APPLICATION OF A MANUAL SCHEDULING TECHNIQUE TO A PARIICULAR MANUFACTURING PROBLEM

$$
\text { by } 544
$$

PRADIP KUMAR C. SHAF
B. Sc. (Mechanical Engg.), Birla Institute of Technology, India, 1965

A MASTER'S REPORT
submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1968
Approved by:

Major profassor

TABLE OF CONTENTS

INTRODUCTION 1
Types of Scheduling 2
MANUFACTURING PROBLEM. 4
Figure 1. 5
Figure 2. 6
APPROACH 8
Figure 3. 14
Nomenclature and Sumbols used in Gantt Chart. 20
Difficulties presented by non-uniform batch sizes in drawing the Gantt Chart. 22
APPENDIX A 28
List of Machines and Facilities Available 29
List of Components Manufactured 30
Operation Route Sheets. 31
Machine Operation Break-down. 53
APPENDIX B 64
Table 1 65
Table 2 66
Table 3 67
APPENDIX C 68
Gantt Chart for the Problem 68
APPENDIX D 69
Graph showing Labor Force Requirement 69
REFERENCES 10

INTRODUCTION

Scheduling is the final stage in production planning, the stage at which all the production activities are coordinated and projected onto a time scale. A typical manufacturing plant may have a number of machines or facilities. At any given time, there could be a number of jobs or commodities that must be processed on the various facilities. Thus it would be necessary to prepare a schedule or a time table that would specify what job a facility should process at any given time. In the ideal situation, all facilities would be kept busy all the time. Also, to deliver the completed jobs at the earliest date, a facility should be available as soon as the job is ready for processing on that facility. Obviously, these two requirements are almost never met. Satisfying one of the requirements does not necessarily satisfy the other requirement. Only in the overall ideal situation would both of the conditions be achieved simultaneously. If there are three machines A, B and C, and only one job which all the three machines have to process; it is quite clear that machines B and C must be kept idle during the time the job is being processed on machine A. Thus it would not be possible to meet the first requirement. Again, if there are three jobs A, B and C, and only one facility on which all the three jobs are to be processed; and if only one job can be processed at any given time; it is quite clear that jobs B and C must wait their curn if job A is being processed, making it rather impossible to meet the second require-
ment. Thus there is a problem; when and how to assign jobs and machines to obtain an overall optimum? Such a problem is known as an industrial scheduling problem.

Industrial scheduling problems are quite complex and diverse. This is so, because a plant may have hundreds of facilities on which thousands of jobs have to be processed. The number of possible alternatives in this scheduling problem is very large. That alternative which minimizes the total time required to complete all the jobs and hence minimizes the idle time and maximizes the utilization of facilities can be said to be optimal with the total elapsed time as the criterion. Besides these, there could be other criteria for optimizing the scheduling problem. Some of these could be, producing the product with minimum total cost per unit, minimizing the combined set-up cost of machines and inventory carrying cost or minimizing the in-process inventory. An optimal solution can always be obtained by enumeration but if there are just five jobs and five machines and any order is satisfactory, the possible sequences are approximately $25,000,000,000$ (i.e. $5!^{5}$), thus enumeration becomes impractical.

Different types of scheduling:

Industrial scheduling problems can be broadly divided into Project Scheduling and Machine Scheduling. Project scheduling is concerned with the analysis of various phases of a project. Program Evaluation Review Technique (PERT) and Critical Path Method (CPM) are the two well known techniques of project
scheduling. Machịne scheduling can be subdivided into (i) Flow shop type of scheduling (ii) Job shop type of scheduling and (iii) Intermittent type of scheduling.

In the flow shop type of scheduling, the production is continuous and all the jobs necessarily have the same technological requirements - i.e. they all follow the same route through the machines. A problem of this kind is often referred to as the 'book-binding problem' (Bellman), the 'assembly line balancing problem' (Heller), or the 'flow shop problem' (Ignall). When the route is the same, all jobs flow in the same direction.

In job shop scheduling, the plant or a portion of a plant is viewed as a collection of various facilities. A shop might have ten lathes, six grinders, two drill presses and three milling machines. Some of the jobs may require processing on only lathes and grinders while a few jobs must go through all the four machines by the same or different routes. Here the jobs usually do not flow in the same direction. Also, the jobs are seldom repeated. Job shop scheduling could be treated as a special case of project scheduling with limited facilities, thus PERT and CPM techniques can be applied here too. The intermittent type of production lies in between the above two. The products are produced in a batch and they may not have the same technological requirements. After one batch is produced, the same facilities may be used for manufacturing some other products. After a set interval of time, the production cycle is repeated. The manufacturing problem to be dealt with, in this report, is of this type.

MANUFACTURING PROBLEM

The manufacturing problem, to be considered here, is to schedule the production of a factory producing incandescent pressure lanterns. Figures 1 and 2. The lanterns are produced in a batch; the facilities being used for other purpose till the time for producing the next batch. Manufacturing these lanterns involves mainly press work. Most of the parts are made from brass sheets and the rest from steel sheets. The facilities are to be scheduled for this production. It is known that the requirements are uniform; and that manufacturing could be done to stock. Also, the available productive hours on each machine, the time it takes to manufacture each part (including set up time), the cost of set up and the technological requirements for each part are known. The problem, then, is to determine order quantities for each part, so that the production requirements are met and the combined cost of set-ups and inventory carrying is minimized. After the quantities are determined, a detailed schedule is to be made.

There are various methods available for solving this type of problem. However, if the requirements are not uniform with time it can be shown (Vazsonyi) that the problem leads to a very large nonlinear, mathematical programming problem. This nonlinear programming problem presents such a formidable proposition that it is not yet practical to develop a general solution. Nevertheless, it is possible to obtain a solution to

When ordering spare-parts, plasse alway3 state the number of the part roquimd and also the anadle powor of your lantern.

this problem which meets the requirements and stays within available production capacities but which does not necessarily minimize combined inventory and set up costs. Since, in our case, the requirements are uniform, the use of an economic-lot-size formula would minimize the combined set-up and carrying costs.

The word manual in the title of the report means that a computer and/or other aigebraic methods will not be used for arriving at the solution; however, mechanical means such as Gantt chart will be used for scheduling the production in detail after the batch size is optimized by the application of economic analysis.

The data for the problem is:
Monthly requirement $=2200$ units
Monthly working days $=24$ (i.e. 30 days -4 Sundays 4(1/2 Saturdays))
hence , Monthly working hours $=24 \times 8=192$ hours.
Number of set-up men $=2$
Number of workers $=30$
Wages for set-up men = Rs. $9 /$ day $=$ Rs.* $1.125 / \mathrm{hr}$.
Wages for workers $=$ Rs. $6 /$ cay $=$ Rs. $0.75 / \mathrm{hx}$.
$\begin{aligned} & \text { Inventory carrying } \\ & \text { cost rate }\end{aligned}=20 \%^{+}$
Overhead cost (based
on running time) $=$ Rs. 5.75/unit
*Rs., abbreviation for Rupees - Indian currency; present exchange rate at Rs. 7.50 per dollar.
${ }^{+}$An estimate of the inventory carrying cost rate was not available from the factory concerred, the figure of 20% was assumed on the basis of the general U. S. literature.

List of facilities (machines) available, components manufactured operation route sheets and machine operation break-down are given in Appendix A.

APPROACH

The theory of multi-product batch size determination proves to be very helpiul in cases where the final product is an assembly made of several components, which must also be produced on a batch basis. The components involve different setup costs, material costs, production rates, etc. If each component were considered on its own, each would have its corresponding optimal batch size, and in most cases, these optimal values would be different for the different components; furthermore, they would be different from the optimal batch size for the final product. Moreover, this approach does not take into account the effects of individual products on each other and on the production schedule. This could easily lead to complications in the production schedules and result in a cumbersome inventory control system.

These difficulties are greatly alleviated by the use of the theory of multi-product batch size determination. The consumption rate, ${ }^{a}{ }_{c}$, of the final product is, in fact, the rate at which the components are required for the assembly line, namely,

$$
a_{c}=a_{c_{1}}=a_{c_{2}}=a_{c_{3}}=\ldots=a_{c_{i}}=\ldots
$$

where $a_{C_{i}}$ is the consumption rate of the $i t h$ component in units per unit time (a unit of a component is defined here as the number of pieces required per one final assembly). But as the consumption period $T c$ is the same for all components, it follows that the quantities are all the same:

$$
Q=Q_{1}=Q_{2}=Q_{3}=\ldots=Q_{i}=\ldots
$$

where Q is the batch size of the final product and Q_{i} is the batch size of component i. The term quantity in this case prescribes the number of units required per Q units of the final product. Thus, if two pieces, say, of component 4 are required for each assembly, and if $Q=1000$ units, then $Q_{4}=1000$ units $=2000$ pieces.

The procedure for determining the batch size for the whole production schedule would be as follows: Since the requirements form a uniform demand, the application of an economic-lot-size formula to each component manufactured would give an optimal batch size by minimizing the combined cost of set-up and inventory, only for that component being consiciered on its own. The formula for optimal batch size (Eilon, page 232) is,

$$
Q_{m}=\sqrt{\frac{2 a_{c} s}{I(I+\gamma)+2 B}}
$$

where,

$$
\begin{aligned}
& Q_{\mathrm{m}}=\text { Optimal batch size } \\
& \mathrm{a}_{\mathrm{c}}=\text { Consumption rate per unit time } \\
& \mathrm{S}=\text { Set up cost/batch } \\
& I=\text { Inventory carrying cost for one piece/unit time } \\
& r=\text { Ratio of consumption rate to production rate } \\
& B=\text { Average storage cost/unit of time }
\end{aligned}
$$

Here, the production rate would be very high when compared to the consumption rate, so the ratio $a_{c} / a_{p}=\gamma$ is very small, hence can be neglected.

Again, storage costs are fixed (for this particular case) and so do not depend upon the batch size. Thus the storage cost can be ignored also. These assumptions reduce the formula to,

$$
Q_{m}=\sqrt{\frac{2 a_{c} s}{I}}
$$

Table 1 (Appendix B) shows the optimal batch size for each component when each is considered on its own. The optimal batch size for the final product is 895 units. In addition to batch size optimization for individual products, it is desirable to seek an optimal solution for the whole production schedule. Of the different optimization criteria available for measuxing the effectiveness of the whole production schedule, the two most important and useful criteria are, 'Inaximum
return' (return is defined as the ratio of profit to cost of production) and 'Maximum rate of return' (rate of return is defined as the ratio of profit to cost of production per unit time). A high rate of return implies that stocks should be kept at a low level and replenished at short intervais of time by small batches. These batches would be smaller than the minimum cost batches. The maximum return criterion gives a larger batch size than the former criterion-and this increased batch size could lead to improved production methods and hence reduction in costs. It is felt that this criterion should be used if the optimal batch size for the whole production schedule comes out to be lower than the total monthly requirements.

Using 'Maximum Return' as the criterion, the optimal batch size for each component is given by (Eilon, page 372),
where,

$$
\begin{aligned}
& Q_{i M}=g_{i} Q_{i m} \\
& g_{i}=\sqrt{\frac{\Sigma S / S}{\Sigma K_{i} \alpha_{i}^{2} / K_{i}}}
\end{aligned}
$$

where, $\quad Q_{i M}=$ Optimal batch size of ith component when the effects of individual products on each other and on the production schedule is taken into account (by Maximum Return criterion).
$Q_{i m}=$ Optimal batch size of ith component when each is considered on its own.

$$
\begin{aligned}
\mathbf{s}_{\mathbf{i}}= & \text { Set-up cost of ith component } \\
\mathrm{K}_{\mathbf{i}}= & \text { Carrying cost factor for ith component which } \\
& \text { in our case is, } \mathrm{I}_{\mathbf{i}} / 2 \mathrm{a}_{\mathrm{c}} \\
\alpha_{\mathbf{i}}= & \text { Ratio of consumption rate of ith component to } \\
& 1 \text { st component }=1 \text { (in our case) }
\end{aligned}
$$

$Q_{i m}$ for all the components is given in Table 2. Obviously for final product $\Omega_{i M}=Q_{i m}=895$.

Thus each component has two optimal batch sizes, one when each is considered on its own and the second, when the whole production schedule is optimized. It can be seen that these two batch sizes axe not compatible, since the schedule optimization sets a rigid relationship between the quantities of the various products included in the scheaule, and the quanticy ratios are determined by the relative rates of demand and not by the cost parameters that play an important role in optimal batch size determination when each product is analyzed individually. It is also quite clear that neither approach can afford to disregard the other, and in order to reconcile the two, a compromise sclution must be worked out in the form of a realistic schedule. This is where the production range becomes useful, since it specifies the allowabie deviations fror the individual optimums and thereby provides a certain amount of flexibility in the construction of schedule.

The concept of production range could be explained as follows. The total production cost per piece function has a
quadratic form; i.e. it is double valued, thus any increase in the total production costs above the total minimum costs corresponds to two batch sizes on either side of Q_{m} (minimum total costs/piece batch size) as shown in Figure 3. Thus in Figure $3, Q_{I}$ and $Q_{I I}$ represent two batch sizes, one on either side of Q_{m}, which could be produced when a certain percentage increase in total production costs above the minimum is allowed. The range between the two limits, Q_{I} and $Q_{I I}$, is called the production range. The total production costs for any batch size selected anywhere within the production range would not cause an increase in production costs above a predetermined value.

A production range may be likened to dimensional tolerances on engineering components. A certain batch size may be considered the best target that should be aimed at, but in practice it may be impossible to obtain a satisfactory production schedule consisting of ideal batches only. Before determining the production range, it is necessary to define (Eilon, page 243) a nondimensional ratio p as follows:

$$
\mathrm{p}=\frac{\mathrm{y}-\mathrm{c}}{\mathrm{y}_{\mathrm{m}}-\mathrm{c}}=\frac{\text { variable costs/unit }}{\text { minimum variable costs/unit }}
$$

where,

$$
\begin{aligned}
\mathbf{y}= & \text { Total cost/unit } \\
c= & \text { Constant cost/unit } \\
y_{\mathrm{In}}= & \text { Minimum total cost/unit, i.e. the total cost/unit } \\
& \text { when the optimum batch size is produced. }
\end{aligned}
$$

Figure 3. The Production Range

The ratio p is a measure of increase in costs above the minimum. To introduce some flexibility in the selection of batch size, it is necessary to allow a certain increase in costs above the minimum. The value of p is higher than l and the extreme values of the production range is given by the following two equations (Eilon, page 244),

$$
\begin{aligned}
& Q_{I}=Q_{m}\left(p-\sqrt{p^{2}-I}\right) \\
& Q_{I I}=Q_{m}\left(p+\sqrt{p^{2}-I}\right)
\end{aligned}
$$

where Q_{I} and $Q_{I I}$ are the lower and higher values of the production range respectively.

A significant feature of the above equations is the amount of flexibility that results, even with a small increase in variable costs; and of course, for a particular percent increase in variable costs the percent increase in total production costs would be even smaller.

It is felt that a 5 percent increase in variable costs above the minimum for each component should give sufficiently wide production range to work with but for some parts, a 10 percent increase in variable costs above the minimum may be necessaxy to avoid trouble in selecting the batch size. The production range for both percentage increases is shown in Table 3. The production range for the final product is about 654 to 1223 for $p=1.05$ and about 515 to 1392 units for $p=$ 1.10.

The next step is to select a quantity Q (batch size), that would fall within the production range of the final product and within the respective ranges of most of the components. The selection of a batch size Q that lies within the limits of the production range of the final product ensures that the costs per unit will remain below a predetermined level, while the uniformity of batch size for all the components greatly simplifies production planning and scheduling procedures.

The selected batch size should be between 654 and 1223 units as that is the production range of the final product for $p=1.05$. A look at Table 3 shows that the $Q=900$ lies within 5% production range of about 15 components and other two components can also be made in this batch size if their production range is increased to 10%. There are three components for which 900 is too large a batch to be within their production ranges. They can be made in two lots of 450 each every cycle. The reason for their lot size being smaller than other components is that their ratio of set-up cost to constant cost (Table 1) is very low when compared to the other components. A lower ratio gives a lower optimal batch size which results in a lower production range. However, since the batch size is 900 units, there has to be these many units of all components during the final assembly. The idea of making the required quantity in two lots does not look economical, in the sense that set-up cost would be doubled whereas the reasonable saving in interest carrying cost would occur only if the two lots are produced
far apart, i.e. one at the beginning of the cycle and the other near the end of the cycle. Because of this, these three components should also be produced in a batch size of 900. It is also found from Table 3 that batch size of 900 is too small for some parts which are made from steel sheets. The reason for their large batch-sizes is obvious. For these components, the ratio of set-up cost to constant cost (Table l) is vexy high. The eight components for which batch size of 2700 looks suitable, could be treated with a long cycle approach, i.e. they could be made only once in every three cycles. Thus, there would be 2 cycles - one short and the other long. In the short cycle, only those components which have a batch size of 900 will be manufactured. In the long cycle, besides all the components which are produced in the short cycle (in the batch size of 900), the remaining eight components will be manufactured in the batch size of 2700. The long cycle will come once after every two short cycles.

The next step in the scheduling is to make a time table (schedule) that will show in detail at what time which machine is to be set up for processing a particular operation of a particular component, when the operation will be started and when will it be over. The manual technique commonly used to complete all of the activities within the specified time making the best possible utilization of men and machines is to draw a Gantt chart (Clark). A Gantt chart has proved a valuable tool in scheduling when several parts are produced
at the same time. This chart clearly depicts who is responsible for any piece of work, when it is to be completed and how long it will take. Fundamentally, a Gantt chart is an operating chart in that it furnishes information for action. It shows the amount of work scheduled for each machine. The operations of all of the components are plotted on the time scale with respect to the machines on which they are performed. The starting and completion times of each operation are clearly shown.

Although it is not difficult to draw the chart, it does not give an optimum schedule. It is only one of the many feasible solutions. However, with reasonable care in plotting the chart, considerable saving in time can be affected. Benefits are many as mentioned above. The Gantt chart has a limitation in that any error in the calculations and posting are hard to detect and are apt to be cumulative. ence an exror is detected, rectification may necessitate the revision of the Gantt Chart.

With reference to the particular manufacturing problem, the following assumptions are made in drawing the Gantt chaxt: A. Assumptions regarding the machines:

1. No machine, except furnaces, may process more than one job at any given time. The furnaces, because of their operating characteristics, may process any nunber of jobs at any given time, the only restriction being their size.
2. Once an opexation is started on a machine, it must be performed till it is completed on that machine.

B. Assumptions regarding the jobs:

1. Any particular operation of a job may be processed by two or more similar machines at any given time provided the tooling cost is low (considering the later restriction, only spinning or polishing machines could be used simultaneously to perform the same operation of a job).
2. Consecutive operations of any job may be carried on simultaneously on different machines at any given time, i.e. over-lapping of operations is allowed. The maximum over-lapping would be restricted as follows:
(i) if the following operation is slower, it will not start earlier than fifteen minutes after the starting of the previous operation and
(ii) if the following operation is faster, it will not end earlier than fifteen minutes after the ending of the previous operation.
3. Each job must go through a number of machines in a specified order. This is known as 'technological requirement' or the 'routing'.
C. Assumptions regarding the processing times:
4. A known finite time is required to perform an operation. This is known as the processing time.
5. Processing times are deterministic. Thus there are no random or uncertain elements.
6. Processing times are independent. This implies independent of each other, and indepencent of the order in which the operations are performed.
7. The time required to transport the jobs between machines is assumed to be negligible or is included in the processing times.

D. Other assumptions:

1. The set-up time on each machine is known and the machine can be set up even before the job is ready to be served by that particular facility.
2. The maximum number of set up men available at any time is 2.
3. Furnace capacity would be limited to 600 units for big components such as hood, chimney seat and tank. Since other components are comparatively sinall, the furnace capacity would not be restricted for them.
4. Any annealing operation would take 4 hours.
5. Parts cannot be put in the furnace in the middle of its working cycle.
6. Total work force would be 30 , including 2 set up mer and 6 workers for hand operations.

Nomenclature and symbols used in Gantt chart:
On the Gantt chart a division of space represents both an amount of time and an amount of work to be done in that time. Thus, equal divisions of space on a single horizontal line
represents at the same time, equal divisions of time and varying amounts of work scheduled. On the Gantt chart, given in Appendix C, one division of space on the time scale represents eight hours. On the left side of the Gantt chart all the machines plus 6 workers (for operations to be done by hand) are listed.

On the Gantt chart the hour when work is to begin is indicated by a right angle opening to the right, thus -

The hour on which work is to be completed is indicated by an angle opening to the left, thus -

The two angles are joined at the bottom by a straight line to show the amount of work scheduled, thus -

The components are numbered 1 to 32 as shown in Appendix I. The operations under each component are also serially numbered. The component, operation number and the number of units are entered into the Gantt chart, thus -

This would mean 450 units of component number 14 (which is the hood) and operation number 10 (which is lst spinning)
are scheduled in this block. Since this operation is to be done on a spinning machine, it would be shown against that machine. Absence of any figure after the component and operation number indicates that the component would be processed in a batch size of 900.

Any component number with an astexisk would mean that this particular component has been carried over from the previous cycle. This component, because of its long processing time, could not be finished in the cycle in which it was started.

The set-up operation on any machine is shown by the hatched lines between the angles and by the prefix s to the component and operation number.

Difficulties presented by non-uniform batch sizes in drawing the Gantt chart:

At first, an attempt was made to draw the Gantt chart with the short and long cycle approach. A Gantt chart for long cycle was considered first. The following difficulties were encountered due to non-uniform batch sizes:
(1.) With batch size of 2700 for eight components, the cycle time becomes quite long and on the chart it becomes difficult to keep track of the different components.
(2) Total processing time on the small ball press and the 40 ton press is very high when compared to the other machines. If the small ball press is worked continuously, even with a high efficiency factor of

90\%, it would be busy for about 250 hours in the long cycle. This makes the long cycle awfully long (about 1.33 months) and the distribution of working load on other machines very uneven.

To utilize the time more effectively, the short cycle should start before the long cycle has ended. However, this difference in batch sizes and overlapping of two cycles causes too many complications in the scheduling procedure. This does not mean that scheduling could not be done on the optimal batch sizes but to avoid these scheduling complications, it was decided to give up this long and short cycle approach in favor of all the components having a uniform batch size of 900 units. Since 900 units also lie in the 5% production range of the final product, the total cost per unit should not increase more than 5% above the minimum cost, i.e. when all the components are produced at uniform batch size of 900 than when they are produced at respective optimal batch sizes as found before. The Gantt chart for the problem is shown in Arpendix C. Since the monthly requirement is 1200 units and the batch size is 900 , it is clear that new production cycle should start at least after every $3 / 4$ th of a month or 144 hours. The two components, chimney seat and hood, have very long processing times. If these two components are always given priority over the remaining components and if all of the operations were placed end to end, i.e. as soon as one operation is over, the
next one is started, the chimney seat would take 231 hours and 30 minutes, whereas the hood would take 208 hours and 45 min utes (for 900 units). Somehow, these operations have to be compressed in the total processing times to a maximum limit of 144 hours. This necessitated the overlapping of consecutive operations, i.e. two or more consecutive operations were performed simultaneously instead of waiting for one operation to be over before the next one is started. This worked alright with the chimney seat but even with the maximum of overlapping, the hood could not be processed completely within the stipulated time. Again, some difficulties arose with the component 'tank', too. Though its processing time is only 80 hours and $30 \mathrm{~min}-$ utes (for 900 units), machines could not be made available at the right time, thus at the end of 144 hours it was still in the processing stage. Moreover, soldering, plating and assembly operations were left unfinished too. However, the required machines were idle in the beginning portion of the cycle. Consequently, this difficulty was overcome by running two cycles concurrently - beginning a portion of the new cycle and completing a later portion of the previous cycle. Thus the first batch of 900 units would come out at the end of the first 288 hours but then each batch would come out every 144 hours.

A graph was dxawn (Appendix D) to show the labor force requirement at the beginning of every hour. This shows that the maximum number of workers (including the set-up men) re-
quired are twenty three and the minimum eight. The personnel requirements vary quite a few times - the valleys and mountains suggesting that these requirements should be levelled by some means. The theoretical total running time per unit of final product is about 2.2219 hours (two hours thirteen minutes and eighteen seconds) whereas the actual total running time comes to about 2.25 hours. These two figures match well enough, thus 900 units would require 2025 man-hours which can be achieved with fifteen men.

Two other graphs were drawn (Appendix D) to show the relationship between time and the number of workers required for hand operations and set-up men. The requirements for hand operations varied from zero workers to a maximum of six workers and for set-up men from zero to two. The approximate man-hours required are 659 and 160 respectively. For this, a maximum of four workers should be assigned to hand operations instead of the present six. As for the set-up men, though theoretically only one set up man would be sufficient, it appears that more machines would be idle because of unavailability of the setoup men at the required time; if the machines are not ready at the proper time, the result would be more ide time and less production. Hence, it would be desirable to use two set-up men.

This Gantt chart does not have any provision for making up the lost time (and hence lost production) if the schedule breaks down any time. This could hapeen if any machine breaks down or if the raw material is not available at the required
time or there is labor absentism or power failure or any other reason which could result in lost production. The only way to get back on schedule is to make up the lost production by working over time.

Since there is quite a deal of overlapping of operations, considerable material handling would be involved. However, the transportation time is assumed negligible or is supposed to be included in the processing times. Nevertheless, if required, one man would be able to do all the material handing. This Gantt chart does not present an optimal solution. It only gives one of the feasible solutions. However it could be taken as a first step in scheduling the production of the factory concerned. In conclusion the following modifications could be suggested to improve the scheduling.
(1) At any time not more than fifteen workers should be working. This restriction would level the working force requirement more or less and help achieve the same production with a considerable saving in wages.
(2) Restricting the number of workers employed for hand operations to four would also help toward normalizing the personnel requixement.
(3) At present the total cycle time is 144 hours and two cycles are processed simultaneously. By increasing the total cycle time, the fluctuations in labor requirements can be diminished. However, this approach will increase the number of cycles moving concurrently and hence the in-process inventory.
(4) In the present schedule, very few persons are working toward the tail of the cycle. An attempt should be made to displace the tail to the left. This would complete the cycle sooner than is done now with a resultant saving in production time. Conversely more units could be produced in the same time.
(5) Instead of reducing the work force, another alternative could be to fill up the valleys by scheduling another product at that time.

APPENDIX A

Serial Number	Name of Machine	Number Available
1	90 Ton Press	1
2	Furnace	3
3	Spinning Machine	2
4	Trimming Machine	1
5	Big Ball Press	1
6	Stamping Machine	1
7	40 Ton Press	1
8	Production Iathe	1
9	Small Ball Press	1
10	20 Ton Press	1.
11	Spot Welding Machine	1
12	15 Ton Press	1
13	Polishing Machine	2
14	Auto-punchirig Machine	1
15	Grinding Machine	1
16	Small Dri.lling Machine	1
17	5 Ton Press	1.
18	32 Ton Press	1
19	Special Bail Press	1
20	Capstan Lathes	6
21	Wire Straightening Machine	1
22	Shearing Machine	1
23	Special Jig and Fixure	1
24	Special Die	1
25	Soldering Section	
26	Plating Section	
27	Assembly Section	

Seri.al Number

1
2
3

4

5
6
7
8
9
10
11
12
13
14
15
16
17
1.8

19
20
21
22
23
24
25
26
27
28

Name of Component
Tank
Tank Bottom
Pump Barrel
Inner Case
Air Pocket
Air Pocket Chip
Chimney Seat
Piston Rod
Piston Ring
Catch Stud
Hood Cap
Top Ring
Guide Rod
Hood
Holding Disc
Iron Disc for Hood
Spirit Cup
Spirit Chip
Catch Screw
Valve seat
Center Socket (Upper End)
Center Socket (Lower End)
Handle
Pump Cap
Heating Coil Top (Upper End)
Heating Coil Top (Lower End)
Heating Coil Bottom Pipe
Heating Coil
Hex Nut
Nozzle Holder
Filler Mouth
Tee Piece

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time
	1.	Tank		Hr. Min.
1	Circle Cutting	90 Ton Press	6	130
2	Forming	90 Ton Press	6	130
2A.	Annealing	Furnace	-	-- -
3	Forming	9.0 Ton Press	6	130
4	Annealing	Furnace	-	- -
5	Spinning (lst)	Spinning Machine	30	045
6	Annealing	Furnace	-	- -
7	Spinning (2nd)	Spinning Machine	30	045
8	Trimming	Trimming Machine	30	045
9	Center Punching	Big Eall Press	30	100
10	Filler Mouth Punching	Big Ball Press	30	100
11	Pump Barrel Punching	Big Ball Press	30	100
12	Bidding for Pump Barrel	Big Ball Press	30	100
13	Bidding for Filler Mouth	Big Ball Press	30	100
13A	Name on tank	Stamping Machine	20	230
		Total	278	$14 \quad 15$

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
2. Tank Bottom Hr. Min.					
1	Circle Cutting	40 Ton Press	7	1	15
2	Forming	40 Ton Press	7	1	1.5
3	Trimming	Trimming Machine	30	0	45
		Total	44	3	15
3. Pump Barrel					
1.	Cut to size	Production Lathe	15	0	30
2	Threading	Production Lathe	20	0	30
		Total	35	1	00
4. Inner Case					
1	Circle Cutting	40 Ton Press	12	1	15
2	Forming	40 Ton Press	7	1	15
3	Forming	40 Ton Press	7	1	15
4	Forming	40 Ton Press	7	1	15
5	Hammering	40 Ton Press	7	1	15
6	Trimming	Small Ball Press	30	0	45
7	Top Cutting leaving center portion as it is	40 Ton Press	10	1	15
8	3 Hole punching on top	40 Ton Press	10	1	15
9	2 Hole punching on top	40 Ton Press	10	1	15

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
				Hr	Min.
10	Half bidding for Mixing Tube	40 Ton Press	8	1	15
11	Full bidding for Mixing Tube	40 Ton Press	8	1	15
1.2	Air pocket Punching	40 Ton Press	7	1	15
13	Side Notching (lst)	40 Ton Press	7	1.	15
14	Side Notching (2nd)	40 Ton Press	7	1	15
		Total	137	17	00
5. Air Pocket					
1	Blanking	20 Ton Press	15	1	30
2	Forming	40 Ton Press	10	1	15
3	Forming	20 Ton Press	15	1	30
4	Hammering	Small Ball Press	45	0	45
5	Cup Bending	Small Ball Press	45	0	45
6	Trimming All Sides	20 Ton Press	15	1	30
7	Hole on top	15 Ton Press	10	1	30
8	Hole in bottom	Small Ball Press	15	0	45
9	Bidding in Bottom Hole	Small Ball Press	15	0	45
10	Air pocket to be welded on inner casing on 4 sides	Spot Welding Machine	90	-	-
		Total	275	10	15

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time
6. Air Pocket Chip Hr. Min.				
1	Blanking	15 Ton Press	10	130
2	lst hole	15 Ton Press	8	130
3	2nd hole	15 Ton Press	8	130
4	3rd hole	15 Ton Press	8	130
5	Chip to be spotwelded on Air	Spot Welding Machine	60	- -
	Pocket	Total	94	600
7. Chimney Seat				
1	Circle marking and cutting	By hand	120	- -
2	Forming (lst)	90 Ton Press	6	130
3	Annealing	Furnace	-	-
4	Forming (2nd)	90 Ton Press	6	130
5	Annealing	Furnace	-	- -
6	Forming (3rd)	90 Ton Press	6	130
7	Annealing	Furnace	-	- -
8	Forming (4th)	90 Ton Press	6	130
9	Annealing	Furnace	-	-
10	Spinning (lst)	Spinning Machine	75	045

Operation Number	Description of Operation	Name of Machine	Machining Time in seconds	Set up Time	
				Hr	Min.
11	Annealing	Furnace	-	-	-
12	Spinning (2nd)	Spinning Machine	90	0	45
13	Body Trimming	Trimming Machine	30	0	45
14	Half Bidding	Trimming Machine	50	0	45
15	Full Bidding	Trimming Machine	50	0	45
16	Acid Wash	By Hand	45	-	-
17	Knife Polishing	Polishing Machine	120	0	15
18	Roller on Body	Trimming Machine	30	0	45
19	Bottom Punching	40 Ton Press	10	1	15
20	Bottom Bidding	Small Ball Press	20	0	45
21	4 holes for guide rod	Small Ball Press	25	0	45
22	25 small air holes	Auto-punching Machine	30	0	45
23	Hole for spirit	Small Ball Press	15	0	45
24	9 air holes at bottom	Auto-punching Machine	12	0	45
25	Tee Piece hole	Small Ball Press	20	0	45
26	Tee Piece hole bidding	Small Ball Press	20	0	45

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
					Min.
6	Filing	By hand	30	-	-
7	lst Drilling	Small drilling machine	10	0	30
8	2nd Drilling	Small drilling machine	10	0	30
		Total	190	2	00
11. Hood Cap					
1	Circle marking and cutting	By hand	45	-	-
2	Forming (lst)	90 Ton Press	6	1	30
3	Annealing	Furnace	-	-	-
4	Forming (2nd)	90 Ton Press	6	1	30
5	Annealing	Furnace	-	-	-
6	Spinning	Spinning Machine	30	0	45
7	Trimming	Trimming Machine	25	0	45
8	Biading	Trimming Machine	20	0	45
9	Acid wash	By hand	20	-	-
10	Knife polishing (Inside and Outside)	Polishing Machine	50	0	15
		Total	202	5	30

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
12. Top Ring Hr. Min.					
1	Circle Marking and Cutting	By hand	50	-	-
2	Forming	40 Ton Press	10	1	15
3	Center Punching	40 Ton Press	1.0	1	15
4	Trimming	Trimming Machine	15	0	45
5	4 holes for Guide Rod	15 Ton Press	15	1	30
6	2 holes for Catch Stud	Small Drilling Machine	14	0	30
7	Filing	By hand	35	-	-
8	Acid wash	By hand	30	-	-
9	Knife polishing	Polishing Machine	40	0	15
Total 219 5					
13. Guide Rod*					
$1 \quad$ Sizing					
2	Cutting	Capstan	192	1	00
3	Threading on one end				
4	Threading on the other end	eces Total	192		
	*All times for \&			1	00

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
	14.	Hood		Hr .	Min.
1	Circle Marking and Cutting	By hand	60	-	-
2	Forming (1st)	90 Ton Press	6	1	30
3	Annealing	Furnace	-	-	-
4	Forming (2nd)	90 Ton Press	6	1	30
5	Annealing	Furnace	-	-	-
6	Forming (3rd)	90 Ton Press	6	1	30
7	Annealing	Furnace	-	-	-
8	Forming (4th)	90 Ton Press	6	1	30
9	Annealing	Furnace	-	-	-
10	Spinning (lst)	Spinning Machine	60	0	45
11	Annealing	Furnace	-	-	-
12	Spinning (2nd)	Spinning Machine	60	0	45
13	Annealing	Furnace	-	-	-
14	Spinning (3rd)	Spinning Machine	45	0	45
15	Trimming	Trimming Machine	30	0	45
16	Bidaing	Trimming Machine	25	0	45

Operation Number	Description of operation	Name of Machine	Machining Time in Seconds	Set up Time	
				Hr	Min
17	lst Notching	Big Ball Press	15	1	00
18	2nd Notching	Big Ball Press	15	1	00
19	Air holes	Auto Punching Machine	55	0	45
20	Ventilator holes	Big Ball Press	35	1	00
21	Bidding on vent holes	Big Ball Press	35	1	00
22	2 Holes on top	Small drilling machine	20	0	30
23	Filing of holes	By hand	20	-	-
24	Acid wash	By hand	60	-	-
25	Knife Polish Inside	Polishing Machine	60	0	15
26	Knife polish Outside	Polishing Machine	120	0	15
		Total	739	15	30
15. Holding Disc					
1	Blanking	40 Ton Press	10	1	15
2	Forming	40 Ton Press	10	1	15
3	Center punching	40 Ton Press	10	1	15
4	Punching holes	40 Ton Press	10	1	15
		motal	40	5	00

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	set up Time	
16. Iron Disc for Hood Hr. Min.					
1	Blanking and forming	40 Ton Press	10	1	15
2	Center hole punching	Small Ball Press	15	0	45
.		Total	25	2	00
17. Spirit Cup					
1	Blanking and forming	20 Ton Press	15	1	30
2	Annealing	Furnace	-	-	-
3	Half forming	Small Ball Press	25	0	45
4	Annealing	Furnace	-	-	-
5	Full forming	Small Ball Press	25	0	45
6	Trimming	20 Ton Press	15	1.	30
		Total	80	4	30
18. Spirit Chip					
1	Blanking	Big Ball Press	15	1	00
2	Punching one hole	Big Ball Press	15	1	00
3	Soldering of chip on Spirit Cup	By hand	45	-	-
	Total		75	2	00

Operation Number	Description of Operation	Name of Machine	Machining rime in Seconds	Set up Time	
19. Catch screw* Hr. Min.					
1 Size					
2 Drill					
3 Drill					
5 Knurling					
6 Groove cutting					
7 Cutting					
$8 \quad$Tap on bench-vise$\quad 240$ - 8					
*All times for 2 pieces Total $420 \quad 10$					
20. Valve Seat					
1 Size					
2 Drill					
3 Tapping					
4 Airline \quad Capstan $\quad 80 \quad 1045$					
5 Groove					
6 Polish					
7	Cutting				
Total 80 1 45					

Operation Number	Description of operation	Name of Machine	achining Time in Seconds	Set up Time
	23.	Handle		Hr. Min.
1	Straightening	Wire Straightening Machine	95	- -
2	Cutting	Shearing Machine	5	- -
3	Polishing	Polishing Machine	15	$0 \quad 15$
4	Side Bending	Jig \& Fixture	20	- -
5	Notching in center	Small Ball Press	30	045
6	Bending	Jig \& Fixture	20	- -
		Total	95	100
	24. Pump Cap			
1	Blanking and half forming	32 Ton Press	15	130
2	Annealing	Furnace	-	- -
3	Full forming	32 Ton Press	15	130
4	Hammering	Small Ball Press	25	045
5	Trimming and Threading	Production Lathe	60	030
6	Knurling	Production Lathe	30	$0 \quad 30$
7	Center Punching	5 Ton Press	10	130
8	Notching on top	15 ron Press	10	130
9	Center Funch Bidding	5 Ton Press	10	130
		Total	175	$9 \quad 15$

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
	30. N	zzle Holder		Hr. Min.	
1	Sizing				
2	Cutter				
3	Drilling				
4	Threading	Capstan	110	1	45
5	Cutter	.			
6	Drilling				
7	Threading				
8	Surface cleaning	Production Lathe	45	0	30
		Total	155	2	15
31. Filler Mouth					
1	Blanking	32 Ton Press	10	1.	30
2	Half forming	32 Ton Press	10	1	30
3	Annealing	Furnace	-	-	-
4	Full Forming	32 Ton Press	I0	1.	30
5	Hammering	15 Ton Press	10	1	30
6	Punching on top	15 Ton Press	10	1	30
7	Trimming	Production Lathe	20	0	30

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time	
				Hr .	Min.
14	Filing		.		
15	Emery Polish				
16	Sizing and Cutting	Capstan	90	1	45
17	Chog Drill				
18	Drill		.		
19	Tap				
20	Drill				
21	Size Cutter				
22	Drill				
23	Drill	Capstan	120	1	30
24	Scrapping				
25	Filing				
26	Groove				
27	Size Cutter				
28	Cutter Die				
29	Chog Drj 11	Capstan	1.20	1	45
30	Drill				

Operation Number	Description of Operation	Name of Machine	Machining Time in Seconds	Set up Time
				Hr. Min.
31	Cutting			
32	Filing			
33	Drilling			
34	Tapping	By hand	30	- -
		Total	575	$9 \quad 00$

Tank Soldering:
Soldering of filler mouth, center socket, pump barrel, tank bottom, bidding, second soldering, scrapping of solder Average time: 240 seconds per piece.

plating:

1. Tank, Chromium plating
2. Chimney seat, Chromium Plating
3. Hood, Chromium plating
4. Pump cap, Chromium plating
5. Holding Disc, Dull plating
6. Iron plate, Dull plating
7. Hood cap, Dull plating
8. Catch stud, Dull plating
9. Catch screw, Dull plating
10. Inner case, Dull plating

Time for 10 units
300 Seconds
330 "
250
120
180
150
130

90	$"$
90	n
240	11

Total 1880 Seconds

Assembly of Vapor Part:
The hex screw is inserted into the heating coil bottom which is fitted to the heating coill top. Heating coil is then assembled to the heating coil top, which is then soldered. Average time

80 Seconds for assembly per piece
40 Seconds for soldering per piece

Assembly of Light:

Assemble chimney carrier on tank with the help of vapor, spirit cup, holding disc and a long screw. Then assemble inner casing along with the mixing tube, nozzle holder, nozzle and mangle. Then assemble hood and handle, test and pack. Average time for one unit 600 seconds.

MACHINE OPERATION BREAK-DOWN

1. 90 TON PRESS Set-up time per operation - 1 hour 30 minutes

Name of Component	Operation Number	Time Per Operation in Seconds	Total Time Per Component in Seconds
Tank	1	6	
	2	6	
	3	6	18
Chimney Seat	2	6	
	4	6	
	6	6	
	8	6	24
Hood Cap	2	6	
	4	6	12
Hood	2	6	
	4	6	
	6	6	
	8	6	24
	Total time	the machin	78 seco
2. FURNACE	Set-up time per	peration -	
	Time per operat	- 4 hours	minutes
Tank	2A		
	4		
	6		
Chimney Seat	3		

Name of Component	Operation Number	Time Per Operation in seconds	Total Time Per Component in Seconds
Hood Cap	6	30	30
Hood	10	60	
	12	60	
	14	45	165
	Total time for	the machine	- 420 seconds
4. TRIMMING MACHINE	- Set-up time per	peration -	hour 45 minutes
Tank	8	30	30
Tank Bottom	3	30	30
Chimney Seat	13	30	
	14	50	
	15	50	
	18	30	160
Hood Cap	7	25	
-	8	20	45
Top Ring	4	15	15
Hood	15	30	
	16	25	55
	Total time for	the machine	335 seconds
5. BIG BALL PRESS	Set-up time per	ceration - 1	hour 0 minutes
Tank	9	30	
	10	30	
	11	30	
	12	30	
	13	30	3.50

$\left.\begin{array}{lccc} & & \begin{array}{c}\text { Time Per } \\ \text { Operation }\end{array} & \begin{array}{c}\text { Total Time } \\ \text { Per Component } \\ \text { in Seconds }\end{array} \\ \text { Name of Component } \\ \text { Operation Number } \\ \text { in Seconds }\end{array}\right)$
Total time for the machine 211 seconds
8. PRODUCTION LATHE Set-up time per operation - 0 hour 30 minutes

Pump Barrel

Pump Cap
5
$1 \quad 15$
$2 \quad \underline{20}$
$6 \quad 30$
8

7
20
Nozzle Holder
Filler Mouth

6	-30	90
8	$-\frac{45}{20}$	45
7	-30	
Total time for the machine	220	

Name of Component	Operation Number	Time Per Operation in Seconds	Total Time Per Component in Seconds
9. SMALL BALL PRESS	Set-up time per	operation -	hour 45 minutes
Inner Case	6	30	30
Air Pocket	4	45	
	5	45	
	8	15	
	9	15	120
Chimney Seat	20	20	
	21.	25	
	23	15	
	25	20	
	26	20	100
Iron Disc for Hood	2	15	35
Spirit Cup	3	25	
	5	25	50
Handle	5	30	30
Pump Cap	4	25	25
	Total time for	the machine	370 seconds
10. 20 TON PRESS	Set-up time per	peration -	hour 30 minutes
Air pocket	1	15	
	3	15	
	6	15	45
Spirit Cup	1	15	
	6	15	30
	Total time for	the machine	75 seconds

APPENDIX B

Table 1. Determination of Economic Lot Size

Serial Number	Name of Component	Set-up cost,	Material cost,	Cost in Rs. Labor cost, 1	Over-head, 0, on running time	Constant cost $C=m+1+0$	S/C	$Q_{m}=\sqrt{\frac{2 a_{c} S}{I}}$
1	Tank	16.0312	4.9400	0.0579	0.2721	5.2700	3.04	666
2	Tank Bottom	3.6562	3.6240	0.0091	0.0430	3.6761	0.99	381
3	Pump Barrel	1.1250	0.9000	0.0072	0.0341	0.9413	1.19	417
4	Inner Case	19.1250	0.5000	0.0285	0.1343	0.6628	28.97	2052
5	Air Pocket	11.5312	0.0680	0.0573	0.2696	0.3949	29.56	2066
6	Air Pocket Chip	6.7500	0.0210	0.0195	0.0920	0.1325	51.92	2739
7	Chimney Seat	19.4062	2.5870	0.1764	0.8290	3.5924	5.40	880
8	Piston Rod	0.8437	0.2420	0.0124	0.0585	0.3129	2.72	637
9	Piston Ring	0.8437	0.0520	0.0093	0.0440	0.1053	8.43	1082
10	Catch Stud (2)*	2.2500	0.1880	0.0396	0.1861	0.4137	5.48	892
11	Hood Cap	6.1875	1.1620	0.0420	0.1977	1.4017	4.41	803
12	Top Ring	6.1875	1.6640	0.0456	0.2146	1.9242	3.22	685
13	Guide Rod (4)*	1.1250	0.8920	0.0400	0.1882	1.1202	1.00	382
14	Hood	17.4375	3.6750	0.1537	0.7226	4.5513	3.83	748
15	Holding Disc	5.6250	0.1340	0.0083	0.0391	0.1814	31.25	2131
16	Iron Disc for Hood	2.2500	0.0650	0.0051	0.0243	0.0944	25.00	1876
17	Spirit Cup	5.0625	0.1550					1778
18	Spirit Chip	2.2500	0.1550	0.0322	0.1515	0.3387	22.15	1778
19	Catch Screw (2)*	1.9687	0.2490	0.0876	0.4117	0.7483	2.66	619
20	Valve Seat	1.9687	0.1620	0.0166	0.0782	0.2568	7.87	1058
21	Center Socket (Upper End)	1.6875	0.3190	0.0416	0.1956	0.5562	6.13	940
22	Center Socket (Lower End)	1.6875						
23	Handle	1.1250	0.1200	0.0198	0.0930	0.2328	4.89	834
24	Pump Cap	10.4062	0.1450	0.0364	0.1713	0.3527	29.73	2076
25	Heating Coil Top	1.4062						
26	(Upper End)		0.4420	0.0291	0.1371	0.6082	4.68	820
26	Heating Coil Top (Lower End)	1.4062						
27	Heating Coil Bottom Pipe	3.9375	0.4980	0.0146	0.0687	0.5813	6.78	994
28	Heating Coil	-	0.6700	0.0438	0.2058	0.9196	-	-
29	Hex Nut	1.6875	0.0780	0.0156	0.0733	0.1669	10.54	1212
30	Nozzle Holder	2.5312	0.3400	0.0323	0.1519	0.5242	4.86	840
31	Filler Mouth	9.5625	0.2100	0.0208	0.0979	0.3287	29.88	2060
32	Tee Piece	10.1250	1.2350	0.1198	0.5632	1.9180	5.30	878
		177.1869	25.3370	1.2221	5.7484	32.3075	5.48	
	-	$Q_{m} \text { for the final product }=\sqrt{\frac{2 a_{c}{ }^{S}}{I}}=\sqrt{\frac{2 \times 40 \times 177.1889}{5.479 \times 10^{-4} \times 32.3075}}=895 \text { Units }$						

*Number in the parenthesis represents number of pieces going into one unit of final product.

Table 2. Determination of optimal batch size considering the whole production schedule.

Serial
Number Name of Components $Q_{m i} \quad \begin{aligned} & \text { Set up } \\ & \text { Cost, } s_{i}\end{aligned} \quad K_{i}=\frac{I_{i}}{2 a_{c i}} \quad g_{i}=\sqrt{\frac{\Sigma S / S_{i}}{\Sigma K / K_{i}}} \quad Q i_{M}=g_{i} Q_{m i}$

1	Tank	666	16.0312	0.3609	1.343	895
2	Tank Bottom	381	3.6562	0.2517	2.350	894
3	Pump Barrel	417	1.1250	0.0644	2.146	895
4	Inner Case	2052	19.1250	0.0453	0.435	893
5	Air Pocket	2066	11.5312	0.0270	0.432	893
6	Air Pocket Chip	2739	6.7500	0.0090	0.325	890
7	Chimney Seat	880	19.4062	0.2460	1.007	886
8	Piston Rod	637	0.8437	0.0214	1.428	910
9	Piston Ring	1082	0.8437	0.0072	0.828	896
10	Catch Stud (2)*	892	2.2500	0.0283	1.003	895
11	Hood Cap	803	6.1875	0.0959	1.115	895
12	Top Ring	685	6.1875	0.1317	1.306	894
13	Guide Rod (4)*	382	1.1250	0.0767	2.342	895
14	Hood	748	17.4375	0.3117	1.197	895
15	Holding Disc	2131	5.6250	0.0124	0.419	893
16	Iron Disc for Hood	1876	2.2500	0.0064	0.476	893
17	Spirit Cup	1788	7.3125	0.0231	0.503	894
18 19	Spirit Chi.p Catch Screw (2)*	1788 619	1.9687	0.02312	1.446	895
20	Valve Seat	1058	1.9687	0.0175	0.845	894
21	Center Socket (Upper End)	940	3.3750	0.0380	0.950	893
22	Center Socket (Lower End)	940	3.3750	0.0380	0.950	
23	Handle	834	1.1250	0.0159	1.066	889
24	Pump Cap	2076	10.4062	0.0241	0.430	893
25	Heating Coil Top (Upper End)					
26	Heating Coil Top (Lower End)	820	2.8124	0.0416	1.089	893
27	Heating Coil Bottom Pipe		3.9375	0.0398	0.900	895
28	Heating Coil	-	-	0.0629	-	-
29	Hex Nut	1212	1.6875	0.0114	0.737	893
30	Nozzle Holder	840	2.5312	0.0359	1.066	895
31	Filler Mouth	2060	9.5625	0.0225	0.434	894
32	Tee Piece	878	10.1250	0.1313	1.020	896
			177.1250	2.2112		

*Number in the parenthesis represents number of pieces going into one unit of final product.

Table 3. Determination of Production Range

Serial Number	Name of Component	Q_{m}	$\mathrm{P}=1.05$		$\mathrm{P}=1.10$		$Q_{i M}$	Within 5\% Range	$\begin{aligned} & \text { Within } \\ & \text { 10\% Range } \end{aligned}$
			$Q_{1}=Q_{m} \mathrm{X} .773$	$\mathrm{Q}_{2}=\mathrm{Qm}_{\mathrm{m}} \times 1.37$	$\mathrm{Q}_{1}=\mathrm{Qm}_{\mathrm{m}} \mathrm{X} .642$	$\mathrm{Q}_{2}=\mathrm{C}_{\mathrm{m}} \times 1.558$			
1	Tank	666	486	913	428	1038	895	900	
2	Tank Bottom	381	278	521	244	593	894	450	
3	Pump Barrel	417	304	571	268	650	895	450	
4	Inner Case	2052	1498	2811	1317	3197	893	2700	
5	Air Pocket	2066	1508	2831	1326	3219	893	2700	
6	Air Pocket Chip	2739	1999	3752	1758	4267	890	2700	
7	Chimney Seat	880	642	1206	565	1371	886	900	
8	Piston Rod	637	465	873	409	993	910		900
9	Piston Ring	1082	790	1482	695	1686	896	900	
10	Catch Stud (2)*	892	652	1223	573	1391	895	900	
11	Hood Cap	803	586	1100	515	1251	895	900	
12	Top Ring	685	499	938	440	1067	894	900	
13	Guide Rod (4)*	382	279	524	245	596	895	450	-
14	Hood	748	546	1025	480	1165	895	900	
15	Holding Disc	2131	1556	2919	1368	3320	893	2700	
16	Iron Disc for Hood	1876	1369	2570	1204	2923	893		2700
17	Spirit Cup	1778	1298	2436	1141	2770	894		2700
18	Spirit Chip Catch Screw (2)*	619	452	848	397	964	895		900
20.	Valve Seat	1058	772	1449	679	1648	894	900	900
21	Centre Socket (Upper End)	940	686	1288	604	1465	893	900	
22	Centre Socket (Lower End)								
23	Handle	834	609	1143	535	1299	889	900	
24	Pump Cap	2076	1515	2844	1333	3234	893	2700	
25	Heating Coil Top (Upper End)								
26	Heating Coil Top (Lower End)	820	599	1123	526	1278	893	900	
27	Heating Coil Bottom Pipe	994	726	1362	638	1549	895	900	
28	Heating Coil	-	-	-	-	-	-	--	
29	Hex Nut	1212	885	1660	778	1888	893	900	
30	Nozzle Holder	840	613	1151	539	1309	895	900	
31	Filler Mouth	2060	1504	2822	1323	3209	894	2700	
32	Tee Piece	878	641	1203	564	1368	896	900	
FINAL	PRODUCT	895	654	1223	575	1392	895	900	,

* Number in the parenthesis represents number of pieces going into one unit of final product.

gantt chart for a standard lot size of 900 units
等

＊ ETm \square

REFERENCES

1. Bellman, R. E., "Mathematical Aspects of Scheduling Theory," Journal of the Society of Industrial and Applied Mathematics, 4, 3, pp. 168-205, (September, 1956).
2. Clark, W., "The Gantt Chart," Sir Isaac Pitman \& Sons, Ltd., London, 1952.
3. Eilon, S., "Element of Production Planning and Control," The Macmillan Company, New York, 1962.
4. Heller, J., "Combinatorial, Probabilistic and Statistical Aspects of an MXJ Scheduling Problem," Atomic Energy Commission Research Report, NYO-2540, pp. 93, February 1959).
5. Ignall, E., and Schrage, L., "Application of the Branch and Bound Technique to Some Flow-Shop Scheduling Problems," Operations Research, 13, 3, pp. 400-412, (May, 1965).
6. Vazsonyi, A., "Economic-Lot-Size Formulas in Manufacturing," Operations Research, 5, 1, pp. 28-44, (February 1957).

APPLICATION OF A MANUAL SCHEDULING TECHNIQUE

 TO A PARTICULAR MANUFACTURING PROBLEMby

PRADIP KUMAR C. SHAH

B. Sc. (Mechanical Engg.), Birla Institute of Technology, India, 1965

AN ABSTRACT OF A MASTER'S REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Industrial Engineering

KANSAS STATE UNIVERSITY Manhattan, Kansas

ABSTRACT

This report deals with the scheduling problem of a particular type of industry involved in an intermittent type of production. The problem was to determine the optimal batch size (based on minimum total combined set-up and inventory carrying, cost) of the final product, with the data collected from a factory and then to prepare a schedule which shows all the phases of production in detail.

Since the final product is an assembly made of several components, the theory of multi-product batch size determination was utilized in arriving at the optimal batch sizes of the components and of the final product. After allowing a certain percentage increase above the minimum total production costs, a batch size of 900 was selected which fell within the production range of the most of the components and of the final product. A Gantt chart was drawn next to represent all the production activities in detail. Some difficulties had to be overcome in drawing the Gantt chart.

This Gantt chart gives only one of the many feasible solutions and may not be an optimum. A graph was drawn to show that the hour-to-hour labor force requirement fluctuated a great deal - suggesting that this requirement be levelled before this schedule could be put to practice. However, it could be taken as the first step in scheduling the production of the factory concerned. Some modifications could be suggested to improve upon and make it more realistic.

