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Introduction

From the chemical to the organismic level of organization, temperature

is an important parameter in virtually all biological activities.

Additionally, the range of temperatures in which animal's biochemical

systems operate most efficiently is relatively narrow (Coin et al. 1978).

Maintenance of a contsant internal environment (homeostasis) within these

thermal limits is an integral component of most organism's repertoire of

survival strategies.

Two main modes of dealing with the thermal problems facing animals

have evolved. Endothermy is characterized by an essentially unvarying

body temperature sustained by the production of heat from oxidative

metabolism. The vast majority of animals, however, depend on external

sources of heat to acheive homeostastis. Ectothermic organisms, including

reptiles, amphibians, fish, and most invertebrates, have such low rates of

metabolic heat production and high rates of heat loss through conduction

that their internal temperatures are generally independent of heat

produced from metabolism (Bartholomew 1977). Because of their dependence

on external temperatures, ectotherms are affected more by extreme

environmental fluctuations in temperature than endotherms are. Rates of

metabolism in some ectotherms are known to double in response to an

increase in body temperature of 10 C (Q^q = 2; Clouds ley-Thompson 1971).

Elevated body temperatures ( > 50 C) cause protein denaturation and a

general breakdown in chemical integrity (Coin et al. 1978). Therefore,

ectotherms are posed with the problem of keeping their body temperatures

within operational norms, even when the ambient temperature is not in the

thermal tolerance range.

The evolutionary response by ectotherms to maintaining homeostasis in



a thermally complex environment is through the use of behavioral, and to a

lesser extent, physiological, thermoregulation. Since maximum potential

resting metabolic rates in ectotherms are relatively low, physiological

thermoregulation by way of internal heat production is not as important as

in endotherms. Restricted physiological thermoregulation has been noted

in reptiles, however, mainly in the form of cardiovascular adjustments and

evaporative cooling by panting. Large reptiles, by virtue of their small

surface area to volume ratio, are able to thermoregulate to a limited

extent through the use of metabolic heat, but the majority are too small

for this process to be thermally effective (Cloudsley-Thompson 1971). For

example, under experimental conditions, the lizard Dipsosaurus dorsalis is

incapable of lowering or raising its body temperature by more than 1

degree C by physiological means alone (Soule 1963).

Insufficient metabolic heat production in most ectotherms requires

that they adopt behavioral means of internal temperature regulation.

Examples of behavioral thermoregulation can be found in numerous taxa

spanning disparate environments. Centrarchid fish accurately select

preferred water temperatures along a thermal gradient (Magnuson and

Beitinger 1978), as do aquatic amphibians (Bartholomew 1977). The

behavioral thermoregulatory abilities of aquatic animals are restricted by

the thermal stability of the surrounding medium and limited influence of

solar radiation. The temporal and spatial thermal variability of

terrestrial habitats require more rapid and precise responses to

fluctuating daily temperatures than in aquatic environments (Bennett

1983). Among the vertebrates, behavioral thermoregulation is best

developed in terrestrial reptiles, with diurnal lizards exhibiting the

most complex strategies. By controlling exposure to the sun's radiation
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through posturing, shuttling between patches of sun and shade

(heliothermic behavior), and varying the duration of contact with warm or

cool substrates (thigmothermic behavior), lizards are able to regulate

their body temperatures within a narrow range (Magnuson and Beitinger

1978). By moving between warm and cool areas, whiptail lizards (genus

Cnemidophorus ) display ranges in body temperature as small as 1.33 degrees

C, with the degree of precision directly related to the frequency of

moving between the two areas (Bowker and Johnson 1979). Members of the

genus of small South American lizards, Liolaemus . attain body temperatures

as much as 30 degrees C above ambient air temperature when exposed to

direct solar radiation coupled with low air and substrate temperatures, a

condition that commonly occurs shortly after sunrise at the high altitudes

this lizard inhabits (Bartholomew 1977).

The ability of diurnal lizards to regulate body temperature

behaviorally in thermally variable habitats has adaptive value in that it

provides control over temperature dependent metabolic processes,

contributes to the maintenance of homeostasis, and allows for the

avoidance of potentially lethal temperatures (Huey and Slatkin 1976;

Dawson 1983). There are, however, costs associated with the physiological

benefits accruing from behavioral thermoregulation. In addition to the

energetic cost of locomotion when shuttling from sunny to shady patches,

lizards make themselves more conspicuous to predators by moving. The need

to maximize exposure to the sun's rays on a cool day means spending more

time in the open, increasing the chance that a predator will see them

(Christian and Tracy 1981). Those microhabitats that are appropriate for

thermoregulation might not be suitable for foraging. After heating up in

one area, a lizard may have to spend time and energy moving to an area



where food can be acquired. Thus, costs of behavioral thermoregulation

may reduce the net physiological advantage associated with this strategy.

Thermoregulation in lizards is a discrete requirement that generally takes

time away from other needs, such as foraging for food, finding a mate,

avoiding predation, and territory defense. Satisfying conflicting demands

represents a trade-off between the costs and benefits of performing these

various activities, which are all of central importance to the inclusive

fitness of the individual (Krebs and Davies 1981). Animals that are able

to optimize their behavior at a point balancing conflicting needs will be

at a selective advantage. Therefore, an optimal behavior can be viewed

in terms of activity that maximizes the fitness of an individual (Pulliam

1976). An example of balancing costs and benefits with respect to

thermoregulation is the Puerto Rican lizard Anolis cristatellus . which,

when time and energy costs of thermoregulating are high because of

inaccessability of basking sites, chooses to remain immobile at a lower

body temperature rather than attempt to maintain an optimal body

temperature (Huey 1974).

Optimality theory implies that natural selection should favor animals

that choose the behavior that maximizes net gains in some currency when

presented with conflicting demands (McCleery 1978). Based on this

concept, hypotheses concerning evolutionary decision-making in animals can

be generated and tested. This paper is concerned with temperature related

behavior in the collared lizard, Crotaphvtus collaris . a common, diurnal

iguanid found primarily in rocky habitats in the western United States.

Males are territorial and highly aggressive towards intruding conspecifics

during the May-June breeding season. A territorial male will actively

attack and chase a rival from the area, but the first line of defense is a



display consisting of head-bobbing, distension of the brightly colored

gular pouch, back-arching, and a lateral compression of the body that

increases the apparent size of the resident. This display is done while

the territory owner is in a stiff-legged posture (Greenberg 1945; Collins

1982).

Mating success in C_. collaris is probably linked to the successful

establishment and defense of a territory (Yedlin and Ferguson 1973), so

there should be strong selective pressure on males to effectively defend a

territory. The notion of cost-benefit relationships and optimality theory

suggests that there should be a temperature or temperature range where it

would benefit territorial males to be most aggressive in defending against

other males. This hypothesis is tested in an initial experiment. If the

hypothesis is valid, there should be a difference in the intensity of

aggressive behaviors of males at different body temperatures. At the

lower end of the lizards' temperature tolerance range, they should be too

sluggish to effectively defend against intruders, while at the upper end

they will be too heat stressed to respond. Stated in terms of a

trade-off, the costs of defense at the upper and lower temperature

extremes will exceed the benefits of active territorial defense. Lizards

in the field should thermoregulate to body temperatures that maximize

benefits and minimize costs when defending against rivals.

Numerous examples of the relationship between low body temperature and

inhibited behavioral abilities in reptiles appear in the literature

(Heckrotte 1967; Greenwald 1974; Bennett 1980; Hertz et al. 1982;

Stevenson et al. 1982; Arnold and Bennett 1984). A second experiment

tests the hypothesis that lizards, because their behavior is thermally

dependent, should adopt different predator avoidance strategies at varying



body temperatures. Specifically, a lizard at a cool body temperature that

is unable to run fast, would be more likely to choose an aggressive

defense against a predator than would a relatively fleet individual at a

higher body temperature. This would only be true of lizards that are

capable of inflicting damage to a predator (Crowley and Petruszka 1983).

There should be some intermediate temperature where a switching of defense

behaviors occurs.



Study Animals and Housing

Lizards used in this study were caught on limestone outcroppings in

the Tuttle Creek Dam area near Manhattan, Kansas, and along rural Riley

county road cuts from May through July of 1984 and 1985. Captured lizards

were weighed with a Pesola balance, and snout-vent length measurements

were taken. When not being used in an experiment, individuals were housed

separately in 10 or 20 gallon terraria with a sand substrate. Terraria

sides were covered with paper to prevent interactions before experiments.

The ambient temperature was 25.3 C. A photoperiod of 14L:10D was selected

because it represented the natural photoperiod during the month of peak

reproductive activity (June; Yedlin and Ferguson 1973). Lizards were

maintained on a diet consisting of crickets, grasshoppers, cockroaches,

beetles, and water. To avoid possible effects of hunger level on

behavior, lizards were not fed until after trials were complete on days

when experiments were conducted.
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Territorial Aggression - Methods

Temperature based aggressive encounters between territorial males and

introduced rivals were observed in laboratory during the collared lizards'

breeding season. Interactions took place in five 20-gallon terraria (76

cm long X 31.5 cm wide x 30.5 cm high), each with a sand substrate

maintained at a different temperature within the thermal activity range of

C. collaris (21.0 C - 45.0 C; Fitch 1956).

In the absence of solar heat, it is reasonable to assume that body

temperatures of lizards will approximate substrate temperatures

(Clouds ley-Thompson 1971). To confirm this assumption, cloacal

temperatures were measured for seven lizards exposed to various substrate

temperatures within their thermal activity range (Table 1). Lizards were

flattened against the substrate for 15 minutes to allow them to

equilibrate. A metal sleeve restricted movement and kept the venter in

contact with the sand. Measurements were taken with a YSI

Tele-thermometer and lizards were handled with rubber gloves to prevent

heat conduction. Substrate temperature was found to be a good estimate of

body temperature when the latter was in the lower extreme of the thermal

activity range. Although body temperature increased with substrate

temperature, the absolute difference between the two increased when

substrate temperatures were high. A regression analysis was applied to

the temperature data to provide means by which body temperatures could be

predicted from substrate temperatures.

The body temperatures selected to be tested were 25.0 C, 27.0 C, 29.0

C, 32.0 C, and 34.0 C. Preliminary tests revealed that lizards kept at a

substrate temperature in excess of 40.0 C would often employ panting and a

siff-legged posture to keep their body temperatures near their thermal



Table 1. Cloacal body temperatures of seven individuals at various
substrate temperatures.

SUBSTRATE BODY

TEMPERATURE (C) TEMPERATURE (C

)

24.0 24.4
24.0 24.3
24.0 24.2
24.0 24.0
24.0 24.7
28.0 28.1
28.0 28.4
28.0 27.1
28.0 28.1

28.0 28.3
30.0 29.1

30.0 29.7
30.5 29.4
31.0 30.0
31.0 29.9
32.0 31.3
34.0 31.6
34.0 32.4
34.0 33.5
35.0 33.8
35.5 33.3
36.0 32.6
37.0 34.5
40.0 34.8
40.5 37.7
41.0 37.7
41.0 34.5
41.0 38.9
42.0 37.3
42.0 38.6
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preferenda. To reduce the effect of these thermoregulatory behaviors, the

maximum body temperature tested was 34.0 C. Substrate temperatures of

four of the five terraria were maintained using an 18.3 m soil heat cable.

Appropriate lengths of the cable were coiled under the terraria to obtain

the desired temperature. The substrate of the coolest terrarium was

maintained by ambient room temperature.

Sides of the terraria were covered with white paper so lizards could

not see each other. To restrict observer effect, a cloth blind was

positioned in front of the five terraria. A mirror suspended over the

terraria permitted observations without looking directly into the tanks

(Fig. 1).

A male lizard was introduced into each of the five terraria and

allowed 48 hours to acclimate. Initial presentation of a rival male

resulting in characteristic displays by the resident indicated that it had

adopted the terrarium as a territory. Once residency was established an

intruder lizard was introduced by placing it behind a cardboard partition

located 30 cm from the end opposite the resident (Fig. 1). After a 15

minute period to let the intruder adjust, the partition was carefully

raised. All interactions between the resident and intruder, and the time

they occurred, were recorded for a 30 minute period, followed by removal

of the intruder. Data collected during a 30 minute trial included the

following 10 behavioral characteristics.

1

.

Number of headbobs by the resident

2. Number of headbobs per bobbing episode

3. Number of maximiim displays by resident - A display by a resident

was considered maximum when it was performed in the stiff-legged posture.

4. Number of moderate displays by resident - A moderate display was



Fig. 1. Diagram of design for territorial aggression experiment showing
substrate temperatures, terraria dimensions, and approximate position of
intruder introduction.
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similar to a maximum display except the legs were bent.

5. Number of minimum displays by resident - A display qualified as

minimum if the ventral surface of the lizard came in contact with the

substrate.

6. Nvimber of provoked displays by resident - A display by the

resident was considered provoked if it appeared to result from a movement

by the intruder

.

7. Number of unprovoked displays by resident

8. Number of bites by the resident

9« Number of aggressive encounters resulting in the intruder fleeing

10* Total number of aggressive interactions - Aggressive interactions

included displays and\or bites.

Number of headbobs was chosen as a measure of aggression because it is

an easily quantifiable component of the defensive displays of C. collaris .

Displays were categorized as maximum, moderate, or minimum to determine if

lizards showed varied display intensities at different temperatures.

Displays were also distinguished based on whether they were provoked by an

intruder, or initiated without provocation by the resident. The latter

category was considered to indicate greater aggression. Number of bites

obviously reflects relative aggression, as does the tendency for an

intruder to flee from a resident's attack or display. Total number of

aggressive interactions between two lizards was selected to summarize

number of bites and displays into a single measure.

To prevent overuse, intruders were never introduced to a resident more

than twice in one day and at least two hours were allowed between trials

for a particular resident. Intruders were housed at ambient temperature

to prevent their behavior from varying upon introduction to a terrarium.
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Five intruders were tested against each of the residents at each of

the temperatures, yielding 25 encounters per resident and per temperature.

The sequence in which intruders were introduced to residents was random.

When five trials at any one temperature were completed, the residents were

randomly switched to another temperature, where they interacted with the

same five intruders. The same procedure was followed with a new group of

five residents and intruders. Therefore, data collection was based on the

interactions between 10 residents at five temperatures, and 10 intruders.

A list of lizards used in this experiment, and relevent information

pertaining to each, is given in Table 2.

The Friedman Rank Sums nonparametric test was applied to the data.

When significant differences between temperatures were indicated, a

separation procedure (distribution-free multiple comparisons based on

Friedman Rank Sums; Hollander and Wolfe 1973) was employed.

The four behavioral characteristics that were most appropriate for

measuring aggression were analyzed to determine if the size of an intruder

had an effect on the defensive response of the resident. The Student's

t-test was the statistic applied to this data.
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Table 2. Weight (gms) and snout-vent length (nan) of lizards used in

territory defense experiment.

LIZARD NO. WT SVL

lb 37 106

2b 31 102

3b 33 101

4b 35 105
5b 29 99

6b 32 103

7b 28 101

8b 35 105
9b 29 102

10b 27 101

lib 32 105
12b 40 108
13 35 106
14b 42 110
16b 36 105
17 37 105
21 36 106
22 28 100
23 27 100
24 32 104
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Territorial Aggression - Results

Temperature Effect

The data suggest that body temperature affects the intensity of

territorial defense in male C_. collaris . When presented with a rival,

residents were more aggressive at moderate and high body temperatures than

at low temperatures. Of the ten behavioral characteristics analyzed, four

were statistically significant. It should be noted that residents showed

varying degrees of stress and fatigue after the fourth temperature

switch. Because the fatigue seemed to inhibit their responses to

intruders, data gathered during the fifth trials of both groups of

residents were not used in the analysis. The technique for missing values

described in Sokal and Rohlf (1981) was applied to compensate for the

unusable data.

!• Number of headbobs by the resident (Table 3). Analysis indicates

that there are statistically significant differences betweeen individuals

at different body temperatures with respect to number of headbobs (Fig. 2;

Friedman's Rank Sums: S = 28.00, P, .001). The frequency of headbobbing

is relatively low at 25.0 C and 27.0 C, but it more than doubles at 29.0

C, while decreasing somewhat at 32.0 C and 34.0 C (Fig. 2).

2. Number of headbobs per bobbing episode (Table 4). This behavioral

trait is apparently fixed. Once initiated, a headbobbing event runs to

completion, comparatively independent of body temperature. Consequently,

the number of headbobs per episode was not statistically significant at

the .05 level (Fig. 3; S = 12.95). There was, however, a small increase

in the mean value at 29.0 C, 32.0 C, and 34.0 C, suggesting limited

thermal dependence (Fig. 3).

3. Number of maximum displays by the resident (Table 5).
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wtti%iv/°'^' T""^"
of headbobs by residents during 30 minute encounterswith five intruders at five temperatures. Asterisks indicate estimatesbased on the technique for missing values described in Sokal and Rohlf

RESIDENT NO.

25

BODY TEMPERATURE (C)

27 29 32 3^

2b

3b

4b
5b
6b

12b

13

14
16

17

Mean (i)

54
60
53*

55
41

88
78

109*

75

35

64.8

107*

72
32

105

94
77

52

35
126*

104

80.4

148

132

196

195
179*

112
154*
225
186

131

165.8

182
163*

152

157

101

153

80

112
206

188*

149.4

109
121

118
175*

111

150*

57

171

88

195

129.5



Fig. 2. Mean number of headbobs by all residents during one 30 minute
encounter with an intruder for each temperature. Bar gradations represent
minimum, median, and maximum values, as well as the 25th and 75th
percentiles. Shared lower case letters denote statistical similarities
(distribution-free multiple comparisons based on Friedman Rank Sums; 25 C
and 27 C = a, 29 C and 32 C = be, 34 C = abc).
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Table 4. Number of headbobs per bobbing episode by residents during 30
minute encounters with five intruders at five temperatures. Asterisks
indicate estimates based on the technique for missing values described in
Sokal and Rohlf (1981).

BODY TEMPERATURE (C

)

25 27 29 32 >

RESIDENT NO.

2b 2.5 4.2* 4.2 4.9 3.9
3b 3.5 3.8 5.1 5.6* 3.8
4b 4.2* 2.9 3.8 4.4 4.0
5b 4.4 4.7 4.6 4.1 5.4*
6b 3.6 3.2 5.1* 4.0 3.4

12b 3.1 3.1 3.5 4.5 4.1*
13 3.7 3.5 5.1* 3.8 3.2
14 3.8* 1.4 4.7 3.7 4.1
16 3.5 4.3* 4.8 4.6 2.9
17 2.4 3.6 4.1 5.1* 4.5

Mean (x) 3.5 3.5 4.5 4.5 3.9



Fig. 3. Number of headbobs per bobbing episode by all residents during
one 30 minute encounter with an intruder for each temperature. Bar
gradations represent minimum, median, and maximum values, as well as the
25th and 75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums ; No Dif f . ) .
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Table 5. Total number of maximum displays by residents during 30 minute
encounters with five intruders at five temperatures. Asterisks indicate
estimates based on the technique for missing values described in Sokal and
Rohlf (1981).

BODY TEMPERATURE (C)

25 27 29 32 3^

RESIDENT NO.

2b 15 9* 27 20 12
3b 15 8 11 20* 13
4b 17* 1 40 25 23
5b 3 13 33 35 29*
6b 6 13 31* 10 29

12b 13 5 16 22 20*
13 5 6 19* 4 7

14 15* 4 43 13 22
16 8 10* 26 36 7

17 1 18 17 28* 38

Mean (x) 9.8 6.3 26.3 21.3 20.0
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Statistical differences between body temperatures were found for this

characteristic (Fig. 4; S = 19.84, P .025). Maximum displays by

residents were most common at 29.0 C, with a slight decrease at 32.0 C and

34.0 C.

^' Number of moderat e displays by the resident (Table 6). Unlike

maximum displays, this behavior was statistically indistinguishable

between body temperatures at the .05 level (Fig. 5; S = 10.99). Means

also differed from those obtained for maximum displays in that they

increased with temperature rather than peaking at 29.0 C.

5« Number of minimum displays by the resident (Table 7). Statistical

differences between temperatures were not found for this behavior (Fig. 6;

S = 5.96). Based on histogram patterns, low intensity displays are not

dependent on body temperature.

6- Number of provoked displays by the residpnt (Table 8). Analysis

did not reveal statistically significant differences between temperatures

(Fig. 7; S = 2.03), suggesting that residents are equally likely to

display in response to an intruder's movements at all body temperatures

tested.

7. Number of unprovoked displays by the resident (Table 9). This

behavioral trait showed highly significant differences between body

temperatures (Fig. 8; S = 27.29, P. .005). The tendency for the resident

to initiate a display increases threefold at 29.0 C compared to the two

lower temperatures. A gradual drop-off is evident at 32.0 C and 34.0 C.

^' Number of bites by the resident (Table 10). Number of bites was

not statistically significant at the .05 level (Fig. 9; S = 12.14),

probably because biting was a relatively rare event during the staged

interactions. The inordinately high value for number of bites at 29.0 C



Fig. 4. Mean number of maximum displays by all residents during one 30
minute encounter with an intruder for each temperature. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.).
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Table 6. Total number of moderate displays by residents during 30 minute
encounters with five intruders at five temperatures. Asterisks indicate
estimates based on the technique for missing values described in Sokal and
Rohlf (1981).

BODY TEMPERATURE (C

)

25 n 29 32 ih

RESIDENT NO.

2b 2 6* 1 11 13
3b 2 6 15 13* 19
4b 3* 6 10 6 10
5b 7 7 9 11 14*
6b 5 9 11* 8 12

12b 15 16 14 11 21*
13 12 7 14* 12 13
14 10* 6 5 13 18
16 14 13* 11 10 13
17 8 8 13 11* 5

Mean (x) 7.8 8.4 10.3 10.6 13.8



Fig. 5. Mean number of moderate displays by all residents during one 30

minute encounter with an intruder for each temperature. Bar gradations

represent minimum, median, and maximum values, as well as the 25th and

75th percentiles. Shared lower case letters denote statistical

similarities (distribution-free multiple comparisons based on Friedman

Rank Sums; No diff.).
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Table 7. Total number of minimum displays by residents during 30 minute
encounters with five intruders at five temperatures. Asterisks indicate
estimates based on the technique for missing values described in Sokal and
Rohlf (1981).

BODY TEMPERATURE (C

)

25 27 29 32 Jh

RESIDENT NO.

2b 3* 1 1

3b 1 4 4*
4b 1* 2 2 3
5b 3 1 1 1*
6b 8 4* 8

12b 3 1 1 1*
13 4 2 4* 7
14 1* 4 2
16 2* 2 1
17 2 2 3*

Me" (x) 1.0 2.7 1.7 3.1 1.6



Fig. 6. Mean number of minimum displays by all residents during one 30
minute encounter with an intruder for each temperature. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.).
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Table 8. Total number of provoked displays by residents during 30 minute
encounters with five intruders at five temperatures. Asterisks indicate
estimates based on the technique for missing values described in Sokal and
Rohlf (1981).

BODY TEMPERATURE (C)

25 27 29 32 3'+

RESIDENT NO.

2b 2 10* 11 9 9

3b 2 5 7* 22
4b 12* 6 6 16 16

Sb 13 19 10 5 18*
6b 6 22 13* 6 9

12b 24 22 19 8 27*
13 19 13 26* 26 21
14 22* 3 34 11 29
16 17 13* 4 8 13
17 9 17 9 11* 7

Mean (z) 12.4 12.7 13.7 10.7 17.1



Fig. 7. Mean number of provoked displays by all residents during one 30
minute encounter with an intruder for each temperature. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.).
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Table 9. Total number of unprovoked displays by residents during 30
minute encounters with five intruders at five temperatures. Asterisks
indicate estimates based on the technique for missing values described in
Sokal and Rohlf (1981).

BODY TEMPERATURE (C

)

25 27 29 32 ih

RESIDENT NO.

2b 15 18* 25 39 20
3b 19 12 21 31* 13
4b 14* 3 46 18 20
5b 3 47 39 30*
6b 5 8 38* 20 35

12b 4 2 26 26 14*
13 2 1 18* 3
14 3* 7 14 18 13
16 5 14* 35 39 8
17 11 23 33* 36

Mean (z) 6.7 7.9 29.3 26.6 18.9



Fig. 8. Mean number of unprovoked displays by all residents during one 30
minute encounter with an intruder for each temperature. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; 25 C and 27 C = a, 29 C and 32 C = b, 34 C = ab)

.
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Table 10. Total number of bites by residents during 30 minute encounters
with five intruders at five temperatures. Asterisks indicate estimates
based on the technique for missing values described in Sokal and Rohlf
( 1981 )

.

BODY TEMPERATURE (C

)

25 27 29 32 >

RESIDENT NO.

2b 2 2* 9 2
3b 1 1 2 2* 1
4b 10* 6 29 4 3
5b 2 3 4 7 5*
6b 2 3 9* 1 6

12b 2 4 4 3 4*
13 6* 2 1
14 1* 6 2 6
16 2 5* 4 17 2
17 3 8 10* 17

Mean (y) 2.2 2.7 8.1 5.0 4.5



Fig. 9. Mean number of bites by all residents during one 30 minute
encounter with an intruder for each temperature. Bar gradations represent
minimum, median, and maximum values, as well as the 25th and 75th
percentiles. Shared lower case letters denote statistical similarities
(distribution-free multiple comparisons based on Friedman Rank Sums; No
diff.).
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is attributable to an excessive display of aggression by resident 4b when

it occupied a terrarium at this temperature (Table 10). There was,

however, a general trend suggesting an increase in the frequency of bites

at moderate and high temperatures (Fig. 9).

9. Number of encounters resulting in the intruder fleeing (Table

11). This measure of aggression was marginally insignificant at the .05

level (Fig. 10; S = 15.75), probably, as with number of bites, because it

occurred so infrequently. Intruders were more inclined to flee at 29.0 C

than at any other temperature.

10. Total number of aggressive interactions (Table 12). Significant

differences between body temperatures were found for the total number of

aggressive interactions between residents and intruders (Fig. 11; S =

22.64, P-c .01). More aggression occurred at the three higher temperatures

than at the two lower ones, a pattern that was also evident for the other

three behavioral characteristics that were statistically significant.

Intruder Size Effect

The size of an intruder was found to influence the aggressive response

of residents. The mean number of headbobs elicited from all residents

across all temperatures was greater for three large intruders (mean weight

= 36g) than for three small intruders (mean weight = 28g; Fig. 12; t =

3.95, PC .01). Similar results were obtained for mean number of maximum

displays (Fig. 13; t = 2.96, P-r.02), mean number of unprovoked displays

(Fig. 14; t = 3.42, P< .01), and mean number of aggressive interactions

during agonistic encounters (Fig. 15; t = 4.23, P. .001) with the same

intruders.

Individual Variation

Table 13 summarizes mean resident response for four of the behavioral
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Table 11. Total number of aggressive interactions resulting in theintruder fleeing during 30 minute encounters with five intruders at fivetemperatures. Asterisks indicate estimates based on the technique formissing values described in Sokal and Rohlf (1981).

RESIDENT NO.

2b 4
3b 3
4b 3*
5b 1

6b 3
12b 1

13 3
14 2*
16

17

Mean (z) 2.0 ;

1^ 17 12
10 14* 4

7 2

1 6* 2
i 7 3
6* 4 17
5 8 7*

5.0 9.5 6.4

BODY TEMPERATURE (C)

Z5 27 29 32 y^

8* 14 9 4
5 3 7* 8

15 1 8

15*

13
4*

10

2

8

7.2



Fig. 10. Mean number of aggressive interactions resulting in the intruder
fleeing during one 30 minute encounter for each temperature. Bar
gradations represent minimum, median, and maximum values, as well as the
25th and 75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.).
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Table 12. Total number of aggressive interactions during 30 minute
encounters between residents and five intruders at five temperatures.
Asterisks indicate estimates based on the technique for missing values
described in Sokal and Rohlf (1981).

BODY TEMPERATURE (C

)

25 27 29 32 34

RESIDENT NO.

2b 25 29* 43 42 28
3b 18 20 28 40* 36
4b 34* 9 80 38 32
5b 15 25 52 45 47*
6b 13 29 54* 27 46

12b 30 28 35 37 45*
13 19 15 44* 25 22
14 29* 10 54 33 48
16 24 33* 43 63 22
17 9 31 40 50* 54

Mean (S) 21.6 22.9 47.3 40.0 38.0



Fig. 11. Mean number of aggressive interactions during one 30 minute
encounter with an intruder for each temperature. Bar gradations represent
minimum, median, and maximum values, as well as the 25th and 75th
percentiles. Shared lower case letters denote statistical similarities
(distribution-free multiple comparisons based on Friedman Rank Sums; 25 C
and 27 C = a, 29 C = b, 32 C and 34 C = ab).
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Fig. 12. Mean number of headbobs by all residents during encounters with
small intruders (n = 3 , mean weight 28 gms) and large intruders (n = 3

,

mean weight 36 gms). Bar gradations represent minimum, median, and
maximum values, as well as the 25th and 75th percentiles.
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Fig. 13. Mean number of maximum displays by all residents during
encounters with small intruders (n = 3 , mean weight 28 gms) and large
intruders (n = 3 , mean weight 36 gms). Bar gradations represent minimum,
median, and maximum values, as well as the 25th and 75th percentiles.
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Fig. 14. Mean number of unprovoked displays by all residents during

encounters with small intruders (n = 3 , mean weight 28 gms ) and large

intruders (n = 3 , mean weight 36 gms). Bar gradations represent minimum,

median, and maximum values, as well as the 25th and 73th percentiles.



ko

SMa.1 1

<35-37?y>



Fig. 15. Mean number of aggressive interactions during encounters with
small intruders (n = 3 , mean weight 28 gms) and large intruders (n = 3,
mean weight 36 gms). Bar gradations represent minimum, median, and
maximum values, as well as the 25th and 75th percentile.
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Table 13. Mean responfies of all residents for four relevant measures of

aggression during 30 minute interactions with intruders.

BEHAVIORAL CHARACTERISTIC

HEAD- MAXIMUM UNPROVOKED TOTAL

BOBS DISPLAYS DISPLAYS AGGRESSION

RESIDENT NO.

2b 120.0 16.6 23.4 33.4
3b 109.6 11.4 19.2 28.4
4b 110.2 21.2 20.2 38.6
5b 137.4 22.6 23.8 36.8
6b 105.2 17.8 21.2 33.8

12b 116.0 15.2 14.4 35.0
13 84.2 8.2 4.8 25.0
14 130.4 19.4 11.0 34.8
16 136.2 17.4 20.2 37.0
17 130.6 20.4 20.6 36.8
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characteristics that proved to be appropriate measures of aggression in

this study. Clearly, some variation in intensity of the response to an

intruder is attributable to differences in individuals. For example,

resident 5b exhibited the highest mean for three of the four behaviors,

while resident 13 produced the lowest values for all four

characteristics. Individual variation is apparently secondary to the

effect of temperature on aggression since most residents showed relative

similarities in these behaviors for particular temperatures, if not

absolute similarities (Tables 3, 5, 9, and 12).
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Predator Avoidance Behavior - Methods

Tests for predator avoidance behavior at different temperatures were

conducted in an oblong, metal arena (176 cm long x 60 cm wide x 56 cm

deep) with a sand substrate (1.5 cm deep). Substrate temperature was

adjusted with a rheostat control on a heat lamp placed under one end of

the elevated tank. Temperatures used in the 1984 trials were 21.0 C, 25.0

C, 27.0 C, 32.0 C, 34.0 C, and 38.0 C. In the 1985 trials temperatures

were adjusted to 25.0 C, 27.0 C, 29.0 C. 32.0 C, and 34.0 C. Observations

from the first summer's trials indicated that adequate data could be

gathered without using the extreme temperatures and that more uniform

increments between temperatures would be appropriate.

A trial consisted of placing a lizard directly over the heated area of

the substrate. A metal sleeve placed over the lizard restricted movement

by keeping the lizard flattened and oriented towards the opposite end of

the tank. Preliminary cloacal temperature measurements with a YSI

Tele-thermometer indicated that a lizard flattened against the heated

substrate reached tlie desired body temperature in less than 15 minutes for

even the highest substrate temperature. After this period the metal

sleeve was carefully removed, leaving the lizard exposed on the sand.

From a position behind the animal, the lizard was firmly pinched at the

base of the tail with a pair of tongs to simulate a predator attack (Fig.

16). Simulated attacks were continued every five seconds for up to 15

attacks or until the lizard fled its original position. The number of

bite attempts, and the distance run before stopping the first time were

recorded. Each lizard (four in 1984, and 10 in 1985; Table 14) was tested

at each of the experimental temperatures in a random sequence to identify

individual variation in the response to different temperatures. Data were



Fig. 16. Diagram of design for predator avoidance experiment showing
arena dimensions, heat source, and position of cover sleeve (point of
simulated attack).
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Table 14. Weight (gms ) , snout-vent length (mm), and sex of lizards used
in predator avoidance experiment (1984 and 1985).

1984

LIZARD NO. WT SVL

2a 32 102
11a 39 108
12a 32 100
14a 25 101

1985

LIZARD NO. WT

8b 35
9b 29

10b 27
13 35
14b 42

16b 36

17 37

18 23

19 22
20 22

SEX

SVL SEX

105 m
102 m
101 m
106 m
110 m
105 m
105 m
98 f

97 f
98 f
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analyzed using the Friedman Rank Sums nonparametric test, and treatment

effects separated using distribution-free multiple comparisons based on

Friedman Rank Sums (Hollander and Wolfe 1973).
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Predator Avoidance - Results

Data from both years reveal that body temperature is an important

factor influencing the choice of predator avoidance strategies in C.

collaris . Lizards tended to be more aggressive in their responses to

pinching at low body temperatures, while at moderate and high temperatures

they were more likely to flee (Table 15). Attacks that did not result in

the lizard fleeing were accompanied by an attempt to bite the tongs.

Analysis of number of bite attempts indicates that there were significant

differences between temperatures with respect to aggressive tendencies,

and that the number of attempts was inversely related to temperature (Fig.

17; Friedmans Rank Sums: 1984, S = 10.53, P . 0.05; 1985, S = 19.60, Pc

0.01). The only apparent exception to this generalization appeared in the

1984 data set when the ntunber of bite attempts at 34.0 C exceeded those at

29.0 C. This variation was not quite statistically significant, however,

and can be attributed to the small sample size for that year. Therefore

it appears that there is a levelling-off for attempted bites after 29.0 C.

From 21.0 C to 29.0 C lizards showed an increased inclination for

fleeing from predator attacks as body temperature increased. Furthermore,

the distance fled was generally greater at the higher temperatures (Fig.

18). Significant differences between temperatures for distance fled were

found for 1985 data (S = 17.71, P •; 0.05). Data from 1984 were not quite

significantly different at the 0.05 level (S = 8.57), probably because of

the small sample size (n =4). Trends for both sets of data were similar

except that those from 1984 seem to plateau at 25.0 C, while in 1985 the

plateau does not occur until 29.0 C.

Distance run and number of attempted bites were inversely related,

although the plateau effect suggests that the relationship is not linear.
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Table 15. Number of bite attempts (BA) and distance run (DR) in cm for
lizards at different body temperatures after simulated predator attacks.

21

1984

BODY TEMPERATURE (C

)

25 27 29 34 38

LIZARD NO,. BA DR BA DR BA DR BA DR BA DR BA DR

2a
11a

12a

14a

2

7

7

15

59

82

90

12 125

2 145

5 113

6 112

2 146

3 143

2 123

6 77

1 157

1 137

2 100

2 104

4

3

1

12

69
111

156

57

1 156

1 51

3 159
2 34

Mean (T) 7.8 57.8 6.3 123.8 3.3 122.3

1985

1.5 125.0 5.0 98.3 1.8 100.0

25 27 29 32

LIZARD NO. BA DR BA DR BA DR BA DR BA DR

8b 15 15 5 101 3 112 1 75
9b 9 92 15 5 119 3 80 4 103

10b 7 65 6 69 2 94 6 106 3 92
13 10 38 7 70 2 149 7 65 5 110
14b 15 9 60 1 157 5 131 4 85
16b 10 52 6 40 1 140 3 121 15
17 13 28 6 108 4 125 7 157 6 138
18 10 70 11 55 3 138 10 130 2 109
19 12 62 12 115 15 11 89 3 95
20 7 50 9 78 4 144 6 93 1 145

Mean (X") 10.8 45.7 9.6 59.5 4.2 116.7 6.1 108.4 4.4 95.2



Fig. 17. a) Mean number of bite attempts after simulated predator attack
plotted against body temperature for 1984 trials. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.). Although separation procedures showed that
temperature differences were not statistically significant, 21.0 C was
only marginally indistinguishable from 29.0 C. b) Corresponding data from
1985 predator avoidance experiment. Separation of treatment effects
indicated that 25.0 C and 27.0 C were both statistically distinct
(greater) from 29.0 C and 34.0 C with respect to bite attempts.
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Fig. 18. a) Mean distance run (cm) after simulated predator attack
plotted against body temperature for 1984 trials. Bar gradations
represent minimum, median, and maximum values, as well as the 25th and
75th percentiles. Shared lower case letters denote statistical
similarities (distribution-free multiple comparisons based on Friedman
Rank Sums; No diff.). b) Corresponding data for 1985 predator avoidance
experiment. Separation procedures revealed that the low values for
distance fled at 25.0 C differed statistically from 29.0 C and 32.0 C, and
27.0 C was similarily distinct from 29.0 C.
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Lizards fled the farthest and attempted the fewest bites between 29.0 C

and 34.0 C. The two behaviors are negatively correlated (1984: r =

- .51, P - 0.05, n = 24; 1985: r = - .75, P - 0.01, n = 50; Table 15),

indicating that there is a switching of defense behaviors based on body

temperature.



53

Discussion

Territorial Aggression

Territory defense against conspecif ics in C. collaris increases

markedly in intensity between 27.0 C - 29.0 C, a relatively small portion

of the thermal activity range of this species (21.0 C - 45.0 C; Fitch

1956). For each of the four behavioral characteristics that were

statistically significant, 29.0 C, 32.0 C, and 34.0 C had higher values

than 25.0 C and 27.0 C (Figs. 3, 4, 8, and 11). The three highest

temperatures were not statistically distinct from the two lowest

temperatures for all measured behaviors, but the overall pattern was

consistent, implying a threshold temperature just below 29.0 C where

aggressive tendencies by residents increase. As a consequence of the

greater energetic requirements associated with activity at low body

temperatures, lizards respond less vigorously when their body temperatures

are lower than 29.0 C than when they reach this temperature. Once the

threshold temperature is reached, the physiological constraints are

reduced and lizards are able to raise the level of aggression. The data

definitely suggest a temperature range where aggression is greatest (29.0

C - 34.0 C), but a further argument could be made for 29.0 C as being the

body temperature for maximum aggression of those tested, since it had

higher values than 32.0 C and 34.0 C for all four traits, despite not

being statistically distinguishable from the two higher temperatures.

Statistical significance should be secondary to biological significance,

however, since 29.0 C has the highest mean values for seven of the 10

measured traits (Figs. 2, 3, 4, 8, 9, 10, and 11).

Mention should be made of the drop-off in aggression at 32.0 C and

34.0 C. Initially it might be assumed that residents at this temperature



were heat stressed, and subsequent behaviors were affected. This is known

to occur in other iguanids, but only at body temperatures exceeding 40.0 C

(Bennett 1980). Field measurements of collared lizards suggest that the

preferred body temperature ranges from 36.3 C (Brattsom 1965) to 38.0 C

(Fitch 1956; actual values may be lower than these since handling probably

increases body temperatures), so heat stress may be ruled out as a factor

inhibiting aggression at 34.0 C. A more likely explanation is that 34.0 C

is not the temperature for £. collaris that provides the most effective

territorial defense. A temperature is appropriate only relative to the

costs and benefits of the specific behavior in question. In other words,

34.0 C may (or may not) be the most efficient temperature at which to

forage, but it does not necessarily follow that territory defense is also

effective at this temperature. This study indicates that the net benefits

accrued from aggressive territory defense may be maximized at 29.0 C and

may be somewhat decreased at higher temperatures, particularly at 34.0 C.

The tendency to be most aggressive at 29.0 C represents a maximum for

territorial defense, which is just one aspect of C^. collaris ' overall

behavioral repertoire. The maximum temperature for aggression, along with

thermal maxima for other behaviors (such as foraging), are influenced by

their related costs and benefits such that an optimal temperature for a

specific behavior may differ from the temperature at which the behavior is

performed most effectively. Thus, an optimal body temperature for a

certain behavior is a mosaic of thermal maxima of all conflicting

berhavioral demands at a particular point in time.

The importance of an optimal temperature or temperature range is

exemplified when considering the specific trade-offs involved in territory

defense in £. collaris . Costs associated with maintaining a territory
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include increased risk of predation and the possibility of injury during

combat (Stamps 1977). Males benefit from successful defense by increasing

their opportunities to mate, since they control a resource (insects) that

is vital to females (Davies 1978). Individuals that are best able to

thermoregulate to the optimal temperature and thus balance the conflicting

demands related to territory defense will maximize their fitness.

Male collared lizards also exhibited greater aggression when

confronted with a large intruder than when interacting with a small one.

This pattern is consistent with a study of territorial interactions in the

brown anole, Anolis sagrei . which found that large males elicited more

aggressive displays from territory holders than did small lizards (Tokarz

1985). Apparently residents recognize large males as a greater threat to

displace them from their territories and respond by increasing the

intensity of their defense. It may seem to be maladaptive to challenge a

potentially dangerous rival, but the ritualistic nature of displays in

iguanid lizards serves to deter actual physical combat in most cases,

especially when the cost of risking injury is greater than the benefit

accrued from winning the contest (Krebs and Davies 1981).

Predator Avoidance Behavior

Christian and Tracy (1981) point out that predator-prey interactions

are unique in that the possible outcomes are both distinct and limited

from the perspective of the prey; it either escapes and potentially pays a

price in terms of lost matings or food aquisition, or is killed. Such

strong selective pressure coupled with the fact that reproductive success

is dependent on an individual's survival and subsequent contribution to

future gene pools, has led to the evolution of a wide array of predator

defense mechanisms in animals (Harvey and Greenwood 1978; Alcock 1984).
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Collared lizards (and ectotherms in general) are physiologically, and

consequently, behaviorally , constrained by body temperature with respect

to the effectiveness of different defense strategies. As a result, it

would probably not benefit a lizard to attempt to run away from a predator

if the lizard's body temperature is below the point where adequate sprint

speed is possible. Thus a lizard might be better off holding its ground

and fighting when confronted by a predator. The optimal defense strategy

at a given body tenmperature is that which enhances an individual's

probability of survival.

Responses to a simulated predator suggest that C^. collaris has evolved

alternate predator avoidance strategies based on body temperature. At low

body temperatures the rate of reaction and speed of movement of lizards is

apparently slowed, making them relatively easy prey for their main

predators, hawks and snakes (Collins 1982). At low body temperatures the

strategy of collared lizards is to respond aggressively to predator

attacks, with the inclination to bite inversely related to body

temperature (Fig. 17). The adaptive value of aggressive behavior is

dependent on the ability of the lizard to disuade the predator from its

attack. These lizrds possess a powerful bite, as do other lizard species

that exhibit aggressive behavior at low temperatures (Hertz et al. 1982;

Crowley and Peitruszka 1983). A contrasting evasive strategy is displayed

by the harmless lizard, Anolis lineatopus . which increases flight distance

betweeen itself and a potential predator when at a low body temperatures,

rather than adopt an aggressive defense (Rand 1964). This tactic serves

the same function as the biting tendencies of C. collaris at low body

temperatures. The only difference is that the strategy employed by A.

lineatopus is necessarily passive because of their inability to deliver a
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bite sufficient to discourage a predator.

The fact that lizards fled from simulated predator attacks more

frequently at moderate and high temperatures instead of attempting to bite

represents a switch in defensive behavior. The data indicate a threshold

temperature at which locomotion potential is increased to the extent that

escape is more likely. The critical temperature is probably closer to

29.0 C (1985 data) than 25.0 C (1984 data) because of the statistical

rigor associated with larger sample sizes. A physiological explanation

for this tendency might be the fact that C. collaris has a decreased rate

of change in metabolism towards the lower end of its temperature tolerance

range, a phenomenon attributable to the high temperatures to which this

diurnal species is adapted (Clouds ley-Thompson 1971). Thus, a decrease in

the effectiveness of metabolic processes at body temperatures below the

threshold should result in defense rather than flight. Conversely, lizard

species with relatively high metabolisms at low body temperatures

generally rely on rapid escape when threatened by a predator (Bennett

1980). Waldschmidt and Tracy (1983) reported a threshold range of 35.0 -

38.0 C for sprint speed in the side-blotched lizard Uta stansburiana .

which is comparable to the results for C. collaris . Additionally,

Galapagos land iguanas reduce predation from hawks by choosing to flee

only when their body temperatures exceed 32.0 C (Christian and Tracy

1981). The increase in distance run at higher temperatures by C. collaris

lends further support to the switching hypothesis if it is assumed that

increasing the distance between a prey and predator enhances the lizard's

chance of survival. The relationship between the tendency to run,

distance run, and sprint speed appears to be linked to the threshold

temperature.
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The results obtained are consistent with those of other studies.

Crowley and Pietruszka (1983) found that aggressive responses to predators

increase in both frequency and intensity at low body temperatures in the

iguanid Gambe 1 ia wislizenii . A shift to flight occurs at a threshold body

temperature betweeen 20.0 C and 26.0 C, a range in which running ability

increases in this species. Supplementary examples of temperature related

defensive behavior are evident in other lizard species (Hertz et al.

1982), and in garter snakes (Heckrotte 1967; Arnold and Bennett 1984).

An effective predator avoidance strategy is one that imparts a

selective advantage to the potential prey (Cans and Richmond 1957).

Qualitative variations in defensive behavior by C^. collaris are adaptive

in that they provide a means by which the effect of thermal constraints on

locomotion are alleviated. The survival value of an aggressive strategy

when at a low body temperature and fleeing when body temperature is

adequate for escape is best emphasized when viewed in terms of a

trade-off. Collared lizards improve their chances of survival by choosing

an aggressive defense against predators when thermal restrictions elevate

the costs associated with running, and switching to flight when

temperatures are high enough to provide sufficient sprint speed.
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Overview

The ecological demands associated with territory defense and predator

avoidance are interelated, as evidenced by increased mortality during

reproductive periods in a wide array of taxa (Alcock 1984). A male

collared lizard may increase its chance of being eaten by defending a

territory, but it also increases its mating opportunities significantly.

Lizards that can attract mates to a territory and not be killed by a

predator are at a selective advantage. The probability of predator attack

coincides with mating behavior in C,. collaris . so it is not surprising

that the temperature at which the costs and benefits of these two

conflicting demands are favorably balanced is the same. The results of

the current experiments revealed a threshold temperature between 27.0 C

and 29.0 C where territory holders were most aggressive and where the

preferred predator avoidance strategy switched from biting to fleeing,

thus supporting the notion that associated costs and benefits of a given

behavior vary with changing ecological variables, which in this case was

body temperature.

Any activity that an animal undertakes has a value, in terms of

fitness, that is directly related to the overall physiological state of

the animal. Through natural selection, organisms should evolve behavioral

strategies that maximize net benefits when subject to specific ecological

and/or physiological conditions. Collared lizards, and ectotherms in

general, are suitable study animals for analysing temperature dependent

behaviors since most aspects of their biology respond to environmental

temperature, which is an easily controlled variable. The study of

adaptation as an important feature of evolution requires the functional

relationships between individuals and the environment (Regal 1983). These
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functional relationships are manifested in the behavioral adaptations of

C_. collaris that allow them to make the appropriate responses to

territorial intrusions and predator attack when at different body

temperatures.
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Abstract

Behavioral means of thermoregulation that alleviate environmental

constraints on body temperature have evolved in many ectothermic species.

Collared lizards (Crotaphytus collaris ) are among those animals that can

behaviorally control their body temperatures at levels that allow them to

survive in a thermally variable environment. This study is concerned with

the relationship between body temperature and behavior in C^. collaris .

Specifically, experiments were conducted to determine a) if the intensity

of territorial aggression in male lizards varies at different body

temperatures, and b) if choice of predator avoidance strategies is

thermally related.

Results indicated that territorial male collared lizards have elevated

aggression against conspecific intruders when residents' body temperatures

are between 29.0 C - 34.0 C, with 29.0 C the temperature where the

greatest amount of aggression occured. Less vigorous responses at low

body temperatures (25.0 C and 27.0 C) are apparently due to increased

physiological constraints. A switching of predator avoidance strategies

also occured between 27.0 C and 29.0. Individuals adopted a biting

defense when their body temperatures were at 21.0 C and 25.0 C, and

switched to a fleeing strategy between 27.0 C and 29.0 C. The adaptive

value of an aggressive response to a predator is dependent on the

inability of a lizard to attain sufficient sprint speed to make escape

likely.

The conflicting demands of territorial defense and the avoidance of

predators occur simultaneously in C^. collaris . Thus, it is reasonable to

assume that a body temperature at which costs and benefits of the two

demands are favorably balanced would be nearly the same. The results of



current experiments revealed a threshold temperature (29.0 C) where

territory holders were most aggressive and where the preferred predator

avoidance strategy switched from biting to fleeing, supporting the idea

that associated costs and benefits of a given behavior vary with changing

ecological variables.


