VOCAL COMBO ANDROID APPLICATION

by

SRAVYA MATHUKUMALLI

B.Tech., Andhra University, 2014

A REPORT

submitted in partial fulfillment of the requirements for the degree

MASTER OF SCIENCE

Department of Computing and Information Sciences
College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016

Approved by:

Major Professor
Dr. Mitchell L. Neilsen

Copyright

SRAVYA MATHUKUMALLI

2016

Abstract

Now-a-days people from various backgrounds need different information on demand.
People are relying on web as a source of information they need. But to get connected to internet
all the time with a computer system is not possible. Android, being open source has already
made its mark in the mobile application development. The highest smart phone user base and the
ease of developing the applications in Android is an added advantage for the users as well as the
Android developers.

The vocal combo is an Android application which provides the required functionality on
Android supported smart phone or a tablet. This provides the flexibility of accessing information
at the users’ fingertips. This application is built using Android SDK, which makes the
application easy to deploy on any Android powered device. Vocal Combo is a combination of
voice based applications. It includes a Text-To-Voice convertor and Voice-To-Text convertor.
This application helps the user to learn the pronunciation of various words. At the same time the
user can also check his/her pronunciation skills. This application also provides the functionality
of meaning check where the user can check the meaning of the words he types in or speaks out.
At any point of time, the user can check the history of the words for which he has checked the
meaning or pronunciation for. The application also provides the support to the user on how to

use this application.

Table of Contents

S) T U =TSSR vii
S 0 I o] [PPSR P TR IX
ACKNOWIEAGEMENTS ...t bbbttt b bbbt b e X
Chapter 1 - Project DESCIIPLION........ccuiiieieeie ettt e e be e e e te e raeste e esnaereenee e 1
0 R 1011 oo L1t 4 o] o PSSP P PRSP 1
|V T 1 V=[] o ST TRR 1
Chapter 2 - BACKGIOUNTc.coiiiiiiitiiiesieee ettt n bbb 2
Chapter 3 - REIAIEA WOTKc..ocuieieee ettt e ra e te et e nre e reenee e 5
I R O U =] 01) V] (=] 10 PSPPSRSO 5

3. 1.1 DiISAUVANTAGEScuveuveteitieteeieeieeee stttk ettt bbbt e et e bbb e b beeneas 5

3.2 PrOPOSEU SYSTEM ...ttt ettt b bbbttt ettt e bbbt b ne s 5
TN I N0 V7 g v To T OSSR 5
3.1.2 PUIP0OSE OF the SYSTEMiciiiiiecie et nas 5
3.1.3 SCOPE OF the SYSTEIM ...ttt 5

B L4 ODJECTIVE ...t bbbttt bbb 6
3.1.5 SYSLEM OVEIVIEW ...ttt ettt e et be e e e s teesteeneeabeenbeeneesneennas 6
Chapter 4 - ReqUIremMent ANAIYSISciieiiiiieie ettt re e sbeesre e e e sreenee e 7
4.1 FUNCEIONA] REQUITEIMENTSo.viiiiiiiieee bbbttt bbb 7
4.2 NoN-FUNCtioNal REQUITEIMENTSviiiiiieiecie bbb 7
4.2.1 User interface and HUMAN faCtorS.........cocoiiiiiiiicecc s 7

4.3 SOftware SPECITICALIONSc.ccieiieie ittt sre e e re e e 8
4.4 Hardware SPECITICALIONSciiiiiiiieieie ettt sb e 8
Chapter 5 - SYSIEM DESIONvoviiiiiiitiiteiiiei ettt bbb bbb bbb ens 9
S O O I B IT: Vo [U PSPPSR 9
I A O T B = To [= SRR 12
5.3 SEUUENCE DIAGIAM ...ttt bbb bbbttt ettt be e eneas 13
5.4 State Chart DIAGIAM.........ooiiiiiiieieiee ettt nr bbb e sreeneas 15

5.5 ACHIVILY DIGQIAIM ...ocviiieieiicst ettt et e teenteese e taesneeneesneenes 16

Chapter 6 - Android Application COMPONENTSccueiiieiieeieieeie e 18
8.1 ACTIVITIES ...ttt ettt b et Rt be et Rt et e n b Ee e be e nneees 18
5.2 SBIVICES ...etieiieetieeteete ettt e sttt et et b e bt e s et b e e b e e n e e Rt e e Rt et e e Rt e Ee et e e Rt e Rt e beene e Rt e beeneenreeen 19
6.3 BrOAUCAST RECEIVETS.cuiitiiiiitieiieiieie ettt sttt b e bbbttt bbb sbesneeneas 19
6.4 CONTENT PIOVIARIS ...ttt bbbttt ettt nbenneene s 19
LRSI 010 1T TP OPR PP 20

Chapter 7 - Database DESION.cc.oiiiiiiiiiei ettt bbb b 21

Chapter 8 - IMPIEMENTALIONcveiieie e reesae e e nnas 22
8.1 PronunCiation ChECKuiiiiiieieee bbb 22
8.2 MEANING CRECK ...t 22
8.3 HISTONY CRECK ... 23
B4 HEIP IMOUUIE ...t be et e e e e e teetenneeras 23
8.5 EXIT IMOUUIE ... bbbttt b bbb nneene s 24

Chapter 9 - Graphical USer INTEITACEcviiiiiiiees e 25
0.1 SPIASN SCIEEN ...ttt bbb 25
9.2 Pronunciation ChECK SCIEENcviiiie et 26
9.3 MEaniNg ChECK SCIEENcc.eciiiuiccie ettt ettt e e e e e nbe e sneeeas 27
0.4 HISTOTY SCIBEIN......cuiiuiitiite sttt bbb bbbt et et et b et et eneene s 29
0.5 HEIP SCIBEN ...ttt 31

(08 T Vo)] g T =T {1 oo TSSO 33
10.1 TESEING LEVEIS ...ttt ettt e s e beesaesnnesraeee s 33
O TS A O L= PRSP 33

L0.2. 1 TESECASE L.ttt et e et e e b e e et e e sae e et e e reeenbeenneeenes 34
L0.2.2 TESECASE 2.ttt ettt b e s b et et e an e e e e s r e e n e e nnn e 34
L0.2.3 TESECASE 3 ..ttt ettt b ettt hb e et e e s be e e bt e sae e e nbe e e be e e n e e nnneenes 34
L0.2.4 TESECASE 4 ...ttt ettt ettt s ae e et e e e be e e nbe e she e et e e e reeenteenneeenes 35
10.2.5 TSE CASE Dottt ettt sre et e bt e et e sre e et e e e re e e be e nneeenes 35
10.2.6 TESE CASE B ...ttt ettt et e et e et e sae e et e e e nn e e be e nnn e 36
L0.2.7 TESE CASE 7 ..ottt ettt ettt he et e e e be e et e e sae e e nbe e e be e e b e e nnneenes 36
L0.2.8 TESE CASE 8.ttt et b e bbb e e be e sre e et e e re e e be e nne e 37

O T2 T IS A O 1T TR LT 38

10.2.9 TESECASE ...ttt r e 38
Chapter 11 - Performance Profiling.........c.cooiiiiiiiiiiieeeee e 39
11.1 Rendering ANAlYSIS TOOIS.......cciiiiiiieieee e 39
11.1.1 DebUg GPU OVEIAIAWceiueeieiieieesieeie e sia et e e ete e sraesressaesseeaesnaesneenseenee e 39
11.1.2 Profiling GPU RENUEING......ccveiieiieieeie et se et 42
11.2 Profiling WIth TFaCEVIBWocueeiiiiiieieseee ettt nre e 46
11.3 CPU LA ANAIYSIS ...eovveiieiieiiieitieie sttt sttt sttt ste e te s e sbeenbesneesreeneesneeaneennens 47
11.4 MemOry USAQE ANAIYSIS.....cviiieiiieiiiiesie et sie sttt e e e e te e teebesnaesreenesnaesreeneeas 48
(@8 =T] g A @0 Tod [F 1Y o o OSSR 49
Chapter 13 - FUTUIE WOTK ..ot 49
L E 1= =] 0TSSR 51

Vi

List of Figures

Figure 1 Android ArCRITECTUEccuiiiiiiiiei et 2
FIgure 2 USE CASE DIAGIAMccueeiiiieiiieie et et st te e te e e taesteeseesbaesbeaaesseesseansenneesneeneens 10
Lo U R O - B I To | - o USSR 13
FIQUIe 4 SEQUENCE DIAGIAMoiiiiitiitiite st bbbttt e bbb 14
Figure 5 State Chart DIAGIAMooiiiiiiieiee bbb 16
FIgure 6 ACHVILY DIAQIAMciviiiiiie ittt e e et e te e te e e e sseesreenesneesreeneeas 17
FIQUIE 7 SPIASN SCIEEN ...ttt e et e e be et e saaesteeneeneenneeneeas 25
Figure 8 Pronunciation CheCK SCreEN..........oiiiiiii e 26
Figure 9 Meaning ChECK........c.ooiiii e 27
Figure 10 Voice RecOgNItION DEIMOcoiiiiiiiiieiiesie s 28
Figure 11 ONliNE DICHIONAIYccviiieitiece ettt e esre e te e nneesaeeee s 29
Figure 12 Pronunciation Check HIStOrYc.coiiiiiiiiicc e 30
Figure 13 Meaning CheCK HISTOYcuiiiiiiiieieiie et 31
FIQUIE 14 HEIP SCIBEN ..t bbbttt bbb 32
Figure 15 Debug GPU Overdraw for Splash SCreenccoovieiiiiicc e 39
Figure 16 Debug GPU Overdraw for Pronunciation ChecKcccccveviiiiiiiii i 40
Figure 17 Debug GPU Overdraw for Meaning Check ... 40
Figure 18 Debug GPU Overdraw for V0iCe RECOGNIZETccvviiiiiiiiiiiiiceeeeeee e 41
Figure 19 Debug GPU Overdraw for History ChecK............ccccviiiiiiiiciciecceee e 41
Figure 20 Profile GPU Rendering for Splash SCreeNccciveieiiciicic e 43
Figure 21 Profile GPU Rendering for Pronunciation Check ... 43
Figure 22 Profile GPU Rendering for Meaning Check ... 44
Figure 23 Profile GPU Rendering for Onling DICLIONAIYccccccvevieiiiieiie e 44
Figure 24 Profile GPU Rendering for V0iCe RECOQNIZENcccveviuieiiiiiiieiie e 45
Figure 25 Profile GPU Rendering for History ChecK..........ccccoiiiiiiicc 45
Figure 26 Traceview for Meaning CheCK ...t 46
Figure 27 CPU Load Analysis for Meaning ChecCKccccoiiiiiiiiie i 47

vii

Figure 28 Memory Usage Analysis for Meaning Check

viii

List of Tables

Table 1 Test Case for navigation to pronunciation Check SCreenc.ccocvviiiieicic i 34
Table 2 Test Case for navigation to meaning Check SCreencccovvvviieienieneene e 34
Table 3 Test Case for navigation to history Check SCreencccocevvvveiieii i 34
Table 4 Test Case for pronunciation check functionalityc.ccccoeviiiiieiiic e 35
Table 5 Test Case for meaning check functionality when user types input.............cccccoevvrvnnne. 35
Table 6 Test Case for meaning check functionality when user speaks the inputc.cc....... 36
Table 7 Test Case for pronunciation history check functionalitycccocevviieiiiiiiciec, 37
Table 8 Test Case for meaning history check functionalitycccccooeiieiiicici e, 37
Table 9 Test Case for navigation t0 help SCIrEENccvoiiiiiiicee s 38
Table 10 Test Case for exiting the appliCation ... 38

Acknowledgements

I would like to extend my sincere thanks to my academic advisor, Dr. Mitchell L Neilsen,
who encouraged me in developing this application and provided me his valuable suggestions and
feedback when | took up the mobile application development domain as my subject for my
project which boosted my confidence in Android development.

| take immense pleasure in expressing my sincere gratitude to my committee members,
Dr. Daniel Andresen and Dr. Torben Amtoft, who despite of their busy schedule made time to
serve on my committee and for providing their invaluable feedback on the project.

This project would not be possible without the help of the Academic staff of the
Computing and Information Sciences who are always there to help students by providing the
required resources for their work.

This would be incomplete without acknowledging the love and support of my parents and
friends who are there to help me out in my odds, thereby indirectly responsible for providing me

a peaceful environment to complete this project.

Chapter 1 - Project Description

1.1 Introduction

Vocal Combo is an Android application which serves as a voice dictionary for the users. Now-a-
days people from different countries, majorly non-native speakers of English are planning to
study abroad which requires them to communicate in English. This application is targeted for
such users. This application provides the functionality of checking the pronunciation of the word
or sentence the user types in. This helps the user to know the correct pronunciation of the word
before-hand. The user can also test his pronunciation skills using this application. In addition to
pronunciation check, vocal combo provides the meaning check for any word the user types in or
speaks out. The user can check the history of the words for which he has checked the
pronunciation or meaning. This helps the user to practice or test his pronunciation skills for the

words which he has searched for previously.

1.2 Motivation

My motivation to develop this application is from my very own experiences. | am a non-native
speaker of English who have medium of education as English. So, | am pretty much comfortable
speaking English. | am required to write TOEFL (Test of English as Foreign Language) to study
abroad. The exam requires me to speak about the given topic, answer few questions after
listening to the lecture. While preparing for the exam, | felt the serious need of a voice dictionary
which helps me find the pronunciation of fairly complex words and the meanings of the same. |
have to search on internet for online dictionaries all the time for help. This added the pain of
carrying my laptop everywhere | go. | thought of developing this vocal combo, an Android
application which helps you access the functionalities of pronunciation and meaning check from

your Android powered device.

The motivation behind choosing Android as the application development platform is its wide
usage across the globe and it being an open source. | have hands-on-experience working with

Java. So, I never felt pain in developing this application.

Chapter 2 - Background

Android operating system is structured as a stack of software components comprising
applications, an operating system, run-time environment, middleware, services and libraries [1].

The architecture can be visualized as outlined in Figure 2.1.

Applications

Native Android Apps Third Party Apps

Application Framework
Activity Window Notification View
Manager Manager Manager System
" Location Y f Package (Resource i Content
Manager Manager Manager Providers

Libraries

SQLite WebKit OpenGL ES

|) | Android Runtime
Surface Media
AR

Linux Kernel
Display WiFi Audio Binder (IPC)
Driver A Driver) Drivers J\ Drivers

Camera Power Process Memory
Driver Management Management I Management

Figure 1 Android Architecture
http://www.techotopia.com/index.php/An Overview of the Android Architecture

http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture

To provide optimal application development and execution environment for mobile devices, each
layer of the stack, and the corresponding elements within each layer, are tightly integrated and
carefully tuned. In this chapter, I will discuss about each layer of the Android stack in detail.

The Linux Kernel

The Linux Kernel provides a level of abstraction between the device hardware and the upper
layers of the Android software stack. The kernel handles all the things that Linux is really good
at such as networking, a vast array of device drivers, which take the pain out of interfacing to
peripheral hardware. The Kernel also provides preemptive multitasking, low-level core system
services such as memory, process and power management in addition to providing a network
stack and device drivers for hardware such as the device display, Wi-Fi and audio. Hence,
Android takes the advantage of the efficiency and performance of the Linux Kernel.

Android Runtime-ART

The Android Runtime-ART comes up with a major component, Dalvik Virtual Machine which
is a kind of Java Virtual Machine specially designed and optimized for Android. When an
Android app is built within Android Studio it is compiled into an intermediate bytecode format,
referred to as DEX (Dalvik Executable Format). By default, Dalvik limits applications to a
single classes.dex bytecode file per APK. The Dalvik VM makes use of Linux core features like

memory management and multi-threading, which is intrinsic in the Java language.

When the application is subsequently loaded onto the device, the Android Runtime (ART) uses a
process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and
Linkable Format (ELF). Each time the application is subsequently launched, the ELF executable
version is run, resulting in faster application performance and improved battery life. This
contrasts with the Just-in-Time (JIT) compilation approach used in older Android
implementations whereby the bytecode was translated within a virtual machine (VM) each time

the application was launched.

Android Libraries
The Android development environment has a set of Java-based libraries which are specific to

Android development facilitating the user interface design, graphics drawing and database access

in addition to a set of standard Java development libraries that supports string handling,
networking and file manipulation [2].

The following libraries are used in developing this application-graphics library which provides
the drawing API, the util library provides the string conversions and XML manipulations,
database library to provide access to database management classes, and webkit library to access
the webpages from the application. In fact most of the above specified Java libraries are actually
Java wrappers around a set of C/C++ based libraries. Secure Sockets Layer (SSL)
communication, SQLite database management, audio and video playback, bitmap and vector font
rendering, display subsystem and graphic layer management are implementations of the standard
C system library (libc).

Application Framework

Application framework provides the environment to manage and run android applications. Few
of the components in android framework are the activity provide which controls the activity
stack, the content providers which allows the sharing of data with other applications, the location
manager provides the location services to the application, the notifications manager which allows
the application to display alerts and notifications.

Applications

Applications are located at the top of the Android software stack in the Android architecture.
These comprise both the native applications provided with the particular Android
implementation and the third party applications installed by the user after purchasing the device.

Chapter 3 - Related Work

3.1 Current System
The current system is a desktop application which requires the user to search for online
dictionary in his laptop/desktop. Even there are very few websites that provide the combination
of pronunciation and meaning check simultaneously.
3.1.1 Disadvantages

e Time Consuming

e No search history
3.2 Proposed System
Vocal Combo is an Android application which provides the functionalities of voice dictionary on
portable devices like Android powered tablet/ mobile phone. This application can be easily
extended in future to add any additional functionalities if required.
3.1.2 Advantages

e Portable

e Extendable
3.1.2 Purpose of the System
Vocal Combo is developed to provide the functionalities of a voice dictionary, pronunciation and
meaning check on an Android powered device. This provides flexibility to the user. If the user
wants to check the history of the words he/she has checked for, the history module provides this
functionality.
3.1.3 Scope of the System
3.1.3.1 In Scope

The scope of the vocal combo is restricted to providing the meaning and pronunciation check
functionalities. This application also provides the history check functionality for both
pronunciation and meaning checks.

3.1.3.2 Out of Scope

Vocal Combo application requires the user to be connected to the internet all the time. The scope
of the meaning check functionality is restricted to checking the meaning for words but not

sentences or phrases.

3.1.4 Objective

The objective of the application is to provide flexibility of the user by providing the
functionalities of both pronunciation and meaning check in a single application.

3.1.5 System Overview

After the user downloads the Vocal Combo application from the play store, he should install it
on his Android powered device. The user can check the options available on the home page and
proceed with the required functionality. To help him use the application effectively, he is

provided with the help option which guides him through the application.

Chapter 4 - Requirement Analysis

Requirement Analysis is the starting point of the software developing activity. As system grew

more complex it became evident that the goal of the entire system cannot be easily

comprehended. Hence the need for the requirement analysis phase arises. The software is

initiated by the user needs. Requirement Analysis is the means of translating the ideas on the

minds of the users (the input) into a formal document (the output of the requirement phase).

After few weekly meeting with my Professor Dr. Mitchell L Neilsen, we came up with the

following requirements for the application.

4.1 Functional Requirements

Pronunciation check: The module speaks the text the user types in to facilitate the user
with the correct pronunciation check.

Meaning check: The module displays the meaning of the word the user types or speaks
out to facilitate the user with the correct meaning check.

Pronunciation History check: This module facilitates the user to check for the words for
which he/she had checked the pronunciation for.

Meaning History check: This module facilitates the user to check for the words for
which he/she had checked the meaning for.

Help: The help module facilitate the user to navigate through the application.

4.2 Non-Functional Requirements

Non-functional requirements describe aspects that are not directly related to the functional

behavior of the system.

4.2.1 User interface and Human factors

The user interface is designed such that the user requires very little, if not no knowledge
of Android to access this application.

The functionalities of each screen and navigation through the screens of the application is
described in the help module.

This application is user friendly and very interactive.

e This application prompts error messages if the user gives incorrect input or tries to access
the functionalities of the application incorrectly.

e User is required to have basic knowledge of English to access the application.
4.3 Software Specifications

e Operating System: Windows 8.1

e Platform: Android SDK Framework 10 or higher

e Database: SQL.ite Database

e |DE: Android Studio IDE

e Technologies used: Java 1.6, Android, SQL.ite

e Emulator: SDK version 3.0 or higher
4.4 Hardware Specifications

e Processor: Pentium IV or higher

e Processor speed: 1.6GHz

e RAM: 512 MB

e Disk Space: 250 MB or higher

e Android Device: Any device with Android OS.

Chapter 5 - System Design

System design is the process of defining the architecture, components, modules, interfaces, and
data for a system to satisfy specified requirements [3]. The system design depicts the overall
product architecture, the subsystems that compose the product, and the manner in which
subsystems are allocated to processors, the allocation of classes to subsystems, and the design of
the user interface.
The system design is reviewed by examining the object-behavior model developed during object-
oriented analysis and mapping required system behavior against the subsystems designed to
accomplish this behavior.
UML is a standard visual modeling language widely used in system design for modeling
business and similar processes, analysis, design, and implementation of software-based systems
[4]. UML diagrams can be broadly classified into Structural and Behavioral diagrams. The static
aspects of the system which forms the main structure are represented by classes, interfaces,
objects, components, and nodes. The following are the structural diagrams-

e Class diagram

e Object diagram

e Component diagram

e Deployment diagram
Behavioral diagrams capture the dynamic aspect like changing/ moving parts of the system. The
following are the behavioral diagrams-

e Use case diagram

e Sequence diagram

e Collaboration diagram

e State chart diagram

e Activity diagram

5.1 Use Case Diagram

A Use case diagram is a set of scenarios in which our system or application interacts with people,

organizations, or external systems. The use case is an external view of the system that represents

some action the user might perform in order to complete a task. The main components of a use
case diagram are use cases, actors and their relationships. In its simplest form, a use case can be
described as a specific way of using the system from a user’s (actor’s) perspective. It is used to
describe a function provided by the system that yields a visible result for an actor. An actor

describes any entity that interacts with the system.

Use Case Diagram for Vocal Combo

Pronunciation History

« include » 7

« include »

B2 Meaning History

History Check

Meaning Check

LEC B e

User Nronunciation Check Online Dictionary
Help l

Voice Recognizer

Exit

Figure 2 Use case Diagram

10

Actors:

In our model, the user, online dictionary, and voice recognizer are the actors who interacts with

the system.

Use cases:

Meaning Check- This use case denotes the sequence of actions required for the user to
check for the meaning of the word either entered or spoken by him/her.

Pronunciation Check- This use case denotes the sequence of actions required for the
user to check the pronunciation of the word entered by him/her.

History Check- This use case denotes the sequence of actions required by the user to
check the pronunciation or meaning history. Hence the Pronunciation History and
Meaning History are represented as sub use cases of the History check use case.

Help- This use case represents the functionality of help provided by the application for
user to navigate through the screens.

Exit- This use case denotes the sequence of steps required by the user to exit the

application.

Associations: Association exists whenever an actor is involved in an interaction described by the

use case.

Associations of User:

The user is associated with History check, Pronunciation check, Meaning check, Help,
and Exit use cases.

Associations of Online Dictionary: The Online Dictionary use case is associated with
the Meaning check use case as it displays the meaning of the words during the Meaning
check functionality.

Associations of VVoice Recognizer: The Voice Recognizer use case is associated with the
Meaning check use case as it captures the words spoken by the user during the Meaning

check functionality.

11

5.2 Class Diagram

A class diagram in the Unified Modeling Language (UML) is a type of static structure diagram

that describes the structure of a system by showing the system's classes, their attributes,

operations (or methods), and the relationships among objects.

The class diagram for Vocal Combo contains User, Meaning Check, Pronunciation Check,

History, SQLiteDB, Pronunciation History, Meaning History classes.

User class- The user class contains the userld, which is optional as attribute and
speakWord, typeWord, clickButton as operations to represent the actions performed by
the user while accessing the application.

Meaning Check class- The Meaning Check class contains connectionld as attribute and
openConnection to open connection with internet, getWord to get the input from the user,
displayMeaning to display the meaning of the entered word, storeDB to store the words
in Database, and displayErrorMessage to display error message in case of invalid input
from user as operations.

Pronunciation Check class- The Pronunciation Check class contains TTSObject as
attribute and getText to get the input from the user, speakText to pronounce the entered
word, storeDB to store the words in Database, and displayErrorMessage to display error
message in case of invalid input from user as operations.

SQL.iteDB class- The SQLiteDB class contains DBConnectionObject as attribute and
insertDB to insert the words in the Database, removed to remove words in case of clear
history, retrieveDB in case of the history check, openConnection, closeConnection to
open and close connections with the SQL.ite Database respectively are the operations.
History class- The History class contains isMeaningHistory and isEmpty as attributes
and clearHistory in case user chooses to clear search history, retrieveDB to establish
Database connections and displayErrorMessage to display error message in case of empty
history.

Pronunciation History- The Pronunciation History contains isPronunciationHistory as
attribute and displayPronunciationHistory to display the history of words the user have
searched the pronunciation for. This class extends the History class.

12

e Meaning History- The Meaning History contains isMeaningHistory as attribute and
displayMeaningHistory to display the history of words the user have searched the

meaning for. This class extends the History class.

Class Diagram for Vocal Combo

User
| Meaning Check
+userld:Integer o 0. |
+connectionld: String
+speakWord() 0.* I
+ypeWord() +openConnaction()
+clickButtoni) +getWord()
+displayMeaning()
0.* +storeDB()
+displayErrorMessage()
0.*
0.*
History
+isMeaningHistory():Boolean | Pronunciation Check
+isEmpty()Boolean |
+TTS0Object:String
0.* SQLiteDB
] +getText() |
+clearHistory() +speakText() 1 +DBConnectionObject:String
+retrieveDB() +storeDB() |
+displayErrorMessagel() +displayErrorMessage() +inserDB()
+removeDB{)
+retrieveDB()
‘Iﬁ 43 0.* | 1 +openConnection()
| : +closeConnaction()
IR I
I SRR H
- I
Pronunciation History :
I 1
+isPronunciationHistory():Boolean Meaning History

] - ; i +isMeaningHistory:Boolean
+displayPronunciationHistory() = !

+displayMeaningHistory()

Figure 3 Class Diagram

5.3 Sequence Diagram

The sequence diagrams describe behavior as a sequence of messages exchanged among a set of
objects. It is an interaction diagram that emphasizes the time ordering of messages. Graphically, a
sequence diagram is a table that shows objects arranged along the X axis and messages, ordered
in increasing time, along the Y axis. The main components of the sequence diagrams are-

Objects

13

Objects are anonymous instances of classes. They may also refer to instances of other things such
as components, collaboration and nodes.

Links

A link is a semantic connection among objects.

Messages

A message is a specification of a communication between objects that conveys the information
with the expectation that the activity will ensue.

The sequence diagram for the Vocal Combo contains the sequence of messages exchanged
between the objects on the time axis.

Sequence Diagram for Vocal Combo

; .', : ~v l [5,]_.::’%?’ey‘r wpe | :4?:",] DR .'!7-:..;. ":":;‘:-.E;:.;;:r'i

stoteNotos| T »

1
!
|
, :
1
H 1}
: |
L‘\I e dl ;L’t]
i E‘ Dot .
| {
|]
I"T daplayMeanmg() [‘:]
L |
!
O]

e
p —

entardona)}

I /

Immy!

P —1
| I

: iaue .

524 z : QISP 3y Man 1ng Hi a0y —r—

LS

G |
1}

=1

Figure 4 Sequence Diagram

14

5.4 State Chart Diagram

These diagrams describe the behavior of the non-trivial classes in our project. A state represents
a collection of values for the object. A transition triggers a change in them. The following tools
are used on the state chart diagram toolbox to model state chart diagrams:

State: A state represents a condition or situation during the life of an object during which it
satisfies some conditions or waits for some events.

Transitions: A state transition indicates that an object in the source state will perform certain
specified actions and enter the destination state when a specified event occurs or when certain
conditions are satisfied.

State Chart diagram for Vocal Combo

15

History check

Pronunciation

History Meamng Hlstory

Pronunciation ;
Check Meaning Check
| —
—
—
Enter word
—
f;'—\ [Enters the Word] [Speaks the word
Click on Speak
Button
| —
—_—
Connect to
Speaks the word Dictionary
I iS5 Bl
—Y
Stores the word Displays
in Database meaning
—
—
—
Stores the word
in Database

®

End

e i

Connect to
Database

L

Retrieve History

T

Display History

Figure 5 State Chart Diagram

5.5 Activity Diagram

Activity diagrams describe the workflow behavior of the system. Activity diagrams are similar to

state diagrams because activities are the state of doing something. The diagrams describe the

state of activities by show activities that are conditional or parallel.

A fork is used when multiple activities are occurring at the same time. The branch describes

what activities will take place based on a set of conditions. All branches at the same point are

followed by a merge to indicate the end of the conditional behavior started by that branch.

The following tools are used on the activity diagram toolbox to model activity diagrams:

16

e Decisions: A decision represents a specific location in activity diagram where the work
flow may branch based upon guard conditions.

e States: A state represents a condition or a situation during the life of an object during
which it satisfies some condition or waits for some event.

e Transactions: A state transition indicates that an object in the source state will perform
certain specified event occurs or when certain conditions are satisfied.

e Start states: A start state (also called initial state) explicitly shows the beginning of a
work flow.

e End states: An end state represents a final state or terminal state.

!

[C:penApplication }

Activity Diagram for Vocal Combo

. History Check
i Meaning Check
Check
|
|
|
|
[[,
<

Meaning History Check?

w -y
[Fronunciation Check History) [Meaning Check Histary)

[Exit Application]
I
@

Figure 6 Activity Diagram

17

Chapter 6 - Android Application Components

Before actually proceeding with discussing the programming involved in developing this
application, a brief introduction to the application components which plays a crucial role in
developing any Android application is necessary. Application components are the building
blocks of any Android application [5]. Major Android application components are as follows.
6.1 Activities

An activity in Android represents a single screen with user interface. An Android application
typically consists of multiple activities that are loosely bound together. Among several activities
for the application, only one activity is represented as Main Activity which is displayed while
launching the application. Every time an activity starts, the previous activity, if any, is stopped
but the data is saved. Every activity is implemented as a subclass of Activity class as follows-

public class MainActivity extends Activity {

Vocal combo consists of 6 activity classes-

e MainActivity- This is the activity which is displayed upon starting the application. This
has the buttons for each functionality of the system, pronunciation, meaning, history
check, help and exit.

e SpeakingAndroid- This activity is responsible for the pronunciation check. When the user
enters the text (word or sentence) for which he wants to check the pronunciation for and
clicks the speak button, the application pronounces it for the user.

e Sec- This activity is responsible for the meaning check. When the user either types in the
word or speaks out the word, this activity is responsible for providing him the meaning
check for the word.

e Meaning- This activity is responsible for connecting to the online dictionary to provide
the user the meaning for the word which he checks for.

e HistoryPage- This activity is responsible for providing the pronunciation check history
and meaning check history to the user. The user can clear the history at any point of time.

e HelpScr- This activity displays the help screen which helps the user to navigate through

the application.

18

6.2 Services

Service is a component that does not require user interface and are invoked by an activity with
user invocation. Services performs operation without user interaction in the background. They do
not have an independent thread but make use of the main thread from hosting process. Every
service is implemented as a subclass of Service class as follows-

public class MyService extends Service {

6.3 Broadcast Receivers

Broadcast receiver responds to broadcast messages from various applications or the system. It is
a component where the application user can register for system or application events like
notification when the battery is low. Applications initiate the broadcasts to let other related
applications or the system know that the data that is downloaded to the system and is available
for use in the required applications. The broadcast receiver can statically registered via
AndroidManifest.xml. The broadcast receiver extends BroadcastReceiver abstract class,
requiring the developers to implement the onReceive() method of this base class as follows-

public class MyReceiver extends BroadcastReceiver {

public void onReceive(context,intent){}

Content is used to start services or activities and intent is the object with the action used to
register the receiver.

6.4 Content Providers

Generally, the data associated with any Android application is stored in SQLite database, which
is embedded in Android. Content providers in Android facilitate the sharing of data among
multiple applications which have the necessary permissions. The applications which requires to
access or modify the data stored across different applications, needs to query the centralized
repository through the Content Providers [6]. Every Content Provider is implemented as a
subclass of the ContentProvider class. It must implement a standard set of APIs that enable other

applications to perform transactions.

19

public class MyContentProvider extends ContentProvider {

public void onCreate(){}

6.5 Intents

Intents are used to provide the navigation between the activities. It provides the facility for
performing late runtime binding between the codes in different applications. It is the abstract

description of an operation to be performed. It can be used with-
e startActivity- to launch an Activity
e broadcastintent- to send it to any interested BroadcastReceiver components
e startService(Intent) or bindService(Intent, ServiceConnection, int) to communicate with a

background service.

20

Chapter 7 - Database Design

SQLite is an open source SQL database that stores data to a text file on a device. Android comes
in with built in SQL.ite database implementation [7]. SQLite supports all the relational database
features. To manage our own databases, we are provided with the classes from
Android.database.sqlite package.

In this application development, we have used the SQLite database to store the words the user
has checked the meaning/ pronunciation for. | have created two separate tables in SQLite
database, Meanings, to store the words for which the user have searched the meanings for and
Pronunciations, to store the words for which the user have searched the pronunciations for. When
the user wants to check the Meaning/Pronunciation history, the application query the database to
retrieve the data from the respective tables using cursors. The retrieved information is then
displayed on the screens.

The user can choose to clear the history, in which case the pronunciation history and the meaning

history are deleted from the database.

21

Chapter 8 - Implementation

Vocal Combo is designed as an Android application which helps the user as Voice dictionary by
providing the functionalities of pronunciation and meaning check.
I have implemented the Vocal Combo in 4 modules-

e Pronunciation check

e Meaning check

e History check

e Help

e EXxit

8.1 Pronunciation Check

This module manages to provide the pronunciation of the word/sentence when the user types in
the text box and hits the speak button. | have used the TextToSpeech class of Android API to
implement this functionality. TextToSpeech class synthesizes speech from text entered by the
user for immediate playback. The text the user enters to check pronunciation is inserted into the
database table, Pronunciation, for user reference if he/she wants to check the Pronunciation
check history. I have used setLanguage method to set the language of TTS engine and speak
method of TextToSpeech class to speak the text entered by the user.

myTTS.setLanguage(Locale.US)
myTTS.speak(speech, TextToSpeech.QUEUE_FLUSH, null)

8.2 Meaning Check

This module can further be divided into 2 sub modules depending on how the user give input to
it. If the user types in the word for which he wants to check the meaning for, the word is stored
in the array list before it is passed to the Meaning activity. If the user chooses to speak the text,
on clicking the click to speak button, the voice recognition activity is enabled. To handle the
results from the voice recognition activity, we use a class called Recognizerintent [8] provided
by the Android API. We make use of the following constants for supporting the speech
recognition through starting an Intent.

e ACTION_RECOGNIZE_SPEECH- Starts an activity that will prompt the user for speech

and send it through a speech recognizer.

22

e EXTRA_LANGUAGE_MODEL- Informs the recognizer which speech model to prefer

when performing ACTION_RECOGNIZE_SPEECH.

e EXTRA_PROMPT- Optional text prompt to show to the user when asking them to speak.
When the application gets the user input, it stores it in the database table, Meaning, for user
reference if he/she wants to check the Meaning check history. To get the meaning of the text, we
use a class called WebView, which is a view that displays web pages. This class helps us to
display the online content within the activity. In order for the Activity to access the Internet and
load web pages in a WebView, we have added the INTERNET permissions to the Android
Manifest file:

{uses-permission android:name="android.permission.INTERNET" (>

| have used the http://www.thefreedictionary.com/dict.aspx?word= to provide the meaning for

the text the user enters.
8.3 History Check

This module displays both the Pronunciation and Meaning history. Whenever the user types in a
word to check the Pronunciation or Meaning, the words are stored in the Pronunciations or
Meaning tables of SQLite database respectively. When the user hits the Pronunciation check
button on the history page, the application retrieves the data from the Pronunciations table using
cursors and displays them. When the user hits the Meaning check button on the history page, the
application retrieves the data from the Meanings table using cursors and displays them. The user
can choose to clear the history by clicking the clear button, all the data in the Pronunciations and
Meaning table will be deleted and hence the query retrieves no data items to be displayed.
I have used following components to implement the history check-

* ArrayAdapter- Pulls data stored in array list after retrieving from the respective SQL.ite

database tables.

» ListView- Displays data pulled by the ArrayAdapter in vertical scrollable list.

8.4 Help Module
After installing the application, if the user want the support regarding how to use the application
or regarding navigating through the pages, the user can click the Help button on the home screen.

23

http://www.thefreedictionary.com/dict.aspx?word=

8.5 Exit Module

Once the user is done with using the application, he may choose to exit it. When he clicks the
Exit button on the home page, all the data and operations will be saved and the application is

exited.

24

Chapter 9 - Graphical User Interface

I made sure that the user interactive screens are easily understandable and the navigation through
the application is very obvious. The screens of the application are discussed in detail in this
chapter.

9.1 Splash Screen

The splash screen appears on the start of the application. This screen will display the different
functionalities, Pronunciation check, Meaning check, History check, Help and Exit, available for
the user. When the user clicks the button for required functionality, they will be navigated to the

respective screens.

Lycamobile g4 (&2

—~ 2
w»! VocalCombo

Figure 7 Splash screen

25

9.2 Pronunciation Check Screen
The pronunciation check screen provides the user text box, where the user types in the text for
which he have to check the pronunciation for. When he clicks the speak button, the applications

speaks the text for him.

Lycamobile |~ 4 (&2

- ~
®! VocalCombo

Figure 8 Pronunciation Check Screen

26

9.3 Meaning Check Screen

If the user want to check the meaning for a particular word, he can input the word to the
application in one of the two ways-

e Type in the word in the text box and click on the Get Meaning button

Lycamobile = & (=2

- ~
®! VocalCombo

Figure 9 Meaning Check
o |f the user wishes to speak out the word for which he wants to check the meaning for, he

then clicks on Click to Speak button. The voice recognizer pops up to capture the word

the user speaks out.

27

Lycamobile s 4k (&= i ¥ 4 wu 7:47

Voice recognition Demo...

Figure 10 Voice Recognition Demo

The application then opens the online dictionary to display the meaning of the word.

28

Lycamobile = & (& I o 4 u 7:46

-'f' VocalCombo

.8 -
mii e DICTIONARY
(57 vasiix

reciprocate 4 s

Also found in: Thesaurus, Medical, Legal, Encyclopedia
Wikipedia

re-cip-ro-cate 9 (isiprakat)

re-cip-ro-cat-ed, re-cip-ro-cat-ing, re-cip-ro-cates
v.Ir

1. To give or take mutually; interchange

red favo

2. To show, feel, or give In response or retum
nened their heart

ntrr
1. To give and take something mutually
2. To make a return for something given or done

3. To move back and forth alternately: s p

re ite

Figure 11 Online Dictionary

9.4 History Screen

This history page displays the check history of the user.

e |If the user wants to check the Pronunciation History, he clicks on the Pronunciation

History button which redirects to the screen which displays the words the user have
checked the pronunciation for.

29

Lycamobile & & &2

- -~
®! VocalCombo

Pronunciation History

Figure 12 Pronunciation Check History

If the user wants to check the Meaning History, he clicks on the Meaning History button
which redirects to the screen which displays the words the user have checked the

meaning for.

30

Lycamobile s (=2

-
@! VocalCombo

Meaning History

Figure 13 Meaning Check History

¢ In case the user wants to clear the check history, he clicks the clear button which deletes

the check history and displays the message.
9.5 Help Screen

The help screen helps the user to navigate through the application.

31

Insbructions

Pronunciation check

T:y'F'E the text o the text box 'Ir:lmviuieri and Click on
S'PE'HJ!E. See the Magic!! The a.p]:llicaﬂon 1= spealdﬂ_g
Meaning check

Unsure about the meaning Df an}'wnrd, o worries! |
Just type in the box prov ided in the Meaning Check
sereen and dlick Get Meaning. Too [a_zv totypein the

word)! Speak out using Click to S‘FIEEJ'E button and theve

you go!! .

History
Don't remember what you have checleed ﬁ:rr?‘? Try the

History Button on Sp[ash Screem.

Figure 14 Help Screen

32

Chapter 10 - Testing

A primary purpose of testing is to detect software failures so that defects may be uncovered and
corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly
under all conditions but can only establish that it does not function properly under specific
conditions. The scope of present software testing includes examination of code as well as
execution of that code in various conditions as well as examining the quality aspects of code:
does it do what it is supposed to do and do what it needs to do.

10.1 Testing Levels

Tests are frequently grouped by where they are added in the software development process, or by
the level of specificity of the test.

e Unit testing refers to tests that verify the functionality of a specific section of code,
usually at the function level.

e Integration testing is any type of software testing that seeks to verify the interfaces
between components against a software design. Software components may be integrated
in an iterative way or altogether.

e System testing is a completely integrated system to verify that it meets its requirements.

e System integration testing verifies that a system is integrated to any external or third
party systems defined in the system requirements.

e Regression testing tests new functionality in a program. It is done by running all of the
previous unit tests written for a program, if they all pass, then the new functionality is
added to the code base.

e Acceptance testing is conducted by a user to verify that the system meets the acceptance

criteria.
10.2 Test Cases

In general, a test case is a set of test data and test programs and their expected results. A test case
in software engineering normally consists of unique identifier, requirement references from a
design specification, preconditions, events, a series of steps (also known as actions) to follow,
input, output and it validates one or more system requirements and generates pass or fail. | have

tested the application on Samsung galaxy tab, whose results are summarized as below-

33

10.2.1 Test Case 1

Test Objectives: Navigation from Splash screen to Pronunciation check screen

TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks the Directs to Pronunciation PASS
currently on the | Pronunciation Check Check screen
Splash screen button
Table 1-Test Case for navigation to pronunciation check screen

10.2.2 Test Case 2
Test Objectives: Navigation from Splash screen to Meaning check screen
TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks the Meaning | Directs to Meaning Check | PASS
currently on the | Check button screen
Splash screen

Table 2-Test Case for navigation to meaning check screen
10.2.3 Test Case 3
Test Objectives: Navigation from Splash screen to History check screen
TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks the History Directs to History Check PASS

currently on the
Splash screen

button

screen

Table 3-Test Case for navigation to history check screen

34

10.2.4 Test Case 4

Test Objectives: User checks for Pronunciation

TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User types in the word in | 1. The application speaks the | PASS
currently on the | the text box provided and | text for the user
Pronunciation clicks on Speak button
check page

User does not type any 2. The application displays PASS

text in the text box, but the error message, “Please

still clicks on the Speak Enter Word”.

button.

Table 4-Test Case for pronunciation check functionality

10.2.5 Test Case 5
Test Objectives: User checks for Meaning by typing the input
TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User types the word in 1. The user is directedtoa | PASS
currently on the | the text box provided and | web page which displays
Meaning check | clicks on Get Meaning the meaning of the word
page button entered by the user.

User does not type any 2. The application displays | PASS

word in the text box
provided and clicks on

Get Meaning button

the error message, ‘“Please

Enter Word”

Table 5-Test Case for meaning check functionality when user types input

35

10.2.6 Test Case 6

Test Objectives: User checks for Meaning by speaking the input

TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks on ‘Click to | 1. A voice recognition box | PASS
currently on the | Speak’ button, speaksa | pops up and the user is
Meaning check | valid word directed to a web page
page which displays the meaning

of the word entered by the

user.

User clicks on ‘Click to | 2. A voice recognition box | PASS

Speak’ button, speaks an
invalid or does not speak

any word

pops up and the error
message of “No Matches
found, Speak Again”

message is displayed.

Table 6-Test Case for meaning check functionality when user speaks the input

10.2.7 Test Case 7

Test Objectives: User checks for Pronunciation History

TEST INPUT OUTPUT PASS/
CONDITION SPECIFICATION SPECIFICATION FAIL
The user is User clicks on 1. The text words for which | PASS

navigated from
the Splash
screen by
clicking the

‘Pronunciation History’
button and the history is
not cleared before-hand

the user have checked the
pronunciation for is

displayed.

36

History button

User clicks on 2. An error message stating | PASS
‘Pronunciation History” | that the History is Empty is
button and the history is | displayed.
cleared before-hand
Table 7-Test Case for pronunciation history check functionality
10.2.8 Test Case 8
Test Objectives: User checks for Meaning History
TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks on ‘Meaning | 1. The text words for which | PASS
navigated from | History’ button and the the user have checked the
the Splash history is not cleared meanings for is displayed.
screen by before-hand
clicking the
History button | User clicks on ‘Meaning | 2. An error message stating
History’ button and the that the History is Empty is | PASS

history is cleared before-
hand

displayed.

Table 8-Test Case for meaning history check functionality

37

10.2.9 Test Case 9

Test Objectives: Navigation from Splash screen to Help Screen

TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks the Help Directs to Help screen PASS
currently on the | button
Splash screen

Table 9-Test Case for navigation to help screen
10.2.9 Test Case 9
Test Objectives: Exiting the application
TEST INPUT OUTPUT PASS/
CONDITION | SPECIFICATION SPECIFICATION FAIL
The user is User clicks the Exit Exits the application PASS

currently on the | button

Splash screen

Table 10-Test Case for exiting the application

38

Chapter 11 - Performance Profiling

Android Studio and the mobile device | have used provide profiling tools to record and visualize
the rendering, compute memory and battery performance of the application [9].

11.1 Rendering Analysis Tools
11.1.1 Debug GPU Overdraw

The Debug GPU Overdraw shows how to visualize overdraw on the mobile device by color-
coding interface elements based on how often they are drawn underneath. This helps in
recognizing where the application might be doing more rendering work than necessary and hence
can help in reducing rendering overhead. | did turn on the Debug GPU Overdraw option in
developer options on the mobile device in which | have installed this application. The colors on
the screen hints the amount of overdraw on the screen for each pixel.

Color - Overdraw

True Color - No overdraw

Blue - Overdrawn once

Green - Overdrawn twice

Pink - Overdrawn thrice

Red - Overdrawn four or more times

Figure 15 Debug GPU Overdraw for Splash Screen

39

Figure 16 Debug GPU Overdraw for Pronunciation Check

Figure 17 Debug GPU Overdraw for Meaning Check

40

Voice recognition Demo...

Lycamobile & [

-
®! VocalCombo

Figure 19 Debug GPU Overdraw for History Check

41

The Vocal Combo application has proved to have less GPU overdraw as there is no pixel with
color red and a very few with color pink. There are few pixels with the green color implying the
pixels are overdrawn twice which is common and cannot be avoided. The rest of the pixels on

the screens are of the true color implying no overdraw.
11.1.2 Profiling GPU Rendering

Profile GPU Rendering gives a quick visual representation of how much time it takes to render
the frames of Ul window relative to the 16-ms-per-frame benchmark [10]. It helps us estimate
the Ul performance against the 16-ms-per-frame target and helps us finding the spikes in frame
rendering time associated with user or program actions. To enable this tool, I did turn on the
Profile GPU Rendering and | have chosen the On Screen as bars to overlay the graphs on the
screen of the mobile device.
The tool displays a graph with the horizontal axis showing time elapsing, and the vertical axis
showing time per frame in milliseconds. The vertical bars shown up on the screen, appearing
from left to right, graphs frame performance over time. Each vertical bar represents one frame of
rendering. The green line marks the 16 millisecond target. Every time a frame crosses the green
line, the application is missing a frame, and there might be a pause in animations. The graph has
colored sections representing the phase of the rendering pipeline.
e The green line represents 16 milliseconds. Any time a bar pushes above this line, there
may be pauses in the animations.
e The blue section of the bar represents the time used to create and update the View's
display lists.
e The purple section of the bar represents the time spent transferring resources to the
render thread.
e The red section of the bar represents the time spent by Android's 2D renderer issuing
commands to OpenGL to draw and redraw display lists.
e The orange section of the bar represents the time the CPU is waiting for the GPU to

finish its work.

42

Figure 20 Profile GPU Rendering for Splash Screen

Figure 21 Profile GPU Rendering for Pronunciation Check

43

-~ -
®! VocalCombo

Figure 22 Profile GPU Rendering for Meaning Check

P = T A togm
R Ree DICTIONARY S/ cogimnm | % Lo apy

Il £

B
Pay Off Your Credit
Card Balance Faster
Using This One Trick

One Simple =
Trick

compare ¥ g=

Also found i Thessurus, Medical. Legol, Finuncial
Acronyms, idioms, Encyclopedia, Wikipedia

com-pare 9 empar)

v compared, com paring, com pares

v.1r
1. To consider or deacribe an similar, equsl, or
analogous; liken: /s it nght to compare the hurman bram to

o oomputer? 1
2. To wxgmin

Figure 23 Profile GPU Rendering for Online Dictionary

44

Voige recognition Demo...

| 1
'
:
\

Figure 24 Profile GPU Rendering for Voice Recognizer

- .
®! VocalCombo

Figure 25 Profile GPU Rendering for History Check

45

The application shows good GPU Rendering. Except for the screens Online Dictionary and voice
recognizer, almost all the vertical bars in all other screens are below the green line. The taller
orange lines in these screens might be due to the fact that it takes CPU time to connect to

internet.

11.2 Profiling with Traceview

Traceview is a graphical viewer for execution logs. It can help us debug the application and
profile its performance [11]. | have created a trace log file using DDMS for the meaning check
process. The Traceview generated b loading the log file displays the log data in two panels

e A timeline panel - describes when each thread and method started and stopped. Each
thread’s execution is shown in its own row, with time increasing to the right.

e A profile panel - provides a summary of all the time spent in a method. The inclusive
time is the time spent in the method plus the time spent in any called functions. The
exclusive time is the time spent in the method. The parent and children of the method is
displayed in this panel.

Jadityma. || MamAL Cddogiexan Coadidyma | DaSaseHelp. S HepSyjma UHsEoPage. UMemidhE. §oameniTT 3 ®m

o

mszc 435485 macmsec 3 20 (cps timej

B 516 androididatatese sqite S A=CompladSqlocmpie L=vaingSnegTH

| | | | I I | | |

g 0 1903 1300 2006 250 350 330 40 43¢ 59%
e . UL ORIV 1| N B N[
moescames YL AR PO 1 N OO
n 1IN il
[WecderToes ([T | 1 nom I
15 hep | Inm
12] Hezperker |_|
BendeTrsdsz | | [] | W
<
Hamz IciGuTme% indCpuTime BxliCpuTme% EedCpuTime CalssPecwla. CpuTime/Cal
- § 5% anduid/detabase'sqlie S0l BeCompiedSqLcompie ljza 1359 5084 (123 0.3 &0 L8
Parents
£10andmididaabase sqite S =ComprledSql <ini> | % E &%
Chelden
N 174% 023
65 androididatabases solite/ SO A=ComprledSqlazte « 0% 3833 &%
§ Eandmididnahzesgite S aazbas ack [V 0= asit &110
[512 endroid/ dztabase soite S tedatzbase iiodk (1Y g5% 04% 10
J 1183 andrid/dzabame sfte S0 ndatabase k0pm 12 23% 0 &
§ 517 comfandeaid/miemalipoficy impl PronedndonDecorix (1§39 385 = (1057} 20 253
[582 andeidviewVieaGrous dspatca TouchFeent (Landoidfvic 185 435 0% ua 25 1822
313 andsidos:Pavod siidee (Lizaeng O pct Y iz 43 0z pE 28 333

Figure 26 Traceview for Meaning Check

46

I have created the traceview for the meaning check. If you hover the cursor over the processes in
the timeline panel, you can actually check the time for which the process or the thread is running
for. This helps us find the processes that are running for more than desired time and can be

helpful in code optimization in such processes.
11.3 CPU Load Analysis

The below pie-chart shows the CPU load for the meaning check method.

LU st “ | Ugdste o Dewee

Qun ms..

Meaning Check
[hcautliul I
Gﬂ*m
l Dk to Speak |

Figure 27 CPU Load Analysis for Meaning Check

"__""L"‘}—‘
ot wm v foaned

Statistical data- com.vocalcombo.sravya(user): (51, 53%)

com.vocalcombo.sravya(kernel): (5, 5%)

From the above pie-graph we infer the peak CPU usage for the meaning check functionality of
my application. The meaning check uses 53% of the CPU time as the meaning check
functionality requires the application to get connected to the network, which cannot be avoided.
This is the peak CPU load for the application and for all other functionalities the CPU load is
below 20%.

47

11.4 Memory Usage Analysis

The below Memory Usage pie-chart shows the memory usage for the meaning check method in
PPS in KB where PSS, Proportional set size, is a count of pages it has in memory, where each

page is divided by the number of processes sharing it.

My wiage v thdu’m&\u!
PESiniE
e e)

VocalCombo

Figure 28 Memory Usage Analysis for Meaning Check
Statistical data- com.vocalcombo.sravya (108,470, 20%)
From the above pie-chart, we can infer that the meaning check functionality uses about 20% of
the total memory available for the native and third part application development. The size of the
.apk file of the application is about 800 KB and the application when installed occupies 1.3MB
of the disk space, which is optimal among most of the available third party android applications
that uses the dictionary functionalities.
Overall, the application screens have well designed user interface with minimum GPU overdraw
and good GPU rendering. The traceview for the meaning check shows that except the process
which uses the webView class that connects the application to the internet, all other process runs
with in desired time frame which shows optimal performance of the application.

48

Chapter 12 - Conclusion

Though there are many websites which provides you the functionalities provided by this
application, there are only a few which provides both the functionalities of Pronunciation check
and Meaning check. Out of those, there are even less websites that displays the meaning of the
words the user speaks out. This Android application provides the flexibility of installing this
application on your Android powered smart phone or tablet. This can be really helpful for non-
native English speakers and even for the native-English speakers who wants to check the
meaning of complex words or play a pronunciation check game. The history check functionality
helps the user to recollect the words for which he have checked the pronunciation and meaning
for so that he can practice them. The Text to Speech and Speech to Text APIs provided by
Android are very helpful in implementing this application. Developing this application boosted
my confidence of developing mobile applications.

The TextToSpeech, used in pronunciation check, can be used in applications like reading out
emails or texts while driving. The VoiceRecognizer, used in meaning check, can be used in
applications to type any emails which user speaks out while driving. This application can be used
to help disabled people with features like voice navigation, filling a form with voice input etc.

Chapter 13 - Future Work

The Vocal Combo application requires the user to be connected to the internet all the time he
uses the application. One of the future works can be to extend the functionalities of the

49

application so that it can work without internet. We can make use of some offline dictionaries or
do the web crawling to integrate with the pronunciation and meaning check functionality. This
application can be extended to use offline speech recognition using PocketSphinx. The
application can be extended to provide the functionalities for different languages. It can also be
developed as cross platform application using various mobile application development

frameworks like Apache Cordova so that it can be compatible with any Operating System.

50

References

[1] “An overview of the Android Architecture”
http://www.techotopia.com/index.php/An_Overview_of the_ Android_Architecture [Feb. 10,
2016]

[2] “Android-Architecture”
http://www.tutorialspoint.com/Android/Android_architecture.htm [Feb. 10, 2016]

[3] “Systems design” [Feb. 20, 2016]

https://en.wikipedia.org/wiki/Systems_design [Feb. 20, 2016]

[4] “The Unified Modeling Language”

http://www.uml-diagrams.org/ [Feb. 20, 2016]

[5] “Android-Application Components”
http://www.tutorialspoint.com/Android/Android_application_components.htm [Feb. 25, 2016]

[6] “Basic Components in Android Applications”

http://www.compiletimeerror.com/2013/01/basics-components-in.html#.VwQz1fn49pg [Feb. 25,
2016]

[7] “Android-SQLite Database Tutorial”
http://www.tutorialspoint.com/Android/Android_sglite_database.htm [Mar. 02, 2016]

[8] “RecognizerIntent”

http://developer.Android.com/reference/Android/speech/Recognizerintent.html [Mar. 06, 2016]

[9] “Performance Profiling Tools”
http://developer.android.com/tools/performance/index.html [Apr. 07, 2016]
[10] “Profiling GPU Rendering Walkthrough”
http://developer.android.com/tools/performance/profile-gpu-
rendering/index.html#WhatYouNeed [Apr. 10, 2016]

[11] “Profiling with Traceview”

http://developer.android.com/tools/debugging/debugging-tracing.html [Apr. 07, 2016]

51

http://www.techotopia.com/index.php/An_Overview_of_the_Android_Architecture
http://www.tutorialspoint.com/android/android_architecture.htm
https://en.wikipedia.org/wiki/Systems_design
http://www.uml-diagrams.org/
http://www.tutorialspoint.com/android/android_application_components.htm
http://www.compiletimeerror.com/2013/01/basics-components-in.html%23.VwQz1fn49pg
http://www.tutorialspoint.com/android/android_sqlite_database.htm
http://developer.android.com/reference/android/speech/RecognizerIntent.html
http://developer.android.com/tools/performance/index.html
http://developer.android.com/tools/performance/profile-gpu-rendering/index.html#WhatYouNeed
http://developer.android.com/tools/performance/profile-gpu-rendering/index.html#WhatYouNeed
http://developer.android.com/tools/debugging/debugging-tracing.html

