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Abstract 

Access to databases after the digital revolutions has become easier because large databases are 

progressively available. Knowledge discovery in these databases via intelligent data analysis 

technology is a relatively young and interdisciplinary field. In engineering applications, there is a 

demand for turning low-level data-based knowledge into a high-level type knowledge via the use 

of various data analysis methods. The main reason for this demand is that collecting and 

analyzing databases can be expensive and time consuming. In cases where experimental or 

empirical data are already available, prediction models can be used to characterize the desired 

engineering phenomena and/or eliminate unnecessary future experiments and their associated 

costs. Phenomena characterization, based on available databases, has been utilized via Artificial 

Neural Networks (ANNs) for more than two decades. However, there is a need to introduce new 

paradigms to improve the reliability of the available ANN models and optimize their predictions 

through a hybrid decision system. In this study, a new set of ANN modeling 

approaches/paradigms along with a new method to tackle partially missing data (Query method) 

are introduced for this purpose. The potential use of these methods via a hybrid decision making 

system is examined by utilizing seven available databases which are obtained from civil 

engineering applications.  Overall, the new proposed approaches have shown notable prediction 

accuracy improvements on the seven databases in terms of quantified statistical accuracy 

measures. The proposed new methods are capable in effectively characterizing the general 

behavior of a specific engineering/scientific phenomenon and can be collectively used to 

optimize predictions with a reasonable degree of accuracy. The utilization of the proposed hybrid 

decision making system (HDMS) via an Excel-based environment can easily be utilized by the 

end user, to any available data-rich database, without the need for any excessive type of training. 

 

  



 

 

DECISION MAKING IN ENGINEERING PREDICTION SYSTEMS 

 

by 

HAKAN YASARER 

 

B.S., Mustafa Kemal University, 2004 

M.S., Kansas State University, 2010  

 

 

A DISSERTATION 

Submitted in partial fulfillment of the requirements for the degree 

 

DOCTOR OF PHILOSOPHY 

 

Department of Civil Engineering 

College of Engineering  

 

KANSAS STATE UNIVERSITY 

Manhattan, Kansas 

 

2013 

 

Approved by;  

 

Major Professor 

Yacoub M. Najjar 

  



 

 

Copyright 

 

 

 

HAKAN I. YASARER 

 

2013  



 

 

Abstract 

Access to databases after the digital revolutions has become easier because large databases are 

progressively available. Knowledge discovery in these databases via intelligent data analysis 

technology is a relatively young and interdisciplinary field. In engineering applications, there is a 

demand for turning low-level data-based knowledge into a high-level type knowledge via the 

use of various data analysis methods. The main reason for this demand is that collecting and 

analyzing databases can be expensive and time consuming. In cases where experimental or 

empirical data are already available, prediction models can be used to characterize the desired 

engineering phenomena and/or eliminate unnecessary future experiments and their associated 

costs. Phenomena characterization, based on available databases, has been utilized via Artificial 

Neural Networks (ANNs) for more than two decades. However, there is a need to introduce 

new paradigms to improve the reliability of the available ANN models and optimize their 

predictions through a hybrid decision system. In this study, a new set of ANN modeling 

approaches/paradigms along with a new method to tackle partially missing data (Query 

method) are introduced for this purpose. The potential use of these methods via a hybrid 

decision making system is examined by utilizing seven available databases which are obtained 

from civil engineering applications.  Overall, the new proposed approaches have shown notable 

prediction accuracy improvements on the seven databases in terms of quantified statistical 

accuracy measures. The proposed new methods are capable in effectively characterizing the 

general behavior of a specific engineering/scientific phenomenon and can be collectively used 

to optimize predictions with a reasonable degree of accuracy. The utilization of the proposed 
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CHAPTER 1  

1- INTRODUCTION 

1.1 Overview  

The digital revolution has increased the capability to capture, process, store, distribute, and 

transmit information worldwide. Large databases are increasingly available over the internet 

and cover a wide range of topics.  Their expanding usage in different areas will continue to 

grow with significant progress in computing technologies. Even though access to databases has 

become relatively simple, raw data can rarely be used directly. Its full value is driven from (a) 

the ability to extract information, which is useful for decision support or exploration and (b) 

understanding the phenomenon governing the data source. The overall process of knowledge 

discovery in databases consists of turning low-level data into high-level knowledge.   

The development of computer hardware and software has inspired new approaches for data 

processing and analysis. Soft computing has been recognized as a low cost solution yielding 

analysis tools to solve complex problems in many areas of engineering. During the last century, 

data processing applications have increasingly been developed and used to analyze various 

databases in various research areas. In recent years, data-based modeling has become more 

popular in engineering applications. The Artificial Neural Networks (ANNs) approach, which is 

considered one component of soft computing, is one of the most reliable and commonly used 

knowledge discovery methods in databases due to its capability to directly learn complex 

nonlinear relationships.  

ANNs is a mathematical or computational model that attempts to emulate the structure and/or 

functional aspects of biological neural networks. ANNs provide an analytical alternative to 

classical mathematics and traditional techniques which are often limited by assumptions of 

normality, linearity, variable individuality, etc. Unlike conventional computing techniques, soft 

computing models focus on partial exactness through an approximation with a tolerance of 

imprecision. Soft computing models exploit biological processes, predicate logic, the partial 
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belongingness concept, parallel processing and techniques which mimic the human mind as 

well as nature (Lav et. al, 2009). ANNs-based material modeling approach has received 

increasing interest in the engineering area during the past 20 years. Essentially, ANNs approach 

is considered to be the best function approximation technique that is well suited for proper 

material behavior characterization. In a typical modeling process, ANNs-based model is trained 

to attain a specific knowledge through training or retraining via a mathematically-based 

process. As a result, the trained model stores the extracted knowledge, features embodied in 

the database, within its connection weights. ANNs possess the following unique advantages in 

information processing tasks: 

1. ANNs are capable of directly learning complex nonlinear relationships from a large 

body of datasets without the need for any simplifying assumptions; 

2. Model prediction accuracy can be improved by adding new training datasets which 

can internally adjust the model’s connection weights in order to capture new features 

hidden within the new datasets; 

3. ANNs have the ability to extract information from incomplete or partially incorrect 

datasets;  

4. ANNs can be used to develop general purpose models to characterize various 

responses of material behavior; 

5. ANNs can derive relationships and associations directly from the experimental data 

without the need for much theory support;  

6. ANNs can be used to examine the effect of an individual input on the output 

parameter without the need to physically conduct additional experiments. 

The most commonly used ANNs in engineering applications are multilayer backpropagation 

networks. A recent study by Yasarer (2010) has shown that the application of backpropagation 

ANNs has proven to be an effective modeling method for material characterization in 

engineering applications. The success of ANNs approach has been validated on many 

engineering applications reported in the literature [i.e. Nazarian (2004), Tutumluer and Seyhan 

(1998), and Meier and Rix (1994)]. Backpropagation ANNs approach has been successfully used 
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in engineering applications by Ghaboussi et al 1990, 1991, 1994; Najjar and Basheer (1996), 

Najjar et al. (1999), Najjar and Ali (1999); and Yasarer and Najjar (2010). 

It is essential that the ANNs approach is continually modified and improved so that the optimal 

network for individual phenomena can be optimized so that the ANNs approach can be applied 

to increasingly challenging problems and complex datasets. 

1.2 Problem Statement  

Many research investigations have been conducted to find alternative methods that can 

generate efficient, rational, and practical prediction models. Among these approaches, ANNs 

approach became popular due to its efficient and reliable results.  However, the need for 

improving the statistical accuracy of this approach has become essential. For this reason, two of 

the questions that this research attempted to answer are:  

1. “Can we improve or optimize the prediction accuracy of ANN models?”  

2.  “Can we develop more than one ANN model for a single database using different 

methodologies?” 

A secondary issue related to ANN modeling is incomplete datasets.  Datasets with missing 

variables are called incomplete datasets. In order for ANN models to be utilized, complete input 

parameters have to be provided. Otherwise the models are not valid and cannot be used in any 

circumstances. The problem of incomplete datasets is very common within engineering 

databases. Often, incomplete datasets cannot be used for ANN modeling and when incomplete 

data is removed, the resulting sample of complete cases may be too small to obtain statistically 

significant trends. There is a wide variety of methods for handling missing data, which vary a 

great deal in their mathematical complexity. The need for a simple solution is apparent.  

Finally, there is a need to integrate multiple modeling frameworks into one decision-support 

system. Typically, engineering prediction models have one solution that is adapted directly by 

the user. Accordingly the engineer or the scientist does not have any options to choose from. In 

other words, the provided output is the only solution available to the user, even though most 
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engineering judgments should be made with guidance from multiple options. Providing more 

than one option or output within a framework for evaluating the various options is essential to 

making reliable decisions.  

1.3 Objectives  

The overall objective of this study is to explore and expand the potential use of Artificial Neural 

Network modeling for seven civil engineering databases along with a new method for partially 

missing datasets in databases. According to the stated problems in Section 1.2, the overall 

scope for seven databases included the following tasks: 

1. Develop a static ANN network.  The potentials of static ANN are investigated. Effect of 

input parameters on the output based on the performance evaluation criteria (statistical 

accuracy measures and graphical evaluation) is utilized to determine the optimal 

architecture of the neural network models.  

2. Utilize the initial estimates generated by the static ANN network in step 1, to develop 

the desired Feedback-ANN Network Model. The datasets used in the model 

development of the static ANN are also used for the model development of Feedback-

ANN Network Model. The optimal network is determined based on similar statistical 

measures. 

3. Use the initial estimates generated by the model in step 1, develop an Auto-associative 

network. ANN modeling criteria is similarly followed in this step. This network provides 

predictions of inputs and output together.     

4. Convert the static model database into a dynamic model database. Utilizing the new 

database and the initial estimates from the static ANN network, develop an appropriate 

Dynamic-sequential network. Similarly, the optimal internal structure for the Dynamic-

sequential network model is determined based on the same statistical accuracy 

measures.  
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5. Develop a Query method application to populate partially missing datasets as well as to 

generate predictions by using the entire database. First, the Query method application 

is developed with the datasets and tested on validation datasets. Second, the Query 

method application is developed and tested using all available datasets.       

6. Develop a hybrid decision making system (HDMS) with a user-friendly interface that 

integrates the predictions from all ANN models as well as the Query method application 

developed in Steps 1 to 5.   The developed HDMS interface will be designed to produce a 

single weighted prediction value along with the most likely prediction range.   

As stated before, the main objectives of this study are to explore and improve the ability of 

backpropagation ANNs along with a method to replace missing variables in datasets through a 

hybrid decision making system. To achieve these objectives, the listed tasks are followed for 

seven databases sequentially. In the following chapters, the databases used, the new ANN 

approaches/paradigms and the Query method application along with their development phases 

and their corresponding prediction accuracy measures will be discussed in details.   

1.4 Organization of the Dissertation 

Chapter 1- Introduction: This chapter presents a brief discussion on ANNs-based modeling 

approach and advantages of using ANN modeling. Also, brief summaries of the contents of each 

chapter are presented.  

Chapter 2- Background: This chapter contains a brief literature review related to the research 

conducted in this study. Several relevant publications on ANN modeling approaches that 

contributed significance to this research study are highlighted.  

Chapter 3- Artificial Neural Network: This chapter discusses the aspects of ANN computational 

algorithms. Basic definition, elements, and Backpropagation learning algorithm used in ANN 

approach are discussed in details. Statistical prediction accuracy measures used to identify the 

best performing ANN models are also defined in this chapter.   
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Chapter 4- Database Description: All the databases to be used for the proposed ANN modeling 

approaches and the Query method applications are described in details. The description of each 

parameter is presented and explained.   

Chapter 5- Static ANN Network: This chapter defines the fundamentals of the static ANN 

network as well as the model development stages for the seven databases. Static ANN 

networks for each database are discussed in details. Corresponding graphical results and their 

statistical accuracy measures for all seven databases are presented at the end of the chapter. 

Chapter 6- Feedback ANN Network: This chapter discusses the facts about the procedure and 

the significance of Feedback ANN. The model development phases for the Feedback ANN 

network are argued in details. Prediction accuracy comparisons in terms of graphical and 

statistical accuracy measures for the developed ANN are presented in this chapter. Prediction 

improvement tables are presented at the end of Chapter 6.  

Chapter 7- Auto-associative Network:  The usage of the Auto-associative network in other 

engineering areas is explained, and the model development process for each database is 

presented in their relevant sections with details. Similarly, model accuracy plots and the 

statistical accuracy tables are given at the end of the chapter. 

Chapter 8- Dynamic-sequential Network: This chapter outlines the essentials of the Dynamic-

sequential network as well as the model development stages for the seven databases. Dynamic-

sequential networks for each database are presented in details. Corresponding graphical results 

and their statistical accuracy measures for all seven databases are presented at the end of the 

chapter. The improvement performance of the Dynamic-sequential network is highlighted.  

Chapter 9- Query Method: This chapter states the basics of the Query method, and then the 

application calculation procedures are presented. Corresponding graphical results and their 

statistical accuracy measures for all seven databases are similarly presented at the end of the 

chapter. Some screen-shots from the Excel-based application developed to produce the Query 

method are also shown.  
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Chapter 10- Hybrid Decision Making System: Integration of all ANN approaches and the Query 

method application for seven databases are described in this chapter. Sample screen-shots for 

the hybrid decision making system for 3 databases are presented. Recommended value 

statistics are also placed at the end of the chapter.  

Chapter 11- Summary, Conclusion, and Recommendations: Summary of the research work 

performed in this study and major conclusions obtained are presented in this chapter. 

Recommendations for future research studies are also presented.  
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CHAPTER 2  

2- BACKGROUND 

2.1 ANN Modeling Approach 

During the 1990s a new period of engineering material characterization emerged with the 

utilization of the Artificial Neural Networks (ANNs) approach to properly characterize the 

behavior of geo-materials, such as soil, concrete, Portland cement concrete (PCC) pavement, 

asphalt concrete (AC) (i.e. Ghaboussi et al. (1991), Najjar and Basheer (1996), and Najjar et al. 

(1999)). Material modeling is a fundamental phenomenon in engineering research and practice. 

A model is typically developed to describe the material constitutive/mechanical behavior under 

certain boundary conditions. Material models serve as the basis for numerical calculations and 

guidance for analyzing, designing, constructing and rehabilitating structures, including the 

material. In this chapter, significant studies that guided and which are relevant to the research 

presented in this dissertation are presented to provide beneficial background information.     

Neural network approach were applied for automated inversion of dispersion curves from the 

spectral analysis of surface waves (SASW) test data on a four-layer AC pavement by Gucunski 

and Krstic (1996). SASW method is a seismic technique for in situ evaluation of elastic moduli 

and layer thicknesses for layered systems, such as pavements and soils. The objective of the 

SASW test is to obtain the experimental dispersion curve and, through an inversion procedure, 

obtain the profile of elastic moduli of the layered system. The inversion process in practice uses 

an average of dispersion curves for different receiver spacing. Results of theoretical studies 

indicate that differences in dispersion curves for various spacing are a result of interference of a 

number of body and surface waves. The development and application of neural networks to 

perform the inversion procedure for SASW testing of asphalt concrete (AC) pavements was 

proposed by Gucunski and Kristic (1996). The most important feature of the developed network 

is that training of the network was done by the dispersion curves for individual receiver 

spacings. The training set consists of dispersion curves for seven receiver spacings and 78 

dimensionless frequencies, while output is presented by elastic moduli and layer thicknesses of 
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a four-course AC pavement. The best developed model is a five-layer back-propagation model 

with jumps. The model perfectly predicts thicknesses and shear wave velocity for all layers, 

except the thickness of the sub-base layer. The obtained neural network model is compared to 

the previously developed model for back-calculation of moduli from the SASW test based on 

the averaged dispersion curve. Although both approaches can accurately define profiles, each 

has some advantages in evaluation of the thickness of the subbase. 

The use of intelligent and soft computing techniques in the field of geomechanical and 

pavement engineering has emerged during 2000s. A probabilistic approach to the solution of 

inverse problems in nondestructive testing and engineering geophysics was applied by Hadidi et 

al. (2007). Interpretation of geophysical data often requires the solution of an inverse problem. 

There are two general approaches to the solution of inverse problems, deterministic and 

probabilistic approaches. Usually, in engineering geophysics inversion is carried out using a 

deterministic approach, where a single set of results is identified as the interpreted outcome. In 

complex inverse problems the deterministic solution process is often guided by an interpreter, 

who uses his knowledge, experience, or judgment to guide the process. However, it assumes 

the uncertainties in data and quantitative models are negligible. A technique for the evaluation 

of the probabilistic solution using Monte Carlo Markov Chains (MCMC) with Neighborhood 

Algorithm (NA) approximation is introduced and explained in Hadidi’s paper (2007). The study 

demonstrates an application of MCMC with NA in the health monitoring of transportation 

infrastructure using non-destructive testing (NDT) Hadidi et al. (2007). 

Hsu et al. (1995) presented a new procedure (entitled linear least squares simplex, or LLSSIM) 

for identifying the structure and parameters of three-layer feed forward ANN models and 

demonstrates the potential of such models for simulating the nonlinear hydrologic behavior of 

watersheds. The nonlinear ANN model approach is shown to provide a better representation of 

the rainfall-runoff relationship of the medium-size Leaf River basin near Collins, Mississippi, 

than the linear ARMAX (autoregressive moving average with exogenous inputs) time series 

approach or the conceptual SAC-SMA (Sacramento soil moisture accounting) model. Because 

the ANN approach presented here does not provide models that have physically realistic 
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components and parameters, it is by no means a substitute for conceptual watershed 

modeling. However, the ANN approach provides a practical and effective alternative to the 

ARMAX time series approach for developing input-output simulation and forecasting models in 

situations that do not require modeling of the internal structure of the watershed. 

Another example of a successful ANN application is a study about modeling hydration of 

cementitious materials, established by Riding et al. (2012). The study presented the 

development of a model for predicting the adiabatic temperature development of concrete 

mixtures based on material properties (for example, cement chemistry and fineness and 

supplementary cementitious materials (SCM) chemistry), mixture proportions, and chemical 

admixture types and dosages. The model was developed from 204 semi-adiabatic calorimetry 

results and validated from a separate set of 58 semi-adiabatic tests. The final model provided a 

useful tool to assess the temperature development of concrete mixtures and thereby enable 

the prevention of thermal cracking and delayed ettringite formation in concrete structures.  

The ANN modeling approach has not only been limited to engineering databases, it has also 

been utilized by other fields, such as psychology and neuroscience where the methodology of 

ANN was derived. For example, Levine (2002) used the neural network modeling in several 

areas of psychology including sensory processes, short-term memory, pre-attentive vision, 

attention, and code development; control of individual movements and movement sequences; 

classical and operant conditioning, and reinforcement learning; involvement of several brain 

areas in cognitive-emotional interactions; categorization and classification; decision making; 

language understanding; reasoning and analogy; mental and cognitive disorders; and a few 

areas of social psychology. One simple example is given of the process of generating equations 

for a neural network model, with the terms of the equations being motivated by the 

psychological operations that those terms describe. 

2.2 Auto-Associative Network Approach 

Auto-associative network has also been widely utilized in other engineering areas. A detailed 

definition of the Auto-associative network is outlined by Daszykowski et al. (2003). Auto-
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associative neural networks (AANNs) provide an elegant method for data compression and 

visualization, which are subjects that have always generated a great deal of excitement in 

engineering and scientific fields. Since multidimensional datasets are difficult to interpret and 

visualize, much attention has been focused on how to compress them efficiently. Usually, the 

compression of dimensionality is considered as the first step of exploratory data analysis. Here, 

we focus our attention on auto-associative neural networks as a tool for data compression and 

visualization. AANNs can deal with linear and nonlinear correlation among variables, what 

makes them a very powerful tool in exploratory data analysis. In the literature, AANNs are often 

referred as nonlinear principal component analysis (PCA), and due to their specific structure 

they are also known as bottleneck neural networks. In Daszykowski et al. (2003), AANNs are 

discussed in detail and different training modes are described and illustrated on real examples. 

The usefulness of AANNs for nonlinear data compression and visualization purposes is proven 

with the aid of chemical data sets, being the subject of analysis. The comparison of AANNs with 

well-known PCA is also presented.  

In another example, the neural auto-associative technique has been applied to image 

compression in a study by Basso and Kunt (1992). Particular attention was given to the 

preprocessing stage in image creation. The validity of some of the theoretical results is 

discussed and an experimental study of the mapping capabilities of the network based on a 

nonlinear parameterized activation function is presented. In order to test the image 

reconstruction capabilities of the neural technique, comparisons with more traditional image 

processing tools such as Karhunen-Loeve Transform (KLT) are shown. A parallel implementation 

of a linear version of the neural technique on the Associative String Processor (ASP) machine is 

presented. Despite the linear structure of the ASP and the use of fixed arithmetic for the 

implementation, promising results are shown in terms of learning speed and quality of the 

reconstructed images. 

In another study by Marseguerra and Zoia (2005) Auto-Associative Neural Networks (RAANN) 

are applied to a series of signals produced by the Halden simulator of the 1200 MWe 
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(megawatt of electricity) BWR (Boiling water reactor) Forsmark-3 plant in Sweden. The 

applications concern the:  

 correction of drifts and gross errors in sensors, for diagnostic and control purposes, 

 cluster analysis, to individuate a failed component and the intensity of the failure, 

 forecasting system signals, for safety or economic purposes, 

 and reconstruction of unmeasured signals (virtual sensors). 

In the accomplishment of the above, the geometric interpretation of the mapping performed 

by the network has provided a reasoned choice of the most critical free parameter, i.e., the 

number of hidden nodes of the bottleneck layer, thus allowing a deep understanding of the 

network functioning and also avoiding the traditional and troubling procedure of selection by 

trial-and-error. The theoretical basis of this analysis is founded on the idea of dimension and in 

particular of fractal dimension, which has been used as a numerical estimator of the factors. 

Desjardins et al. (2006) have proposed an Auto-associative neural network to model the 

classification processes and the selective recovery of information to perform the matching task. 

Neural network is an important paradigm that has received attention from the society of 

researchers in information retrieval, especially the auto-associative neural networks. These 

networks are capable of discovering patterns of terms among documents. The unique layer 

network is trained with the documents of the collection and then used to recall the most 

relevant documents to specific queries. The model has been tested on a TREC ("Text Retrieval 

Conference") sub-collection. The results are compared against the vector space model. The 

experiment shows higher levels of global precision and recall. The recall-precision curves show 

an important improvement on the precisions for the low levels of recall, which indicates a 

faster retrieval of the most highly relevant documents. With this study, the strength of the 

Auto-associative neural network has been shown in information retrieval for general collections 

Desjardins et al. (2006). 
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2.3 Missing Data Adjustments 

Among highly complex modeling techniques and algorithms, the missing data problems have 

become wide-spread. Missing data adjustments for partially scaled variables were studied in 

1987 by Little and Sue. Missing data is a pervasive problem in sample surveys. Two common 

strategies for dealing with the problem are direct analysis of the incomplete data and 

imputation. In the first approach, the missing values are left as gaps in the data set, identified 

by special missing data codes, and the treatment of missing data is deferred to the analysis 

stage. Given data in this form, most statistical analysis packages discard cases that contain 

incomplete information (complete-case analysis) or restrict attention to cases where the 

variable of interest is observed (available-case analysis). Little and Sue propose (1987) two 

methods for handling missing data on a set of partially-scaled variables, one based on 

maximum likelihood for a general model for mixed continuous and categorical variables, and 

one based on imputation from a matched complete record. Preliminary empirical work based 

on data from the Survey of Income and Program Participation (SIPP) shows that both of these 

methods have promise.  

Gheyas and Smith (2009) proposed a non-parametric multiple imputation algorithm (GMI) for 

the reconstruction of missing data, based on Generalized Regression Neural Networks (GRNN). 

They compare GMI with popular missing data imputation algorithms: EM (Expectation 

Maximization) MI (Multiple Imputation), MCMC (Markov Chain Monte Carlo) MI, and hot deck 

MI. A separate GRNN classifier is trained and tested on the dataset imputed with each 

imputation algorithm. The imputation algorithms are evaluated based on the accuracy of the 

GRNN classifier after the imputation process. The effectiveness of the proposed algorithm was 

showed on twenty-six real datasets. 

2.4 Decision Making in Engineering Systems 

The importance of decision making in system engineering was studied by Roth (2007). Roth 

discusses that engineering design is inherently a social activity, as are all applied disciplines. 

Roth’s discussion strives to illuminate the human biases present in modeling reality, the types 
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of decision making often employed, the need for a holistic systems approach, the need to 

consider the human side of engineering, along with the complexities involved, and the need for 

collaboration to solve today’s toughest problems. Suggestions for possible engineering problem 

solving methodologies involving human tendencies are introduced in Roth’s study. 

A review paper by Ascough et al. (2008) discusses the importance of decision making in 

ecological and environmental issues. Some of the important highlights associated with this 

research are: (1) the development of methods for quantifying the uncertainty associated with 

human input; (2) the development of appropriate risk-based performance criteria that are 

understood and accepted by a range of disciplines; (3) improvement of fuzzy environmental 

decision-making through the development of hybrid approaches (e.g., fuzzy-rule-based models 

combined with probabilistic data-driven techniques); (4) development of methods for explicitly 

conveying uncertainties in environmental decision-making through the use of Bayesian 

probability theory; (5) incorporating adaptive management practices into the environmental 

decision-making process, including model divergence correction; (6) the development of 

approaches and strategies for increasing the computational efficiency of integrated models, 

optimization methods, and methods for estimating risk-based performance measures; and (7) 

the development of integrated frameworks for comprehensively addressing uncertainty as part 

of the environmental decision-making process. 

This brief literature review discussed topics related to the initial applications of ANN in various 

fields, the development of auto-associative ANN approaches and their applications, the search 

for solutions to missing data in engineering databases, and some discussion related to decision-

making systems.  Each of these subtopics is a broad research area utilized by many different 

disciplines. This review serves as a sample of the available research and a platform from which 

this research has sprung forth into newly developed modeling methods using the ANN 

structure. 
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CHAPTER 3  

3- ARTIFICIAL NEURAL NETWORK 

3.1 Definition and Elements  

3.1.1 Definition 

An artificial neural network (ANN) is a method based on the operation of biological neural 

networks. In other words, it is a simulation of biological neural system. ANN is a mathematical 

model or computational model that attempts to emulate the structure and/or functional 

aspects of biological neural networks. The interest in neural networks re-emerged only after 

some important theoretical results were attained in the early eighties, notably after the 

discovery of the error back-propagation scheme. Nowadays, artificial neural networks can be 

most adequately characterized as ‘computational models’ with particular properties such as the 

ability to adapt, learn, generalize, cluster or organize data in an operation based on parallel 

processing. However, many of the mentioned properties can be attributed to existing models 

for which the neural network approach can be suited better in certain applications. Parallel 

processing is often described with biological systems. However, there is still so little known 

about biological systems. Models developed by artificial neural network approach can be 

identified as oversimplification of the biological systems (Krose and Smagt, 1996). Artificial 

neural networks are highly interconnected structures consisting of many simple processors 

(neurons) that perform massively parallel computation for data processing and knowledge 

representation. ANNs approach is represented by mathematical algorithms designed to imitate 

methods of information processing and knowledge acquisition of the human brain (Pham 

1994). ANNs systems typically consist of the same following basic components: 

i. a neuron or node, 

ii. an activation function associated to each node, 

iii. a real-valued weight associated with each link between two nodes,  

iv. a real-valued bias associated with each node, 
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v. a transfer function, 

vi. a propagation rule, and  

vii. a learning rule. 

 

The ANNs have generalization capability which is highly dependent on the size of training 

samples, range of data domain, and density of solution space. Generalization process by an 

ANNs approach is achieved, very much similar to the human nervous system, by increasing the 

acquainted knowledge through the use of high number of experimentations.     

3.1.2 Elements 

The most important element in every ANN architecture is the neuron which is similar to the 

biological neurons. It is considered as a cell with a built-in activation function connected to 

other neurons by a set of connections. Main elements of an Artificial Neural Network are the 

input layer, hidden layer(s), output layer, and connection weights. An example of an ANN 

structure is depicted in Figure 3.1. Prediction accuracy of the network depends on its 

interconnected weights. A network usually performs the following three sequential tasks 

(Najjar et. al, 1996):  

a. Input variables fed to the input layer, 

b. Processing of information within the hidden layer, 

c. Production of outputs at the output layer. 

 

The input layer contains the input nodes and does not perform any mathematical operation. 

The number of the input nodes is based on input variables which are assumed to influence the 

output. The number of the input variables affects the performance of the network. Information 

is received, processed and forwarded to the hidden nodes by the input layer. The hidden layer 

may contain one or more layers consisting of a set of nodes which processes information within 

the network body. The hidden layer which is a transition layer between input layer and output 

layer is the most important element in the network. The hidden layer processes the information 
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passed on from the input layer and feeds it forward towards the output layer. In other words, it 

facilitates the flow of information between the input nodes and the output node via the 

connecting links. The accuracy of the developed models is considerably affected by the number 

of the hidden layers as well as the number of neurons involved within each layer. Connection 

weights are the interconnecting links between the neurons in sequential layers. Each neuron is 

connected to every other neuron in the next layer via links which have individual and adjustable 

connection weights. There are no side connections used in this modeling approach.   

3.2 Backpropagation Learning Algorithm 

Backpropagation neural networks consist of a number of layers including a specified number of 

neurons. The input layer includes the input neurons corresponding to parameters which are 

assumed to affect the outcome of the phenomenon. The output layer consists of the output 

neuron(s) which represent(s) the solution of the problem. The hidden layer located between 

the input layer and the output layer is not designed to have any direct contact with the outside 

environment. It has been shown (Hornik et al., 1989; Funahashi, 1989; Cybenko, 1989; Hartman 

et al., 1990) that only one layer of hidden units can approximate any function with finitely many 

discontinuities to arbitrary precision, provided that the activation functions of the hidden units 

are non-linear (the universal approximation theorem). In most applications, a feed-forward 

network with a single layer of hidden units is used.  

A sigmoidal function which is the most widely used function is where the input passes through 

to calculate the output of a neuron at the output layer. The calculated outputs are then 

compared to actual outputs to determine the error which is consequently used for error 

function determination. Then, the error function is used to adjust the error starting from the 

connection weights linked with the output, and backward to the input layers. In other words, 

the generated error by the network is used to adjust the connection weights. The connection 

weights are initially not known and typically assigned random or specified values. The output 

value obtained using the initial connection weights may not be close to the target value. The 

error correction is done based on the calculated error and the initial connection weights are 

adjusted by propagating the error backwards. With the new adjusted connection weights 
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between input layer nodes and hidden layer nodes as well as hidden layer nodes and output 

layer node, the inputs are forwarded once again to determine the new output value 

accordingly, and then the new error is determined and is used to adjust the connection 

weights.  The forward activation of signals and the backpropagation of error are continuously 

repeated on all training datasets until the error is reduced to a predetermined minimum or an 

allowed tolerance (Najjar et al., 1997; Najjar and Zhang, 2000). The final connection weights 

which produce an error within the allowed tolerance range are then stored to represent the 

network. The final network can be used to predict the desired output(s) of a new dataset that 

have no actual output values. Note that, backpropagation ANN is a feedforward network and 

the backpropagation term does not mean the same with feedbackward propagation since the 

backpropagation is used for the error distribution in contrast to direction of signals’ flow. In 

other words, the training algorithm starts with a feedforward of the input variables, followed by 

backpropagation of the associated error and connection weights’ adjustment.  

3.3 Learning Algorithm  

The learning process of a standard Backpropagation Neural Network is demonstrated in this 

section.  

Nodal Input Values  

The nodes in a certain layer are connected to all other nodes in the following layer. Each node 

receives signals from all other neurons in previous layer and integrates those signals as a 

weighted average. For instance, input value for neuron “A” is the sum of the integrated signals 

multiplied by their corresponding connection weights. The input value for a neuron “A” can be 

expressed with the following equation:  

 

weightconnectionvaluenodeInput A  )()(      Equation 3-1 
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As depicted in Figure 3.2, the input of one node (i.e., Neuron A) is the all incoming signals and 

collective effect signal calculated as the weighted sum of all incoming signals is calculated 

according to the following equation:  
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)1(           Equation 3-2  

        

Where L

jNet  refers to the excitation of neuron j  in the thL layer, L

jiw  represents the numerical 

value of the interconnection weight between neuron i  in the thL )1(   layer and neuron j in 

the thL layer. )1( L

iOut  is the output from the thi  neuron in the thL )1(  layer. Finally, L

jNet is 

nonlinearly transferred via an appropriate activation function.  

 

Activation Function: Sigmoidal Function 

To calculate the output of a neuron, the input (i.e., excitation) must be processed through a 

transfer function because the input might either be very large or negative. In order to avoid 

large or negative values and to introduce nonlinearity in the model, the neuron’s input 

experiences an additional nonlinear transformation to produce an output based on the 

following equation:  

 

AA inputfOut )()(           Equation 3-3 

     

Where “ ” is a transfer function and “ Ainput)( ” is the input value for node A previously 

calculated using Equation 3.1.  
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In this study, the Sigmoidal function, among the most common activation functions, was used 

as the activation function. The Sigmoidal function is the most widely used activation function in 

Backpropagation networks. The final output signal is positive, continuous and has a specified 

interval between 0 and 1. Sigmoidal function is expressed as  

 

)(1

1
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Inpute
Inputf
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          Equation 3-4 

            

 

Since a neuron receives a total excitation (i.e., input) which is equivalent to “ Net ”, then the 

output from the neuron can be expressed as  
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As “Net ” reaches a high (approx. 4.0) or low (approx. -4.0) values, activation stabilizes at values 

between 0 and 1, respectively.  

Weight Adjustment 

At the last stage of the backpropagation algorithm, the latest adjusted weights are updated by 

adding the weight adjustment values to the previous weight values. While the inputs are 

processed forward through every single layer of the network to produce outputs, the error 

between predicted and target values is used to adjust the connection weights. The incremental 

change for the current weight can be calculated as follows:  
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where “new” and “previous” stand for the current and previous iterations. According to 

Backpropagation neural network algorithm (Zupan and Gasteiger, 1993), incremental change, 

L

jiw  can be computed using the Delta-rule: 

 

1 L

i

L

j

L

ji Outw           Equation 3-7 

           

where  is the learning rate which controls the size of the updating process. The error factor, , 

reflects the weighted error on the connection ji . The 1L

iOut term represents the output from 

the thi  neuron in the thL )1(   layer.  

 

Learning Process 

The learning process of a neural network is given as follows: 

1) Input vectors are marked as X1, X2, ……, Xn, 1  where n refers to total number of input 

variables and last input stands for the threshold or the bias.  

2) Propagate the input vectors, X1, X2, ……, Xn, via the connection weights to compute the 

output vectors, 1Out  using the Equation 3.3 until consequently reaching lastOut . 

3) Itemize initial weights, L

jiw  and update connection weights on output layer using the 

equation: 
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Where   is the correction factor (i.e., the weighted error) and is computed as 
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   last

j

last

j
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jj

last

j OutOutOuty  1       Equation 3-9 

         

in which jy  is target value of component, j in the output vector, Y. The function shown in 

Equation 3.8 is called generalized Delta-rule with a momentum rate ( ) where, )10(    

(Rumelhart et al., 1986). The current connection weight is updated by adding the adjustment to 

the previous connection weight. Biases are similarly updated on the last layer based on the 

following equation:  
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4) All weights on any hidden layer are updated by using the following equation: 
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Where   is the correction factor and is computed as 
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The biases are corrected within the hidden layer(s) using 
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ji bb          Equation 3-13 

        

5) Steps (1) through (4) are repeated for each training dataset. 
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6) Steps (1) through (5) are repeated until the predicted output meets the corresponding 

target output within a predetermined tolerance or the training iterations reaches the 

maximum limit.  

 

3.4 Initial Number of Hidden Nodes  

The number of initial hidden nodes and the maximum allowed hidden nodes in ANN model 

development are specified by the user. ANN process starts with a user-specified initial hidden 

node and goes up to the maximum allowed number of hidden nodes. At the end of this process, 

ANN structures which have the least number of hidden nodes and the best prediction  accuracy  

are chosen to be reevaluated in terms of statistical accuracy measures as well as graphical 

accuracy measures. The maximum number of hidden nodes, HN(max), can be calculated by the 

following equation: 

 

   
    1varvar
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




iablesoutputofnumberiablesinputofnumber

iablesouputofnumberdatasetstrainingofnumber
HN  Equation 3-1 

    

Note that, choosing too many hidden nodes could lead to over-fitting situation. On the other 

hand, very few hidden nodes may not be enough to obtain a model for a complex 

phenomenon. Concerning the number of hidden layers, networks with one hidden layer are 

more adequate and efficient. In this research, only one hidden layer was used for the optimal 

ANN architecture.  

 

3.5 Model Selection Criteria 

In order to compare the performance of generated networks and to select the best performing 

network, statistical accuracy measures such as the Coefficient of Determination (also known as 

R2), the Mean Absolute Relative Error (MARE), and the Mean Root Squared Error (MRSE) are 

evaluated. Training, testing, validation and overall performance parameters should be 
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considered during the evaluation process. The level of agreement between the predicted and 

actual output values is interpreted based on statistical measures of the network producing the 

minimum values of MRSE and MARE; and the highest R2. The MRSE value can be expressed by 

the following equation:  
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Where y is the predicted output, which is produced by the network and y is the actual value. 

The MARE value is computed by the following equation:  
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R2 can be expressed with the following Equation: 
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      ∑     
(∑  ) 

             
       Equation 3-6 

 

Further information about ANN can be found from the following references: Rumelhart and 

McClelland (1986); Hopfield (1982); Haykin (1999); Rumelhart et al. (1986); Fausett (1994); 

Basheer (1998); Ali (2000); Herz et al. (1991); Wu and Ghaboussi (1995); Ghaboussi (1994); 

Ghaboussi et al. (1991). ANN approach is utilized to develop prediction models for various 

databases in the following chapters. Model development process for each database is 

described in details. The corresponding statistical accuracy measures and the graphical 

comparisons of each ANN model for the best performing networks are shown at the end of 

their corresponding chapters.   
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3.6 Figures 

 

 

Figure 3-1 Structure of an Artificial Neural Network (ANN) 

 

 

 

Figure 3-2 Activation Process of a Neuron 
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CHAPTER 4  

4- DATABASE DESCRIPTION 

To effectively demonstrate the potential use of Query method and new ANN modeling 

approaches, seven databases with different characteristics were chosen to be used in this 

study. Database characteristics in engineering, for extreme cases, may vary from synthetic 

databases, such as those obtained from computer software or through digital instrumentation, 

to human factor-involved databases, in which highly associated parameters may not be 

available. In this study, databases with a combination of various characteristics are included to 

evaluate the performance of the newly presented methods. Some databases used in this 

research are; 

 Synthetic or digital databases: these types of databases are usually obtained though 

finite element analysis software.  Also, instruments, such as digital sensors, are used to 

constantly collect data and build optimal databases with less error.     

 Human factor-involved databases: these types of databases are typically considered as 

low-level databases because there are human related factors, for which there may or 

may not be information available. For example, for a speed limit study it may not be 

possible to collect information about driver’s age or vehicle’s comfort level.  

 Databases with categorical variables: Some databases include categorical variables 

whose relationships with phenomena cannot be expressed mathematically, but are 

vital to the database modeling. For this reason, each category is considered as a binary 

variable and only one of them can be active at a time. For example, in concrete 

research studies cement type is one of the parameters proven to affect the final 

concrete parameters the most. For instance, considering that there are four type of 

cements used, then 4 additional variables are included in the database. However, only 

one of the cement types is active at a time. Other types will have no effect on the 

model.  
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 Databases with experimental observations: This type of database typically contains 

experimentally obtained variables. The inputs are controlled variables that are defined 

in the experimental set-up, while the output is an observation from an experiment. 

The exact number and type of variables will depend on the specific experiment. 

 Databases with multiple outputs: This type of database has multiple outputs that are 

related to a set of inputs.  However, in this study each output is treated separately in 

relation to its inputs. In other words, one model for each output was developed by 

using the same input parameters.   

 Databases with small variance: In this type of database both the input and the output 

may have small variance, accordingly it is challenging to obtain a statistically significant 

relationship between inputs and output(s) in the model.          

 

In order to evaluate the desired models, six real databases representing various engineering 

applications and one synthetic database were examined. More information about the 

databases is given herein: 

4.1 Database 1 

The first database used in this study was generated by using non-linear trigonometric functions. 

This database represents a simple case, where the data is generated synthetically and 

accordingly the model was expected to easily recognize the pattern in the database.  Therefore, 

the prediction accuracy was anticipated to be high and the error low. The first database was 

generated by using the following non-linear trigonometric functions; 
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           Equation 4-1 

Where X1, X2, X3, X4, X5, and X6 are the inputs and Y is the output.   
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To develop the proposed models for database 1, seven inputs and one output were considered 

even though Equation 4.1 does not have any component shown as a seventh input. So the 

seventh variable in the database does not have any correlation with the output (i.e. Y). In order 

to evaluate the performance and predictability of the new approaches discussed in the 

following chapters, the additional seventh input variable was included as an un-correlated 

variable. In this case, the reliability of the new approaches in these types of circumstances was 

accordingly taken into consideration, which is very common in engineering applications.  A total 

of 300 datasets were used to build the desired database, and then these datasets were divided 

into 157, 72, and 71 sub-datasets, respectively, for training, testing, and validation. For the 

Query method application, 229 datasets were used to develop the application and 71 datasets 

were used to validate the method. 

4.2 Database 2 

In order to determine the speed limit on highways, various speed studies have been done, 

which have determined that sensible and cautious drivers will most likely drive at the speed 

dictated by roadway and traffic conditions rather than relying on the posted speed limits. 

Actual field studies were carried out to determine the 85th percentile speed at which the drivers 

felt comfortable to drive at. However, carrying out such field studies for all highway sections is 

a costly and time-consuming process. For this reason, the database which includes real field 

measurements was used to develop database 2, which is provided by a government agency. 

Database 2 has been built by considering six inputs and one output, which respectively are: 

Inputs: 

 1-   Percent Pass (%) 

 2-   Annual average daily traffic (AADT) 

 3-   Present serviceability Index   (PSI) 

 4-   Surface Width 

5-   Shoulder Type A   

 6-   Shoulder Type B 
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 7-   Shoulder Width 

Output:  

 1- 85th Percentile Speed (mph)  

 

For database 2, a total of 100 datasets were divided into sub-databases, respectively, 55 for 

training, 23 for testing, and 22 for validation. Seventy eight datasets were used to develop the 

Query Method application and 22 datasets were utilized to validate the application. Further 

information about speed studies can be found in the literature (i.e., Najjar et al., 2000) 

4.3 Database 3 

Database 3 was collected from the literature and utilized to be used in model development. The 

influence of cement type, curing condition, and testing age on the chloride permeability of 

concrete mixes was evaluated by conducting Rapid Chloride Permeability test on 126 samples 

as was reported in the literature (Guneyisi et al., 2009). In this database, five different cement 

types and two water-cement ratios were deployed. After casting concrete samples, they were 

subjected to three different curing conditions and tested at the age of 28, 90, and 180 days to 

determine the chloride permeability of concrete samples through the rapid chloride 

permeability test. Database 3 has been built by considering 12 inputs and 1 output, which 

respectively are: 

Inputs: 

1. (CT1) Cement Type (CEM I=1, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and CEM 

III/A=0) 

2. (CT2) Cement Type (CEM I=0, CEM II/A-M=1, CEM II/B-M =0, CEM V/A=0, and CEM 

III/A=0) 

3. (CT3) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =1, CEM V/A=0, and CEM 

III/A=0) 

4. (CT4) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=1, and CEM 

III/A=0) 
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5. (CT5) Cement Type (CEM I=0, CEM II/A-M=0, CEM II/B-M =0, CEM V/A=0, and CEM 

III/A=1) 

6. (W/C) Water-cement Ratio 

7. (Ag/C) Aggregate-cement Ratio 

8. (SP/C) Superplasticizer-cement Ratio 

9. (CC1) Curing Condition (UC=1, CC=0, and WC=0)   

10. (CC2) Curing Condition (UC=0, CC=1, and WC=0)   

11. (CC3) Curing Condition (UC=0, CC=0, and WC=1)   

12. (A) Testing Age 

Output: 

1. (Q) Total charge passed through the concrete sample (coulombs) 

 

Instead of using six inputs, twelve inputs were used because the cement type was categorized 

in five groups and curing condition was categorized in three groups. As stated previously, the 

reason for the categorizations of cement type and curing condition is that there is no 

mathematical relation among the sub-categories that can be expressed numerically. Since only 

one of the sub-categories can be used at a time, categorical variables were used to model these 

inputs parameters to evaluate the correlation between cement type and the permeability 

response as well as curing condition and the permeability response. For this reason, five 

different cement types were considered as individual inputs which are, respectively, CEM I 

(CT1), CEM II/A-M (CT2), CEM II/B-M (CT3), CEM V/A (CT4) and CEM III/A (CT5) and curing 

condition as UC (CC1), CC(CC2) and WC (CC3).  For instance, if cement type and curing condition 

are specified ,respectively, CEM I and Uncontrolled curing, then CT1 is coded as “1”, all other 

cement types, CT2, CT3, CT4, and CT5, are coded as “0” and CC1 is coded as “1” while other 

curing conditions, CC2 and CC3, are coded as “0”. Further information can be found in Yasarer, 

2010. A total of 126 datasets were used to build the desired database; 63, 32 and 31 sub-

databases were used, respectively, for training, testing and validation purposes. Ninety five 
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datasets were used to develop the Query Method application and 31 datasets were utilized to 

validate the application. 

4.4 Database 4 

Database 4 is provided by Kansas Department of Transportation (KDOT) for the development of 

the Rapid Chloride permeability models. The samples included in the database are either 

prepared in the laboratory or collected in the field. Even though database 3 and database 4 

explores same test method, the input variables considered for modeling and the data sources 

are quite different. Further information about the test method can be found in Yasarer, 2010. 

Based on the knowledge gained from experimental data analysis, database 4 has been built by 

considering six inputs and one output, which respectively are: 

Inputs: 

 1-   (A) Surface dry weight (grams) 

 2-   (B) Saturated surface dry weight (grams) 

 3-   (C) Weight in water (grams) 

 4-   Curing time (days) 

 5-   (Gs) Specific gravity  

 6-   (W %) Percent of water absorbed  

Output: 

 1-   (Q) Total charge passed through the concrete sample (coulombs)  

 

Although the number of inputs is given as six, the number of inputs could have been used as 

four by removing dependent variables such as specific gravity and water absorbed. However, 

the additional inputs will most likely lead the network towards the best correlation between 

the inputs and the output. A total of 265 datasets were used to build the desired database; 133, 

66 and 66 sub-databases are used, respectively, for training, testing and validation purposes. In 
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order to develop the Query Method application for database 4, 199 datasets were utilized and 

then 66 datasets were used for validation.   

4.5 Database 5 

Database 5 is similarly provided by KDOT to develop models to predict percent of voids in 

concrete as part of a test method established in ASTM C 642-97 standard. Similarly the samples 

included in the database were either prepared in the laboratory or collected in the field. In 

order to properly characterize percent of voids, a total of 325 datasets were used to build the 

desired database; 163, 81 and 81 datasets are used, respectively, for training, testing and 

validation purposes. Database 5 has three inputs and two outputs. For this reason, model 

development for database 5 was completed twice for each output by using the same three 

input variables. In this case, the models were optimized for one output at a time. The models 

developed for each output were referenced to according to their corresponding output number 

(i.e., Model 1 for output 1).  

Based on the knowledge gained from experimental data analysis, Model 1 for database 5 has 

been built by considering three inputs and one output, which respectively are: 

Inputs: 

 1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 

 3-   (CT) Curing Time (days) 

Output: 

 1-   (C) Mass of surface-dry sample in air after immersion and boiling (grams) 
 
 
 

Model 2 for database 5 has been built by using the same three input parameters and one 

output, which respectively are: 

 
Inputs: 
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 1-   (A) Mass of oven-dried sample in air (grams) 

 2-   (B) Mass of surface-dry sample in air after immersion (grams) 

 3-   (CT) Curing Time (days) 

Output 

 1-   (D) Apparent mass of sample in water after immersion and boiling (grams) 

 

These two models were combined to calculate the void percent, which is a function of the two 

parameters predicted by model 1 and model 2. In order to develop the Query Method 

application for database 5, 244 datasets were utilized and then 81 datasets were tested for 

validation. 

4.6 Database 6 

The magnitude and timing of the temperature rise are very important factors on the hydration 

of cementitious systems, which should be controlled in order to prevent thermal cracking. 

Admixtures may play a significant role in the rate of temperature rise of a particular mixture. 

Accurate modeling of the progress of hydration requires an estimate of the effects of these 

chemical admixtures on the hydration of cementitious systems. Detailed information about this 

phenomenon can be found in the literature (i.e. Riding et al., 2012). Database 6 has been built 

by using the parameters considered in the experimental study, which are respectively: 

Inputs: 

1- Water/Cement ratio (w/c) 

2- Low-range water reducing admixtures, Type A (LRWR) 

3- Water-reducing and retarding admixtures (WRRET) 

4- Mid-range water  reducing admixture (MRWR) 

5- Naphthalene-sulfonate-based high-range water-reducing admixture (NHRWR) 

6- Polycarboxylate-based high-range water reducing admixture (PCHRWR) 

7- Calcium-nitrate-based non-chloride accelerating admixture (ACCL) 

8- Percent cement 
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9- Percent C4AF  

10- Percent C3S 

11- Percent C3A 

12- Percent Na2O 

13- Percent Na2O Equivalent 

14- Fly ash mass to total cementitious content ratio (FA) 

15- Fly ash CaO mass to total fly ash content ratio (FA-Cao) 

16- Percent Slag 

Output 1:  

1- Ultimate degree of hydration (αu) 

Output 2: 

2- Hydration time parameter (hours), (τ) 

Output 3: 

3- Hydration shape parameter (β) 

 

As listed above, Database 6 has 16 inputs and three outputs. Three models for each output 

were developed as similarly done for database 5. In this case, the same 16 input parameters 

were used each time to predict a different output. For example, 16 inputs and output 1 were 

used to develop one model, which is called Model 1 and similarly 16 inputs and output 2 to 

develop another model, which is called Model 2 as they were related to their corresponding 

output number. Therefore, three individual models to characterize the behavior were 

developed and used separately to be considered in the proposed model development 

processes. A total of 210 datasets were used to build the desired database; 105, 53 and 52 sub-

databases are used, respectively, for training, testing and validation purposes. In order to 

develop the Query Method application for database 6, 158 datasets were utilized and then 52 

datasets were considered for validation.       
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4.7 Database 7   

Poor subgrade soil conditions can result in inadequate pavement support and reduce pavement 

life. Soils may be improved through the addition of chemical or cementitious additives.  These 

chemical additives range from waste products to manufactured materials and include lime, 

Class C fly ash, Portland cement and proprietary chemical stabilizers (Najjar et al, 2009). 

Database 7 was built to predict the unconfined compression strength (UCS) of the stabilized 

soils. Database 7 has been built by considering 14 inputs and one output, which respectively 

are: 

Inputs: 

1- Passing No.200 sieve (%) 

2- Plastic Limit 

3- Plasticity Index  

4- Maximum dry density (kg/m3) 

5- Optimum Moisture Content 

6- Cement content (by weight) (%) 

7- Lime Content (by weight) (%) 

8- Fly ash content (by weight) (%) 

9- Cement kiln dust content (by weight) (%) 

10- Stabilizer (EMC) (%) 

11- Dry density (kg/m3) 

12- Moisture content (%) 

13- Dry period (day) 

14- Moisture Curing period (day) 

Output: 

1- Unconfined Compression Strength (psi) 

A total of 792 datasets were used to build the desired database; 396, 198 and 198 sub-

databases are used, respectively, for training, testing and validation purposes. In order to 
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develop the Query Method application for database 7, 594 datasets were utilized and then 198 

datasets were kept aside for validation.  
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CHAPTER 5  

5- STATIC ANN NETWORK 

In this chapter, Artificial Neural Network (ANN) approach explained in Chapter 3 was used to 

develop Static ANN models by using the databases described in Chapter 4. Model development 

procedure outlined in Chapter 3 was followed to model all seven databases. The static ANN 

method has been used by many researchers to characterize phenomena and considered to be 

the best approach to modeling in literature. For this reason, the output generated by the static 

ANN model was utilized by the new approaches to improve and/or optimize the models in this 

study.  

The static ANN model was developed in four sequential stages. In the first stage, the ANN 

architecture was determined based on problem characteristics and ANN knowledge, and input 

and output categories were chosen accordingly. This step also includes classifying the datasets 

as training, testing or validation sets. In the second stage, the network was trained and tested 

on the experimental data to obtain the optimum number of hidden nodes and iterations for the 

ANN architecture determined in stage one. In the third stage, the best performing network 

obtained from the second stage was validated on the validation database. If accuracy measures 

from training, testing and validation database are highly comparable, then the model may not 

be trained on all data.  In the fourth stage, the best performing network obtained in the second 

stage was retrained on all experimental data to increase the prediction accuracy and evaluate 

how well the ANN model characterized the desired behavior. Normally, retraining the network 

with all experimental data is expected to provide reliable predictions and better accuracy 

measures. However, it has been shown through several research studies by Najjar and 

Coworkers [Yasarer & Najjar (2010), Najjar & Mryyan (2009), and Najjar & McReynold (2003)] 

that stage four is recommended to arrive at a better performing network model. Architecture 

of a typical static ANN network is depicted in Figure 5-1. The optimal network structures for the 

static ANN models were selected based on statistical measures such as MRSE, MARE, and R2, 

which are described in details in Chapter 3. The statistical accuracy measures of the static ANN 
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models developed for databases 1 to 5 are shown together in Table 5-1, and the measures for 

databases 6 and 7 are shown together in Table 5-2. Information on the use of the four 

sequential stages on the seven databases and the criteria used to choose the optimal network 

structures is given in the following sections.  

5.1 Static ANN Network Development of Database 1   

Based on the knowledge gained from experimental data analysis, static ANN model architecture 

has been built by considering 7 inputs and 1 output. A total of 300 datasets are used to build 

the desired database; 157, 72 and 71 datasets are used, respectively, for training, testing and 

validation purposes. Based on statistical measures such as MRSE, MARE, and R2, the optimal 

network structure of the static ANN model for Database 1 was found at 19 hidden nodes and 

19,500 iterations. The corresponding accuracy measures for this network are MRSEtr= 1.6151, 

MAREtr= 2.0280%, R2
tr= 0.9996 (for training database) and MRSEts=5.7671, MAREts= 2.7410%, 

R2
ts=0.9978 (for testing database). The training and testing graphical comparison plots between 

predicted and actual values for the static ANN model developed for Database 1 are, 

respectively, shown in Figure 5-2 and Figure 5-3. Also, all the statistical accuracy measures for 

the training and testing are shown in Table 5-1. After the training and testing procedures using, 

respectively, 157 and 72 datasets, validation was conducted on the remaining 71 datasets. The 

graphical comparison plot, for the validation stage, between prediction and actual response is 

shown in Figure 5-4. Once the validation stage is completed, all of the 300 datasets were used 

to retrain the network at the previously determined optimal structure to obtain the generalized 

response throughout the 300 datasets. The graphical comparison plot for the 300 datasets is 

shown in Figure 5-5. Statistical accuracy measures for validation and all data cases are also 

shown in Table 5-1. As can be seen from the table, static ANN network developed for database 

1 has lower validation MRSE value than testing MRSE value. Typically statistical accuracy 

measures for validation datasets are not expected to be better than testing datasets. This 

indicates that the network performed well and generalized the phenomena. All data MRSE 

value is lower than testing and validation measures even though the value of MARE did not 

improve. R2 values did not change significantly for testing, validation, or all data cases. 
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However, MRSE is considered as the main criterion to evaluate the performances of the 

networks. In Table 5-1, the 7-(8-19)-19500-1 notation denotes the determined architecture of 

the optimum network of Database 1 where each number, respectively, represents: number of 

inputs (7), initial number of hidden nodes (8), final number of hidden nodes (19), number of 

iterations (19500), and number of outputs (1).  Final structure of the optimum network is 

depicted as 7-19-1, which are, respectively: number of inputs, number of hidden nodes, and 

number of outputs.  

5.2 Static ANN Network Development of Database 2   

A database consisting of 100 datasets was used to develop a desired static ANN network for 

Database 2. As noted previously, the databases to be used for modeling are divided into three 

sub-categories such as training, testing, and validation. For database 2, during the first stage of 

modeling, 55 datasets are used for training, 23 for testing, and 22 for validation. The boundary 

of the training datasets is typically determined by the minimum and maximum of the input and 

output variables. Therefore, in order to obtain an optimum network with a wider input and 

output range, minimum and maximum of each input and output variable was considered in 

training stage. In this case, any input value within the minimum and maximum ranges of the 

database is applicable to the network.  The input vector consisted of 7 parameters and the 

output vector consisted of 1 parameter were considered to be used in model development of 

database 2.  

After examining the performance of several networks with different architectures, the best 

performing network was chosen based on the best statistical accuracy measures. Another 

criterion utilized to select the best performing network is the ideal network architecture. In 

other words, it is preferred to have less hidden nodes because a more complicated network 

structure with more hidden nodes can lead to memorization of the data. In this case, the 

network may generate unreliable predictions.  Considering that the number of datasets in 

database 2 is considerably few, and the accuracy of the models is not expected to be very good 

because of the involvement of human-factors, fewer hidden nodes were chosen, even though 

there were network architectures with more hidden nodes and better statistical accuracy 
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measures. The optimal structure for the static ANN network of Database 2 was chosen at 3 

hidden nodes and 3100 iterations. A graphical comparison of training stage between the 

predicted and the actual values is depicted in Figure 5-6. Static ANN network for training stage 

yielded a mean root square error, MRSEtr of 0.4046, mean absolute relative error, MAREtr of 

4.0297, and coefficient of determination, Rtr
2 of 0.6061.  Similarly, graphical comparison of 

testing stage is shown in Figure 5-7 and statistical accuracy measures for this network are 

MRSEts of 1.0121, MAREts of 5.9550%, and Rts
2 of 0.0020.  

To further evaluate the optimal network, 22 datasets are used to validate the network. Figure 

5-8 presents the graphical comparison of the predicted and the actual values. Corresponding 

statistical measures are given in Table 5-1.  It is clear from the results that validation MRSE is 

lower than the testing MRSE. Once the validation stage is completed, The combined 100 

datasets were used to retrain the network at the optimal structure. It can be inferred from the 

graphical plot in Figure 5-9 and the statistical accuracy measures in Table 5-1 that using the 

entire database to retrain the network has improved notably the statistical accuracymeasures.   

5.3 Static ANN Network Development of Database 3 

Another engineering phenomenon from an experimental study was considered to develop a 

static ANN network. As stated beforehand, this database is a combination of categorical and 

continuous variables; making this database a good candidate for non-linear modeling. To 

develop static ANN model for database 3, a total of 126 datasets were used. Sixty three and 32 

of total datasets were, respectively, considered as training and testing datasets. The remaining 

31 datasets were included in the validation stage after the optimal network was determined. 

An attempt to develop a static ANN network for database 3 was initiated with 12 inputs and 1 

output. The best performing network structure was discovered at 6 hidden nodes and 200 

iterations. The training and testing statistical measures for training and testing stages are 

shown in Table 5-1 and the graphical comparison plots are depicted in Figure 5-10 and Figure 

5-11. As can be perceived from the table and the graphical plots, the training and testing stage 

yielded good accuracy even though MRSE values seem to have greater values than the previous 

databases. This is because of the output range, which changes from 0 to 14785. The value of 
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the calculated errors such as MRSE and MARE cannot be used to interpret the accuracy of the 

models among the databases, but can be used within the different modeling stages of the same 

database (i.e., training, testing, validation, and all data cases).  For this reason, the values of 

MRSE and MARE are recommended to be evaluated for the same database (i.e., only database 

3). However, R2 value can be used the quality of prediction between different databases 

because of its universal value ranging between 0 and 1 where “1” being the best possible 

prediction scenario while “ 0” represents the worst prediction case.   

After the training and testing procedures, validation was conducted on 31 datasets. The 

graphical comparison plot, for the validation stage, between prediction and actual response is 

shown in Figure 5-12. The statistical accuracy measures for this network are MRSEval= 211.5120, 

MAREval= 15.439%, and R2
val= 0.7221. Once the validation stage is completed, all of the 126 

datasets were used to retrain the network at the optimal structure. The statistical accuracy 

measures for this network are MRSEall= 63.7835, MAREall= 12.719%, and R2
all= 0.9364. The 

graphical comparison plot for the 126 datasets is shown in Figure 5-13. The resulting statistical 

accuracy measures for all static ANN network modeling stages are given in Table 5-1. 

The statistical measures and the plots have indicated that the static ANN network for database 

3 has performed well during the training stage, but the testing stage produced higher MRSE 

value, as was expected. However, change in MRSE value is more than expected. Similarly, MRSE 

error for the validation datasets is also high, which is about 7.16 times higher than that of the 

training MRSE, while MARE error is about 2.4 times higher. When all data combined and the 

network was re-trained, the statistical accuracy measures improved markedly.  

This network yielded higher error values than database 1 an 2  networks because there were 

more connection weights that needed to be updated to reach the target output value, despite 

the fact that there were few datasets used to train the network.  Statistical accuracy measures 

of all data, in terms of error, are promising considering that valuable data has been excluded 

from the training stage for the purposes of testing and validation.  It is noteworthy to mention 

that the networks with more connections may need more datasets to extract more information 
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in the training stage. If more data is not available, then the fourth stage of ANN model 

development is highly recommended to be produce a well performing final network.     

5.4 Static ANN Network Development of Database 4 

In order to develop static ANN network for Database 4, a total of 265 datasets; 133, 66, and 66 

sub-datasets were, respectively, used for training, testing, and validation. The input vector 

consisted of 6 parameters and the output vector consisted of 1 parameter. The engineering 

phenomenon modeled in Section 5.3 for database 3 is the same as the phenomenon modeled 

in this section, but the parameters considered for input variables are different and obtained 

from a different source. The output variable has the same range as the output in Section 5.3. 

Accordingly, the MRSE error was expected to be similarly high because of the large range in 

output values.     

To properly characterize the phenomenon, static ANN network approach with four sequential 

modeling stages were followed for database 4. In order for static ANN network to reach a least-

error structure by training, the goal is to produce output values that are as close as possible to 

the actual values. The network structure is typically represented by the number of hidden 

nodes and the number of iterations to reach the optimized connection weights and threshold 

values for the network to generate outputs close to the actual values. For database 4, the 

optimal network structure for the static ANN model of database 4 was reached at 7 hidden 

nodes and 20000 iterations after the stage 2 was completed. Static ANN network for training 

stage yielded a mean root square error, MRSEtr of 68.4546, mean absolute relative error, 

MAREtr of 17.4401%, and coefficient of determination, Rtr
2 of 0.8554. Similarly, statistical 

accuracy measures for the testing stage are MRSEts of 107.1671, MAREts of 22.372%, and Rts
2 of 

0.8226. Graphical comparisons of testing and validation stages are, respectively, shown in 

Figure 5-14 and Figure 5-15. As can be seen from the graphical plots and the statistical accuracy 

measures depicted in Table 5-1, a good agreement between actual and predicted values is 

apparent.  Once stage 2 was accomplished and the optimal network architecture was 

determined, stage 3 and stage 4 were sequentially initiated by using validation datasets and all 

datasets. The predictions by validation datasets and all datasets case were plotted against their 



 

44 

 

corresponding actual values, respectively, in Figure 5-16 and Figure 5-17.  Good agreement 

between the predictions and the actual values can also be observed in Table 5-1 in terms of 

statistical accuracy measures. In this case, MRSE value  for validation datasets is the highest (as 

expected) while the all data MRSE value is the lowest. Also, all data case MARE value is higher 

than the training stage but is lower than the testing and validation stages. Accordingly, training 

on all data has produced a better performing network as was noted in the previous 4 cases.   

5.5 Static ANN Network Development of Database 5 

Database 5 has been built by considering 325 datasets; 163, 81, and 81 datasets that are for 

training, testing, and validation purposes. As previously mentioned in Chapter 4, database 5 has 

two outputs. For this reason, four sequential stages for static ANN model development process 

were conducted twice to arrive at two desired prediction models for two outputs. Only one 

output was considered at a time for optimized networks to be able to generate individual 

outputs. The reason for developing two individual models instead of one alone is that 

optimizing a network on two outputs that are not strongly and positively correlated causes a 

significant decrease in statistical accuracy measures (Yasarer, 2010). Model 1 and model 2 

represent the networks with, respectively, output 1 and output 2. The optimal network 

structure for the model 1 was finalized at 4 hidden nodes and 19800 iterations. The 

corresponding accuracy measures for model 1 are MRSEtr=0.1973, R2
tr=0.9965, MAREtr=0.178% 

(for training database) and MRSEts =0.4684, R2
ts=0.9846, MAREts= 0.227% (for testing database). 

The optimal network for Model 2 was reached at 4 hidden nodes and 19500 iterations. The 

corresponding accuracy measures of model 2 are MRSEtr =0.6420, R2
tr=0.9285, MAREtr=1.205% 

(for training database) and MRSEts =0.8316, R2
ts=0.9359, MAREts= 1.055% (for testing database). 

For the training and testing stages, model 2 has reduced the error more than model 1 even 

though values of the statistical measures for model 1 seem to be higher. In comparison with  

MRSE value from training stage, MRSE value for model 1 increased by about 137% in testing 

while  MRSE value for model 2 increased by about 30% in testing. R2 value for model 1 has 

decreased about 1.2% while R2 value for model 2 has increased about 0.8%. It can be inferred 

that coefficient of determination (R2) is not a good criterion for database 5 to evaluate the 
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performance of the models because its value changes slightly while the change in MRSE values  

is noticeable.  

The training and testing plots for model 1 are shown in Figure 5-18 and Figure 5-19. In the plots, 

the training and testing predictions are closely scattered around the 45 degree line, which 

means that predicted value is very close to actual value. Similarly the training and testing plots 

for model 2 are also given in Figure 5-20 and Figure 5-21. The corresponding statistical 

measures of model 1 and model 2 are presented in Table 5-1. 

After the optimal network was determined, the validation for model 1 and model 2 was 

conducted on 81 datasets. The validation plots for model 1 and model 2 are, respectively, given 

in Figure 5-22 and Figure 5-23. After the validation stage is concluded, all of the 325 datasets 

were used to re-train the network at the optimal structure. The comparison plots of model 1 

and model 2 for the 325 datasets are, respectively, shown in Figure 5-24 and Figure 5-25. The 

resulting statistical accuracy measures for the validation and the all data cases are depicted in 

Table 5-1. All data MRSE statistical measures for both model 1 and model 2 have the best 

results compared to their previous stages. Overall, model 1 has better statistical accuracy 

measures than model 2, even though model 2 has good accuracy measures.  

5.6 Static ANN Network Development of Database 6 

Another database with highly non-linear behavior and multiple outputs was used to develop 

static ANN network. 210 datasets were collected to build database 6 and divided into sub-

databases: 105, 53, and 52 to be used, respectively, for training, testing, and validation. As 

stated in Chapter 4, database 6 has three outputs for which static ANN model development 

process was conducted three times to arrive at three desired prediction models for three 

outputs individually. In other words, static ANN model development process was repeated for 

each output and each model developed was called with its corresponding output number (i.e. 

Model 1 for output1). The number of sub-databases was the same for the three models. 
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After evaluating the performance of different network architectures, Static ANN network for 

Model 1 was determined at 3 hidden nodes and 5000 iterations. The optimal network was 

chosen among many other networks based on the obtained statistical accuracy measures. This 

network structure provided the optimal connection weights for the desired predictions. The 

training and testing accuracy measures for model 1 are presented in Table 5-2 along with the 

corresponding plots shown in Figure 5-26 and Figure 5-27 . According to the statistical 

measures, the optimal network performed well in the training stage as well as in the testing 

stage. However, MRSE value of the training, 0.0053 deteriorated to 0.0102 for the testing stage, 

which corresponds to a 92% increase in error. For the validation stage, the statistical measures 

changed slightly; however, for the all data stage, MRSE improves to a value of 0.0038, which 

translates into about 40% reduction in error (compared to training), while MARE value 

increased slightly. Even though R2 value seems to decrease from 0.7130 for training stage to a 

value of 0.6612 for all data stage, the main criterion, which is MRSE, has a reasonable reduction 

in error. All the statistical measures for the validation and all data stages can be found in Table 

5-2 and their corresponding plots are, in the given order, represented in Figure 5-28 and Figure 

5-29.  

The same database used to develop static ANN network for model 1 was utilized for Model 2 by 

considering 16 inputs and 1 output. Similarly, the optimal network for model 2 was reached at 3 

hidden nodes and 13000 iterations. The accuracy of training and testing stages for the selected 

network architecture is given in Table 5-2 and the graphical evaluation plots are depicted in 

Figure 5-30 and Figure 5-31. Validation and all data stages were sequentially followed by the 

training and testing stages. Figure 5-32 and Figure 5-33, which are the plots for validation and 

all data predictions, indicate reasonably good correlation between the actual and predicted 

values. A good agreement between the actual and predicted values can easily be assessed from 

Table 5-2, even though the deviation of the error is very clear in the testing and validation 

stages. Nonetheless, the all data statistics represent the best accuracy measures in comparison 

with the accuracy measures of the testing and validation stages.  
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Model 3 to obtain a static ANN network was developed by considering the same input 

parameters, used for model 1 and model 2, and the output 3. Similarly, the model development 

process was sequentially followed in the order of training, testing, validation, and all data. The 

promising statistical measures were obtained with a structure of 4 hidden nodes and 7900 

iterations after conducting the training and testing procedures. Table 5-2 presents all the 

statistical measures for model 3. Also, corresponding graphical comparisons for all stages are 

represented in Figure 5-34, Figure 5-35, Figure 5-36, and Figure 5-37.  Even though some scatter 

is noted in these plots, most of the data is predicted reasonably well.  

As can be noted from the tables and all the graphical plots, models for database 6 were 

successfully developed with minimal error for the three outputs. Overall comparison of these 

three outputs has showed that the least MRSE and MARE values were obtained by model 1 

even though R2 value for model 1 was the worst among the three outputs. This is because the 

output range of model 1 is considerably small. The same case can be told for model 3, as it is 

clear from the small MRSE value. The range of model 1 and model 3 are between 0 and 1.9 

while model 2 has a range changing from 0 to 91. It is very clear from the differences in the 

ranges that the statistics of Model 2 can be considered as the best among the three models 

when considering the statistical accuracy measures and the applicable ranges.       

5.7 Static ANN Network Development of Database 7   

Last database was utilized to develop static ANN network is Database 7, which consists of 792 

datasets divided into 396, 198, and 198 datasets for training, testing, and validation. By 

considering 15 inputs and 1 output, desired models were initiated with the training and testing 

stage. Every hundred iterations, the trained network was validated with the testing datasets. 

Training phase started with 1 hidden node to a maximum number of the allowed hidden nodes 

that was determined based on the number of training and testing datasets and number of 

outputs. All the statistical measures from the training and testing stages were considered when 

selecting the optimal network structure, which was obtained at 7 hidden nodes and 7900 

iterations. The accuracy plots of the network with the optimal structure are illustrated in Figure 

5-38 and Figure 5-39. The plots show the good correlation between actual and predicted 
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results, even though there seem to be few outliers at the higher end even though there are not 

many data points available at that range.  As can be observed from Table 5-2, the developed 

static ANN network has reasonably good statistics such as MRSEtr= 1.2149, MAREtr= 12.56%, 

and R2
tr= 0.9834. Even though statistical accuracy measures for testing and validation stages 

deteriorated slightly, they are still considerably good. The accuracy of how well the validation 

datasets were predicted can be seen in Figure 5-40 and the corresponding statistics are shown 

in Table 5-2.  Combining all datasets and re-training the network improved the model statistics 

noticeably. In this case, MRSE value of 1.2149 for training was reduced to a value of 0.8466, 

which can be translated into a 30% reduction. All data MARE and R2 values changed slightly but 

the biggest improvement was obtained for the MRSE value.  All data predictions are graphically 

depicted in Figure 5-41 and the statistical accuracy values are given in Table 5-2.  As a result, 

static ANN network for database 7 was successfully developed and the statistical accuracy 

measures are reasonable. It is important to note again that the more datasets the database has, 

the better and more reliable the static ANN networks will be.         

5.8 Concluding Remarks 

In this chapter, a static artificial neural network with backpropagation learning algorithm was 

developed for seven databases. Effect of input parameters on the output(s) based on the 

performance evaluation criteria (statistical accuracy measures and graphical evaluation) was 

utilized to determine the optimal architecture of the neural network models.  As seen from the 

graphical results depicted in Figure 5-2 to Figure 5-41 and the accuracy measures of the 

developed ANN models for each database listed in Table 5-1 and Table 5-2, the static ANN 

models successfully characterized their relevant phenomena. All of the models developed in 

this chapter have promising results. Even though some of the databases were previously 

considered in an ANN modelling process, they were fully re-developed due to the fact that the 

effort to develop each model was intended to be the same or similar for consistency. 

As can be seen from Table 5-1 and Table 5-2, accuracy measures on training datasets are 

generally better than those attained on testing datasets. Similarly, accuracy measures on 

validation datasets are expected to be lower than those reported on training and testing 
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datasets. By training on all data (once the optimized structure is identified), the new accuracy 

measures are expected to improve to a level that can compete with those reported on training 

datasets. In most cases, the measures on the all data network are better than those attained on 

the training datasets. For this reason, stage four training is highly recommended to arrive at a 

reasonably performing network model that utilizes the best generalization capability and the 

least memorization ability. 

The results indicated that the methodology of using static artificial neural network with 

backpropagation learning algorithm is a useful, powerful tool not only for accurately predicting, 

but also to identifying correlations between output and inputs. However, it is necessary to 

mention that the accuracy of the neural network is highly dependent on the accuracy of the 

database. A significant amount of inaccurate data may lead to inappropriate and unreliable 

results. Note that, small databases may not be suitable to extract all important features from by 

the proposed network structure, which may generate inaccurate or unreliable predictions. This 

is the fact that this study proposes to investigate in order to arrive at optimized network 

architectures utilizing new modeling approaches. The role of static ANN model in hybrid 

decision making system is crucial since it is expected to provide the best initial estimate for 

most of the new modelling approaches that are explained in the following chapters.  
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5.9 Figures and Tables    

 

Figure 5-1 Architecture of a Static ANN Network 

 

Figure 5-2 Static ANN Training Accuracy of Database 1 
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Figure 5-3 Static ANN Testing Accuracy of Database 1 

 

Figure 5-4 Static ANN Validation Accuracy of Database 1 
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Figure 5-5 Static ANN All Data Accuracy of Database 1 

 

Figure 5-6 Static ANN Training Accuracy of Database 2 
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Figure 5-7 Static ANN Testing Accuracy of Database 2 

 

Figure 5-8 Static ANN Validation Accuracy of Database 2 
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Figure 5-9 Static ANN All Data Accuracy of Database 2 

 

Figure 5-10 Static ANN Training Accuracy of Database 3 
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Figure 5-11 Static ANN Testing Accuracy of Database 3 

 

Figure 5-12 Static ANN Validation Accuracy of Database 3  
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Figure 5-13 Static ANN All Data Accuracy of Database 3 

 

Figure 5-14 Static ANN Training Accuracy of Database 4  
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Figure 5-15 Static ANN Testing Accuracy of Database 4 

 

Figure 5-16 Static ANN Validation Accuracy of Database 4 
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Figure 5-17 Static ANN All Data Accuracy of Database 4  

 

Figure 5-18 Static ANN Training Accuracy of Database 5, Output 1 
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Figure 5-19 Static ANN Testing Accuracy of Database 5, Output 1 

 

Figure 5-20 Static ANN Training Accuracy of Database 5, Output 2 
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Figure 5-21 Static ANN Testing Accuracy of Database 5, Output 2  

 

Figure 5-22 Static ANN Validation Accuracy of Database 5, Output 1 
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Figure 5-23 Static ANN Validation Accuracy of Database 5, Output 2 

 

Figure 5-24 Static ANN All Data Accuracy of Database 5, Output 1 
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Figure 5-25 Static ANN All Data Accuracy of Database 5, Output 2  

 

Figure 5-26 Static ANN Training Accuracy of Database 6, Output 1  
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Figure 5-27 Static ANN Testing Accuracy of Database 6, Output 1  

 

Figure 5-28 Static ANN Validation Accuracy of Database 6, Output 1  
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Figure 5-29 Static ANN All Data Accuracy of Database 6, Output 1  

 

Figure 5-30 Static ANN Training Accuracy of Database 6, Output 2  
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Figure 5-31 Static ANN Testing Accuracy of Database 6, Output 2 

 

Figure 5-32 Static ANN Validation Accuracy of Database 6, Output 2  
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Figure 5-33 Static ANN All Data Accuracy of Database 6, Output 2 

 

Figure 5-34 Static ANN Training Accuracy of Database 6, Output 3  
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Figure 5-35 Static ANN Testing Accuracy of Database 6, Output 3  

 

Figure 5-36 Static ANN Validation Accuracy of Database 6, Output 3 
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Figure 5-37 Static ANN All Data Accuracy of Database 6, Output 3  

 

Figure 5-38 Static ANN Training Accuracy of Database 7  
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Figure 5-39 Static ANN Testing Accuracy of Database 7  

 

Figure 5-40 Static ANN Validation Accuracy of Database 7 
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Figure 5-41 Static ANN All Data Accuracy of Database 7  
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Table 5-1 Statistical Accuracy Measures of Static ANN Models for Database 1 to Database 5 

  

STATIC ANN MODELS 

Accuracy 
Measures 

Database 1 Database 2 Database 3 Database 4 Database 5 

Output 1 Output 1 Output 1 Output 1 Output 1 Output 2 

7-(8-19)-19500-1 7-(2-3)-3100-1 12-(2-6)-200-1 6-(2-7)-20000-1 3-(2-4)-19800-1 3-(3-4)-19500-1 

TR 

MARE 2.028 4.0297 6.432 17.440 0.178 1.205 

R2 0.9996 0.6061 0.9916 0.8554 0.9965 0.9285 

MRSE 1.6151 0.4046 29.5265 68.4546 0.1973 0.6420 

TS 

MARE 2.741 5.9550 16.854 22.372 0.227 1.055 

R2 0.9978 0.0020 0.9406 0.8226 0.9846 0.9359 

MRSE 5.7671 1.0121 113.2199 107.1671 0.4684 0.8316 

VAL 

MARE 3.014 6.0170 15.439 21.604 0.207 1.180 

R2 0.9984 0.0078 0.7221 0.7862 0.9949 0.9379 

MRSE 4.5703 0.9647 211.5120 118.7498 0.3321 0.8464 

ALL 
DATA   

MARE 4.069 3.9681 12.719 20.359 0.186 1.125 

R2 0.9984 0.4554 0.9364 0.8549 0.9944 0.9333 

MRSE 2.3740 0.3203 63.7835 47.9782 0.1676 0.4255 

FINAL 
STRUCTURE 

7 - 19 - 1 7 - 3 - 1 12 - 6 - 1 6 - 7 - 1 3 - 4 - 1 3 - 4 - 1 
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Table 5-2 Statistical Accuracy Measures of Static ANN Models for Database 6 and Database 7 

  

  

STATIC ANN MODELS 

Accuracy 
Measures 

Database 6 Database 7 

Output 1 Output 2 Output 3 Output 1 

16-(3-3)-5000-1 16-(1-3)-13000-1 16-(1-3)-19400-1 15-(4-7)-7900-1 

TR 

MARE 5.259 11.038 6.511 12.560 

R2 0.7130 0.9202 0.9066 0.9834 

MRSE 0.0053 0.2761 0.0065 1.2149 

TS 

MARE 7.372 13.942 10.663 14.876 

R2 0.4081 0.7554 0.7678 0.9735 

MRSE 0.0102 0.6057 0.0151 2.1657 

VAL 

MARE 7.337 19.056 13.515 15.064 

R2 0.3851 0.4636 0.5444 0.9750 

MRSE 0.0105 0.8268 0.0201 2.0286 

ALL 
DATA   

MARE 5.416 11.529 8.009 12.380 

R2 0.6612 0.8721 0.8377 0.9831 

MRSE 0.0038 0.2276 0.0059 0.8466 

FINAL STRUCTURE 16 - 3 - 1 16 - 3 - 1 16 - 3 - 1 15 -7 - 1 
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CHAPTER 6  

6- FEEDBACK ANN NETWORK 

The human nervous system has more complicated networks than what can artificially be 

implemented. Artificial neural networks are an over-simplification of the human nervous 

system. The main distinction between these two systems is the complexity of the human 

nervous system. One of the reasons for this complexity is that networks in human nervous 

system may have one or more impulse coming from another network. Basically, knowledge 

learned through some other network can be fed into other networks.  

For instance, babies first learn to roll around, next to sit, and then to stand, and to cruise and 

then to walk. They start walking slowly first, then once they have confidence about their 

balance, they walk with confidence. Later on, they even start running. A child learning to walk is 

a prominent example of the human learning process. Without learning how to sit up, they 

cannot stand or without learning how to walk, they cannot run. Now, to use this example in the 

context of artificial neutral networks and to explain it simply; one network trained for walking is 

an input for another network which may be for running and/or riding a bike. Using this 

ideology, a new ANN approach is proposed in this study. By training a network and then using 

the output from this network to feed into another network as an initial estimate is the main 

methodology of this approach. It is hypothesized that any leading information towards the 

output will improve the network’s generalization capability. In other words, this new method is 

to improve the accuracy measures of the static ANN models developed in Chapter 5 by 

including the initial estimates from the static ANN model as another input. In this case, the 

number of input variables increased by one via including the initial estimate from the model 

developed in the previous chapter. By feeding the network with an initial estimate, the network 

may be able to understand the phenomena better. Moreover, generated output can be fed into 

the network and be iterated until the outcome gets stabilized. Architecture of proposed 

Feedback ANN network is depicted in Figure 6-1.  

To develop Feedback ANN models for the seven databases described in Chapter 4, the same 

methodology used for static ANN model development was also followed for this new method. 
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As stated before, the number of datasets used for training, testing, and validation purposes 

were similar to those used to develop the Static ANN models. However, the Feedback ANN 

model development process has been completely re-done according to the four training stages 

described in Chapter 5. The initial estimates used to develop Feedback ANN network models 

were taken from the trained all networks. In other words, the best performing networks for 

static ANN models were chosen and the networks were retrained with all experimental data 

because it is expected to improve the statistical accuracy measures, and their generalization 

capability according to the results shown in Chapter 5. Hence, all data predictions from static 

ANN model development stage were included as an input in the model development of 

Feedback ANN Network models. Accordingly, the number of the inputs for all seven databases 

was increased by one. Similarly as stated in Chapter 5, the optimal network structures for the 

Feedback ANN models were selected based on statistical measures: MRSE, MARE, and R2. The 

statistical accuracy measures of the static ANN models developed for databases 1 to 5 are 

shown together in Table 6-1, and the measures for databases 6 and 7 are shown together in 

Table 6-2. 

Details of the use of the four sequential training stages on all seven databases and the desired 

criteria used to choose the optimal network structures for of Feedback ANN network models 

are presented  in the following sections. 

6.1 Feedback ANN Model Development of Database 1   

Feedback ANN model architecture has been designed by considering 8 inputs and 1 output. 

One of the counted inputs is the initial estimate from the developed static ANN network 

described in the previous chapter. A total of 300 datasets are used to build the desired 

database; 157, 72 and 71 datasets are used, respectively, for training, testing and validation 

purposes. Based on statistical measures such as MRSE, MARE, and R2, the optimal network 

structure of the Feedback ANN model for Database 1 was found at 19 hidden nodes and 19,500 

iterations. The corresponding accuracy measures for this network are MRSEtr= 3.1927, MAREtr= 

3.409%, R2
tr= 0.9985 (for training database) and MRSEts=4.7437, MAREts= 3.991%, R2

ts=0.9986 

(for testing database). The training and testing graphical comparison plots between predicted 
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and actual values for the Feedback ANN model developed for Database 1 are, respectively, 

shown in Figure 6-2 and Figure 6-3. Also, all the statistical accuracy measures for the training 

and testing are shown in Table 6-1. After the training and testing procedures using, 

respectively, 157 and 72 datasets, validation was conducted on the remaining 71 datasets. The 

graphical comparison plot, for the validation stage, between prediction and actual response is 

shown in Figure 6-4. Once the validation stage is completed, all of the 300 datasets were used 

to retrain the network at the previously determined optimal structure to obtain the generalized 

response throughout the 300 datasets. The graphical comparison plot for the 300 datasets is 

shown in Figure 6-5. Statistical accuracy measures for validation and all data cases are also 

shown in Table 6-1. As can be seen from the table, Feedback ANN network developed for 

database 1 has higher validation MRSE value than testing MRSE value as expected. All data 

MRSE value is lower than testing and validation measures while the value of MARE improved 

slightly. R2 values did not change significantly for testing, validation, or all data case. However, 

MRSE is considered as the main criterion to evaluate the performances of the networks. MRSE 

value for all data was decreased to a value of 2.1754 while the ones for testing and validation 

were increased to values of 4.7437 and 5.3192. It can be concluded that the datasets included 

in validation and testing stages carry important knowledge pertaining to the phenomenon and 

improved the statistical accuracy measures once included in the all data case. In Table 6-1, as 

indicated in Chapter 5, the 8-(2-4)-3200-1 notation specifies the determined architecture of the 

optimum network of Database 1 where each number ,respectively, represents: number of 

inputs (8), initial number of hidden nodes (2), final number of hidden nodes (4), number of 

iterations (3200), and number of outputs (1).  Final structure of the optimum network is 

depicted as 8-4-1, which are, respectively: number of inputs, number of hidden nodes, and 

number of outputs. 

6.2 Feedback ANN Model Development of Database 2 

A database consisting of 100 datasets was used to develop the desired Feedback ANN network 

for Database 2. As noted previously, the databases to be used for modeling are divided into 

three sub-categories such as training, testing, and validation. For database 2, during the first 
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stage of modeling, 55 datasets are used for training, 23 for testing, and 22 for validation. The 

boundary of the training datasets was determined by the minimum and maximum of the input 

and output variables. Therefore, in order to obtain an optimum network with a wider input and 

output range, minimum and maximum of each input and output variable was considered in 

training stage. In this case, any input value within the minimum and maximum ranges of the 

database is applicable to the network.  The input vector consisted of 8 parameters and the 

output vector consisted of 1 parameter were considered to be used in model development of 

database 2.  

Similar network development procedure, to the one used in Chapter 5 for this database,  was 

also followed here.  Accordingly, the optimal structure for the Feedback ANN network of 

Database 2 was chosen at 4 hidden nodes and 1100 iterations. A graphical comparison of 

training stage between the predicted and the actual values is depicted in Figure 6-6. Feedback 

ANN network for training stage yielded a mean root square error, MRSEtr of 0.4059, mean 

absolute relative error, MAREtr of 4.0208%, and coefficient of determination, R2
tr of 0.6596.  

Similarly, graphical comparison of testing stage is shown in Figure 6-7 and statistical accuracy 

measures for this network are MRSEts of 0.9944, MAREts of 5.368%, and Rts
2 of 0.2694.  

To further evaluate the optimal network, 22 datasets are used to validate the network. Figure 

6-8 presents the graphical comparison of the predicted and the actual values. Corresponding 

statistical measures are given in Table 6-1.  It can be seen that the validation MRSE is higher 

than the testing MRSE as oppose to those noted for the static ANN network. Once the 

validation stage is completed, all 100 datasets were used to retrain the network at the optimal 

structure. It can be concluded from the graphical plot in Figure 6-9 and the statistical accuracy 

measures in Table 6-1 that using entire database to retrain the network significantly improved 

the statistical accuracy measures. Overall, performance of the Feedback ANN network is better 

than that noted for the static ANN network.  
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6.3 Feedback ANN Model Development of Database 3 

To develop Feedback ANN model for database 3, a total of 126 datasets were used. Sixty three 

and 32 of total datasets were, respectively, considered as training and testing datasets. The 

remaining 31 datasets were included in the validation stage after the optimal network was 

determined. An effort to develop a Feedback ANN network for database 3 was initiated with 13 

inputs and 1 output. The best performing network structure was obtained at 5 hidden nodes 

and 100 iterations. The training and testing statistical measures for training and testing stages 

are shown in Table 6-1 and the graphical comparison plots are depicted in Figure 6-10 and 

Figure 6-11. As can be observed from the table and the graphical plots, the training and testing 

stage produced good accuracy. Validation was conducted on 31 datasets, after the training and 

testing stages. The graphical comparison plot, for the validation stage, between prediction and 

actual response is shown in Figure 6-12. The statistical accuracy measures for this network are 

MRSEval= 188.8319, MAREval= 12.942%, and R2
val= 0.7766. Once the validation stage is finalized, 

all of the 126 datasets were used to retrain the network at the optimal structure. The statistical 

accuracy measures for this network are MRSEall= 52.9530, MAREall= 9.985%, and R2
all= 0.9466. 

The graphical comparison plot for the 126 datasets is shown in Figure 6-13. The resulting 

statistical accuracy measures for all Feedback ANN network modeling stages are given in Table 

6-1. 

The statistical measures and the plots indicate that the Feedback ANN network for database 3 

has performed well during the training stage, but the testing stage produced higher MRSE 

value, as was expected. Similarly, MRSE value is even higher for the validation case,  which is 

about 4.7 times higher than the training MRSE. Additionally, MARE error is about 1.45 times 

higher than the training MARE. When all data combined and the network was retrained, the 

statistical accuracy measures noticeably improved. It should be noted that the error increase 

from training MRSE to validation MRSE by Feedback ANN network is less than that noted for 

static ANN (i.e. 4.7 versus 7.16 times). Similarly, the error increase for MARE by Feedback ANN 

is less than the one noted for static ANN (i.e. 1.45 versus 2.4 times).  
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6.4 Feedback ANN Model Development of Database 4 

To develop Feedback ANN network for Database 4, a total of 265 datasets; 133, 66, and 66 sub-

datasets were, respectively, used for training, testing, and validation. The input vector 

consisted of 7 parameters, including the one from static ANN network. To properly characterize 

the phenomenon, the Feedback ANN network approach with four sequential modeling stages 

were followed for database 4. In this case, the optimal network structure was reached at 3 

hidden nodes and 19900 iterations where the network performed is best. Feedback ANN 

network for training stage yielded a mean root square error, MRSEtr of 70.0604, mean absolute 

relative error, MAREtr of 20.825%, and coefficient of determination, Rtr
2 of 0.8485. Similarly, 

statistical accuracy measures for the testing stage are MRSEts of 102.3868, MAREts of 22.496%, 

and R2
ts of 0.8369. Graphical comparisons of testing and validation stages are, respectively, 

shown in Figure 6-14 and Figure 6-15. As can be seen from the graphical plots and the statistical 

accuracy measures depicted in Table 6-1, a good agreement between actual and predicted 

values is apparent. The predictions for validation datasets and all datasets case were plotted 

against their corresponding actual values, respectively, in Figure 6-16 and Figure 6-17.  Good 

agreement between the predictions and the actual values can also be evaluated numerically in 

Table 6-1 in terms of statistical accuracy measures. Even though error by validation datasets are 

typically expected to be higher than those by testing, for database 4 statistical accuracy 

measures are improved in validation stage. MARE values by validation datasets are even lower 

than that of by all data case. However, all data MRSE value is the lowest compared to the 

previous stages (i.e. training, testing, and validation). 

6.5 Feedback ANN Model Development of Database 5 

Database 5 has been built by considering 325 datasets; 163, 81, and 81 datasets that are for 

training, testing, and validation purposes. As previously mentioned in Chapter 4, database 5 has 

two outputs. For this reason, four sequential stages for static ANN model development process 

were conducted twice to arrive at two desired prediction models for two outputs. Only one 

output was considered at a time for optimized networks to be able to generate individual 

outputs. The optimal network structure for the model 1 was finalized at 4 hidden nodes and 
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19300 iterations. The corresponding accuracy measures of model 1 are MRSEtr=0.2014, 

R2
tr=0.9963, MAREtr=0.183% (for training database) and MRSEts =0.4768, R2

ts=0.9841, MAREts= 

0.226% (for testing database). The optimal network for Model 2 was reached at 3 hidden nodes 

and 14100 iterations. The corresponding accuracy measures of model 2  are MRSEtr =0.6391, 

R2
tr=0.9293, MAREtr=1.201% (for training database) and MRSEts =0.8311, R2

ts=0.9345, MAREts= 

1.036% (for testing database). Training MRSE value for model 1 increased about 137% in testing 

while training MRSE value for model 2 increased about 30% in testing. R2 value for model 1 has 

decreased about 1.2% while R2 value for model 2 has increased about 0.6%. These numbers are 

very similar to those noted for the associated static networks presented in chapter 5.   

The training and testing plots for model 1 are shown in Figure 6-18 and Figure 6-19. In the plots, 

the training and testing predictions are very close to the 45 degree line, which means that 

predicted values are very close to actual values. Similarly the training and testing plots for 

model 2 are also given in Figure 6-20 and Figure 6-21. The corresponding statistical measures of 

model 1 and model 2 are presented in Table 6-1. 

After the optimal network was determined, the validation for model 1 and model 2 was 

conducted on 81 datasets. The validation plots for model 1 and model 2 are, respectively, given 

in Figure 6-22 and Figure 6-23. After the validation stage is concluded, all of the 325 datasets 

were used to re-train the network at the optimal structure. The comparison plots of model 1 

and model 2 for the 325 datasets are, respectively, shown in Figure 6-24 and Figure 6-25. The 

resulting statistical accuracy measures for the validation and the all data cases are depicted in 

Table 6-1. All data MRSE statistical measures for both model 1 and model 2 have the best 

results compared to their previous stages. Similar to the case noted for static ANN, overall, 

model 1 has better statistical accuracy measures than model 2, even though model 2 has 

reasonably good accuracy measures. 

6.6 Feedback ANN Model Development of Database 6 

In this database, 210 datasets were divided into sub-databases: 105, 53, and 52 to be used, 

respectively, for training, testing, and validation purposes Similar to the case in Chapter 5, 
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Feedback ANN model development process was repeated for each output and each model 

developed was associated with its corresponding output number (i.e. Model 1 for output1). The 

number of sub-databases was kept the same for the three models. 

In this case, Feedback ANN network for Model 1 was determined at 2 hidden nodes and 10100 

iterations. The optimal network was chosen among many other networks based on the noted 

statistical accuracy measures. This network structure provided the optimal connection weights 

for the anticipated predictions. The training and testing accuracy measures for model 1 are 

presented in Table 6-2 along with the corresponding plots shown in Figure 6-26 and Figure 

6-27. According to the statistical measures, the optimal network performed well in the training 

stage as well as in the testing stage. However, MRSE value of the training, 0.0029 deteriorated 

to 0.0062 for the testing stage, which corresponds to a 113.8% increase in error. For the 

validation stage, the statistical measures changed slightly; however, for the all data stage, MRSE 

improves to a value of 0.0025, which translates into about 13.8% reduction in error, while 

MARE value increased about 15.8%. Even though R2 value seems to decrease from 0.9050 for 

training stage to a value of 0.8561 for all data stage, the main criterion, which is MRSE, has a 

reasonable reduction in error. All the statistical measures for the validation and all data stages 

can be found in Table 6-2 and their associated plots are, in the given order, presented in Figure 

6-28 and Figure 6-29.  

The same database used to develop Feedback ANN network for model 1 was utilized for Model 

2 by considering 17 inputs, including the one from static ANN network, and 1 output. The 

optimal network for model 2 was reached at 3 hidden nodes 15300 iterations. The accuracy of 

training and testing stages for the selected network architecture is given in Table 6-2 and the 

graphical evaluation plots are depicted in Figure 6-30 and Figure 6-31. Validation and all data 

stages were sequentially followed by the training and testing stages. Figure 6-32 and Figure 

6-33, which are the plots for validation and all data predictions, indicate reasonably good 

correlation between the actual and predicted values. A good agreement between the actual 

and predicted values can easily be evaluated from Table 6-2. Again, the all data stage attains  

the best accuracy measures compared to testing and validation stages.  
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Similar procedure was followed to develop Feedback ANN network for model 3. The 

corresponding statistical accuracy measures were obtained with a structure of 3 hidden nodes 

and at 3100 iterations. Table 6-2 presents all the statistical measures for this model. Also, 

corresponding graphical comparisons are represented in Figure 6-34, Figure 6-35, Figure 6-36, 

and Figure 6-37.  Even though some scatter is noted in these plots, most of the data is predicted 

reasonably well.  

6.7 Feedback ANN Model Development of Database 7 

Last database was utilized in this chapter to develop a 16 input 1 output Feedback ANN 

network is Database 7, which consists of 792 datasets divided into 396, 198, and 198 datasets 

for training, testing, and validation purposes. All the statistical accuracy measures from the 

training and testing stages were considered to choose the optimal network structure, which 

was obtained at 5 hidden nodes and 5200 iterations. The accuracy plots of the network with the 

optimal structure are illustrated in Figure 6-38 and Figure 6-39. The plots validate the good 

correlation between actual and predicted results, even though there seem to be few outliers at 

the higher end as was noted for the Static case. As can be observed from Table 6-2, the 

developed Feedback ANN network has reasonably good statistics where MRSEtr= 1.1518, 

MAREtr= 11.734%, and R2
tr= 0.9850. Even though statistical accuracy measures for testing and 

validation stages deteriorated slightly, they are still considerably good. The accuracy of how 

well the validation datasets were predicted can be seen in Figure 6-40 and the corresponding 

statistics are shown in Table 6-2.  Combining all datasets and retraining the network has 

improved the model statistics where the MRSE value of 1.1518 for training was reduced to a 

value of 0.8011, which can be translated into a 30% reduction. All data case for MARE and R2 

values were changed slightly but the biggest improvement was obtained for the MRSE value.  

All data predictions are graphically depicted in Figure 6-41 and the statistical accuracy 

quantities are given in Table 6-2.  As a result, Feedback ANN network for database 7 was 

effectively developed and the statistical accuracy measures are adequate.  
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6.8 Concluding Remarks  

In this chapter, a new ANNs approach is introduced and used on seven databases. This new 

ANN method utilizes the output from static ANN model along with the input parameters to 

generate new improved results. In other words, architecture of Feedback ANN network was 

developed by considering the output from static ANN model and the input parameters, which 

were used to develop static ANN models as well. Basically, this new method was proposed to 

improve the accuracy measures of the static ANN models developed in Chapter 5 by including 

the initial estimates from the static ANN model as another input. 

As seen from the graphical results depicted in Figure 6-2 to Figure 6-41 and the accuracy 

measures of the developed Feedback ANN models for each database listed in Table 6-1 and 

Table 6-2, the Feedback ANN models have reliable results. Moreover, the statistical accuracy 

measures, such as MARE, R2, and MRSE, from static ANN modeling network and Feedback ANN 

network modeling have been evaluated to determine the improvements/reductions in the 

statistical accuracy measures of the proposed Feedback ANN modeling process. The reduction 

of MARE for the seven databases can be seen in Table 6-3. The reduction of MARE for six 

databases (i.e., Databases 1, 2, 3, 4, 6, and 7) is ranging from 3% to 36%.  Feedback ANN 

approach has shown a negative reductions on output 1 of database 5 and zero reduction on 

output 2 of database 5, which means that Feedback ANN did not outperform the static network 

on the this database. The possible reason that Feedback ANN was not effective for this 

database is that the correlation between inputs and outputs are highly linear and the static 

ANN model may have ultimately discovered the relationship. This is why the Feedback ANN 

approach could not improve the prediction any further.   

The improvement of R2 for the seven databases is ranging from 0% to 29%. R2 values for most 

of the databases have changed slightly. The improvement results are depicted in Table 6-4. 

Databases 1, 5, and 7 did not indicate any improvement or reduction. Database 2 and output 1 

of database 6 have shown the most improvement in R2, which are, respectively, 17% and 29%. 

The improvements for the rest of the databases are nearly 1%. Similarly, the reduction of MRSE 

for the seven databases has been evaluated and the results are shown in Table 6-5. The 

reduction of MRSE for six databases (i.e. Databases 1, 2, 3, 4, 6, and 7) is ranging from 2% to 
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35%. Feedback ANN approach has shown a negative reduction on output 1 of database 5 and 

zero reduction on output 2 of database 5 as was noted for the performance of MARE. 

 

As can be seen from the results presented in Table 6-3, Table 6-4, and Table 6-5, Feedback ANN 

approach has, overall, successfully improved the prediction accuracy of six databases, whose 

correlations between inputs and output(s) considered as non-linear. Database 5 is the only 

database, which has fallen out of this category and did not show either positive reduction in 

error measurements or positive improvements in R2 values. In this case, static ANN network for 

database 5 has reached to its saturation point, where the network cannot perform any better 

and no further accuracy improvement is expected.  

 
It can be observed from the architecture of the developed networks for the seven databases in 

Table 6-6, Feedback ANN networks have improved the optimal network structure compared to 

static ANN networks. In Table 6-6, for example, the notation for database 1 is shown as 7-(8-

19)-19500-1, which represents the determined architecture of the optimum network where 

each number stands for, in the written order: number of inputs (7), initial number of hidden 

nodes (8), final number of hidden nodes (19), number of iterations (19500), and number of 

outputs (1). The optimal network structure for most of the databases was found at a lesser 

hidden nodes or lesser iterations if the number of hidden nodes remained same. The only 

database that the number of hidden nodes was increased of is Database 2. Database 1 has the 

most noticeable change from 19 hidden nodes to 4 hidden nodes with better overall statistical 

accuracy measures. The number of hidden nodes for Database 3, Database 4, Database 5 –

Output 2, Database 6 – Output 1, and Database 7 has decreased. Database 5 – Output 1, 

database 6 – output 2 and output 3 did not have any change in terms of hidden nodes. 

However, the number of iterations to arrive at their optimal network has decreased. 

Consequently, it can be inferred that Feedback ANN network approach has improved the 

statistical measures as well as the optimal network architectures by either decreasing the 

number of hidden nodes and/or the number of iterations.  
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6.9 Figures and Tables 

 

Figure 6-1 Architecture of a Feedback ANN Network 

 

Figure 6-2 Feedback ANN Network Training Accuracy of Database 1 
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Figure 6-3 Feedback ANN Network Testing Accuracy of Database 1 

 

Figure 6-4 Feedback ANN Network Validation Accuracy of Database 1 
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Figure 6-5 Feedback ANN Network All Data Accuracy of Database 1  

 

Figure 6-6 Feedback ANN Network Training Accuracy of Database 2 
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Figure 6-7 Feedback ANN Network Testing Accuracy of Database 2 

 

Figure 6-8 Feedback ANN Network Validation Accuracy of Database 2  
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Figure 6-9 Feedback ANN Network All Data Accuracy of Database 2  

 

Figure 6-10 Feedback ANN Network Training Accuracy of Database 3  
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Figure 6-11 Feedback ANN Network Testing Accuracy of Database 3 

 

Figure 6-12 Feedback ANN Network Validation Accuracy of Database 3 

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

P
re

d
ic

te
d

 

Actual 

Feedback ANN - Database 3 - Testing  

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

P
re

d
ic

te
d

 

Actual 

Feedback ANN - Database 3 - Validation  



 

90 

 

 

Figure 6-13 Feedback ANN Network All Data Accuracy of Database 3  

 

Figure 6-14 Feedback ANN Network Training Accuracy of Database 4  
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Figure 6-15 Feedback ANN Network Testing Accuracy of Database 4 

 

Figure 6-16 Feedback ANN Network Validation Accuracy of Database 4 
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Figure 6-17 Feedback ANN Network All Data Accuracy of Database 4 

 

Figure 6-18 Feedback ANN Network Training Accuracy of Database 5, Output 1  
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Figure 6-19 Feedback ANN Network Testing Accuracy of Database 5, Output 1  

 

Figure 6-20 Feedback ANN Network Training Accuracy of Database 5, Output 2  
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Figure 6-21 Feedback ANN Network Testing Accuracy of Database 5, Output 2 

 

Figure 6-22 Feedback ANN Network Validation Accuracy of Database 5, Output 1  
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Figure 6-23 Feedback ANN Network Validation Accuracy of Database 5, Output 2 

 

Figure 6-24 Feedback ANN Network All Data Accuracy of Database 5, Output 1 
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Figure 6-25 Feedback ANN Network All Data Accuracy of Database 5, Output 2  

 

Figure 6-26 Feedback ANN Network Training Accuracy of Database 6, Output 1  
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Figure 6-27 Feedback ANN Network Testing Accuracy of Database 6, Output 1  

 

Figure 6-28 Feedback ANN Network Validation Accuracy of Database 6, Output 1  
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Figure 6-29 Feedback ANN Network All Data Accuracy of Database 6, Output 1 

 

Figure 6-30 Feedback ANN Network Training Accuracy of Database 6, Output 2  
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Figure 6-31 Feedback ANN Network Testing Accuracy of Database 6, Output 2 

 

Figure 6-32 Feedback ANN Network Validation Accuracy of Database 6, Output 2  
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Figure 6-33 Feedback ANN Network All Data Accuracy of Database 6, Output 2  

 

Figure 6-34 Feedback ANN Network Training Accuracy of Database 6, Output 3  
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Figure 6-35 Feedback ANN Network Testing Accuracy of Database 6, Output 3  

 

Figure 6-36 Feedback ANN Network Validation Accuracy of Database 6, Output 3  
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Figure 6-37 Feedback ANN Network All Data Accuracy of Database 6, Output 3 

 

Figure 6-38 Feedback ANN Network Training Accuracy of Database 7  
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Figure 6-39 Feedback ANN Network Testing Accuracy of Database 7  

 

Figure 6-40 Feedback ANN Network Validation Accuracy of Database 7  
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Figure 6-41 Feedback ANN Network All Data Accuracy of Database 7 
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Table 6-1 Statistical Accuracy of Feedback ANN Network Models for Database 1 to Database 5 

  

FEEDBACK ANN MODELS 

Accuracy 
Measures 

Database 1 Database 2 Database 3 Database 4 Database 5 

Output 1 Output 1 Output 1 Output 1 Output 1 Output 2 

8-(2-4)-3200-1 8-(3-4)-1100-1 13-(1-5)-100-1 7 -(2-3)-19900-1 4-(2-4)-19300-1 4-(3-3)-14100-1 

TR 

MARE 3.409 4.021 8.869 20.825 0.183 1.201 

R2 0.9985 0.6596 0.9849 0.8485 0.9963 0.9293 

MRSE 3.1927 0.4059 40.5326 70.0604 0.2014 0.6391 

TS 

MARE 3.991 5.368 9.549 22.496 0.226 1.036 

R2 0.9986 0.2694 0.9797 0.8369 0.9841 0.9345 

MRSE 4.7437 0.9944 64.9743 102.3868 0.4768 0.8311 

VAL 

MARE 4.116 7.161 12.942 17.999 0.205 1.138 

R2 0.9979 0.0237 0.7766 0.8626 0.9951 0.9425 

MRSE 5.3192 1.1833 188.8319 93.7436 0.3303 0.8179 

ALL 
DATA   

MARE 3.281 3.699 9.985 19.470 0.190 1.129 

R2 0.9986 0.5314 0.9466 0.8613 0.9942 0.9329 

MRSE 2.1754 0.2979 52.9530 46.9162 0.1703 0.4269 

FINAL STRUCTURE 8 - 4 - 1 8 - 4 - 1 13 - 5 - 1 7 - 3 - 1 4 - 4 - 1 4 - 3 - 1 
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Table 6-2 Statistical Accuracy of Feedback ANN Network Models for Databases 6 and 7 

 
 

Table 6-3 Reduction of Mean Absolute Relative Error (MARE) for seven databases 

Database # OUTPUT 
MARE 

Static ANN Feedback ANN Reduction 

Database 1 Output 1 4.069 3.281 19% 

Database 2 Output 1 3.9681 3.6991 7% 

Database 3 Output 1 12.719 9.985 21% 

Database 4 Output 1 20.359 19.470 4% 

Database 5 
Output 1 0.186 0.190 -2% 

Output 2 1.125 1.129 0% 

Database 6 

Output 1 5.416 3.467 36% 

Output 2 11.529 11.099 4% 

Output 3 8.009 7.749 3% 

Database 7 Output 1 12.380 11.504 7% 

  

  

FEEDBACK ANN MODELS 

Accuracy 
Measures 

Database 6 Database 7 

Output 1 Output 2 Output 3 Output 1 

17-(1-2)-10100-1 17 -(2-3)-15300-1 17 -(1-3)-3100-1 16-(4-5)-5200-1 

TR 

MARE 2.993 10.731 7.136 11.734 

R2 0.9050 0.9239 0.8854 0.9850 

MRSE 0.0029 0.2690 0.0075 1.1518 

TS 

MARE 4.327 11.682 9.253 13.206 

R2 0.7823 0.8372 0.8178 0.9780 

MRSE 0.0062 0.5004 0.0131 1.9500 

VAL 

MARE 4.594 16.611 10.400 11.459 

R2 0.7331 0.6032 0.6862 0.9816 

MRSE 0.0066 0.7122 0.0164 1.7721 

ALL 
DATA   

MARE 3.467 11.099 7.749 11.504 

R2 0.8561 0.8844 0.8467 0.9848 

MRSE 0.0025 0.2162 0.0057 0.8011 

FINAL STRUCTURE 17 - 2 - 1 17 - 3 - 1 17 - 3 - 1 16 - 5 - 1 
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Table 6-4 Improvement of Coefficient of Determination (R2) for seven databases 

Database # Output 
R2 

Static ANN Feedback ANN Improvement 

Database 1 Output 1 0.9984 0.9986 0% 

Database 2 Output 1 0.4554 0.5314 17% 

Database 3 Output 1 0.9364 0.9466 1% 

Database 4 Output 1 0.8549 0.8613 1% 

Database 5 
Output 1 0.9944 0.9942 0% 

Output 2 0.9333 0.9329 0% 

Database 6 

Output 1 0.6612 0.8561 29% 

Output 2 0.8721 0.8844 1% 

Output 3 0.8377 0.8467 1% 

Database 7 Output 1 0.9831 0.9848 0% 

 
 
 

Table 6-5 Reduction of Mean Root Square Error (MRSE) for seven databases 

Database # Output 
MRSE 

Static ANN Feedback ANN Reduction 

Database 1 Output 1 2.3740 2.1754 8% 

Database 2 Output 1 0.3203 0.2979 7% 

Database 3 Output 1 63.7835 52.9530 17% 

Database 4 Output 1 47.9782 46.9162 2% 

Database 5 
Output 1 0.1676 0.1703 -2% 

Output 2 0.4255 0.4269 0% 

Database 6 

Output 1 0.0038 0.0025 35% 

Output 2 0.2276 0.2162 5% 

Output 3 0.0059 0.0057 3% 

Database 7 Output 1 0.8466 0.8011 5% 
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Table 6-6  Comparison of the network arhictecture between Static ANN and Feedback ANN 

   
Database # Output 

Optimal Structure 

Static ANN Feedback ANN 

Database 1 Output 1 7-(8-19)-19500-1 8-(2-4)-3200-1 

Database 2 Output 1 7-(2-3)-3100-1 8-(3-4)-1100-1 

Database 3 Output 1 12-(2-6)-200-1 13-(1-5)-100-1 

Database 4 Output 1 6-(2-7)-20000-1 7 - (2-3)-19900-1 

Database 5 
Output 1 3-(2-4)-19800-1 4-(2-4)-19300-1 

Output 2 3-(3-4)-19500-1 4-(3-3)-14100-1 

Database 6 

Output 1 16-(3-3)-5000-1 17-(1-2)-10100-1 

Output 2 16-(1-3)-13000-1 17-(2-3)-15300-1 

Output 3 16-(1-3)-19400-1 17-(1-3)-3100-1 

Database 7 Output 1 15-(4-7)-7900-1 16-(4-5)-5200-1 
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CHAPTER 7  

7. AUTO-ASSOCIATIVE NETWORK 

A Feed-forward neural network involves acquisition of input-output models from examples 

using backpropagation training algorithm as stated in Chapter 3. The network learns a mapping 

from given inputs to desired output values by adjusting internal weights to minimize the error. 

In auto-associative networks, the knowledge to be extracted from a database is the identity 

function of the database, which is simply: {network inputs} = {network outputs}. Auto-

associative networks are one of the classic ANN architectures used commonly in robotics, 

machine learning, and signal processing. They have been used for a wide variety of pattern 

processing problems such as cleaning up noisy pictures and recognizing known pictures when 

partially occluded (Hand, 2001).  Some of the known applications that Auto-associative 

networks are typically used in are:  

 Noise reduction  

 Replacement of missing sensor values 

 Gross error detection and correction 

 Signal processing  

The purpose of training a highly-parameterized, nonlinear network in these areas is that feed-

forward networks trained on the identity function can perform several useful data screening 

tasks with appropriate internal architectures (Kramer, 1992).  In other words, this particular 

type of network is trained to reproduce its inputs and its output(s). The network is forced to 

represent the input patterns in fewer dimensions, creating a compressed representation. These 

compressed representations may reveal interesting generalization about the data. Typical 

architecture of auto-associative network contain 3 hidden layers, which are, respectively, called 

mapping layer, bottle neck layer, and de-mapping layer (Kramer,1991). This approach has been 

used by some researchers (i.e. Bishop et al. (1992), Desjardins et al. (2006), and Sohn et al. 

(2005)) to reduce the dimensionality of the hidden layer in ANNs for commonly used 

applications listed above.  
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The auto-associative network approach has been used in some engineering areas for about two 

decades but not in civil engineering, where artificial intelligence is mostly referred to as a 

function approximation method.   

In this chapter, the auto-associative network approach was explored by using civil engineering 

databases, which do not only consist of binary numbers and patterns as in other engineering 

areas. For this reason, model development of the auto-associative network with the databases 

mentioned in Chapter 4 was considered with only one hidden layer. More than one hidden 

layer combined with an insufficient number of databases may cause the network to memorize 

the data in the training phase. Consequently, to avoid this situation at first place, models were 

developed with one hidden layer only to maintain the generalization capability of the network. 

Even though future studies will look into expending this research by including more hidden 

layers, this study is limited to only one hidden layer networks. Since the strategy of this 

approach is based on mapping n input variables into n output variables, it still would not be 

wrong to call these networks as Auto-associative networks.   

Due to the fact that the auto-associative network is optimized on not only output, but inputs as 

well, it can be used to validate partially missing input variables. Query method, which is another 

scope of this study, is used to replace missing input parameter(s) or/and output. The replaced 

value by Query method can be easily validated or iterated by using Auto-associative network. 

For example, if there is a missing data among the input dataset, query method replaces the 

value and the auto-associative network generates a reflection of the dataset, which helps to 

validate the value replaced by Query method. Moreover, Auto-associative network approach 

can be utilized to validate partially missing datasets as well as generate outputs. 

Auto-associative network is based on mapping n input variables into n output variables. In 

order to obtain predictions from this network, initial estimate of the controlled variable (i.e. 

output) has to be included as an input. The methodology used in Chapter 6, which of using 

static ANN prediction as an input in the model development was also applied to Auto-

associative network approach. The architecture of the proposed Auto-associative network is 
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depicted in Figure 7-1. The four sequential training stages for all seven databases and their 

desired criteria to choose the optimal network structures of Auto-associative network models 

are explained in the following sections. Even though the developed models are optimized on 

both inputs and output, in this study only output variable was evaluated in terms of statistical 

accuracy measures. Therefore, presented results in the following chapters are limited to output 

variables. 

7.1 Auto-associative Network Development of Database 1   

In this database, auto-associative model architecture has been built by considering 8 inputs and 

8 outputs. One of the counted inputs is the initial estimate from the developed static ANN 

network in Chapter 5. The seven inputs, excluding the initial estimate from static ANN network, 

are used as outputs. The eighth output, which is the uncontrolled parameter, is the actual value 

of the output variable. A total of 300 datasets are used to build the desired database; 157, 72 

and 71 datasets are used, respectively, for training, testing and validation purposes. Based on 

statistical measures such as MRSE, MARE, and R2, the optimal network structure of the Auto-

associative model for Database 1 was found at 6 hidden nodes and 20,000 iterations. The 

corresponding accuracy measures for this network are MRSEtr= 9.6230, MAREtr= 6.262%, R2
tr= 

0.9868 (for training database) and MRSEts=16.5741, MAREts= 6.937%, R2
ts=0.9802 (for testing 

database). The training and testing graphical comparison plots between predicted and actual 

values for the Auto-associative model developed for Database 1 are, respectively, shown in 

Figure 7-2 and Figure 7-3. Also, all the statistical accuracy measures for the training and testing 

are shown in Table 7-1. After the training and testing procedures using, respectively, 157 and 

72 datasets, validation was conducted on the remaining 71 datasets. The graphical comparison 

plot, for the validation stage, between prediction and actual response is shown in Figure 7-4. 

Once the validation stage is completed, all of the 300 datasets were used to retrain the network 

at the previously determined optimal structure to obtain the generalized response throughout 

the 300 datasets. The graphical comparison plot for the 300 datasets is shown in Figure 7-5. 

Statistical accuracy measures for validation and all data cases are also shown in Table 7-1. As 

can be seen from the table, Auto-associative network developed for database 1 has lower 
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validation MRSE value than testing MRSE value. All data MRSE value is lower than training, 

testing and validation measures while the value of MARE deteriorated slightly. R2 values did not 

change significantly for testing, validation, or all data. However, MRSE is considered as the main 

criterion to evaluate the performances of the networks. MRSE value for all data was decreased 

to a value of 7.4928 while the ones for testing and validation were increased to values of 

16.5741 and 12.9810. In Table 7-1, as indicated in previous chapters, the 8-(3-6)-20000-8 

notation specifies the determined architecture of the optimum network of Database 1 where 

each number ,respectively, represents: number of inputs (8), initial number of hidden nodes 

(3), final number of hidden nodes (6), number of iterations (20000), and number of outputs (8).  

Final structure of the optimum network is depicted as 8-6-8, which are, respectively: number of 

inputs, number of hidden nodes, and number of outputs. Seven input parameters with an initial 

estimate from static ANN network are feed-forwarded to hidden layer with eight hidden nodes, 

then come out as eight outputs, one of which is the actual output and the rest are all input 

predictions.  

7.2 Auto-associative Network Development of Database 2 

The available 100 datasets were used to develop the desired Auto-associative network for 

Database 2. During the first stage of modeling, 55 datasets are used for training, 23 for testing, 

and 22 for validation The input vector consisted of 8 parameters and the output vector made 

up of the same 8 parameters were used in the model development process of database 2. The 

optimal structure for the Auto-associative network of Database 2 was chosen at 6 hidden nodes 

and 3100 iterations. A graphical comparison of training stage between the predicted and the 

actual is depicted in Figure 7-6. Auto-associative network for training stage yielded a mean root 

square error, MRSEtr of 0.4911, mean absolute relative error, MAREtr of 4.8125%, and 

coefficient of determination, R2
tr of 0.4795.  Similarly, graphical comparison of testing stage is 

shown in Figure 7-7 and statistical accuracy measures for this network are MRSEts of 0.8469, 

MAREts of 5.1122%, and Rts
2 of 0.1798.  

To further evaluate the optimal network, 22 datasets are used to validate the network. Figure 

7-8 presents the graphical comparison of the predicted and the actual values. Corresponding 
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statistical measures are given in Table 7-1. It is clear from the results that validation MRSE is 

higher than the testing MRSE as oppose to static ANN network. Once the validation stage is 

completed, all 100 datasets were used to retrain the network at the optimal structure. It can be 

concluded from the graphical plot in Figure 7-9 and the statistical accuracy measures in Table 

7-1 that using the entire database to retrain the network enhances the statistical measures. 

Overall performance of the Auto-associative network is very similar to static ANN network in 

terms of statistical accuracy measures. For example, all data MRSE by Auto-associative network 

is 0.3425 while all data MRSE by static ANN network and by Feedback ANN network, 

respectively, resulted 0.3203 and 0.2979. The MRSE by auto-associative network is about 6.5% 

higher than that of the static ANN network and about 13% higher than that of the Feedback 

ANN network. The predictions via the Auto-associative network are not as accurate as those 

obtained by previous networks but still can be considered adequate especially when 

considering that the Auto-associative network is optimized on both inputs and output(s).  

7.3 Auto-associative Network Development of Database 3 

To develop Auto-associative model for database 3, the 126 datasets were used. Sixty three and 

32 of total datasets were, respectively, considered as training and testing datasets. The 

remaining 31 datasets were included in the validation stage after the optimal network was 

determined. An effort to develop an Auto-associative network for database 3 was initiated with 

13 inputs and 13 outputs. The best performing network structure was obtained at 8 hidden 

nodes and 20000 iterations. The training and testing statistical measures for training and 

testing stages are shown in Table 7-1 and the graphical comparison plots are depicted in Figure 

7-10 and Figure 7-11. As can be observed from the table and the graphical plots, the training 

and testing stages produced good prediction accuracy. Validation was conducted on the 

remaining 31 datasets, after the training and testing stages. The graphical comparison plot, for 

the validation stage, between prediction and actual response is shown in Figure 7-12. The 

statistical accuracy measures for this network are MRSEval= 210.3098, MAREval= 22.139%, and 

R2
val= 0.7209. Once the validation stage is finalized, all of the 126 datasets were used to retrain 

the network at the optimal structure. The statistical accuracy measures for this network are 
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MRSEall= 55.7573, MAREall= 14.770%, and R2
all= 0.9342. The graphical comparison plot for the 

126 datasets is shown in Figure 7-13. The resulting statistical accuracy measures for all Auto-

associative network modeling stages are given in Table 7-1. 

The statistical measures and the plots have indicated that the Auto-associative network for 

database 3 has performed well during the training stage, but the testing stage resulted in a 

higher MRSE value, as was expected. Similarly, MRSE value for the validation datasets produced 

the highest MRSE value, which is about 3.6 times higher than the training MRSE value. When all 

data combined and the network was retrained, the statistical accuracy measures improved. It 

should be noted that the error increase from training MRSE to validation MRSE by Auto-

associative network is less than the one noted for static ANN (i.e., 3.6 versus 7.16 times). 

Similarly, the error increase for MARE by Auto-associative is less than that by static ANN (i.e. 

1.76 versus 2.4 times).  

7.4 Auto-associative Network Development of Database 4 

In order to develop Auto-associative network for Database 4, a total of 265 datasets; 133, 66, 

and 66 sub-datasets were, respectively, used for training, testing, and validation. The input 

vector consisted of 7 parameters, including the one from static ANN network, and the output 

vector consisted of 7 parameters as well (6 inputs and one output).  To properly characterize 

the phenomenon, Auto-associative network approach with four sequential modeling stages 

were followed herein. Accordingly, the optimal network structure for the Auto-associative 

model of database 4 was determined at 7 hidden nodes and 20000 iterations where the 

network performed its best. Auto-associative network for training stage yielded a mean root 

square error, MRSEtr of 68.8665, mean absolute relative error, MAREtr of 20.557%, and 

coefficient of determination, Rtr
2 of 0.8539. Similarly, statistical accuracy measures for the 

testing stage are MRSEts of 102.4501, MAREts of 21.863%, and R2
ts of 0.8363. Graphical 

comparisons of testing and validation stages are, respectively, shown in Figure 7-14 and Figure 

7-15. As can be seen from the graphical plots and the statistical accuracy measures depicted in 

Table 7-1, a good agreement between actual and predicted values is apparent. Stage 3 and 

stage 4 were sequentially initiated by using validation datasets and all datasets. The predictions 
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by validation datasets and all datasets were plotted against their corresponding actual values, 

respectively, in Figure 7-16 and Figure 7-17.  Good agreement between the predictions and the 

actual values can also be observed in Table 7-1 in terms of statistical accuracy measures.  

 

7.5 Auto-associative Network Development of Database 5 

Database 5 has been built by considering 325 datasets; 163, 81, and 81 datasets that are for 

training, testing, and validation purposes. The optimal network structure for the model 1 was 

concluded at 4 hidden nodes and 20,000 iterations. The corresponding accuracy measures of 

model 1 are MRSEtr=0.2676, R2
tr=0.9936, MAREtr=0.240% (for training database) and MRSEts 

=0.5100, R2
ts=0.9817, MAREts= 0.286% (for testing database). The optimal network for Model 2 

was reached at 5 hidden nodes and 20,000 iterations. The corresponding accuracy measures of 

model 2 are MRSEtr =0.6344, R2
tr=0.9299, MAREtr=1.199% (for training database) and MRSEts 

=0.8233, R2
ts=0.9354, MAREts= 1.037% (for testing database). Training MRSE value for model 1 

increased by about 90% in testing while training MRSE value for model 2 increased by about 

30% in testing. The training and testing plots for model 1 are shown in Figure 7-18 and Figure 

7-19. Similarly the training and testing plots for model 2 are also given in Figure 7-20 and Figure 

7-21. The corresponding statistical measures of model 1 and model 2 are presented in Table 

7-1. 

After the optimal network was determined, the validations for model 1 and model 2 were 

conducted on the 81 datasets. The validation plots for model 1 and model 2 are, respectively, 

given in Figure 7-22 and Figure 7-23. After the validation stage is concluded, all of the 325 

datasets were used to retrain the network at the optimal structure. The comparison plots of 

model 1 and model 2 for the 325 datasets are, respectively, shown in Figure 7-24 and Figure 

7-25. The resulting statistical accuracy measures for the validation and the all data cases are 

depicted in Table 7-1. All data MRSE statistical measures for both model 1 and model 2 attain 

the best values when compared with the other stages. 
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7.6 Auto-associative Network Development of Database 6 

The 210 datasets were divided into sub-databases: 105, 53, and 52 to be used, respectively, in 

training, testing, and validation tasks. Auto-associative network for Model 1 was determined at 

7 hidden nodes and 20000 iterations. This network structure provided the optimal connection 

weights for the desired predictions. The training and testing accuracy measures for model 1 are 

resented in Table 7-2 along with the corresponding plots shown in Figure 7-26 and Figure 7-27. 

According to the statistical measures, the optimal network performed well in the training stage 

as well as in the testing stage. However, MRSE value of the training, 0.0033 deteriorated to 

0.0061 for the testing stage, which corresponds to 85% increase in error. For the validation 

stage, the statistical measures changed slightly; however, for the all data stage, MRSE improves 

to a value of 0.0027, which translates into about 18% reduction in error, while MARE value 

increased by about 10%. All the statistical measures for the validation and all data stages can be 

found in Table 7-2 and their associated plots are, in the given order, represented in Figure 7-28 

and Figure 7-29.  

The same database used to develop Auto-associative network for model 1 was utilized for 

Model 2 by considering 17 inputs. The optimal network for model 2 was reached at 7 hidden 

nodes and 20,000 iterations. The accuracy of training and testing stages for the selected 

network architecture is given in Table 7-2 and the graphical evaluation plots are depicted in 

Figure 7-30 and Figure 7-31. Validation and all data stages were sequentially followed by the 

training and testing stages. Figure 7-32 and Figure 7-33, which are the plots for validation and 

all data predictions, indicate a reasonably good correlation between the actual and predicted 

values. A good agreement between the actual and predicted values can be noted in Table 7-2. 

 Auto-associative network model 3 was developed by considering the same input parameters, 

used for model 1 and model 2, and output 3. Similarly, the model development process was 

followed in the order of training, testing, validation, and all data cases. The statistical measures 

were obtained with a structure of 2 hidden nodes and 18,100 iterations. Table 7-2 presents all 

statistical measures for model 3. Also, corresponding graphical comparisons for the stages are 



 

117 

 

represented in Figure 7-34, Figure 7-35, Figure 7-36, and Figure 7-37.  Even though some scatter 

is noted in these plots, most of the data is predicted reasonably well.  

7.7 Auto-associative Network Development of Database 7 

Auto-associative network for Database 7 was developed using 792 datasets divided into 396, 

198, and 198 datasets for training, testing, and validation. The network utilized 16 inputs and 

16. Statistical measures from the training and testing stages were utilized to select the optimal 

network structure, which was obtained at 8 hidden nodes and 20,000 iterations. The accuracy 

plots are illustrated in Figure 7-38 and Figure 7-39. The plots indicate good correlation between 

actual and predicted results, even though there seem to be few outliers at the higher end. As 

can be observed from Table 7-2, the developed Auto-associative network has reasonably good 

statistics such as MRSEtr= 1.8678, MAREtr= 30.249%, and R2
tr= 0.9660. The accuracy of the 

validation datasets can be seen in Figure 7-40 and the corresponding statistics are shown in 

Table 7-2.  Combining all datasets and retraining the network improved the model accuracy 

statistics where the MRSE value of 1.8678 for training was reduced to a value of 1.4805, which 

can be translated into a 20% reduction. All data MARE and R2 values changed slightly but the 

major improvement was obtained for the MRSE value.  All data predictions are graphically 

depicted in Figure 7-41 and the statistical accuracy measures are given in Table 7-2.   

7.8 Concluding Remarks 

In this chapter, Auto-associative network approach with backpropagation learning algorithm 

was explored by using civil engineering databases. This method is based on mapping n input 

variables into n output variables. Effect of input parameters on the output based on the 

statistical evaluation criteria was utilized to determine the optimal architecture of the neural 

network models, while mapping input parameters on the output layer as well.  The idea of 

using this method is to train a network to obtain the identity mapping, in other words, to 

develop an identity function. As stated before, this approach has been utilized for other 

engineering applications but it was introduced to civil engineering databases in this study. The 

Auto-associative network method utilizes the output from static ANN model along with the 
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input parameters to generate new improved results as well as to provide reflection for 

predicted and missing values of input parameters.   

 

As seen from the graphical results depicted in Figure 7-2 to Figure 7-41 and the accuracy 

measures of the developed Auto-associative network models for each database listed in Table 

7-1 and Table 7-2, the Auto-associative network models have reliable results. Moreover, the 

statistical accuracy measures, such as MARE, R2, and MRSE, from static ANN network and Auto-

associative network modeling have been evaluated to determine the increase/reductions in the 

statistical accuracy measures of the proposed Auto-associative network models. Due to the fact 

that Auto-associative network is optimized on inputs and output(s), the statistical accuracy 

measures of the outputs were not expected to be as reliable as static ANN networks. However, 

the results indicated that for few cases Auto-associative network can perform better.  

 

As can be seen in Table 7-3, only database 4 and database 6- Output 1 had a MARE reduction. 

The rest of the databases or outputs had an increase in error values. Similarly, R2 value has 

increased for the same two databases as shown in Table 7-4. The corresponding statistical 

measure, MRSE has similar results in Table 7-5. However, there is more improvement for MRSE 

values than the other statistical measures. Database 3 and Database 6 – output1 had a few 

significant changes, one of which is 13% and the other one is 29% reduction in error. Database 

3 had also 4% reduction in error. The Auto-associative network did not perform well on most of 

the databases in terms of error reduction but discovered the relationship between inputs and 

output. Even though the results from Auto-associative network are not comparable with those 

obtained via other previous approaches, they are still considerably promising. It is noteworthy 

to mention that Auto-associative network can not only be utilized to generate outputs, but can 

also be used for verification of the missing values in input parameters.      
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7.9 Figures and Tables 

 

Figure 7-1 Architecture of an Auto-associative Network  

 

Figure 7-2 Auto-associative Network Training Accuracy of Database 1 
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Figure 7-3 Auto-associative Network Testing Accuracy of Database 1  

 

Figure 7-4 Auto-associative Network Validation Accuracy of Database 1 
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Figure 7-5 Auto-associative Network All Data Accuracy of Database 1 

 

Figure 7-6 Auto-associative Network Training Accuracy of Database 2 
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Figure 7-7 Auto-associative Network Testing Accuracy of Database 2 

 

Figure 7-8 Auto-associative Network Validation Accuracy of Database 2 
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Figure 7-9 Auto-associative Network All Data Accuracy of Database 2 

 

Figure 7-10 Auto-associative Network Training Accuracy of Database 3 
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Figure 7-11 Auto-associative Network Testing Accuracy of Database 3 

 

Figure 7-12 Auto-associative Network Validation Accuracy of Database 3 
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Figure 7-13 Auto-associative Network All Data Accuracy of Database 3 

 

Figure 7-14 Auto-associative Network Training Accuracy of Database 4  
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Figure 7-15 Auto-associative Network Testing Accuracy of Database 4 

 

Figure 7-16 Auto-associative Network Validation Accuracy of Database 4 
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Figure 7-17 Auto-associative Network All Data Accuracy of Database 4 

 

Figure 7-18 Auto-associative Network Training Accuracy of Database 5, Output 1 
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Figure 7-19 Auto-associative Network Testing Accuracy of Database 5, Output 1 

 

Figure 7-20 Auto-associative Network Validation Accuracy of Database 5, Output 1 
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Figure 7-21 Auto-associative Network All Data Accuracy of Database 5, Output 1 

 

Figure 7-22 Auto-associative Network Training Accuracy of Database 5, Output 2 
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Figure 7-23 Auto-associative Network Testing Accuracy of Database 5, Output 2 

 

Figure 7-24 Auto-associative Network Validation Accuracy of Database 5, Output 2 
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Figure 7-25 Auto-associative Network All Data Accuracy of Database 5, Output 2 

 

Figure 7-26 Auto-associative Network Training Accuracy of Database 6, Output 1 
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Figure 7-27 Auto-associative Network Testing Accuracy of Database 6, Output 1 

 

Figure 7-28 Auto-associative Network Validation Accuracy of Database 6, Output 1 
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Figure 7-29 Auto-associative Network All Data Accuracy of Database 6, Output 1 

 

Figure 7-30 Auto-associative Network Training Accuracy of Database 6, Output 2 
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Figure 7-31 Auto-associative Network Testing Accuracy of Database 6, Output 2 

 

Figure 7-32 Auto-associative Network Validation Accuracy of Database 6, Output 2 
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Figure 7-33 Auto-associative Network All Data Accuracy of Database 6, Output 2 

 

Figure 7-34 Auto-associative Network Training Accuracy of Database 6, Output  3 
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Figure 7-35 Auto-associative Network Testing Accuracy of Database 6, Output 3 

 

Figure 7-36 Auto-associative Network Validation Accuracy of Database 6, Output 3 
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Figure 7-37 Auto-associative Network All Data Accuracy of Database 6, Output 3 

 

Figure 7-38 Auto-associative Network Training Accuracy of Database 7 
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Figure 7-39 Auto-associative Network Testing Accuracy of Database 7 

 

Figure 7-40 Auto-associative Network Validation Accuracy of Database 7 
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Figure 7-41 Auto-associative Network All Data Accuracy of Database 7 
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Table 7-1 Statistical Accuracy of Auto-associative Network Models for Database 1 to Database 5 

  

AUTO-ASSOCIATIVE NETWORK MODELS 

Accuracy 
Measures 

Database 1 Database 2 Database 3 Database 4 Database 5 

Output 1 Output 1 Output 1 Output 1 Output 1 Output 2 

8-(3-6)-20000-8 8-(6-6)-3100-8 13-(7-8)-20000-13 7 - (5-7)-20000-7 4-(4-4)-20000-4 4-(4-5)-20000-4 

TR 

MARE 6.262 4.8125 12.544 20.557 0.240 1.199 

R2 0.9868 0.4795 0.9650 0.8539 0.9936 0.9299 

MRSE 9.6230 0.4911 58.4512 68.8665 0.2676 0.6344 

TS 

MARE 6.937 5.1122 16.594 21.863 0.286 1.037 

R2 0.9802 0.1798 0.9519 0.8363 0.9817 0.9354 

MRSE 16.5741 0.8469 103.2161 102.4501 0.5100 0.8233 

VAL 

MARE 7.163 6.5996 22.139 20.260 0.257 1.140 

R2 0.9882 0.0009 0.7209 0.8604 0.9925 0.9420 

MRSE 12.9810 1.1071 210.3098 95.4665 0.4049 0.8142 

ALL 
DATA   

MARE 7.269 4.3912 14.770 18.321 0.206 1.132 

R2 0.9839 0.3788 0.9342 0.8653 0.9933 0.9329 

MRSE 7.4928 0.3425 55.7573 46.2396 0.1825 0.4266 

FINAL STRUCTURE 8 - 6 - 8 8 - 6 - 8 13 - 8 - 13 7 - 7 - 7 4 - 4 - 4 4 - 5 - 4 
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Table 7-2 Statistical Accuracy of Auto-associative Network Models for Databases 6 and 7 

 

 Table 7-3 Increase of Mean Absolute Relative Error (MARE) for seven databases 

  

  

AUTO-ASSOCIATIVE NETWORK MODELS 

Accuracy 
Measures 

Database 6 Database 7 

Output 1 Output 2 Output 3 Output 1 

17-(1-7)-20000-17 17 - (6-7)-20000-17 17 -(1-2)-18100-17 16-(7-8)-20000-16 

TR 

MARE 3.486 17.319 7.963 30.249 

R2 0.8766 0.7564 0.8561 0.9660 

MRSE 0.0033 0.4821 0.0086 1.8678 

TS 

MARE 4.434 17.465 10.055 32.960 

R2 0.7841 0.7311 0.7535 0.9533 

MRSE 0.0061 0.6290 0.0155 3.1479 

VAL 

MARE 4.764 20.188 13.207 33.130 

R2 0.7112 0.5817 0.5665 0.9397 

MRSE 0.0068 0.7514 0.0203 3.5617 

ALL 
DATA   

MARE 3.855 18.220 8.779 31.243 

R2 0.8347 0.7397 0.8038 0.9553 

MRSE 0.0027 0.3251 0.0066 1.4805 

FINAL STRUCTURE 17 - 7 - 17 17 - 7 - 17 17 - 2 - 17 16 - 8 - 16 

Database # OUTPUT 
MARE 

Static ANN Auto-associative Increase 

Database 1 Output 1 4.069 7.269 79% 

Database 2 Output 1 3.9681 4.3912 11% 

Database 3 Output 1 12.719 14.770 16% 

Database 4 Output 1 20.359 18.321 -10% 

Database 5 
Output 1 0.186 0.206 11% 

Output 2 1.125 1.132 1% 

Database 6 

Output 1 5.416 3.855 -29% 

Output 2 11.529 18.220 58% 

Output 3 8.009 8.779 10% 

Database 7 Output 1 12.380 31.243 152% 
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 Table 7-4 Reduction of Coefficient of Determination (R2) for seven databases 

  

 

Table 7-5 Increase of Mean Root Square Error (MRSE) for seven databases 

  
  

 

  

Database # OUTPUT 
R2 

Static ANN Auto-associative Reduction 

Database 1 Output 1 0.9984 0.9839 1% 

Database 2 Output 1 0.4554 0.3788 17% 

Database 3 Output 1 0.9364 0.9342 0% 

Database 4 Output 1 0.8549 0.8653 -1% 

Database 5 
Output 1 0.9944 0.9933 0% 

Output 2 0.9333 0.9329 0% 

Database 6 

Output 1 0.6612 0.8347 -26% 

Output 2 0.8721 0.7397 15% 

Output 3 0.8377 0.8038 4% 

Database 7 Output 1 0.9831 0.9553 3% 

Database # OUTPUT 
MRSE 

Static ANN Auto-associative Increase 

Database 1 Output 1 2.3740 7.4928 216% 

Database 2 Output 1 0.3203 0.3425 7% 

Database 3 Output 1 63.7835 55.7573 -13% 

Database 4 Output 1 47.9782 46.2396 -4% 

Database 5 
Output 1 0.1676 0.1825 9% 

Output 2 0.4255 0.4266 0% 

Database 6 

Output 1 0.0038 0.0027 -29% 

Output 2 0.2276 0.3251 43% 

Output 3 0.0059 0.0066 12% 

Database 7 Output 1 0.8466 1.4805 75% 
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CHAPTER 8  

8. DYNAMIC-SEQUENTIAL NETWORK 

Models developed purely from data significantly depend on database size. Artificial Neural 

Networks (ANNs) can be developed from data of any size. However, the generalization of 

developed models is affected by the size considerably since ANNs are required to generalize for 

unseen cases. Preferably, data to be used for training should be sufficiently large to cover the 

possible known variation in the application domain. In some engineering applications, 

experimental data is expensive and time-consuming to collect. Therefore, some databases may 

contain limited amounts of data. Developing prediction models with these databases can be 

challenging in terms of their reliability. Training a network with few datasets typically results in 

a network that memorizes the data rather than generalizing the desired phenomenon. ANNs 

approach is a powerful computational technique capable of mapping and capturing many 

features embedded within large datasets. As training of ANN models requires an adequate 

amount of datasets to be able to extract knowledge, there can often be insufficient data in the 

database to both train and test the ANN model. To provide a solution to this issue a new 

approach is proposed, dynamic-sequential network method, which solves the issue of 

insufficient data by converting a static problem into a dynamic problem. In other words, 

dynamic-sequential network uses a feed-forward neural network to obtain more reliable 

networks with consistent generalization aptitude.  

Development of ANN requires partitioning of the database into three sub-databases as stated 

in previous chapters. The training database is used to update the weights of the network using 

a learning algorithm. Typically, for a static ANN network each dataset is used only once in 

training to update the connection weights and threshold values in every epoch. In other words, 

network training for static ANN network is completed sequentially by utilizing every dataset 

once during every iteration (i.e., epoch). Accordingly, it takes more iterations for a network to 

fully extract the information from all datasets. However, the network may end up memorizing 

the data, in other words over-fitting may occur. With this new approach, every dataset was fed 
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with an initial estimate from a Static ANN network and used five times during every training 

epoch. Only the initial estimate is fed into the first iteration. After the first iteration, the ANN 

training program generates an output and feeds them back into the second iteration for the 

same dataset. This methodology is similar to modeling a material response. For instance, 

modeling a concrete behavior under a load has a similar modeling logic because every response 

from previous stage needs to be fed into the current stage.  Using the same logic, a static 

database can be converted into a dynamic database by replicating the target dataset 5 times 

and including the initial estimate from the static ANN model. In this case, an initial estimate is 

fed into the network and the network generates an output, then the generated output is fed 

back into the next dataset to replace the initial estimate while keeping all other input values 

unchanged. This procedure is sequentially repeated 4 more times. Essentially every dataset is 

multiplied by five and the network is trained 5 times on the same dataset. Although the number 

of datasets is multiplied by five, statistical accuracy measures and graphical comparison plots 

presented in this chapter are only based on the last training step(the fifth sequence) because 

each dataset will be used in training five times and the fifth prediction value is what this 

research is intending to explore. 

The architecture of a Dynamic-sequential network can be seen in Figure 8-1. To develop a 

Dynamic-sequential network, all datasets are duplicated five times and another input for the 

initial response is added. An initial estimate from static ANN network was considered as first 

guess for the first corresponding dataset. Then the prediction generated for the dataset after 

every training stage is used in the next training stage for the same data as an initial guess until 

the training is terminated.  

In this chapter, Dynamic-sequential network method was explored to evaluate the consistency 

and applicability to civil engineering systems by utilizing seven databases. In order to verify the 

stability of Dynamic-sequential network approach, another statistical assurance concept was 

examined. In this concept, the previously developed networks were validated by using two 

different initial estimate configurations, one of which is the mean of the output, and the other 
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one is “0”. The statistical accuracy measures of the validation datasets with different initial 

estimate configurations were calculated and the results were compared for each database.   

Detailed information on the training stages for all seven databases and their determined 

optimal dynamic-sequential network structures are explained in the following sections. 

8.1 Dynamic-Sequential Network Model Development of Database 1   

In this case, dynamic-sequential model architecture was designed by considering 8 inputs and 1 

output. One of the counted inputs is the initial estimate from the developed static ANN 

network explained in Chapter 5. A total of 300 datasets were converted into 1500 datasets by 

duplicating each datasets five times and then the new database was divided into sub-datasets; 

785, 360, and 355 datasets were used, respectively, for training, testing, and validation 

purposes. Based on statistical measures MRSE, MARE, and R2, the optimal network structure of 

the Auto-associative model for this database was found at 16 hidden nodes and 19,600 

iterations. The corresponding accuracy measures, respectively, on the original 157 and 72 

datasets for this network are MRSEtr= 1.2130, MAREtr= 1.632%, R2
tr= 9998 (for training 

database) and MRSEts=6.6146, MAREts= 2.666%, R2
ts=0.9970 (for testing database). The training 

and testing graphical comparison plots between the fifth sequenced prediction and the actual 

values are, respectively, shown in Figure 8-2 and Figure 8-3. Also, all the corresponding 

statistical accuracy measures for the training and testing stages are shown in Table 8-1. After 

the training and testing procedures using, respectively, 785 and 360 datasets, validation was 

conducted on the remaining 355 datasets. The graphical comparison plot, for the validation 

stage, between prediction and actual response is shown in Figure 8-4 by considering only the 

fifth sequenced of each dataset. Once the validation stage is completed, all of the 1500 

datasets were used to retrain the network at the previously determined optimal structure to 

obtain the generalized response throughout the 300 datasets. The graphical comparison plot 

for the 300 datasets is shown in Figure 8-5. Statistical accuracy measures for validation and all 

data cases are also shown in Table 8-1. As noted in previous chapters, the 8-(1-16)-19600-1 

notation specifies the determined architecture of the optimum network where each number, 

respectively, represents: number of inputs (8), initial number of hidden nodes (1), final number 
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of hidden nodes (16), number of iterations (19600), and number of outputs (1).  Final network 

structure is represented as 8-16-1, which are, respectively: number of inputs, number of hidden 

nodes, and number of outputs. Dynamic-sequential network generates predictions as soon as 

the input parameters are entered. Static ANN network and Dynamic-sequential network work 

simultaneously to generate the desired output values.  

8.2 Dynamic-Sequential Network Model Development of Database 2 

A database consisting of 100 datasets was used to develop the  desired Dynamic-sequential 

network for Database 2. As noted previously, the databases to be used for modeling were 

converted to a dynamic database first and then divided into three sub-categories such as 

training, testing, and validation. In this case, 500 datasets were used for modeling; 275 datasets 

are used for training, 115 datasets for testing, and 110 datasets for validation.  The input vector 

consisted of 8 parameters and the output vector consisted of 1 parameter.  The optimal 

structure for the Dynamic-sequential network was found at 3 hidden nodes and 20,000 

iterations. A graphical comparison of training stage predictions against actual values is depicted 

in Figure 8-6. Dynamic-sequential network for training stage on 55 datasets yielded a mean root 

square error, MRSEtr of 0.3839, mean absolute relative error, MAREtr of 3.6220%, and 

coefficient of determination, R2
tr of 0.6681.  Similarly, graphical comparison of testing stage on 

23 datasets is shown in Figure 8-7 and statistical accuracy measures for this network are MRSEts 

of 1.0838, MAREts of 5.9117%, and Rts
2 of 0.3861.  

To further validate the optimal network predictions, 110 datasets are used. Figure 8-8 presents 

the graphical comparison between the predicted and the actual values on the original 22 

datasets. Corresponding statistical measures are given in Table 8-1.   Once the validation stage 

is completed, the 500 datasets were used to retrain the network at the optimal structure. It can 

be concluded from the graphical prediction plot of 100 datasets in Figure 8-9 and the 

corresponding statistical accuracy measures in Table 8-1 that using the entire database to 

retrain the network greatly improves the statistical measures. Overall,  performance of the 

Dynamic-sequential network has attained better statistical accuracy measures than those noted 

previously for the equivalent static ANN network. 
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8.3 Dynamic-Sequential Network Model Development of Database 3 

To develop Dynamic-sequential model for database 3, a total of 126 datasets were converted to 

630 datasets by duplicating every dataset five times. Three hundred fifteen and 160 of total 

datasets were, respectively, considered as training and testing datasets. The remaining 155 

datasets were included in the validation stage after the optimal network was determined.  The 

Dynamic-sequential network was initiated with 13 inputs and 1 output. The best performing 

network structure was obtained at 8 hidden nodes and 100 iterations. The training and testing 

statistical measures for training and testing stages on 315 and 160 datasets are shown in Table 

8-1 and the corresponding graphical comparison plots are depicted in Figure 8-10 and Figure 

8-11. As can be observed from the table and the graphical plots, the training and testing stage 

produced good accuracy.  

Validation was conducted on the remaining 155 datasets, after the training and testing stages. 

The graphical comparison plot, for the validation stage results (using fifth sequenced 

predictions) and actual response is shown in Figure 8-12. The statistical accuracy measures on 

the original 31 datasets are MRSEval= 250.2872, MAREval= 27.787%, and R2
val= 0.6193. Once the 

validation stage is finalized, all of the 630 datasets were used to retrain the network at the 

optimal structure. The statistical accuracy measures on the original 126 datasets are MRSEall= 

95.9043, MAREall= 19.180%, and R2
all= 0.9317. The graphical comparison plot of the 126 

datasets is shown in Figure 8-13. The resulting statistical accuracy measures for all Dynamic-

sequential network modeling stages are given in Table 8-1. 

The statistical measures and the plots indicate that the Dynamic-sequential network for this 

database is performing fairly well. When all data combined and the network was retrained, the 

statistical accuracy measures showed notable improvement. It should be noted that the error 

increase from training MRSE to validation MRSE by Dynamic-sequential network is less than 

those by static ANN (i.e. 3.4 versus 7.6 times). Similarly, the error increase for MARE by 

Dynamic-sequential network is less than those by static ANN (i.e. 1.94 versus 2.4 times).  
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8.4 Dynamic-Sequential Network Model Development of Database 4 

To develop Dynamic-sequential network for Database 4; 665, 330, and 330 data sets were used 

for training, testing, and validation tasks. The input vector consisted of 7 parameters, including 

the one from static ANN network, and the output vector consisted of 1 parameter. To properly 

characterize the phenomenon, the Dynamic-sequential network approach with four sequential 

modeling stages was followed. For this case, the optimal network structure for the Dynamic-

sequential model was achieved at 7 hidden nodes and 20,000 iterations. Dynamic-sequential 

network on 133 datasets for training stage yielded a mean root square error, MRSEtr of 

81.6443, mean absolute relative error, MAREtr of 20.581%, and coefficient of determination, 

Rtr
2 of 0.8710. Similarly, statistical accuracy measures for the testing stage are MRSEts of 

133.0335, MAREts of 21.747%, and R2
ts of 0.7959. Corresponding graphical comparisons of 

testing and validation stages are, respectively, shown in Figure 8-14 and Figure 8-15. As can be 

seen from the graphical plots and the statistical accuracy measures listed in Table 8-1, good 

agreement between actual and predicted values is evident. The predictions by validation 

datasets and all datasets case were plotted against their corresponding actual values, 

respectively, in Figure 8-16 and Figure 8-17.  Good agreement between the predictions and the 

actual values can be seen in Table 8-1. The validation MRSE is higher than those of training and 

testing as expected. Similarly, MARE values for testing and validation increased compared to 

the one from training. However, the all data MRSE value is the lowest compared to those 

obtained in previous stages (i.e. training, testing, and validation). In other words, training MRSE 

value had a reduction of about 39% in error. 

 

8.5 Dynamic-Sequential Network Model Development of Database 5 

Database 5 utilizes 325 datasets; 163, 81, and 81 datasets that are for training, testing, and 

validation purposes. However, these datasets were converted to dynamic databases by 

reproducing each dataset five times. As previously mentioned in Chapter 4, database 5 has two 

outputs. For this reason, four sequential stages for static ANN model development process 

were conducted twice to arrive at two desired prediction models for the two outputs. The 
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optimal network structure for the model 1 was finalized at 4 hidden nodes and 16,900 

iterations. The corresponding accuracy measures of model 1 on 163 datasets are listed as 

MRSEtr=0.1901, R2
tr=0.9967, MAREtr=0.165% (for training database) and MRSEts =0.4613, 

R2
ts=0.9851, MAREts= 0.213% (for testing database). The optimal network for Model 2 on 163 

datasets was reached at 4 hidden nodes and 20000 iterations. The corresponding accuracy 

measures of model 2 for this network are MRSEtr =0.6649, R2
tr=0.9283, MAREtr=1.278% (for 

training database) and MRSEts =0.8500, R2
ts=0.9283, MAREts= 1.101% (for testing database). 

Training MRSE value for model 1 increased by about 143% in testing while training MRSE value 

for model 2 increased by about 27.8% in testing. The training and testing plots on 163 and 81 

datasets for model 1 are shown in Figure 8-18 and Figure 8-19. In the plots, the training and 

testing predictions are closely scattered around the 45 degree line, which means that the 

predicted values are very close to the actual values. Similarly the training and testing plots for 

model 2 are also given in Figure 8-20 and Figure 8-21. The corresponding statistical accuracy 

measures for models 1 and 2 are presented in Table 8-1. 

The validation for model 1 and model 2 was conducted on 405 datasets. The validation plots on 

81 datasets for model 1 and model 2 are, respectively, given in Figure 8-22 and Figure 8-23. 

After the validation stage is concluded, all of the 1625 datasets were used to retrain the 

network at the optimal structure. The comparison plots of model 1 and model 2 for the 325 

datasets are, respectively, shown in Figure 8-24 and Figure 8-25. The resulting statistical 

accuracy measures for the validation and the all data cases are depicted in Table 8-1. All data 

MRSE statistical measures for both model 1 and model 2 have the best results compared to 

their previous stages.  

 

8.6 Dynamic-Sequential Network Model Development of Database 6 

This database containing highly non-linear behavior and multiple outputs was used to develop 

appropriate Dynamic-sequential based networks.  The original two hundred and ten datasets 

were converted to dynamic database by reproducing each dataset five times, and then divided 
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the new database into sub-databases: 525, 265, and 260 to be used, respectively, for training, 

testing, and validation tasks. As stated in Chapter 4, database 6 has three outputs for which 

Dynamic-sequential model development process was conducted three times to arrive at three 

desired prediction models for three outputs individually. In other words, Dynamic-sequential 

model development process was repeated for each output.  The number of sub-databases was 

kept the same for the three models. 

Dynamic-sequential network for Model 1 was determined at 3 hidden nodes and 20,000 

iterations. This network structure provided the optimal connection weights for the desired 

predictions. The training and testing accuracy measures on 105 and 53 datasets for model 1 is 

presented in Table 8-2 along the corresponding plots shown in Figure 8-26 and Figure 8-27. 

According to the statistical measures, the optimal network performed well in the training stage 

as well as in the testing stage. However, the MRSE value of the training, 0.0048 deteriorated to 

0.0110 for the testing stage, which corresponds to 129.2% increase in error. For the validation 

stage, the statistical measures changed slightly; however, for the all data stage, MRSE improves 

to a value of 0.0035, which translates into about 27% reduction in error from training stage.  All 

the statistical measures for the validation and all data stages, respectively on the original 52 

and 105 datasets, can be found in Table 8-2 and their corresponding comparison plots are, in 

the same order, represented in Figure 8-28 and Figure 8-29.  

Database used to develop Dynamic-sequential network for model 1 was also utilized for Model 

2 by considering 17 inputs, including the one from static ANN network, and 1 output. The 

optimal network for model 2 was reached at 2 hidden nodes and 20,000 iterations. The 

accuracy on 102 and 53 datasets for the training and testing stages of the selected network 

architecture is given in Table 8-2 and the graphical evaluation plots are depicted in Figure 8-30 

and Figure 8-31. Validation and all data stages were sequentially followed by the training and 

testing stages. Figure 8-32 and Figure 8-33, which are the plots for validation and all data 

predictions, indicate reasonably good agreement between the actual and predicted values. A 

good agreement between the actual and predicted values can easily be evaluated from Table 

8-2.  
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Following the same modeling procedure, a Dynamic-sequential network for model 3 was 

developed by considering the same input parameters, used for model 1 and model 2, and 

output 3.  The resulting statistical accuracy measures were obtained at  a structure of 6 hidden 

nodes and 7,100 iterations. Table 8-2 presents all the statistical measures for model 3. Also, 

corresponding graphical comparisons for the stages are represented in Figure 8-34, Figure 8-35, 

Figure 8-36, and Figure 8-37.  Even though scatter around the 45 degree line is noted in these 

plots, , most of the output values were predicted well. 

  

8.7 Dynamic-Sequential Network Model Development of Database 7 

Database 7 is the last database utilized in this chapter to develop an associated Dynamic-

sequential network. The database consists of 792 datasets divided into 396, 198, and 198 

datasets used for training, testing, and validation purposes. However, in order to obtain 

Dynamic-sequential network model, the database was reproduced five times and the number 

of datasets considered for modeling increased to 3,960 datasets, which was then divided into 

1980, 990, and 990 sub-datasets to satisfy the model’s training, testing and validation 

requirements. The optimal network structure was obtained as 6 hidden nodes and 20,000 

iterations. The accuracy plots are illustrated in Figure 8-38 and Figure 8-39. The plots show 

good correlation between actual values and predicted results. As can be observed from Table 

8-2, the developed Dynamic-sequential network has reasonably good statistics such as MRSEtr= 

1.1866, MAREtr= 14.910%, and R2
tr= 0.9855. Even though statistical accuracy measures for 

testing and validation stages deteriorated slightly, they are still considerably good. The accuracy 

of how good the validation datasets were predicted can be observed in Figure 8-40 and the 

corresponding statistics are shown in Table 8-2.  Combining all datasets and retraining the 

network improved model statistics noticeably.  All data predictions are graphically depicted in 

Figure 8-41 and the statistical accuracy measures are given in Table 8-2.  As a result, Dynamic-

sequential network was successfully developed and the statistical accuracy measures are 

adequate. 
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8.8 Concluding Remarks 

In this chapter, a new approach of feed-forward neural networks was explored by utilizing civil 

engineering databases. When databases are limited due to the cost and difficulties to collect 

information, model developing tools are vital to those who struggle to make a decision. In these 

cases, reliability of the tools is really important and current methods may not be adequate to 

generate a model with generalization capability. Artificial neural networks can be developed 

from databases of any size, but the reliability of some databases may be questionable. For this 

reason, the new method introduced in this chapter tried to answer the question: can we 

improve the generalization capability of the current models or/and reduce the error? In order 

to implement this method, the database is converted to a dynamic database by duplicating 

each dataset five times and including an initial estimate from static ANN network for the first 

iteration only.  

 

In order to develop Dynamic-sequential networks, seven civil engineering databases were used. 

Each database was converted to dynamic database first, and then the usual training, testing, 

and validation stages were performed. Even though the number of datasets for modeling was 

increased, the statistical measures and graphical plots were completed by considering the 

original size to validate the predictions at the end of fifth sequence. As can be perceived from 

the graphical results shown in Figure 8-2 to Figure 8-41 and the statistical accuracy measures 

listed in Table 8-1 and Table 8-2, the developed Dynamic-sequential network models attain 

good prediction accuracy.  A good trend between predicted and actual values is apparent for all 

databases considered herein.  

 

To assess the performance of the new models, the predictions of the developed models were 

compared (in terms of the same statistical accuracy measures) to the prediction obtained from 

their counterpart static ANN networks. The reduction of MARE for the seven databases can be 

seen in Table 8-3. The reduction for databases 1, 2, 4, and 6 – Output 1 are ranging from 8% to 

62%. Database 1 had 62% MARE reduction, which is the highest among the databases. The rest 

of databases did not perform well and some had an increase in MARE. In Table 8-3, the 
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databases, which did not perform better than static ANN network, are indicated as negative 

reductions. Table 8-4 presents the change in R2 values by the Dynamic-sequential networks and 

static ANN networks. Only database 2 and database 6 – output 1 has shown improvement. The 

remaining databases either had negative improvements or did not have any changes.  However, 

MRSE values by Dynamic-sequential networks depicted in Table 8-5 has more reduction than 

the MARE case. The positive reduction by Dynamic-sequential networks is ranging from 1% to 

67%. Five databases; Databases 1, 2, 5 – output 1, 6 –output 1, and 7 had reduction in MRSE 

values even though some of them is small. As can be seen from the results presented in Table 

8-3, Table 8-4, and Table 8-5, Dynamic-sequential network improved several of the statistical 

accuracy measures.   

 

In order to verify the stability of Dynamic-sequential network approach, statistical assurance 

concept was examined. The previously developed networks were validated by using two 

different initial estimate configurations, one of which is the mean of the output, and the other 

one is “0”. The statistical accuracy measures of the validation datasets with different initial 

estimate configurations were calculated and the results were compared for each database.  

This concept intended to imitate a situation where there is no initial estimate available. In 

addition, the networks were optimized on initial values from static ANN and now their 

performance without an initial estimate is intended to be investigated. The statistical accuracy 

measures for all seven databases are given in Table 8-6 to Table 8-15. The three initial 

estimates presented in the tables are static ANN, Value of “0”, and the Average value of the 

variable. Value “0” represents the case where the initial estimates for validation datasets were 

considered as “0”. All databases, except database 4 and database 7, have shown good trends. 

The statistical accuracy measures of those databases have matched successfully with the 

others. Even though some databases have shown slight changes, they are considerably small. 

For example, the MRSE of Value “0” is 350.2783, while the MRSE of static ANN is 347.9069. The 

difference between these two measures is negligible.  For database 4, using the initial estimate 

values as “0” caused an increase in error. MRSE of static ANN and Average value was, 

respectively, calculated as 154.4276 and 156.8112, while the MRSE of Value “0” had a value of 
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382.1132. The error by Value “0” is about 2.46 times higher than those by the static ANN. 

Although database 7 is another database with this exception, increase in error for database 7 is 

not as high as those noted for database 4. The best statistical measures for database 7 were 

noted when using initial estimate from the static ANN model. Using average value for initial 

estimate yielded MRSE value of 2.0871 which is about 7.8% higher than that by static ANN. For 

database 4 and database 7, using the initial estimate from static ANN seems to provide more 

accurate predictions. The decision to choose the best option in terms of initial estimate can be 

easily made by conducting the statistical assurance analysis once the optimal structure of the 

Dynamic-sequential network models is determined.  

 

Generally, once the Dynamic-sequential network is trained with the initial estimates from static 

ANN network, then any value fed into the network (as first estimate) will be stabilized by the 

network within the 5 sequential iterations.  It is recommended that the stability of any 

developed Dynamic-sequential network be examined to assure convergence regardless of the 

initial estimate.      
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8.9 Figures and Tables 

 

Figure 8-1 Architecture of a Dynamic-Sequential Network 

 

Figure 8-2 Dynamic-Sequential Network Training Accuracy of Database 1 
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Figure 8-3 Dynamic-Sequential Network Testing Accuracy of Database 1 

 

Figure 8-4 Dynamic-Sequential Network Validation Accuracy of Database 1 
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Figure 8-5 Dynamic-Sequential Network All Data Accuracy of Database 1 

 

Figure 8-6 Dynamic-Sequential Network Training Accuracy of Database 2 
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Figure 8-7 Dynamic-Sequential Network Testing Accuracy of Database 2 

 

Figure 8-8 Dynamic-Sequential Network Validation Accuracy of Database 2 
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Figure 8-9 Dynamic-Sequential Network All Data Accuracy of Database 2 

 

Figure 8-10 Dynamic-Sequential Network Training Accuracy of Database 3 

40

50

60

70

80

40 50 60 70 80

P
re

d
ic

te
d

 

Actual 

Dynamic-Seq. - Database 2 - All Data 

0

2000

4000

6000

8000

10000

0 2000 4000 6000 8000 10000

P
re

d
ic

te
d

 

Actual 

Dynamic-Seq. - Database 3 - Training  



 

160 

 

 

Figure 8-11 Dynamic-Sequential Network Testing Accuracy of Database 3 

 

Figure 8-12 Dynamic-Sequential Network Validation Accuracy of Database 3 
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Figure 8-13 Dynamic-Sequential Network All Data Accuracy of Database 3 

 

Figure 8-14 Dynamic-Sequential Network Training Accuracy of Database 4 
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Figure 8-15 Dynamic-Sequential Network Testing Accuracy of Database 4 

 

Figure 8-16 Dynamic-Sequential Network Validation Accuracy of Database 4 
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Figure 8-17 Dynamic-Sequential Network All Data Accuracy of Database 4 

 

Figure 8-18 Dynamic-Sequential Network Training Accuracy of Database 5, Output 1 
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Figure 8-19 Dynamic-Sequential Network Testing Accuracy of Database 5, Output 1 

 

Figure 8-20 Dynamic-Sequential Network Training Accuracy of Database 5, Output 2 
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Figure 8-21 Dynamic-Sequential Network Testing Accuracy of Database 5, Output 2 

 

Figure 8-22 Dynamic-Sequential Network Validation Accuracy of Database 5, Output 1 
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Figure 8-23 Dynamic-Sequential Network Validation Accuracy of Database 5, Output 2 

 

Figure 8-24 Dynamic-Sequential Network All Data Accuracy of Database 5, Output 1 
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Figure 8-25 Dynamic-Sequential Network All Data Accuracy of Database 5, Output 2 

 

Figure 8-26 Dynamic-Sequential Network Training Accuracy of Database 6, Output 1 
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Figure 8-27 Dynamic-Sequential Network Testing Accuracy of Database 6, Output 1 

 

Figure 8-28 Dynamic-Sequential Network Validation Accuracy of Database 6, Output 1 
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Figure 8-29 Dynamic-Sequential Network All Data Accuracy of Database 6, Output 1 

 

Figure 8-30 Dynamic-Sequential Network Training Accuracy of Database 6, Output 2 
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Figure 8-31 Dynamic-Sequential Network Testing Accuracy of Database 6, Output 2 

 

Figure 8-32 Dynamic-Sequential Network Validation Accuracy of Database 6, Output 2 
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Figure 8-33 Dynamic-Sequential Network All Data Accuracy of Database 6, Output 2 

 

Figure 8-34 Dynamic-Sequential Network Training Accuracy of Database 6, Output 3 
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Figure 8-35 Dynamic-Sequential Network Testing Accuracy of Database 6, Output 3 

 

Figure 8-36 Dynamic-Sequential Network Validation Accuracy of Database 6, Output 3 
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Figure 8-37 Dynamic-Sequential Network All Data Accuracy of Database 6, Output 3 

 

Figure 8-38 Dynamic-Sequential Network Training Accuracy of Database 7 
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Figure 8-39 Dynamic-Sequential Network Testing Accuracy of Database 7 

 

Figure 8-40 Dynamic-Sequential Network Validation Accuracy of Database 7 
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Figure 8-41 Dynamic-Sequential Network All Data Accuracy of Database 7 
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Table 8-1 Statistical Accuracy of Dynamic-Sequential Network Models for Database 1 to Database 5 

  

DYNAMIC-SEQUENTIAL NETWORK MODELS 

Accuracy 
Measures 

Database 1 Database 2 Database 3 Database 4 Database 5 

Output 1 Output 1 Output 1 Output 1 Output 1 Output 2 

8-(1-16)-19600-1 8-(1-3)-20000-1 13-(7-8)-100-1 7 - (1-7)-20000-1 4-(2-4)-16900-1 4-(1-4)-20000-1 

TR 

MARE 1.632 3.6220 14.322 20.581 0.165 1.278 

R2 0.9998 0.6681 0.9743 0.8710 0.9967 0.9283 

MRSE 1.2130 0.3839 73.5715 81.6443 0.1901 0.6649 

TS 

MARE 2.666 5.9117 18.006 21.747 0.213 1.101 

R2 0.9970 0.3861 0.9126 0.7959 0.9851 0.9283 

MRSE 6.6146 1.0838 135.4948 133.0335 0.4613 0.8500 

VAL 

MARE 2.923 6.6696 27.787 25.693 0.192 1.197 

R2 0.9978 0.0443 0.6193 0.7672 0.9952 0.9420 

MRSE 5.3440 1.0599 250.2872 150.2486 0.3266 0.8663 

ALL 
DATA   

MARE 1.550 3.6601 19.180 17.653 0.189 1.148 

R2 0.9998 0.5668 0.9317 0.8703 0.9945 0.9315 

MRSE 0.7781 0.2851 95.9043 49.4487 0.1651 0.4321 

FINAL STRUCTURE 8 - 16 - 1 8 - 3 - 1 13 - 8 - 1 7 - 7 -1 4 - 4 - 1 4 - 4 - 1 
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Table 8-2 Statistical Accuracy of Dynamic-Sequential Network Models for Databases 6 and 7 

  
 
 

Table 8-3 Reduction of Mean Absolute Relative Error (MARE) for seven databases 

Database # OUTPUT 
MARE 

Static ANN Dynamic-Seq. Reduction 

Database 1 Output 1 4.069 1.550 62% 

Database 2 Output 1 3.9681 3.6601 8% 

Database 3 Output 1 12.719 19.180 -51% 

Database 4 Output 1 20.359 17.653 13% 

Database 5 
Output 1 0.186 0.189 -1% 

Output 2 1.125 1.148 -2% 

Database 6 

Output 1 5.416 4.768 12% 

Output 2 11.529 13.873 -20% 

Output 3 8.009 11.711 -46% 

Database 7 Output 1 12.380 13.217 -7% 

 

  

DYNAMIC-SEQUENTIAL NETWORK MODELS 

Accuracy 
Measures 

Database 6 Database 7 

Output 1 Output 2 Output 3 Output 1 

17-(1-3)-20000-1 17 - (1-2)-20000-1 17 - (4-6)-7100-17 16-(3-6)-20000-1 

TR 

MARE 4.892 11.622 12.026 14.910 

R2 0.7882 0.9173 0.6304 0.9855 

MRSE 0.0048 0.2826 0.0131 1.1866 

TS 

MARE 7.455 14.220 12.322 16.139 

R2 0.3711 0.7403 0.6792 0.9728 

MRSE 0.0110 0.6284 0.0171 2.1826 

VAL 

MARE 8.414 21.466 13.470 15.123 

R2 0.3944 0.3085 0.5789 0.9701 

MRSE 0.0115 1.0644 0.0192 2.2814 

ALL 
DATA 

MARE 4.768 13.873 11.711 13.217 

R2 0.7196 0.8455 0.6419 0.9834 

MRSE 0.0035 0.2500 0.0089 0.8396 

FINAL STRUCTURE 17 - 3 - 1 17 - 2 - 1 17 - 6 - 17 16 - 6 - 1 



 

178 

 

 
Table 8-4 Improvement of Coefficient of Determination (R2) for seven databases 

Database # OUTPUT 
R2 

Static ANN Dynamic-Seq. Improvement 

Database 1 Output 1 0.9984 0.9998 0% 

Database 2 Output 1 0.4554 0.5668 24% 

Database 3 Output 1 0.9364 0.9317 -1% 

Database 4 Output 1 0.8549 0.8703 2% 

Database 5 
Output 1 0.9944 0.9945 0% 

Output 2 0.9333 0.9315 0% 

Database 6 

Output 1 0.6612 0.7196 9% 

Output 2 0.8721 0.8455 -3% 

Output 3 0.8377 0.6419 -23% 

Database 7 Output 1 0.9831 0.9834 0% 

 

 
 

Table 8-5 Reduction of Mean Root Square Error (MRSE) for seven databases 

Database # OUTPUT 
MRSE 

Static ANN Dynamic-Seq. Reduction 

Database 1 Output 1 2.3740 0.7781 67% 

Database 2 Output 1 0.3203 0.2851 11% 

Database 3 Output 1 63.7835 95.9043 -50% 

Database 4 Output 1 47.9782 49.4487 -3% 

Database 5 
Output 1 0.1676 0.1651 2% 

Output 2 0.4255 0.4321 -2% 

Database 6 

Output 1 0.0038 0.0035 9% 

Output 2 0.2276 0.2500 -10% 

Output 3 0.0059 0.0089 -51% 

Database 7 Output 1 0.8466 0.8396 1% 
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Table 8-6 Statistical Performance of the Initial Estimate Configurations, Database 1 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 1.9605 1.9651 1.9534 

R2 0.9995 0.9995 0.9995 

MRSE 2.7635 2.5962 2.6430 

 
 
 

Table 8-7 Statistical Performance of the Initial Estimate Configurations,  Database 2 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 4.8722 4.8722 4.8722 

R2 0.0901 0.0901 0.0901 

MRSE 0.8529 0.8529 0.8529 

 
 
 

Table 8-8 Statistical Performance of the Initial Estimate Configurations,  Database 3 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 31.3910 31.5006 30.8819 

R2 0.3552 0.3515 0.3408 

MRSE 347.9069 350.2783 350.2036 

 
 
 

Table 8-9 Statistical Performance of the Initial Estimate Configurations,  Database 4 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 25.1469 65.1780 29.2794 

R2 0.7586 0.2756 0.6586 

MRSE 154.4276 382.1132 156.8112 
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Table 8-10 Statistical Performance of the Initial Estimate Configurations,  Database 5, 

Output 1 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 0.1907 0.1907 0.1907 

R2 0.9951 0.9951 0.9951 

MRSE 0.3308 0.3308 0.3308 

 
 

Table 8-11 Statistical Performance of the Initial Estimate Configurations,  Database 5, 
Output 2 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 1.2140 1.2140 1.2140 

R2 0.9384 0.9384 0.9384 

MRSE 0.9089 0.9089 0.9089 

  
 

Table 8-12 Statistical Performance of the Initial Estimate Configurations,  Database 6, 
Output 1 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 
MARE 8.0844 8.0839 8.0844 

R2 0.3659 0.3658 0.3658 

MRSE 0.0109 0.0109 0.0109 

  
 

Table 8-13 Statistical Performance of the Initial Estimate Configurations, Database 6, 
Output 2 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 18.4232 18.3283 18.5283 

R2 0.3343 0.3454 0.3256 

MRSE 0.9981 0.9831 1.0139 
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Table 8-14 Statistical Performance of the Initial Estimate Configurations, Database 6, 

Output 3 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 13.1380 13.1518 13.1553 

R2 0.5534 0.5514 0.5526 

MRSE 0.0208 0.0208 0.0208 

  
 
 
 

Table 8-15 Statistical Performance of the Initial Estimate Configurations,  Database 7 

Accuracy 
Initial Estimate 

Static ANN Value "0" Average 

MARE 11.0321 11.6874 11.3988 

R2 0.9782 0.9659 0.9751 

MRSE 1.9365 2.3738 2.0871 
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CHAPTER 9  

9. QUERY METHOD 

Advanced systems to collect data and analyze databases became easier with the availability of 

more powerful computers. Nowadays, the digital revolution made data mining systems and 

their analysis methods very common. As explored in the previous chapters, computational 

systems such as Artificial Neural Networks (ANNs) are the preferred advanced systems to 

extract ultimate information from the databases. Especially in engineering applications, it is 

very beneficial to utilize these types of advanced systems. However, collecting and analyzing 

databases can be expensive and time consuming. In addition, very often the values of one or 

more explanatory variables may be missing. These are incomplete datasets: datasets with 

missing values. Most data mining algorithms cannot work directly with incomplete datasets. All 

the ANN approaches explored in this study use backpropagation algorithm, which does not 

work with incomplete datasets as well. In other words, developed ANN models can generate 

outputs, if a complete dataset is provided to the models. For this reason, it is necessary to 

utilize a tool to replace missing inputs of the datasets because missing data is a common 

occurrence and may have a significant effect on the results that can be drawn from the 

database.  

One of the widely used techniques to deal with a dataset with missing input is the deletion 

technique, which is simply removing the incomplete dataset from the database. On the other 

hand, the small database size limits the applicability of deletion technique that reduces the 

database size even further. This may lead to an inconclusive analysis, because the sample of 

complete cases may be too small to obtain statistically significant trends. The most common 

technique for filling in a missing value is mean substitution; replacing missing values with the 

mean of the variable. The major advantage of the method is its simplicity. However, this 

method yields biased estimates of variances and covariances (Gheyas et al., 2009). Some of the 

popular missing data imputation algorithms are EM (Expectation Maximization), MI (Multiple 

Imputation), MCMC (Markov Chain Monte Carlo), and hot deck MI (Gheyas and Smith, 2009). 
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Another possible solution for missing input parameters is to develop individual prediction 

models for each parameter that are optimized on the target input parameter, but this requires 

lots of time and effort to accomplish. There is a wide variety of methods for handling missing 

data, which vary a great deal in their mathematical complexity or in time and effort. In addition, 

the applicability of these algorithms requires advanced knowledge in programming.  

Therefore, the simple solution to resolve this issue is introduced in this study: the Query 

method, a new approach to replace a partially missing dataset. By using the entire database, 

the closest neighborhood datasets are determined based on Euclidean distances for a newly 

introduced incomplete dataset. The Query Method tends to maximize the likelihood by finding 

similar datasets within the closest neighborhood. This method assumes that every data in the 

database is considered as the center of their neighborhood. 

For the case of an incomplete dataset, the closest neighborhood is determined based on 

Euclidean distances between the normalized incomplete dataset and normalized datasets in the 

database. It is essential to use normalized values because numerical magnitude of the variables 

can dominate each other. Normalization has applied based on the minimum and maximum of 

the variables. In this case, all the variables are normalized between 0 and 1. The normalization 

process can be expressed as: 

 

      
        

           
        Eqn. 9.1 

 

Where;  

  = Actual value of the parameter 

     =Minimum value of the variable  

     =Maximum value of the variable 
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In order to implement the Euclidean distance, the Query method is modified by including a 

missing variable coefficient. With this modification, magnitude of the missing variable is 

excluded from the calculation. The coefficient value is assigned as “1” if the variable is not 

missing. If the variable is missing, then the coefficient is assigned a “0” value. New form of the 

Euclidean distance from p to pa is defined as: 

 

 (    )  √(      )     (      )            (      )            Eqn. 9.2  

 

Where ; 

p = the vector of the incomplete dataset, p= (p1, p2, p3, ……, pn),   

pa = vector “a” of the complete dataset within the database, pa=(pa1, pa2, pa3, ……, pan), 

C = the vector of variable coefficients, C= (C1, C2, C3,………, Cn). 

  

For example, in Equation 9.2, if the missing variable of the new dataset is p2 in Equation 9.2, the 

value of the missing variable coefficient, C2 is assigned a value of “0” while all the other 

coefficients are assigned as a value of “1”.  N dimensional space is reduced to n-1 dimensional 

space accordingly. The more missing parameters the dataset has, the less dimensional space 

the equation considers and the chance to determine the right neighborhood of the 

corresponding dataset decreases.  

By using Equation 9.2, all Euclidean distances between incomplete dataset and every complete 

dataset in the database are calculated and sorted based on the least distance. The missing 

parameter is replaced with the average value of the 3 closest datasets. A preliminary study has 

shown that using the average of 3 datasets with the closest Euclidean distance presented the 

best possible prediction outcomes. For this reason, the optimum value, as the representative of 

the neighborhood, is determined based on the closest three datasets. Even though the Query 

method is able to replace any missing input variable, it can also be used to generate output(s) 

as well by simply considering the output(s) as a missing variable.   
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In order to explore the Query method, the seven databases described in Chapter 4 were utilized 

to verify the Query method predictions. The statistical accuracy measures and graphical 

comparison plots are presented in the following sections for each database. The Query method 

application was developed for all seven databases, but it is explored for only the output(s). 

Accordingly, the results presented in the following sections are only related to the output. In 

order to develop Query method applications for seven databases, datasets used for training 

and testing in the previous chapters were utilized to develop the applications, and the 

validation datasets were similarly used for validation. However, once the statistical accuracy 

measures and graphical comparison plots were obtained, then the Query method application 

was re-developed by considering the entire database including validation datasets. This 

procedure was done to verify the method’s performance on the database itself. If the 

application can find the right neighborhood when the datasets themselves are imputed, then 

the reliability of the method can be verified properly. As it was done in previous chapters, the 

accuracy of the method was interpreted based on the statistical accuracy measures such as 

MARE, R2, and MRSE.      

9.1 Query Method Application Development of Database 1   

Two hundred and twenty nine datasets with 8 variables (7 inputs and 1 output) were 

considered to develop the Query method application.  Eight variables of the complete datasets 

and validation datasets were normalized based on their corresponding minimum and maximum 

ranges. The actual output values of the validation datasets were only considered to calculate 

the statistical accuracy measures. Once the variables were normalized, the new form of the 

Euclidean distance given in Equation 9.2 was calculated between each validation dataset and 

complete datasets. After sorting the datasets based on the Euclidean distances, the closest 

three datasets were considered to replace the output. In order to evaluate the replaced values 

by the Query Method, a model using linear regression analysis approach was developed to 

compare the results. The first step was to develop the Query method application with 229 

datasets and validate it on 71 datasets. The graphical accuracy plot of the validation datasets is 

shown in Figure 9-1. The statistical accuracy measures of the Query method and regression 
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model are depicted in Table 9-1. The second step was to develop the Query method application 

with all datasets (i.e. 300 datasets) and validate it by using the same datasets used to develop 

the application. The graphical accuracy plots for all datasets are given in Figure 9-2. All the 

corresponding statistical measures of the Query method application for the validation are 

presented in Table 9-2 along with the statistical accuracy measures of the linear regression 

model.  As can be seen from the plots and tables, Query method has reasonably good results 

even though the regression model has outperformed the Query method for validation stage. 

When the entire dataset was included, the accuracy measures were quite improved for Query 

method while the ones by regression model improved slightly. Consequently, the Query 

method application for all data performed better than the regression model. It can be inferred 

that including all datasets improve the accuracy of the method because the Query method 

relies completely on the available complete datasets.    

9.2 Query Method Application Development of Database 2 

A database consisting of 100 datasets was used to develop a desired Query method application 

for Database 2. As noted previously, the datasets are divided into two sets; 78 and 22 datasets 

for developing the application and validation. An input vector consisting of 7 parameters and an 

output vector consisting of 1 parameter were considered to develop the Query method 

application for database 2. A graphical comparison of validation stage between the predicted 

and the actual is depicted in Figure 9-3. The Query method application for validation stage 

yielded a mean root square error, MRSEval of 0.7669, mean absolute relative error, MAREval of 

4.5964, and coefficient of determination, Rval
2
 of 0.1731. To evaluate the results by the Query 

method, a model using linear regression analysis approach was developed. All 100 datasets 

were also used to develop the Query method application and the regression model and the 

methods were validated on the same datasets. The graphical comparison of all data stage for 

the Query method is shown in Figure 9-4 and statistical accuracy measures for all data stage are 

MRSEall of 0.2919, MAREall of 3.5651%, and Rall
2 of 0.5508. The corresponding statistical 

measures of all the Query method applications and regression models were given in Table 9-1 

and Table 9-2. As seen from the statistical measures, the query method successfully predicted 
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the output even though the regression model has outperformed the Query method for the 

validation stage. It is clear from the results that all data MRSE by the Query method is lower 

than the all data MRSE by regression model. MARE and R2 values by the Query method for all 

data stage are better than those by regression model. As a result, Query method application 

effectively replaced the output when all datasets were involved in the application 

development.  

9.3 Query Method Application Development of Database 3 

Another database from an experimental study was considered to develop the Query method 

application. A total of 126 datasets were used to develop Query method application for 

database 3. Ninety five and 31 of total datasets were, respectively, considered for Query 

method application and validation. Similarly, the same datasets were used to obtain the 

regression model. An attempt to obtain the application and model for database 3 was initiated 

with 12 inputs and 1 output. The statistical measures for validation stage are shown in Table 9-1 

and the graphical plots of the Query method predictions are depicted in Figure 9-5. As can be 

perceived from the table, Query method has a MRSE value of 317.5696 while Regression model 

has 176.1023, which is about 44.54% less. In this case, the regression model has better 

statistical measures for the validation stage. When all datasets were included to develop the 

Query method application and the regression model, the statistical measures were improved. 

However, the improvement by Query method is significantly better than that by the regression 

model. For example, the MRSE value by the Query method has reduced to a value of 90.4443 

while the MRSE value by the regression model has come down to a value of 109.3843. In other 

words, the Query method application developed with all data has reduced the MRSE value 

about 71.52% while the regression model developed with all data has reduced the MRSE value 

about 37.89%.   The graphical accuracy measures by the Query method for all data stage can be 

seen in Figure 9-6. All the corresponding accuracy measures for the Query method application 

and the regression model are presented in Table 9-2.   
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9.4 Query Method Application Development of Database 4 

To properly develop a Query method application for database 4, a total of 265 datasets; 199 

and 66 datasets were, respectively, used for Query method application development and 

validation. The input vector consisted of 6 parameters and the output vector consisted of 1 

parameter. By using 199 datasets, the Query method application was developed and tested on 

66 datasets. Similarly, the same datasets were used to develop a regression model and tested.  

The query method application for validation stage yielded a mean root square error, MRSEval of 

124.331, mean absolute relative error, MAREtr of 32.860%, and coefficient of determination, 

Rtr
2 of 0.764, while the regression model has a MRSE value of 166.33330, MARE value of 

55.0471, and R2 of 0.5933. As can be interpreted from the results, the Query method has a 

lower MRSE and MARE, and higher R2. Similarly, when all datasets were used, the statistical 

accuracy measures for the Query method are still better than the regression model. This 

indicates that the datasets used to develop the Query method application for validation stage 

had an adequate number of datasets representing the neighborhoods in database 4. Graphical 

comparisons of validation and all data stages are, respectively, shown in Figure 9-7 and Figure 

9-8. The corresponding statistical measures for validation and all data stages are, respectively, 

given in Table 9-1 and Table 9-2. A good agreement between actual and predicted values by the 

Query method is evident.  

9.5 Query Method Application Development of Database 5 

Database 5 has been built by considering 325 datasets. Two hundred and forty four and 81 

datasets were, respectively, used for the Query method application and for the validation. As 

stated before, database 5 has two outputs. Even though other approaches utilized this 

database twice to arrive at the optimal structure, the Query method utilized the two outputs at 

once. In order to evaluate the accuracy of the method, a regression model was also developed. 

However, since the regression model cannot be developed with outputs, two different 

regression models were used to generate two outputs. The results by the Query method and 

the regression models for the validation and all data stages are promising for both outputs. 

However, the accuracy measures for output 1 by the regression model have lower MRSE and 
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MARE values. A similar situation can be told for output 2 in the validation stage, but when it 

comes to the all data stage the accuracy measures for only output 2 by the Query method are 

better than the regression model. Graphical accuracy measures for outputs 1 and 2 in validation 

stage are given in Figure 9-9 and Figure 9-10. Similarly, graphical accuracy plots for all data 

stages by the Query method are depicted in Figure 9-11 and Figure 9-12. All the statistical 

accuracy measures by the Query method and the regression models are depicted in Table 9-1 

and Table 9-2.  As a result, both of the models can be used efficiently. Nevertheless, the effort 

to develop two regression models has to be noted. In addition, the models by regression were 

optimized on the two outputs for this case but when the problem is to place a missing variable, 

multiple attempts to develop individual models for each variable are necessary. In this case, 

regression analysis will be a time-consuming method while the Query method is very easy to 

implement for multiple outputs and missing variables. The Query method can be considered as 

multifunctional approach compared to other methods even though the prediction accuracy of 

the method may not be as good.        

9.6 Query Method Application Development of Database 6 

Another database with highly non-linear behavior and multiple outputs was used to develop a 

corresponding Query Method application. Two hundred and ten datasets were collected to 

build database 6 and divided into two sub-databases: 158, and 52 to be used, respectively, for 

the Query method application and validation. As stated in Chapter 4, database 6 has three 

outputs that need to be utilized multiple times to develop ANN models or other advanced 

methods. However, the Query method utilizes all three outputs and inputs together to replace 

a missing value, or in other words to generate predictions. Databases may have missing 

variables even though their output(s) are present. In this case, the conventional methods may 

consider the present output if they are optimized on that specific variable, but because of the 

effort to develop various models by considering probabilistic cases, it may not be available. The 

Query method uses every variable provided that belongs to the dataset. For database 6, 16 

inputs and 3 outputs were used to develop the Query method application. In order to compare 

the statistical accuracy measures, a regression analysis was performed three times to obtain 
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three models because the number of output is limited to one in the regression analysis 

approach. The statistical accuracy measures by the Query method for output 1 in validation and 

all data stages are given in Figure 9-13 and Figure 9-14.  The MRSE value by the Query method 

for the validation stage, 0.0110, has decreased to 0.0030 for the all data stage, which 

corresponds to a 72.7% reduction in error while MARE value decreased about 44.4%. For the 

regression model, the MRSE value for the all data stage improves to a value of 0.0047 from 

0.0100, which translates into about 53% reduction in error, while MARE value decreased about 

5.8%. Even though R2 value by the Query method seems to increase as well from 0.349 for 

validation stage to a value of 0.72 for all data stage, the main criterion, which is MRSE, has a 

reasonable reduction in error. All the statistical measures for the validation and all data stages 

by the Query method and regression model can be found in Table 9-1 and Table 9-2. The 

graphical plots for the output 2 in validation and all data stages by the Query method are 

shown in Figure 9-15 and Figure 9-16. A good agreement between the actual and the predicted 

values can be clearly seen in the plots. Similarly, Figure 9-17 and Figure 9-18, which are the 

plots of output 3 in validation and all data stages, indicate reasonably good correlation between 

the actual and predicted values. The corresponding accuracy measures of all outputs by the 

Query method as well as the regression model are depicted in Table 9-1 and Table 9-2.    

As can be noted from the tables and all the graphical plots, the Query method application for 

database 6 was successfully developed even though some of the statistical accuracy measures 

in validation stage were lower than those by the regression model. Overall comparison of these 

three outputs has showed that the least MRSE and MARE values were obtained for the output 1 

even though R2 value for output 1 was the least among the three outputs. The Query method 

for all data stage has outperformed the regression model.   

9.7 Query Method Application Development of Database 7  

The last database utilized in this chapter to develop Query method application is Database 7, 

which consists of 792 datasets divided into 594 and 198 datasets for the application and its 

validation. By considering 15 inputs and 1 output, the desired application was initiated with the 

validation stage. Five hundred and ninety four datasets were used to develop both the Query 
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method and the regression model and then validated on 198 datasets. The statistical accuracy 

measures of the validation stage are shown in Table 9-1.  The graphical comparison plots of the 

Query method for the validation stage can be seen in Figure 9-19. The MRSE value by the 

regression model is less than the one by the Query method. However, the MARE by the Query 

method is lower than the regression model. Both the Query method and the regression model 

have improved the accuracy when the application and the model were developed with the 

entire database. As can be seen from Table 9-2, the Query method has reasonably good 

statistics such as MRSEval= 1.4197, MAREval= 10.6884%, and R2
val= 0.9530. Even though the 

regression model improved the accuracy, its results are not as good as the Query method. 

Combining all datasets and developing the application improved the model statistics markedly. 

In this case, MRSE value of 3.6459 for validation was reduced to a value of 1.4197, which can be 

translated into an 61.1% reduction. The MARE value of 14.5443 for validation stage  has gone 

down to a value of 10.6884, which is about 26.5% reduction, and the R2 value of 0.9209 for 

validation increased to a value of 0.9530, that corresponds to a 3.5% increase. In the same 

order, the regression analysis has shown 46.8% and 3.8% improvements for MRSE and MARE, 

and -2.3% reduction for the R2. The plots for all data stage by the Query method is depicted in 

Figure 9-20 indicate the good correlation between actual and predicted results, even though 

there seem to be few outliers at the higher end of the plots. All the statistical measures can be 

evaluated in Table 9-1 and Table 9-2. Also, Table 9-3 presents the changes of the statistical 

measures between validation stage and all data stage. Negative values indicate that the values 

deteriorated.  As a result, the Query method for database 7 was effectively developed and the 

statistical accuracy measures are adequate.     

9.8 Query Method Utilization  

In order to utilize a database to develop a Query method application, all calculations and 

procedures explained previously must be followed. This may take a lot of time and effort 

depending on the size of the database and its variables. Even though the Query method can 

simply be applied to any database, it might be time-consuming to do all the calculations 

manually. For this reason, to be able to process databases faster and without any calculation 
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errors, an Excel-based application was developed using Visual Basic programing language. As 

can be seen from Figure 9-21, the datasets were placed into the cells below the blue line, 

indicated with the arrow, by considering the first column as the numbering. By clicking the “Run 

Application” button, the program normalizes all the values and then prepares the foundation 

for the application to calculate the Euclidean distance and sort the datasets. If there is a 

validation dataset, the Validation cell shown in Figure 9-21 needs to be entered with the 

desired number. Otherwise the application assumes that there is no validation dataset and uses 

all datasets for the application. Once it finishes the development, then it generates a user 

interface which is located in another worksheet called “Program” in the same excel file. The 

user interface has the cells to enter the incomplete dataset. There is also another button that 

accomplishes the sorting of the database. All the cells with the calculations placed on another 

page but every cell is linked to that page. If an incomplete dataset is imputed, then excel 

functions check to find the missing variable, assigns the coefficients on the other page and all 

the Euclidean distances between new dataset and all complete datasets in database are 

simultaneously calculated. However, in order to find the closest datasets, the datasets with the 

Euclidean distances have to be sorted. To operate this, excel function were used to assign a 

button on the user interface page. The user interface for database 1 can be seen in Figure 9-22. 

If there are validation datasets initially imputed on the database page, then statistical analysis 

can be started by clicking the “Validation” button on the first page, where the datasets were 

initially placed. This command will copy the validation datasets onto another sheet to start the 

statistical analysis process. In this process, each variable of the database assumed to be missing 

and the value is replaced by the Query method. Only one variable at a time is assumed to be 

missing if there are not multiple outputs involved in the database. The replaced values are 

imputed into the cells on the same page and the error is calculated by considering the actual 

value. Once all the datasets are considered, then the statistical accuracy measures, such as 

MRSE, MARE, and R2, for each variable including output(s) are calculated in a table and 

provided to the user. Consequently, placing the desired database and hitting a button to 

develop the Query method application has made this  application very easy to use and apply to 

any database.   
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9.9 Concluding Remarks 

In this chapter, a new approach to replace partially missing dataset in databases is introduced 

and utilized on civil engineering databases. This approach is based on determining the 

Euclidean distance between two vectors whose components are located in the same space and 

one of which has a missing components. Basically, the Euclidean distance between one vector 

with a missing component and another vector with complete components is calculated by 

excluding the missing component in the calculation. In this case, missing (unknown) variable 

and its matching variable in the same dimension is omitted to obtain a physical distance. As can 

be seen from the Equation 9.2, the exclusion of the missing variable components is controlled 

by the missing variable coefficient. So to verify this methodology, seven databases were utilized 

to develop corresponding Query method applications.  To accomplish this, the databases were 

divided into two sub-datasets, one of which is to develop the Query method application, and 

the other is to validate the application. Once the statistical accuracy measures were obtained, 

then all datasets were combined to obtain a Query method application to expand the number 

of neighborhoods. Moreover, the combined datasets to develop the application were re-used 

again to validate the application. Similarly, the same datasets used for Query method 

application development and validation were also utilized to develop the linear regression 

models to compare the prediction performances.  

As can be seen from Figure 9-1 to Figure 9-20 and the statistical accuracy measures presented 

in Table 9-1 and Table 9-2, all of the Query method applications developed for seven databases 

performed well. A good trend between predicted and actual values is apparent in the plots. 

Even though the Query method application for the validation stage did not perform as well as 

the regression model for most cases, its results can still be considered as reasonable. For most 

cases, the Query method competed with the regression model results. Once the validation 

stage was completed, all datasets were used to re-develop the Query method and the 

regression model by considering all datasets. The performance of the application and the model 

was, this time, much better. Moreover, the Query method has improved most of its statistical 

measures dramatically. Table 9-3 presents the performances of the Query method as well as 

the regression model in terms of percentages. According to Table 9-3, the Query method has 
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outperformed the regression model in term of the three statistical accuracy measures. 

Database 5, output 1 is the only case that the Query method could not improve the measures.  

In order to develop application that can easily utilize Query method, an Excel-based application 

was developed as it was explained before. By using Visual basic programing language and Excel 

functions together, a user-friendly tool in a widely used Excel environment was developed. In 

order to develop a Query method application for the desired database, this Excel-based 

application is imputed with the desired database and with one simple click the Query method 

application is developed. Additionally, the validation of the application can also be performed 

with the buttons placed on the user-interface of the application. The screen-shots from the 

Excel-based application are illustrated in Figure 9-21 and Figure 9-22.       

 

Consequently, the Query method was introduced and explored on the seven databases in this 

chapter. The statistical accuracy measures are very promising. This method can be very handy 

when there are multiple outputs since it does not require multiple model development. The 

applicability of this method is not limited to civil engineering databases. It can be used for any 

database with adequate and reliable components. Databases with lots of datasets are possibly 

the best candidates for this method because more datasets indicate more neighborhoods, 

which could mean more accurate data replacements. This method can efficiently be used to 

replace the missing variables and/or predict outputs. The developed Excel-based application is 

easy to use and can be applied to any database by anyone without the need for much expert 

knowledge.    
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9.10 Figures and Tables 

 
Figure 9-1 Query Method Validation Accuracy of Database 1 

 

Figure 9-2 Query Method All Data Accuracy of Database 1 
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Figure 9-3 Query Method Validation Accuracy of Database 2 

 

Figure 9-4 Query Method All Data Accuracy of Database 2 
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Figure 9-5 Query Method Validation Accuracy of Database 3 

 

Figure 9-6 Query Method All Data Accuracy of Database 3 
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Figure 9-7 Query Method Validation Accuracy of Database 4 

 

Figure 9-8 Query Method All Data Accuracy of Database 4 
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Figure 9-9 Query Method Validation Accuracy of Database 5, Output 1 

 

Figure 9-10 Query Method Validation Accuracy of Database 5, Output 2 

600

700

800

900

1000

1100

600 700 800 900 1000 1100

P
re

d
ic

te
d

 

Actual 

Query Method - Database 5 - Validation - O1 

350

400

450

500

550

600

650

350 400 450 500 550 600 650

P
re

d
ic

te
d

 

Actual 

Query Method - Database 5 - Validation - O2 



 

200 

 

 

Figure 9-11 Query Method All Data Accuracy of Database 5, Output 1 

 

Figure 9-12 Query Method All Data Accuracy of Database 5, Output 2 
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Figure 9-13 Query Method Validation Accuracy of Database 6, Output 1 

 

Figure 9-14 Query Method All Data Accuracy of Database 6, Output 1 
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Figure 9-15 Query Method Validation Accuracy of Database 6, Output 2 

 

Figure 9-16 Query Method All Data Accuracy of Database 6, Output 2 
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Figure 9-17 Query Method Validation Accuracy of Database 6, Output 3 

 

Figure 9-18 Query Method All Data Accuracy of Database 6, Output 3 
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Figure 9-19 Query Method Validation Accuracy of Database 7 

 

Figure 9-20 Query Method All Data Accuracy of Database 7 
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Figure 9-21 Excel-based Query Method Application - Database Replacement Screen shot 

 

 

Figure 9-22 Excel-based Query Method Application - User Interface Screen shot 
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Table 9-1 Statistical Accuracy Measures of the Query Method and Regression Analysis, 
Validation Datasets 

  
Query Method Regression Analysis 

Database # Output MARE R2 MRSE MARE R2 MRSE 

Database 1 Output 1 16.1212 0.8791 41.1251 27.8169 0.9466 26.9556 

Database 2 Output 1 4.5964 0.1731 0.7669 4.1551 0.3280 0.6884 

Database 3 Output 1 45.1334 0.3369 317.5696 33.6932 0.7917 176.1023 

Database 4 Output 1 32.8600 0.764 124.331 55.0471 0.5933 166.3330 

Database 5 
Output 1 0.8540 0.9270 1.9310 0.2418 0.9966 0.3639 

Output 2 1.7740 0.9040 1.4260 1.5859 0.9233 1.2218 

Database 6 

Output 1 8.5420 0.3490 0.0110 7.3136 0.3080 0.0100 

Output 2 14.5020 0.6140 0.6230 19.2126 0.5527 0.7612 

Output 3 16.0950 0.2410 0.0310 13.3274 0.5486 0.0212 

Database 7 Output 1 14.5443 0.9209 3.6459 67.7496 0.8355 5.2258 

 
 
 
 

Table 9-2 Statistical Accuracy Measures of the Query Method and Regression Analysis, All 
Data 

  
Query Method Regression Analysis 

Database # Output# MARE R2 MRSE MARE R2 MRSE 

Database 1 Output 1 6.5119 0.9775 9.1164 27.5339 0.9469 13.4313 

Database 2 Output 1 3.5651 0.5508 0.2919 4.5952 0.2956 0.3635 

Database 3 Output 1 24.0542 0.8293 90.4443 31.4739 0.7460 109.3843 

Database 4 Output 1 12.4340 0.9220 35.2290 36.8175 0.6163 77.9634 

Database 5 
Output 1 1.7740 0.9040 1.4260 1.5859 0.9233 1.2218 

Output 2 0.8480 0.9590 0.3340 1.3239 0.9084 0.4984 

Database 6 

Output 1 4.7510 0.7200 0.0030 6.8951 0.4731 0.0047 

Output 2 11.0670 0.8220 0.2690 18.1858 0.6419 0.3803 

Output 3 8.3280 0.8060 0.0070 11.5157 0.6732 0.0084 

Database 7 Output 1 10.6884 0.9530 1.4197 65.2027 0.8162 2.7822 
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Table 9-3 Changes of the Statistical Accuracy Measures from Validation to All Data 

  
Query Method Regression Analysis 

  
MARE R2 MRSE MARE R2 MRSE 

Database # Output# 
Reduction 

(%) 
Improv. 

(%) 
Reduction 

(%) 
Reduction 

(%) 
Improv. 

(%) 
Reduction 

(%) 

Database 1 Output 1 59.6 11.2 77.8 1.0 0.0 50.2 

Database 2 Output 1 22.4 218.2 61.9 -10.6 -9.9 47.2 

Database 3 Output 1 46.7 146.1 71.5 6.6 -5.8 37.9 

Database 4 Output 1 62.2 20.7 71.7 33.1 3.9 53.1 

Database 5 
Output 1 -107.7 -2.5 26.2 -555.8 -7.4 -235.8 

Output 2 52.2 6.1 76.6 16.5 -1.6 59.2 

Database 6 

Output 1 44.4 106.3 72.7 5.7 53.6 53.0 

Output 2 23.7 33.9 56.8 5.3 16.2 50.0 

Output 3 48.3 234.4 77.4 13.6 22.7 60.5 

Database 7 Output 1 26.5 3.5 61.1 3.8 -2.3 46.8 
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CHAPTER 10  

10. HYBRID DECISION MAKING SYSTEM 

10.1 System Components  

In the previous chapters, seven databases described in Chapter 4 were utilized to develop a 

new set of ANN modeling approaches/paradigms along with a new method to tackle partially 

missing data. For each database, static ANN network was developed in four sequential stages. 

The predictions generated at the fourth stage were fed into Feedback ANN network, Auto-

associative network, and Dynamic-sequential network. Then the model development process 

was initiated for these approaches to develop new models. In Chapter 9, the Query method, 

which is a new approach to replace partially missing dataset, was introduced and utilized to 

develop the application for seven databases. All the statistical measures of the models 

developed in previous chapter are grouped together in one table for each database and are 

shown in Table 10-1 to Table 10-10.  As can be seen from statistical measures, the 

performances of the developed models for each database varied. For instance, the best 

performing network for database 3, database 6 –output 1, -output2, and - output 3, and 

database 7 was found to be the Feedback ANN network in terms of overall MRSE value. For 

database 1 and database 2, the best performing network was found to be the Dynamic-

sequential network. Similarly, database 4 was modeled best by the Auto-associative network. 

As also graphically presented in Figure 10-2 to Figure 10-11, the MRSE values by Static ANN 

network for database 5 - output 1 and –output 2 were the least. All the statistical measures and 

the graphs proved that the best performing network can vary depending on the characteristics 

of the database. For this reason, it is necessary to integrate all the models and utilize them 

through a hybrid decision system before the final decision is made. The schematic diagram of 

the proposed hybrid decision making system is shown in Figure 10-1. Therefore, the proposed 

hybrid decision making system has the following components:    

 

1. Static ANN Network 
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2. Feedback ANN Network 

3. Auto-associative Network 

4. Dynamic-sequential Network 

5. Query Method Application 

 

10.2 System Prediction 

As can be seen from the diagram in Figure 10-1, the first part of the diagram questions whether 

the dataset has a missing variable or not. If there is a missing parameter, then the missing value 

is replaced by the Query method. Once the complete dataset is obtained, static ANN network 

generates a prediction by using the input variables. The generated prediction by static ANN 

network is then fed into Feedback ANN, Auto-associative, and Dynamic-sequential networks. 

Then, three more predictions are generated from these networks. Additionally, another 

prediction is obtained from the Query method. As mentioned in Chapter 9, Query method can 

be used to generate outputs as well. However, the accuracy of the Query method is not as good 

as the other networks but it is still can be considered in the final decision. It is noteworthy to 

state that the Query method is developed by using entire database to expand the number of 

neighborhoods. As static ANN network feeds into the other networks, the prediction by the 

Query method can also feed into the same networks. However, only static ANN predictions are 

considered in this study to provide initial estimates because of their high accuracy performance 

in the model development process. Future studies will look into expanding this study by 

including Query method output as an initial estimate. Once all four networks are utilized along 

with the Query method, five predictions are provided to the user. Even though this system is 

designed for the user to make the final decision utilizing a prediction range, recommended 

values based on the statistical accuracy measures obtained in the model development process 

are also provided. Essentially, the user is provided with a prediction range as well as the 

weighted outputs based on MRSE, MARE, and R2 values. The weighted output based on the 

MRSE is calculated as follows: 

 



 

210 

 

               
 

(
         

∑    
)
           

 

(
          

∑    
)
             

 

(
            

∑    
)
 

             
 

(
             

∑    
)
             

 

(
           

∑    
)
              Eqn. 10.1 

 

Similarly, the weighted output based on the MARE values can be calculated as: 
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The weighted output based on the Coefficient of  determination, R2 is expressed as:  
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Basically, each prediction from the networks is weighted with their model development 

accuracies and then summed to obtain a weighted output. Equations 10.1, 10.2, and 10.3 

represent the weighted outputs based on, respectively, MRSE, MARE, and R2. Equations 10.1 

and 10.2 look different than the Equation 10.3 because of the inverse ratio.  

 

10.3 Utilization  

In order to develop a hybrid decision making system for each database in an Excel environment, 

the connection weights, threshold values and coefficients of the optimal networks, which are 

described in Chapter 3 were imported into an Excel sheet. The components of each network 

(i.e. Static ANN, Feedback ANN, Auto-associative, and Dynamic-sequential networks) were 

imported into an individual worksheet that is linked to an integrated user interface worksheet 
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where all the predictions are shown from all the networks. Developed Query method 

application for each database was also carried to an individual worksheet in the same excel file. 

Three examples of the Excel interfaces developed for three databases: Database 1, Database 2, 

and Database 6 are, respectively, shown in Figure 10-12, Figure 10-13, and Figure 10-14. As can 

be seen from example interfaces in the figures, two databases have one output and one 

database has three outputs. By entering the input parameters in the input cells, Excel 

automatically generates all the predictions by the networks that are embedded in other 

worksheets. All the predictions are shown under the output section. The only prediction that 

needs an operation to be generated is the Query method. All the calculations by the Query 

method are accomplished in other worksheet in the same Excel file. However, datasets have to 

be sorted based on the least Euclidean distance. This operation can be easily done by using the 

data sort feature of Excel, but developed worksheets are equipped with Query method button 

that accomplishes the sorting. The same button is also used for a missing dataset. For example, 

if an incomplete dataset is entered in one of those interfaces developed in this study, by 

clicking the Query method button the Excel-based interface sorts the datasets, finds the closest 

neighborhoods with the closest values, then replaces the missing value. The three closest 

datasets with the least Euclidean distance are provided to the user on the interface as it can 

also be seen in Figure 10-12, Figure 10-13, and Figure 10-14. The user can also make the 

decision to replace the value based the closest datasets because the Query method can find the 

exact matching datasets with the same input parameters. In this case, the user can manually 

input the value instead of the Query method application replacing the average of the three 

closest values, which may diverge from the actual value. Basically, the Query method button 

located on the interface helps the user to sort the datasets to replace the missing and/or just 

sort the datasets to be able to use the closest output value. It should be noted that if there is a 

missing parameter in the dataset, the Excel sheet will not show any predictions. Additionally, 

the input variables are recommended to be within the applicable range that is placed under the 

input cells. If the entered input value is out of applicable range, then the models are not valid 

and Excel shows a warning text below. Moreover, the reflection of the dataset by Auto-

associative network is placed right under the input cells to evaluate the Query method input 
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replacements. In this case, the user has options to make the decision to replace the value 

independently. The user can rely on one of the datasets that the Query method finds, or the 

average of the three closest values it automatically replaces with. Then the Auto-associative 

network provides prediction of the data itself (reflections). As can be depicted from the 

example interfaces, the output section has five outputs, which are Query method, static ANN, 

ANN-feedback, Auto-associative, and Dynamic-sequential. Once the datasets in the worksheet 

of Query method application are sorted, then the Query method prediction of the output is 

automatically updated because all the cells on the interface page work simultaneously and 

update the values. If there are multiple outputs, such as in Figure 10-14, there are individual 

output sections with all the predictions for each output. For database 6, three output sections 

show all the predictions by the networks and the application placed in other worksheets. In 

order for the user to make the proper decision, statistical accuracy measures of model 

development stages (i.e. MARE, MRSE, and R2) are also placed under the output sections. As 

mentioned previously, by substituting the statistical measures and the predictions in Equations 

10.1, 10.2, and 10.3, recommended values are calculated and provided to the user along with 

the minimum and maximum of the prediction range. As a result, the Hybrid decision making 

system (HDMS) is produced for seven databases by using the same procedure explained herein.   

 

10.4 Consistency of System Predictions  

Once the recommended values are calculated for each output of the seven databases, the 

accuracy of the recommended values was also evaluated by using the HDMS. All datasets, used 

to develop the networks and the applications, were imputed in HDMS and the accuracy of the 

recommended values was calculated for seven databases with their corresponding output(s). 

As can be evaluated from Table 10-11 to Table 10-20, statistical accuracy measures of the 

recommended values are in agreement. Only database 1 yielded somewhat different MRSE 

results while all other databases agreed on the stabilized outputs based on MARE, MRSE, and 

R2  values.  
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As can be seen from all the accuracy measures and the figures, HDMS is a well-designed, 

multifunctional interface to integrate all the networks. The query method is a reliable solution 

to handle a missing datasets and very handy to implement through the HDMS. Static ANN, 

Feedback-ANN, Auto-associative network, and Dynamic-sequential network work 

simultaneously as parallel systems with no delays through the HDMS. The recommended values 

help the user to justify the decision. The provided prediction range indicates how far the 

networks’ predictions differ.  Consequently, HDMS can be used easily and does not require the 

user to have prior knowledge of model development.  
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10.5 Figures and Tables 

 

  

Figure 10-1 Schematic Diagram of the Proposed Hybrid Decision System  
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Figure 10-2 Comparison of the networks based on the MRSE values for database 1 

 
 
 

 

Figure 10-3 Comparison of the networks based on the MRSE values for database 2 
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Figure 10-4 Comparison of the networks based on the MRSE values for database 3 

 
 
 
 

 

Figure 10-5 Comparison of the networks based on the MRSE values for database 4 
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Figure 10-6 Comparison of the networks based on the MRSE values for database 5, Output 1 

 
 
 
 

 

Figure 10-7 Comparison of the networks based on the MRSE values for database 5, Output 2 
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Figure 10-8 Comparison of the networks based on the MRSE values for database 6, Output 1 

 
 
 

 

Figure 10-9 Comparison of the networks based on the MRSE values for database 6, Output 2 
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Figure 10-10 Comparison of the networks based on the MRSE values for database 6, Output 3 

 
 
 

 

Figure 10-11 Comparison of the networks based on the MRSE values for database 7 
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Figure 10-12 Hybrid Decision Making System Screen-shot for Database 1 
 

 

Figure 10-13 Hybrid Decision Making System Screen-shot for Database 2 
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Figure 10-14 Hybrid Decision Making System Screen-shot for Database 6 
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Table 10-1 Comparison of All the Prediction Models Developed for Database 1 

Accuracy 
Measures 

Static ANN  Feedback ANN 
Auto-

associative 
Dynamic-

Sequential 

7-(8-19)-19500 8-(2-4)-3200-1 8-(3-6)-20000-8 8-(1-16)-19600-1 

TR 

MARE 2.0280 3.4090 6.2617 1.6319 

R2 0.9996 0.9985 0.9868 0.9998 

MRSE 1.6151 3.1927 9.6230 1.2130 

TS 

MARE 2.7410 3.9910 6.9372 2.6656 

R2 0.9978 0.9986 0.9802 0.9970 

MRSE 5.7671 4.7437 16.5741 6.6146 

VAL 

MARE 3.0140 4.1160 7.1629 2.9227 

R2 0.9984 0.9979 0.9882 0.9978 

MRSE 4.5703 5.3192 12.9810 5.3440 

All 
Data 

MARE 4.0690 3.2810 7.2686 1.5499 

R2 0.9984 0.9986 0.9839 0.9998 

MRSE 2.3740 2.1754 7.4928 0.7781 

FINAL STRUCTURE 7 - 19 - 1 8 - 4 - 1 8 - 6 - 8 8 - 16 - 1 

 

 
Table 10-2 Comparison of All the Prediction Models Developed for Database 2 

Accuracy 
Measures 

Static ANN Feedback ANN 
Auto-

associative 
Dynamic-

Sequential 

7-(2-3)-3100-1 8-(3-4)-1100-1 8-(6-6)-3100-8 8-(1-3)-20000-1 

TR 
MARE 4.0297 4.0208 4.8125 3.6220 

R2 0.6061 0.6596 0.4795 0.6681 

MRSE 0.4046 0.4059 0.4911 0.3839 

TS 
MARE 5.9550 5.3680 5.1122 5.9117 

R2 0.0020 0.2694 0.1798 0.3861 

MRSE 1.0121 0.9944 0.8469 1.0838 

VAL 
MARE 6.0170 7.1612 6.5996 6.6696 

R2 0.0078 0.0237 0.0009 0.0443 

MRSE 0.9647 1.1833 1.1071 1.0599 

All Data  
MARE 3.9681 3.6991 4.3912 3.6601 

R2 0.4554 0.5314 0.3788 0.5668 

MRSE 0.3203 0.2979 0.3425 0.2851 

FINAL STRUCTURE 7 - 3 - 1 8 - 4 - 1 8 - 6 - 8 8 - 3 - 1 
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Table 10-3 Comparison of All the Prediction Models Developed for Database 3 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

12-(2-6)-200-1 13-(1-5)-100-1 13-(7-8)-20000-13 13-(7-8)-100-1 

TR 

MARE 6.4320 8.8693 12.5441 14.3219 

R2 0.9916 0.9849 0.9650 0.9743 

MRSE 29.5265 40.5326 58.4512 73.5715 

TS 

MARE 16.8540 9.5488 16.5935 18.0065 

R2 0.9406 0.9797 0.9519 0.9126 

MRSE 113.2199 64.9743 103.2161 135.4948 

VAL 

MARE 15.4386 12.9420 22.1390 27.7868 

R2 0.7221 0.7766 0.7209 0.6193 

MRSE 211.5120 188.8319 210.3098 250.2872 

All Data 

MARE 12.7195 9.9850 14.7704 19.1800 

R2 0.9364 0.9466 0.9342 0.9317 

MRSE 63.7835 52.9530 55.7573 95.9043 

FINAL STRUCTURE 12 - 6 - 1 13 - 5 - 1 13 - 8 - 13 13 - 8 - 1 

 
Table 10-4 Comparison of All the Prediction Models Developed for Database 4 

Accuracy 
Measures 

Static ANN  Feedback ANN 
Auto-

associative 
Dynamic-

Sequential 

6-(2-7)-20000-1 7 -(2-3)-19900-1 7 -(5-7)-20000-7 7-(1-7)-20000-1 

TR 

MARE 17.440 20.825 20.557 20.581 

R2 0.8554 0.8485 0.8539 0.8710 

MRSE 68.4546 70.0604 68.8665 81.6443 

TS 

MARE 22.372 22.496 21.863 21.747 

R2 0.8226 0.8369 0.8363 0.7959 

MRSE 107.1671 102.3868 102.4501 133.0335 

VAL 

MARE 21.604 17.999 20.260 25.693 

R2 0.7862 0.8626 0.8604 0.7672 

MRSE 118.7498 93.7436 95.4665 150.2486 

All Data 

MARE 20.359 19.470 18.321 17.653 

R2 0.8549 0.8613 0.8653 0.8703 

MRSE 47.9782 46.91616 46.2396 49.4487 

FINAL STRUCTURE 6 - 7 - 1 7 - 3 - 1 7 - 7 - 7 7 - 7 -1 
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Table 10-5 Comparison of All the Prediction Models Developed for Database 5, Output 1 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

3-(2-4)-19800-1 4-(2-4)-19300-1 4-(4-4)-20000-4 4-(2-4)-16900-1 

TR 

MARE 0.1784 0.1826 0.2402 0.1651 

R2 0.9965 0.9963 0.9936 0.9967 

MRSE 0.1973 0.2014 0.2676 0.1901 

TS 

MARE 0.2275 0.2263 0.2860 0.2127 

R2 0.9846 0.9841 0.9817 0.9851 

MRSE 0.4684 0.4768 0.5100 0.4613 

VAL 

MARE 0.2067 0.2052 0.2565 0.1918 

R2 0.9949 0.9951 0.9925 0.9952 

MRSE 0.3321 0.3303 0.4049 0.3266 

All Data 

MARE 0.1864 0.1899 0.2061 0.1889 

R2 0.9944 0.9942 0.9933 0.9945 

MRSE 0.1676 0.1703 0.1825 0.1651 

FINAL STRUCTURE 3 - 4 - 1 4 - 4 - 1 4 - 4 - 4 4 - 4 - 1 

 
Table 10-6 Comparison of All the Prediction Models Developed for Database 5, Output 2 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

3-(3-4)-19500-1 4-(3-3)-14100-1 4-(4-5)-20000-3 4-(1-4)-20000-1 

TR 

MARE 1.2049 1.2010 1.1989 1.2775 

R2 0.9285 0.9293 0.9299 0.9283 

MRSE 0.6420 0.6391 0.6344 0.6649 

TS 

MARE 1.0555 1.0360 1.0375 1.1009 

R2 0.9359 0.9345 0.9354 0.9283 

MRSE 0.8316 0.8311 0.8233 0.8500 

VAL 

MARE 1.1796 1.1379 1.1397 1.1969 

R2 0.9379 0.9425 0.9420 0.9420 

MRSE 0.8464 0.8179 0.8142 0.8663 

All Data 

MARE 1.1251 1.1294 1.1324 1.1477 

R2 0.9333 0.9329 0.9329 0.9315 

MRSE 0.4255 0.4269 0.4266 0.4321 

FINAL STRUCTURE 3 - 4 - 1 4 - 3 - 1 4 - 5 - 4 4 - 4 - 1 
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Table 10-7 Comparison of All the Prediction Models Developed for Database 6, Output 1 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

16-(3-3)-5000-1 17-(1-2)-10100-1 17-(1-7)-20000-17 17-(1-3)-20000-1 

TR 

MARE 5.2591 2.9933 3.4857 4.8917 

R2 0.7130 0.9050 0.8766 0.7882 

MRSE 0.0053 0.0029 0.0033 0.0048 

TS 

MARE 7.3715 4.3274 4.4339 7.4545 

R2 0.4081 0.7823 0.7841 0.3711 

MRSE 0.0102 0.0062 0.0061 0.0110 

VAL 

MARE 7.3367 4.5943 4.7644 8.4136 

R2 0.3851 0.7331 0.7112 0.3944 

MRSE 0.0105 0.0066 0.0068 0.0115 

All Data 

MARE 5.4159 3.4670 3.8552 4.7679 

R2 0.6612 0.8561 0.8347 0.7196 

MRSE 0.0038 0.0025 0.0027 0.0035 

FINAL STRUCTURE 16 - 3 - 1 17 - 2 - 1 17 - 7 - 17 17 - 3 - 1 

 
Table 10-8 Comparison of All the Prediction Models Developed for Database 6, Output 2 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

16-(1-3)-13000-1 17-(2-3)-15300-1 17-(6-7)-20000-17 17-(1-2)-20000-1 

TR 

MARE 11.0376 10.7310 17.3192 11.6224 

R2 0.9202 0.9239 0.7564 0.9173 

MRSE 0.2761 0.2690 0.4821 0.2826 

TS 

MARE 13.9424 11.6815 17.4655 14.2198 

R2 0.7554 0.8372 0.7311 0.7403 

MRSE 0.6057 0.5004 0.6290 0.6284 

VAL 

MARE 19.0559 16.6108 20.1883 21.4662 

R2 0.4636 0.6032 0.5817 0.3085 

MRSE 0.8268 0.7122 0.7514 1.0644 

All Data 

MARE 11.5289 11.0989 18.2202 13.8732 

R2 0.8721 0.8844 0.7397 0.8455 

MRSE 0.2276 0.2162 0.3251 0.2500 

FINAL STRUCTURE 16 - 3 - 1 17 - 3 - 1 17 - 7 - 17 17 - 2 - 1 
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Table 10-9 Comparison of All the Prediction Models Developed for Database 6, Output 3 

Accuracy 
Measures 

Static ANN  Feedback ANN 
Auto-

associative 
Dynamic-

Sequential 

16-(1-3)-19400-1 17-(1-3)-3100-1 17-(4-6)-7100-17 17-(1-2)-18100-1 

TR 

MARE 6.5114 7.1362 12.0262 7.9631 

R2 0.9066 0.8854 0.6304 0.8561 

MRSE 0.0065 0.0075 0.0131 0.0086 

TS 

MARE 10.6633 9.2528 12.3217 10.0551 

R2 0.7678 0.8178 0.6792 0.7535 

MRSE 0.0151 0.0131 0.0171 0.0155 

VAL 

MARE 13.5152 10.3996 13.4702 13.2073 

R2 0.5444 0.6862 0.5789 0.5665 

MRSE 0.0201 0.0164 0.0192 0.0203 

All Data 

MARE 8.0094 7.7491 11.7108 8.7793 

R2 0.8377 0.8467 0.6419 0.8038 

MRSE 0.0059 0.0057 0.0089 0.0066 

FINAL STRUCTURE 16 - 3 - 1 17 - 3 - 1 17 - 6 - 17 17 - 2 - 1 

 
Table 10-10 Comparison of All the Prediction Models Developed for Database 7 

Accuracy 
Measures 

Static ANN  Feedback ANN Auto-associative 
Dynamic-

Sequential 

15-(4-7)-7900-1 16-(4-5)-5200-1 16-(7-8)-20000-16 16-(3-6)-20000-1 

TR 

MARE 12.5600 11.7337 30.2491 14.9102 

R2 0.9834 0.9850 0.9660 0.9855 

MRSE 1.2149 1.1518 1.8678 1.1866 

TS 

MARE 14.8755 13.2057 32.9600 16.1394 

R2 0.9735 0.9780 0.9533 0.9728 

MRSE 2.1657 1.9500 3.1479 2.1826 

VAL 

MARE 15.0643 11.4591 33.1301 15.1229 

R2 0.9750 0.9816 0.9397 0.9701 

MRSE 2.0286 1.7721 3.5617 2.2814 

All Data 

MARE 12.3796 11.5041 31.2433 13.2173 

R2 0.9831 0.9848 0.9553 0.9834 

MRSE 0.8466 0.8011 1.4805 0.8396 

FINAL STRUCTURE 15 -7 - 1 16 - 5 - 1 16 - 8 - 16 16 - 6 - 1 
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Table 10-11 Accuracy of the Recommended Values by HDMS for Database 1 

  MARE MRSE R2 

Y MARE 3.005 2.753 0.999 

YMRSE 2.500 1.899 0.999 

YR
2 4.556 5.090 0.998 

 
Table 10-12 Accuracy of the Recommended Values by HDMS for Database 2 

  MARE MRSE R2 

Y MARE 4.6563 0.3713 0.4856 

YMRSE 4.6190 0.3683 0.4876 

YR
2 4.6806 0.3733 0.4886 

 
Table 10-13 Accuracy of the Recommended Values by HDMS for Database 3 

  MARE MRSE R2 

Y MARE 11.2050 55.8135 0.9478 

YMRSE 11.5240 55.2836 0.9475 

YR
2 11.7784 57.1080 0.9472 

 
Table 10-14 Accuracy of the Recommended Values by HDMS for Database 4 

  MARE MRSE R2 

Y MARE 16.1337 40.2666 0.8992 

YMRSE 16.3475 40.6301 0.8973 

YR
2 16.7516 41.3247 0.8934 

 
Table 10-15 Accuracy of the Recommended Values by HDMS for Database 5, Output 1 

  MARE MRSE R2 

Y MARE 0.1787 0.1546 0.9952 

YMRSE 0.1783 0.1537 0.9953 

YR
2 0.1777 0.1529 0.9953 
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Table 10-16 Accuracy of the Recommended Values by HDMS for Database 5, Output 2 

  MARE MRSE R2 

Y MARE 1.0755 0.4092 0.9384 

YMRSE 0.9626 0.3691 0.9499 

YR
2 0.9871 0.3776 0.9475 

 
Table 10-17 Accuracy of the Recommended Values by HDMS for Database 6, Output 1 

  MARE MRSE R2 

Y MARE 4.9452 0.0034 0.7168 

YMRSE 4.9337 0.0034 0.7181 

YR
2 4.9293 0.0034 0.7184 

 
Table 10-18 Accuracy of the Recommended Values by HDMS for Database 6, Output 2 

  MARE MRSE R2 

Y MARE 44.6121 0.6265 0.6683 

YMRSE 45.8312 0.6433 0.6581 

YR
2 43.2074 0.6085 0.6769 

 
Table 10-19 Accuracy of the Recommended Values by HDMS for Database 6, Output 3 

  MARE MRSE R2 

Y MARE 13.3865 0.0092 0.7416 

YMRSE 13.1793 0.0091 0.7527 

YR
2 13.1313 0.0091 0.7521 

 
 
 

Table 10-20 Accuracy of the Recommended Values by HDMS for Database 7 

  MARE MRSE R2 

Y MARE 9.1724 0.7439 0.9872 

YMRSE 10.3117 0.7652 0.9864 

YR
2 11.2015 0.7928 0.9855 
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CHAPTER 11  

11. SUMMARY, CONCLUSIONS, and RECOMMENDATIONS  

11.1 SUMMARY 

In this study, new modeling methodologies for all engineering/scientific prediction systems 

were proposed and tested on the seven databases described in Chapter 4. These 

methodologies comprise a new set of ANN modeling approaches along with a new method to 

replace missing values in datasets. Because ANNs approach is a powerful function 

approximation computational technique capable of mapping and capturing the relationships 

within databases, it has been widely used by many researchers. The most widely used ANN 

approach type is the static ANN network using the backpropagation training algorithm.  

Seven databases were utilized to develop each static ANN models at the first stage of this 

research. As mentioned in Chapter 5, the static ANN models were developed in four sequential 

stages. In the first stage, the ANN architectures were determined based on problem 

characteristics. This step also includes classifying the datasets as training, testing or validation 

sets. In the second stage, the networks were trained and tested on the experimental data to 

obtain the optimum number of hidden nodes and iterations for the ANN architecture 

determined in stage one. In the third stage, the best performing networks obtained from the 

second stage were validated on the validation database. In the fourth stage, the best 

performing networks obtained in the second stage (with known hidden nodes and training 

iterations) were retrained on all experimental data to improve the prediction accuracy. 

Essentially these four sequential stages were repeated for each output of the seven databases.  

Then, a new ideology of ANN approach is introduced in Chapter 6 that considers predictions 

from static ANN networks as initial estimates to develop newer models. These new network 

models are called Feedback ANN networks because of the feedback input from static ANN 

network. Similarly, the same static ANN predictions were utilized by the Auto associative 

network in Chapter 7 to develop new models. In this case, the inputs were also projected at the 
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output layer as well. The input layer consisted of the inputs and the initial estimate from the 

static ANN network. The output layer similarly had the same number of nodes consisting of 

number of inputs and the actual output(s). In this case, Auto associative network is optimized 

on not only output, but also on inputs as well. The dataset predicts itself as well as it predicts 

the output. This multifunctional nature of this network can be employed in the case of missing 

data. The idea of providing input reflections is to help the user in justifying the values used to 

replace the missing data.  

Chapter 8 introduced another ANN approach, Dynamic-sequential network that relies on static 

ANN predictions as well. However, training order of the Dynamic-sequential network is 

different than other ANN approaches. It still uses the backpropagation algorithm, but the 

training order of the datasets was changed by replicating each dataset 5 times. Accordingly, 

each dataset was used in training 5 times during each epoch. This approach helps the network 

in extracting more knowledge from the available datasets. Chapter 9 presented a new method 

to handle missing variables in datasets. The new method based on Euclidean distance was 

utilized for all seven databases. Because of the time restriction, only the output variable was 

assumed to be missing and assessed accordingly. To compare the results by the Query method, 

linear regression analysis approach was used for each database.  

The last chapter presented a system that integrates all the ANN modeling approaches as well as 

the Query method application to replace missing values in datasets. Basically, all the developed 

networks for each database were integrated in one system called hybrid decision making 

system (HDMS). This system employed the input dataset and the generated predictions by all 

networks developed in this study. Moreover, the Query method application was also integrated 

into the same system to tackle missing values in datasets. The output predictions of the Query 

method were also considered in the final decision. All four ANN approaches and the Query 

method were integrated together to design a HDMS for each database. Moreover, 

recommended (weighted) values based on the noted statistical accuracy measures of the 

developed models involved were calculated and further validated.   
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11.2 CONCLUSIONS 

Based on the results presented in the previous chapters, the notable set of conclusions are 

listed here:  

1. The developed static ANN network models for seven databases produced output values 

that are very close to the actual values. The statistical accuracy measures indicated that 

the static ANN models were able to map linear and, most importantly, highly nonlinear 

processes. In other words, comparison between observed data and static ANN model 

predictions indicated that the developed ANN model has efficiently characterized the 

relevant phenomena. Therefore, the developed ANN models can reliably be used for 

future prediction tasks.  

2. The new ANN approach, Feedback ANN network, was introduced and tested on the 

seven databases successfully. Feedback ANN network approach has improved the 

statistical accuracy measures of the models developed with static ANN approach. This 

method has improved not only output prediction accuracy, but also the optimal network 

architecture by employing less complicated internal structure and training iterations in 

most cases. Highly nonlinear correlations between inputs and output(s) were nicely 

captured by the Feedback ANN network approach.  

3. The Auto-associative network approach was introduced and verified successfully using 

civil engineering databases. The prediction accuracy of the Auto-associative network 

models were based on the predicted outputs only even though the input parameters 

were predicted as well. The obtained statistical accuracy measures indicate that the 

output predictions may not be as accurate as those predicted by  other ANN approaches 

but the predictions are still considerably good. However, it is important to mention that 

these networks were optimized on the outputs and inputs together. So it was expected 

to have higher errors than other approaches because these networks have to meet 

additional requirements. This approach can be considered as an identity recognition 

network that can optimize missing values within the input as well as the output vectors. 
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4. Dynamic-sequential network is another new ANN approach introduced and validated 

successfully in this study. By utilizing the best predictions from static ANN network 

approach, Dynamic-sequential network was able to develop efficient models even 

though some databases with high linearity did not respond well due to the excellent 

mapping capability of the static ANN approach. The least prediction errors for several 

databases were attained when using this type of network. Additional study to verify the 

stability of the network’s predictions has showed that any value used as an initial 

estimate was ultimately optimized by the Dynamic-sequential network. Once the model 

is developed and optimized by Dynamic-sequential network approach using the initial 

estimates from the static ANN network, even misleading entries will not impact  the 

final predictions as long as the values provided for input vectors are valid and within the 

applicable training range.  

5. The Query method, a new method to replace missing values in datasets, aspects were 

introduced and tested in this study. The prediction accuracy of the Query method 

application has indicated good agreement between the actual and projected output 

values. The Query method applications have outperformed the linear regression-based 

models that were developed for comparison purposes. It can be inferred from the 

results obtained that the bigger-size the database, the higher the prediction accuracy 

measures. This is due to the fact theses databases have more neighborhoods that this 

method can use to query from. The Query method is an easy and multifunctional 

method that does not require any training like the ANN cases. In this study, an Excel-

based application was developed to generate a Query method application for each 

desired database. With this application, this method can be simply applied to any 

database. The Excel-based application has an added feature to validate additional 

datasets. This feature allows the user to validate, and as more datasets become 

available, as well as update the Query method application to improve its statistical 

accuracy measures.  

6. All the developed models via ANN modeling approaches are integrated into one hybrid 

system: a system that utilizes all four ANN approaches (i.e., static ANN, Feedback ANN, 



 

233 

 

Auto-associative, and Dynamic-sequential network) and the Query method application. 

This system is called Hybrid Decision Making System (HDMS) and provides all the 

predictions by the developed networks as well as the closest datasets in the database. 

The developed HDMS excel-based applications, for all seven databases, are user-friendly 

and can easily be used by anyone not having high level of modeling knowledge. In this 

case, a missing value within a dataset can nicely be handled by the application. 

Accordingly, the user is immediately updated with the closest datasets, the missing 

value is replaced in the cell, and all predictions are generated simultaneously. The multi-

functionality and easiness of the Query method makes this method a powerful, rapid, 

and low cost alternative to logically replace missing values within datasets.     

           

Based on the previously stated conclusions, this study has showed that all new modeling 

approaches have performed efficiently and their performance is very promising. Even though 

Feedback ANN, Auto-associative, and Dynamic-sequential networks are dependent on the 

initial estimates from the static ANN network for both developing the models and utilizing the 

models to generate outputs, each method still has its own characteristics as the overall 

evaluation process has indicated. The Query method application is very handy for those who 

are always dealing with databases with missing values. The results by the Query method are 

very realistic since the method searches for the most similar datasets within the database.  The 

interface for the HDMS is a user-friendly Excel-based application that can easily be utilized. 

Accordingly, HDMSs can be a viable solution for many quality management problems by 

eliminating the unnecessary future experiments and their associated costs.  

This research has successfully contributed new modeling methodologies that can be used in all 

engineering/scientific prediction systems. The new methods supported by reported quantified 

evidence allow researchers to consider using these computational techniques in their scientific 

and engineering modeling endeavors.  



 

234 

 

11.3 RECOMMENDATIONS 

Even though the statistical accuracy measures of the ANN models presented in this study are 

reasonably acceptable, the significance of the developed ANN models is limited to the utilized 

databases. The significance of the new ANN approaches relies on many factors. This study has 

shown that the new ANN approaches have performed well on the selected seven engineering 

databases. However, the accuracy measures for other databases may vary. For this reason, it is 

recommended to utilize these approaches on other databases with various characteristics. The 

Auto-associative network approach is very new to civil engineering systems. Accordingly, the 

verification of this approach needs to be investigated further by including the statistical 

accuracy measures of the input variables and their optimization. Similarly, it is necessary to 

broaden the applicability of the Dynamic-sequential network approach by utilizing other 

databases with different characteristics and sizes. Additionally, the Query method application 

was only considered to replace outputs. Accordingly, the results for the input parameters can 

be different. Future studies should look into expanding this research by validating other 

parameters (i.e., input variables). Query method can also be used to pre-process the 

incomplete datasets before the ANN models are developed, if there are any, because it is 

important to include more datasets in the model development stages to obtain statistically 

significant trends.  Future studies should also focus on improving the user interface of the 

hybrid decision making system by including iterations through the feedback networks and 

enhancing their graphical presentations.    
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