PMFs. For example, suppose that a human currently has x workload and

assigning the human an extra task would push the workload beyond an acceptable threshold.

So instead of the human doing everything in the extra task, another agent could help out

the human with the extra task, thus alleviating some of the workload on the human. In

order to facilitate continuous tracking of PMFs, the CzM model would have to capture the

notion of time.

Capture environment-specific human performance factors in the CzM model. In

simulations, environment-specific human performance factors are often ignored because they

rarely change for duration of a task. But, environment-specific human performance factors

do have an effect on performance. The CzM model will need to capture the concept of the

environment as well as provide the necessary associations between the performance function

entity and the environment so that PMFs can use environment-specific human performance

factors in their computations.

Simplify the implementation of HRI/HCI through the use of runtime models. Because

runtime models can be an effective means of supervisory control (Chapter 5), runtime

models (not limited to CzM and GMoDS) can be used to specify control interactions in

HRI/HCI efficiently. Traditionally, an HRI/HCI is implemented as code that is scattered

throughout the system. However, because runtime models depict a conceptual view that

is easy for humans to understand, if a system reasons over runtime models, then humans

can exert control over a system by manipulating the runtime models. Furthermore, the

implementation of HRI/HCI would cleaner because the code would be located with the

runtime models and not scattered throughout the system.
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[19] Torbjørn S. Dahla, Maja Matarić, and Gaurav S. Sukhatme. Multi-robot task

allocation through vacancy chain scheduling. Robotics and Autonomous Systems,

57(6–7):674–687, 2009.

[20] Raffaello D’Andrea and Michael Babish. The RoboFlag Testbed. In Proceedings of

the 2003 American Control Conference, volume 1, pages 656–660, 2003.

[21] Rajdeep K. Dash, Perukrishnen Vytelingum, Alex Rogers, Esther David, and

Nicholas R. Jennings. Market-Based Task Allocation Mechanisms for Limited-

Capacity Suppliers. IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, 37(3):391–405, May 2007.

[22] Scott A. DeLoach. Modeling Organizational Rules in the Multi-agent Systems

Engineering Methodology. In R. Cohen and B. Spencer, editors, Advances in Artificial

178



Intelligence: 15th Conference of the Canadian Society for Computational Studies of

Intelligence, volume 2338 of LNAI, pages 1–15. Springer-Verlag, 2002.

[23] Scott A. DeLoach. Organizational Model for Adaptive Complex Systems. In Virginia

Dignum, editor, Multi-Agent Systems: Semantics and Dynamics of Organizational

Models. IGI Global, 2009.

[24] Scott A. DeLoach and Juan Carlos Garćıa-Ojeda. O-MaSE: A Customisable Approach
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Appendix B

Emergency Response Team

The following three sections describe the three functions of the emergency response team

and the responsibilities and actions of team members when carrying out their assigned

function(s).

B.1 Survey Group

The survey group consists of several teams of human-robot pairs. The size of a team can

grow or shrink to include multiple humans as the need arises but a typical team contains

one human and one robot. The purpose of the survey group is to quickly survey the target

area to provide an accurate and up-to-date overview of the layout so that the other two

groups (hazard identification and victim rescue) of the emergency response team can respond

quickly and appropriately.

The robots in the survey group are equipped with the following additional capabilities:

(1) an infrared camera, which identifies heat signatures of survivors; (2) a standard camera,

which detects motion, structural and environmental hazards, and performs image recognition

of survivors; (3) a microphone, which detects audio cues of hazards and responses from
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survivors; and (4) a speaker, which is used to verbally communicate to survivors.

The following is a list of actions taken by the robots when surveying a target area.

1. The robot decides with the human partner on how to get to the target area.

• If the human partner decides to carry the robot to the target area, the robot goes

into standby mode until arrival at the target area.

• If the robot decides to lead the way to the target area, the robot plots a path to

the target area. Once a path is plotted, the robot navigates the path to the target

area. If there are path corrections from the human partner, the robot updates

the path with the corrections.

2. Upon reaching the target area, the robot begins to systematically search the target

area (attempting to reach 100% coverage).

• The map for the target area is updated by the robot as the robot is searching the

target area so that other members of the emergency response team can utilize

the updated map.

• If the robot encounters an area that it cannot navigate, the robot asks the human

partner to take over and search the area while the robot resumes its systematic

search of the target area.

• If the robot encounters structural or environmental hazards, the robot notes the

location of each hazard on the map and notifies the commander.

• If readings from robot’s sensors indicate a potential victim, the robot attempts

to confirm the readings.

(a) The robot attempts to move closer to the source of the readings. If the robot

cannot get closer to verify the readings, the robot asks the human partner

to take over and the robot resumes its systematic search.
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(b) Once the robot is close enough to the source, the robot verifies the initial

readings. If the readings are consistent with a victim, the robot determines

the status of the victim: survivor (conscious or unconscious), or deceased.

i. The robot plays a prerecorded message through the speaker and waits

for a response from the victim.

ii. The robot attempts to capture a response from the victim either verbally

or visually.

(c) Once the robot has ascertained the status of the victim, the robot notifies

the human partner of victim. If the human partner is already occupied with

another victim, the robot notifies the commander for additional help and

waits for the (replacement) human partner to arrive.

(d) Once the human partner arrives at the robot’s location, the robot resumes

its systematic search.

The following is a list of actions taken by the humans when surveying a target area.

1. The human decides with the robot partner on how to get to the target area.

• If the human decides to carry the robot partner to the target area, the human

waits for the robot partner to enter standby mode. Once the robot partner is

in standby mode, the human straps the robot partner onto the backpack and

proceeds to the target area.

• If the robot partner decides to lead the way to the target area, the human follows

the robot partner to the target area. If the human spots a better path while

following the robot, the human notifies the robot partner of corrections to the

path.

2. Once the human arrives at the target area, the human activates the robot (if it is
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in standby mode) and performs a visual inspection of the target area for potential

victims and hazards.

• The human updates the maps for the target area along with the robot partner.

The human could also make corrections to the updates made by the robot partner.

• If the human receives a request from the robot partner to search an area, the

human takes over and proceeds to the indicated area and begins to search the

area.

• If the human receives a request to investigate a potential victim, the human takes

over and proceeds to the indicated location and verifies that there is a potential

victim. If there is indeed a victim, the human verifies the status of the victim:

survivor (conscious or unconscious and mobile or immobile), or deceased.

– If the victim is deceased, the human marks the location of body with a flag

and notifies the commander.

– If the survivor is mobile, the human notifies the commander of a survivor

and escorts the survivor back to base.

– If the survivor is immobile, the human notifies the commander and stays

with survivor until the rescue team arrives.

• If the human receives a notification from the robot partner about the discovery

of a victim, the human proceeds to victim’s location.

– If the victim is deceased, the human marks the location of body with a flag

and notifies the commander.

– If the survivor is mobile, the human notifies the commander of a survivor

and escorts the survivor back to base.

– If the survivor is immobile, the human notifies the commander and stays

with survivor until the rescue team arrives.
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B.2 Hazard Identification Group

When the survey group notes any structural or environmental hazards, the commander

dispatches teams to investigate the hazards. The teams are responsible for identifying

the nature of the hazards and for making recommendations to the commander whether

specialized teams such as the bomb squad, chemical squad, or radiation squad need to be

called in to handle the hazards.

The robots in the hazard identification group are equipped with the following additional

capabilities: (1) a standard camera, which is used for detecting hazards; (2) a secondary

camera that has full range of motion, which allows the human partner to visually inspect

areas; (3) a variety of temperature sensors; (4) a variety of chemical sensors such as

electrochemical, pellistor, infrared, and thermal conductivity, which detects toxic chemicals,

flammables, and carbon dioxide; (5) a variety of instruments for collecting samples; (6) a

variety of chemical analyzers.

The following is a list of actions taken by the robot when identifying a hazard.

1. The robot decides with the human partner on how to get to the target location.

• If the human partner decides to carry the robot to the target location, the robot

goes into standby mode until arrival in the target location.

• If the robot decides to lead the way to the target location, the robot plots a path

to the target location. Once a path is plotted, the robot navigates the path to

the target location. If there are path corrections from the human partner, the

robot updates the path with the corrections.

2. Upon arrival at the target location, the robot decides with the human partner on

which areas to look for the hazards.

3. Once the areas have been decided, the robot starts to search the areas for hazards
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using its sensors.

• If the robot detects toxic chemicals, the robot notifies the human partner. The

robot analyzes the toxic chemicals and makes a recommendation to the human

partner: (1) safe with protective gear on or (2) unsafe with protective gear on.

If the human partner decides to stay at a distance, the robot takes on the areas

that have not been searched by the human partner.

• If the robot detects a sudden temperature change, the robot notifies the human

partner and takes over the searching the areas that have not been searched by

the human partner.

• If the robot detects a hazard, the robot notifies the human partner.

(a) Once the human partner arrives, the robot proceeds with the identification

process.

(b) The robot uses the camera to identify various spots where samples are to be

collected. The robot coordinates with the human partner to avoid collecting

multiple samples from the same area. If there are areas where the robot

cannot reach to collect the samples, the robot notifies the human partner of

the areas and lets the human partner collect the samples instead.

(c) The robot proceeds to collect samples from reachable areas and places the

samples into test tubes for analysis.

(d) Once the samples are in test tubes, the robot proceeds to analyze the samples.

(e) Once the analysis of the samples are completed, the robot confers with the

human partner on the next course of action (such as whether to call in

specialized squads) and makes a recommendation to the commander.

The following is a list of actions taken by the humans when identifying a hazard.
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1. The human decides with the robot partner on how to get to the target location.

• If the human decides to carry the robot partner to the target location, the human

waits for the robot partner to enter standby mode. Once the robot partner is

in standby mode, the human straps the robot partner onto the backpack and

proceeds to the target location.

• If the robot partner decides to lead the way to the target location, the human

follows the robot partner to the target location. If the human spots a better path

while following the robot, the human notifies the robot partner of corrections to

the path.

2. Upon arrival at the target location, the human decides with the robot partner on

which areas to look for the hazards.

3. Once the areas have been decided, the human begins to search the areas for hazards.

• If the robot partner notifies the human of toxic chemicals, the human dons the

protective head gear and waits for results of the analysis of the toxic chemicals

from the robot partner. Based on the analysis results, the human decides whether

to continue searching or to leave the searching to the robot. If the human decides

to leave the searching to the robot, the human can utilize the secondary camera

of the robot partner as a second set of eyes in the search process.

• If the robot partner notifies the human of a sudden temperature change, the

human evacuates the immediate area and monitors the situation using the

secondary camera of the robot partner.

• If the human notices a hazard, the human notifies the robot partner.

(a) Once the robot partner arrives, the human proceeds with the identification

process.

202



(b) The human determines areas where the samples are to be collected. The

human coordinates with the robot partner to avoid collecting multiple

samples from the same area.

(c) The human proceeds to collect samples from areas that the robot partner

cannot reach and hands the test tubes to the robot partner for analysis.

(d) Once the analysis of the samples are complete, the human discusses the

results with the robot partner and decides on the next course of action such

as whether to call in specialized squads.

B.3 Victim Rescue Group

When the survey group notes any victims, the commander dispatches teams to rescue the

victims. The teams are responsible for vacating victims from the scene to a safer area to

receive further medical assistance.

The robots in the victim rescue group are equipped with a stretcher, which allows the

robot to carry a victim back to safety.

The following is a list of actions taken by the robot when rescuing a victim.

1. The robot plots a path to the target location. Once a path is plotted, the robot

navigates along path to the target location. If there are path corrections from the

human partner, the robot updates the path with the corrections.

2. Once the robot arrives at the survivor’s location, the robot prepares the stretcher for

the survivor.

3. The robot waits for the survivor to be secured to the stretcher.

4. Once the survivor is secured to the stretcher, the robot proceeds back to base with

the human partner.
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The following is a list of actions taken by the human when rescuing a victim.

1. The human follows the robot partner to the target location. If the human spots a better

path while following the robot, the human notifies the robot partner of corrections to

the path.

2. Once the human arrives at the survivor’s location, the human collaborates with the

other human on how to secure the survivor to the stretcher.

3. Once the survivor is secured to the stretcher, the human notifies the robot partner

and proceeds back to base with the robot partner.
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Appendix C

Creating Runtime Models

Based on a book by Norman [68], a conceptual model (also known as a mental model)

is a simplification about how a system works, in which the system is broken down into

various parts and the relationship between the parts. Humans use a conceptual model to

(1) understand how a system works; (2) should problems arise, reason about the model to

derive solutions; and (3) make decisions based on information in the model.

A runtime model is also a conceptual model. However, not all conceptual models can be

runtime models. A runtime model is an implementation of a conceptual model that exists

in the memory of a computing system. The system reasons over the runtime model to make

decisions.

In order to develop a runtime model from a conceptual model, the conceptual model

should have the following two properties: (1) the conceptual model can be fully represented

as a connected graph (a disconnected graph is basically multiple conceptual models lumped

together with no apparent relationships between the models) and (2) the conceptual model

should capture meaningful information pertaining to the associated domain so that problems

can be identified and addressed autonomously.

A graph consists of two elements: nodes and edges. A node corresponds to an entity in
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the conceptual model such as the role or goal entity. An edge corresponds to the relationship

between the entities such as a role achieves a goal. Furthermore, the type of relationship

should be explicitly specified. There are four types of relationships: (1) one-to-one, (2) one-

to-many, (3) many-to-one, and (4) many-to-many.

Once the conceptual model is fully represented as a connected graph and contains the

relationship-types, the graph can be translated to a Unified Modeling Language (UML) class

diagram, where the nodes correspond to classes and the edges correspond to associations.

There are multiple possibilities for capturing edges. For example, an edge can be captured

as a class that contains two pointers to the two other classes. Certain implementations may

be more efficient for some uses. However, there is typically no single implementation that

is most efficient for all uses.

Once the translation is completed, attributes and method can be defined in the UML

class diagram for implementation. The process for implementing a UML class diagram is

the standard process and is not covered in this dissertation.
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Appendix D

Time Complexity Analysis

D.1 Random Algorithm

Figure D.1 shows the pseudo code for the random algorithm. The random algorithm

computes a set of goals that has not been assigned yet (g′) from the given set of goals

(Wg) and it iterates through every goal from the set of unassigned goals (g′). From a goal

(gi), the set of roles (Wr) that can achieve gi is obtained via the achieves() function.

The set of agents (Wa) is copied to a′ and an agent (ai) is randomly picked from a′; the

random() function randomly picks an element without replacement (i.e., ai is removed from

a′). An iteration occurs over every role (ri) to determine viable assignments (α), which

are computed using the goodness() function. Once α is computed, an assignment (αi) is

randomly selected. If there are no viable assignments for ai, another agent is randomly

picked to repeat the process until either a viable assignment is found or all agents have been

picked and there are no viable assignments for gi.

Proof. The time complexity of the random algorithm is O(g × a× r × c).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, r be the number of roles in the organization, and c be the number of capabilities in the
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function reorganize(Wg, Wa)

g′ ← unassigned(Wg), β ← ∅
for each gi from g′ do
a′ ← Wa, Wr ← achieves(gi)
repeat
ai ← random(a′), α← ∅
for each ri from Wr do

if goodness(ri, ai, gi) > 0 then
α← α ∪ 〈ri, ai, gi〉

end if
end for
αi ← random(α)

until αi 6= ∅ or a′ = ∅
β ← β ∪ αi

end for
return β

Figure D.1: Pseudo Code – Random Algorithm

organization.

Computing the set of unassigned goals requires checking each goal to determine if it is

assigned. Thus, the unassigned() function takes Θ(g) time.

The first loop iterates through all unassigned goals. In the worst case, all goals from Wg

are not assigned and the loop takes O(g) time. The time complexity so far is O(g + g).

Duplicating the set of agents takes Θ(a) time because it iterates through each agent and

since this duplication occurs inside the first loop, the time complexity so far is O(g+(g×a)).

The achieves() function, which returns a set of roles (Wr), takes constant time,

although the cardinality of Wr varies. In the best case, every goal is achieved by 1 role;

however, in the worst case, every goal can be achieved by r roles. The time complexity

remains unchanged.

The second loop terminates when either a viable assignment is found or when a′ is ∅.

Randomly picking an agent through the random() function takes constant time. In the best

case, the first randomly picked agent is capable (Θ(1)). In the worst case, no agents are

208



capable or the only capable agent is the last one to be picked (Θ(a)). So, the time it takes

for this loop is O(a). Since the second loop occurs inside the first loop, the time complexity

so far is O(g + (g × (a+ a))).

The third loop iterates through every role from Wr, which has a worst case cardinality

of r. Thus, the loop takes O(r). Since the third loops occurs inside the second loop, the

time complexity so far is O(g + (g × (a+ (a× r)))).

The goodness() function takes O(c) because every capability required by the role has

to be checked, which is c in the worst case as all the capabilities in the organization could

be required by a role. Since the goodness() function is called inside the third loop, the

time complexity so far is O(g + (g × (a+ (a× (r × c))))).

Since the remaining pseudo code is constant time, the time complexity of the random

algorithm is O(g + g × (a+ a× r × c)) and can be simplified to O(g × a× r × c).

D.2 Round Robin Algorithm

Figure D.2 shows the pseudo code for the round robin algorithm. The round robin algorithm

starts by computing the set of unassigned goals (g′) from the given goals (Wg). In addition,

it also sorts the unassigned goals so review goals for the same paper are grouped together.

Next, the algorithm iterates through each goal (gi) and obtains the roles (Wr) that can

achieve gi. It then iterates through each agent (ai) to determine the best role for the ai

and gi, which requires iterating through each role (ri) and selecting the role with the best

goodness score. If ai is capable (i.e., β 6= ∅), the number of assignments (including those

that the algorithm has already decided to assign) for ai is obtained from the assignments()

function. If the previously stored result (γ) is ∅ or the number of assignments is less than the

one from γ, this agent (ai) becomes the one that will be assigned to the goal (gi). Otherwise,

the algorithm moves to the next agent and repeats the process until all agents have been
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checked. The agent (γ.a) with least number of assignments is assigned to the goal (gi). The

algorithm moves to the next goal and repeats the process until all goals are processed.

function reorganize(Wg, Wa)

g′ ← sort(unassigned(Wg)), λ← ∅
for each gi from g′ do
Wr ← achieves(gi), γ ← ∅
for each ai from Wa do
β ← ∅
for each ri from Wr do
α← goodness(ri, ai, gi)
if α > 0 and (β = ∅ or α > β.α) then
β ← 〈ri, ai, gi, α〉

end if
end for
if β 6= ∅ then
δ ← assignments(β.a)
if γ = ∅ or δ < γ.δ then
γ ← 〈β.r, β.a, β.g, δ〉

end if
end if

end for
λ← λ ∪ 〈γ.r, γ.a, γ.g〉

end for
return λ

Figure D.2: Pseudo Code – Round Robin Algorithm

Proof. The time complexity of the round robin algorithm is O(g × a× r × c).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, r be the number of roles in the organization, and c be the number of capabilities in the

organization.

Computing the set of unassigned goals requires checking each goal to determine if it is

assigned. Thus, the unassigned() function takes Θ(g) time. Next, the unassigned goals

are sorted, which takes O(g × log g). The time complexity so far is O(g + (g × log g)).

The first loop iterates through all unassigned goals. In the worst case, all goals from Wg
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are not assigned and the loop takes O(g) time. The time complexity so far is O(g + (g ×

log g) + g).

The achieves() function, which returns a set of roles (Wr), takes constant time,

although the cardinality of Wr varies. In the best case, every goal is achieved by 1 role;

however, in the worst case, every goal can be achieved by r roles. The time complexity

remains unchanged.

The second loop iterates through every agent from Wa and thus, the time complexity

for this loop is Θ(a). Since the second loop occurs inside the first loop, the time complexity

so far is O(g + (g × log g) + (g × a)).

The third loop iterates through every role from Wr, which has a worst case cardinality

of r. Thus, the loop takes O(r). Since the third loops occurs inside the second loop, the

time complexity so far is O(g + (g × log g) + (g × (a× r))).

The goodness() function takes O(c) because every capability required by the role has

to be checked, which is c in the worst case as all the capabilities in the organization could

be required by a role. Since the goodness() function is called inside the third loop, the

time complexity so far is O(g + (g × log g) + (g × (a× (r × c)))).

Since the remaining pseudo code is constant time, the time complexity of the round robin

algorithm is O(g + g × log g + g × a× r × c) and can be simplified to O(g × a× r × c).

D.3 Greedy Algorithm

Figure D.3 show the pseudo code for the greedy algorithm. The greedy algorithm starts by

computing the set of unassigned goals (g′) from the given goals (Wg). Next, the algorithm

iterates through each goal (gi) and obtains the roles (Wr) that can achieve the gi. It then

iterates through each agent (ai) to determine the best role for the ai and gi, which requires

iterating through each role (ri) and selecting the role with the best goodness score. If ai is
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capable (i.e., β 6= ∅), the δ is compared to the δ of the previously saved result (γ). If γ is ∅

or the δ is greater than the δ of γ, this agent (ai) becomes the one that will be assigned to

the goal (gi). The algorithm moves to the next agent and repeats the process until all agents

have been checked. The agent (γ.a) with the highest score is assigned to the goal (gi). The

algorithm moves to the next goal and repeats the process until all goals are processed.

function reorganize(Wg, Wa)

g′ ← unassigned(Wg), δ ← ∅
for each gi from g′ do
Wr ← achieves(gi), γ ← ∅
for each ai from Wa do
β ← ∅
for each ri from Wr do
α← goodness(ri, ai, gi)
if α > 0 and (β = ∅ or α > β.α) then
β ← 〈ri, ai, gi, α〉

end if
end for
if β 6= ∅ then
δ ← β.α÷ assignments(β.a)
if γ = ∅ or δ > γ.δ then
γ ← 〈β.r, β.a, β.g, β.δ〉

end if
end if

end for
δ ← δ ∪ 〈γ.r, γ.a, γ.g〉

end for
return δ

Figure D.3: Pseudo Code – Greedy Algorithm

Proof. The time complexity of the greedy algorithm is O(g × a× r × c).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, r be the number of roles in the organization, and c be the number of capabilities in the

organization.

Computing the set of unassigned goals requires checking each goal to determine if it is
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assigned. Thus, the unassigned() function takes Θ(g) time.

The first loop iterates through all unassigned goals. In the worst case, all goals from Wg

are not assigned and the loop takes O(g) time. The time complexity so far is O(g + g).

The achieves() function, which returns a set of roles (Wr), takes constant time,

although the cardinality of Wr varies. In the best case, every goal is achieved by 1 role;

however, in the worst case, every goal can be achieved by r roles. The time complexity

remains unchanged.

The second loop iterates through every agent from Wa and thus, the time complexity

for this loop is Θ(a). Since the second loop occurs inside the first loop, the time complexity

so far is O(g + (g × a)).

The third loop iterates through every role from Wr, which has a worst case cardinality

of r. Thus, the loop takes O(r). Since the third loops occurs inside the second loop, the

time complexity so far is O(g + (g × (a× r))).

The goodness() function takes O(c) because every capability required by the role has

to be checked, which is c in the worst case as all the capabilities in the organization could

be required by a role. Since the goodness() function is called inside the third loop, the

time complexity so far is O(g + (g × (a× (r × c)))).

Since the remaining pseudo code is constant time, the time complexity of the greedy

algorithm is O(g + g × a× r × c) and can be simplified to O(g × a× r × c).

D.4 Attributes-Greedy Algorithm

Figure D.4 shows the pseudo code for the attributes-greedy algorithm. The attributes-

greedy algorithm starts by computing the set of unassigned goals (g′) from the given goals

(Wg). Next, the algorithm iterates through each goal (gi) and obtains the roles (Wr) that

can achieve the gi. It then iterates through each agent (ai) to determine the best role for
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the ai and gi, which requires iterating through each role (ri) and selecting the role with the

best goodness score. If ai is capable (i.e., β 6= ∅), the score is compared to the score of the

previously saved result (γ). If γ is ∅ or the score is greater than the score of γ, this agent

(ai) becomes the one that will be assigned to the goal (gi). The algorithm moves to the next

agent and repeats the process until all agents have been checked. The agent (γ.a) with the

highest score is assigned to the goal (gi). The algorithm moves to the next goal and repeats

the process until all goals are processed.

function reorganize(Wg, Wa)

g′ ← unassigned(Wg), δ ← ∅
for each gi from g′ do
Wr ← achieves(gi), γ ← ∅
for each ai from Wa do
β ← ∅
for each ri from Wr do
α← goodness(ri, ai, gi)
if α > 0 and (β = ∅ or α > β.α) then
β ← 〈ri, ai, gi, α〉

end if
end for
if β 6= ∅ and (γ = ∅ or β.α > γ.α) then
γ ← 〈β.r, β.a, β.g, β.α〉

end if
end for
δ ← δ ∪ 〈γ.r, γ.a, γ.g〉

end for
return δ

Figure D.4: Pseudo Code – Attributes-Greedy Algorithm

Proof. The time complexity of the attributes-greedy algorithm is O(g × a× r × (c+ n)).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, r be the number of roles in the organization, c be the number of capabilities in the

organization, and n be the number of attributes in the organization.

Computing the set of unassigned goals requires checking each goal to determine if it is
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assigned. Thus, the unassigned() function takes Θ(g) time.

The first loop iterates through all unassigned goals. In the worst case, all goals from Wg

are not assigned and the loop takes O(g) time. The time complexity so far is O(g + g).

The achieves() function, which returns a set of roles (Wr), takes constant time,

although the cardinality of Wr varies. In the best case, every goal is achieved by 1 role;

however, in the worst case, every goal can be achieved by r roles. The time complexity

remains unchanged.

The second loop iterates through every agent from Wa and thus, the time complexity

for this loop is Θ(a). Since the second loop occurs inside the first loop, the time complexity

so far is O(g + (g × a)).

The third loop iterates through every role from Wr, which has a worst case cardinality

of r. Thus, the loop takes O(r). Since the third loops occurs inside the second loop, the

time complexity so far is O(g + (g × (a× r))).

The goodness() function takes O(c+n) because every capability and attribute required

by the role has to be checked, which is c + n in the worst case as all the capabilities and

attributes in the organization could be required by a role. Since the goodness() function

is called inside the third loop, the time complexity so far is O(g+ (g× (a× (r× (c+ n))))).

Since the remaining pseudo code is constant time, the time complexity of the attributes-

greedy algorithm is O(g+g×a×r×(c+n)) and can be simplified to O(g×a×r×(c+n)).

D.5 Attributes-Enhanced Algorithm

Figure D.5 shows the pseudo code for the attributes-enhanced algorithm. The attributes-

enhanced algorithm starts by computing the set of unassigned goals (g′) from the given

goals (Wg). Next, the algorithm iterates through each goal (gi) and obtains the roles (Wr)

that can achieve gi. It then iterates through each agent (ai) to determine the best role for
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the ai and gi, which requires iterating through each role (ri) and selecting the role with

the best goodness score. If ai is capable (i.e., β 6= ∅) and if the goodness score is 1.0,

the contribution score is equal to the goodness score. However, if the goodness score is

less than 1.0, the contribution score is computed as shown in Equation 4.20. Then the

contribution score is compared to the contribution score of the previously saved result (γ).

If γ is ∅ or the contribution score is greater than one from γ, this agent (ai) becomes the

one that will be assigned to the goal (gi). The algorithm moves to the next agent and

repeats the process until all agents have been checked. The agent (γ.a) with the highest

contribution score is assigned to the goal (gi). The algorithm moves to the next goal and

repeats the process until all goals are processed.

Proof. The time complexity of the attributes-enhanced algorithm is O(g× a× r× (c+ n)).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, r be the number of roles in the organization, c be the number of capabilities in the

organization, and n be the number of attributes in the organization.

Computing the set of unassigned goals requires checking each goal to determine if it is

assigned. Thus, the unassigned() function takes Θ(g) time.

The first loop iterates through all unassigned goals. In the worst case, all goals from Wg

are not assigned and the loop takes O(g) time. The time complexity so far is O(g + g).

The achieves() function, which returns a set of roles (Wr), takes constant time,

although the cardinality of Wr varies. In the best case, every goal is achieved by 1 role;

however, in the worst case, every goal can be achieved by r roles. The time complexity

remains unchanged.

The second loop iterates through every agent from Wa and thus, the time complexity

for this loop is Θ(a). Since the second loop occurs inside the first loop, the time complexity

so far is O(g + (g × a)).

The third loop iterates through every role from Wr, which has a worst case cardinality
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function reorganize(Wg, Wa)

g′ ← unassigned(Wg), λ← ∅
for each gi from g′ do
Wr ← achieves(gi), γ ← ∅
for each ai from Wa do
β ← ∅
for each ri from Wr do
α← goodness(ri, ai, gi)
if α > 0 and (β = ∅ or α > β.α) then
β ← 〈ri, ai, gi, α〉

end if
end for
if β 6= ∅ then
δ ← β.α
if δ < 1 then
δ ← δ × (assignments(β.a) + 1)− previous(β.a)

end if
if δ > γ.α then
γ ← 〈β.r, β.a, β.g, δ〉

end if
end if

end for
λ← λ ∪ 〈γ.r, γ.a, γ.g〉

end for
return λ

Figure D.5: Pseudo Code – Attributes-Enhanced Algorithm

of r. Thus, the loop takes O(r). Since the third loops occurs inside the second loop, the

time complexity so far is O(g + (g × (a× r))).

The goodness() function takes O(c+n) because every capability and attribute required

by the role has to be checked, which is c + n in the worst case as all the capabilities and

attributes in the organization could be required by a role. Since the goodness() function

is called inside the third loop, the time complexity so far is O(g+ (g× (a× (r× (c+ n))))).

Since the remaining pseudo code is constant time, the time complexity of the attributes-

enhanced algorithm is O(g + g × a × r × (c + n)) and can be simplified to O(g × a × r ×
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(c+ n))1.

D.6 Brute Force Algorithm

Since the two brute force algorithms are very similar (except for the calculations of

assignment scores and the overall score), Figure D.6 shows the pseudo code for both

algorithms. First, the algorithms computes the set of unassigned goals (g′) from the given

set of goals (Wg). Next, using the unassigned goals (g′) and the set of agents (Wa),

the two algorithms compute all combinations of assignment sets using their respective

assignment score functions; the assignment score function for the OMACS algorithm is

defined by Equation 4.28 and the assignment score functions for the CzM algorithm

are defined by Equation 4.30 and Equation 4.31 (depending on the task). The two

algorithms go through each combination (φi), which is an assignment set, compute the

overall score for the combination using their respective overall score functions and keep

track of the best combination. The overall score function for the OMACS algorithm is

defined by Equation 4.29 and the overall score function for the CzM algorithm is defined by

Equation 4.32.

function reorganize(Wg, Wa)

g′ ← unassigned(Wg), β ← ∅
φ← combinations(g′,Wa)
for each φi from φ do
α← score(φi)
if β = ∅ or α > β.α then
β ← 〈α, φi〉

end if
end for
return β.φ

Figure D.6: Pseudo Code – Brute Force Algorithm

1The implementation of Equation 4.20 is constant time. However, the same results can be achieved in a
generalized way but the time complexity for the generalized way is unknown.
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Proof. The time complexity of the brute force algorithm for the OMACS version is O(ag)

and for the CzM version is O(ag).

Let g be the number of goals for the input Wg, a be the number of agents for the input

Wa, c be the number of capabilities in the organization, and n be the number of attributes

in the organization.

Computing the set of unassigned goals requires checking each goal to determine if it is

assigned. Thus, the unassigned() function takes Θ(g) time.

The next function (combinations()) generates all combinations based on g′ and Wa.

In the best case there is only one unassigned goal and one agent, so there is only one

combination. In the worst case, there are g unassigned goals, a agents, and each unassigned

goal can be assigned to a agents. Thus, there are ag combinations to generate. In order

to determine whether an assignment is valid or not, the assignment score functions of the

respective algorithms are used. The assignment score functions are linear in terms of c and

n because in the worst case all tasks require all capabilities and need all attributes. The

assignment score function for the OMACS version takes O(c) time, while the assignment

score function for the CzM version takes O(c+n) time. Thus, the combinations() function

takes O(ag × (c + n)), where n = 0 for the OMACS version. The time complexity so far is

O(g + (ag × (c+ n))), where n = 0 for the OMACS version.

The loop iterates through all combinations, which can be as many as ag. The score()

function is linear in terms of g because |φi| is at most g. The score for an assignment comes

from the assignment score function, which is O(c+n), where n = 0 for the OMACS version.

Thus, the score() function takes O(g× (c+n)), where n = 0 for the OMACS version. The

remaining pseudo code is constant time. Thus, the loop takes O(ag × (g × (c+ n))), where

n = 0 for the OMACS version. The time complexity so far is O(g + (ag × (c + n)) + (ag ×

(g × (c+ n)))), where n = 0 for the OMACS version.

The time complexity of the brute force algorithm is O(g+(ag×(c+n))+(ag×(g×(c+n))))
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and can be simplified to O(ag × (g × (c+ n))), where n = 0 for the OMACS version.
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Appendix E

Goal Modification Logs

IAL

1 2011/05/27 14:17:43 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (AlphaForm [1])

2 2011/05/27 14:17:43 >> MCC | Goals ([ AlphaForm [1] (state =([1, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)])

affected by modification

3 2011/05/27 14:17:43 >> MCC | Goal (AlphaForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (blue: (30 ,88))

4 2011/05/27 14:17:43 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (BetaForm [1])

5 2011/05/27 14:17:43 >> MCC | Goals ([ BetaForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)])

affected by modification
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6 2011/05/27 14:17:43 >> MCC | Goal (BetaForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (green: (32 ,88))

7 2011/05/27 14:17:43 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (GammaForm [1])

8 2011/05/27 14:17:43 >> MCC | Goals ([ GammaForm [1] (state =([1, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)])

affected by modification

9 2011/05/27 14:17:43 >> MCC | Goal (GammaForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (black: (30 ,89))

10 2011/05/27 14:17:44 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (LeadForm [1])

11 2011/05/27 14:17:44 >> MCC | Goals ([ LeadForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)])

affected by modification

12 2011/05/27 14:17:44 >> MCC | Goal (LeadForm [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (red: (31 ,86))

13 2011/05/27 14:17:53 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (AlphaMove [1])
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14 2011/05/27 14:17:53 >> MCC | Goals ([ AlphaMove [1] (state =([1, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x

=31, y=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

15 2011/05/27 14:17:53 >> MCC | Goal (AlphaMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (blue: (30 ,88))

16 2011/05/27 14:17:53 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (BetaMove [1])

17 2011/05/27 14:17:53 >> MCC | Goals ([ BetaMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

18 2011/05/27 14:17:53 >> MCC | Goal (BetaMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (green: (32 ,88))

19 2011/05/27 14:17:53 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (LeadMove [1])

20 2011/05/27 14:17:53 >> MCC | Goals ([ LeadMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y
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=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

21 2011/05/27 14:17:53 >> MCC | Goal (LeadMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (red: (31 ,86))

22 2011/05/27 14:17:57 >> MCC | Incoming modification (state =([1, 1,

1],false)) for goal (GammaMove [1])

23 2011/05/27 14:17:57 >> MCC | Goals ([ GammaMove [1] (state =([1, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x

=31, y=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

24 2011/05/27 14:17:57 >> MCC | Goal (GammaMove [1] (state =([1, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (black: (30 ,89))

25 2011/05/27 14:18:22 >> MCC | Incoming modification (state =([2, 1,

1],false)) for goal (GammaMove [1])

26 2011/05/27 14:18:22 >> MCC | Goals ([ GammaMove [1] (state =([2, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x

=31, y=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification
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27 2011/05/27 14:18:22 >> MCC | Goal (GammaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (black: (30 ,89))

28 2011/05/27 14:18:22 >> MCC | Incoming modification (state =([2, 1,

1],false)) for goal (LeadMove [1])

29 2011/05/27 14:18:22 >> MCC | Goals ([ LeadMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

30 2011/05/27 14:18:22 >> MCC | Goal (LeadMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (red: (31 ,86))

31 2011/05/27 14:18:22 >> MCC | Incoming modification (state =([2, 1,

1],false)) for goal (BetaMove [1])

32 2011/05/27 14:18:22 >> MCC | Goals ([ BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

33 2011/05/27 14:18:22 >> MCC | Goal (BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y
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=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (green: (32 ,88))

34 2011/05/27 14:18:22 >> MCC | Incoming modification (state =([2, 1,

1],false)) for goal (AlphaMove [1])

35 2011/05/27 14:18:22 >> MCC | Goals ([ AlphaMove [1] (state =([2, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x

=31, y=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)])

affected by modification

36 2011/05/27 14:18:22 >> MCC | Goal (AlphaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*MEDIUM , formation =* WEDGE)) is

assigned to agent (blue: (30 ,88))

37 2011/05/27 14:18:24 >> MCC | Incoming modification (status=null ,

points =[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], Task ID=1, location=recon.data.ReconArea

[x=31, y=75, width=0, height =0], level=LOW , formation=WEDGE) for

goal (Go To[1])

38 2011/05/27 14:18:24 >> MCC | Goals ([ BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*LOW , formation =* WEDGE), LeadMove

[1] (state =([2, 1, 1],false), points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], location =* recon

.data.ReconArea [x=31, y=75, width=0, height =0], level =*LOW ,

formation =* WEDGE), AlphaMove [1] (state =([2, 1, 1],false), points
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=*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 ,

75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y=75, width

=0, height =0], level=*LOW , formation =* WEDGE), GammaMove [1] (state

=([2, 1, 1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], location =* recon.data.

ReconArea [x=31, y=75, width=0, height =0], level =*LOW , formation =*

WEDGE)]) affected by modification

39 2011/05/27 14:18:24 >> MCC | Goal (BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*LOW , formation =* WEDGE)) is

assigned to agent (green: (32 ,88))

40 2011/05/27 14:18:24 >> MCC | Goal (LeadMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*LOW , formation =* WEDGE)) is

assigned to agent (red: (31 ,86))

41 2011/05/27 14:18:24 >> MCC | Goal (AlphaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*LOW , formation =* WEDGE)) is

assigned to agent (blue: (30 ,88))

42 2011/05/27 14:18:24 >> MCC | Goal (GammaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0)], location =* recon.data.ReconArea [x=31, y

=75, width=0, height =0], level=*LOW , formation =* WEDGE)) is

assigned to agent (black: (30 ,89))
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43 2011/05/27 14:18:30 >> MCC | Incoming modification (status=null ,

points =[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], Task ID=1,

location=recon.data.ReconArea [x=31, y=69, width=0, height =0],

level=LOW , formation=WEDGE) for goal (Go To[1])

44 2011/05/27 14:18:30 >> MCC | Goals ([ BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE), LeadMove [1] (state =([2, 1, 1],false), points

=*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 ,

75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =* recon.data.

ReconArea [x=31, y=69, width=0, height =0], level =*LOW , formation =*

WEDGE), AlphaMove [1] (state =([2, 1, 1],false), points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0),

(31.0334 , 68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y

=69, width=0, height =0], level=*LOW , formation =* WEDGE), GammaMove

[1] (state =([2, 1, 1],false), points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 ,

68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y=69, width

=0, height =0], level=*LOW , formation =* WEDGE)]) affected by

modification

45 2011/05/27 14:18:30 >> MCC | Goal (BetaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (green: (32 ,88))
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46 2011/05/27 14:18:30 >> MCC | Goal (LeadMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (red: (31 ,86))

47 2011/05/27 14:18:30 >> MCC | Goal (AlphaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (blue: (30 ,88))

48 2011/05/27 14:18:30 >> MCC | Goal (GammaMove [1] (state =([2, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (black: (30 ,89))

49 2011/05/27 14:18:35 >> MCC | Incoming modification (state =([3, 1,

1],false)) for goal (GammaMove [1])

50 2011/05/27 14:18:35 >> MCC | Goals ([ GammaMove [1] (state =([3, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification

51 2011/05/27 14:18:35 >> MCC | Goal (GammaMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (black: (30 ,89))
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52 2011/05/27 14:18:35 >> MCC | Incoming modification (state =([3, 1,

1],false)) for goal (LeadMove [1])

53 2011/05/27 14:18:35 >> MCC | Goals ([ LeadMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

54 2011/05/27 14:18:35 >> MCC | Goal (LeadMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (red: (31 ,86))

55 2011/05/27 14:18:35 >> MCC | Incoming modification (state =([3, 1,

1],false)) for goal (BetaMove [1])

56 2011/05/27 14:18:35 >> MCC | Goals ([ BetaMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

57 2011/05/27 14:18:35 >> MCC | Goal (BetaMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (green: (32 ,88))

58 2011/05/27 14:18:35 >> MCC | Incoming modification (state =([3, 1,

1],false)) for goal (AlphaMove [1])
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59 2011/05/27 14:18:35 >> MCC | Goals ([ AlphaMove [1] (state =([3, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification

60 2011/05/27 14:18:35 >> MCC | Goal (AlphaMove [1] (state =([3, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (blue: (30 ,88))

61 2011/05/27 14:18:55 >> MCC | Incoming modification (state =([4, 1,

1],false)) for goal (GammaMove [1])

62 2011/05/27 14:18:55 >> MCC | Goals ([ GammaMove [1] (state =([4, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification

63 2011/05/27 14:18:55 >> MCC | Goal (GammaMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (black: (30 ,89))

64 2011/05/27 14:18:55 >> MCC | Incoming modification (state =([4, 1,

1],false)) for goal (LeadMove [1])

65 2011/05/27 14:18:55 >> MCC | Goals ([ LeadMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

231



recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

66 2011/05/27 14:18:55 >> MCC | Goal (LeadMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (red: (31 ,86))

67 2011/05/27 14:18:55 >> MCC | Incoming modification (state =([4, 1,

1],false)) for goal (BetaMove [1])

68 2011/05/27 14:18:55 >> MCC | Goals ([ BetaMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

69 2011/05/27 14:18:55 >> MCC | Goal (BetaMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (green: (32 ,88))

70 2011/05/27 14:18:55 >> MCC | Incoming modification (state =([4, 1,

1],false)) for goal (AlphaMove [1])

71 2011/05/27 14:18:55 >> MCC | Goals ([ AlphaMove [1] (state =([4, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification
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72 2011/05/27 14:18:55 >> MCC | Goal (AlphaMove [1] (state =([4, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (blue: (30 ,88))

73 2011/05/27 14:18:58 >> MCC | Incoming modification (state =([5, 1,

1],false)) for goal (BetaMove [1])

74 2011/05/27 14:18:58 >> MCC | Goals ([ BetaMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

75 2011/05/27 14:18:58 >> MCC | Goal (BetaMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (green: (32 ,88))

76 2011/05/27 14:18:58 >> MCC | Incoming modification (state =([5, 1,

1],false)) for goal (LeadMove [1])

77 2011/05/27 14:18:58 >> MCC | Goals ([ LeadMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)]) affected by modification

78 2011/05/27 14:18:58 >> MCC | Goal (LeadMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*
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recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (red: (31 ,86))

79 2011/05/27 14:18:58 >> MCC | Incoming modification (state =([5, 1,

1],false)) for goal (AlphaMove [1])

80 2011/05/27 14:18:58 >> MCC | Goals ([ AlphaMove [1] (state =([5, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification

81 2011/05/27 14:18:58 >> MCC | Goal (AlphaMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (blue: (30 ,88))

82 2011/05/27 14:18:58 >> MCC | Incoming modification (state =([5, 1,

1],false)) for goal (GammaMove [1])

83 2011/05/27 14:18:58 >> MCC | Goals ([ GammaMove [1] (state =([5, 1,

1],false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location

=*recon.data.ReconArea [x=31, y=69, width=0, height =0], level=*LOW

, formation =* WEDGE)]) affected by modification

84 2011/05/27 14:18:58 >> MCC | Goal (GammaMove [1] (state =([5, 1, 1],

false), points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 , 0.0),

(31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)], location =*

recon.data.ReconArea [x=31, y=69, width=0, height =0], level =*LOW ,

formation =*WEDGE)) is assigned to agent (black: (30 ,89))

Leader Robot
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1 2011/05/27 14:17:45 >> red|RCC|LeadForm [1] (formation =*WEDGE , level

=*MEDIUM , state =([1, 1, 1],false), points =*[(31.2263 , 84.1653 ,

0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)])

2 2011/05/27 14:17:54 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*MEDIUM , state =([1, 1, 1],false), location =* recon.data.ReconArea

[x=31, y=75, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)])

3 2011/05/27 14:18:20 >> red|Plan|Leader |1|(31.2263 , 79.8246 , 0.0)

4 2011/05/27 14:18:23 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*MEDIUM , state =([2, 1, 1],false), location =* recon.data.ReconArea

[x=31, y=75, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)])

5 2011/05/27 14:18:25 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*LOW , state =([2, 1, 1],false), location =* recon.data.ReconArea [x

=31, y=75, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)])

6 2011/05/27 14:18:31 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*LOW , state =([2, 1, 1],false), location =* recon.data.ReconArea [x

=31, y=69, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 ,

68.9247 , 0.0)])

7 2011/05/27 14:18:33 >> red|Plan|Leader |2|(31.1299 , 75.1946 , 0.0)

8 2011/05/27 14:18:36 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*LOW , state =([3, 1, 1],false), location =* recon.data.ReconArea [x

=31, y=69, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 ,

68.9247 , 0.0)])
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9 2011/05/27 14:18:53 >> red|Plan|Leader |3|(31.0334 , 68.9247 , 0.0)

10 2011/05/27 14:18:56 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*LOW , state =([4, 1, 1],false), location =* recon.data.ReconArea [x

=31, y=69, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 ,

68.9247 , 0.0)])

11 2011/05/27 14:18:59 >> red|RCC|LeadMove [1] (formation =*WEDGE , level

=*LOW , state =([5, 1, 1],false), location =* recon.data.ReconArea [x

=31, y=69, width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0),

(31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 ,

68.9247 , 0.0)])

Alpha Robot

1 2011/05/27 14:17:43 >> blue|RCC|AlphaForm [1] (state =([1, 1, 1],

false), level=*MEDIUM , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

2 2011/05/27 14:17:53 >> blue|RCC|AlphaMove [1] (state =([1, 1, 1],

false), level=*MEDIUM , location =* recon.data.ReconArea [x=31, y=75,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

3 2011/05/27 14:18:22 >> blue|RCC|AlphaMove [1] (state =([2, 1, 1],

false), level=*MEDIUM , location =* recon.data.ReconArea [x=31, y=75,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

4 2011/05/27 14:18:24 >> blue|RCC|AlphaMove [1] (state =([2, 1, 1],

false), level =*LOW , location =*recon.data.ReconArea [x=31, y=75,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)
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5 2011/05/27 14:18:24 >> blue|Plan|Alpha|MEDIUM |1100| LOW |1000

6 2011/05/27 14:18:30 >> blue|RCC|AlphaMove [1] (state =([2, 1, 1],

false), level=*LOW , location =* recon.data.ReconArea [x=31, y=69,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

7 2011/05/27 14:18:35 >> blue|RCC|AlphaMove [1] (state =([3, 1, 1],

false), level=*LOW , location =* recon.data.ReconArea [x=31, y=69,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

8 2011/05/27 14:18:55 >> blue|RCC|AlphaMove [1] (state =([4, 1, 1],

false), level=*LOW , location =* recon.data.ReconArea [x=31, y=69,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

9 2011/05/27 14:18:58 >> blue|RCC|AlphaMove [1] (state =([5, 1, 1],

false), level=*LOW , location =* recon.data.ReconArea [x=31, y=69,

width=0, height =0], points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

Beta Robot

1 2011/05/27 14:17:44 >> green|RCC|BetaForm [1] (state =([1, 1, 1],

false), level=*MEDIUM , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

2 2011/05/27 14:17:54 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=75, width=0, height =0], state =([1, 1, 1],false)
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, level =*MEDIUM , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

3 2011/05/27 14:18:23 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=75, width=0, height =0], state =([2, 1, 1],false)

, level =*MEDIUM , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 ,

79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

4 2011/05/27 14:18:25 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=75, width=0, height =0], state =([2, 1, 1],false)

, level =*LOW , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0)], formation =* WEDGE)

5 2011/05/27 14:18:25 >> green|Plan|Beta|MEDIUM |1100| LOW |1000

6 2011/05/27 14:18:31 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=69, width=0, height =0], state =([2, 1, 1],false)

, level =*LOW , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

7 2011/05/27 14:18:36 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=69, width=0, height =0], state =([3, 1, 1],false)

, level =*LOW , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

8 2011/05/27 14:18:56 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=69, width=0, height =0], state =([4, 1, 1],false)

, level =*LOW , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)
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9 2011/05/27 14:18:59 >> green|RCC|BetaMove [1] (location =*recon.data.

ReconArea [x=31, y=69, width=0, height =0], state =([5, 1, 1],false)

, level =*LOW , points =*[(31.2263 , 84.1653 , 0.0), (31.2263 , 79.8246 ,

0.0), (31.1299 , 75.1946 , 0.0), (31.0334 , 68.9247 , 0.0)],

formation =*WEDGE)

Gamma Robot

1 2011/05/27 14:17:47 >> black|RCC|GammaForm [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)],

state =([1, 1, 1],false), level=*MEDIUM , formation =*WEDGE)

2 2011/05/27 14:18:01 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)],

location =*recon.data.ReconArea [x=31, y=75, width=0, height =0],

state =([1, 1, 1],false), level=*MEDIUM , formation =*WEDGE)

3 2011/05/27 14:18:25 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)],

location =*recon.data.ReconArea [x=31, y=75, width=0, height =0],

state =([2, 1, 1],false), level=*MEDIUM , formation =*WEDGE)

4 2011/05/27 14:18:28 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0)],

location =*recon.data.ReconArea [x=31, y=75, width=0, height =0],

state =([2, 1, 1],false), level=*LOW , formation =*WEDGE)

5 2011/05/27 14:18:28 >> black|Plan|Gamma|MEDIUM |1100| LOW |1000

6 2011/05/27 14:18:33 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0),

(31.0334 , 68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y

=69, width=0, height =0], state =([2, 1, 1],false), level=*LOW ,

formation =*WEDGE)
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7 2011/05/27 14:18:39 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0),

(31.0334 , 68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y

=69, width=0, height =0], state =([3, 1, 1],false), level=*LOW ,

formation =*WEDGE)

8 2011/05/27 14:18:59 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0),

(31.0334 , 68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y

=69, width=0, height =0], state =([4, 1, 1],false), level=*LOW ,

formation =*WEDGE)

9 2011/05/27 14:19:01 >> black|RCC|GammaMove [1] (points =*[(31.2263 ,

84.1653 , 0.0), (31.2263 , 79.8246 , 0.0), (31.1299 , 75.1946 , 0.0),

(31.0334 , 68.9247 , 0.0)], location =* recon.data.ReconArea [x=31, y

=69, width=0, height =0], state =([5, 1, 1],false), level=*LOW ,

formation =*WEDGE)
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